负 Federal Ministry

Challenges and Status of the FCC-ee lattice design

Bastian Haerer (CERN, Geneva; KIT, Karlsruhe), Bernhard Johannes Holzer (CERN, Geneva)

Future Circular Collider Study

- New 80-100 km storage ring
- FCC-hh (=long-term goal):
\rightarrow High-energy hadron collider
\rightarrow Push the energy frontier to 100 TeV
- FCC-ee (TLEP):
$\rightarrow \mathrm{e}^{+} / \mathrm{e}^{-}$-collider as intermediate step
- FCC-he
\rightarrow Hadron-lepton collider option
\rightarrow Deep inelastic scattering

Future Circular Collider Study Kick-off Meeting
12-15 February 2014, University of Geneva
Switzerland

UNIVERSITÉ
DE GENEVE
Eucard?

What is our goal?

- ATLAS event display:

$$
\mathrm{H} \rightarrow \mathrm{e}^{+}+\mathrm{e}^{-}+\mu^{+}+\mu^{-}
$$

HF2014 Workshop, Beijing, China
9-12 October 2014

Challenges and Status of the FCC-ee lattice design Bastian Haerer (bastian.harer@cern.ch)

Physics goals of FCC-ee

Provide highest possible luminosity for a wide physics program ranging from the Z pole to the tt production threshold.
> Beam energy range from 45 GeV to 175 GeV

Main physics programs / energies (+ scan around central values):
$>Z(45.5 \mathrm{GeV}): \quad \mathrm{Z}$ pole, high precision of M_{Z} and Γ_{Z},
> W $(80 \mathrm{GeV})$: W pair production threshold,
$>\mathrm{H}(120 \mathrm{GeV})$: H production,
$>\mathrm{T}(175 \mathrm{GeV})$: tt threshold.

All energies quoted refer to BEAM energies

Main challenge: the parameter list

	Z	W	H	tt
Beam energy [GeV]	45.5	80	120	175
Beam current [mA]	1450	152	30	6.6
Bunches / beam	16700	4490	1330	160
Bunch population [10 ${ }^{11}$]	1.8	0.7	0.46	0.83
Transverse emittance ε - Horizontal [nm] - Vertical [nm]	$\begin{aligned} & 29.2 \\ & \hline 0.06 \\ & \hline \end{aligned}$	$\begin{array}{r} 3.3 \\ 0.007 \end{array}$	0.007	
Momentum comp. [10-5]	18	2	0.5	0.5
Betatron function at IP β^{*} - Horizontal [mm] - Vertical [mm]	$\begin{gathered} 500 \\ \hline 1 \\ \hline \end{gathered}$	500	500	100
Energy loss / turn [GeV]	0.03	0.33	1.67	
Total RF voltage [GV]	2.5	4	5.5	

- Design \& optimize a lattice for 4 different energies
- Interaction region layout for a large number of bunches
- Horizontal emittance is increasing with reduced energy
- Extremely small vert. beta* $^{(} \beta_{\mathrm{y}}{ }^{*}=1 \mathrm{~mm}$)
\rightarrow High chromaticity
\rightarrow Challenging dynamic aperture
- High synchrotron radiation losses include sophisticated absorber design in the lattice

Challenges and Status of the FCC-ee lattice design Bastian Haerer (bastian.harer@cern.ch)

The FCC-ee Layout

- 100 km circumference
- $12 \operatorname{arcs}(2 \times 3.4 \mathrm{~km})$
- 12 long straight sections (1.5 km)
\rightarrow RF installations
- 4 mini-beta insertions
- 2 rings side-by-side

FODO cell for 175 GeV

Layout already considers max. dipole length, drift spaces for absorbers, flanges etc.

$$
\begin{array}{lll}
\mathrm{N}_{\text {dipoles }}=6528(384 \text { half bend }) & (\text { LHC: 1232) } & \rho \approx 10.6 \mathrm{~km} \\
\mathrm{~N}_{\text {quadrupoles }}=4704 & (\text { LHC: 478) } & \theta=0.99 \mathrm{mrad} \tag{LHC:478}\\
& & B=55 \mathrm{mT}
\end{array}
$$

FODO cell for 175 GeV

- $L=50 \mathrm{~m}$
- $\Psi=90^{\circ} / 60^{\circ}$
- $\beta_{\mathrm{x}, \max }=76.9 \mathrm{~m}$
- $\beta_{y, \max }=96.6 \mathrm{~m}$
- $D_{x, \max }=12.7 \mathrm{~cm}$

MADX Emit:

- $\varepsilon_{\mathrm{x}}=1.00 \mathrm{~nm}$
- $\mathrm{U}_{0}=7.72 \mathrm{GeV}$

Emittance in
 electron storage rings

邶 remilab

Minimizing the Emittance in Designing the Lattice of an Electron Storage Ring

L.C. Teng

June 1984

TM-1269
0102.000

$$
\varepsilon_{x}=\frac{C_{g}}{J_{x}} \gamma^{2} \theta^{3} F
$$

$$
F_{\text {FODO }}=\frac{1}{2 \sin \psi} \frac{5+3 \cos \psi}{1-\cos \psi} \frac{L}{l_{B}}
$$

$\mathrm{C}_{\mathrm{g}}=3.832 \times 10^{-13} \mathrm{~m}, \mathrm{~J}_{\mathrm{x}}=$ damping partition number, $\gamma=$ Lorentz factor,
$\theta=$ bending angle, $F=$ numerical factor controlled by the lattice design

Emittance in

 electron storage rings

 electron storage rings}

Fermilab

TM-1269
0102.000

Minimizing the Emittance in Designing the Lattice of an Electron Storage Ring

L.C. Teng

June 1984

$$
\varepsilon_{x}=\frac{C_{x}}{J_{x}} \gamma^{2} \theta^{3} F
$$

$$
F_{F O D O}=\frac{1}{2 \sin \psi} \frac{5+3 \cos \psi}{1-\cos \psi} \frac{L}{l}
$$

Analytic calculation:
MADX Emit:

$$
\begin{aligned}
& \varepsilon_{\mathrm{x}}=1.04 \mathrm{~nm} \\
& \varepsilon_{\mathrm{x}}=1.00 \mathrm{~nm}
\end{aligned}
$$

120 GeV

$$
\varepsilon_{x}=\frac{C_{g}}{J_{x}} \gamma^{2} \theta^{3} F
$$

If the beam energy will be decreased from 175 GeV to 120 GeV the beam emittance is expected to shrink!
$F\left(\Psi=90^{\circ}\right)=2.976, \quad \gamma(175 \mathrm{GeV})=342466, \quad \gamma(120 \mathrm{GeV})=234834$

- Analytic calculation:

$$
\begin{aligned}
& \varepsilon_{\mathrm{x}}=0.491 \mathrm{~nm} \\
& \varepsilon_{\mathrm{x}}=0.488 \mathrm{~nm}
\end{aligned}
$$

- MADX Emit:
- Baseline parameter:
$0.5 \times \varepsilon_{x}=0.47 \mathrm{~nm}$
$\left(\varepsilon_{x}=0.94 \mathrm{~nm}\right)$

We can keep the 175 GeV optics for 120 GeV beam energy!

45.5 GeV and 80.0 GeV

80.0 GeV: $\quad \gamma=156556$

- Baseline parameter: $0.5 \times \varepsilon_{x}=1.65 \mathrm{~nm} \quad\left(\varepsilon_{x}=3.30 \mathrm{~nm}\right)$
- Analytic calculation:

$$
\varepsilon_{x}=0.218 \mathrm{~nm}
$$

$45.5 \mathrm{GeV}: \quad \gamma=89041$

- Baseline parameter: $0.5 \times \varepsilon_{x}=14.60 \mathrm{~nm} \quad\left(\varepsilon_{x}=29.20 \mathrm{~nm}\right)$
- Analytic calculation:

$$
\varepsilon_{x}=0.071 \mathrm{~nm}
$$

How can the beam emittance be increased?

$$
\varepsilon_{x}=\frac{C_{g}}{J_{x}} \gamma^{2} \theta^{3} F
$$

Changing the emittance for lower energies

$\varepsilon=\left(\frac{\delta p}{p}\right)^{2}\left(\gamma D^{2}+2 \alpha D D^{\prime}+\beta D^{\prime 2}\right)$
$\hat{D}=\frac{L_{\text {cell }}^{2}}{\rho} \cdot\left(1+\frac{1}{2} \sin \left(\frac{\psi_{\text {cell }}}{2}\right)\right) / \sin ^{2}\left(\frac{\psi_{\text {cell }}}{2}\right)$
There are two different possibilities:

1) Changing of the cell length
\rightarrow Larger emittance: increase cell length
$\rightarrow 2 \times \mathrm{L}_{\text {cell }}, 3 \times \mathrm{L}_{\text {cell }}, 4 \times \mathrm{L}_{\text {cell, }}, \ldots$

- Recabeling of quadrupoles necessary
- Dispersion suppressors need to be adjusted

1) Changing of the cell length

Changing the emittance for lower energies

$\varepsilon=\left(\frac{\delta p}{p}\right)^{2}\left(\gamma D^{2}+2 \alpha D D^{\prime}+\beta D^{\prime 2}\right)$
$\hat{D}=\frac{L_{\text {cell }}^{2}}{\rho} \cdot\left(1+\frac{1}{2} \sin \left(\frac{\psi_{\text {cell }}}{2}\right)\right) / \sin ^{2}\left(\frac{\psi_{\text {cell }}}{2}\right)$

There are two different possibilities:
Court. B. Holzer
2) Change the phase advance Ψ of the FODO cell

+ No recabeling of hardware necessary
- Dispersion suppressors need to be adjusted
- Sextupole scheme? $\quad \rightarrow 45^{\circ}, 60^{\circ}, 72^{\circ}, 90^{\circ}, \ldots$
- Only within certain limits possible: $40^{\circ}<\Psi<135^{\circ}$

Feasible Lattice Changes

80 GeV beam energy:

Cell length \mathbf{L}	Phase advance $\boldsymbol{\Psi}$	Emittance $\varepsilon_{\mathbf{x}}$
Baseline parameter:		$2 \times$
50 m	45°	1.65 nm
100 m	90°	1.50 nm (Teng)

45.5 GeV beam energy:

Cell length L	Phase advance $\boldsymbol{\Psi}$	Emittance $\varepsilon_{\mathbf{x}}$
Baseline parameter:		$2 \times$
200 m	60°	14.60 nm
250 m	72°	13.56 nm (Teng)
300 m	90°	15.91 nm (Teng)

Objectives

- Introduce dispersion suppressors based on quadrupoles
\rightarrow Geometry must stay the same
- Beta functions in dispersion suppressor and matching sections should stay in the same order of magnitude as in the arcs
- Keep straight sections the same
\rightarrow Space is limited
\rightarrow No change of optics for injection, IR, etc. necessary

Lattices for 80 GeV

175 GeV and $120 \mathrm{GeV}: \mathrm{L}_{\text {cell }}=50 \mathrm{~m}, \Psi=90^{\circ} / 60^{\circ}$

Half-bend dispersion suppressor

$80 \mathrm{GeV}: \mathrm{L}_{\text {cell }}=50 \mathrm{~m}, \Psi=45^{\circ} / 45^{\circ}$

Dispersion suppressor based on quadrupoles
$80 \mathrm{GeV}: \mathrm{L}_{\text {cell }}=100 \mathrm{~m}, \Psi=90^{\circ} / 60^{\circ}$

- Arc cells
- Dispersion Suppressor
\square Straight matching section (with RF)
\square Straight cells (with RF)

$80 \mathrm{GeV}:$ 1) $\Psi=45^{\circ}$

Using 4 additional quadrupoles instead of 2 reduces the betafunction in the dispersion suppressor.

$80 \mathrm{GeV}:$ 1) $\Psi=45^{\circ}$

FCC-ee baseline parameter:
Analytical calculation:
MADX Emit:

$0.5 \times \varepsilon_{x}=1.65 \mathrm{~nm}$
$\varepsilon_{\mathrm{x}}=1.50 \mathrm{~nm}$
$\varepsilon_{\mathrm{x}}=1.47 \mathrm{~nm}$

$80 \mathrm{GeV}:$ 2) 100 m cell length

$80 \mathrm{GeV}:$ 2) 100 m cell length

FCC-ee baseline parameter: Analytical calculation:

MADX Emit:

$0.5 \times \varepsilon_{\mathrm{x}}=1.65 \mathrm{~nm}$

$$
\varepsilon_{\mathrm{x}}=1.74 \mathrm{~nm}
$$

$$
\varepsilon_{\mathrm{x}}=1.70 \mathrm{~nm}
$$

Lattices for 45.5 Gev

175 GeV and $120 \mathrm{GeV}: \mathrm{L}_{\text {cell }}=50 \mathrm{~m}, \Psi=90^{\circ} / 60^{\circ}$

45.5 GeV: $\mathrm{L}_{\text {cell }}=200 \mathrm{~m}, \Psi=60^{\circ} / 60^{\circ}$

Dispersion suppressor based on quadrupoles
45.5 GeV: $\mathrm{L}_{\text {cell }}=250 \mathrm{~m}, \Psi=72^{\circ} / 72^{\circ}$

45.5 GeV: $\mathrm{L}_{\text {cell }}=300 \mathrm{~m}, \Psi=90^{\circ} / 60^{\circ}$

45.5 GeV: 200 m cell length

FCC-ee baseline parameter: Analytical calculation:

MADX Emit:

$0.5 \times \varepsilon_{x}=14.6 \mathrm{~nm}$

$$
\varepsilon_{\mathrm{x}}=13.6 \mathrm{~nm}
$$

$$
\varepsilon_{\mathrm{x}}=12.5 \mathrm{~nm}
$$

45.5 GeV: 250 m cell length

FCC-ee baseline parameter: Analytical calculation:
MADX Emit:

$0.5 \times \varepsilon_{x}=14.6 \mathrm{~nm}$

$$
\varepsilon_{\mathrm{x}}=15.9 \mathrm{~nm}
$$

$$
\varepsilon_{\mathrm{x}}=14.5 \mathrm{~nm}
$$

45.5 GeV: 300 m cell length

FCC-ee baseline parameter: Analytical calculation:

MADX Emit:

$0.5 \times \varepsilon_{x}=14.6 \mathrm{~nm}$

$$
\varepsilon_{\mathrm{x}}=15.2 \mathrm{~nm}
$$

$$
\varepsilon_{\mathrm{x}}=14.2 \mathrm{~nm}
$$

Next steps

1. Introduction of misalignments and coupling
\rightarrow Which lattice is most stable?
\rightarrow How much does horizontal emittance increase?
\rightarrow Calculation of the distorted orbit and vertical emittance
2. Which software is reliable for those calculations?
3. State-of-the-art chromaticity correction scheme
4. Investigate light source lattices for colliders

Résumé I

- The baseline parameter provide a variety of challenges for the lattice design
\rightarrow A lattice with highest flexibility is needed
- To achieve the emittance baseline parameters the lattice has to be modified
- Two possible alternatives:
\rightarrow Changing of the cell length
\rightarrow Changing of the phase advance

Résumé II

- Different beam optics were determined to obtain the required emittances for all 4 energies.
- For 175 GeV and 120 GeV beam energy the same lattice can be used
- For 80 GeV and 45.5 GeV several lattices with different cell length and phase advance were implemented
- This is just the very first design!
\rightarrow Misalignment studies, chromaticity correction scheme

Thank you for your attention!

SPONSORED BY THE
 of Education and Research

HF2014 Workshop, Beijing, China 9-12 October 2014

Challenges and Status of the FCC-ee lattice design Bastian Haerer (bastian.harer@cern.ch)

Energy sawtooth

12 RF sections

4 RF sections

Energy loss per turn: $\quad \mathrm{U}_{0}=7.72 \mathrm{GeV}$

80 GeV : important parameters

Cell length in arc (m)	50	100	Baseline
Phase advance in arc cell	$45^{\circ} / 45^{\circ}$	$90^{\circ} / 60^{\circ}$	parameter
Horizontal emittance (nm)	1.47	1.70	2×1.65
Energy loss per turn (MeV)	337.03	337.03	330
Momentum compaction (10-5)	1.99	2.22	2
Max. hor. beta function in arc (m)	141.47	181.54	-
Max. vert. beta function in arc (m)	141.68	211.05	-
Max. dispersion in arc (m)	0.41	0.58	

45.5 GeV: important parameters

Cell length in arc (m)	$\mathbf{2 0 0}$ Phase advance in arc cell $\mathbf{6 0} / 60^{\circ}$	$\mathbf{2 5 0}$ $\mathbf{7 2} / 72^{\circ}$	$\mathbf{3 0 0}$ $\mathbf{9 0} / 60^{\circ}$	Baseline parameter
Horizontal emittance (nm)	12.5	14.5	14.2	2×14.6
Energy loss per turn (MeV)	35.3	35.3	35.3	30
Momentum compaction (10-4)	1.69	1.86	1.81	1.8
Max. hor. beta function in arc (m)	366.51	465.71	554.00	-
Max. vert. beta function in arc (m)	407.92	477.70	626.43	-
Max. dispersion in arc (m)	4.02	4.87	4.56	-
RMS beam size σ_{x} in arc* $^{*}(\mathrm{~mm})$	2.1	2.6	2.8	-

* $\sigma_{x}=\sqrt{\varepsilon_{x} \beta_{x}}$

