Challenges of a low emittance electron beam in a high energy booster synchrotron

7th low emittance rings workshopBastian Haerer (CERN)17 January 2018for the FCC-ee lattice design team

FCC-ee operation modes

100 km electron-positron collider for operation at four different centre-of-mass energies:

•	Z pole:	90 GeV,	$\mathcal{L} = 200 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
•	W threshold:	160 GeV,	$\mathcal{L} = 30 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
•	ZH production mode:	240 GeV,	$\mathcal{L} = 7 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$
•	ttbar threshold:	365 GeV,	$\mathcal{L} = 1.3 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

High luminosity and constant beam losses due to radiative bhabha scattering and beamstrahlung require continuous top-up injection

Bastian Haerer bastian.harer@cern.ch

FCC-ee accelerator chain

Bastian Haerer bastian.harer@cern.ch

Top-up booster parameters

- Constraint: max. 20 min filling time
- Most challenging for 45.6 GeV

Accelerator	FCCee-Z		FCCee-W		FCCee-H		FCCee-tt	
Energy [GeV]	45.6 80 120		182.5					
Type of filling	Full	Top-up	Full	Top-up	Full	Top-up	Full	Top-up
BR # of bunches	1664	40	2	000	3	93		39
BR cycle time [s]	51.74		14.4		7.53		5.49	
#of BR cycles	10	1	10	1	10	1	20	1
Filling time (both species) [sec]	1034.8	103.5	288	28.8	150.6	15.1	210.6	11.0
Injected bunch population [10 ¹⁰]	3.3	0.16	6.0	0.12	8.0	0.16	16.9	0.34
Injected bunch charge [nC]	5.3	0.3	9.6	0.2	12.8	0.3	27.1	0.5

Full parameter table: LINK

7th low emittance rings workshop 17 January 2018, CERN, Geneva Y. Papaphilippou

FCC-ee top-up booster synchrotron

Bastian Haerer bastian.harer@cern.ch

Why low emittance?

FCC-ee is designed for low emittances at high energies

- large bending radius (ρ = 10.5 km)
- small dispersion function $(D_{x,max} = 0.14 \text{ m})$
- booster has a large energy range (20 182.5 GeV)

E (GeV)	U ₀ (MeV)	ε _x (nm rad)	т _x (s)
182.5	9.057.1	1.301	0.01
45.5	34.7	0.235	0.85
20.0	1.3	0.012	10.05

Bastian Haerer bastian.harer@cern.ch

coming from small emittance and large damping time:

- Technical challenge: low field bending magnets (B = 6 mT)
- Long time necessary to reach equilibrium
- Strong intra-beam scattering (IBS) (max. bunch charge: 27.1 nC)
- Single-bunch instabilities?
- Wakefield effects?

Bastian Haerer bastian.harer@cern.ch

First IBS study

 Start with emittances of injected beam coming from the pre-booster

$$\boldsymbol{\varepsilon}_{x,0} = 10 \text{ nm rad}$$

 $\boldsymbol{\varepsilon}_{y,0} = 0.1 \text{ nm rad}$

 Iterative calculation of emittances with MAD-X IBS module for 7 damping times and 40 steps

Bastian Haerer bastian.harer@cern.ch

Topical Workshop on Injection and Injection Systems 30 August 2017, BESSY II, Berlin

Result

Emittances of injected beam:

 $\boldsymbol{\varepsilon}_{\mathrm{x},0} = 10 \text{ nm rad}$ $\boldsymbol{\varepsilon}_{\mathrm{y},0} = 0.1 \text{ nm rad}$

Emittances after 7 damping times: $\varepsilon_x = 722 \text{ pm rad}$ $\approx 48 \times \varepsilon_x \text{ without IBS (12 pm rad)}$ $\varepsilon_y = 0.21 \text{ pm rad}$

≈ 1.4 × ε_y without IBS* (0.12 pm rad)

* assuming 1 % coupling

Bastian Haerer bastian.harer@cern.ch

Result

Emittances of injected beam:

 $\boldsymbol{\varepsilon}_{x,0} = 10 \text{ nm rad}$ $\boldsymbol{\varepsilon}_{y,0} = 0.1 \text{ nm rad}$

Emittances after 7 damping times: $\varepsilon_x = 722 \text{ pm rad}$ $\approx 48 \times \varepsilon_x \text{ without IBS (12 \text{ pm rad})}$ $\varepsilon_y = 0.21 \text{ pm rad}$ $\approx 1.4 \times \varepsilon_y \text{ without IBS* (0.12 \text{ pm rad})}$

* assuming 1 % coupling

Bastian Haerer bastian.harer@cern.ch

Normal conducting wiggler design

Two purposes:

- 1. Decrease the damping time
 - 2. Increase the equilibrium emittance

Wiggler length:	22.6 m		
Magnetic field:	0.36 T		
Number of poles:	19		
Pole length:	1 m		
Number of wigglers:	112		

Bastian Haerer bastian.harer@cern.ch

Normal conducting wiggler design

Two purposes:

- 1. Decrease the damping time
- 2. Increase the equilibrium emittance

Wiggler length:	22.6 m
Magnetic field:	0.36 T
Number of poles:	19
Pole length:	1 m
Number of wigglers:	112

Bastian Haerer bastian.harer@cern.ch

Emittance evolution with wigglers

New damping time: New eq. emittance:

 $\tau_x = 104 \text{ ms}$ $\epsilon_x = 292 \text{ pm rad}$

Emittances after 7 damping times: $\varepsilon_x = 293 \text{ pm rad}$ $\approx 1.005 \times \varepsilon_x \text{ without IBS}$ $\varepsilon_y = 2.93 \text{ pm rad}$ $\approx 1.000 \times \varepsilon_y \text{ without IBS}^*$

* assuming 1 % coupling

Bastian Haerer bastian.harer@cern.ch

Emittance evolution with wigglers

New damping time: New eq. emittance:

 $\tau_x = 104 \text{ ms}$ $\varepsilon_x = 292 \text{ pm rad}$

Emittances after 7 damping times: $\varepsilon_x = 293 \text{ pm rad}$ $\approx 1.005 \times \varepsilon_x \text{ without IBS}$ $\varepsilon_y = 2.93 \text{ pm rad}$ $\approx 1.000 \times \varepsilon_y \text{ without IBS}^*$

* assuming 1 % coupling

Bastian Haerer bastian.harer@cern.ch

Issues of first wiggler design

E (GeV)	U ₀ (MeV)			
20.0	1.3	\rightarrow	126.2	1
45.5	34.7	\rightarrow	681.3	X
182.5	9.057.1	\rightarrow	19981.2	X

- Wigglers need to be ramped down during the acceleration process
- The number of wigglers (112) should be reduced
 - \rightarrow Magnetic field can be increased

Bastian Haerer bastian.harer@cern.ch

Superconducting wiggler proposal

Bastian Haerer bastian.harer@cern.ch

ext step: single-bunch instabilities

To be investigated soon: Longitudinal microwave instability

Keil-Schnell-Boussard criterion:

 $\left|\frac{Z_{||}(n)}{n}\right| \leq \frac{2\pi^3 (2E)}{cc^2} \alpha_{\rm c} \frac{\sigma_z}{N} \sigma_{dp}^2$

Needs to be checked for 20 GeV injection energy Update of RF scheme is under way

RMS energy spread for different thickness of NEG-coating (main collider rings)

Summary

- FCC-ee is designed for low emittances
 → Booster with its high energy range reaches 12 pm rad
- Damping time needs to be decreased
- Horizontal emittance need to be increased to avoid emittance blow-up due to IBS
- First excitation wiggler design successfully tested
- SC wiggler design under investigation in order to reduce number of insertion devices

Thank you for your attention!

Acknowledgements: Thanks to F. Antoniou and T. Tydecks for their input!

Bastian Haerer bastian.harer@cern.ch

Topical Workshop on Injection and Injection Systems 30 August 2017, BESSY II, Berlin