SPONSORED BY THE

Federal Ministry of Education and Research

Higher order chromaticity correction in the FCC-ee arcs – first approach

Bastian Haerer (CERN, Geneva; LAS-KIT, Karlsruhe), B. J. Holzer (CERN, Geneva), A.-S. Müller (LAS, IPS, ANKA-KIT, Karlsruhe)

DPG Frühjahrstagung 10 March 2015

FCC-ee

One part of the **Future Circular Collider Study**

- 100 km e+/e-ring collider
- Precision studies of Z, W, H, t
 → Beam energies up to 175 GeV

- Beamstrahlung: mom. acceptance required: $\delta = \pm 2\%$
- Design luminosity: L = O(10³⁵ cm⁻²s⁻¹)
 → Strong focusing in final doublet quadrupoles (β*_y = 1 mm)
 → Very high chromaticity!

Chromaticity

Change of the tune with energy deviation

• Textbook*:
$$\Delta Q = \xi \cdot \Delta p / p$$

• In our case not precise enough: $(\delta = \Delta p / p)$ $Q(\delta) = Q_0 + \frac{\partial Q}{\partial \delta} \delta + \frac{1}{2} \frac{\partial^2 Q}{\partial \delta^2} \delta^2 + \frac{1}{6} \frac{\partial^3 Q}{\partial \delta^3} \delta^3 + \dots$

*K. Wille: The Physics of Particle Accelerators

DPG Frühjahrstagung 10 March 2015

FCC-ee: Natural Chromaticities

	4 IRs	ΔQ (δ=1.5 %)
Q _x	502.16	
Q _x '	-603.80	-9.06
Q_x"	-8258.29	-0.93
Q _x ""	-1.4e+08	-79.31
Q _x ""	-2.1e+12	-4.43e+03
Q _y	334.28	
Q _y '	-2044.43	-30.67
Q _y "	-8.4e+06	-944.12
Q _y ""	-2.0e+11	-1.10e+05
Q _y ""	-6.5e+15	-1.37e+07

1st order correction
 → Straight forward...

• Higher orders

 \rightarrow First approach:

Montague formalism

Montague functions

Chromatic variables

$$B = \frac{1}{\beta} \frac{\partial \beta}{\partial \delta} \qquad A = \frac{\partial \alpha}{\partial \delta} - \frac{\alpha}{\beta} \frac{\partial \beta}{\partial \delta} \qquad \text{Final Focus Quad:} \\ A^{\uparrow} \Delta A \cong -\beta_0 \, k_0 \, l_q \qquad \text{Sextupole:} \\ \Delta A \cong -\beta_0 \, k'_0 \, D_x l_s \qquad \text{Sextupole:} \\ \Delta A \cong -\beta_0 \, k'_0 \, D_x l_s \qquad \text{Final Focus Quad:} \\ A^{\uparrow} \Delta A \cong -\beta_0 \, k'_0 \, D_x l_s \qquad \text{Sextupole:} \\ A^{\uparrow} \Delta A \cong -\beta_0 \, k'_0 \, D_x l_s \qquad \text{Sextupole:} \\ A^{\uparrow} \Delta A \cong -\beta_0 \, k'_0 \, D_x l_s \qquad \text{Sextupole:} \\ A^{\uparrow} \Delta A \cong -\beta_0 \, k'_0 \, D_x l_s \qquad \text{Sextupole:} \\ A^{\uparrow} \Delta A \cong -\beta_0 \, k'_0 \, D_x l_s \qquad \text{Sextupole:} \\ A^{\uparrow} \Delta A \cong -\beta_0 \, k'_0 \, D_x l_s \qquad \text{Sextupole:} \\ A^{\downarrow} \Delta A \cong -\beta_0 \, k'_0 \, D_x l_s \qquad \text{Sextupole:} \\ A^{\downarrow} \Delta A \cong -\beta_0 \, k'_0 \, D_x l_s \qquad \text{Sextupole:} \\ A^{\downarrow} \Delta A \cong -\beta_0 \, k'_0 \, D_x l_s \qquad \text{Sextupole:} \\ A^{\downarrow} \Delta A \cong -\beta_0 \, k'_0 \, D_x l_s \qquad \text{Sextupole:} \\ A^{\downarrow} \Delta A \cong -\beta_0 \, k'_0 \, D_x l_s \qquad \text{Sextupole:} \\ A^{\downarrow} \Delta A \cong -\beta_0 \, k'_0 \, D_x l_s \qquad \text{Sextupole:} \\ A^{\downarrow} \Delta A \cong -\beta_0 \, k'_0 \, D_x l_s \qquad \text{Sextupole:} \\ A^{\downarrow} \Delta A \cong -\beta_0 \, k'_0 \, D_x l_s \qquad \text{Sextupole:} \\ A^{\downarrow} \Delta A \cong -\beta_0 \, k'_0 \, D_x l_s \qquad \text{Sextupole:} \\ A^{\downarrow} \Delta A \cong -\beta_0 \, k'_0 \, D_x l_s \qquad \text{Sextupole:} \\ A^{\downarrow} \Delta A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ A^{\downarrow} \Delta A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ A^{\downarrow} \Delta A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ A^{\downarrow} \Delta A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ A^{\downarrow} \Delta A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ A^{\downarrow} \Delta A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ A^{\downarrow} \Delta A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ A^{\downarrow} \Delta A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ A^{\downarrow} \Delta A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ A^{\downarrow} \Delta A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ A^{\downarrow} \Delta A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ A^{\downarrow} \Delta A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ A^{\downarrow} \Delta A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ A^{\downarrow} \Delta A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ A^{\downarrow} \Delta A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ A^{\downarrow} \Delta A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ A^{\downarrow} \Delta A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ A^{\downarrow} \Delta A \cong -\beta_0 \, k'_0 \, d_s \quad l_s \quad l_s \quad l_s \quad l_s \quad l_s$$

Oscillates with twice the phase advance!

DPG Frühjahrstagung 10 March 2015

FCC-ee Lattice

Circumference:100 kmArc length:6.8 kmStraight section length:1.5 km

4 mini-beta insertions (IPs)

B = bending magnet, Q = quadrupole, S = sextupole

DPG Frühjahrstagung 10 March 2015

FCC-ee sextupole scheme

 $\mu_x = 180^\circ = \pi (\rightarrow -I \text{ transformation})$

Even number of sextupoles per family!

DPG Frühjahrstagung 10 March 2015

-I transformation

 Sextupoles of each family are in phase

→ W-vector
 rotates by 2π

DPG Frühjahrstagung 10 March 2015

Phase advance FD – 1st Sext.

DPG Frühjahrstagung 10 March 2015

W functions for 1 quarter

DPG Frühjahrstagung 10 March 2015

Momentum acceptance in x

DPG Frühjahrstagung 10 March 2015

Momentum acceptance in y

DPG Frühjahrstagung 10 March 2015

"Corrected" Chromaticity

	Nat. Chrom.	Corr. Chrom.	ΔQ (0.05 %)
Q _x	502.16	502.16	
Q _x '	-603.80	5.7e-05	2.83e-08
Q_x"	-8.3e+03	3.5e+03	4.41e-04
Q_x"	-1.4e+08	-5.5e+05	-1.14e-05
Q_x""	-2.1e+12	-8.5e+09	-2.20e-05
Q _y	334.28	334.28	
Q _y '	-2044.43	2.8e-01	1.39e-04
Q _y "	-8.4e+06	-1.2e+04	-1.53e-03
Q _y ""	-2.0e+11	-3.4e+09	-7.00e-02
Q _y ""	-6.5e+15	3.6e+10	9.25e-05

(...using the whole ring.)

DPG Frühjahrstagung 10 March 2015

DPG

DPG Frühjahrstagung 10 March 2015

Take home message

- The higher orders of the chromaticity have a big influence in our machine.
- They need to be well corrected in order to obtain ± 2% momentum acceptance.
- We are applying and investigating methods to do that.

Thank you for your attention!

Federal Ministry of Education and Research

DPG Frühjahrstagung 10 March 2015

Chromaticity $\varphi(\delta) = \varphi_0 + \frac{\partial \varphi}{\partial \delta} \delta + \frac{\partial^2 \varphi}{\partial \varphi^2} \delta^2 + \dots$

The first three orders, as derived by A. Bogomyagkov:

$$\begin{aligned} \frac{\partial \varphi_y}{\partial \delta} &= \frac{1}{2} \int_0^\Pi \beta_y (K_1 - K_2 \eta_0) ds \,, \\ \frac{\partial^2 \varphi_y}{\partial \delta^2} &= -2 \frac{\partial \varphi_y}{\partial \delta} - \int_0^\Pi \beta_y K_2 \eta_1 ds + \frac{1}{2} \int_0^\Pi \beta_y b_{y,1} (K_1 - K_2 \eta_0) ds \,, \\ \frac{\partial^3 \varphi_y}{\partial \delta^3} &= 6 \frac{\partial \varphi_y}{\partial \delta} - \int_0^\Pi \beta_y (K_1 - K_2 \eta_0) (a_{y,1}^2 + b_{y,1}^2) ds \,+ \\ &+ 3 \int_0^\Pi \beta_y (K_2 \eta_1 - K_2 \eta_2) ds + \frac{3}{2} \int_0^\Pi \beta_y b_{y,2} (K_1 - K_2 \eta_0) ds \,. \end{aligned}$$

(A. Bogomyagkov: "Crab waist interaction region for FCC-ee and the arc second attempt", presentation in the FCC-ee meeting no. 13, 09 Febuary 2015)

DPG Frühjahrstagung 10 March 2015

Chromaticity

Change of the tune with energy deviation

• Textbook*:
$$\xi = \frac{\Delta Q}{\Delta p / p} = \frac{1}{4\pi} \oint (K_1 + K_2 D_x) \beta(s) ds$$

• In our case not precise enough: $(\delta = \Delta p / p)$

$$Q(\delta) = Q_0 + \frac{\partial Q}{\partial \delta} \delta + \frac{1}{2} \frac{\partial^2 Q}{\partial \delta^2} \delta^2 + \frac{1}{6} \frac{\partial^3 Q}{\partial \delta^3} \delta^3 + \dots$$

*K. Wille: The Physics of Particle Accelerators

DPG Frühjahrstagung 10 March 2015

Vertical W-function in Arc 1

Ŵ

DPG Frühjahrstagung 10 March 2015

$$x^{2}sd1 = -6.22 \ 1/m^{3}$$

 $x^{2}sd2 = -6.21 \ 1/m^{3}$
 $x^{2}sd3 = -6.29 \ 1/m^{3}$

DPG Frühjahrstagung 10 March 2015

"Corrected" Chromaticity

	Nat. Chrom.	Corr. Chrom.
Q _x	502.16	502.16
Q _x '	-603.80	5.7e-05
Q_x"	-8.3e+03	3.5e+03
Q_x"	-1.4e+08	-5.5e+05
Q _x ""	-2.1e+12	-8.5e+09
Q _y	334.28	334.28
Q _y '	-2044.43	2.8e-01
Q _y "	-8.4e+06	-1.2e+04
Q _y ""	-2.0e+11	-3.4e+09
Q _y ""	-6.5e+15	3.6e+10

- 1st order
 - \rightarrow corrected \checkmark
- Higher orders
 - → Better, but not good enough!

Next steps I

... according to the FCC-ee work plan:

- Keep the layout as ideal as possible
 → 12-fold ring with 4 equally distributed mini-betas
- Variation of β^* with LEP-like mini-beta module
 - \rightarrow How far can we get without local CCS?
 - → LEP parameters: Can we achieve the same momentum acceptance?

Mom. accept. for LEP parameters

DPG Frühjahrstagung 10 March 2015

Next steps II

- ... according to the FCC-ee work plan:
- Correction of the actual chromaticities
 → ... not just the W functions
- Best possible correction of the 3rd order chromaticity
- (Anton proposed to switch to 135° phase advance
 → Scheme with 4 sextupole families might be able to correct 4th order chromaticity)

Interaction Region optical functions: New

Advantage of local CCS

DPG Frühjahrstagung 10 March 2015

Interaction Region layout: New

	L	В	ϕ
	[m]	[T]	[mrad]
B0	10.5	0.06	1
B1	10.5	0.17	3
B2	14.5	0.17	4.2
B3	15	0.22	5.6
B4	15	0.22	5.6
B5	21.5	0.06	2.2
B6	10.5	0.04	0.7
B7	14.5	-0.11	-2.7
B8	14.5	-0.11	-2.7
B9	21.5	-0.05	-1.8

A. Bogomyagkov, FCC-ee Meeting No. 13

New synchrotron radiation fans from S. Glukhov

