Lattice design for FCC-ee

Bastian Haerer (CERN BE-ABP-LAT, Karlsruhe Institute of Technology (KIT))

8th Gentner Day, 28 October 2015

SPONSORED BY THE

Federal Ministry of Education and Research

Future Circular Collider Study

- 100 km storage ring
- FCC-hh (=long-term goal):
- → High-energy hadron collider
- \rightarrow Push the energy frontier to 100 TeV
- FCC-ee (TLEP):

 \rightarrow e⁺/e⁻-collider as intermediate step

• FCC-he

- \rightarrow Hadron-lepton collider option
- \rightarrow Deep inelastic scattering

Physics goals of FCC-ee

Provide highest possible luminosity for a wide physics program ranging from the Z pole to the tt production threshold.

Beam energy range from 45 GeV to 175 GeV

Main physics programs / energies (+ scan around central values):

- > Z (45.5 GeV): Z pole, high precision of M_Z and Γ_{Z_1}
- > W (80 GeV): W pair production threshold,
- ➤ H (120 GeV): H production,
- ➤ T (175 GeV): tt threshold.

All energies quoted refer to BEAM energies

8th Gentner Day 28 October 2015

Coupling precision

CÈRN

Linear Beam Dynamics

• Particle trajectory: $x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cos(\psi(s) + \phi)$

8th Gentner Day 28 October 2015

Challenges: the parameter list

	Z	W	Н	tt	
Beam energy [GeV]	45.5	80	120	175	
Beam current [mA]	1450	152	30	6.6	
Bunches / beam	16700	4490	1330	160	
Bunch population [10 ¹¹]	1.8	0.7	0.46	0.83	
Transverse emittance ε - Horizontal [nm] - Vertical [nm]	29.2 0.06	3.3	0.94	2 0.002	
Momentum comp. [10 ⁻⁵]	18	2	0.5	0.5	
Betatron function at IP β* - Horizontal [mm] - Vertical [mm]	500 1	500 1	500	1000	
Energy loss / turn [GeV]	0.03	0.33	1.67	7.55	
Total RF voltage [GV]	2.5	4	5.5	11	

- Design & optimize a lattice for 4 different energies
- Interaction region layout for a large number of bunches
- Horizontal emittance is increasing with reduced energy
- Extremely small vert. beta* (β_v* = 1 mm)
- \rightarrow High chromaticity
- → Challenging dynamic aperture
- High synchrotron
 radiation losses include
 sophisticated absorber
 design in the lattice

8th Gentner Day 28 October 2015

8th Gentner Day 28 October 2015

Optical functions (175 GeV)

8th Gentner Day 28 October 2015

My PhD thesis so far:

- Maintain the lattice for FCC-ee (Arcs)
- Horizontal emittance tuning
- Chromaticity correction using the arcs

Baseline parameter list:

Beam energy [GeV]	45.5	80	120	175
Horizontal emittance ε [nm]	29.2	3.3	0.94	2

8th Gentner Day 28 October 2015

1) Emittance tuning

8th Gentner Day 28 October 2015

Lattices for 80 and 45.5 GeV

Optics with larger cell lengths

8th Gentner Day 28 October 2015

Optics with larger cell lengths

8th Gentner Day 28 October 2015

2) Chromaticity

Dispersion in the quadrupoles modifies focusing strength

8th Gentner Day 28 October 2015

Chromaticity correction

Correction with sextupole magnets in non-dispersive regions

8th Gentner Day 28 October 2015

Phase advance FD – 1st Sext.

8th Gentner Day 28 October 2015

FCC-ee sextupole scheme

 $\mu_x = 180^\circ = \pi$ (\rightarrow -I transformation)

Even number of sextupoles per family!

8th Gentner Day 28 October 2015

W functions in the half-ring

8th Gentner Day 28 October 2015

Optimising the momentum acceptance

8th Gentner Day 28 October 2015

Mom. acceptance for different β^*

8th Gentner Day 28 October 2015

Different sextupole scheme

Vary individual sextupole pairs to flatten $Q(\Delta p/p)$

8th Gentner Day 28 October 2015

Summary

Lattice design for a future e+/e- collider

→ Horizontal emittance tuning

Non-linear dynamics

- → Higher order chromaticity correction
- → Momentum acceptance optimisation

Thank you for your attention!

8th Gentner Day 28 October 2015