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Abstract

The capacitated facility location problem (CFLP) is a core problem in location science.

Several exact and heuristic solution approaches and various modeling extensions integrat-

ing time, uncertainty, or further supply chain network design decisions exist. However, the

average-case-based analysis underlying the majority of works in this field leaves several

questions unaddressed: Why does the runtime of state-of-the-art MIP solvers differ drasti-

cally between seemingly similar problem instances? Why does an explicit consideration of

the temporal development of the parameters in a multi-period model lead to a significant

improvement of the objective value in some instances and is negligible in others? When

does moving to a more complex model result in different decisions and when are the same

decisions merely evaluated differently? None of these questions are easy to address, yet one

thing is clear: when the same model and algorithm are used, the reason for the observable

differences must lie in the problem data. The present work offers new insights into the

relationship between data and the optimal decisions of CFLP instances.

A new methodological approach that characterizes instances based on their decisions in

well-performing, that is optimal and near-optimal solutions is presented. It is shown that

the combination of spatial patterns, the capacity-to-demand, and fixed-costs-to-profit ra-

tio result in the facilities operating in the optimal solution to individual instances in-

terdepending to varying degrees. A newly proposed measure based on the decisions in

well-performing solutions of an instance allows the quantification of the level of this inter-

dependence. It gives rise to a classification of CFLP instances as either primarily composed

of independent or primarily composed of interdependent facilities. This distinction allows

the anticipation and explanation of the performance of different exact and heuristic solu-

tion algorithms.

It is demonstrated that facilities serving the same subset of customers interdepend more

strongly, which induces an implied separation of the sets of candidates and customers into

distinct regions. A pattern-based approach to retrieve these regions already from integer-

infeasible solutions is introduced. It is shown that knowledge of the interdependence

relationships and, more precisely, the implied regions opens up new opportunities for

algorithm development. Computational experiments show that integrating it into the

branch-variable selection step of CPLEX’s branch-and-cut solver leads to a significant

runtime reduction.

Moving to a more complex model increases the flexibility of a decision-maker but also

comes at the cost of added complexity. Thus, it is important to understand the conditions
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under which a model extension results in an added value. Model extensions of the CFLP

in the two most commonly found directions for location problems are analyzed: time and

uncertainty. For the first, a multi-period CFLP with phase-in constraints is examined; for

the latter, a two-stage stochastic program and an adjustable robust program of the CFLP

are compared. A central question regards the quantification of the added value. For the

multi-period CFLP, the value of the multi-period solution is used; for the uncertainty-

aware formulations, novel measures to assess and compare the added value are presented.

For the multi-period model, it is shown that not the degree to which parameters change

over the planning horizon but the degree to which the model extensions allow the reduction

of relevant cost components of the objective value is decisive. Consequently, the mere fact

that decisions are taken in a temporal context does not necessarily make time an important

aspect to include in the model. For uncertainty-aware models, the characterization of

instances allows the anticipation of the level of flexibility with which location decisions

can be adapted to hedge against uncertainty. When the implied patterns are rigid in the

sense that few candidates clearly dominate, the added value of moving to a robust or

stochastic approach diminishes as the more complex model proposes the same location

decisions. Both results encourage further research on data-driven modeling.

This work presents novel methods to analyze solutions in the decision space. Insights are

validated by experiments on several sets of benchmark instances from literature. Deriving

and subsequently analyzing multi-sets of optimal and near-optimal solutions to these in-

stances is possible only with the help of state-of-the-art potent MIP solvers and efficient

data analytics tools. As such, this thesis demonstrates that recent advances in computing

power not only allow addressing larger and more complex problems but also open up new

perspectives on problems that have been studied for decades – like the CFLP.
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1. Introduction

1.1. Motivation

The capacitated facility location problem (Capacitated Facility Location Problem (CFLP))

is a core problem in location science [Fernández and Landete, 2019]. It considers the

problem of serving a set of customers with demands from a set of capacitated facilities with

the objective of minimizing costs. Operating a facility incurs a fixed cost, and transporting

goods to customers incurs variable costs depending on the transport volume. The model

decides which facilities to operate and how to allocate customers.

The CFLP has various applications and plays a critical role in many areas [Drezner and

Hamacher, 2004] including supply chain management [Melo et al., 2006], humanitarian

relief logistics [Balcik and Beamon, 2008], or emergency systems [Jia et al., 2007]. While

the standard formulation finds the cost-minimal policy that serves all customer demand,

several recent works deploy a net profit-maximizing formulation that allows for partial

demand satisfaction (see, e.g., Ardestani-Jaafari and Delage [2018]).

Let I be the set of candidate facilities and J the set of customers. The binary decision

variable yi represents the location decisions and is equal to 1 if a facility is opened at the

corresponding candidate location i and 0 otherwise. The non-negative allocation decisions

xij denote the fraction of the demand of customer j served from a facility at candidate

location i. The objective (1.1) maximizes the profit. The allocation of customers to

facilities incurs variable transportation costs cij and generates a variable profit rj per unit

of the customer demand Dj . The establishment of a facility has a fixed cost Fi. Customers

cannot be served more than their original demand (1.2), and the facility capacities Qi must

not be exceeded (1.3).

CFLP

max−
∑

i
Fiyi +

∑
i

∑
i
(rj − cij)Djxij (1.1)

s.t.
∑

i
xij ≤ 1 ∀j ∈ J (1.2)

∑
j
Djxij ≤ Qiyi ∀i ∈ I (1.3)

yi ∈ {0, 1} ∀i ∈ I (1.4)

xij ≥ 0 ∀i ∈ I, j ∈ J. (1.5)

Example A Figure 1.1a and Figure 1.1d depict two problem instances, P1 and P2, of the
CFLP obtained with the randomized data generation procedure introduced by Klose and

Drexl [2005]. Both instances contain 100 customers and candidate locations, respectively.

They primarily differ in the capacity-demand ratio – an input parameter of the generation

procedure that determines the ratio between the sum of all capacity and the sum of all

demand in the network. P1 has a ratio of 3, meaning that the sum of all capacities is

1



1.1. Motivation

three times the sum of all demands. P2 has a ratio of 10. Consequently, the capacities of

individual facilities in P2 are – on average – significantly larger than those in P1.
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0.6

0.8
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Customers

Candidates

Open Locations

Removed

Open in ’original’ solution

Closed Locations

(a) Instance P1 (b) Optimal solution P1 (c) Optimal solution P ′
1

(d) Instance P2 (e) Optimal solution P2 (f) Optimal solution P ′
2

Figure 1.1.: Visualization of instances and optimal solutions (P1-P2, Ex. A)

Figure 1.1b and Figure 1.1e depict the (unique) optimal solutions to the CFLP for both

instances. We can see that for P1, 18 facilities are open in the optimal solution, while for

P2, only seven facilities operate. The optimal objective value for P1 is 2373.1 while for P2
it is 19803.9.

Suppose that one of the candidate facilities operating in the optimal solution of each

instance is removed from the set of candidates. The removed facilities are depicted in

red in Figure 1.1c and Figure 1.1f, respectively. The two figures, furthermore, depict the

optimal solution to the problem obtained when resolving the problem with the reduced set

of candidates, instances P ′
1 and P ′

2. The optimal objective values are 2107.3 and 19687.9,

respectively.

While for P1, the removal of one particular candidate facility resulted in a reduction of

the optimal objective value of 11.2%, for P2, the removal of one particular candidate only

resulted in the reduction of the optimal objective value of 0.6%. This is remarkable, given

that in both instances we removed the candidate facility that incurred the most significant

reduction of the objective value. Furthermore, while for P1, the removal of the candidate

did not affect the optimality status of any other facility, the index set of the operating

facilities in P2 changed significantly with the removal of that candidate. Three facilities
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1.1. Motivation

operating in the optimal solution of the original problem are no longer operating, while

four facilities closed in that solution are newly operating.

When solving both instances with CPLEX Version 12.10 on an Intel(R) Core(TM) i7-

7700 processor with 3.60 GHz and 64 GB RAM, the solve time of P1 was 0.2 seconds

while for P2 it was 7.0 seconds. Both instances are of the same size, with 100 candidates

and customers, respectively. This difference increases when the experiment is repeated

with similar instances produced with the same generator with 200 candidate facilities and

customers and capacity-demand ratios of 3 and 10, respectively. These instances will be

referred to as P3 and P4. The instance with a ratio of 3 took 1.6 seconds to solve, while

the instance with a ratio of 10 took 55.0 seconds. ▲

Example A illustrates significant structural differences between optimal solutions of two

facility location instances, which, at first sight, seem similar. While individual facilities

are of extreme relevance for achieving the optimal objective value in P1, contributions of
individual facilities are much less significant in the solution to P2. Furthermore, while

in the optimal solution to P1, the optimality status of individual candidates is entirely

unaffected by the removal of another facility, in the optimal solution to P2, a subset of the

candidates operating in the optimal solution seems to be optimal only in combination.

Being aware of these structural differences can be of utmost relevance for a decision-maker.

A recent literature review on location data analytics by Ferro-Diez et al. [2020] states that

all reviewed facility location use cases concern long-term decisions due to the high costs

and expectations associated with establishing new facilities. Thus, being aware of the

importance of individual facilities for the overall performance of a solution and relationships

between the individual decisions a solution is composed of is of great interest. Additionally,

Example A suggests that these structural differences are related to the complexity of the

solution process, making a more thorough understanding of the solution attractive from a

theoretical perspective.

Location decisions oftentimes involve high investments and are taken at a strategic level.

Multi-period models that explicitly consider time have received considerable attention

[Melo et al., 2006, Cortinhal et al., 2015]. A set of periods induces a discretization of

the planning horizon, which imposes a prespecified number of moments for implementing

decisions [Nickel and Saldanha da Gama, 2019]. Individual periods must be linked to

one another, or else the problem will fall into separate subproblems for each period. For

situations in which suppliers face increasing demands, a common linking constraint is a

phase-in constraint. It ensures that once a facility has been established, it operates until

the end of the planning horizon.

Example B Assume that P1 and P2 actually aggregate parameters over a planning horizon

comprising four periods, and P4
1 and P4

2 denote the corresponding multi-period instances.

Fixed costs and capacities are time-invariant such that qit = Qi/4 and fit = Fi/4 for all

facilities i ∈ I and periods t ∈ T . Unit costs and profits are time-invariant as well. Each

customer’s demand increases constantly in each period by a total of δ = 100% over the

planning horizon. Thus,
∑

t djt = Dj and dj4 = (1 + δ)dj1.
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Figure 1.2.: Visualization of optimal multi-period solutions (P4
1 -P4

2 , Ex. B)

Figure 1.2 visualizes the optimal solutions to P4
1 and P4

2 . It illustrates the successive

opening of facilities over the course of the planning horizon. Recall that over the course

of the planning horizon, the demand of customers is exactly the same as the demand in

the static problem instances from Example A. In P4
1 , the set of facilities operating in the

final period is a superset of those facilities operating in the optimal solution to the static

model P1. This is intuitive, as the demand capacity ratio is higher in those final periods

than on average across all periods. However, in P4
2 , the set of facilities differs significantly

from that operating in the optimal static solution. Furthermore, there is a noticeable

difference between the two solutions regarding the development of customer allocations

over time. In P4
1 , facilities that are newly opened in each period serve customers that have

not been served before. They open up new customer regions. In contrast, in P4
2 , customers

are successively redistributed to the newly operating facility in each period. As in both

instances the demand of each customer increases at a constant rate, this discrepancy is

remarkable. In the optimal solution to P4
1 , new facilities are opened in a new region as soon

as the demand suffices to make them profitable. Meanwhile, in P4
2 , the entire customer

demand is covered from the beginning, and with successively increasing demands, facilities

are opened to close in on customers. ▲

Together with the longevity of location decisions comes the problem that by the time deci-

sions have to be taken, relevant problem parameters are, at least to some degree, uncertain.

A common source of uncertainty is customer demand, which usually needs to be estimated

and is consequently bound to estimation errors. Several ways to include uncertainty in the

model formulation exist. Two of the most prominent modeling paradigms are stochastic

programming and robust optimization.
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Example C Assume that the customer demand in instances P1 and P2 is subject to uncer-

tainty, yielding two uncertainty-affected problem instances P̃1 and P̃2. In each of the two

instances, the demand of every customer deviates by at most 20% from the estimated value.

Further, assume that each customer follows a symmetric, known probability distribution

on the interval [0.8Dj , 1.2Dj ] with Dj equaling the expected value.
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0.8
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Open in deterministic solution

Closed Locations

(a) EVP, P̃1, z
⋆ = 2373.1 (b) 2SS-CFLP, P̃1, z

⋆ = 2370.1 (c) ARC-CFLP, P̃1,
⋆ = 1952.8

(d) EVP, P̃2, z
⋆ = 19803.8 (e) 2SS-CFLP, P̃2, z

⋆ = 18953.8 (f) ARC-CFLP, P̃2, z
⋆ = 15511.4

Figure 1.3.: Visualization of optimal uncertainty-aware solutions (P̃1-P̃2, Ex. C)

Figure 1.3 displays the optimal solutions to the CFLP in which all demand parameters

have been set to their expected values (EVP), a two-stage stochastic program (see Sub-

section 7.2.2 for the mathematical programming formulation to 2SS-CFLP), and an ad-

justable robust counterpart (see Subsection 7.2.3 for ARC-CFLP). The stochastic program

and the adjustable robust counterpart evaluate different objective functions. The stochas-

tic program maximizes the expected profit, while the robust counterpart maximizes the

worst-case profit using a max-min formulation. In consequence, a direct comparison of

the objective values yields little insight. Nevertheless, compared to the expected value

problem, the deviations of the objective value lie in similar ranges for both instances. The

stochastic programming objective value is 0.1% (P̃1) and 4.3% (P̃2) lower than that of

the expected value problem. At the same time, the robust counterpart yields a worst-case

decrease of 17.7% (P̃1) and 21.7% (P̃2), respectively.

However, looking at the effect different modeling approaches have on the subset of facilities

operating in the respective optimal solutions, the discrepancy between instances P̃1 and
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P̃2 subjected to the same level of uncertainty is significant. For P̃1, an explicit model of

uncertainty implies operating fewer facilities, more precisely, a subset of those facilities

operating in the expected value problem. While 18 facilities operate in the latter, only

15 operate in the optimal solution to the stochastic program, and only 14 operate in the

optimal solution to the adjustable robust counterpart. Meanwhile, for P̃2, seven facilities

operate in the optimal solution to the expected value problem and the stochastic program,

but only five operate in the solution to the adjustable robust counterpart. However, the

set of operating facilities changes significantly between the three corresponding optimal

solutions. The optimal solution to the stochastic program operates three, and the optimal

solution to the adjustable robust counterpart operates two facilities not operating in the

optimal solution to the expected value problem. ▲

Once again, a similar situation – a random perturbation of the demand of each customer

within a defined magnitude – impacts the optimal solutions to two relatively similar prob-

lem instances differently. In Example C, the sharp discrepancy of these effects is not

observable from objective values but only becomes visible when comparing solutions in

the decision space.

The previous examples share that the same external impulse to seemingly similar problem

instances leads to extremely different outcomes, particularly in terms of the optimality of

individual location decisions. They demonstrate that the interplay between the problem’s

input data and the optimal decisions is insufficiently explored and point to the following

fundamental question:

How are properties of the optimal solutions of facility location problems connected to

properties of the input data, the performance of specific algorithms, and the potential

value of model extensions?

Establishing a link between the problem’s input data and the solutions to mathematical

programs is a non-trivial task. While it can be of immense value, particularly in the iden-

tification of valuable modeling extensions, algorithm choice, or simply the generation of

“challenging” instances to test new procedures, it is a rarely explored research direction.

The parameter vectors describing a particular instance and the decision vectors denoting

an optimal solution are high-dimensional data vectors, which, without further restrictions,

can be extremely heterogeneous. With no conceptual framework that systematically links

data analytics to the different aspects of mathematical programming, there are endless

opportunities for exploratory research. Therefore, ensuring the generalizability of one’s

findings, given the infinite set of possible data vectors, as well as the lack of a concise ob-

jective or problem formulation, makes the establishment of any kind of connection between

data, decisions, algorithm performance, and model choice very challenging.

We focus on the profit-maximizing CFLP as a core problem of location science. It is the

basis for several supply chain network design models. As pointed out in Fadda et al. [2021],

large parts of location literature developed in recent years focused on particular tailored

models. Still, insights into the above research question are still missing, even for simple

problem formulations.
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1.2. Research questions and outline

Figure 1.4 provides an outline of this thesis. The overarching research question can be sep-

arated into three components: the relationship between decisions and the problem’s input

data, the decisions and the performance of solution algorithms, and the decisions and the

added value of model extensions. Why do we focus on the relationships to the problem’s

decisions and not the problem’s input data? The latter is readily available and does not

require solving the mathematical program first. However, without further restrictions, the

infinite number of possible input data combinations cannot be meaningfully linked to any

part of the decision-making. Meanwhile, decisions combine the information from the prob-

lem’s input data with the information from the specific restrictions of the mathematical

program, making them a much more powerful indicator of the characteristic properties of

the underlying decision problem. Still, in order not to perform a pure ex-post analysis,

when we refer to decisions in the following, we do not restrict ourselves to the optimal

values of the decision variables in the optimal solution to a particular problem. Instead,

we are interested in characteristic properties “good”, that is, optimal and near-optimal

solutions to a particular problem instance share.

How are properties of the optimal solutions of facility location problems connected

to properties of the input data, the performance of specific algorithms,

and the potential value of model extensions?

RQ1: What detectable decision patterns characterize well-
performing solutions to a facility location problem?

RQ2: How can persistent service regions be identified
in arbitrary sets of solutions?

RQ3: Can service regions be anticipated from the
problem’s input data?

RQ4: How do service regions affect the performance of
exact and heuristic solution procedures for the
CFLP?

RQ5: Can the acknowledgment of service regions improve
the performance of exact solution algorithms?

RQ6: When is it worth explicitly considering time in the
CFLP?

RQ7: When is it worth explicitly considering uncertainty
in the CFLP?

Characteristic

decision

patterns and

link to

input data

Link

to solution

algorithms

Link

to model

extensions

CFLP

Multi-period

CFLP

Stochastic &

Robust CFLP

Figure 1.4.: Outline of the thesis

The first part of the thesis addresses the first component of the overarching research

question: identify characteristic decision patterns optimal and near-optimal solutions to a

particular problem instance of the CFLP share and connect them to characteristic prop-

erties of the problem’s input data. We approach this objective by answering the specific

research questions RQ1-RQ3 in Chapter 2 through Chapter 4. Once we have established

an idea of what patterns characterize these solutions, we move on to the second component
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of our overarching research question and examine their link to the performance of solution

algorithms. More precisely, we address RQ4 and RQ5 in Chapter 5. Up to this point,

we focus solely on the CFLP as a basic formulation of the underlying decision problem.

Then, in the third component of our research question, we ask how these characteristic

decision patterns are linked to the potential value of model extensions. In particular, we

ask ourselves: When the problem’s input data exhibits properties that favor a particular

set of decisions, how likely is it that more comprehensive model formulations will alter

these decisions rather than merely evaluate them differently? Or, when all optimal and

near-optimal solutions to a problem instance exhibit a strong decision pattern, how likely

is it that a more comprehensive model will alter this pattern? We move away from the

CFLP to address this question. In Chapter 6 and RQ6, we analyze the effect of explicitly

considering time in the problem formulation and look at the multi-period facility location

problem with phase-in constraints. In Chapter 7 and RQ7, we consider the impact of ex-

plicitly modeling demand uncertainty. Here, we use a two-stage stochastic programming

and an adjustable robust counterpart formulation of the CFLP.

In the following, we provide a short outline of the individual chapters.

Chapter 2 To identify characteristic decision patterns in facility location problems, we

analyze sets of optimal and near-optimal solutions from various data sets found in

the literature (RQ1). As a result, we develop concise and measurable indicators for

these decision patterns, which can be used to compare the decisions of different so-

lutions to a facility location instance. These measures allow us to demonstrate that

some but not all instances exhibit a subset of favorable core facilities that persist

throughout many or all well-performing solutions of a particular problem instance.

Instead, we identify a persistent division of the facility-customer space into distinct

service regions as a decision pattern that can be observed throughout these sets of

solutions. This means that, in different solutions, customers may be served from

different facilities but are persistently served from facilities within their service re-

gion. The service regions underlying different instances vary in size. When they are

small in the sense that a single facility can serve its customers, this facility appears

as a persistent core facility. Many works exploit the existence of subsets of such

core facilities. However, when the service regions are large in the sense that their

customers are served by more than one facility, then these facilities strongly interde-

pend, exhibiting the combinatorial nature of the mixed-binary problem formulation

of the CFLP.

Chapter 3 Service regions cannot be derived from a single solution but require a set of

solutions to capture the interdependence relationships between individual facilities.

In Chapter 2, we observe service regions with different coherence levels in a specific

set of solutions. In Chapter 3, we present an application of spectral biclustering

to derive service regions with a defined target level of coherence from the aggre-

gated allocation matrices of sets of solutions on the same facility-customer space

(RQ2). This technique allows deriving service regions as the characterizing decision

pattern in sets of solutions to a given instance that are not further specified, i.e.,

8
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sets of infeasible solutions or sets of solutions to instance variations with perturbed

parameters.

Chapter 4 Deriving service regions from sets of well-performing or even optimal solutions

restricts insights to an ex-post analysis. In Chapter 4, we relate the level of inter-

dependence between the facilities operating in an optimal solution, an indicator for

the size of the underlying service regions, to characteristic properties of the prob-

lem’s input data. In particular, we evaluate the relationship with the spatial pattern

of the distribution of candidates and customers. The experiments show that over-

lapping effects of many different parameters characterizing a given instance make

it impossible to anticipate the level of interdependence or distinct service regions

purely from the data. We then demonstrate that service regions that characterize

well-performing solutions can be obtained from sets of easy-to-obtain solutions, more

precisely, integer-infeasible solutions.

The implicit division into service regions leads to some facilities being optimal “by them-

selves” and others being optimal only in combination, serving a larger subset of customers

optimally. In Chapter 5, we connect these newborn insights into differences in the under-

lying decision patterns to the performance of exact and heuristic solution procedures.

Chapter 5 We examine the degree to which larger service regions whose customers are

served optimally by a subset rather than individual facilities affect the performance

of both heuristic and exact solution procedures (RQ4). In particular, we perform

an exploratory analysis on instances exhibiting large and instances exhibiting small

customer service regions. We solve both with the ADD heuristic, a variant of a greedy

procedure, and the kernel search heuristic, one of the best-performing heuristics

to date. We show that both heuristics perform exceptionally well when service

regions are small, and each region is served optimally by just a single facility. In

this case, the greedy procedure often finds the optimal solution. However, for larger

service regions, the individually best facility is not necessarily part of the best subset

serving a particular region, leading both the greedy and kernel search to good but

decidedly non-optimal results. Ultimately, both procedures lack subroutines that

explicitly check for interdependencies among subsets of facilities. We conclude that

kernel search will likely benefit from ensuring that all facilities potentially serving a

particular service region are jointly considered at least once.

We then evaluate the effect of large service regions on the performance of CPLEX’s

MIP solver as an example of a state-of-the-art exact procedure. We show that

with an increasing size of the service regions, the size of the search tree of the

branching procedure increases. In particular, the ignorance of the implied spatial

relationship between facilities serving the same service regions leads the procedure

to jump between facilities from different regions, leading to inefficient branch variable

selection.

We take this information as a starting point for tackling RQ5 and use the regional

clustering algorithm presented in Chapter 3 to detect service regions at the beginning
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of the branching procedure based on potentially infeasible solutions early in the

search tree. We then use this information to alter the branch variable selection

strategy so that facilities in the same region are branched on soon after another. A

computational experiment confirms the effectiveness of our procedure to speed up

the solution process and reduce the size of the search tree.

We then approach the third and last component of our overarching research question by

addressing the degree to which characteristic decision patterns, in particular the size of

the implied service regions, affect the added value of modeling extensions. This, however,

requires a concise definition of this added value.

Chapter 6 Location decisions are often long-lasting, and multi-period models have re-

ceived considerable attention. The price to pay for the increased flexibility in decision-

making is increased complexity. When facilities are capacitated, multi-period mod-

els impose additional restrictions regarding when to use resources. The value of the

multi-period solution was introduced to quantify the benefit resulting from shifting

to a multi-period model by setting its objective value in relation to that of a static

counterpart. As the latter is not uniquely defined, different concepts of this value

are reported in the literature. We show that different static counterparts require

different interpretations and evaluate different aspects of the aforementioned trade-

off. We discuss which characteristics of the problem data result in decision-makers

benefiting from the added flexibility of multi-period modeling. Thereby, we show

that rather than the degree to which the problem parameters change over time, the

degree to which the multi-period model allows reducing relevant cost components

determines the value of a multi-period approach.

Chapter 7 We compare the performance of a two-stage stochastic programming formula-

tion and an adjustable robust counterpart formulation with budgeted uncertainty.

We evaluate the average and worst-case value of the uncertainty-aware solution to

compare the solutions obtained with a stochastic program to those obtained with

an adjustable robust counterpart. We present a formal description of this unified

evaluation approach. This allows us to address RQ7 and evaluate the interplay be-

tween characteristic decision patterns and the added value of explicitly considering

uncertainty in the mathematical program. The results indicate that the added value

of both the stochastic program and the robust counterpart decreases compared to

a deterministic expected value solution with increasing separability of the facility-

customer space into smaller service regions. Thereby, the latter can be derived with

the help of the procedure introduced in Chapter 3 from the set of deterministic

optimal solutions for the individual scenarios.

1.3. Data and computational set-up

The objective of this work is to gain a better understanding of the relationship between

data, decisions, models, and solution algorithms in the context of facility location problems.

A critical factor in this regard is that we validate our findings on a large database of
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1.3. Data and computational set-up

instances of interest. Thus, throughout this thesis, we perform extensive computational

experiments on datasets from literature. We introduce these datasets and outline the

computational set-up for our experimental validations in the following.

Data

Real-world data for capacitated facility location problems and their extensions is hard

to obtain as abstract cost parameters and demand estimates are difficult to estimate,

and sensitive strategic data is unlikely to be disclosed. Most works use self-generated

test instances or re-use instances from literature. While some authors make their data

available, no comprehensive online database exists.

The objective of this thesis is to link structural patterns in the optimal solutions to facility

location problems to different aspects of mathematical programming. To test the validity

of our findings, we survey existing datasets from literature to obtain a large base of test

instances for our experiments. While the range of problem instances and their features

is infinite, working with a large set of test instances from location literature allows us to

draw general conclusions for problems of interest.

One can distinguish between instance generators and ready-to-use data sets. The former

provide an algorithmic description of how to randomly generate problem instances that

exhibit specified properties. The latter contain full-length parameter sets defining individ-

ual problem instances. These instances are often made available on the authors’ personal

websites or repositories of their affiliated universities. We present an incomplete overview

of often-used data sets in Table 1.1. It shows that most problem instances are not based

on real-world data but are artificially generated. To show that the instances worked with

throughout this thesis are still relevant in literature today, we add some recent publications

that use them for computational experiments.

Name Type Presented in Recently used in Used

Avella G Avella et al. [2009] Guastaroba and Speranza [2012]
Fischetti et al. [2016]
Matos et al. [2020]

Barcelo G Barcelo et al. [1991] Contreras and Dı́az [2007]
Albareda-Sambola et al. [2011a]
Gadegaard et al. [2018]

✓

Holmberg G Holmberg et al. [1999] Di Francesco et al. [2021]
Filippi et al. [2021]
Saif and Delage [2021]

✓

Klose G Klose and Görtz [2007] Görtz and Klose [2012]
Fischetti et al. [2016]
Gadegaard et al. [2018]
Corberán et al. [2020]

✓

ORLIB RW/G Beasley [1990] Fischetti et al. [2017]
Pagès-Bernaus et al. [2019]
Caserta and Voß [2020]

✓

G: generated, RW: real-world based

Table 1.1.: Overview of test instances for the CFLP

The following briefly introduces the data sets we use throughout this work. Together
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1.3. Data and computational set-up

with a brief introduction, we present a visualization of the spatial patterns underlying the

instances. For this purpose, we follow the idea of Guazzelli and Cunha [2018] and perform

Multidimensional Scaling (MDS) on the transport cost matrix to obtain the respective

coordinates of facilities and customers in the plane. MDS is a dimensionality reduction

technique from machine learning. It analyses the similarity or dissimilarity of data in

the original high-dimensional space and then attempts to model it in a lower-dimensional

space. We implement MDS using the sklearn.manifold package, taking the unit transport

costs as input features. As there are usually more customers than facilities, we consider

each customer as an observation and their distances to the respective facilities as features.

Distances among facilities are usually not provided in the transport cost matrix, so they

must be estimated. Thus, for each facility, we approximate the distance to another facility

as the average distance to the four closest customers of both facilities. We reduce the

resulting extended transport cost matrix with dimensions ((|J |+|I|)×|J |) to a (|J |+|I|)×2-
dimensional feature matrix. The two columns serve as a basis for the coordinates in a plane.

We scale these two columns to fit into the first quadrant of a coordinate system to obtain

the final coordinates.

Visual representations yield insights into the spatial patterns underlying different instances.

They also show the proximity relationship between individual facilities that are not directly

accessible when looking at the transport cost matrix. A central challenge in this work is

translating observations from visual representations of instances and solutions into quan-

tifiable measures that can be evaluated without visual assistance.

ORLIB instances

Beasley [1990] first presented the set of instances from the OR-library. It consists of 40

problem instances, cap41 - cap134, that are based on factory locations in the United States

first presented in Kuehn and Hamburger [1963], as well as three sets of larger instances

that the authors generated themselves capax - capcx.

|I| Qi Fi

cap41-44
16

5000 7500/12500/17500/25000
cap61-64 15000 7500/12500/17500/25000
cap71-74 58268 7500/12500/17500/25000
cap81-84

25
5000 7500/12500/17500/25000

cap91-94 15000 7500/12500/17500/25000
cap101-104 58268 7500/12500/17500/25000
cap111-114

50
5000 7500/12500/17500/25000

cap121-124 15000 7500/12500/17500/25000
cap131-134 58268 7500/12500/17500/25000

Table 1.2.: Overview of parameter variations in the ORLIB instances cap4x-cap13x

We consider 36 of the 40 US-based instances and further refer to them as the ORLIB.

These 36 instances systematically differ in the number of candidate locations |I|, fixed
costs Fi, and capacities Qi. There are 12 instances of 16, 25, and 50 candidate sites,

respectively. Within each of these 12 instances are four instances in which facilities have a

fixed capacity of 5000, 15000, and 58268 (equaling the total network demand), respectively.
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1.3. Data and computational set-up

Then, within these four instances, the fixed costs are varied such that the ratio fixed costs

of operating one facility account for approximately 1%, 2%, 3%, and 4% of the variable

transportation costs, respectively. Table 1.2 provides an overview.

Figure 1.5a shows a visual representation obtained via MDS. One can recognize that the

instances are derived from a US-based problem. One can see the large metropolises on

the west coast and the densely populated area around New York City on the east coast.

Meanwhile, the population in the mid-western regions is sparse.

Customers

16, 25, and 50 Candidates

25 and 50 Candidates

50 Candidates

(a) cap41-cap134

Customers Candidates

(b) capax-capcx

Figure 1.5.: Visualization of the ORLIB and ORLIB-L instances

The self-generated data, further referred to as ORLIB-L, is based on randomly located

customers and facilities on a unit square. The unit transportation costs are derived from

the scaled Euclidean distances, whereby the scaling factor is drawn from U [1, 1.25], with

U [a, b] the uniform distribution on the interval [a, b]. Customer demands were drawn from

U [1, 100]. The facility capacities are varied, and the fixed costs were chosen such that

a desired number of sites should be open in the optimal solution. Table 1.3 lists both.

Figure 1.5b shows an exemplary visual representation obtained via MDS.

|I| |J | Fi desired number of sites

capa 100 1000 8000/10000/12000/14000 5
capb 100 1000 5000/6000/7000/8000 10
capc 100 1000 5000/5750/6500/7250 15

Table 1.3.: Overview of parameter variations in ORLIB-L instances capax-capcx

The ORLIB instances have been widely used (refer to Table 1.1). Several authors modified

or extended the data to qualify for extensions of the CFLP, e.g., to include capacity ac-

quisition costs Verter and Dincer [1995], or stochastic transportation costs Pagès-Bernaus

et al. [2019].

Holmberg et al. [1999] instances

Holmberg et al. [1999] provide four randomly generated sets of test problems. Their

properties are summarized in Table 1.4. For problems p1-p24 and p56-p71, locations
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1.3. Data and computational set-up

Customers Candidates

(a) p1 (b) p25 (c) p41 (d) p56

Figure 1.6.: Visualization of some HOL-1999 instances

ID |I| |J | Dj Qi Fi

p1-p12 10 50 U [10, 50] U [100, 500] U [300, 700]
p13-p24 20 50 U [30, 80] U [100, 500] U [300, 700]
p25-p40 30 150 U [10, 50] U [200, 600] U [300, 700]
p41-p55 10-30 70-100 U [10, 50] U [100, 500] U [300, 600]
p56-p71 30 200 U [10, 50] U [500, 800] U [500, 1500]

Table 1.4.: Overview of parameter variations of HOL-1999 instances

were uniformly randomly chosen on a unit square. Subsequently, a p-median heuristic

was applied to determine the subset of facility locations. Unit transportation costs are

based on Euclidean distances. Problems p25-p40 are generated similarly, except that unit

transport costs are now based on transport costs obtained from a vehicle routing problem.

Problems p41-p55 are modified instances from a vehicle routing problem with varying

patterns of customer locations. Demands, capacities, and fixed costs were drawn from

different uniform distributions. Figure 1.6 shows exemplary visual representations of the

five sets obtained via MDS. One can see that a very wide distribution of customers can

characterize all instances while candidates are placed relatively close to each other. This

is surprising given the random placements of candidates and customers on the unit square

and must be a result of the procedure to estimate transport costs. We will refer to this

dataset by HOL-1999.

Barcelo instances

This set contains 57 instances subdivided into seven sets, C1−C7, according to the number

of customers and candidate facilities. Their sizes range between 10 and 30 facilities and

20 to 90 customers. Delmaire et al. [1999] provide a detailed description of sets C1 − C4,

whereas a brief description of the generation procedure of sets C5 − C7 can be found

in Barcelo et al. [1991]. The authors state that the instances were generated randomly,

whereby their objective was to form “very tight to very loose situations, from the point

of view of the relationships among costs, capacities, and demands.” Figure 1.7 visually

represents the instances. One can see that a circle best captures the spatial relationship

between customers and candidates. This implies little heterogeneity between individual

candidate locations regarding their transport costs. We refer to this dataset as BAR-1991.
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Customers Candidates

(a) p5 (b) p23 (c) p47 (d) p58

Figure 1.7.: Visualization of some BAR-1991 instances

Data generator by Andreas Klose

Data generators for static CFLP instances are, e.g., provided by Andreas Klose (https://

github.com/AndreasKlose/CFLP-Generator) and (his co-author) Sune Gadegaard (https:

//github.com/SuneGadegaard/SSCFLPgenerator). Both generators implement a gener-

ation procedure for facility location problems proposed by Cornuejols et al. [1991]. It

consists of the following steps:

1. The locations of facilities and customers are generated by uniformly randomly lo-

cating them on a unit square. Transportation costs per unit are then computed by

multiplying the resulting Euclidean distances by 10.

2. The customer demands are drawn from U [5, 35], with U [a, b] denoting a uniform

distribution on the interval [a, b].

3. The facilities’ capacities are drawn from U [10, 160] and subsequently scaled according

to a predefined “tightness” ratio, the ratio between the total capacity and the total

demand, such that

tightness :=

∑
iQi∑
j Dj

⇔ Qnew
i = Qi ·

(
r
∑

j Dj∑
iQi

)
, (1.6)

with Qi the capacity of the i-th facility and Dj the demand of the j-th customer.

4. Fixed costs, Fi, of a facility i are generated according to the following formula, which

takes into account the facilities’ capacity to reflect economies of scale

Fi = U [0, 90] + U [100, 110]
√

Qi. (1.7)

The generator from Andreas Klose was, e.g., used to generate test problems used in Klose

and Görtz [2007] and Görtz and Klose [2012]. Besides the procedure from Cornuejols et al.

[1991], Sune Gadegaard further implements a generation procedure according to Stidsen

et al. [2014]. The procedure primarily differs in the ranges for the uniform distributions

and the definition of the fixed costs. In the latter procedure, the fixed costs for facility i

equal (minj cij + 1) · 10.

We generated instances according to the parameter settings of the generator used in Klose
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and Görtz [2007]. These instances vary in the number of customers and candidate locations

and the capacity-demand ratio. The latter is called tightness and equals the total sum of

capacity divided by the total sum of demands. We generated five instances with 50, 100,

and 200 candidates and customers each for tightness levels of 3 and 10, respectively. Thus,

we consider a total of 30 instances. Figure 1.8 shows an exemplary visual representation

obtained via MDS. We refer to these instances as KLO-2007.

Customers Candidates

(a) |I| = 100, |J | = 100,
tightness = 3

(b) |I| = 100, |J | = 100,
tightness = 10

Figure 1.8.: Visualization of some KLO-2007 instances

We point out that all available test problems are defined for cost-minimizing and not

profit-maximizing formulations. Therefore, we generate values for the unit reward rj . To

maintain the structure of the resulting solutions compared to the cost-minimizing prob-

lems, we choose rj so that it is profitable to serve all demands and open the same number of

facilities as in the cost-minimizing problem. We identify such a value of rj by successively

increasing it while resolving the model and comparing the number of facilities operating

in the optimal solution to that in the cost-minimizing problem.

Computational set-up

Computational experiments are performed on an Intel(R) Core(TM) i7-7700 processor with

3.60 GHz and 64 GB RAM. Mathematical programs were solved using CPLEX version

12.10 and implemented using the docplex interface in python version 3.7. Unless specified

otherwise, the target MIP gap was set to 0.01%.

With the described target MIP gap, the optimal solutions to 178 of the 206 considered

instances have a unique optimal solution. For 25 instances, another solution within 0.01%

of the optimal solution could be found. More than one solution within 0.01% of the optimal

solution was identified for three instances.
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2. Characteristic decision patterns: from core

facilities to service regions

A prerequisite for establishing a link between a problem’s input data and its well-performing,

or even optimal, decisions is the identification of measurable characteristics that summa-

rize their essential properties. Otherwise, one faces two high-dimensional data vectors,

and any relationship that might be established with state-of-the-art data science tech-

niques is difficult to explain and validate. Example A shows that individual facilities in

the optimal solutions to different problem instances of the CFLP exhibit different char-

acteristics regarding their stability and contribution to the optimal objective value. The

optimal solutions to P1 and P2 are obtained using the same model and solved with the

same off-the-shelf MIP solver. Consequently, differences in the problem’s input data must

explain the observed differences in the optimal solutions. Yet, at this point, even a formal

description of the observed behavior regarding the stability of individual location decisions

is missing. The upcoming chapter addresses the following research question:

RQ1: What detectable decision patterns characterize well-performing solutions to a

facility location problem?

RQ1 lays the foundation for answering our superordinate research question by identifying

properties that can be detected and consequently used to classify and compare the decisions

of different solutions to arbitrary facility location instances. Decision patterns that persist

throughout well-performing – that is, optimal and near-optimal – solutions yield insights

into the characterizing properties of a problem’s solution in the decision space. To identify

these patterns, we perform different exploratory experiments comparing multi-sets of well-

performing solutions to a particular instance. In a detailed analysis of the instances P1
to P4 from Example A, we observe characteristic patterns and translate them into concise

measures. Thus, “detectable” in this context means that the existence and relevance of

found patterns can be evaluated and quantified on arbitrary instances.

There are several challenges to overcome. Firstly, even though the systematic relationship

between the performance of certain location decisions and the spatial characteristics of a

problem instance has long been recognized, the structured analysis of the individual deci-

sions of a solution is a largely overlooked issue in Operations Research (OR) literature in

general, and literature on facility location problems in particular [Mai et al., 2018]. Most

OR literature focuses on analyzing prescriptive solutions in the objective value space, i.e.,

the value of the objective function. At least in the theoretical discussion, the prescribed

decisions to achieve this value remain a side concern. This is challenging when gathering

related work, as consistent terminology is lacking. Secondly, shifting the focus from objec-

tive value to decision space is non-trivial. While the objective value is usually a real-valued

number, decision vectors are high-dimensional. This makes them much more difficult to

describe and analyze. Furthermore, the objective value is minimized or maximized, mak-

ing it easy to compare and evaluate solutions in this regard. High-dimensional decision

vectors lack an optimization sense, making an ordinal comparison challenging. When de-
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2.1. Related work on the analysis of patterns in data and decisions

tecting persistent decision patterns in sets of well-performing solutions, it is intuitive to

compare graphical representations of individual solutions visually. The challenge lies in

translating these observations into concise measures that can be evaluated on arbitrary

instances without visual assistance.

We review related work in the upcoming Section 2.2, at the end of which we highlight our

contributions to the current debate and provide a short chapter outline.

2.1. Related work on the analysis of patterns in data and decisions

Most works on location problems focus on the mathematical model, the solution proce-

dures, and the resulting objective value. If at all, properties of the problem instance are

discussed as part of the data generation procedure for the computational experiments.

The structure of solutions in the decision space is rarely examined. This poses a challenge

when gathering related work, as neither a conceptual framework nor consistent terminology

exists.

Table 2.1 presents an overview of the topics in literature that we think are connected

to the current work. Firstly, we look at sensitivity analysis as an ex-post analysis tool

that examines the relationship between minor perturbations of the data and optimal de-

cisions (Subsection 2.1.1). Secondly, we look at heuristics (Subsection 2.1.2). First, we

survey problem-specific heuristics that identify “good” or “bad” candidate locations from

the problem data before solving the problem once (Subsection 2.1.2.1). We then review

heuristics that exploit the fact that favorable candidate facilities often operate in many

or all near-optimal solutions and take on high values in the linear programming relax-

ation. This implied dominance of certain candidate locations is used, e.g., in heuristic

concentration and kernel search (Subsection 2.1.2.2). Thirdly, we review works that try to

analyze the optimal solutions to facility location problems ex-post, that is, after solving

the mathematical program, to better understand the problem at hand (Subsection 2.1.3).

These works examine commonalities in sets of solutions to a particular problem instance.

Lastly, we look at recent approaches coupling machine learning algorithms with facility

location problems to learn the relationships between the input data and the optimal deci-

sions (Subsection 2.1.4). We provide a short overview of the main findings in these areas

and point out the differences to the research questions discussed in the present work. We

conclude by pointing out our contributions to the current state of literature.

2.1.1. Sensitivity analysis

Sensitivity analysis is the systematic study of how (minor) changes in the data affect the

optimal solution to a problem. It is a post-optimality analysis tool performed after an

optimal solution is available. In linear programming theory, comprehensive techniques for

sensitivity and parametric analysis exist. They directly follow from the problem structure

and duality theory [Hillier et al., 1997]. As location problems usually comprise binary lo-

cation decisions, linear programming sensitivity analysis cannot be applied. While system-

atic, theoretical approaches for sensitivity analysis for integer and integer linear programs
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Topic Relation to present work

Sensitivity analysis Relate perturbations in the data to changes in the
optimal decisions.

Heuristics: Data-based selection rules Link data and decisions by identifying general char-
acteristics of “good” (location) decisions.

Heuristics: Kernel-based methods Exploit persistent decision patterns in the form of
facilities that operate in many optimal and near-
optimal solutions.

Operating frequency of facilities Identify persistent facilities across (multi-)sets of so-
lutions by their operating frequency.

Learning optimal location decisions Learn relationship between perturbations in the data
and changes in the optimal solution.

Table 2.1.: Relation between topics addressed in literature review and present work

have been developed [Geoffrion and Nauss, 1977, Dawande and Hooker, 2000], to the best

of our knowledge, they have yet to be applied to location problems.

Instead, in the context of location problems, two different approaches to sensitivity analysis

can be found. Firstly, several works perform in-depth, theoretical sensitivity analysis in

very restrictive problem settings. For example, Drezner [1985] analyze the Euclidean,

single-facility mini-sum problem, also known as the Weber problem. The authors examine

the sensitivity of the optimal site of the new facility to changes in the locations and weights

of the customers. Labbé et al. [1991] examine a discrete 1-median problem. The authors

evaluate trade-offs between cost and perturbations of the demand volumes.

The superordinate question in these works is: How much can the data change before

optimal decisions change? The present work looks at this problem from a different angle.

What characteristic decisions persist when the data changes to a given degree? The focus

is on the type of change induced in the decision vector.

In more complex problem settings, sensitivity analysis is generally conducted on an ex-

perimental basis. The effect of different variations of individual parameters is evaluated

by repeatedly solving the problem under different parameter constellations. The changes

in the resulting solutions are evaluated with respect to the objective value or problem-

specific performance measures [Kılcı et al., 2015, Hu et al., 2019]. Very few works take

a closer look at the effects of these perturbations on individual decisions. The analysis

is often reduced to evaluating the number of operating facilities and less concerned with

which individual facilities operate [Pelegŕın et al., 2012]. Few authors examine the degree

to which changes in parameters result in changes in the individual optimal location de-

cisions. Alumur et al. [2012b] perform such an analysis to show that their solutions are

robust towards parameter changes, and thus, the optimal locations do not change. Jones

et al. [2022] examine the location of robotic devices at health facilities and list the optimal

locations under different parameter settings. They evaluate the frequency of individual

location decisions across different solutions, which is the most comprehensive analysis of

individual location decisions we could find. Thereby, without explicitly stating it, the

findings of both works support the notion that in problem instances to discrete location

problems, certain facilities dominate in the sense that they operate in many or even all

optimal and near-optimal solutions.
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One of the main findings in the upcoming chapter is that such dominant subsets of core

facilities exist, but not necessarily for every instance. Nonetheless, persistent decision

patterns aside from dominant location decisions can be identified.

2.1.2. Heuristics

Heuristics often exploit characteristic patterns in the problem’s input data to identify op-

timal decisions or the problem’s solution during their search process. We review two types.

The first deploys some data-based selection rule to rank candidate locations and then uses

this rank to identify either the candidates themselves in a greedy manner or promising

solution neighborhoods in a local search. Thereby, these works link characteristics in the

data to favorable decisions. We review these heuristics in Subsection 2.1.2.1. The second

type exploits that many optimal solutions of facility location problems have a relatively

stable integer part, namely the previously mentioned subset of core facilities. The search

process is designed to find these stable facilities. Kernel search and heuristic concentra-

tion benefit from stable integer decisions and work particularly well on discrete location

problems (Subsection 2.1.2.2).

2.1.2.1. Data-based facility selection rules

To the best of our knowledge, Park [1989] were the first authors to acknowledge the

systematic relationship between the performance of certain location decisions and the

spatial characteristics of an instance. The authors present seven simple rules for selecting

candidate locations for a service delivery system based on spatial properties derived from

the problem data. Each rule operates by assigning a score to each candidate location.

Candidates with the highest or lowest scores are selected sequentially. While more complex

rules require an algorithmic subroutine, others assign scores purely based on the problem

data. The simplest rules consider only data regarding that specific candidate facility, e.g.,

the size of that facility. Other rules, like the maximum geographic isolation of demands

and the minimum regret of eliminating candidates, include data from all candidates in the

system. They either add candidates to an empty set or drop candidates from the complete

set of all candidates in a greedy manner according to these scores. The authors evaluate

their rules in a computational study based on real-world data from Iowa in the United

States. They hypothesize that some rules perform well because the geographic pattern

of demands in a spatial system has specific properties that the rule implicitly assumes to

exist. According to the authors, simple rules are likely to perform well in an area with a

well-developed structure. Thereby, they imply the generalizability of their study to other

instances of interest. According to the authors, theoretical reasons exist for expecting

real-world environments to exhibit specific characteristics. One of them is the iterative

adjustment of providers and consumers to be close to one another, which results in a

spatial structure similar to a p-median solution. Also, once services are located in certain

places, the urban multiplier effect results in populations of such places being proportional

to the number of services in place. This has been validated in empirical studies of central

places [Berry and Barnum, 1962, Mulligan, 1980].
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Peker et al. [2016] determine general characteristics of optimal hub locations by examining

optimal solutions to data sets for hub location problems from the literature. They de-

rive rules to identify subsets of candidate hubs that meet these criteria. From subsequent

experiments, the authors conclude that simple measures that combine the magnitude of

demand with measures representing the relative spatial dispersion of the candidates are

effective in finding optimal or near-optimal hub locations. They conclude that by identi-

fying favorable candidates or regions for hubs, it may be possible to speed up the solution

process by focusing further analysis on promising regions.

Mu and Tong [2018] propose including spatial knowledge on the problem instance into

heuristic solution procedures of p-median problems. In an iterative search, the authors

use data-driven selection rules to identify candidates for swapping facilities in the cur-

rent solution. The score of a candidate facility is based on the demand density in their

neighborhood. The demand density is the sum of demand within a given radius of that

facility. Eskandarpour et al. [2017] present a set of rules to identify both “good” and

“bad” candidates based on which they determine promising swaps in a large-scale variable

neighborhood search for a multi-layer, multi-modal supply chain network design problem.

They evaluate a large set of rules by comparing the objective value attained with this rule

with the objective value attained with a random choice of candidates. Interestingly, no

operator outperforms another, and each brings specific contributions. They recommend

the simultaneous use of several operators.

The above works look for general characteristics of well-performing facilities across in-

stances. As problem instances may be arbitrarily heterogeneous, some works argue why

the subset of instances they consider represents all instances of interest. In contrast, we are

interested in general means to identify the characteristics of optimal and near-optimal so-

lutions to a particular instance. Thus, given an optimal solution to a problem instance, we

look for the meta-information on the relevance, stability of, and the relationship between

individual location and allocation decisions.

2.1.2.2. Core-based methods

Heuristic Concentration (HC) and Kernel Search (KS) have been applied very successfully

to facility location problems. These meta-heuristics rely on considering only subsets of

the integer decisions in an iterative search, thereby benefiting from situations in which the

integer part of the solution is relatively stable.

Rosing and ReVelle [1997] first presented HC for a p-median problem. In the first stage,

solutions to the problem obtained with some previously known base heuristic, e.g., the in-

terchange heuristic, are used to create a concentration set of potential candidate locations

for a new, smaller optimization problem, which can then be solved to optimality by stan-

dard optimization techniques as branch-and-bound. Multiple starts of the base heuristic

in the first stage are used to produce a list of all candidates that operated in the m best

unique solutions of q individual runs. The resulting list is called the concentration set.

The latter is assumed to have a high probability of containing the facilities that comprise

the still smaller set of optimal facilities. The authors claim that “... it is generally true
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that solutions whose functional values differ little also are derived from largely identical

solution sets”. They provide an example in which the best solutions obtained from the

1-opt exchange heuristic mostly comprise the optimal nodes with a few exceptional nodes.

They observe that these exceptional nodes are usually close to each other and form a

small and localized trap that a 1-opt heuristic cannot identify. Since these traps occur

in different network regions for every 1-opt solution, the union of the nodes of the best

solutions tends to capture the optimal solution. Rosing et al. [1999] propose a variant of

HC in which the reduced problem in the second stage is not solved to optimality but with

another heuristic, called Gamma heuristic.

Marianov et al. [2009] propose a modified version of HC called Heuristic Concentration

Integer (HCI). HCI uses a 2-opt heuristic in the second stage. The main difference to

the Gamma heuristic presented by Rosing et al. [1999] is the ability of HCI to pick the

same element repeatedly. Another difference lies in the definition of the concentration

sets. They now contain each location that was selected at least once in any solution of the

first stage. HC and HCI have been applied to several combinatorial optimization problems,

particularly various location problems. ReVelle et al. [2008] apply HC to solve the maximal

covering location problem. Jayaraman et al. [2003] and Geng and Wang [2014] apply HC to

a model for reverse logistics with collection sites. Loree and Aros-Vera [2018] extend HCI

to solve the problem of placing points of distribution in post-disaster logistics. Other recent

applications include home healthcare routing and scheduling Grenouilleau et al. [2019] and

vehicle routing with stochastic demands and duration constraints Mendoza et al. [2016].

Sanci and Daskin [2019] combine Sample Average Approximation with HC in the context

of humanitarian relief logistics. To the best of our knowledge, they are the first to extend

HC to problems involving uncertainty. The authors emphasize that while it might be the

first thought to solve the deterministic equivalent MIP for each scenario independently

and derive concentration sets from the union of the selected nodes, this approach did not

yield robust solutions, meaning that the set of nodes in the individual solutions can differ

significantly. Thus, the authors randomly split the scenarios into subgroups, solve the

stochastic program for each of these subgroups, and derive the concentration set from the

resulting solutions.

KS is a matheuristic that was first proposed by Angelelli et al. [2010]. KS identifies a subset

of variables with a high probability of taking a non-zero value in the optimal solution and

refers to it as a kernel. The remaining decision variables are partitioned into buckets that

are successively concatenated with the kernel and then mutually searched. The kernel

is continuously updated during this process, and a sequence of restricted mixed-integer

linear programs is solved. The initial kernel is derived from the Linear Programming

(LP) relaxation of the problem. KS iteratively explores promising portions of the solution

space. The heuristic has been applied to the cost-minimizing CFLP by Guastaroba and

Speranza [2012] and to the single-source CFLP in Guastaroba and Speranza [2014]. Other

applications of KS to location models can be found in Zhang et al. [2019]. Compared to

p-median problems, the CFLP bears the additional difficulty that each location decision

is linked to many allocation decisions. The kernel for the set of allocation variables has to
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be kept consistent with the set of variables for the location variables.

The performance of the above heuristics likely improves when the sets of facilities operating

in the near-optimal and optimal solutions largely overlap. Thus, the fact that they have

been identified as well-performing solution methods for discrete facility location problems

further suggests that these problems exhibit stable subsets of core facilities. One of the

main conclusions from our upcoming analysis is that while this notion persists throughout

several works in literature, it is valid for some but not all instances.

2.1.3. Operating frequency of individual facilities

Few works examine multi-sets of solutions to either similar instances or similar models.

These analyses focus on detecting subsets of core facilities that operate in most or even

all of the solutions in the set. Fadda et al. [2021] compare solutions to a service facility

location problem obtained from different coverage location models. Besides evaluating

the solutions regarding several key performance indicators, the authors determine the

frequency with which individual facilities operate across the solutions to different models.

They define a core as a subset of candidate facilities that operate in the optimal solution

of at least a defined number of the considered models. Based on this core, they evaluate

the relative importance of core locations for a particular instance. They state that the

higher the relevance of these core locations, the less important is the model choice. The

authors then relate the existence of core locations to the spatial properties they determine

during their data generation procedure. In particular, they find that the occurrence of core

locations is higher for instances where the spatial distribution of candidates and customers

is not derived from a uniform distribution. They conclude that core solutions result from

non-random spatial properties of an instance.

To the best of our knowledge, the only thorough analysis of solutions to the CFLP is

performed by Guazzelli and Cunha [2018], who examine the structure of k best solutions

to a particular instance. The authors base their study on two sets of problem instances

from the literature. The first set contains the 36 instances from the OR-library [Beasley,

1988] whose spatial distribution resembles the population distribution of the United States

(see ORLIB in Section 1.3). The second set composes 20 benchmark instances from Yang

et al. [2012] whose spatial distribution resembles randomly spread points on a unit square.

The authors compute k best alternative solutions for each of these instances, whereby k

ranges between 20 and 200 depending on the problem size. They limit all considerations

to the binary location decisions, meaning that two solutions are only considered to be

different if the opening status of at least one facility differs among them. The authors

then analyze the resulting objective values, the set of operating facilities, and several

performance indicators. The results of this analysis are mostly intuitive. The number

of operating facilities decreases with increasing fixed costs and capacities in the optimal

solutions to the individual instances. When considering the k best solutions, the objective

value degraded more slowly for instances with more candidates. Furthermore, k best

solutions are often relatively stable and primarily differ only in a single facility. For the

instances from the ORLIB data set, the ratio of simple changes, merely adding or removing
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one facility or replacing one facility with another regarding the optimal solution, is 47.2%.

This ratio decreases to 16.1% for the second set of benchmark instances. The authors

suppose this is due to the randomized geographical distribution, which results in less

clustering.

Both works above support the existence of core facilities. They even state that the rele-

vance of such cores increases with more “structured” spatial patterns underlying the prob-

lem data, i.e., locations obtained from real-world settings, compared to instances based on

a uniform distribution of candidates and customers on a unit square. Yet, a central short-

coming at this point is the lack of concise measures to detect and quantify the relevance of

these core facilities in the well-performing solutions to a particular instance. We provide

such a measure, which allows us to evaluate the degree to which these observations can be

generalized.

2.1.4. Learning optimal location decisions

Recent works integrate statistical machine learning into operations research. Thereby,

the problem data serves as an input for statistical learning algorithms. Mai et al. [2018]

propose a heuristic based on the expectation-maximization algorithm to a capacitated

p-median problem using the geographic locations and demands of customers as inputs.

Amongst others, the authors evaluate the effectiveness of their algorithm on self-generated

instances with different spatial patterns, in particular, random patterns, regular patterns,

and patterns exhibiting a natural clustering. They observe that their algorithm performs

particularly well compared to other approaches in instances with clustered spatial distri-

bution of candidates and customers.

Lodi et al. [2020] present an approach to couple the solution of a single-source CFLP

with methods from machine learning. For a given problem, the authors assume that data

exists for many variations of this problem (historical or simulated) along with their optimal

solutions. They then examine how one can use this data to predict the optimal solution

to a new unseen variation of the reference problem. More specifically, the authors aim to

predict the number of facilities that are expected to change, thus the amount of re-planning

needed, given a perturbed instance by different learning algorithms such as tree regressors,

neural network classifiers, logistic regression, classification, and naive Bayes classification.

The resulting information is then included in the mathematical program as an additional

constraint. The authors conclude that their approach can identify whether a perturbed

instance derived from a reference one will share all or a part of its optimal facilities with

the solution of the reference instance.

Both works suggest that spatial patterns in the problem’s input data lead to relatively

stable subsets of core facilities. However, as Mai et al. [2018] observe, in the absence

of spatial regularities, the dominance of these subsets of facilities diminishes, and the

performance of algorithms that implicitly expect them decreases. We look closer at the

types of characteristic patterns that can be expected. In Chapter 4, we explicitly link

these patterns to the performance of individual algorithms and demonstrate which decision

patterns are particularly difficult to identify.
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The review of literature shows that the existence and relevance of structural patterns,

in particular the spatial characteristics underlying the problem’s input data, is widely

acknowledged and explicitly or implicitly exploited in several well-performing heuristics.

However, a systematic approach to address RQ1 is missing. Instead, existing works imply

that many instances exhibit a subset of favorable core locations that characterize optimal

and near-optimal solutions. However, already Example A indicates that the persistence of

individual facilities throughout well-performing solutions differs massively amongst facili-

ties and instances.

In Section 2.2, we present a concise measure to quantify the size and relevance of persis-

tent subsets of core facilities in a particular set of solutions. We then perform extensive

experiments on k best alternative solutions to a large set of instances from literature as

presented in Section 1.3. Results indicate that persistent subsets of core facilities exist

in some but not all instances. In Section 2.3, we extensively analyze a particular set of

solutions to detect persistent patterns. We identify an implicit division of the facility cus-

tomer space into service regions of different coherence levels as a characterizing pattern

that well-performing solutions to arbitrary instances share. We end with a summary of

our main findings and an outlook in Section 2.4.

2.2. Persistent subsets of core facilities

This work aims to understand the interplay between characteristics in the problem instance

and well-performing, or even optimal, decisions. A preliminary for the analysis of this

relationship is the identification of the persistent, favorable decision patterns that near-

optimal and optimal solutions to a particular problem instance share. Existing works in

literature suggest that facility location problems exhibit a persistent subset of core facilities

that operate in many or all optimal and near-optimal solutions to a particular instance.

Several well-performing heuristics implicitly or explicitly exploit this property. Works

that focus on identifying stable decision patterns in multi-sets of solutions to particular

instances support the idea of their existence. The level of persistence of these core facilities

has been related to the spatial patterns underlying a problem instance with the hypothesis

that random spatial patterns lead to less persistent cores. However, up to this point, no

quantitative analysis on the existence of such core locations exists. In particular, there

is a lack of a concise measure to quantify the relevance of such core facilities in the well-

performing solutions to a particular instance. Consequently, the relationship between the

persistence of core facilities and the underlying spatial patterns of the data is not confirmed

and must yet be validated.

In the upcoming section, we extend the work of Guazzelli and Cunha [2018] on exploring

persistent decision patterns in k best alternative solutions to a CFLP. In Subsection 2.2.1,

we develop a concise measure to quantify the relevance in terms of size and persistence of

subsets of core facilities in a particular multi-set of solutions. Thereby, we draw on ideas

first presented by Fadda et al. [2021]. We apply this measure to the 5 best alternative

solutions to P1-P4 from Example A, all of whom have been generated on a random spa-

tial pattern. The results indicate significant differences in the relevance of core facilities,
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putting the existence of this decision pattern in general instances and its relationship to

random spatial patterns in question. In Subsection 2.2.2, we perform an experiment on

the instances from the data sets described in Section 1.3 to validate that, firstly, not all in-

stances exhibit persistent subsets of favorable core locations, and, secondly, their existence

is not related to the randomness of the underlying spatial pattern.

For a consistent notation, let the tuple s := (z, y, x) denote a solution to a CFLP, whereby

z is the objective value associated with the decisions x ∈ R
|I|×|J |
≥0 , the matrix of allocation

decisions, and y ∈ B|I|, the vector of binary location decisions. Let s⋆ := (z⋆, y⋆, x⋆)

denote the optimal solution and S an arbitrary set of solutions to a particular instance.

2.2.1. Measuring the relevance of core facilities

We extend the work of Fadda et al. [2021] to derive a concise measure that allows quanti-

fying and comparing the relevance of subsets of core facilities in an arbitrary (multi-)set of

solutions to a given instance. The measure considers not only the persistence of a partic-

ular subset of operating facilities but also the size of this subset compared to the number

of facilities operating in the optimal solution and the number of candidates. Fadda et al.

[2021] define a kernel as the subset of candidate locations operating in a given proportion

of the considered solutions. The focus is solely on the location decisions. We formally take

over this idea as follows.

Definition 2.1. The t-kernel of a set of solutions S, Nc(t,S), is the set of candidate

facilities that are open in at least t · 100%, t ∈ [0, 1], of the solutions in S, such that

Nc(t,S) :=
{
i ∈ I

∣∣∣∣
∑

s∈S ysi
|S|

≥ t

}
, (2.1)

with ysi denoting the value of the decision variable indicating the opening status of facility

i ∈ I in solution s ∈ S.

Notice that when t = τ/|S|, with τ ∈ N0, then Nc(t, S) denotes the set of candidate

locations that are open in exactly τ solutions.

Fadda et al. [2021] measure the relevance of a t-kernel in a given set of solutions by dividing

the cardinality of Nc(t, S) by the cardinality of the set of candidate locations. However,

this makes it difficult to compare the relative importance of t-kernels between different

instances. The fraction decreases with the number of candidate locations, even if these

are irrelevant, i.e., if they are not part of any solution in S. Therefore, we set the size of

a t-kernel in relation to the set of relevant candidate locations in S.

Definition 2.2. The set of relevant candidates in a set of solutions S, IR(S) ⊆ I, is the

subset of candidate locations that operate in at least one of the solutions in S, such that

IR(S) := {i ∈ I | ∃s ∈ S s.t. ysi = 1} ⇐⇒ IR(S) = Nc

(
1

|S|
,S
)
. (2.2)

26



2.2. Persistent subsets of core facilities

To quantify the relevance of a t-kernel in a given set of solutions, we set the cardinality of

Nc(t, S) in relation to the cardinality of IR(S).

Definition 2.3. The t-kernel relevance in a set of solutions S, KER(t, S), is the cardi-

nality of the t-kernel, Nc(t,S), divided by the cardinality of the set of relevant candidates,

IR(S), such that

KER(t,S) := |Nc(t,S)|
|IR(S)|

. (2.3)

KER(t,S) is restricted to [0, 1] and by definition KER(1/|S|,S) = 1. Notice that

KER(1, S) equals the Jaccard index, a well-known measure to evaluate the similarity

of two sets. It compares the cardinality of their intersection with the cardinality of their

union, such that for two finite sets A and B,

Jacc(A,B) =
A ∩B

A ∪B
. (2.4)

KER(t,S) can be considered a refinement of that index.

Due to its dependence on the parameter t, the t-kernel relevance does not make a con-

cise definition of the importance of a subset of facilities in a particular set of solutions.

Therefore, we present the kernel persistence as a measure that combines KER(t,S) for all
possible values of t.

Definition 2.4. The kernel persistence in a set of solutions S, KER(S), is the sum of

KER(τ/|S|,S) for τ ∈ {1, . . . , |S|} divided by the cardinality of S such that

KER(S) :=
∑|S|

τ=1KER( τ
|S| ,S)

|S|
. (2.5)

Dividing the sum by the size of S standardizes KER(S) to (0, 1]. If KER(S) = |S|−1,

then the solutions in S do not share any facility. If KER(S) = 1, all solutions operate with

the same set of facilities. Thus, KER(S) measures the stability of the set of operating

candidate locations across the different solutions in S.

Another way to approach the notion of persistence of individual facilities is to set the

average number of candidate facilities operating in a solution in S in relation to the size
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of IR(S). In fact, Eq. (2.6) shows that KER(S) does exactly this:

KER(S) =|S|−1 ·
∑|S|

τ=1
KER(

τ

|S|
,S)

=
(
|IR(S)| · |S|

)−1 ·
∑|S|

τ=1
|Nc(t,S)|

=
(
|IR(S)| · |S|

)−1 ·
∑|S|

τ=1

∣∣∣∣
{
i ∈ I

∣∣∣∣
∑

s∈S ysi
|S|

≥ τ

|S|

}∣∣∣∣

=
(
|IR(S)| · |S|

)−1 ·
∑|S|

τ=1

∑
i
1

(∑
s∈S ysi
|S|

≥ τ

|S|

)
(2.6)

=
(
|IR(S)| · |S|

)−1 ·
∑|S|

τ=1

∑
i
1

(∑

s∈S
ysi ≥ τ

)

=
(
|IR(S)| · |S|

)−1 ·
∑

i

∑
s∈S

ysi

=|IR(S)|−1 ·
∑

i,s y
s⋆
i

|S|
.

Example A 2.1 (Kernel persistence) Consider instances P1-P4 from Example A. We

generate sets of solutions composed of the k best alternative solutions, further denoted by

Skk−best. Following the approach of Guazzelli and Cunha [2018], we distinguish solutions

in this context only based on their location decisions. We iteratively determine the k best

alternative solutions by solving a sequence of CFLPs. In each iteration, we exclude the

previously found solutions. Thus, let Ok be the set of candidate locations operating in the

k-th solution and Nk the set of closed candidate locations in this solution. To eliminate

all previously found solutions from the search space, we add the following constraint

∑
i∈On

yi −
∑

i∈Nn

yi ≤ |On| − 1 ∀n ∈ {1, . . . , k − 1}. (2.7)

Figure 2.1 displays the optimal and 4 near-optimal solutions to P1. The gap denotes the

relative deterioration of the objective value compared to the optimal solution. Compared

to the optimal solution, facilities are either omitted or substituted in the near-optimal

solutions. Their demand is partially served by facilities also operating in the optimal

solution (see, e.g., Figure 2.1b and Figure 2.1c), or a single facility is replaced by other

facilities (Figure 2.1d and Figure 2.1e). The kernel persistence in S5k−best is 0.88. 18

facilities are operating in the optimal solution, and 2 additional facilities operate in the

solutions depicted in Figure 2.1d and Figure 2.1e, respectively. Thus, the cardinality of

the set of relevant facilities IR(S5k−best) is 20. Consequently, 14 out of 20 facilities (70%)

operate in all 5 (t = 100%) solutions. 18 (90%) operate in at least 4 out of 5 solutions,

and 2 facilities (10%) operate in only a single solution.

This changes when looking at instance P2 as depicted in Figure 2.2. The set of facilities

operating in the different solutions differs significantly, and the kernel persistence is only

0.49. However, compared to P1, fewer facilities operate in any optimal or near-optimal

solution to P2. Given that both instances have the same number of candidate locations,

this makes a more frequent operation of individual facilities in the 5 best solutions to P1
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Customers Closed Facilities Open Facilities Status change compared to opt. solution

(a) Optimal solution (b) 2nd-best, gap 0.8% (c) 3rd-best, gap 0.82%

(d) 4th-best, gap 1.08% (e) 5th-best, 1.38%
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(f ) KER(t,S5
k−best)

Figure 2.1.: 5 best alternative solutions and development of KER(t, S5k−best) (P1, Ex. A)

Customers Closed Facilities Open Facilities Status change compared to opt. solution

(a) Optimal solution (b) 2nd-best, gap 0.04% (c) 3rd-best, gap 0.07%

(d) 4th-best, gap 0.13% (e) 5th-best, gap 0.21%
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Figure 2.2.: 5 best alternative solutions and development of KER(t, S5k−best) (P2, Ex. A)
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more probable. ▲

Example A 2.1 illustrates a huge difference in the kernel persistence between individual

instances. At the same time, it highlights that to interpret KER(S) meaningfully, one

must set the number of facilities operating, on average, in a solution in S in relation to

the number of candidates. Let n denote the average number of facilities operating in any

solution. When the ratio between n and |I| approaches 1 – thus, a considerable proportion

of the facilities operates in any given solution – then KER(S) will also be relatively high.

However, this does not necessarily imply that certain facilities are overly persistent in

terms of a strategic advantage but might result from a lack of other available candidates.

For example, consider a situation in which out of |I| = 10 identical candidates, 9 operate

in every solution in S, e.g. because any combination of 9 facilities produces an optimal

solution. Suppose S consists of 2 distinct optimal solutions. In that case, this implies that

8 candidates are operating in both solutions and 2 candidates are operating in at least

one solution, which produces a value for KER(S) of 90%. On a scale from 0 to 100%,

this is relatively high. However, it has no expressiveness regarding some candidates being

more favorable than others. One would expect a similar result if 9 out 10 candidates were

chosen randomly for each of the two solutions. Therefore, we need a set-specific reference

point to interpret KER(S) meaningfully.

Let S̃ denote a random counterpart to S. Assume that a solution s̃ results from a Laplace

experiment in which n out of |I| facilities are drawn randomly, with each candidate having

the same probability of being drawn. Then, assume that S̃ is the result of a second

Laplace experiment which draws |S̃| solutions from all possible outcomes of the former

experiment. As such, the cardinality of the set IR(S) is a discrete random variable with

finite moments. We can obtain its expectation E
(
|IR(S)|

)
and with that the expected

value of KER(S̃). The latter can serve as a reference value to KER(S) as it represents

a situation in which no strategic advantage of any candidate exists. To determine the

expected value of the cardinality of IR(S), we can use the formula for the expectation of

discrete random variables,

E
(
|IR(S̃)|

)
=
∑|I|

r=1
r · P

(
|IR(S̃)| = r

)
. (2.8)

A detailed derivation of the probability of P
(
|IR(S̃)| = r

)
can be found in Appendix A,

This leads to the following expression for the expectation of KER(S̃)

E
(
KER(S̃)

)
=

⌈∑
i

∑
s̃∈S̃ ys̃i

⌉
⌈
E
(
|IR(S̃)|

)⌉ . (2.9)

Notice that the assumption of a random Laplace experiment equals assuming complete

symmetry between the individual candidate facilities.

Example A 2.2 (Expected vs. observed kernel persistence) Consider again instances P1-
P4 from Example A and their k best solutions for k ∈ {5, 10, 20}. Table 2.2 displays the
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observed kernel persistence values and the corresponding expected values for the random

counterpart. Due to the higher per facility capacities, it is to be expected that, on average,

fewer facilities operate in the k best solutions to P2 and P4 compared to P1 and P3,
resulting in lower values for the expected kernel persistence in the random counterparts.

However, one can see that the differences in the observed values significantly exceed the

differences in the corresponding expectations. This indicates that the increased persistence

results from these facilities having a strategic advantage over other candidates rather than

from a simple lack of alternative candidates.

KER
(
S5k−best

)
E (.) KER

(
S10k−best

)
E (.) KER

(
S20k−best

)
E (.)

P1 0.88 0.29 0.83 0.21 0.73 0.18
P2 0.49 0.23 0.36 0.14 0.29 0.09
P3 0.95 0.29 0.94 0.21 0.93 0.19
P4 0.57 0.23 0.43 0.13 0.35 0.08

Table 2.2.: Persistent kernels in k best alternative solutions (P1-P4, Ex. A)

▲

Example A 2.2 demonstrates that there are instances with a remarkable persistence of indi-

vidual facilities across all optimal and near-optimal solutions. These form a persistent core

of favorable facilities. However, while Guazzelli and Cunha [2018] and Fadda et al. [2021]

conclude that, in general, location-allocation problems exhibit such a core, Example A 2.1

and Example A 2.2 demonstrate that this is not true for all instances. In particular, no

significantly persistent core could be identified for instances P2 and P4. Thereby, these two
instances do not exhibit highly artificial properties, e.g., symmetries, but were generated

with the same randomized generation procedure as instances P1 and P3 for which these

cores can be observed. These instances only differ in terms of the capacity of individual

facilities. We evaluate the prevalence of subsets of core facilities in more instances from

literature in the following.

2.2.2. Experimental validation: persistent subsets of core facilities

We examine the kernel persistence in sets of k best alternative solutions to instances

from the data sets presented in Section 1.3 for k ∈ {5, 10, 20}. Figure 2.3a displays the

distribution of kernel persistence values, Figure 2.3b shows the distribution of expected

values of the corresponding random counterparts, and Figure 2.3c shows the distribution

of their respective differences.

With increasing k, the kernel persistence values decrease throughout all instances (Fig-

ure 2.3a). This is expected, given that the k best solutions are generated by forcing the

set of optimal facilities to differ between alternative solutions. However, in 4 out of 5

considered data sets from literature, the kernel persistence is remarkably high. For k = 5

and data sets BAR-1991, KLO-2007, and ORLIB, the median exceeds 0.8. This explains

the impression that persistent subsets of core facilities play a significant role in many, or

even all, solutions to discrete location problems.
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Figure 2.3.: Distribution of KER(Skk−best), E(KER(Skk−best)), and their difference for
k ∈ {5, 10, 20}
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However, Figure 2.3b illustrates that, in particular, for instances from the ORLIB and

BAR-1991 data sets, the high kernel persistence values are a direct consequence of the

relatively small number of candidates compared to the number of facilities operating in

the optimal solution. The only data set for which parts of the instances significantly

exceed their expected kernel persistence values are instances from KLO-2007. Meanwhile,

the differences between individual instances from this data set are significant. For sets

of 10 best alternative solution, the smallest observed difference between the observed

and expected kernel persistence of an instance from KLO-2007 is 0.11, while the largest

difference for an instance from this set is 0.73. Since for all instances in this data set

candidates and customers are randomly distributed, this contradicts the hypothesis that

the persistence of core facilities decreases with a random spatial pattern.

In conclusion, some but not all considered CFLP instances exhibit subsets of favorable

core facilities that persist throughout optimal or near-optimal solutions. Instances that

exhibit such core facilities often have a limited number of alternative candidates to serve

all demands profitably. A relationship between the persistence of such facilities and the

randomness of the spatial distribution of candidates and customers cannot be observed.

Up to this point, the analysis of persistent decision patterns in well-performing solutions

was restricted to location decisions and primarily centered around counting the frequency

with which individual facilities operate. In the following, we will perform an exploratory

analysis to examine the role of individual facilities in an optimal solution to the CFLP

and evaluate which other stable patterns can be identified across optimal and near-optimal

solutions.

2.3. Persistent service regions

In a particular problem instance, some decisions are more favorable than others. They

respond to some patterns in the data particularly well, leading them to be part of many or

even all optimal and near-optimal solutions. Up to this point, there was an implied notion

that for discrete location problems, favorable decisions constitute themselves as subsets of

facilities. The stronger the structures in the spatial pattern of the distribution of candidates

and customers, the more persistent are certain favorable facilities. The results of the

previous section have shown that persistent subsets of core facilities can also be observed

in instances in which candidates and customers are uniformly distributed, and thus, the

spatial pattern is purely random. Furthermore, instances exist that do not exhibit a

particularly persistent subset of favorable core locations. The question arises whether there

are other favorable decision patterns that respond particularly well to the requirements

of these instances. Understanding these patterns provides contextual information for a

decision-maker and allows for specific tailoring of solution algorithms.

To the best of our knowledge, no structured approach to identifying such patterns exists

at this point. An optimal solution to the CFLP consists of a binary vector of location deci-

sions y⋆ and a matrix of continuous allocation decisions x⋆. Without further information,

differences in the importance of individual facilities or interdependence between certain
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location decisions cannot be determined. In what follows, we perform an experiment on

a particular set of solutions to a given instance that allows us to evaluate the role and

interdependence of individual location decisions. Let

I⋆ := {i ∈ I | y⋆i = 1} (2.10)

denote the set of facilities operating in the optimal solution. For each i ∈ I⋆, we resolve

the model with the additional constraint that facility i must not operate (yi = 0). The

effect is the same as removing i from the set of candidates or setting the capacity of facility

i to 0. We denote the resulting solution as sI\i⋆ and derive the following set of solutions

for further analysis

SI\i :=
{
s⋆I\i =

(
z⋆I\i, y

⋆
I\i, x

⋆
I\i
)
, i ∈ I⋆

}
. (2.11)

Simply put, we explore the role of individual optimal facilities and the interplay among

them by analyzing what happens when they are not there.

In Subsection 2.3.1, we use SI\i to derive measures that characterize the role of individual

facilities in an optimal solution. We relate these measures to the persistence of individ-

ual facilities in well-performing solutions. Based on the facilities operating in the optimal

solutions to P1-P4 from Example A, we then distinguish between compositions of facili-

ties in optimal solutions. Furthermore, the experiments on Example A demonstrate that

facilities in the optimal solutions to different instances exhibit varying degrees of interde-

pendence. While, per se, the fact that certain facilities are optimal only in combination is

an expression of the combinatorial part of the mixed-binary CFLP, the varying level of in-

terdependence between the optimal solutions to different instances has not been examined

at this point. In Subsection 2.3.2, we derive concise measures to describe the interdepen-

dence of facilities operating in a particular optimal solution. In particular, we quantify the

level of interdependence of the facilities in an optimal solution and the separability of the

set of optimal facilities into subsets of stronger and weaker coherence. We show that the

level of interdependence of individual decisions is closely related to the existence of persis-

tent core facilities. In Subsection 2.3.3, we relate the interdependence of optimal facilities

to their joint service of larger subsets of customers. We derive the concept of persistent

service regions as a persistent decision pattern underlying well-performing solutions to a

particular instance. In Subsection 2.3.4, we validate the observations from the previous

subsections on the instances from Section 1.3.

2.3.1. Different roles of individual facilities

In the following subsection, we use SI\i to derive measures that characterize the role

of individual facilities in the optimal solution in the objective value and the decision

space. We relate these measures to the persistence of individual facilities in well-performing

solutions and assess whether different types of optimal facilities can be characterized. We

first extend the concept of kernel persistence to the persistence of individual facilities

(Subsection 2.3.1.1). Then, we assess the relationship between the persistence of individual
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facilities and their contribution to the optimal objective value (Subsection 2.3.1.2). The

latter assumes that upon removing a facility from the optimal solution, the opening status

of other optimal facilities can be modified. We present a measure that allows quantifying

the extent of this modification, the level of change induced by removing a facility in the

decision space (Subsection 2.3.1.3). We then present a measure that assesses the necessity

of modifying the decision vector to maintain an optimal strategy and, again, relate it to the

persistence level (Subsection 2.3.1.3). We perform our analysis on the optimal solutions

to instances P1-P4 from Example A. We validate our main conclusions on instances from

data sets described in Section 1.3 in Subsection 2.3.4.

2.3.1.1. Persistence of individual facilities

We extend the concept of measuring the persistence of subsets of facilities to measuring

the persistence of individual facilities in a particular set of solutions S.

Definition 2.5. The persistence of a facility i in a set of solutions S, C(i, S), equals the

proportion of the solutions in S in which facility i operates such that

C(i,S) :=

∑|S|
τ=1 1i∈Nc(

τ
|S| ,S)

|S|
=

∑
s y

s
i

|S|
. (2.12)

Another interpretation of C(i,S) is that it equals the highest level t such that facility i is

an element of the associated t-kernel. Candidates that are not part of any solution have

a persistence of C(i,S) = 0. Candidate locations that are part of every solution have a

persistence of C(i,S) = 1.

2.3.1.2. Pseudo-reduced costs

Example A demonstrates that a single optimal facility might be crucial for obtaining a

certain objective value. For P1, re-optimizing the problem after removing a single can-

didate reduced the optimal objective value by more than 11%. To quantify this effect

for arbitrary facilities, we follow the idea of Guazzelli and Cunha [2018] and compute the

pseudo-reduced costs of a candidate location i.

Definition 2.6. The pseudo-reduced costs of a candidate facility i, prc%(i), denote the

relative arithmetic difference between the original optimal objective value, z⋆, and the op-

timal objective value, z⋆I\i, to the modified problem instance in which facility i has been

removed from the set of candidate locations such that

prc%(i) :=
z⋆ − z⋆I\i
|z⋆|

. (2.13)

In other words, prc%(i) denotes the relative loss from removing facility i from the set

of candidates. Scaling this loss to the original objective value allows for comparing the

pseudo-reduced costs of individual facilities across different instances. The pseudo-reduced

costs of facilities not operating in the optimal solution are 0.

35



2.3. Persistent service regions

In the following Example A 2.3, we analyze the distribution of the pseudo-reduced costs

of the optimal facilities in instances exhibiting different levels of kernel persistence across

their well-performing solutions, in particular, across sets of k best alternative solutions.

We then relate pseudo-reduced costs of individual facilities to their persistence in this set

of solutions.

Example A 2.3 (Pseudo-reduced costs and persistence) Figure 2.4 depicts the distribution

of the prc%-values of the optimal facilities in instances P1-P4. The prc%-values across all

optimal facilities of a particular solution differ significantly between the instances. The

following observations are noteworthy.
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Figure 2.4.: Distribution of prc%-values of the optimal facilities (P1-P4, Ex. A)

Between instances with the same tightness but a different number of candidate facilities,

the prc%-values decrease with an increasing number of candidates. For example, comparing

the distribution of prc%-values between instance P1 with 100 candidates and P2 with 200

candidates, one can see that the maximum prc%-value between all facilities decreases from

11.2% to 4.9%. At the same time, the average value across all optimal facilities decreases

from 4.4% to 1.9%.

The difference in the prc%-values of instances with the same number of candidates but

different tightness ratios is even more significant. In P1, the prc%-values exceed 5% for 7

out of 18 optimal facilities. In contrast, the maximum prc%-value for any facility in P2 is

0.6%. In P3, the prc%-values exceed 2.0% for 17 out of 38 optimal facilities. Meanwhile,

the maximum prc%-value observable for facilities in P4 is 0.4%.

Furthermore, there is a significant difference in the distribution of the prc%-values within

the individual instances. Even in instances P1 and P3, in which maximum and average
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prc%-values are relatively high, several optimal facilities can be removed without significant

loss indicated by a prc%-value close to 0.
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Figure 2.5.: prc%-values versus persistence in 20 best alternative solutions (P1-P4, Ex. A)

Figure 2.5 depicts the relationship between the prc%-value of individual facilities and their

persistence in the set of 20 best alternative solutions. While in all instances, the persistence

of individual facilities increases with increasing pseudo-reduced costs, we observe extremely

high persistence values for facilities with very low prc%-values. Particularly in instance

P3, we observe persistence levels of 1.0 for facilities with a prc%-value of only 0.5%. This

contradicts the idea that a profound contribution to optimal objective value explains the

high persistence of individual facilities across well-performing solutions. ▲

2.3.1.3. Overlap coefficient

We derive the set of solutions SI\i and, hence, also the optimal objective values z⋆I\i from

the optimal solutions to instances in which i has been removed from the set of candidates.

Thereby, decisions from s⋆ can be modified in the sense that facilities formerly operating

can be either open or closed in s⋆I\i. Measuring the effect of removing a facility in the

decision space is not straightforward as it requires the comparison of the vectors of binary

location decisions y⋆ and y⋆I\i.

The Hamming distance is a popular way to determine the degree of similarity between two

binary vectors. It measures the similarity between two strings of equal length by counting

the positions at which their corresponding entries differ [Hamming, 1980]. It is widely used

and simple to understand and compute. However, the Hamming distance is too imprecise
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to interpret the effect of removing one facility on the remaining facilities in the optimal

solution to a location problem, as the following Example D illustrates.

Example D Let y5
⋆
= y6

⋆
= (1 1 0 0 0) be the optimal vectors of location decisions to

two problem instances P5 and P6 with 5 candidate facilities each. We analyze the ef-

fect of removing optimal facility i = 1 on the optimal solution for both instances. Let

y5
⋆

I\1 = (0 1 1 1 0) and y6
⋆

I\1 = (0 0 1 0 0) be the optimal vectors of location decisions to in-

stances P5I\1 and P6I\1 , respectively. The Hamming distance between the optimal solution

and the solution without facility 1 is 3 for both instances. For P5I\1 , the entries of the

vectors differ at positions 1, 3, and 4. For P6I\1 , the entries differ at positions as well as 1,
2, and 3. Thus, the Hamming distance implies that the effect the removal of the first candi-

date has on each of the two decision vectors is the same. However, from a decision-making

perspective, this removal has very different effects. In the optimal solution to P5I\1 , facility
1 is replaced by two facilities (3 and 4) that were not operating before. Thereby, facility

2 continues to be optimal and is unaffected by the removal of facility 1. Meanwhile, for

P6I\1 , the formerly optimal facility 2 is closed, and facilities 1 and 2 are replaced by facility

3. ▲

We present a similarity measure that allows distinguishing between effects with different

implications for decision-makers. Let

I⋆I\i := {i
′ ∈ I|y⋆I\ii′ = 1} (2.14)

be the index set of all optimal facilities operating in s⋆I\i. Obviously, I⋆I\i cannot contain

facility i by definition. Therefore, the two sets I⋆ and I⋆I⋆\i cannot be identical. We

distinguish between the following three effects the removal of an optimal facility may have

on the remaining location decisions:

1. No effect: The removal of the facility does not affect the other location decisions, and

the facility is not substituted. Other facilities either fill in for the missing capacity

or the customer demand remains unsatisfied. Therefore, it holds that I⋆I\i = I⋆ \ i.

2. Substitution: The removed facility is substituted by one or more facilities that did

not operate in s⋆. Meanwhile, all facilities other than i operating in s⋆ continue to

operate in s⋆I\i . This implies that I⋆ \ i ⊂ I⋆I\i.

3. Reconstruction: The absence of facility i causes structural changes in the solution

of different magnitudes. Facilities other than i operating in s⋆ no longer operate in

s⋆I\i and vice versa. Therefore, we have both I⋆I\i ⊈ I⋆ \ i and I⋆ \ i ⊈ I⋆I\i.

In the following, we show that the overlap coefficient [Vijaymeena and Kavitha, 2016], or

Szymkiewicz-Spimpson coefficient, a similarity measure from computer science restricted

to the interval [0, 1], allows us to distinguish between these three effects.

Definition 2.7. The overlap coefficient of two finite sets A and B, overlap(A, B), is the

ratio between the size of their intersection and the size of the smaller of the two sets such

38



2.3. Persistent service regions

that

overlap(A,B) :=
|A ∩B|

min(|A|, |B|)
. (2.15)

If one of the two sets is a subset of the other, overlap(A, B) equals 1. If the intersection

is the empty set and the two sets are entirely different, overlap(A, B) equals 0.

Applying the overlap coefficient to measure the similarity between I⋆ and I⋆I\i allows

distinguishing between the above effects. For ease of notation, we denote |I⋆| = n. When

the removal of a facility has no effect, I⋆I\i = I⋆ \ i and therefore I⋆I\i ⊂ I⋆, the overlap

coefficient will be equal to one, as

overlap(I⋆, I⋆I\i) =
n− 1

min{n, n− 1}
=

n− 1

n− 1
= 1. (2.16)

If facility i is substituted, I⋆I\i contains all facilities operating in I⋆ except facility i plus a

positive number of candidate facilities which are not contained in I⋆. Therefore, I⋆I\i can

be considered the union of two sets such that I⋆I\i = {I
⋆ \ i} ∪ I with I ⊆ I \ I⋆. Thereby,

it must hold that |I| = m ≥ 1, m ∈ N as otherwise we would be in the first case. It follows

that

overlap(I⋆, I⋆I\i) =
n− 1

min(n, (n− 1) +m)
=

n− 1

n
< 1. (2.17)

Lastly, we have the third effect: reconstruction. A number of facilities other than i op-

erating s⋆ are closed in s⋆I\i, and an arbitrary number of facilities not operating in s⋆ is

opened in addition. Again, let m ∈ N denote the number of facilities other than i that are

operating in s⋆ and not operating in s⋆I\i. We can rewrite I⋆I\i as the union of two sets, such

that I⋆I\i = I⋆ \{I ′ ∪ i}∪I, with I defined as before and I ′ := {i′ ∈ I \ i|y⋆i′ = 1, y⋆I\ii′ = 0}.
Let |I ′| = p ≥ 1, p ∈ N as when p = 0 we are back in the second effect, substitution. The

size of the intersection of I⋆ and I⋆I\i therefore reduces to n− 1− p and we obtain

overlap(I⋆, I⋆I\i) =
n− 1− p

min(n, n− 1− p+m)
. (2.18)

We want to know whether the resulting value can always be distinguished from the first

two effects. Therefore, we will show that it holds that n−1−p
min(n,n−1−p+m) <

n−1
n .

We distinguish between three cases:

Case 1: p = m The same amount of facilities are newly operating as are being removed

from the solution, such that we obtain

overlap(I⋆, I⋆I\i) =
n− 1− p

min(n, n− 1− p+m)
=

n− 1− p

min(n, n− 1)
=

n− 1− p

n− 1
. (2.19)
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Together with p ≥ 1 we obtain that

n− 1− p

n− 1
≤ n− 2

n− 1
<

n− 1

n
. (2.20)

Case 2: m > p More facilities are added than removed:

overlap(I⋆, I⋆I\i) =
n− 1− p

min(n, n− 1−p+m︸ ︷︷ ︸
>0︸ ︷︷ ︸

≥n

)
=

n− 1− p

n
<

n− 1

n
. (2.21)

Case 3: m < p More facilities are removed than facilities added. As p,m ∈ N, from m < p

it follows that q := p−m ≥ 1, which implies that p = q +m and therefore

overlap(I⋆, I⋆I\i) =
n− 1− p

min(n, n− 1− p+m)
=

n− 1− q −m

n− 1− q
. (2.22)

Now setting n′ = n− 1− q < n implies that

n′ − p

n′ ≤ n′ − 1

n′ <
n− 1

n
. (2.23)

Together, in the case of reconstruction, the value of the overlap coefficient will be strictly

smaller than in the case of substitution. In conclusion, the overlap coefficient is a measure

that, together with the cardinality of I⋆, allows distinguishing between the three effects

that removing a facility may have on the other facilities operating in the optimal solution

to a location problem. The distinction is only valid for n > 1 since, when only one facility

operates in the optimal solution, removing that facility will always produce an overlap

coefficient of 0.

Example D continued We obtain I⋆5 = I⋆6 = {1, 2}, I⋆5I\1 = {2, 3, 4} and I⋆6I\1 = {3} as

the sets of optimal facilities for the different solutions. As we have two facilities operating

in s⋆5 and s⋆6, we have n = 2. For P5, we obtain overlap
(
I⋆5 , I

⋆
5I\1

)
= 1

2 = n−1
n . Thus, we

see that the effect of the removal is a substitution of facility 1. Two facilities, 3 and 4,

that did not operate before, replaced it. For P6, we obtain overlap
(
I⋆6 , I

⋆
6I\1

)
= 0 < n−1

n .

Thus, removing facility 1 affected the optimality status of another facility, namely facility

2, resulting in a reconstruction. ▲

In the subsequent Example A 2.4, we examine the overlap coefficients of the optimal

facilities in instances P1-P4 from Example A and relate them to their persistence values

in the 20 best alternative solutions.

Example A 2.4 (Overlap coefficient and persistence) Figure 2.6 displays histograms for

the distribution of the overlap coefficients for facilities operating in the optimal solution

to P1-P4 from Example A. The red vertical line marks (n− 1)/n on the x-axis. All values

below that mark indicate a reconstruction of the solutions. We point out the following.
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Figure 2.6.: Distribution of overlap coefficients of the optimal facilities (P1-P4, Ex. A))
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Figure 2.7.: Overlap coefficients versus persistence in 20 best alternative solutions (P1-P4, Ex. A)
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There is a clear distinction between the effect that the removal of individual candidates

has on the optimal location decisions in instances P1 and P3 compared to instances P2 and
P4. While for the first, the removal of individual facilities had either no effect or resulted

in their substitution, the removal of the majority of optimal facilities in the latter resulted

in a reconstruction of the solution. Thus, while in P1 and P3 the removal of individual

facilities had a more substantial effect on the objective value, in P2 and P4 the impact is

more significant in the decision space.

Figure 2.7 sets the overlap coefficients in relation to the persistence of individual facilities

in the 20 best alternative solutions. No systematic relationship between these two measures

is visible. ▲

We characterize two different types of instances regarding the composition of facilities

operating in their optimal solutions. In the first, individual facilities form persistent cores

of favorable facilities operating throughout all well-performing solutions. Several of these

facilities contribute significantly to the optimal objective value. In the decision space, the

effect of their removal remains local in the sense the customers are either redistributed

to other optimal facilities or new facilities that take on these customers are opened. In

the second type, facilities are less persistent. Removing individual candidates leads to a

reconstruction of a significant part of the optimal solution. Meanwhile, the effect of the

removal on the objective value is marginal. This inevitably raises the question of the degree

to which the objective value would deteriorate if such a reconstruction was not possible.

2.3.1.4. Damage potential

In the following, we look at the loss in objective value that results from removing a facility

i when the rest of the optimal facilities i′ ∈ I⋆, i ̸= i′, must remain open. Thus, we look

at the loss induced when one restricts the structural changes in the decision vector y to

changes of types “no effect” and “substitution”. To obtain this loss, for each facility i, we

resolve the problem with the additional constraints that it must not operate in the optimal

solution (yi = 0) while all other facilities operating in the optimal solution must operate

(yi′ = 1, ∀i′ ∈ I⋆ \ i). The resulting optimal solution will be denoted as s⋆I⋆\i with an

optimal objective value z⋆I⋆\i.

Definition 2.8. The damage potential of a candidate facility i, dp%(i), denotes the rel-

ative arithmetic difference between the optimal objective value obtained with the modified

problem instance in which facility i has been removed from the set of candidate locations,

z⋆I\i, and the optimal objective value obtained when in addition to removing i, all other fa-

cilities operating in the optimal solution to the original instance must operate, z⋆I⋆\i, such

that

dp%(i) :=
z⋆I\i − z⋆I⋆\i
|z⋆|

. (2.24)

The damage potential captures the additional loss incurred by the inability to adapt the

solution upon removing candidate i. It separates this loss from the loss resulting purely
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Figure 2.8.: prc%-values versus dp%-values (P1-P4, Ex. A)

from the absence of facility i, which is captured by prc%(i). As s⋆I⋆\i is obtained from

a problem that is even more restricted as s⋆
I\i, it holds that z⋆I⋆\i ≤ z⋆

I\i. To facilitate

comparison between instances and between prc%(i) and dp%(i), the difference is again

scaled by the optimal objective value of the original problem. Once again, we evaluate the

damage potential on instances from Example A.

Example A 2.5 (Damage potential) Figure 2.8 displays the dp%-values plotted against the

prc%-values of the individual facilities operating in the optimal solutions to instances P1-
P4. In instances P1 and P3, most facilities are omitted or substituted, and the associated

damage potential is 0. For those facilities whose removal induces a reconstruction, the

damage potential is relatively low and significantly lower than the associated prc%-value.

The opposite is true for facilities in instances P2 and P4 because their dp%-values are

significantly larger than the prc%-values and reach up to 1.3%. In fact, for P2 and P4 the

dp%-value of individual facilities exceeds their prc%-value in 7 out of 7 facilities for P2 and

7 out of 12 facilities in P4, respectively. Meanwhile, for P1 and P3 the prc%-values exceed

the associated dp%-values for all facilities. In conclusion, in those instances where removing

certain facilities makes it necessary to modify the remaining decisions, reconstruction is

necessary to preserve a near-optimal objective value. ▲

The presented measures allow for the detection of differences in the role of individual

facilities operating in the optimal solutions to different instances. In particular, the persis-

tence of facilities in well-performing solutions cannot be attributed to these facilities’ high

contribution to the optimal objective value. Instead, we observe that in those instances

where the optimal solution exhibits a persistent subset of favorable core facilities, regaining

optimality upon removing an individual facility can be achieved locally by redistributing

the customers previously served by this facility to new or existing ones. This is different

for optimal solutions in which facilities exhibit low persistence values. Once a facility is

removed, the vector of optimal location decisions changes substantially to preserve opti-

mality, and a larger subset of customers is reallocated. This implies that in instances with

low kernel persistence, some facilities are optimal only in combination. Although this is an

expected property of solutions to mixed-binary problems, we examine these relationships

more closely in the context of discrete location problems in the following.
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2.3.2. Independent and interdependent facilities

The removal of individual facilities has different effects on the optimality status of other

facilities. In particular, it may happen that a subset of optimal facilities, other than the one

being removed, is no longer part of the optimal solution to the modified problem instance.

One could say that these facilities depend on the removed facility. The overlap coefficient

allows observing this effect when directly comparing a particular solution s⋆I\i to s⋆. In

the following, we formally describe these dependence relationships and introduce measures

that allow us to assess the level of interdependence of the location decisions in the optimal

solution of a problem instance as a whole. In the previous subsection, we evaluated the

role of individual optimal facilities by pairwise comparison of s⋆I\i and s⋆. In the following,

we consider the entire information on the dependence relationships contained in SI\i.

Let

Dep(i) := {i′ ∈ I|i′ ∈ I⋆ \ {I⋆I\i ∪ i}} (2.25)

denote the set of optimal facilities whose optimality status depends on facility i in the

sense that when i is removed from the set of candidates, the facility turns from open to

closed in the corresponding optimal solution. From SI\i we can derive |I⋆| sets Dep(i).

We refer to the union of the sets Dep(i) as Dep. It holds that Dep ⊆ I⋆. Furthermore, let

Rep(i) :=
{
i′ ∈ I|i′ ∈ I⋆I\i \ I

⋆
}

(2.26)

denote the set of newly operating facilities when i is removed from the set of candidates.

We refer to the union of all sets Rep(i) as Rep, the set of replacements.

Definition 2.9. A facility i′ ∈ I⋆ depends on a facility i ∈ I⋆ with i ̸= i′ if i′ ∈ Dep(i).

Definition 2.10. Two facilities i, i′ ∈ I⋆ with i ̸= i′ interdepend on each other, if i′ ∈
Dep(i) and i ∈ Dep(i′).

Definition 2.11. A facility i ∈ I⋆ is independent if i /∈
⋃

i′∈I⋆\iDep(i′).

We derive the dependency graph of an optimal solution to depict these dependence struc-

tures.

Definition 2.12. The dependency graph of an optimal solution s⋆, GDep(s⋆), is a directed

graph that depicts the dependence relationships between facilities operating in s⋆. The set

of vertices equals the set of optimal facilities I⋆. An arc (i, i′) with i, i′ ∈ I⋆ and i ̸= i′

exists, if facility i′ depends on facility i.

The degree of each vertex in GDep(s⋆) indicates the dependence or independence of the

associated facility i. The in-degree equals the number of facilities that the facility depends

on. The out-degree equals the number of facilities its removal affects. Independent facilities

have an in-degree of 0 but may have an out-degree greater than 0.
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The fraction |E|/|I⋆| denotes the average number of ties any optimal facility in i has with

any other facility. As each facility imay affect at most all of the |I⋆|−1 remaining facilities,

we have |E| ∈ [0, |I⋆| · (|I⋆| − 1)], |E| ∈ N0.

Definition 2.13. The average dependence density of an optimal solution s⋆, Depavg(s⋆),

quantifies the degree to which the facilities operating in that solution depend on each other.

It sets the total number of edges in GDep(s⋆) in relation to the number of potential edges

such that

Depavg(s⋆) :=
|E|

|I⋆| · (|I⋆| − 1)
, with Depavg ∈ [0, 1]. (2.27)

IfDepavg(s⋆) equals 0, all facilities operating in the solution are independent. IfDepavg(s⋆)

equals 1, all pairs of facilities interdepend.

The set of weakly connected components W in GDep(s⋆) gives insight into how the set

of facilities can be divided into smaller interdependent subsets. Notice that when two

facilities i, i′ ∈ I⋆ with i ̸= i′ are in the same weakly connected component, that does not

necessarily mean that one depends on the other. Instead, this can also result from the fact

that, e.g., both facilities depend on a third facility. Facilities that are neither affected by

any other facility nor affecting any other facility will form a weakly connected component

of size 1 by themselves.

Definition 2.14. The strong subset coefficient of an optimal solution s⋆, ΨDep(s⋆),

measures the degree to which the dependency structures in a graph are separable from one

another by setting the number of weakly connected components W in GDep(s⋆) in relation

to the number of operating facilities such that

ΨDep(s⋆) := ρ

(
|W|
|I⋆|
− 1

|I⋆|

)
, with ρ =

|I⋆|
|I⋆| − 1

. (2.28)

When |I⋆| > 0, there are at least one and at most |I⋆| weakly connected components.

Therefore, to scale ΨDep(s⋆) to the interval [0, 1], we must first subtract 1
|I⋆| and subse-

quently multiply it by ρ. The higher ΨDep(s⋆), the higher the implied separability of the

solution in terms of subsets of facilities that operate independently from one another. If no

facility is dependend on any other facility, then there are no connections, and |W| = |I⋆|
which leads to Dep(s⋆) equal to 1.0. This implies that all facilities are independent.

Example A 2.6 (Dependence and separability) Figure 2.9 depicts the dependency graphs

of the optimal solutions of instances P1-P4 from Example A. The vertices of facilities

belonging to the same weakly connected component have the same color.

The differences between the optimal solutions to instances P1 and P3 compared to the

optimal solutions to instances P2 and P4 are apparent. The first two primarily comprise

independent facilities or small, weakly connected components. Meanwhile, in P2, all fa-
cilities belong to the same weakly connected component, while for P4 all but 2 optimal
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Figure 2.9.: GDep(s⋆) with colored weakly connected components (P1-P4, Ex. A)

facilities belong to the same weakly connected component. However, particularly for the

optimal solution to P2, there are some subsets of facilities where all facilities interdepend.

In contrast, the dependence relationship is one-sided for other pairs of facilities.

Instance P1 P2 P3 P4

Depavg(s⋆) 0.00 0.33 0.01 0.27
ΨDep(s⋆) 0.94 0.00 0.65 0.18

Table 2.3.: Average dependence density and strong subset coefficient (P1-P4, Ex. A)

Table 2.3 shows the average dependence densities. Most facilities in P1 and P3 are inde-

pendent. For P1, only facility 44 depends on facility 26. This is reflected in the low average

dependence densities of 0.00 and 0.01, respectively. For instances P2 and P4, the average

dependence densities are significantly larger. The table also displays the strong subset

coefficients. They adequately represent the high level of separability of the independent

facilities of P1 and P3 as well as the high interdependence of P2 and P4. ▲

We introduce the following to distinguish between subsets of facilities of stronger and

weaker coherence.

Definition 2.15. The interdependency graph of an optimal solution s⋆, GDep′(s⋆), is an

undirected graph that depicts the interdependence relationships between facilities operating

in the optimal solution. The set of vertices equals the set of optimal facilities I⋆. An arc

(i, i′) with i, i′ ∈ I⋆ and i ̸= i′ exists, if facilities i and i′ interdepend.

Determining the degree to which the problem is separable into subsets of facilities that mu-

tually depend on one another equals determining the set of maximal cliques C in GDep′(s⋆).

Definition 2.16. The weak subset coefficient of an optimal solution s⋆, ΨDep′(s⋆), sets

the number of cliques in GDep′(s⋆) in relation to the number of operating facilities

ΨDep′(s⋆) := ρ

(
|C|
|I⋆|
− 1

|I⋆|

)
with ρ =

|I⋆|
|I⋆| − 1

. (2.29)

Again ΨDep′(s⋆) is restricted to the [0, 1]-interval. When ΨDep′(s⋆) is 0, it means that all

facilities interdepend on one another. The larger ΨDep′(s⋆), the more is the set of facilities

separable into subsets of facilities that may depend but not interdepend on one another.
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2.3. Persistent service regions

Example A 2.7 (Interdependence and separability) Figure 2.10 displays the interdepen-

dency graph GDep′(s⋆) of P1-P4 from Example A. There are no interdependent facilities

in the optimal solutions to P1 and P3. In contrast, several facilities do not interdepend

with any other facilities in the optimal solutions to instances P2 and P4. Yet, for both

instances one can observe distinct subsets of facilities that mutually interdepend.
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Figure 2.10.: GDep′
(s⋆) with colored maximal cliques (P1-P4, Ex. A)

Instance P1 P2 P3 P4

ΨDep′
(s⋆) 1.0 0.5 1.0 0.55

Table 2.4.: Weak subset coefficient (P1-P4, Ex. A)

The values of ΨDep′(s⋆) are displayed in Table 2.4. For instances P1 and P3, no two

facilities interdepend. Thus, the associated weak subset coefficients are 0. Meanwhile,

for P2 and P4, values greater or equal to 0.5 suggest that certain subsets in the problem

interdepend more strongly than others. ▲

The above raises the question of whether the independence or interdependence of indi-

vidual facilities is related to the persistence of this facility in well-performing solutions.

The following Example A 2.8 relates the persistence of facilities to their interdependence

relationships.

Example A 2.8 (Persistence of independent and interdependent facilities) Table 2.5 dis-

plays the kernel persistence in the 20 best alternative solutions and the average dependence

density of facilities operating in the optimal solution to instances P1 to P4 from Exam-

ple A. One can clearly see that instances P1 and P3 with a higher kernel persistence have

a significantly lower dependence density compared to instances P2 and P4.

Instance P1 P2 P3 P4

KER(S20k−best)) 0.73 0.29 0.93 0.35
Depavg(s⋆) 0.00 0.33 0.01 0.27

Table 2.5.: Average dependence density and kernel persistence in the 20 best alternative solutions
(P1-P4, Ex. A)

Furthermore, Figure 2.11 depicts the distribution of the persistence of individual facilities

in the 20 best alternative solutions grouped according to whether these facilities are optimal
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and independent (i ∈ I⋆ \Dep), optimal and dependent on some other facility (i ∈ Dep),

or an element of the set of replacements (i ∈ Rep).
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Figure 2.11.: Distribution of persistence values in 20 best alternative solutions (P1-P4, Ex. A)

A clear hierarchy is observable. The independent, optimal facilities have the highest per-

sistence values throughout all instances, with values close to 1.0 throughout. The optimal,

dependent facilities have a lower persistence value, often not significantly higher than the

persistence value of facilities in the set of replacements. ▲

We conclude a strong relationship exists between facilities being independently optimal

and these facilities operating consistently throughout well-performing solutions for a par-

ticular problem instance. At the same time, we observe that the facilities operating in

interdependent subsets operate less often and are less persistent.

In conclusion, one can distinguish between independent and interdependent facilities oper-

ating in an optimal solution. In case a solution contains interdependent facilities, certain

subsets of facilities are more strongly connected than others. The previous subsection

provided formal definitions and concise measures to quantify these dependence relation-

ships in an optimal solution s⋆ based on the set of alternative solutions SI\i. The fact

that binary location decisions interdepend to be optimal is not surprising as it is a simple

expression of the combinatorial nature of the mixed-binary CFLP. However, what that

interdependence implies for individual location decisions in a discrete location problem is

not obvious. Furthermore, the ability to identify subsets of stronger and weaker coher-

ence implies an interesting interplay between combinatorial dynamics and spatial patterns

underlying the problem instance. We examine this interplay in the following.

2.3.3. Implicit divisions of the facility-customer space

We refer to the hypothetical embedding that maps candidates and customers on a plane

according to their implied spatial relationships derived from the transport-cost matrix as

the facility-customer space. The relative positions in this embedding allow us to derive

insights into the spatial relationships between candidates and customers solely from the

information in the transport-cost matrix without knowing actual geographical positions.

It is intuitive to assume that facilities that interdependend are somewhat close to each

other in the facility-customer space. In the following, we take a closer look at the effect of
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removing individual facilities and the resulting dependence relationships by examining the

visual representations of the facility-customer space. In Example A 2.9, we compare the

visual representations of the replacements of independent facilities with the replacements

of interdependent subsets of facilities based on instances P1-P4 from Example A.

Example A 2.9 (Implied spatial relationship between independent and interdependent

facilities) Figure 2.12 depicts the optimal solution (Figure 2.12a) and the optimal solu-

tions after the removal of several candidates (Figure 2.12b-Figure 2.12f) to instance P1
from Example A. We previously established that the optimal solution to P1 comprises

predominantly independent facilities. For example, the removal of facility 12 or facility 24

results in these facilities simply being omitted from the optimal solution. Figure 2.12c and

Figure 2.12f illustrate that the customers originally served by these facilities are no longer

served upon their removal. Other facilities are substituted by a candidate who then takes

over their customers. For example, Figure 2.12b shows how the customers originally served

by facility 11 are allocated to facility 27, newly operating after its removal. Another effect

can be observed for the removal of facilities 14 and 15 (see Figure 2.12d or Figure 2.12e),

respectively. In both cases, facility 74 is opened to replace the removed facility. However,

while when replacing facility 14, facility 74 predominantly serves the set of customers

previously served by facility 14, the removal of facility 15 leads to facility 14 taking over

the customers of facility 15 and facility 74 taking over the customers of facility 14. The

customers are redistributed among the set of operating facilities. In summary, Figure 2.12

shows that for P1 the effects of the removal of individual candidates are restricted to a

“local” level, and customers in immediate proximity to that facility are reallocated.

Figure 2.13 and Figure 2.14 depict the effect of the removal of individual candidates in

P2 and P4, whose optimal solutions comprise mostly interdependent facilities. The fig-

ures show that interdependent subsets of facilities are often replaced by the same set

Rep(i) of replacement facilities. For example, in P2 the facilities in the interdependent

set {17, 71, 79} are always replaced by the set {63, 66, 97}. Meanwhile, both facilities from

{24, 67} are replaced by {21, 83}. As Figure 2.13 shows, in both cases, the replacing subset

of facilities serves a similar subset of customers as the facilities operating in the original

optimal solutions. However, the allocation of this subset of customers to the individual

facilities differs. For example, 87.5% of the customers served by any of the three origi-

nally operating facilities 17, 71, or 79 in s⋆ are also served by one of the three facilities

{63, 66, 97} in s⋆I\17, s
⋆
I\71, or s⋆I\79. However, when we try to map the customers served

by either facility 17, 71, or 79 to one of the three replacing facilities individually, that

percentage is much lower. For example, facility 63 serves 75% of the same customers as

facility 17, and facility 66 serves only 58% of the same customers as facility 71. Thus,

while the subset of facilities largely takes over the customers, there is a different allocation

of customers within that subset.
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Figure 2.12.: Opt. solution and opt. solutions after removing candidates (P1, Ex. A)
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Figure 2.13.: Opt. solution and opt. solutions after removing candidates (P2, Ex. A)
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Figure 2.14.: Opt. solution and opt. solutions after removing candidates (P4, Ex. A)
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Figure 2.14 shows the effect of removing some of the optimal facilities in P4. Again, we

can observe that e.g., for facilities 55, 119, 135, and 159, the reconstruction of the solution

is always the same. When one of these four facilities is removed, the other four also no

longer operate but are replaced by the set {10, 127, 155, 195}.

The effect of removing a facility is no longer restricted to a local level, but larger regions

of the facility-customer space are affected by the removal. Meanwhile, these regions are

not visibly distinct in the form of a cluster or another recognizable pattern in the implied

spatial structure. Instead, the affected area can be determined by a larger coherent set of

customers that are reallocated compared to the original optimal solution. ▲

The visual representations of the solutions in Example A 2.9 show that interdependent

subsets of facilities are located close to each other based on their inferred positions in

the facility-customer space. This means that interdependent facilities serve customers in

an implied spatial proximity. We conclude that interdependent subsets of facilities offer

optimal coverage for sets of customers when operating in combination. If one facility is

removed, the interdependent subset is replaced by the next best combination of facilities

to cover the entire set of customers. At the same time, independent facilities offer optimal

service for smaller sets of customers served optimally by a single facility. This implies

a division of the facility-customer space into coherent service regions. To validate this

observation on a broader set of instances, we present a measure to quantify the level of

customer redistribution in the following.

2.3.3.1. Joint service of customer regions

Every solution implicitly divides the set of customers into subsets that are allocated to the

different operating facilities. We can reformulate the observation of the previous subsection

as follows. When independent facilities are removed from the set of candidates, this implicit

division of the customer space is preserved. In contrast, this implicit division changes when

interdependent facilities are removed. It changes particularly strongly within the union

of the subsets of customers allocated to one of the facilities in the interdependent set.

This perspective allows quantifying the degree to which this effect can be observed in the

optimal solution to arbitrary instances.

Given an optimal solution s⋆ and the associated set of solutions SI\i, we want to evaluate

the level to which the interdependence of facilities operating in the optimal solution is

associated with these facilities serving a larger subset of customers jointly, in the sense

that, upon the removal of one facility, these customers are redistributed to facilities within

the set of replacements. We quantify this observation as follows. First, we evaluate the

level to which we can map the implicit division in a solution s⋆I\i to the implicit division

in s⋆ when considering facilities only individually. To account for the fact that individual

facilities in I⋆ may be replaced by more than one facility, we search for a one-to-many

mapping of the facilities i′ ∈ I⋆I\i to the facilities i′′ ∈ I⋆. Thereby, we map each facility
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i′ ∈ I⋆I\i to that facility i′′ in I⋆ with which it shares the most customers such that

i′ −→ i′′ = argmax
i∈I

∑
j

⌈
x
s⋆
I\i
i′j

⌉
·
⌈
xs

⋆

ij

⌉
. (2.30)

Then, we can determine the degree to which these implicit divisions match.

Definition 2.17. The individual matching score of the optimal solution s⋆I\i obtained

without facility i and the optimal solution s⋆, IM
(
s⋆I\i, s

⋆
)
, measures the proportion of

customers allocated to the same facility in s⋆ that are also allocated to the same facility in

s⋆I\i such that

IM
(
s⋆I\i, s

⋆
)
:=
(∑

i∈I

∑
j∈J

⌈
xs

⋆

ij

⌉)−1∑
i′∈I⋆

I\i
max
i′′∈I⋆

∑
j∈J

⌈
x
s⋆
I\i
i′j

⌉
·
⌈
xs

⋆

i′′j

⌉
. (2.31)

Notice that ceiling all allocation decisions implies that customers assigned to multiple

facilities may be counted more than once. Therefore, to ensure an upper bound for IM of

1.0, we divide not by the number of customers but by the total number of allocations.

As customers and allocation volumes may be very heterogeneous, a better evaluation of

this mapping might be achieved when one considers the shared demand instead of the

customer count shared by i′ and i′′.

Definition 2.18. The individual demand matching score of the optimal solution s⋆I\i

obtained without facility i and the optimal solution s⋆, IDM
(
s⋆I\i, s

⋆
)
, measures the pro-

portion of the demand served by the same facility in s⋆ that is also served by the same

facility in s⋆I\i such that

IDM
(
s⋆I\i, s

⋆
)
:=

1∑
i∈I
∑

j∈J x
s⋆
ij Dj

∑
i′∈I⋆

I\i
max
i′′∈I⋆

∑
j∈J

min{x
s⋆
I\i
i′j , xs

⋆

i′′j} ·Dj . (2.32)

IM and IDM map every facility individually. Consequently, according to previous obser-

vations, we expect it to be high when comparing two solutions predominantly composed

of independent facilities. We expect it to be low when comparing solutions composed pre-

dominantly of subsets of interdependent facilities. For the latter, we assume that a good

matching requires jointly mapping facilities in Rep(i) to the facilities in Dep(i).

Definition 2.19. The joint matching score of the optimal solution s⋆I\i obtained without

facility i and the optimal solution s⋆, JM
(
s⋆I\i, s

⋆
)
, measures the proportion of customers

allocated jointly to a subset of facilities in s⋆ that is also jointly allocated to that subset’s

set of replacements in s⋆I\i such that

JM
(
s⋆I\i, s

⋆
)
:=
(∑

i∈I

∑
j∈J
⌈xij⌉

)−1∑
j∈J

⌈∑
i′∈Rep(i)

x
s⋆
I\i
i′j

⌉
·
⌈∑

i′′∈Dep(i)∪{i}
xs

⋆

i′′j

⌉

+
∑

i′∈I⋆
I\i\{Rep(i)}

max
i′′∈I⋆\Dep(i)∪{i}

∑
j∈J

⌈
x
s⋆
I\i
i′j

⌉
·
⌈
xs

⋆

i′′j

⌉
. (2.33)
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2.3. Persistent service regions

Definition 2.20. The joint demand matching score of the optimal solution s⋆I\i obtained

without facility i and the optimal solution s⋆, JDM
(
s⋆I\i, s

⋆
)
, measures the proportion of

the demand jointly served by a subset of facilities in s⋆ that is also jointly served by that

subset’s set of replacements in s⋆I\i such that

JDM
(
s⋆I\i, s

⋆
)
:=

1∑
i∈I
∑

j∈J x
s⋆
ij Dj

(∑
j
min

{∑
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⋆

i′′j ,
∑
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x
s⋆
I\i
i′j

}
·Dj

+
∑

i′∈I⋆
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max
i′′∈I⋆\Dep(i)∪{i}

∑
j
min{x

s⋆
I\i
i′j , xs

⋆

i′′j} ·Dj

)
. (2.34)

When we determine the quality of the joint matching, we consider the facilities in Dep(i)

and Rep(i) jointly. We determine the degree to which these larger customer regions match

and then determine the matching for the remaining facilities in I⋆I\i as before. Since in JM

and JDM it is not possible to match the customers of a facility operating in I⋆I\i which

is not part of Rep(i) to a facility that is part of Dep(i), the matching achieved by JM or

JDM may be of lower quality than that of IM or IDM , in particular, when there are

several independent facilities. Taking the average differences of the scores obtained for all

facilities operating in the optimal solution yields the following concise measures.

Definition 2.21. The customer reallocation denotes the average arithmetic difference

between IM
(
s⋆I\i, s

⋆
)
and JM

(
s⋆I\i, s

⋆
)
across all solutions in SI\i such that

CRA
(
s⋆,SI\i

)
:= (|I⋆|)−1 ·

∑
i∈I⋆

[
JM

(
s⋆I\i, s

⋆
)
− IM

(
s⋆I\i, s

⋆
)]

. (2.35)

Definition 2.22. The demand reallocation denotes the average arithmetic difference be-

tween IDM
(
s⋆I\i, s

⋆
)
and JDM

(
s⋆I\i, s

⋆
)
across all solutions in SI\i such that

DRA
(
s⋆,SI\i

)
:= (|I⋆|)−1 ·

∑
i∈I⋆

[
JDM

(
s⋆I\i, s

⋆
)
− IDM

(
s⋆I\i, s

⋆
)]

. (2.36)

The larger CRA and DRA, the larger the level of reallocation of customers within in-

terdependent subsets of facilities between the solutions in SI\i compared to the optimal

solution s⋆.

Example A 2.10 (Level of demand and customer reallocation) Table 2.6, Table 2.7, and

Table 2.8 display the results of the individual and joint mapping of the implied customer

regions for every pair s⋆I\i and s⋆, with i ∈ I⋆ for instances P1, P2, and P4, from Example A,

respectively.

For P1, we have that CRA
(
s⋆,SI\i

)
= 0.94 − 0.94 = 0.00. Similarly, DRA

(
s⋆,SI\i

)
=

0.94− 0.94 = 0.0. We know from previous experiments that the optimal solution to P1 is

primarily composed of independent facilities. Thus, CRA and DRA equaling 0 confirms

our hypothesis that in solutions primarily composed of independent facilities, the implicit

division of the customer space into subsets allocated to the same facility observable in s⋆

is preserved throughout the solutions in SI\i.
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2.3. Persistent service regions

i Dep(i) Rep(i) IM IDM JM JDM

7 {7} ∅ 0.93 0.93 0.93 0.93
11 {11} {27} 1.00 1.00 1.00 1.00
12 {12} ∅ 0.93 0.93 0.93 0.93
14 {14} {74} 0.97 0.96 0.97 0.96
15 {15} {74} 0.95 0.95 0.90 0.90
24 {24} ∅ 0.89 0.92 0.89 0.92
26 {26, 44} {54} 0.88 0.89 0.90 0.91
28 {28} ∅ 0.96 0.94 0.95 0.94
44 {44} ∅ 0.89 0.91 0.89 0.90
49 {49} ∅ 0.95 0.94 0.95 0.94
52 {52} ∅ 0.91 0.91 0.91 0.91
69 {69} ∅ 0.94 0.93 0.94 0.93
70 {70} {13} 0.93 0.93 0.93 0.93
71 {71} {57} 0.98 0.97 0.98 0.97
76 {76} ∅ 0.91 0.92 0.91 0.92
79 {79} ∅ 0.90 0.90 0.90 0.90
82 {82} {22} 0.94 0.96 0.94 0.96
96 {96} {38} 0.97 0.97 0.97 0.97

Average: 0.94 0.94 0.94 0.94

Table 2.6.: Pairwise matching scores for s⋆I\i and s⋆ (P1, Ex. A)

i Dep(i) Rep(i) IM IDM JM JDM

15 {15, 24, 71, 79} {21, 84, 94, 97} 0.87 0.86 0.95 0.96
17 {17, 71, 79} {63, 66, 97} 0.85 0.85 0.92 0.94
24 {24, 67} {21, 83} 0.96 0.98 0.98 1.00
29 {24, 29, 71, 79} {21, 33, 66, 97} 0.85 0.88 0.92 0.95
67 {24, 67} {21, 83} 0.96 0.98 0.98 1.00
71 {17, 71, 79} {63, 66, 97} 0.85 0.85 0.92 0.94
79 {17, 71, 79} {63, 66, 97} 0.85 0.85 0.92 0.94

Average: 0.88 0.89 0.94 0.96

Table 2.7.: Pairwise matching scores for s⋆I\i and s⋆ (P2, Ex. A)
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2.3. Persistent service regions

The optimal solutions to P2 and P4 are predominantly composed of interdependent fa-

cilities. In Table 2.7 and Table 2.8, we see that for these instances JM and JDM yield

a mapping score significantly above IM and IDM . In particular, for P2, the mapping

score could be improved significantly for the larger subsets of facilities like Dep(15), where

the difference between JM and IM is 0.08. In total, we have that CRA = 0.06 and

DRA = 0.07 for P2.

i Dep(i) Rep(i) IM IDM JM JDM

54 {54, 55, 103, 159, 162} {10, 19, 147, 152, 169} 0.71 0.71 0.76 0.77
55 {55, 119, 135, 159} {10, 127, 155, 195} 0.80 0.79 0.87 0.87
66 {55, 66, 119, 135, 154, 159} {10, 106, 125, 155, 160, 165} 0.76 0.77 0.94 0.96
78 {54, 55, 78, 159} {10, 38, 152, 195} 0.82 0.81 0.83 0.83
103 {54, 55, 103, 159, 162} {10, 19, 147, 152, 169} 0.71 0.71 0.76 0.77
107 {107} {123} 0.99 0.99 0.99 0.99
119 {55, 119, 135, 159} {10, 127, 155, 195} 0.80 0.79 0.87 0.87
128 {128} {184} 0.99 0.98 0.99 0.98
135 {55, 119, 135, 159} {10, 127, 155, 195} 0.80 0.79 0.87 0.87
154 {55, 119, 135, 154, 159} {10, 106, 152, 155, 165} 0.76 0.76 0.88 0.88
159 {55, 119, 135, 159} {10, 127, 155, 195} 0.80 0.79 0.87 0.87
162 {54, 55, 103, 159, 162} {10, 19, 147, 152, 169} 0.71 0.71 0.76 0.77

Average: 0.80 0.80 0.86 0.87

Table 2.8.: Pairwise matching scores for s⋆I\i and s⋆ (P4, Ex. A)

For P4, CRA = 0.06 and DRA = 0.07. The higher levels of reallocation support the

idea that interdependent facilities serve larger customer regions jointly, leading to a real-

location of customers or demands upon the removal of individual candidates within these

interdependent subsets. ▲

The experiments on the problem instances from Example A in Example A 2.3-Example A

2.8 suggest that spatial patterns implied by the transport cost matrix combined with

the capacity-demand ratio imply a separation of the facility-customer space. Subsets of

customers that are served jointly by one or more facilities. When these subsets are small

enough that a single facility optimally serves them, these regions manifest as persistent

subsets of favorable core facilities. These facilities operate independently from each other,

and upon removal, the customers in the set are redistributed to existing or new facilities. In

contrast, when these subsets are larger, they are served best by a subset of facilities. Upon

removing a single facility of this subset, the entire subset is replaced by the second-best

subset to serve this customer region. Individual facilities will likely operate less persistently

throughout well-performing solutions, e.g., the set of k best alternative solutions. In

either case, the persistent decision pattern is the implied division of the customer space

into distinct service regions rather than individual operating facilities. We refer to these

persistent subsets as service regions.

2.3.4. Experimental validation: persistent service regions

We evaluate to which degree the main conclusions drawn from the experiments on the four

problem instances from Example A can be confirmed by repeating the same experiments

on the data sets introduced in Section 1.3.
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2.3. Persistent service regions

We examined the relationship between the persistence of individual facilities throughout k

best alternative solutions and their contribution to the optimal objective value quantified

via the pseudo-reduced costs for instances P1 to P4. We observed that while facilities

exhibiting a higher persistence level also exhibit higher pseudo-reduced costs, the range

of the latter varies tremendously amongst the optimal solutions to different instances,

making them unfit as an indicator for high persistence levels. We determine C(i,S20k−best}
and prc%(i) for every facility operating in the optimal solution to every instance from the

data sets described in Section 1.3. Figure 2.15 depicts the results. Figure 2.15a displays a

histogram of the Spearman’s correlation coefficients obtained for every instance between

the persistence values and the pseudo-reduced costs of individual facilities denoted by

ρ(prc%(i), C(i,S20k−best). We only included correlation coefficients for whom the p-value of

the associated two-sided t-test testing the null hypothesis that the correlation coefficient

is 0 was below 1%. The latter means the null hypothesis can be rejected. We had to

remove 46 of 206 reported entries. For the remaining 160 entries, a strong correlation

is visible within individual instances. All values exceed 0.5, and the average is 0.88.

Meanwhile, Figure 2.15b displays the distribution of the maximum pseudo-reduced costs

of the facilities operating in the optimal solution to different instances. An immense

spread is observable. Several instances do not contain any facility whose associated pseudo-

reduced costs exceed 1%. For other facilities, individual facilities have a prc%-value of over

20%. This confirms our previous observation. Within individual instances, those facilities

making a huge contribution to the objective value exhibit a relatively higher persistence

across well-performing solutions to that instance. Still, the pseudo-reduced costs differ

tremendously between different instances. Thus, they can neither be used to anticipate

the persistence of a facility in a new, yet unexamined, problem instance nor serve as an

explanation for the high persistence of individual facilities.
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Figure 2.15.: Distribution of prc%-values and their relation to the persistence in 20 best alternative
solutions

The facilities operating in the optimal solution to different instances exhibit different levels

of interdependence. However, Example A 2.6 and Example A 2.7 have shown that even

in instances with significant interdependence relationships between facilities, one can dis-

tinguish regions of stronger and weaker coherence. We presented the average dependence

density as a measure that indicates the level of interdependence between facilities in the

optimal solution to an instance. The closer it is to 1.0, the more dependency relationships
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2.3. Persistent service regions

exist between optimal facilities. Furthermore, we presented the weak and strong subset

coefficients. These measures are also restricted to the interval [0, 1]. The larger they are,

the more distinctly individual subsets of facilities can be separated from each other in the

underlying dependence and interdependence graphs. Figure 2.16 displays the distribution

of these three measures for the instances from Section 1.3. We observe that the strong

and weak subset coefficients decrease with increasing average dependence density. This

implies that the more dependency relationships, the fewer weakly or strongly connected

components can be derived from the interdependence graphs. However, it must be em-

phasized that even for relatively high average dependence densities, the strong and weak

subset coefficients exceed the minimum they would take if all facilities belonged to the

same component. This shows that regions of stronger and, in particular, weaker coherence

can be found throughout all considered instances.
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Figure 2.16.: Separability of optimal solution into individual components

We hypothesized that the underlying explanation for the interdependence of some subsets

of facilities is the fact that they and their replacements serve subsets of customers jointly in

the sense that customers are redistributed among facilities in that subset when the subset

is replaced. This implicitly induces a separability of the problem into different service

regions. Figure 2.17a and Figure 2.17b display the development of the CRA and DRA for

increasing dependency levels in the optimal solutions as indicated by Depavg. For both,

there is a clear tendency that with increasing interdependence, a joint mapping is better

suited to capture the customer service regions and that the level of reallocation increases.

Spearman’s correlation coefficient between CRA and Depavg is 0.69 with a p-value of 0.00,

and for DRA and Depavg, the correlation coefficient between is 0.72 with a p-value of 0.00.

In conclusion, the experiments show that the main observations on instances from Exam-

ple A are representative of other instances of interest.
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Figure 2.17.: Level of customer reallocation versus level of interdependence

2.4. Conclusion

We analyze multi-sets of well-performing solutions to instances of the CFLP to derive

characteristic decision patterns these solutions share. The ability to detect and measure

characteristic patterns in the decision space is the foundation for further analysis linking

properties of the problem’s input data or the performance of certain solution algorithms

to the decisions. To the best of our knowledge, a structured analysis of patterns in the

decision space has not been done before. In particular, when reviewing literature analyzing

the decision space of discrete location problems, one often encounters an implied notion

that subsets of core facilities operate in all optimal or near-optimal solutions. We present

a concise measure that quantifies the size and relevance of such subsets and perform exten-

sive analyses on sets of k best alternative solutions to problem instances from literature.

Results show that some but not all instances exhibit subsets of favorable core facilities.

Furthermore, their existence is not necessarily linked to a particularly “structured” spatial

pattern of the distribution of candidates and customers.

We evaluate a particular multi-set of solutions for a given instance to explore persistent

patterns across well-performing solutions. We first derive concise measures that quantify

the relevance of individual facilities in the objective value space and link them to their

persistence in well-performing solutions. As no systematic relationship can be observed,

we turn to the decision space to evaluate the dependence relationships between individual

optimal facilities. We observe that in solutions that exhibit persistent subsets of favorable

core facilities, these facilities are independent in that, upon their removal, they are either

substituted, or customers are redistributed to existing facilities. In contrast, facilities op-

erating in solutions that do not exhibit persistent cores often interdepend. Upon removing

a single facility, other facilities are no longer optimal, and an entire subset of facilities

is replaced. We present concise measures to quantify these interdependence relationships

and link them to the persistence of core facilities. We then show that the interdependence

of facilities in a solution is related to these facilities serving larger subsets of customers

jointly. Upon removing a single facility, customers served by any facility in the associated

interdependent subset are reallocated to facilities in the set of replacements. Again, we

develop a means to quantify this observation and validate it on sets of problem instances
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2.4. Conclusion

from literature.

The main results from the previous chapter can be summarized as follows:

• Persistent subsets of favorable core facilities characterize well-performing solutions

to some but not all instances of the CFLP.

• The persistence of facilities throughout well-performing solutions is not necessarily

linked to these facilities’ contribution to the optimal objective value. Instead, it is

affected by the degree to which this facility depends on other facilities to be optimal.

• The combination of spatial patterns implied by the variation in the unit net profit, the

ratio between demand and capacity, and the mixed-binary component of the CFLP

result in facilities in the optimal solutions of different instances interdepending to

varying degrees. Independent facilities serve smaller subsets of customers optimally.

Interdependent facilities serve larger subsets of customers optimally in combination.

This induces an implicit division of candidates and customers into distinct service

regions. These service regions persist through well-performing solutions. This leads

instances whose optimal solutions are primarily composed of independent facilities

to exhibit persistent subsets of favorable core facilities.

Up to this point, we inferred customer service regions from a particular set of solution

SI\i. Thereby, the inferred regions have varying levels of coherence and sometimes overlap.

In the following Chapter 3, we present a means to derive service regions from arbitrary

sets of solutions to a particular instance. This separation into regions of stronger and

weaker coherence offers new opportunities for solving and understanding the problem. In

Chapter 4, we evaluate whether service regions can be detected already from the problem’s

input data without solving the CFLP even once.
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3. Identifying service regions

In the previous Chapter 2, we established that sets of well-performing solutions to a par-

ticular instance of a CFLP exhibit a persistent division of the facility-customer space into

service regions. These regions were observed in a specific set of solutions. However, they

largely overlapped and exhibited varying coherence levels regarding the interdependence of

associated location decisions. The upcoming chapter aims to find an algorithmic approach

to derive service regions of a defined coherence level from an arbitrary set of solutions, in

particular, from a set of solutions that does not necessarily include the optimal solution

to the problem instance. This leads us to the following research question.

RQ2: How can persistent service regions be identified in arbitrary sets of solutions?

Detecting service regions without using the visual representation of the facility-customer

space and without knowledge of the interdependence relationships implied by SI\i is a non-

trivial task. Measures that are based solely on location decisions, like kernel persistence,

cannot identify commonalities in solutions composed of interdependent subsets of facilities.

In particular, these measures are oblivious to the implicit division into service regions that

may persist across most or even all optimal and near-optimal solutions to a particular

problem instance. The following example demonstrates this.

Example E Let there be an instance P7 with 8 candidate facilities and 8 customers. All

customers have the same demand, and each candidate facility has the capacity to serve

exactly two customers, such that Qi = 2Dj for all j ∈ J, i ∈ I. Furthermore, the locations

of the candidates and customers are such that the problem can be separated into 2 visibly

distinct regions as depicted in Figure 3.1a. Variable transportation costs are proportional

to the Euclidean distances, and profits are the same for all customers.

Figure 3.1 depicts the 4 best solutions to P7. As a direct consequence of the described

spatial pattern, the customers can be separated into two service regions that are served

by distinct subsets of interdependent facilities. However, KER(S) has no way to identify

this common structure and is not only relatively low with a value of 0.5 but equals its

expected value under symmetry, E(KER(S̃)). ▲

Persistent service regions cannot be identified solely from the location decisions. The ker-

nel persistence is oblivious to the fact that certain subsets of customers are served jointly

by subsets of facilities. Information on the allocations of customers to facilities is neces-

sary. However, counting the frequency with which individual allocations occur similarly to

KER(S) does not yield additional insights as it fails to detect the interdependence between

individual facilities. Still, coherent patterns in the matrices of the allocation decisions that

represent the persistent service regions must exist. These are obvious when looking at the

graphic representation of the problem instance and its solutions. Yet, identifying them

purely from the data is a non-trivial task linked to the field of pattern recognition.

Pattern recognition is the theory of developing algorithms and statistical models to au-

tomatically recognize patterns in data and make predictions or decisions based on these
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Figure 3.1.: 4 best alternative solutions and the development of KER(t, S) (P7, Ex. E)

patterns. It is closely related to data mining and machine learning, yet each field has a

different focus and set of techniques. While machine learning is mainly concerned with

developing models that can learn from data and make predictions or decisions based on

that, data mining has a stronger emphasis on techniques for exploratory data analysis.

The grouping of data according to some similarity criteria is a core task of pattern recog-

nition. When predefined group labels exist, this task is termed classification. When no

labeling information exists, it is called clustering [Bishop, 2007].

Our objective to identify coherent service regions in a set of solutions to discrete location

problems falls under the field of pattern recognition, particularly under the specific task

of clustering. We want to assign customers and candidate locations (the data inputs) to

different service regions (the groups). No previous knowledge about these groups exists.

Clustering does not denote a specific algorithm but refers to the general task. Rokach and

Maimon [2005] describe clustering as the task of grouping data instances into subsets so

that similar instances are grouped together while different instances belong to different

groups. In pattern recognition, the input data usually comes in the form of a feature

matrix in which the rows correspond to a set of observations or data instances described

by a set of features – the columns of the matrix.

Definition 3.1. Given a data set of n samples and m features, the feature matrix, A =

(aij)n×m, is a rectangular matrix where aij is the value of the j-th feature in the i-th

sample.
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Definition 3.2. A clustering is a collection of subsets of samples, C = (C1, . . . , Cr), such

that

Ck ⊆ {1, . . . , n} k ∈ {1, . . . , r},

C1 ∪ C2 ∪ · · · ∪ Cr = {1, . . . , n}, and (3.1)

Ck ∩ Cl = ∅ k, l ∈ {1, . . . , r}, k ̸= l.

Every sample belongs to exactly one cluster.

In the present application, a feature matrix as such is not apparent. Different possibilities

to derive such a matrix from a set of solutions exist, and we evaluate several approaches

in Section 3.2. However, the problem of identifying coherent regions of customers that

are jointly served bears the particularity that we are not only interested in grouping the

customers but also the facilities that serve them. Thereby, customers and facilities are

different data inputs with different characteristic features. Listing customers and facilities

as data instances (rows) of the same feature matrix raises the question regarding what

common features that induce a grouping should look like. We avoid this question by

approaching the problem with a variant of traditional clustering, biclustering, which allows

us to group the facilities together with the customers.

Biclustering is a variant of clustering, also known as two-dimensional clustering or co-

clustering. It extends the idea of conventional clustering by simultaneously grouping the

set of samples (rows) and the set of features (columns) of a feature matrix. Thereby,

samples and features are grouped together so that they have high relevance to each other.

The samples and the features are divided into a collection of sample and corresponding

feature clusters. The sample clusters are defined according to (3.1). Similarly, the feature

clusters obey

Fk ⊆ {1, . . . , n} k ∈ {1, . . . , r},

F1 ∪ F2 ∪ · · · ∪ Fr = {1, . . . ,m}, and (3.2)

Fk ∩ Fl = ∅ k, l ∈ {1, . . . , r}, k ̸= l, .

The rationale behind creating these clusters is that the features in cluster Fk are “respon-

sible” for creating the group of samples Ck. Busygin et al. [2008] provide the following

formal definition of biclustering:

Definition 3.3. A biclustering of a data set is a collection of pairs of sample and fea-

ture subsets R = ((C1, F1) , (C2, F2) , . . . , (Cr, Fr)) such that the collection (C1, C2, . . . , Cr)

forms a partition of the set of samples, and the collection (F1, F2, . . . , Fr) forms a partition

of the set of features. A pair (Ck, Fk) will be called a bicluster.

The pattern recognition task of biclustering is the methodological concept for identifying

coherent service regions. Like clustering, biclustering refers to the task, not a specific

algorithm. Several algorithms and performance metrics exist. As it is a concept alien

64



3.1. Related work on the basic concepts of biclustering

to conventional OR literature, we provide a general overview of the idea of biclustering,

commonly used algorithms, and evaluation criteria in Section 3.1. Thereby, we provide the

necessary background on the algorithms and metrics used in what follows and explain why

we chose them for our application. In Section 3.2, we proceed with the present problem

and apply biclustering to identify coherent service regions in sets of solutions to discrete

location problems.

3.1. Related work on the basic concepts of biclustering

In contrast to clustering, which focuses on identifying global patterns in the sense that

when clustering rows of the feature matrix, all columns are considered, biclustering is

focused on local patterns. Rows are clustered into different groups based on different

subsets of columns [Fraiman and Li, 2020].

Biclustering has many applications, particularly in bioinformatics in studying gene expres-

sion data [Pontes et al., 2015b], text mining to identify topics in collections of documents

[Dhillon, 2001], or, very recently, market research to identify customer segments [Fang

et al., 2022]. To the best of our knowledge, biclustering has never been used to identify

patterns in the solutions of mathematical programs before. We provide an overview of

biclustering algorithms in Subsection 3.1.1 and a detailed explanation of the spectral bi-

clustering algorithm used further in this work in Subsection 3.1.2. In Subsection 3.1.3, we

review evaluation criteria for produced biclusterings.

3.1.1. Algorithms for biclustering

Biclustering is the task of identifying biclusters. A wide variety of algorithms have been

proposed over the years and are summarized in several review papers. For example,

Madeira and Oliveira [2004] classify different bicluster structures in data sets depending

on the persistence of the numeric values in the bicluster and group algorithms according to

which cluster type they identify and which heuristic approach (greedy, divide-and-conquer,

etc.) they follow. Zhao et al. [2012] distinguish between distance-based clustering algo-

rithms, which perform an iterative search for biclusters minimizing a particular variance

metric, probabilistic-based biclustering, biclustering for coherent evolution, which detects

biclusters that reflect consistent trends in the data rather than consistent numeric val-

ues, geometric-based biclustering, which is based on a spatial interpretation of biclusters

and identifies biclusters as linear geometric patterns in the high-dimensional data-space,

as well as factorization based biclustering which refers to spectral decomposition of the

feature matrix to uncover “natural” substructures that are related to the main patterns

of the matrix. Recent reviews on biclustering can be found, e.g., in Pontes et al. [2015b],

Henriques et al. [2015], and, with a special emphasis on meta-heuristics, in José-Garćıa

et al. [2022].

While several possible algorithms exist, many are unfit for this work’s particular biclus-

tering application. For example, there is no point in identifying sub-spaces in the feature

matrix with constant values as the customer demands and facility capacities may induce
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different allocation volumes. We want to group those customers served jointly by different

subsets of facilities and not those that exhibit similar demand volumes or generate simi-

lar profits. However, rather than reasoning against many algorithms from the literature,

we explain why the spectral biclustering algorithm chosen in the following is particularly

well-suited for our application.

3.1.2. Spectral biclustering

Spectral biclustering (factorization-based biclustering or biclustering via graph-partitioning)

is a clustering technique from one-dimensional clustering that can be straightforwardly ex-

tended to the two-dimensional space. It relies on the fact that biclustering is closely

related to the problem of Singular Value Decomposition (SVD). This matrix factorization

generalizes the eigendecomposition of a symmetric matrix, providing the orthogonal ba-

sis of eigenvectors [Busygin et al., 2008]. It is based on the idea of an idealized feature

matrix that exhibits a block-diagonal structure. In such a matrix, each block can be asso-

ciated with a bicluster, and each pair of singular vectors designates one such bicluster by

the nonzero components in the vectors. This idealized structure implies that the feature

matrix A is of the form

A =




A1 0 . . . 0

0 A2 . . . 0
...

...
. . .

...

0 0 . . . Ar




,

whereby {Ak}, k = 1, . . . , r are arbitrary matrices. Then, for each of these matrices, there

will be a singular vector pair such that the nonzero components of these vectors correspond

to the rows and columns occupied by Ak. In a less idealized case, when the elements outside

the diagonal blocks are not necessarily zero, but diagonal blocks still contain dominating

values, the SVD can reveal these biclusters, too, by the dominating components in the

singular vector pairs.

The concept is closely related to bipartite spectral graph partitioning. In this context, it

was first proposed by Dhillon [2001] for the simultaneous grouping of words and documents

in text mining. The feature matrix An×m is converted into a bipartite graphG := (n,m, E),
with E a set of edges with edge weights aij being the entries from the feature matrix. The

graph has no edges between two vertices representing samples or between two vertices

representing features.

A partitioning of the set of vertices V := n ∪m into r subsets V1, V2, . . . , Vr, such that

V = V1 ∪ V2 ∪ · · · ∪ Vr (3.3)

(3.4)

and

Vk ∩ Vl = ∅ k, l ∈ {1, . . . , r}, k ̸= l, (3.5)
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provides a biclustering of the data set. The cost of this partition can be defined as the

total weight of the edges cut by it

cut(V1, V2, . . . , Vr) =
∑r−1

k=1

∑r

l=k+1

∑
i∈Vk

∑
j∈Vl

aij =
∑

1≤i<j≤k
cut(Vi, Vj). (3.6)

Consequently, the problem of biclustering a data set can be translated into a problem of

bipartite graph partitioning. This naturally fits our application of identifying coherent

service regions. The aggregated matrices of allocation decisions of solutions to discrete

location problems translate naturally into a bipartite graph with nodes I and J . The

edge weights are derived from the aggregated allocation decisions. This makes spectral

biclustering a well-fit algorithm for our application. Every bicluster derived from the

aggregated matrix of allocation decisions corresponds to one service region.

Unless the graph contains multiple components, a minimization of Eq. (3.6) will likely

produce a partition in which all but one bicluster contain zero vertices. Therefore, to

detect underlying patterns of stronger and weaker coherence, each vertex v ∈ V is assigned

a positive weight wv such that minimizing the following function produces “balanced”

biclusters, i.e., clusters of equal weight [Yu, 2003]

Q(V1, V2, . . . , Vr) =
1

r

∑r

i=1

cut(Vi,V \ Vi)∑
v∈Vi

wv
. (3.7)

Two standard definitions of the weight of the vertex are either a constant weight of 1,

which produces the ratio cut, or the vertex degree, which produces the normalized cut.

The minimization of the normalized cut is equivalent to the maximization of the proportion

of edge weights that lie within each partition. It furthermore allows the direct link to SVD

in graph theory as there is a direct connection between the partitioning of a graph and the

singular value decomposition of its Laplacian matrix. The Laplacian matrix is a symmetric

matrix that captures the connectivity structure of a graph. Its eigenvalues and eigenvectors

provide information on the graph’s properties. In particular, the Laplacian L is defined

as L = D−A, where D is a diagonal matrix whose entries are the degrees of the vertices,

and A is the adjacency matrix of the graph. The Laplacian matrix L can be factorized

using SVD and L = UΣV T , where U and V are orthogonal matrices and Σ is a diagonal

matrix whose entries are singular values of L. The columns of U and V are the left and the

right singular vectors of L, respectively. They can be used to compute a low-dimensional

embedding of the graph. In particular, the first k columns of U correspond to the k smallest

singular values of L. These columns can be used to embed the graph into a k-dimensional

space, where the k-th dimension corresponds to the sign of the k-th columns of U . The

graph’s vertices can then be clustered based on their position in this embedding. Thereby,

it can be shown that the k-th smallest singular value of L is proportional to the minimum

ratio cut that can be achieved using k clusters. Therefore, the singular values of L provide

a natural way to rank the quality of different partitions. A comprehensive tutorial can be

found in von Luxburg [2007]. We refer to de Abreu [2007] for background information on

graph partitioning.

So, in other words, spectral biclustering uses SVD to transform the feature matrix into
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a new space by decomposing it into singular values and eigenvectors that represent the

underlying structure of the data. Then, by keeping only the k largest singular eigenvectors,

this low-rank approximation captures the most important patterns and features in the

data. In this approximation, rows and columns are clustered by a standard clustering

algorithm as, e.g., k-means. k-means is a clustering algorithm that partitions a set of

data points into k clusters based on their similarity. The algorithm works by randomly

initializing k cluster centers, assigning each data point to the nearest cluster center, and

then updating the cluster centers based on the mean of the data points in each cluster.

This process is repeated until the cluster assignments no longer change or a maximum

number of iterations is reached. The spectral biclustering algorithm is summarized in

pseudo-code in Algorithm 1. It requires the feature matrix A and the number of biclusters

the data is supposed to be partitioned into r as inputs.

Algorithm 1 Spectral Biclustering

Input: A, r
Output: R
1: Convert the information in the feature matrix A into a bipartite graph G.
2: Calculate the Laplacian matrix L to G.
3: Calculate the first k eigenvectors, those eigenvectors corresponding to the k smallest

eigenvalues of L.
4: Consider the matrix formed by the first k eigenvectors. The l-th row defines the

features of graph node l.
5: Cluster the graph nodes based on these features using k-means clustering.
6: return R

In summary, spectral biclustering is a matrix-factorization-based biclustering technique

that is particularly well-suited to our application due to its natural connection to bipartite

graph partitioning. It is a well-established method in data mining and bioinformatics. Sev-

eral well-documented software packages provide ready-to-use implementations with open

source code and descriptions of the algorithms available in peer-reviewed journals such as

Role et al. [2019], Padilha and Campello [2017] and, e.g., Pedregosa et al. [2011]. As the

contribution of this work is the application of biclustering to extract additional informa-

tion from a set of solutions to discrete location problems and not the development of novel

algorithms for biclustering, we did not implement the biclustering algorithm ourselves but

used the open-source implementation of Dhillon [2001]’s algorithm in Scikit-learn. It con-

tains a Python class that implements spectral biclustering with options for implementing

both the SVD and the integrated k-means algorithm. We deploy the function with default

parameter settings.

3.1.3. Evaluation criteria for biclustering

An essential characteristic of clustering problems is that information on the actual set of

clusters is usually unavailable. Two key challenges arise in this context: first, to determine

the appropriate number of biclusters, and second, to evaluate the quality of the resulting

biclustering. Many metrics have been proposed to determine bicluster coherence and

evaluate the effectiveness of biclustering algorithms. They can be distinguished into two
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main categories: external and internal validation metrics [Liu et al., 2010]. While the

former require external groups as a reference point, the latter evaluate the clustering

structure based on the degree to which they achieve the generally targeted intra-cluster

similarity and inter-cluster dissimilarity. Several different metrics for both aspects and

joint metrics that balance these objectives have been proposed.

Internal validation metrics usually combine a measure of the compactness, or similarity, of

the data points within a single bicluster with a measure of the separation, or dissimilarity,

to the data points in other biclusters [Liu et al., 2010]. A comprehensive overview can

be found in Pontes et al. [2015a]. Thereby, a generic way to guarantee the effectiveness

of a biclustering algorithm does not exist. Instead, the evaluation metrics must meet the

specific objectives of the application.

One measure to compare the similarity of two biclusterings is the Jaccard coefficient, which

extends the logic of the Jaccard index for sets to biclusterings [Hochreiter et al., 2010]. It

measures the similarity of two biclusters as the quotient of the number of matrix elements

contained in the intersection of the biclusters and the number of matrix elements contained

in their union.

Definition 3.4. Let R1 and R2 denote two biclusterings on the same data sets with individ-

ual biclusters R1, R2, . . . , Rr1 ∈ R1 and R1, R2, . . . , Rr2 ∈ R2. The Jaccard coefficient,

JC(R1,R2), is defined as follows

JC (R1,R2) =
1

max{|R1|, |R2|}
∑r1

k=1

∑r2

l=1

|Rk ∩Rl|
|Rk ∪Rl|

. (3.8)

The Jaccard coefficient is a measure to compare the similarity of two biclusterings. It

resides in the interval [0, 1] and equals 1 if the two biclusterings are identical. When one

of the two biclusters represents the “true” biclustering underlying the data, it can also be

interpreted as an external validation criterion.

The above presented a general overview of biclustering, notably the spectral biclustering

algorithm. The following will discuss how these concepts can be applied to detect coherent

service regions from sets of solutions to a discrete location problem instance. To the best

of our knowledge, this is the first approach aiming to detect regions of stronger and weaker

coherence as a persistent decision pattern among different solutions to an instance of a

discrete location problem in particular or any mathematical program in general.

3.2. Biclustering as a means to detect characteristic service regions

We start with a straightforward demonstration of applying spectral biclustering to identify

service regions in instance P7 in Example E. This allows us to illustrate the open questions

that arise when applying this method.

Example E continued The bipartite graph displayed in Figure 3.2a summarizes the allo-

cation information from the 5 best solutions to P7 by connecting each customer to each
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candidate to which it is allocated in at least one of the solutions. There is an edge between

vertex i ∈ I and vertex j ∈ J if some demand of customer j is allocated to facility i in at

least one of the solutions in S, such that
∑

s∈S xsij > 0. The feature matrix A ∈ R8×8 is

constructed accordingly. Each entry denotes the sum of all fractions of demands of cus-

tomer j served by facility i (aij =
∑

s∈S xsij ∈ [0, |S|]). Figure 3.2b illustrates the resulting

feature matrix as a heatmap.

(a) Bipartite graph
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Figure 3.2.: Biclustering of the 5 best alternative solutions (P7, Ex. E)

Spectral biclustering requires determining the number of biclusters the data is to be

grouped into upfront. For instance P7, we know that there are two distinct service regions

to be identified. In general, we can assume that there are, at most, as many biclusters as

the maximum number of facilities operating in any solution. We use spectral biclustering

to produce 2, 3, and 4 biclusters successively. For each of the resulting biclusterings Rr,

which group the set of customers and the set of candidates into r regions, we count the

frequency with which a customer has been allocated to a facility from another bicluster

across all the solutions in S. Figure 3.2c illustrates how the number of out-of-bicluster-

allocations increases with an increasing number of biclusters (|R|). Since the bipartite

graph has two connected components, it is 0 when r = 1 and r = 2. When the number

of biclusters the graph is partitioned into increases further, the number of customers allo-

cated to a facility outside its bicluster in at least one of the solutions in S increases. For

r = 3, customers are served from non-bicluster facilities 4 times across all solutions. The

number of out-of-bicluster allocations increases with an increasing number of biclusters. It

only punishes the separation of a region that “should” not be separated but does not yield

any punishment when two regions that could be separated are considered as one. In other

words, it punishes inter-cluster similarity but does not punish intra-cluster dissimilarity.

One possibility to identify the most suitable biclustering for the data set is to set an upper

bound for the number of out-of-bicluster allocations. One then chooses that biclustering

that divides the customer-facility space into the maximum number of biclusters without

exceeding this bound. If, in the present example, we set this bound to 0 as we know

that there is a perfect (loss-free) separation of the facility-customer space, we obtain a

biclustering into two biclusters as depicted in Figure 3.3a. Given this biclustering, we can

reorder the rows and columns of the feature matrix A. The heatmap of the so-obtained

matrix is presented in Figure 3.2d. It exhibits the block-diagonal structure we were aiming

for.
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(a) r = 2 (b) r = 3 (c) r = 4

Figure 3.3.: Biclusterings for different cluster numbers (Example E)

▲

Example E shows that one has several degrees of freedom when using spectral biclustering

to identify persistent service regions in a set of solutions to a location-allocation instance.

In the following, we explain how we handled the following questions:

1. How to derive the feature matrix A|I|×|J | from the set of solutions S?

2. How to assess the quality of a biclustering (separation into service regions)?

3. How to determine an appropriate number of biclusters (service regions)?

We answer these three questions sequentially in the following. We then present RegClust,

an algorithm that determines persistent service regions among solutions to a particular

CFLP instance. We conclude with a detailed illustration of the procedure based on the

instances from Example A.

For a consistent notation, let Rr := {R1, R2, . . . , Rr} denote a collection of r regions that

constitute a biclustering. The subsets of candidate facilities and customers assigned to

region Rk are denoted by Ik ⊆ I and Jk ⊆ J , k ∈ 1, . . . , r, respectively.

3.2.1. Derivation of the feature matrix

In traditional biclustering applications, the feature matrix is the starting point of the

analysis. In contrast, several options exist to aggregate the information in a (multi-)set

of solutions S into a feature matrix A. The elements of this feature matrix constitute

the edge weights in the bipartite graph. As of the capacity constraint in the CFLP (see

Eq. (1.3)), all information on the opening status of individual candidates in any solution is

implicitly contained in the matrix of the allocation decisions xs ∈ R|I|×|J |. This makes an

explicit consideration of the vector ys of binary location decisions obsolete. Consequently,

the information of interest is contained in |S| |I| × |J |-matrices, and the question is how

the information in these matrices should be aggregated. Furthermore, the question arises

whether or not additional information from the parameters of the problem instance, e.g.,

demand volume or profits should be included in A. We present five alternative options to

derive A and evaluate the degree to which different A lead to different biclusterings.

Definition 3.5. Let α : (S,P) −→ A denote an aggregation function that converts the

information contained in the set of solutions S and the problem instance P into a |I|×|J |-
dimensional feature matrix A.
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αsum Asum aij :=
∑

s∈S xs
ij

Sum of allocation decisions across
all solutions in S

αindicator Aindicator aij := 1(
∑

s∈S xs
ij>0)

Indicator whether customer j is
allocated to facility i in at least
one of the solutions in S

αcount Acount aij :=
∑

s∈S⌈xs
ij⌉

Number of solutions in S in which
customer j is allocated to facility i

αdemand Ademand aij :=
∑

s∈S xs
ijDj

Total demand of customer j
served by facility i across
all solutions in S

αprofit Aprofit aij :=
∑

s∈S xs
ijDj (rj − cij)

Total profit generated by serving
customer j from facility i across
all solutions in S

Table 3.1.: Aggregation functions α to derive a feature matrix Aα from a set of solutions S

Different possibilities to define such an aggregation function are listed in Table 3.1. The

functions αsum, αindicator, and αcount are based solely on the decision variables and do

not include any parameters of the associated instances. This implies that allocations that

serve a small demand volume or generate only little profit are weighted equally to those

serving a large demand volume or generating high profits. αdemand includes information

only on the demand. αprofit includes information on the allocated demand volume and

the unit profit, thus the total profit generated by individual allocation decisions.

The rows of the feature matrix corresponding to candidate facilities not operating in any

solution in S only have zero entries. Similarly, the columns corresponding to customers not

allocated to any facility in any solution only have zero entries. Consequently, A may have

neither full row nor column rank. No meaningful way exists to assign these candidates

and customers to any region. Therefore, they are omitted from further considerations and

assigned to a dummy region. Thus, the set of candidates and customers is reduced to

IS = {i ∈ I|
∑

j aij > 0} and JS = {j ∈ J |
∑

i aij > 0}, respectively. This leads to a

feature matrix of reduced dimensionality.

Example A 3.1 (Identify service regions via biclustering) Consider instances P1-P4 from

Example A and the sets of solutions SI\i. Recall that SI\i is the set of optimal solutions

to the modified instances in which exactly one facility operating in the optimal solution

is removed from the set of candidates (see Eq. (2.11)). We focus on the problem in-

stances P1 and P2 as representatives of instances composed primarily of independent and

interdependent facilities, respectively. Experiments on P3 and P4 did not yield additional

insights.

Based on SI\i, we derive service regions via biclustering using different aggregation func-

tions α and different target numbers of regions r for each instance. We then determine

the Jaccard coefficients of different service regions produced with different aggregation

functions.

Figure 3.4 depicts the service regions for P1 derived from the feature matrices Aindicator

and Aprofit when separating the facility-customer space into r = 12 and r = 13 regions,

respectively. From the experiments in Chapter 2, we know that for P1, removing several
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facilities had no effect on new facilities operating and resulted in other facilities taking

over their customers. This is reflected throughout the produced service regions. Many

regions contain only two facilities, the one operating in the optimal solution and the one

operating upon its replacement.

Facilities

Optimal Facilities

Customers

i ∈ Dep(j) or j ∈ Dep(i)
i ∈ Dep(j) and j ∈ Dep(i)

(a) Aindicator, r = 12 (b) Aprofit, r = 12 (c) Aindicator r = 13 (d) Aprofit, r = 13

Figure 3.4.: Service regions for different functions α and number of regions r (P1, Ex. A)

Figure 3.5 depicts the pairwise Jaccard coefficients for the service regions obtained with

different aggregation functions when the target number of biclusters r is set to 11, 12,

or 13 biclusters, respectively. The biclusterings obtained with the aggregation functions

αsum, αdemand, and αprofit are very similar. Their pairwise Jaccard coefficients are close

to 1.0. Service regions produced with the aggregation functions αindicator and αcount differ

more significantly. The associated Jaccard coefficients are relatively low, with most being

significantly below 0.5.

sum indicatorcount demand profit

su
m

in
d

ic
a

to
r

co
u

n
t

d
em

a
n

d
p

ro
fi

t

1 0.42 0.59 0.98 0.98

0.42 1 0.31 0.42 0.42

0.59 0.31 1 0.59 0.59

0.98 0.42 0.59 1 1

0.98 0.42 0.59 1 1
0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) r = 11

sum indicatorcount demand profit

su
m

in
d

ic
a

to
r

co
u

n
t

d
em

a
n

d
p

ro
fi

t

1 0.36 0.79 0.98 0.79

0.36 1 0.35 0.36 0.42

0.79 0.35 1 0.8 0.63

0.98 0.36 0.8 1 0.81

0.79 0.42 0.63 0.81 1
0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) r = 12

sum indicatorcount demand profit

su
m

in
d

ic
a

to
r

co
u

n
t

d
em

a
n

d
p

ro
fi

t

1 0.32 0.6 0.99 0.99

0.32 1 0.41 0.33 0.33

0.6 0.41 1 0.61 0.61

0.99 0.33 0.61 1 1

0.99 0.33 0.61 1 1 0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) r = 13

Figure 3.5.: JC for different functions α and number of regions r (P1, Ex. A)

Figure 3.6 depicts the service regions for P2 derived from Aindicator, Acount, and Aprofit

for r = 2 and r = 3. Figure 3.7 depicts the associated matrices with the Jaccard coeffi-

cients. For r = 2, all aggregation functions except αcount produce identical service regions

as indicated by Jaccard coefficients of 1.0. As Figure 3.6b illustrates, this consistent sep-

aration into two service regions distinguishes between the two subsets of interdependent

facilities already identified in Chapter 2. Meanwhile, the service regions produced by

αcount group facilities from the same interdependent subset into two different service re-

gions (Figure 3.6a). For r = 3, Asum, Ademand, and Aprofit still produce very consistent
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service regions with pairwise Jaccard coefficients close to or equal to 1.0 (Figure 3.7b).

The resulting service regions still group together the previously identified subsets of inter-

dependent location decisions (Figure 3.6d). For r = 4, we see that the service regions vary

significantly. This indicates that no strong pattern inducing 4 different service regions

exists in SI\i for P2.

Facilities

Optimal Facilities

Customers

i ∈ Dep(j) or j ∈ Dep(i)
i ∈ Dep(j) and j ∈ Dep(i)

(a) Acount, r = 2 (b) Aprofit, r = 2 (c) Aindicator, r = 3 (d) Aprofit, r = 3

Figure 3.6.: Service regions for different functions α and number of regions r (P2, Ex. A)

sum indicatorcount demand profit

su
m

in
d

ic
a

to
r

co
u

n
t

d
em

a
n

d
p

ro
fi

t

1 1 0.61 1 1

1 1 0.61 1 1

0.61 0.61 1 0.61 0.61

1 1 0.61 1 1

1 1 0.61 1 1 0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

(a) r = 2

sum indicatorcount demand profit

su
m

in
d

ic
a

to
r

co
u

n
t

d
em

a
n

d
p

ro
fi

t

1 0.43 0.58 0.98 1

0.43 1 0.63 0.42 0.43

0.58 0.63 1 0.57 0.58

0.98 0.42 0.57 1 0.98

1 0.43 0.58 0.98 1
0.5

0.6

0.7

0.8

0.9

1.0

(b) r = 3

sum indicatorcount demand profit

su
m

in
d

ic
a

to
r

co
u

n
t

d
em

a
n

d
p

ro
fi

t

1 0.27 0.33 0.74 0.33

0.27 1 0.41 0.18 0.41

0.33 0.41 1 0.41 1

0.74 0.18 0.41 1 0.41

0.33 0.41 1 0.41 1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) r = 4

Figure 3.7.: JC for different functions α and number of regions r (P2, Ex. A)

▲

The aggregation functions αsum, αdemand, and αprofit produce similar biclusterings and

tend to preserve interdependence structures as determined in Chapter 2 better. However,

the biclusterings obtained with different aggregation functions and different numbers of

target regions differ significantly. A structured approach to evaluating the quality of service

regions is needed.

3.2.2. Evaluation criteria

Many validation metrics for biclusterings exist in literature. Our application differs from

problems in literature in that we are looking for coherent but not necessarily homogeneous

substructures. We want to group together customers served jointly from the same set

of interdependent facilities rather than customers that exhibit similar demand volumes

or generate similar profits. This implies that we are not looking for high intra-cluster
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3.2. Biclustering as a means to detect characteristic service regions

similarity and inter-cluster dissimilarity. Instead, we are looking for high intra-cluster

interaction and low inter-cluster interaction. We capture this idea in the following metrics.

3.2.2.1. Intra-region validity

To measure the intra-region validity of a particular region, we consider all facilities in that

region and determine the proportion of customers allocated to any of these facilities that

are not grouped within that region. This proportion represents the degree to which the

opening decisions within that region depend on customers outside that region. We already

counted this type of allocations in Example E and referred to them as out-of-bicluster

allocation. We propose the following loss function that considers the “worst” intra-region

validity across all regions evaluated by the proportion of the total edge weights in the

bipartite graph that are incident with two nodes assigned to different regions.

Definition 3.6. The intra-regional loss of a biclustering R, ℓintraα (R), denotes the max-

imum proportion of out-of-region allocations across all regions such that

ℓintraα (R) = max
k∈{1,...,r}

∑
i∈Ik

∑
j∈JS\Jk aij∑

i∈Ik
∑

j∈JS aij
. (3.9)

The value aij depends on the aggregation function α (see Table 3.1). Evidently, ℓintraα (R)
will be 0 when |R| = r = 1 and have a tendency to increase with increasing r.

3.2.2.2. Inter-region validity

With the intra-regional loss function, we focus on the coherence within individual regions.

To evaluate the validity of the biclustering as a whole, we propose the following inter-

regional loss function that sets the sum of the inter-regional edge weights in relation to

the total edge weights in the bipartite graph.

Definition 3.7. The inter-regional loss of a biclustering R, ℓinterα (R), denotes the total

proportion of out-of-region allocations

ℓinterα (R) :=
∑r

k=1

∑
j∈Jk

∑
i∈IS\Ik aij∑

j∈JS
∑

i∈IS aij
=

∑r
k=1

∑
i∈Ik

∑
j∈JS\Jk aij∑

j∈JS
∑

i∈IS aij
. (3.10)

The loss function ℓinterα (R) yields the same result whether one considers the inter-regional

edges as those edges connecting facilities to outside customers or customers to outside

facilities. This is in contrast to the intra-regional similarity, which assigns edges to the

region of the associated facility.

Obviously, ℓinterα (R) = 0 if |R| = r = 1. When the bipartite graph induced by Aα has

k connected components, then ℓinterα (R) will remain 0 for |R| = r ≤ k, r ∈ N. For

r > k, ℓinterα (R) will increase with increasing r. However, this increase is not necessarily

monotonic as ℓinterα (R) only quantifies the inter-regional similarity, which is only part of

the objective function of the spectral biclustering algorithm.
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3.2. Biclustering as a means to detect characteristic service regions

3.2.2.3. External region validation

External validation of the resulting biclustering is difficult as there is nothing like true

division into service regions. However, once we split the set of candidates and customers

into distinct regions based on a particular set of solutions S ′, we can evaluate the degree

to which these regions reflect the partition implied by other sets S.

Definition 3.8. Given a biclustering R and a set of solutions S, the external loss,

ℓexternalα (R, S), evaluates the degree to which the regions in R reflect the implicit division

into service regions in the solutions in S. It is defined as the proportion of out-of-cluster

allocations in S such that

ℓexternalα (R,S) =
∑|R|

r=1

∑
i∈Ir

∑
j∈Jr aij∑

i∈I
∑

j∈J aij
. (3.11)

Thereby, aij are the entries of the feature matrix Aα derived from S according to the

aggregation procedure α. ℓexternalα (R, S) determines the proportion of the weighted intra-

regional allocations in S.

Example A 3.2 (Evaluation criteria for service regions) Figure 3.8 and Figure 3.9 depict

the development of the internal validation metrics, ℓinterα and ℓintraα , for an increasing

number of regions derived and evaluated with different aggregation functions for P1 and

P2, respectively. The red horizontal lines indicate 5% or 1%, respectively. The aggregation

functions αindicator and αcount result in service regions whose validation metrics deteriorate

with the lowest number of biclusters. Not only the produced biclusterings but also their

validation metrics are nearly equal for aggregation functions αsum, αdemand, and αprofit.

Furthermore, one can see that the intra-cluster loss derived from the “worst” cluster de-

teriorates much faster than the inter-cluster loss. For example, for P2 it illustrates that

for more than 3 biclusters, the intra-cluster loss exceeds 5% for all aggregation functions,

indicating no meaningful separation into more than three distinct regions.
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Figure 3.8.: Development of validation metrics with an increasing number of regions determined
based on different functions α (P1, Ex. A)
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Figure 3.9.: Development of validation metrics with an increasing number of regions determined
based on different functions α (P2, Ex. A)

▲

For both instances, the validation metrics deteriorate with an increasing number of re-

gions. This deterioration, however, is not monotone. As there is no inherent measure of

intra-cluster similarity, our measures all target low inter-cluster interaction. However, the

underlying algorithm also aims for non-zero biclusterings of balanced cardinalities. This

is necessary to avoid producing several biclusterings with only one entry, yet may pro-

duce biclusterings that perform differently regarding the presented metrics. This raises

the question of how to determine the appropriate number of biclusterings.

3.2.3. Determining the number of service regions

There is no true number of service regions. Interdependent subsets of facilities often over-

lap, and the number of regions depends on the targeted level of coherence. The interaction

between distinct regions will likely increase with an increasing number of regions. Thus,

aiming for a target loss of 0 might prohibit one from identifying regions of strong but not

perfect coherence.

We propose determining the number of regions by setting an upper bound on the loss

value of θ ∈ [0, 1]. Given a sequence of biclusterings Rk with k ∈ {2, . . . , r} and |Rk| = k,

we choose the biclustering which contains the largest number of regions while maintaining

ℓinterα (R) and ℓintraα (R) below θ.

We introduce the algorithm RegClus, which produces the associated biclustering, given a

target loss θ. It is described in pseudo-code in Algorithm 2. It requires a set of solutions

S, the set of instance parameters P, the aggregation function α mapping the information

from S and P to a feature matrix Aα, and an upper bound on the loss θ. The algorithm

chooses the biclustering with the largest number of regions whose corresponding loss values

do not exceed θ.We refer to the resulting service regions as R(S, α, θ).

Example A 3.3 (Regional clustering algorithm) We use RegClus to determine service

regions instances for different α and θ = 0.05 for sets of k best alternative solutions
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3.2. Biclustering as a means to detect characteristic service regions

Algorithm 2 RegClus - Regional Clustering Algorithm

Input: S, P, α, θ
Output: R
1: A← α(S,P)
2: rmax ← maxs∈S

∑
i∈I y

s
i

3: for r ← 2 to rmax do
4: Rr ← Spectral Biclustering(A, r) ▷ see Algorithm 1
5: end for
6: R ← argmaxRr,r∈{2,...,rmax

{
r | ℓinterα (Rr) ≤ θ, ℓintraα (Rr) ≤ θ

}

7: return R

and sets of solutions to instances with perturbed demand. In particular, we derive the

service regions using RegClus from the set of 5 best alternative solutions S5k−best. We then

determine the number of regions |R| and evaluate the degree to which these service regions

also reflect the allocations observable in the set of 20 best solutions S20k−best using ℓexternalα .

The results for instances P1-P4 from Example A are depicted in Table 3.2.

αsum αindicator αcount αdemand αprofit

P1
|R| 12 6 9 12 12

ℓexternalα

(
R(S5k−best, α, 0.05),S20k−best

)
0.96 0.75 0.95 0.96 0.96

P2
|R| 2 1 1 2 2

ℓexternalα

(
R(S5k−best, α, 0.05),S20k−best

)
0.85 0.62 0.87 0.85 0.86

P3
|R| 7 3 3 11 13

ℓexternalα

(
R(S5k−best, α, 0.05),S20k−best

)
0.95 0.93 0.95 0.95 0.95

P4
|R| 1 2 1 2 2

ℓexternalα

(
R(S5k−best, α, 0.05),S20k−best

)
0.94 0.72 0.92 0.93 0.93

Table 3.2.: Persistence of service regions in k best alternative solutions with different α (P1-P4, Ex.
A)

The results show that for instances P1 and P3, which are mostly composed of independent

facilities that serve small subsets of customers, RegClus identifies relatively many regions,

particularly when the aggregation functions αsum, αdemand, or αprofit are used. Based

on the 5 best solutions and αprofit, 12 distinct regions are determined for P1, and 13

are determined for P3. These regions persist throughout the 20 best solutions as the

external validation criterion is 0.96 and 0.95, respectively. For P2 and P4, at most two

distinct regions are identified by RegClus. While for P4 and αprofit, the external validation

criterion is high with 0.93, the separation of P2 into two distinct regions only yields an

external validation of 0.86.

We perform a similar experiment considering sets of solutions derived for problem instances

with perturbed demand. Every solution in this set Sppert is the optimal solution to a

modified problem instance in which the demand of every customer has been perturbed by

a defined perturbation level p ∈ [0, 1] such that

Dnew
j = Dj + (1 + p · b− (1− b) · p) , ∀j ∈ J, (3.12)

with b ∼ B(0.5) a binary random variable following a Bernoulli distribution with parameter

0.5. Again, we derive sets of 20 such solutions for each instance. We then determine the
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3.3. Experimental validation: characteristic service regions in sets of solutions

service regions based on a subset S
′p
pert ⊂ S

p
pert of 5 randomly chosen solutions from this

set and subsequently evaluate the degree to which these regions persist throughout the

remaining solutions in that set. The results are displayed in Table 3.3.

αsum αindicator αcount αdemand αprofit

P1
|R| 10 4 5 9 11

ℓexternalα

(
R(S5%pert, α, 0.05),S5%pert

)
0.98 0.92 0.98 0.98 0.98

P2
|R| 4 2 2 3 4

ℓexternalα

(
R(S5%pert, α, 0.05),S5%pert

)
0.82 0.63 0.83 0.83 0.83

P3
|R| 9 2 5 5 9

ℓexternalα

(
R(S5%pert, α, 0.05),S5%pert

)
0.97 0.97 0.97 0.95 0.97

P4
|R| 3 3 4 4 4

ℓexternalα

(
R(S5%pert, α, 0.05),S5%pert

)
0.95 0.79 0.93 0.93 0.93

Table 3.3.: Persistence of service regions in solutions to instances with perturbed demand for dif-
ferent α (P1-P4, Ex. A)

Compared to the previous experiment based on sets of k best alternative solutions, we

obtain more service regions for individual instances for instances P2 and P4. Furthermore,

these regions have a higher validity in terms of ℓexternalα . ▲

Example A 3.3 has shown that RegClus allows to derive regions from subsets of solutions

that behold a relatively high validity throughout other, similar solutions. Which value

of ℓexternalα (R, S) is sufficient to validate the existence of the determined service regions

depends on the purpose with which these regions are extracted. We will take a closer look

at this in Chapter 4. Nevertheless, when there are regions of stronger coherence among

multi-sets of solutions, RegClus is a suitable means to detect them.

3.3. Experimental validation: characteristic service regions in sets

of solutions

We repeat the experiments from Example A 3.3 for all instances from data sets presented

in Section 1.3. In particular, we generate sets of well-performing solutions S to each

instance and use RegClus to derive service regions R based on a subset S ′ ⊂ S of these

solutions. We then evaluate the number of obtained regions and the degree to which the

obtained regions reflect the service regions underlying solutions in the entire set S using

ℓexternalα (R,S). Again, we look at sets of k best alternative solutions and sets of solutions

with slightly perturbed customer demands.

Figure 3.10 presents the distribution of the resulting external validation metric ℓexternalα (R,S)
for different aggregation functions α and different upper target levels of coherence θ. Fig-

ure 3.10a displays the results obtained for sets of k best alternative solutions. Figure 3.10b

displays results for sets of solutions to instances with 5% demand perturbation. The aver-

age external validation and the average number of regions are displayed in Table 3.4. The

following observations are noteworthy. Both α and θ have a significant effect. The larger

θ, the larger the upper bound on the accepted internal validation metrics. Thus, it is un-

surprising that with increasing θ, the average number of regions increases and the validity
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3.4. Conclusion

decreases. Meanwhile, a difference between the validity of service regions obtained with

different aggregation functions is barely noticeable in Figure 3.10. With the exception of

αindicator, which produces the lowest validation metrics, all aggregation functions perform

equally well. However, a look at the values in Table 3.4 shows that αprofit produces the

largest number of regions with the highest external validation score on average. In general,

for up to θ = 5%, the average validation scores exceed 90%, indicating a high persistence

of service regions throughout the considered sets and a solid performance of RegClus in

their identification.
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Figure 3.10.: Distribution of ℓexternalα for different α and θ

S20k−best S5k−best

θ α avg. |R| avg. ℓexternalα avg. |R| avg. ℓexternalα

1%
sum 2.2 95.3 3.8 96.0
count 2.0 95.4 3.0 96.5
demand 2.4 95.7 3.8 96.4
profit 2.4 95.8 3.9 96.5

5%
sum 3.5 93.2 5.9 94.3
count 2.8 93.9 4.2 94.7
demand 3.8 93.5 6.0 94.7
profit 3.8 93.7 6.2 94.7

10%
sum 5.2 89.9 7.3 92.6
count 4.0 90.4 5.4 92.3
demand 5.2 90.8 7.4 93.4
profit 5.3 91.0 7.6 93.5

Table 3.4.: Average number of regions and ℓexternalα for different α and θ

3.4. Conclusion

We use spectral biclustering to identify persistent characteristic decision patterns in the

form of coherent service regions in multi-sets of solutions to the CFLP. Thereby, the pro-

posed procedure can be applied to other location-allocation problems straightforwardly.

To the best of our knowledge, this is the first work exploring the identification of persistent
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structures amongst sets of solutions that not only considers the location decisions in the

form of a frequency count of individual facilities but includes information on the allocation

decisions. An experiment on a large number of instances from location literature demon-

strates that given a set of well-performing solutions to a particular instance or variants

of this instance, it is possible to identify regions of strong coherence in the sense that

a significant proportion of the allocations throughout similar solutions occur within that

region.

Furthermore, to the best of our knowledge, this is the first approach using pattern recogni-

tion techniques to detect parts of the decision space that exhibit strong interdependencies.

It is not surprising that customers are assigned to facilities that are close in the sense

that the variable transport costs are low. This induces a regional structure of regions of

customers that are served jointly by a subset of facilities. This notion of regionality has

not been explored before.

Recall that while the detected regions are visibly coherent, in the presented visualizations

of the instances and solutions, the procedure does not require any actual locations in terms

of coordinates or even rely on a persistent metric from which transport costs are derived.

We summarize the main results of the previous chapter as follows:

• Persistent service regions of a defined target level of coherence can be identified from

arbitrary sets of solutions using pattern recognition techniques.

• Spectral biclustering simultaneously divides the subsets of facilities and customers

into service regions based on a feature matrix that aggregates the allocation infor-

mation in a given set of solutions.

• Distinct service regions of extreme coherence can be identified in all considered in-

stances in sets of k best solutions or sets of optimal solutions to slightly perturbed

instances. This indicates the persistence of these service regions as an abstract deci-

sion pattern induced by the problem’s input data.

Up to this point, service regions are derived from several optimal or near-optimal solutions

to the original instance or modifications thereof. It is an ex-post analysis tool that allows

for additional insights after an optimal or several well-performing solutions have already

been found. In Chapter 4, we take a closer look at whether these service regions can be

detected ex-ante, that is before the problem is solved, either from the problem data or

easy-to-obtain, potentially infeasible solutions.
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Up to this point, we derived service regions from sets of optimal and near-optimal solutions.

Thereby, we reduced the insights these service regions yield as an ex-post analysis to gain

contextual information on the individual decisions in an optimal solution. However, as

service regions induce a separation of the facility-customer space into distinct regions

with low interaction levels, service regions bear the potential to facilitate the search for

an optimal solution in a divide-and-conquer approach. Furthermore, the question arises

whether these service regions directly result from the spatial patterns underlying a problem

instance that can be derived directly from the data. Thus, in the following chapter, we

address the following research question.

RQ3: Can service regions be anticipated from the problem’s input data?

As service regions are a concept newly introduced in this thesis, no related work other than

those linking data and decisions presented in Section 2.1 exists. In Section 4.1, we present

characteristics that summarize properties of the problem instance and relate them to the

level of interdependence in the optimal solution. While the effect of marginal changes in

individual characteristics can be shown, the level of interdependence on unseen instances

cannot be anticipated due to many largely overlying influencing factors. In Section 4.2, we

then turn to another approach to derive well-performing service regions without knowledge

of the actual well-performing solutions. More precisely, we derive service regions from sets

of solutions to the linearly relaxed problem. These are easier to obtain but still yield

insights into the implied spatial relationships between candidates and customers. We

summarize the main findings in Section 4.3.

4.1. Anticipating service regions from instance characteristics

Service regions are a decision pattern persisting in well-performing solutions to a partic-

ular instance of the CFLP that implicitly separate the facility-customer space. Existing

works examining the decision space of CFLP instances suggest that underlying spatial

patterns induce characteristics of the problems’ solutions. The parameters of the CFLP

include spatial patterns only implicitly in the variable costs or profits between customers

and facilities. The degree to which the variation in these parameters is responsible for spe-

cific characteristics of well-performing solutions also depends on their relative importance

compared to the facilities’ fixed costs and capacities.

In Subsection 4.1.1, we present characteristics describing critical properties of the problem

instance. We compute these properties for the data sets from Section 1.3 and show that

these instances are heterogeneous in various regards. In Subsection 4.1.2, we discuss how,

all other conditions being equal, changes in these properties can be expected to affect the

size of service regions and, thereby, the interdependence of individual facilities. We use

instances P1 and P2 from Example A to validate our hypotheses. In Subsection 4.1.3, we

transfer previous findings to the instances from Section 1.3.
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4.1. Anticipating service regions from instance characteristics

4.1.1. Characteristic properties of problem instances for the CFLP

We introduce several characteristics that summarize the properties of problem instances

to the CFLP. We subsequently determine these characteristics for the instances described

in Section 1.3.

4.1.1.1. Parameter ratios

Parameters in the CFLP are measured in two different units: monetary units for costs and

profits and quantities for capacities, demands, or transport volumes. The absolute values

of individual parameters are less distinctive than the ratios between parameters measured

in the same unit. Thus, to distinguish different problem instances, one can compare the

ratio between the total capacity and demand in the instance [Klose and Görtz, 2007].

Definition 4.1. The tightness sets the sum of all capacity in relation to the sum of all

demand in the problem instance such that

tightness :=

∑
iQi∑
j Dj

. (4.1)

The inverse of the tightness can serve as a proxy for the fraction of candidate facilities

that need to operate to have sufficient capacity to serve all demands.

The ratio between fixed and variable profits affects the degree to which a facility needs to

be utilized to be profitable and, therefore, also impacts the number of candidate facilities

operating in the optimal solution.

Definition 4.2. The profit ratio sets the average variable unit profit, UV P , minus the

average variable unit transportation costs, UV C, the average net unit profit, in relation to

the average unit fixed costs, UFC, such that

profitratio :=
UV P − UV C

UFC
, with (4.2)

UFC :=

∑
i Fi∑
iQi

, (4.3)

UV C :=

∑
i,j Djcij

|I| ·
∑

j Dj
, and (4.4)

UV P :=

∑
j Djrj∑
j Dj

. (4.5)

The profit ratio can serve as a proxy indicating whether fixed costs are more relevant in

the sense that an optimal or near-optimal solution will likely maximize the utilization of

individual facilities or whether profits are more relevant in the sense that more, less utilized

facilities will likely be opened closer to customers.

Figure 4.1 displays the distribution of the above ratios for the sets of instances described

in Section 1.3. Figure 4.1a shows that all instances consider at least as many customers as
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Figure 4.1.: Distribution of parameter ratios for considered test instances

candidate facilities. The tightness differs massively. For instances from the BAR-1991 and

HOL-1999 data sets, the tightness is relatively low, indicating that a significant fraction of

the candidates will likely operate in an optimal solution. The instances comprise tightness

between 1.2 and 275.1, with 210 of the 237 considered instances exhibiting a tightness of

less or equal to 10. Similarly, the profit ratio ranges from −4.6 to 83.3, indicating a huge

difference in the relative importance of the fixed costs between instances.

4.1.1.2. Spatial patterns

Another interesting aspect that is not trivial to quantify is the spatial distribution of

customers and candidates. Most considered instances were generated by randomly dis-

tributing candidates and customers on a unit square. It is reasonable to assume that these

instances will exhibit different properties than those that exhibit spatial clusters similar

to the densely populated east cost area in the ORLIB instances. However, to the best of

our knowledge, a systematic evaluation of the spatial distribution of data points in facility

location instances has not been done before.

We evaluate the spatial distribution of candidates and customers with the help of the

distance of individual points to their nearest neighbor and a two-sided t-test, which tests

the hypothesis of complete spatial randomness according to Clark and Evans [1954]. The

test measures the degree to which the average distance of any point to its nearest neighbor

differs from the expected average distance under spatial randomness, that is, a situation in

which“any point has had the same chance of occurring on any sub-area as any other point”.

This is precisely the situation when coordinates are drawn from a uniform distribution.

Applied to the instances of the CFLP, we consider candidates and customers as data

points. Generally, for CFLP instances, we do not have information on the actual loca-

tion nor the distance between any two candidates or any two customers. Therefore, we

use the coordinates we obtain with the help of multi-dimensional scaling (see Section 1.3)

as a proxy for the location of candidates and customers in a hypothetical plane. These

coordinates represent the entire information we have on their spatial distribution. Sub-

sequently, we determine the Euclidean distances between all pairs of points and take the

minimum distance per point as its estimated nearest neighbor distance. We denote the
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4.1. Anticipating service regions from instance characteristics

average estimated nearest neighbor distance by Do.

The expected distance to the nearest neighbor, DE , in a randomly dispersed population

of N points with specified density, ρ, is

DE =
1

2
√
ρ

(4.6)

with a standard deviation, σE , of

σE =
0.26136√

Nρ
. (4.7)

The density is obtained as the number of points divided by the area. A detailed derivation

of the formula developed initially by Hertz [1909] can be found in Clark and Evans [1954]

and is based on the determination of the mean number of points in a given area with the

help of the Poisson distribution.

GivenDo, DE , and σE , it is possible to perform a two-sided t-test on the hypothesis thatDo

equals DE and thereby the null hypothesis that the mean distance to the nearest neighbor

in the observed distribution cannot be distinguished from the mean distance under spatial

randomness. This test is also referred to as a test for Complete Spatial Randomness and

evaluates the test statistic

CSR =
Do −DE

σE
(4.8)

based on the quantiles of the standard normal distribution. This implies that CSR-values

whose absolute value exceeds 1.96 (2.58) allow one to reject the null hypothesis of spatial

randomness with a confidence level of 95% (99%).

In particular, the test allows one to gain information on which spatial distribution one

observes instead of spatial randomness. If the test statistic is negative, then the observed

mean distance to the nearest neighbor is smaller than expected under randomness, indi-

cating clusters of points at certain sub-spaces. If the test statistic is positive, the distance

is larger than expected, indicating a more evenly dispersed distribution of points.
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Figure 4.2.: Distribution of test statistics for test for complete spatial randomness for considered
test instances

Figure 4.2 depicts the distribution of the test statistics of the instances in the considered
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4.1. Anticipating service regions from instance characteristics

sets. Nearest neighbor distances are derived from the estimated coordinates in the plane.

The size of the area is derived from the minimum and maximum estimated x- and y-

coordinates of all points. We observe the spatial distribution of points in the individual

instances, which range from clustered to evenly dispersed. The null hypothesis cannot

be rejected for most KLO-2007 instances generated uniformly randomly. The instances

from the ORLIB data set, which was derived from real-world data based in the United

States, predominantly exhibit a clustered spatial structure. Meanwhile, the relatively

symmetrical-looking data from the BAR-1991 instances (refer to Figure 1.7) are classified

as evenly dispersed.

In conclusion, the instances from literature cover a wide range of characteristics regarding

their size, spatial distribution, their demand-capacity ratio, as well as their profit-fixed

costs ratio. However, even though the considered indicators only represent a few highly

aggregated characteristics, the 206 instances do not contain an exhaustive set of all com-

binations of characteristics. Nor do they explicitly represent extreme cases. Therefore,

to derive insights into the relationship between individual characteristics and the under-

lying service regions, we systematically vary the data of the two representative problem

instances P1 and P2 from Example A.

4.1.2. Characteristic indicators of large service regions

Service regions comprise subsets of customers and facilities in the sense that customers in

that region will likely be served by a facility in that region in well-performing solutions.

We observed that facilities serving customers in the same service region often interdepend.

Thus, instances whose underlying service regions are large tend to have a high average

dependence density (see Def. 2.13) and a high level of average demand reallocation (see

Def. 2.22). Therefore, in the subsequent section, we first focus on whether we can link

properties of the input data to these two measures that indicate large service regions.

In the following, we systematically vary characteristic properties of instances P1 and P2
from Example A. We rationalize how these changes affect the potential subset of customers

a facility would serve if it was the sole operating facility.

Capacities / Tightness

Increasing the capacity of individual instances allows for serving more demand and, thereby,

more customers from a single facility. Consequently, the potential subsets of customers

served by individual candidates are more likely to overlap. Overlapping potential subsets

of customers can be expected to be more likely to induce interdependencies between the

respective facilities.

Example A 4.1 (Effect of increasing tightness on interdependence relationships) We suc-

cessively increase the capacity of all facilities in problem instances P1 and P2 from Exam-

ple A by multiplying the capacity of each candidate by a constant factor. Subsequently,

we determine the resulting tightness in the associated instance and round it to the nearest

integer.
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Figure 4.3.: Increasing tightness versus the level of interdependence (P1-P2, Ex. A)

Figure 4.3 depicts the distribution of indicators for larger service regions in the optimal

solutions for the resulting problem instances indicated by the average dependence den-

sity, Depavg, (Figure 4.3a), and the demand reallocation, DRA (Figure 4.3b). For both

instances, these indicators have a clear tendency to increase with increasing capacities. ▲

Fixed costs / Profit ratio

All other conditions being equal, increasing the fixed costs of individual facilities leads

to a higher utilization of individual facilities. This means that to operate, facilities must

serve more customers. Their associated subsets of customers expand and are more likely

to overlap with those of other facilities. This leads us to expect an increasing level of inter-

dependence between facilities operating in the optimal solutions to the resulting problem

instances.

Example A 4.2 (Effect of increasing the profit ratio on interdependence relationships)

We successively increase the fixed costs of all facilities in problem instances P1 and P2 by

multiplying the fixed costs of each candidate by a constant factor, which, in turn, lead to

decreasing profit ratios. The distribution of Depavg and the DRA in the optimal solutions

of the resulting problem instances are depicted in Figure 4.4.

An increase in the profit ratio implies a decrease in the relevance of the fixed costs. This

implies that opening more, less utilized facilities serving smaller subsets of customers is

more profitable. According to the above rationale, this will result in fewer overlaps of

the potential subset of customers served by different facilities and, hence, fewer interde-

pendence relationships in the resulting solutions. This effect, however, is only visible for

problem instances derived from P2, while for P1, profit ratios of less than two result in a

decline of both, the Depavg and DRA. Due to the low capacities of individual facilities

in P1, low profit ratios and the resulting high fixed costs result in only very few facilities

being profitable in the optimal solutions. The values of the above indicators represent

instances in which it is only profitable to operate less or equal to 2 facilities, which per se

allows for little interaction.
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Figure 4.4.: Increasing profit ratio versus the level of interdependence (P1-P2, Ex. A)

▲

Spatial patterns

It is intuitive to assume that the spatial patterns underlying the problem instance affect

the degree to which combinatorial dynamics affect the optimal solution. In particular,

one expects independently operating facilities in clustered instances that exhibit a strong

regional grouping and instances with highly combinatorial decision patterns to exhibit a

high level of symmetry as is, e.g., the case in an evenly distribution spatial pattern. Linking

the occurrence of combinatorial decision patterns to the existence of implied service regions

already indicates that the size of individual clusters compared to the capacity of individual

facilities will affect this relationship.

Example A 4.3 (Effect of spatial patterns on interdependence relationships) We system-

atically alter the spatial distribution of customers and candidates of instances P1 and P2
and subsequently regenerate variable transport costs and unit profits based on the new

Euclidean distances according to the original generation procedure.

Figure 4.5 illustrates the systematic transformation from an evenly distributed spatial pat-

tern (Figure 4.5a) to a random pattern (Figure 4.5f) to a clustered pattern (Figure 4.5i). To

obtain these patterns, we gradually mix the original, random pattern with either predeter-

mined evenly distributed coordinates or predetermined clustered coordinates representing

5 clusters. The mixing is performed by a linear composition of α times the old coordinates

and (1 − α) times the new coordinates. The parameter α is gradually increased from 0

to 1, increasing by 0.05 in each iteration. This leads to a total of 82 instances to be con-

sidered in the following experiment. After determining the coordinates, we determine the

resulting spatial pattern with the CSR test statistic. According to the test statistic and

a confidence level of 1%, we obtained 40 clustered, 35 randomly distributed, and 7 evenly

distributed problem instances.

Figure 4.6 shows the distribution of Depavg and DRA for instances with different spatial

patterns. The results demonstrate that facilities in the optimal solution are more likely to
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Figure 4.5.: Systematic variation of the spatial pattern (P1, Ex. A)
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Figure 4.6.: Spatial pattern and tightness versus the level of interdependence (P1-P2, Ex. A)

interdepend, and thus, the solution exhibits larger service regions, when we have an evenly

distributed spatial pattern. At the same time, however, we also see that this observation

only holds for instances derived from P2, instances with higher per facility capacities. For

instances derived from P1, the effect of spatial patterns is marginal as the small per-facility

capacity leads to the service regions being extremely localized. This leads facilities to be

mostly independent regardless of the underlying spatial pattern. ▲

All other conditions being equal, a large capacity-demand ratio, a low profit ratio, and

evenly distributed spatial patterns contribute to large service regions implied by high

levels of interdependence between facilities operating in the optimal solution. However,

we also see that these effects overlap. For example, an instance exhibiting an evenly

distributed spatial pattern but a low capacity-demand ratio might still exhibit low levels

of interdependence in the optimal solution. In the following, we evaluate whether absolute

values for these attributes observed on arbitrary instances suffice to anticipate dependence

relationships between individual candidates and, thereby, the size of the underlying service

regions.

4.1.3. Experimental validation: linking service regions to instance data

We evaluate whether it is possible to anticipate the level of interdependence of the facilities

operating in the optimal solution. Figure 4.7 depicts the distribution of Depavg for dif-

ferent spatial patterns and varying tightness (Figure 4.7a) and profit ratio (Figure 4.7b),

respectively. It illustrates that none of these characteristics alone, or combined with the
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4.2. Anticipating service regions from integer-infeasible solutions

underlying spatial patterns, yields sufficient insights into the underlying problem struc-

ture to anticipate how combinatorial dynamics will affect the optimal solution. Similar

observations have been made for the effect on DRA. In consequence, either combinations

of these characteristics lead to overlying effects or relevant characteristics not considered

at this point are necessary to anticipate the size of underlying service regions. However,

given the fact that these patterns are only inherent in the solution to a particular prob-

lem instance and do not necessarily constitute themselves in actual spatial patterns in the

form of clusters or other spatial zones, it is likely that they only emerge in combination

with constraints and objective of the associated mathematical program. Thus, some in-

formation on the structure of well-performing solutions must be provided to identify these

patterns.
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Figure 4.7.: Relationship between instance characteristics and level of interdependence for consid-
ered test instances

4.2. Anticipating service regions from integer-infeasible solutions

The experiments in the previous section have shown that overlapping effects of spatial

patterns, demand-capacity ratios, and the ratio between fixed costs and variable profits

make it challenging to anticipate even the level of interdependence between the facilities

operating in an optimal solution. These overlapping effects imply that service regions

are not a direct consequence of the spatial patterns underlying the problem instance and,

hence, cannot be derived from just these patterns.

Using the aggregated matrices of allocation decisions to well-performing solutions bears

the advantage that the effect of capacity, demand, required utilization to offset fixed costs,
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4.2. Anticipating service regions from integer-infeasible solutions

etc., are already implicitly included in the allocation decisions. These decisions combine

all information from the problem’s input data with the objective and constraints of the

mathematical program. Thus, in the following, we explore whether service regions that

characterize well-performing and, in particular, the optimal solution to a particular prob-

lem instance can also be derived from solutions that are easier to obtain. In particular,

we look at sets of solutions to linearly relaxed version of the CFLP.

4.2.1. Service regions from sets of linearly relaxed solutions

Service regions group together those customers that are served jointly by facilities in their

region. They manifest the spatial relationships between facilities and customers. Service

regions appear coherent in the hypothetical, two-dimensional plane derived by MDS. Well-

performing solutions will always allocate customers to facilities close to them. How close

is close enough, however, depends not only on the spatial relationships but also on, e.g.,

capacity-demand ratios and demand and capacity distribution. The allocation matrices

of a solution to the CFLP comprise all this information and indicate which facility is

“close enough” to which customers to serve them profitably. It is reasonable to assume

that this information on the implied spatial relationships cannot only be derived from well-

performing solutions but also integer-infeasible solutions to the linearly relaxed CFLP. The

latter solutions are significantly easier to obtain, particularly for large problem instances.

We test this hypothesis with the following experiment.

We consider three sets of solutions to the linearly relaxed CFLP for a given instance.

The first set SLRopt contains only one solution, the optimal solution to the linearly relaxed

problem. The second set of solutions, SLRI\i , is derived in a similar manner to SI\i (refer
to Eq. (2.11)). It is composed of the set of solutions obtained when facilities operating

in the optimal solution to the linearly relaxed problem are iteratively removed, and the

problem is resolved. Thus, let I⋆
LR

denote the index set of facilities for whom yi > 0 in the

optimal solution to the linearly relaxed problem, and s⋆
LR

I\i denote the optimal solution to

the linearly relaxed problem in which facility i has been removed from the set of candidates.

Then, we obtain

SLRI\i :=
{
s⋆

LR

I\i , i ∈ I⋆
LR
}
. (4.9)

The sets SLRopt and SLRI\i only assign facilities to service regions that serve customers in at

least of the solutions. Thus, we consider a third set, SLRI , of exactly |I| solutions. These

are obtained by iteratively fixing yi = 1 for each candidate facility and solving the relaxed

CFLP. Let s⋆
LR

i denote the optimal solution to the linearly relaxed CFLP in which yi has

been fixed to 1, so that we obtain

SLRI :=
{
s⋆

LR

i , i ∈ I
}
. (4.10)

Notice that SLRI is the only set that is guaranteed to contain some spatial information on

every candidate.

We derive service regions from each of the three different sets of linearly relaxed solutions
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4.2. Anticipating service regions from integer-infeasible solutions

using RegClus (Algorithm 2 from Section 3.2). We then evaluate the degree to which

the resulting service regions characterize allocation patterns in well-performing or even

optimal solutions to the original problem. Therefore, we derive sets of k best alternative

solutions Skk−best and determine ℓexternalα (R(SLR. , α, θ),Skk−best) (see Def. 3.8). The external

validation criterion measures the degree to which a given set of regions is representative

of the allocation decisions in the solutions of another set of solutions. Values close to 1.0

indicate that the service regions obtained from sets of linearly relaxed solutions persist

throughout well-performing and optimal solutions.

Example A 4.4We derive the SLRopt , SLRI\i , and S
LR
I for instances P1 and P2 from Example A.

Based on these sets, we determine service regions using the aggregation functions αindicator

and αprofit, and threshold levels θ of 0.01 and 0.05. Table 4.1 depicts the number of service

regions RegClus produces for the different inputs.

SLR
. SLR

opt SLR
I\i SLR

I

α αindicator αprofit αindicator αprofit αindicator αprofit

θ 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05

P1 17 17 17 17 1 2 4 11 1 2 4 13
P2 7 7 7 7 1 4 4 7 1 1 1 5

Table 4.1.: Number of regions in linearly relaxed solutions (P1-P2, Ex. A)

For SLRopt , one service region is produced for every facility serving some customers in the

optimal solution to the linearly relaxed problem. When service regions are derived from

SLRI\i or SLRI the number of service regions the facility-customer space is partitioned into

decreases significantly. Particularly, for SLRI and P2 only for αprofit and θ = 0.05, more

than one service region can be distinguished.

We derive sets of k best alternative solutions for P1 and P2, for k ∈ {1, 5, 20}. If k

equals 1, we only consider the optimal solution to the CFLP. The results for the external

validation criterion for the different combinations of service regions and sets are displayed

in Table 4.2.

SLR
. SLR

opt SLR
I\i SLR

I

α αindicator αprofit αindicator αprofit αindicator αprofit

k θ 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05

P1

1 0.63 0.63 0.69 0.69 1.00 0.99 0.96 0.91 1.00 0.95 0.91 0.86
5 0.57 0.57 0.69 0.69 1.00 0.97 0.96 0.92 1.00 0.96 0.91 0.86
20 0.46 0.46 0.68 0.68 1.00 0.95 0.95 0.91 1.00 0.95 0.92 0.86

P2

1 0.44 0.44 0.38 0.38 1.00 0.77 0.76 0.63 1.00 1.00 1.00 0.67
5 0.32 0.32 0.38 0.38 1.00 0.72 0.76 0.62 1.00 1.00 1.00 0.70
20 0.31 0.31 0.38 0.38 1.00 0.67 0.71 0.62 1.00 1.00 1.00 0.69

Table 4.2.: External loss ℓexternalα (R(SLR
. , α, θ),Skk−best) (P1-P2, Ex. A)

For P1, integer-infeasible solutions are well-suited to determine service regions that char-

acterize well-performing and optimal solutions. The external validation metric exceeds 0.9

for all service regions derived from SLRI\i and the majority of service regions derived from
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SLRI . For P2, those configurations that produce more than one service region perform

significantly worse, with ℓexternalα -values between 0.6 and 0.8.

Throughout both instances, we observe that the best results are obtained with the set of

solutions SLRI\i . The aggregation function αindicator combined with a threshold of 1.0 is

too restrictive, and only a single service region is produced. Best results throughout all

configurations and instances are obtained using αindicator and a threshold of 0.05. Similarly,

good results that perform slightly better on sets of k best solutions for P2 are obtained

with αprofit and a threshold of 0.01. ▲

The results from Example A 4.4 show that service regions derived from integer infeasible

solutions bear the potential to identify persistent decision patterns that characterize well-

performing and even optimal solutions. In the following, we validate these initial findings

on a broader set of instances.

4.2.2. Experimental validation: linking service regions to infeasible solutions

We repeat the experiment on the instances from the data sets described in Section 1.3.

We restrict considerations to the set of linearly relaxed solutions SLRI\i which performed

best in Example A 4.4. Table 4.3 displays the average number of regions obtained from

SLRI\i for different combinations of α and θ. Furthermore, it shows the average external

loss determined for the optimal solution (k = 1 in the set of k best solutions). Results are

grouped according to problem size and average dependence density.

αindicator, θ = 0.01 αindicator, θ = 0.05 αprofit, θ = 0.01
|I| Depavg avg. |R| avg. ℓexternalα avg. |R| avg. ℓexternalα avg. |R| avg. ℓexternalα

[0, 25)
[0, 0.1) 1.2 1.00 1.2 0.99 1.8 0.98
≥ 0.1 1.0 1.00 1.2 0.99 1.3 0.99

[25, 50)
[0, 0.1) 1.1 1.00 1.4 0.98 1.7 0.96
≥ 0.1 1.0 1.00 1.3 0.99 1.2 0.99

[50, 100)
[0, 0.1) 1.9 0.96 2.8 0.91 4.7 0.89
≥ 0.1 2.8 0.90 3.1 0.86 2.6 0.87

[100, 200)
[0, 0.1) 2.7 0.97 3.7 0.93 6.3 0.79
≥ 0.1 1.1 0.98 2.6 0.87 5.5 0.79

≥ 200
[0, 0.1) 1.4 0.98 2.8 0.92 2.8 0.91
≥ 0.1 1.4 0.98 3.6 0.87 6.6 0.61

Table 4.3.: Average number of regions and average external loss for the optimal solution

The results show that the service regions derived from linearly relaxed solutions represent

the allocation pattern in the optimal solution. The external loss is relatively high through-

out and often exceeds 0.95. We conclude from the considered parameter configurations

that when considering integer-infeasible solutions, the aggregation function αindicator per-

forms better than an aggregation function that emphasizes the actual allocation volume,

i.e., αprofit. While for θ = 0.01, few service regions can be distinguished. Instead, θ = 0.05

yields a good trade-off between the number of service regions produced and the represen-

tation of these service regions in the optimal solution.
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4.3. Conclusion

We assess whether service regions persisting throughout optimal and near-optimal solu-

tions to an instance can be derived either purely from the problem’s input data before

solving the CFLP even once or from sets of solutions that are potentially easier to obtain,

e.g., sets of solutions to the linear relaxation. For the first, we present concise measures

comprising the characterizing properties of the multi-dimensional data vector constituting

the CFLP instance. We relate these measures to the average dependence density and

demand reallocation. These measure the level of interdependence between the facilities

operating in the optimal solution. Increasing values imply larger service regions. However,

while the marginal effect of individual parameter variations on the level of interdependence

can be observed and explained, anticipating the level of interdependence in new instances

could not be achieved with the considered methods. While it is intuitive to assume that,

i.e., properties that characterize the spatial patterns underlying a problem instance can

be related to the implied separation into service regions, other characteristics like the de-

mand and capacity ratio also affect the size of these regions. This makes it challenging to

anticipate the level of interdependence for unseen instances.

We evaluate the level to which service regions can be derived from sets of solutions that

are easier to obtain than the optimal solution but still contain the added information on

the objective and constraints that is missing when looking purely at the data. Therefore,

we derive service regions from integer-infeasible solutions and evaluate whether they are

representative of service regions identifiable in sets of k best alternative solutions. The

results indicate that the so-obtained service regions perform well in grouping together

facilities that interdepend in the optimal solution.

The main results of the previous section can be summarized as follows:

• Service regions cannot be derived purely from the problem’s input data. In particu-

lar, they are not a direct consequence of the underlying spatial pattern. The latter

is only one factor shaping these regions.

• It is possible to obtain service regions that characterize the allocation patterns in

well-performing solutions from sets of integer-infeasible solutions.

We will evaluate the value of this newborn insight during our examination of the interplay

between service regions and the performance of solution algorithms in Chapter 5.
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regions

The reported solve times for instances P1-P4 from Example A indicate that the size of

the underlying service regions in a problem instance may be related to the difficulty this

instance poses for state-of-the-art solvers. The service regions result from interdepen-

dencies between individual location decisions and, therefore, are a manifestation of the

combinatorial element of the CFLP.

In the following chapter, we investigate how the implied separation into distinct service

regions of the facility-customer space and the interdependence of location decisions serving

the same region affect the performance of both heuristic and exact solution procedures.

In particular, we look at the following two questions

RQ4: How do service regions affect the performance of exact and heuristic solution

procedures for the CFLP?

RQ5: Can the acknowledgment of service regions improve the performance of exact

solution algorithms?

In Section 5.1, we survey publications on exact and heuristic solution algorithms for the

CFLP regarding whether or not the challenges these algorithms face on individual instances

are further investigated. In particular, we are interested in whether these challenges are

attributed to characteristics of the problem instance or the optimal solution.

In Section 5.2 and Section 5.3, we address RQ4. In Section 5.2, we evaluate the performance

of two heuristics, ADD and Kernel Search, and relate their performance to the size of

their underlying service regions. We use the instances from Example A to analyze the

individual steps of the algorithm and determine at which point the interdependence of the

optimal facilities serving customers in a service region jointly poses a challenge. We then

evaluate the relationship between the size of the underlying service regions and several

performance measures of CPLEX’s MIP solver as an example of a state-of-the-art exact

branching procedure. A detailed analysis of the search trees produced for the instances

from Example A indicates that ignoring the implied spatial relationships leads to inefficient

variable selection decisions.

Based on these newborn insights, we address RQ5 in Section 5.4. We use RegClus (Algo-

rithm 2 introduced in Chapter 3) to derive service regions from integer-infeasible solutions

early in the search tree of the branching procedure. We demonstrate that acknowledging

these service regions in the subsequent search process can lead to more efficient variable

selection and, thus, shorter solution times. We end with a brief outlook in Section 5.5.

5.1. Related work on the characteristics of challenging instances

Several well-performing exact and heuristic solutions procedures for the CFLP were pro-

posed in the early 2000s. However, today’s state-of-the-art solvers, e.g., CPLEX’s MIP

96



5.1. Related work on the characteristics of challenging instances

solver, can solve instances of the CFLP that consist of several hundred facilities and cus-

tomers in a reasonable amount of time, even on personal-use hardware. For strategic

location decisions, decision-makers typically do not require solutions within seconds but

can wait for a few minutes or even hours. Consequently, it is unsurprising that the number

of publications on this topic decreased in recent years.

Although identifying an optimal solution for moderately sized CFLP instances is less

challenging today than it was before, the properties that make some instances much harder

to solve than others are still unknown. The notion of abstract decision patterns that persist

throughout optimal and near-optimal solutions is a concept newly introduced in this thesis.

Thus, their relationship to the performance of different algorithms is an unexplored issue.

Meanwhile, understanding the difficulties that specific data and decision structures present

can not only yield important insights when it comes to solving instances but also be

valuable when solving extensions of the problem.

We review works presenting heuristic and exact solution algorithms for the CFLP and a

variant, the Single-Source CFLP (SS-CFLP). We must point out that all works discussed in

the following consider cost-minimizing formulations of the CFLP that require full demand

satisfaction. The primary objective of the computational experiments in these works is to

showcase the efficiency of the presented algorithms on benchmark instances. Few authors

point out individual instances that pose a particular challenge to their algorithm. The

distinguishing features that cause this challenge are rarely examined.

Table 5.1 presents an overview of the reviewed works. It provides information on the

problem (either CFLP or Single-Source CFLP (SS-CFLP)), whether an exact or heuristic

algorithm is presented, the benchmark instances that were used, and whether or not the

authors made any remarks on the particular difficulty of specific instances. The overview

highlights that comments on the difficulty of individual instances are rare.

Ahuja et al. [2004] present a very large-scale neighborhood search (VLNS) algorithm for

the SS-CFLP. They test their procedure on benchmark instances from ORLIB, OLRIB-L,

and HOL-1999, as well as undisclosed real-world instances based on an Italian cookie fac-

tory. While the authors explicitly address challenges solving instances p29-p32 from the

HOL-1999 data sets, the reasons are not further explored. The instances are simply said

to exhibit an inherent difficulty. Chia-Ho Chen [2008] combine a Lagrangian Heuristic and

Ant Colony System (LH-ACS) to solve the SS-CFLP. They test their procedure on in-

stances from HOL-1999 and ORLIB-L. As their procedure performs better than previous

ones, differences among the performance on individual instances are not further discussed.

Yang et al. [2012] present a Cut-and-Solve (C&S) based algorithm for the SS-CFLP. They

test their procedure on the data sets HOL-1999 and BAR-1991 and some self-generated

instances. The authors determine the ratio between fixed and variable costs as the dis-

tinguishing characteristic between different problem instances and generate instances in

which either one or the other dominates. However, they do not link differences in the

performance of their procedure to these characteristics.

As discussed in Section 2.2, one of the best-performing heuristics for the CFLP to date
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Source Model Procedure Data Remarks on indiv. instances

Dı́az and Fernández [2002] SS-CFLP B&P (E) BAR-1991
-

Ahuja et al. [2004] SS-CFLP VLNS (H)
ORLIB

✓ORLIB-L
HOL-1999

Klose and Görtz [2007] CFLP B&P (E)
ORLIB-L

✓
KLO-2007

Chia-Ho Chen [2008] SS-CFLP LH-ACS (H)
BAR-1991
HOL-1999

Avella et al. [2009] CFLP B&C&P (E)
KLO-2007

✓
AVE-2009

Görtz and Klose [2012] CFLP B&B + LR (E)
KLO-2007

✓
AVE-2009

Yang et al. [2012] SS-CFLP C&S (E)
HOL-1999
BAR-1991

Guastaroba and Speranza [2012] CFLP KS (H)
ORLIB
ORLIB-L
AVE-2009

Guastaroba and Speranza [2014] SS-CFLP KS (H)
ORLIB
ORLIB-L
HOL-1999

E: Exact, H: Heuristic

Table 5.1.: Related work on heuristic and exact procedures for the CFLP and SS-CFLP

is the Kernel Search (KS) algorithm as presented in Guastaroba and Speranza [2012].

After initially presenting the algorithm for the (multi-source) CFLP, two years later, the

authors present results for the SS-CFLP in Guastaroba and Speranza [2014]. In both

works, the authors perform extensive computational results on the instances from OR-

LIB, ORLIB-L, HOL-1999, and AVE-2009. However, the focus of these experiments is

the performance of their KS with different parameter settings. Differences regarding the

performance in individual instances are not discussed in detail. Dı́az and Fernández [2002]

propose a Branch-and-Price (B&P) procedure for the SS-CFLP and test their procedure

on the BAR-1991 benchmark instances. The results are competitive with the state-of-the-

art solution methods. However, they already indicate extreme variation in the difficulty

posed by individual instances. For example, for instances p42-p49, obtained with the same

generation procedure and containing 30 facilities and 75 customers each, the number of

nodes explored during CPLEX’s branch-and-cut solver varies between 408 and more than

50,000. However, these differences are not further investigated.

Klose and Görtz [2007] present another B&P procedure for the CFLP and evaluate their

procedure on the ORLIB-L instances, and the self-generated instances according to the

generation procedure presented in Cornuejols et al. [1991]. The KLO-2007 data set used

throughout this work is derived according to the same procedure with the parameter

settings from Klose and Görtz [2007]. The authors vary the capacity demand ratio, the

tightness (see Def. 4.1), between 3, 5, and 10. The authors observe significant differences

in the difficulty of instances from the two considered sets. In particular, instances from

the ORLIB-L data set of size 1000×100 (|J |× |I|) can be solved in a magnitude five times

faster than the instances of the generator of size 500 × 100. The authors suggest that a

reason for this is that the fixed costs to capacity ratio in the generated instances reflect
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economies of scale, while in the ORLIB-L instances, all facilities have the same capacity

with varying fixed costs. This makes some facilities more advantageous than others, which

in turn makes them easier to identify as optimal. Furthermore, the authors observe that

the tightness has a profound effect on the resulting difficulty of the problem instance. In

particular, their procedure is outperformed by CPLEX’s MIP solver on instances with a

high tightness ratio. They attribute this to the fact that, amongst others, these instances

are characterized by an extremely large number of solutions whose objective function value

is merely as small as the objective function value of an optimal solution. The authors

conclude that a method that requires only a relatively “small” effort per node will then

likely outperform a method that requires a large effort per node in the hope of reducing

the number of nodes to be processed further.

Avella et al. [2009] propose a Branch-and-Cut-and-Price algorithm that is based on a

reformulation of the CFLP as a fixed charge network flow problem. The latter yields novel

opportunities to generate cutting planes. The authors test their procedure on instances

generated according to the same procedure as KLO-2007. They acknowledge that tightness

values of 2 or 3 lead to easy-to-solve instances. Therefore, they generate instances with

tightness values up to 20 and increase the number of candidates and customers to 1000. The

authors observe that their cut generation procedure is beneficial for very large instances

with a tightness ratio greater than 5. For instances generated with tightness values of 5

and lower, the value of the LP relaxation is already relatively close to the optimal solution.

We look at this in Section 5.3.

Görtz and Klose [2012] present a Branch-and-Bound (B&B) method based on Lagrangean

Relaxation (LR) and subgradient optimization. The authors use the instances from ORLIB-L,

KLO-2007, and AVE-2009. They observe that the fixed costs significantly affect the dif-

ficulty of an instance. In particular, some instances from AVE-2009 exhibit smaller fixed

costs, resulting in more facilities being open in the optimal solution, resulting in less re-

strictive capacity restrictions. According to the authors, this makes instances with high

tightness ratios relatively easy to solve. Also, instances that exhibit higher transportation

costs (5 times larger than in the original generator) are determined to be relatively easy to

solve. Notice that both characteristics, low fixed costs and high transportation costs, lead

to the same effect: a high relevance of the transportation costs, ergo a need to be close to

customers and hence a decreased relevance of the capacity restrictions as more facilities

operate in an optimal solution.

In the following, we take a novel approach to investigating the immense variation of the

difficulty of individual problem instances of the same size. In particular, we investigate

the degree to which this difficulty is related to the size of the implied service regions. Fa-

cilities serving customers in the same service regions interdepend. Consequently, solutions

based on large service regions exhibit more interdependencies between individual decisions.

We show that these interdependencies pose a challenge to well-performing heuristics (Sec-

tion 5.2) and exact branching procedures (Section 5.3). In Section 5.4, we explore how

acknowledging these interdependencies can be used to speed up exact branching proce-

dures. To the best of our knowledge, this is the first work that explores this direction.
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5.2. Implications for heuristics

Several well-performing heuristics for the CFLP implicitly or explicitly exploit that the

optimal solutions to many instances are composed predominantly of independent facili-

ties (see Def. 2.11). These facilities are part of the optimal solution because they serve

customers in a relatively small service region optimally, independently of the allocations

in other parts of the facility-customer space. In consequence, algorithms that operate in

a forward-myopic manner are likely to perform well. Iteratively adding locally optimal

candidates to a solution is successful when the interdependencies between the individual

facilities play a minor role in the optimal solution. At the same time, one can expect a

weaker performance of greedy algorithms in solutions predominantly composed of interde-

pendent facilities, facilities that serve larger service regions optimally only in combination.

This is particularly true when the (individually) most profitable facility servicing a service

region is not part of the optimal solution, i.e., not part of the optimal interdependent sub-

set of facilities serving that region. The forward-myopic procedure of the greedy algorithm

will start by picking the most profitable facility and fail to anticipate its connections with

other facilities in that region.

We verify this assumption by looking at the performance of a specific greedy procedure.

We then evaluate the performance of KS, one of the best-performing heuristics for the

CFLP.

5.2.1. Effect on basic procedures: Greedy (ADD)

Jacobsen [1983] present the ADD procedure for the CFLP as a generalization of a greedy

procedure presented by Kuehn and Hamburger [1963] for the uncapacitated p-median

problem. ADD starts from no facilities operating and, in each iteration, “greedily” adds

that facility to the set of operating facilities, which yields the greatest improvement of

the objective value. Contrasting the profit-maximizing model considered throughout this

work, Jacobsen [1983] present and test their procedure on a cost-minimizing CFLP, which

requires full demand satisfaction. We outline an adapted version of the ADD procedure in

Algorithm 3. In its basic form, ADD requires solving one transportation problem for every

closed candidate in every iteration. To speed up the solution of the latter, Jacobsen [1983]

present methods relying on upper and lower bounds for these transportation problems

rather than their exact solutions. In Algorithm 3, we use a greedy approach to allocate

customers to facilities.

Example A 5.1 (Performance of ADD on service regions of different size) Consider

instances P1-P4 from Example A. P1 and P3 are two instances whose optimal solutions

are primarily composed of independent facilities implying relatively small service regions.

P2 and P4 exhibit strong combinatorial dynamics with larger subsets of interdependent

facilities serving larger underlying service regions. Table 5.2 displays the objective value

obtained with ADD, zADD, the optimal objective value, z⋆, and their relative gap, gapADD.

Let IADD denote the index set of facilities operating in the solution produced by ADD.

Table 5.2 furthermore displays the proportion of facilities in IADD that also operate in
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Algorithm 3 ADD for the profit-maximizing CFLP

Input: P
Output: zADD

1: zADD ← 0, Iopen ← ∅, Iclosed ← I, done← FALSE, ▷ Initialize.
2: while not done do ▷ Iteratively select and open facilities.
3: zcurrentbest ← 0, icurrentbest ← None
4: for i′ ∈ Iclosed do ▷ Evaluate all remaining facilities.
5: zi

′ ← −
∑

i∈Iopen Fi + Fi′

6: ηij ←

{
rj − cij , if i ∈ Iopen ∪ {i′},
0 , otherwise.

∀i, j

7: Q′
i ←

{
Qi , if i ∈ Iopen ∪ {i′},
0 , otherwise.

∀i

8: D′
j ← Dj ∀j

9: while min{
∑

iQ
′
i,
∑

j D
′
j} > 0 do ▷ Determine allocation and objective

10: i′′, j ← argmini,j ηij ▷ value when adding i′ to the solution.
11: volume← min{Q′

i′′ , D
′
j}

12: zi
′ ← zi

′
+ ηi′′j · volume

13: Q′
i′′ ← max{Qi′′ − volume, 0}

14: D′
j ← max{D′

j − volume, 0}
15: if min{Q′

i′′ , D
′
j} = 0 then

16: ηi′′j ← 0
17: end if
18: end while
19: if zi

′
> zcurrentbest then ▷ Evaluate which i′ yields the biggest improvement.

20: zcurrentbest ← zi
′
and icurrentbest ← i′

21: end if
22: end for
23: if zcurrentbest > zADD then ▷ If the obj. value can be improved, add icurrentbest

24: zADD ← zbest, Iopen ← Iopen ∪ (i), Iclosed ← Iclosed \ i ▷ to the solution.
25: else
26: done = TRUE ▷ Terminate otherwise.
27: end if
28: end while
29: return zADD
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the optimal solution as well as the proportion that is part of the set of replacements, Rep

(refer to Subsection 2.3.2). There is a clear distinction between the performance of ADD on

instances P1 and P3, and the instances P2 and P4. For P1 and P3, whose optimal solutions

are primarily composed of independent facilities, the solution produced by ADD equals

the optimal solution. Meanwhile, for P2 and P4, whose optimal solutions are primarily

composed of interdependent facilities implying larger service regions, gapADD is 0.5% and

0.6%, respectively. While that appears rather small, it must be pointed out that the

present instances have many solutions with an objective value within less than 0.5% of the

optimal objective value. Therefore, the results indicate a significant deviation from the

optimal policy. This is confirmed when looking at the percentage of facilities operating in

the optimal solution that are identified by ADD. The location decisions differ significantly,

with only 42.9% and 57.1% being part of I⋆. For instance P4, 28.6% of the facilities in

IADD are part of Rep. The results confirm that the interdependence of facilities makes

them difficult to detect heuristically in a forward-myopic manner.

zADD z⋆ gapADD (%) |(IADD ∩ I⋆)|/|IADD| (%) |(IADD ∩Rep)|/|IADD| (%)

P1 2373.1 2373.1 0.0 100.0 0.0
P2 19696.2 19803.9 0.5 42.9 0.0
P3 6525.0 6525.0 0.0 100.0 0.0
P4 37936.1 38177.0 0.6 57.1 28.6

Table 5.2.: Performance indicators for ADD (P1-P4, Ex. A)

Next, we look at the individual steps of ADD when finding a solution to P4. Table 5.3

shows the three candidate facilities with the largest values objective value in each iteration,

denoted z1, z2, and z3. Independent facilities like facility 128, facility 66, and facility 107

are chosen early in iterations 1, 2, and 4. In iteration 5, facility 10, part of a strongly

interdependent subset with facility 127 (iteration 7) and facility 155 (iteration 8), is chosen.

The subset facility 10 is part of is not optimal. Instead, facility 10 is part of Rep. However,

after facility 10 has been identified, none of the other optimal facilities in the corresponding

optimal subset was found.

iteration 1 2 3 4 5 6 7

i : zi = z1 128 66 119 107 10 144 127
i : zi = z2 66 119 107 10 127 127 165
i : zi = z3 119 107 10 127 155 165 155

iteration 8 9 10 11 12 13 14

i : zi = z1 155 154 78 125 137 162 135
i : zi = z2 154 78 38 184 20 46 98
i : zi = z3 78 38 157 83 24 152 46

bold: ∈ I⋆, italic: ∈ Rep

Table 5.3.: Top three candidate facilities per iteration in ADD (P4, Ex. A)

▲

The analysis confirms our hypothesis regarding the performance of ADD when identifying

interdependent subsets of facilities serving larger subsets of customers jointly. The forward-
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myopic procedure fails to anticipate interdependencies between facilities and is prone to

detect suboptimal subsets. This is confirmed for general instances when looking at a larger

database in Subsection 5.2.3.

5.2.2. Effect on advanced procedures: Kernel Search

Algorithm 4 Kernel Search (KS) for the profit-maximizing CFLP

Input: P, m
Output: zKS

1: Solve LP relaxation of CFLP.
2: Sort facilities in non-decreasing order based on the demand they serve in the LP

relaxation.
3: Build initial kernel, IK , with IK the first m facilities from the sorted list.
4: Build the sequence of buckets {Ih}h=1,...,NB from the |I| −m facilities. Each bucket

contains the next m facilities from the sorted list of facilities, such that NB =
⌈
|I|
m

⌉
−1.

5: Solve the CFLP considering only the facilities from IK and obtain zKS as the currently
best objective value.

6: for h ∈ 1, . . . , NB do
7: Solve CFLP considering facilities in IK and current bucket Ih.
8: Add the following constraints:

1.
∑

i∈Ih yi ≥ 1 : At least of facility from the bucket must operate.

2.
∑

i

∑
j xijDj(rj − cij)−

∑
i Fiyi > zKS : The objective value must improve.

9: Obtain z⋆ as the optimal solution to this problem.
10: if CFLP feasible then
11: zKS ← z⋆, IK ← IK ∪ {i ∈ Ih|yi = 1}
12: end if
13: end for
14: return zKS

KS is a meta-heuristic that is particularly effective for the CFLP. Algorithm 4 describes KS

for the profit-maximizing CFLP. Based on information from the LP relaxation, the binary

decision variables are divided into buckets. The bucket containing the most promising

subset of decision variables is denoted as the kernel. Then, in an iterative procedure,

the decision variables in the kernel are merged with those of individual buckets, and the

resulting (small) mixed-integer program is solved. The facilities operating in these solutions

are added to the kernel. If a facility does not operate for a given number of iterations, it is

removed from the kernel. Besides the problem instance P, the algorithm requires the size

of the initial kernel and the buckets m as input parameters. If, at some point, facilities

are removed from the kernel if they have not operated in a given number of iterations, this

number is another input required. For a detailed description of the algorithm, we refer to

Guastaroba and Speranza [2012]. We deviate from their description in the following ways:

• In each iteration and each kernel, we consider the entire set of customers, thus all

allocation variables, instead of only the most promising customers for each candidate

facility in the kernel.

• As the instances considered are relatively small, we explore the entire list of buckets

and do not delete facilities from the kernel at any point.
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We choose these deviations to be less dependent on the specific parameter settings of

the algorithm, thereby making our results more generalizable. The authors set m to the

number of candidates with a positive value in the LP relaxation. This parameter choice

is rather generous, as it makes the likelihood of including all optimal facilities already in

the initial kernel very high. Instead, we set m1 = tightness−1 · |I|, approximating the

minimum number of facilities necessary to fulfill all demands. We compare this setting

to setting m2 = tightness−1 · |I| · 0.5, which significantly decreases the size of the initial

kernel and each bucket, making it more likely that interdependent subsets of facilities are

assigned to different buckets.

We anticipate the following challenge regarding the detection of interdependent subsets

of facilities constituting large service regions. Suppose that, in the initial kernel, a non-

optimal facility that is part of the second-best subset of facilities serving a particular

service region is included and opened in the solution in the first iteration of the algorithm.

Individually, this facility is the most profitable facility in that service region. However, it

is not part of the optimal subset of facilities but only part of the set of replacements. This

facility is only identified as non-optimal if the entire subset of facilities that optimally serve

this service region is evaluated jointly. This would require all facilities in one service region

to be in the same bucket. However, as no notion of implied or actual spatial relationship

is included in the formation of the buckets, there is no guarantee that such an evaluation

will occur at any point during the algorithm.

Example A 5.2 (Performance of KS on service regions of different size) Table 5.4 displays

the results obtained with KS for instances P1-P4. The results are compared to the optimal

solution.

m1 m2

gapKS (%) overlap(I⋆, IK) overlap(I⋆, IKS) gapKS (%) overlap(I⋆, IK) overlap(I⋆, IKS)

P1 0.00 0.94 1.00 0.00 1.00 1.00
P2 0.03 0.57 0.57 0.21 0.60 0.50
P3 0.00 0.76 1.00 0.00 0.76 1.00
P4 0.00 0.83 1.00 0.00 0.60 1.00

m1 = tightness−1 · |I|, m2 = 0.5m1

Table 5.4.: Performance indicators for KS (P1-P4, Ex. A)

KS performs extremely well on all four instances and finds the optimal solution to instances

P1, P3, and P4. The relative objective value gap for P2 is negligible with 0.03% for m1 and

0.21% for m2. We determine the overlap coefficient (refer to Def. 2.7) between the set of

facilities operating in the optimal solution, I⋆, set of facilities in the initial kernel, IK , and

the set of solutions operating in the solution found by KS, IKS , respectively. Particularly

for the smaller kernel size, m2, the results indicate that while for P1 and P3 the initial

kernel contains many facilities also operating in the optimal solution. For instances P1
and P3, the overlap coefficient is 1.0 in both cases as the set of facilities operating in the

optimal solution is already in the initial kernel. In fact, for these instances, the initial

kernel is composed exclusively of optimal facilities. Meanwhile, for P2 and P4, the initial
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kernel contains several facilities that are not part of the optimal solution. In particular,

when we decrease the size of the initial kernel, the overlap coefficient between I⋆ and IK

decreases significantly in both instances, indicating that several of the most “promising”

facilities in these solutions are not optimal. While for P4, the optimal solution could

be subsequently retrieved, for P2, another (well-performing) solution was found at the

end in which candidates differed significantly from the candidates in the optimal solution.

Therefore, while in the presence of multiple near-optimal solutions, KS yields very good

results, it is still prone to end up with suboptimal subsets of facilities, particularly, when the

optimal interdependent subset of facilities is never evaluated jointly as individual facilities

are placed in different buckets. Again, we will validate this observation on a larger set of

instances in the following. ▲

5.2.3. Experimental validation: heuristics and large service regions

In the following, we validate the above findings on the problem instances from Section 1.3.

5.2.3.1. ADD

Example A 5.1 indicated that ADD performs significantly better on instances whose so-

lutions primarily comprise independently operating facilities and exhibit little to no com-

binatorial dynamics. This is confirmed when looking at a larger set of problem instances

from literature, in particular, the instances from Section 1.3. Figure 5.1 depicts the dif-

ference between the optimal solutions and the solution obtained with ADD.Therefore, we

compare solutions in the objective value and the decision space. The observations are

grouped according to whether the optimal solution exhibits primarily independently op-

erating facilities (Depavg < 0.1) or whether it depicts interdependent facility subsets of

varying size (Depavg ≥ 0.1). The differences between these two groups of instances are

significant. as indicated by the distribution of gapADD (%). As Figure 5.1a depicts, there

are several other influencing factors besides the size of the underlying service regions.

However, for problems with 0 to 199 candidates, ADD performs better on facilities with

primarily independently operating facilities. Interestingly, the anticipated effect that ADD

performs better on instances with smaller service regions and, therefore, less combinatorial

dynamics (Depavg < 0.1) can only be observed for instances with more than 50 candidate

facilities. Consequently, the interdependence of individual facilities is not the only factor

affecting the performance of greedy procedures. Figure 5.1b depicts the distribution of the

overlap coefficients between the optimal solutions and the solutions obtained with ADD.

Throughout all instances, we see that the facilities operating in the ADD solution differ

more significantly from those operating in the optimal solution for instances exhibiting a

high interdependence. Consequently, the high observed gaps for instances with a smaller

number of facilities may be attributed to the fact that individual facilities are likely to

have a higher impact on the optimal objective value with a potentially higher variation.

5.2.3.2. Kernel Search

Figure 5.2 depicts the difference between the optimal solutions and the solutions obtained

with KS in both the objective value and the decision space. In general, KS performs
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Figure 5.1.: Difference between optimal solution and solutions obtained with ADD

significantly better than ADD. When the size of the initial kernel (and each bucket) equals

the inverse tightness times the number of candidates (m1), the optimal solution is found

for over 90% of the instances. However, as Figure 5.2 depicts, in the presence of large

underlying service regions, KS may fail to detect the optimal subsets of facilities, and the

resulting set of facilities operating in the heuristic solution may differ significantly from the

set of facilities operating in the optimal solution. This difference becomes more significant

when the size of the kernel is smaller, e.g., the case when m = m2, and interdependent

subsets of facilities may not be evaluated jointly.
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Figure 5.2.: Difference between optimal solution and solutions obtained with KS with m2 = 0.5m1

We evaluated the degree to which interdependent subsets of facilities in an optimal solu-

tion to a facility location instance affect the performance of heuristics. Both, the detailed

analysis of instances from Example A in Example A 5.1 and Example A 5.2 as well as the

experiments on sets of instances from Section 1.3, support our hypothesis that interdepen-

dent facilities are more difficult to detect heuristically than independent facilities. We will
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evaluate the effect on exact branching procedures in the following.

5.3. Implications for exact branching procedures

Rather than a specific algorithm, branching procedures, or, more specifically, branch-

and-bound methods, describe a family of algorithms that share a common core solution

procedure that allows producing exact solutions to NP-hard problems. The procedures

“implicitly enumerate all possible solutions to the problem under consideration by storing

partial solutions called subproblems in a tree structure. Unexplored nodes in the tree

generate children by partitioning the solution space into smaller regions that can be solved

recursively (i.e., branching), and rules are used to prune off regions of the search space that

are provably suboptimal (i.e., bounding). Once the entire tree has been explored, the best

solution found in the search is returned.[Morrison et al., 2016]” Three components of the

procedure have a significant effect on the performance: the search strategy, i.e., the order

in which subproblems in the tree are explored; the branching strategy, i.e., how the solution

space is partitioned to produce new subproblems in the tree, and the pruning rules, i.e.,

rules that prevent exploration of suboptimal regions of the tree. Most recent developments

focus on developing better pruning strategies, e.g., cutting planes or column-generation

procedures.

CPLEX’s MIP solver implements a Branch-and-Cut (B&C) procedure in which each com-

ponent of the branching procedure is enhanced by a bundle of methods. At each node of

the search tree, CPLEX solves the LP relaxation, attempts to generate cutting planes to

cut off the current solution, invokes a heuristic to try to find an integer feasible solution in

the neighborhood of the current relaxed solution, selects a branching variable and finally

places two nodes that result from branching up or down on the branching variable back

into the tree. For each of these steps, CPLEX includes several automated methods [IBM

Corporation, 2021b]. As the solver is proprietary, not all strategies used throughout the

solution procedure are publicly available.

Example A 5.3 (Performance of CPLEX’s MIP solver) Example A demonstrated that

the solve times CPLEX’s MIP solver takes to determine optimal solutions to problem

instances of the same size may differ significantly. Instances P1 and P2 both comprise 100

candidates and customers. Yet, the solver takes 0.19 seconds to find an optimal solution to

P1, while it takes 7.03 seconds for P2. For instances P3 and P4 that contain 200 candidates

and customers each, that difference is even bigger with solve times of 1.63 seconds and

54.99 seconds, respectively. This difference regarding the performance of the solver is not

only visible in the solve time but also in other statistics describing the B&C procedure as

displayed in Table 5.5. The depth of the search tree, the number of nodes explored, and the

number of incumbents that were processed differ significantly and explain the differences

in the reported solution times. For example, while only eight nodes need to be explored

to obtain an optimal solution to P3, 2326 nodes are explored in the solution process of P4.

We also report the solutions to the incumbents found throughout the search procedure

and determine which percentage of the facilities operating in any incumbent solution is
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Depavg size (|I| × |J |) time (s) tree depth # nodes # incumb. ∈ I⋆ (%) ∈ I⋆ ∪Rep (%)

P1 0.00 100× 100 0.19 0 0 1 100 100
P2 0.50 100× 100 7.03 73 534 8 50 86
P3 0.00 200× 200 1.63 5 8 3 100 100
P4 0.45 200× 200 54.99 87 2326 10 67 94

Table 5.5.: Solve statistics of CPLEX’s MIP solver (P1-P4, Ex. A)

part of the optimal solution (∈ I⋆), or either part of the optimal solution or the replace-

ments (∈ I⋆ ∪Rep). For P1 and P3, the incumbent solutions contain exclusively facilities

operating in the optimal solution. Thus, as already found by Avella et al. [2009], the LP

relaxation is close to the optimal solution. In contrast, for instances P2 and P4, only 50%

and 67% of the facilities from the incumbents also operate in the optimal solution. If one

includes the set of facilities in the sets of replacements, these percentages increase to 86%

and 94%, respectively. This emphasizes that fractional nodes corresponding to interde-

pendent facilities lead to sub-optimal branching decisions more often and, consequently,

explore more sub-optimal solutions. ▲

In the following, we explore how the size of the underlying service regions in a given

instance, and thus the implied interdependencies between facilities, affects the performance

of the branching process. In particular, we look at the effect of the variable selection

strategy. Our central hypothesis is that when facilities interdepend, it is advantageous to

explore all interdependent facilities in a service region shortly after another. In particular,

in Subsection 5.3.1, we determine the degree to which interdependence relationships affect

the distribution of values in the LP relaxation. In Subsection 5.3.2, we examine the effect

these interdependence relationships have on the performance of different variable selection

strategies. Again, we evaluate all hypotheses on the instances from Example A. We

validate all findings on instances from Section 1.3 in Subsection 5.3.3.

5.3.1. Effect of service regions in the linear programming relaxation

Avella et al. [2009] observe that for instances generated according to the same procedure

as P1 and P3 from Example A, the values of the decision variables in the LP relaxation

are very close to the optimal solution. State-of-the-art MIP solvers such as CPLEX use

a bundle of methods to determine the order in which nodes are branched. However, high

values of decision variables in the LP relaxation are a standard criterion for identifying

decision variables on which to branch early on. When a facility i that is part of an

interdependent subset of suboptimal facilities Rep(i′), i ̸= i′, is branched on early in

the search process, the search tree is likely to detect the sub-optimal solution containing

the facilities in Rep(i′) before the optimal solution operating the facilities in Dep(i′). In

consequence, the associated branch is not fathomed quickly. As the solver is unaware of

these interdependencies the search procedure is prolonged.

Example A 5.4 (Values in the LP relaxation) Figure 5.3 depicts the distribution of the

optimal values for the location decisions in the linear programming relaxation (LPR(yi))
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relative to their pseudo-reduced costs (see Def. 2.6). The color indicates whether or not

the facilities are open or closed in the optimal solution.
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Figure 5.3.: LPR-values versus prc%-values (P1-P4, Ex. A)

There are significant differences between instances P1 and P3 versus P2 and P4. In P1 and
P3, the LPR-values of all open facilities exceed 0.5, with the majority equaling 1.0 in both

instances. Thus, the solution to the linear programming relaxation is indeed very close to

the optimal solution. For P2 and P4, this is totally different. The absolute LPR-values

of facilities operating in the optimal solution are relatively low, mostly below 0.5, and in

particular, not higher than those of facilities not operating in the optimal solution.

Figure 5.4 sets the LPR-values in relation to whether or not the associated facilities are in

the sets Dep(i) or Rep(i). One can see very clearly that for instances P1 and P3, the LPR-

value of the facilities operating in the optimal solution (i ∈ Dep) are significantly higher

than the LPR-value of the facilities operating in the corresponding subsets of replacement

facilities (Rep(i)). In contrast, for the interdependent subsets of facilities operating in the

optimal solutions of P2 and P4, for several interdependent subsets Dep(i), the LPR-values

of facilities operating in the replacement Rep(i) are higher for at least some facilities in

Rep(i). ▲
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Figure 5.4.: LPR-values of location decisions for all Dep(i) and Rep(i) (P1-P4, Ex. A)
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Example A 5.4 supports the idea that interdependent subsets of optimal facilities, as in-

duced by large customer service regions, are difficult to detect for standard branching

procedures as oftentimes the LPR-values of facilities that are operating in an interdepen-

dent set of replacements are likely to be branched on early on. The branch that operates

these facilities is likely only pruned once the entire set of facilities operating in the optimal

solution and the set of replacements has been branched on so that a direct comparison

is possible. This may occur much later during the search process. To further validate

this hypothesis, we take a closer look at the incumbents produced throughout the search

process for P2 and P4.

Example A 5.5 (Dependence relationships of facilities operating in incumbent solutions)

To validate the above considerations, we present the solutions at individual incumbents of

the search trees created during solving P2 and P4. The subsets of facilities operating in

the associated solutions and whether they can later be found in I⋆ or Rep are depicted in

Table 5.6 and Table 5.7. The node ID represents their rank in the search process. The

nodes are ordered sequentially in the order of their creation, not in the order of their

exploration. The incumbent in the last row corresponds to the optimal solution. We see

two different effects. In the search process for P2, one part of the search tree with the

strongly interdependent subset {17, 71, 79} was explored in parallel to another part that

explored solutions operating its replacing subset {63, 66, 97}. For P4, facility 10 (∈ Rep)

Node ID ∈ I⋆ ∈ Rep other

3 15 - -
8 15, 29 66 -
11 15, 29, 67 97 -
14 15, 24, 29 66,97 -
17 15, 24, 29 83 5, 59
377 15, 17, 29, 67 21, 66, 97 -
787 15, 17,24, 29, 67 63, 66, 97 -
917 15, 17, 24, 29, 67, 71, 79 - -

Table 5.6.: Facilities operating in the incumbent solutions (P2, Ex. A)

ID ∈ I⋆ ∈ Rep other

3 107, 128, 154 10, 155 -
6 78, 107, 128, 154 10, 147 -
9 66, 78, 107, 128, 154, 162 10 -
12 66, 78, 103, 107, 128, 154 10, 155 -
13 66, 78, 103, 107, 119, 128, 154, 159, 162 10, 195 98
22 54, 66, 78, 103, 107, 128, 135, 154, 162 10, 152, 155
131 66,78, 103, 107, 119, 128, 135, 162 10, 147, 152 -
2059 54, 55, 66, 78, 103,107, 128, 154, 162 10, 152 -
66 55,66,78,103,107,119,128,135, 154, 162 10, 152
70 54, 55,66,78,103,107,119,128,135, 154, 159, 162

Table 5.7.: Facilities operating in the incumbent solutions (P4, Ex. A)

is branched on early and operates in the first incumbent solution. Facility 10 is part of

the set of replacements of 5 interdependent subsets of facilities. Only when the resulting

111



5.3. Implications for exact branching procedures

branch has been fully explored does CPLEX’s search process devotes attention to the

other branching direction and finds the optimal solution that does not contain facility 10.

This confirms the effect that we anticipated previously. Meanwhile, the two independent

facilities, 107 and 128, were easy to detect. They operate in every incumbent solution.

These two facilities also had the highest value in the LP relaxation at the root node.

Facility 107 had a value of 0.71, and facility 128 had a value of 0.57. ▲

We conclude that combinatorial dynamics in the form of interdependent service regions

lead to the fact that the values of the decision variables in the LP relaxation are a less

reliable indicator for the optimal branching direction of individual variables. Consequently,

it is more likely to happen that suboptimal facilities are operating in early incumbents.

If these facilities are part of an interdependent subset of facilities, the entire subset must

often be explored before the branch can be fathomed. In consequence, the size of the

search tree, particularly its depth, increases, leading to longer solve times.

5.3.2. Effect on the performance of different search strategies

As stated before, CPLEX’s MIP solver is a proprietary software that implements a bundle

of methods. In particular, it has several ready-to-use options implemented for each step

of the branching procedure, e.g., the search strategy (which node to explore next) or

the variable selection strategy (which variable to branch on given a fractional solution in a

node). For the latter, common state-of-the-art methods like branching on the variable with

minimum or maximum infeasibility, the variable with the highest pseudo-reduced costs,

the highest estimated pseudo-shadow prices, or strong branching, variable selection based

on partially solving a number of subproblems, are pre-implemented and can be selected by

the user. However, CPLEX’s default variable section strategy is undisclosed and selects

“the best rule based on the problem and its progress [IBM Corporation, 2021a].” To keep

the procedure proprietary, the user can’t read out information on the branch of the current

node (e.g., parent nodes) unless it is a user-defined, self-implemented branching strategy.

We use CPLEX’s callback classes to implement state-of-the-art variable selection strategies

ourselves. This allows us to attach labels to nodes and to retrieve the search tree from

a particular solve procedure. We use CPLEX’s BranchCallback class, which, given the

fractional solution at a node, allows the user to create two custom branches. Creating

the branches according to a customized procedure implies a custom implementation of the

variable selection strategy. We implement the minimum feasibility strategy, a strategy

that branches on that supposed-to-be-binary variable that is closest to 0 or 1, maximum

feasibility, a strategy that branches on that supposed-to-be-binary variable that is closest

to 0.5, and pseudo-cost branching, a strategy that branches on that supposed-to-be-binary

variable with the highest estimated pseudo-shadow price. Thereby, CPLEX has a pre-

implemented function, get_pseudo_costs(), that allows to obtain the current estimated

pseudo-shadow price at every node.

By backtracking the search tree, we can get information on how often certain binary

variables (location decisions) were branched on and in which order. This, in turn, allows
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backtracking whether our hypothesis that the ignorance of the interdependence of facilities

serving the same service region is a key impediment throughout the search procedure.

Example A 5.6 (Effect of different variable selection strategies) Table 5.8 displays the solve

time, the maximum tree depth, as well as the number of explored nodes when solving

instances P1-P4 with different variable selection strategies. The significant discrepancy

between the solve times and the size of the search tree between instances of the same

sizes is persistent throughout all search procedures. While CPLEX’s default procedure is

the best-performing strategy overall, it is slightly outperformed by the max. infeasibility

strategy on P4.

CPLEX default min. infeasibility max. infeasibility max. pseudo costs
time (s) nodes depth time (s) nodes depth time (s) nodes depth time (s) nodes depth

P1 0.2 0 0 0.2 0 0 0.2 0 0 0.2 0 0
P2 7.1 534 73 14.6 980 64 9.8 524 66 10.8 656 64
P3 1.6 8 5 1.9 12 5 1.8 8 4 1.8 6 4
P4 56.0 2326 144 244.2 6574 131 53.5 903 87 100.4 2114 86

Table 5.8.: Performance of different variable selection strategies (P1-P4, Ex. A)

We want to know whether the hypothesis that the ignorance of spatial relationships and the

resulting interdependencies leads to candidates belonging to the same service region being

branched on and searched at very different levels of the search tree. However, the order

in which variables are branched on throughout the search process depends not only on

the branch variable selection but also on the node selection strategy. Per default, CPLEX

is using a best-bound strategy. However, a depth-first strategy is also pre-implemented.

Figure 5.5 illustrates the order in which candidate facilities are branched on. The color

code indicates the iteration that the candidate facility was branched on for the first time.
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Figure 5.5.: Iteration in which variables are branched on first for different search strategies and
variable selection strategies (P2, Ex. A)

Figure 5.5a and Figure 5.5b illustrate the iteration with which candidates are branched on

first for the best bound and the depth-first strategy, respectively. Individual candidates

are branched multiple times, and some candidates are branched on rather late in the search

procedure, e.g., at iteration 300, the color-coding does not reveal the sequence in the early
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iterations. Therefore, in Figure 5.5c, the sequence up to iteration 75 is illustrated. The

figure clearly shows that the variable-branching and node selection strategy applied by the

procedure lead to candidates at different spatial regions of the facility customer space being

branched on sequentially. In particular, in every spatial region of the facility-customer

space, some facilities are branched on very late in the search process. If the associated

variable is essential to rendering a potentially explored subset of facilities sub-optimal, the

associated branch will be pruned extremely late. ▲

This supports our hypothesis that the sub-optimality of certain location decisions revealed

only in combination with the branching decisions of other candidates in the same service

region is detected late in the search process when the spatial relationships of these candi-

dates are not acknowledged. Service regions detected by RegClus can be a means to make

this implied spatial information available during the search process.

5.3.3. Experimental validation: implications for branching procedures

We hypothesize that the interdependence of individual candidates induced by larger service

regions significantly affects the performance of branching procedures, in particular, the

performance of CPLEX’s MIP solver. In the following, we validate the observations from

Example A 5.4 and Example A 5.6 on the instances from Section 1.3. In particular,

Table 5.9 depicts the Spearman correlation coefficients between the average dependence

density, Depavg, (see Def. 2.13) and several statistics indicating the complexity of the

search process in CPLEX’s B&C procedure grouped by problem size. In particular, the

table depicts correlation with the solve time in seconds, the depth of the search tree, and

the percentage of facilities operating in any incumbent solution operating in the optimal

solution ∈ I⋆ (%), or either the optimal solution or any replacement ∈ I⋆ ∪ Rep (%).

The data shows that within each size group, there is a significant correlation between

the solve time as well as the depth of the search tree and the presence of dependence

relationships between individual facilities indicated byDepavg. While an increasing average

dependence density negatively affects both the percentage of optimal solutions and their

replacements examined in the search process, a linear relationship between Depavg and

∈ I⋆ (%) or ∈ I⋆ ∪ Rep (%) cannot be established for individual size groups. However,

the low negative correlation across all size groups indicates a negative impact. Thus, with

increasing interdependence relationships between individual facilities, more solutions that

operate facilities that neither operate in the optimal solution nor its replacements are

examined.

The correlation coefficient of 0.49*** between the total solve time and Depavg on any

instance is significant, even when instances are not grouped by size, but all instances are

considered. However, if we determine the correlation coefficient across all instances be-

tween the number of candidate facilities |I| and the solve time, we obtain 0.83***. Even

though the problem size has a more significant impact on the solve time, the interde-

pendence relationships in the optimal solution significantly affect the performance of the

branching procedure.
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|I| time (s) tree depth ∈ I⋆ (%) ∈ I⋆ ∪Rep (%)

[0, 25) 0.76*** 0.59*** -0.59*** -0.35*
[25, 50) 0.71*** 0.54*** -0.22 -0.01
[50, 100) 0.84*** 0.7*** -0.34 -0.28
[100, 200) 0.35* 0.63*** -0.51** -0.35
≥ 200 0.86*** 0.95*** -0.51 -0.46

> 0 0.49*** 0.55*** -0.38*** -0.26***

*p < 0.05; **p < 0.01;***p < 0.001

Table 5.9.: Spearman’s correlation coefficient between average dependence density (Depavg) and
statistics of CPLEX’s B&C procedure

Figure 5.6 depicts the distribution of solve times observed for different variable selection

strategies grouped by whether or not the solution has previously been identified to exhibit

strong interdependencies (Depavg ≥ 0.1). For both explored search strategies, maximum

infeasibility, and maximum pseudo costs, we observe significant differences regarding the

solve times. The profound effect of the existence of interdependencies on the size of the

search tree is further supported by Table 5.10 and Table 5.11 that respectively display the

average depth of the search tree and the average number of nodes explored. They show

that for all variable selection strategies, the existence of interdependent subsets of facilities

significantly affects the size of the search tree.
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Figure 5.6.: Distribution of solve times for different variable selection strategies

The exploration of CPLEX’s search process made it evident that the sequential branch-

ing on individual nodes corresponding to individual facilities inherent to any branching
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tree depth
max. infeasibility max. pseudo costs min. infeasibility

|I| Depavg [0, 0.1) ≥ 0.1 [0, 0.1) ≥ 0.1 [0, 0.1) ≥ 0.1

[50, 100) 2.8 16.1 3.4 21.4 3.2 24.3
[100, 200) 6.1 48.2 15.1 55.6 18.0 58.1
≥ 200 5.8 84.0 8.6 89.0 10.6 103.0

Table 5.10.: Average depth of the search tree for different variable selection strategies

# nodes
max. infeasibility max. pseudo costs min. infeasibility

|I| Depavg [0, 0.1) ≥ 0.1 [0, 0.1) ≥ 0.1 [0, 0.1) ≥ 0.1

[50, 100) 13.2 98.8 17.8 87.4 23.5 120.9
[100, 200) 68.9 667.1 81.9 629.4 124.6 839.4
≥ 200 26.6 964.8 20.8 1926.8 78.0 4034.8

Table 5.11.: Average number of nodes explored for different variable selection strategies

procedure is very effective in identifying independent facilities (see Def. 2.9). However,

when facilities in the optimal solution strongly interdepend (see Def. 2.10), it is difficult to

prune parts of the tree that explore alternative interdependent subsets. We demonstrated

that the state-of-the-art variable and node selection strategies fail to acknowledge the in-

terdependencies of individual decisions, which, in discrete location problems, are induced

by the underlying service regions. In the following, we explore how the information on the

implied customer regions can help to improve the branching process.

5.4. Pattern-based regional branching

The experiments in Section 5.3 suggest that ignoring the interdependencies of facilities

serving the same service region can lead to inefficient branching decisions. Rather than

identifying the optimal set of facilities to serve a certain region, the branching procedure

jumps from service region to service region, ignoring spatial relationships implied by the

profit matrix. This procedure works fine when service regions are small, and facilities

are independent. In this case, just as in greedy procedures, successively branching on

individual variables of different regions will be just as efficient as branching according

to the implied regional pattern. However, when facilities interdepend, it is likely that

branches can only be pruned when all promising facilities belonging to the same service

region have been branched on. When this happens at very different levels of the tree, this

leads to large search trees. In consequence, the search procedure takes longer.

In the following, we explore how information on the interdependence of location decisions

can enhance the branching procedure. In particular, we identify service regions from

fractional solutions early in the search tree and then branch the variables of facilities

serving different regions sequentially. The idea is that by branching on variables from the

same region one after another, optimal interdependent subsets can be identified earlier,

leading to lower tree depth and, thus, faster solve times. We use the RegClus (Algorithm 2

introduced in Section 3.2) to identify these service regions. This, in particular, implies that
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no information on the underlying spatial structure in the form of coordinates or transport

costs adhering to a specific metric is necessary.

We describe the regional variable selection strategy and perform preliminary experiments

on the instances from Example A in Subsection 5.4.1. In Subsection 5.4.2, we test the

proposed branching strategy on the instances from Section 1.3.

5.4.1. Regional variable selection

We first describe the proposed regional variable selection strategy which assumes that

information on the underlying service regions is readily available. We subsequently discuss

how to obtain these service regions from fractional solutions early in the search tree, which

is the more challenging question in this context.

Given a set of regionsR and a fractional solution ŝ = (ẑ, ŷ, x̂) at a node, we choose the next

variable to branch on based on the procedure described in Algorithm 5. We first choose

a region k to concentrate on. Of all regions that still contain facilities whose associated

decision variables are fractional, we choose the smallest one, that is, the one with the fewest

facilities. Then, among all facilities in the region k whose associated decision variable is

fractional, we use the maximum infeasibility strategy. This means we choose that facility

whose value is closest to 0.5.

Algorithm 5 Regional variable selection

Input: R, ŷ
Output: i
1: k ← argmink=1,...,|R| |Ik|s.t.

∑
i∈Ik ŷi is fractional ▷ Choose target region.

2: i← argmini∈Ik |ŷi − 0.5| ▷ Choose facility within that region.
3: return i

Algorithm 5 is simple and straightforward. The challenging task is not to determine a

branching variable but to obtain the set of regions R in the first place. We determine R
with Regclus. Regclus requires three inputs: a set of solutions S, an aggregation function

α, and a target level of coherence of the produced regions θ. For each of these inputs,

several choices present themselves.

The first question concerns the solutions that should be considered when invoking Regclus.

When considering only the solution to the LP relaxation, it is likely that, unless customers

are served by more than one facility, each fractional facility will be assigned its own service

region, and interdependence relationships remain undetected. Information from more than

one solution is needed to detect the dependence relationships that form distinctive service

regions. One option is to take the solutions to the first n nodes of the search tree. This

way, some branching decisions will have enforced some overlap between the subsets of

customers served by individual facilities. Another idea is to take only the first n “good”

solutions, e.g., the first n incumbents or the first n solutions at a specified depth of the

search tree. In the latter case, good means that the associated branch could not be pruned

up to a certain level.
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5.4. Pattern-based regional branching

For α and θ, we essentially have all options presented in Section 3.2 to choose from. The

aggregation function α determines the weight with which individual allocation decisions in

any of the solutions in S are considered in the biclustering underlying Regclus. While more

comprehensive functions like, e.g., αprofit, that weigh each allocation by their associated

value in the objective value seem like a sensible choice, it might also deter the algorithm

from low-profit allocations that do not contribute much to the optimal objective value

but essentially distinguish the optimal from the sub-optimal solution. On the contrary,

an aggregation function like αindicator that assigns each allocation the same weight, not

even considering whether it occurred in many or just a single solution, might give too

much emphasis on irrelevant allocations potentially enforced by suboptimal branching

constraints. Similarly, a suitable target level of coherence θ is difficult to derive up front.

A larger value of θ allows for more interaction between regions and will thus produce a

finer separation into potentially smaller regions.

Lastly, another question is whether it is worth updating R throughout the branching

procedure or whether it suffices to produce one set of regions initially and work with that

until the end. The advantage of updating R could be that more and better information

on the underlying decision patterns reveal themselves throughout the search process, in

particular, if only solutions that have proven themselves as advantageous (e.g., incumbents

or solutions at relatively low levels of the search tree that could not yet be pruned) are

considered. Furthermore, only facilities and customers that have an associated non-zero

allocation in any of the considered solutions are assigned to a service region by Regclus.

Thus, deriving regions from a relatively small set of solutions at the beginning of the tree

might result in some relevant facilities not even being included in any of the service regions.

However, even though Regclus is a very efficient procedure, each time it is invoked adds to

the total time of the branching procedure. Furthermore, regional substructures are likely

to be identified early on.

We perform preliminary experiments on the instances from Example A to determine sen-

sible choices for the above parameters.

Example A 5.7 (Pattern-based regional branching) In the subsequent experiment, we focus

on instances P2 and P4, which exhibit larger service regions consisting of more than one

facility and that require exploring a search tree of considerable size. Figure 5.7a depicts

the solution to the LP relaxation of P4. Each facility serves only a very small number

of customers, and few customers are served by more than one facility. Using solely this

solution as an input for RegClus will produce many extremely small regions that do not

yield additional insights. Figure 5.7b displays the solution at the first node CPLEX’s MIP

solver performs a branching operation on, the root node. It differs from the solution to

the LP relaxation in the sense that CPLEX has already applied several cuts and various

other enhancements. One can see that fewer facilities operate in total, and more customers

are served by more than one facility. Throughout all our experiments, we observe that

in many of the solutions at the root node, several customers are served by more than

one facility, even though capacities are not necessarily scarce. Figure 5.7c illustrates the

regions produced by RegClus when taking only the solution at the root node and setting
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5.4. Pattern-based regional branching

α =count and θ = 0.1. Figure 5.7d-Figure 5.7f display the regions obtained when taking

the solutions of the first 5, the first 10, or even the first 20 nodes as an input for RegClus.

One can see that while different pairs of groups are joined for different sets of solutions,

several service regions remain constant across all presented divisions.

(a) solution to LP rel. (b) root node solution, n = 1 (c) service regions, n = 1

(d) service regions, n = 5 (e) service regions, n = 10 (f) service regions, n = 20

Figure 5.7.: Bipartite graph and service regions for diff. n (αcount, θ = 0.1, P4, Ex. A)

Given that the produced service regions change only minorly, we provide preliminary ex-

periments for P2 and P4 for service regions obtained from the solutions at the root node

(n = 1), and the first n = 5 nodes respectively. In our initial experiment, we consider all

different functions α and vary θ between 1%, 5%, and 10%. As our variable selection strat-

egy only affects the search process as long as variables associated with facilities assigned

to a region are fractional, the rest of the selection process is performed independently of

any service regions. In particular, we compare our performance to the performance of

the search when using either CPLEX’s default variable selection procedure or maximum

infeasibility throughout.

Table 5.12 displays the solve time in seconds (including the time it took to invoke RegClus),

the depth of the search tree as well as the number of nodes explored for different input pa-

rameters to RegClus. When figures are printed in bold, they outperform CPLEX’s default

search. The results indicate the potential of including information on the interdependen-

cies between individual location decisions in the search process. For P4, the branching

procedure could be shortened in most considered parameter settings. And while the set-

tings significantly affect the performance and must be investigated further, the potential

improvement is enormous. For n = 1, α = αcount, and θ = 0.1, the total time to find an

119



5.4. Pattern-based regional branching

P2 P4

S α θ time (s) nodes depth time (s) nodes depth

1

sum
0.01 8.8 882 73 46.6 2547 135
0.05 6.3 645 73 34.9 1481 134
0.1 6.5 572 113 51.3 2328 142

indicator
0.01 8.2 882 73 45.3 2096 141
0.05 7.9 882 73 45.3 2315 142
0.1 6.7 645 73 34.8 1418 134

count
0.01 8.8 882 73 43.0 2096 141
0.05 8.0 882 73 38.5 1852 95
0.1 6.6 645 73 62.1 2941 125

demand
0.01 6.5 657 73 43.1 1894 138
0.05 5.8 505 71 48.9 2275 134
0.1 6.7 633 74 55.8 2463 116

profit
0.01 6.5 657 73 43.6 1894 138
0.05 7.2 724 74 49.0 2275 135
0.1 7.6 724 74 56.3 2463 116

5

sum
0.01 8.3 711 75 35.3 1175 135
0.05 6.2 534 72 54.8 2284 127
0.1 6.8 514 73 76.9 3160 142

indicator
0.01 7.5 711 75 46.5 2147 132
0.05 7.5 711 75 60.5 2230 130
0.1 6.2 482 70 69.0 2833 138

count
0.01 8.1 711 75 39.4 1384 96
0.05 7.5 711 75 41.0 1519 109
0.1 8.0 711 75 54.5 2284 127

demand
0.01 8.2 949 73 41.4 1498 103
0.05 7.3 669 72 55.8 2103 136
0.1 8.7 767 75 57.4 2284 127

profit
0.01 7.0 610 72 44.0 1498 103
0.05 8.5 767 75 59.3 2103 136
0.1 9.2 767 75 53.0 2284 127

CPLEX default 7.0 534 73 56.0 2326 144

Table 5.12.: Performance of regional variable selection; non-regional variables are selected according
to CPLEX’s default procedure (P2, P4 Ex. A)
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optimal solution could be reduced by 38% from 56.0 to 34.8 seconds. Thereby, the number

of nodes explored in the search process could be reduced from 2326 to 1418 (39%). In 17

out of the 30 considered parameter settings, the solve time of P4 could be reduced by more

than 10%. For P2, which was significantly faster to solve in the first place, the reduction

in the solve times was less significant but still visible for several configurations.

P2 P4

S α θ time (s) nodes depth time (s) nodes depth

1

sum
0.01 10.8 714 59 67.2 1427 107
0.05 7.1 427 65 95.1 2072 115
0.1 7.5 377 63 81.3 1861 116

indicator
0.01 9.8 714 59 42.0 788 78
0.05 9.8 714 59 52.7 1026 100
0.1 7.4 427 65 93.5 2033 115

count
0.01 10.4 714 59 42.3 788 78
0.05 10.0 714 59 51.0 934 97
0.1 7.6 427 65 94.0 2005 116

demand
0.01 7.4 487 73 86.8 1854 120
0.05 6.8 378 54 71.5 1428 112
0.1 11.3 755 56 48.0 882 83

profit
0.01 7.6 487 54 87.2 1854 120
0.05 7.1 452 60 71.7 1428 112
0.1 7.3 452 60 48.8 882 83

5

sum
0.01 7.8 451 64 75.0 1449 107
0.05 6.9 436 64 84.0 1868 114
0.1 7.2 436 64 61.7 1476 93

indicator
0.01 7.4 474 66 86.2 1973 107
0.05 7.2 474 66 86.0 1973 107
0.1 7.9 474 66 44.3 924 82

count
0.01 10.2 713 66 86.2 1973 107
0.05 10.9 713 66 75.2 1449 107
0.1 8.0 711 75 56.5 1254 89

demand
0.01 7.5 451 64 52.3 921 84
0.05 7.4 377 62 50.0 996 90
0.1 8.0 377 62 72.0 1653 95

profit
0.01 7.7 451 64 50.9 921 84
0.05 7.4 359 57 101.1 2011 110
0.1 9.8 359 57 94.6 2216 129

max. infeasibility 9.7 524 66 52.0 903 87

Table 5.13.: Performance of regional variable selection; non-regional variables are selected based on
max. infeasibility (P2, P4 Ex. A)

Table 5.13 displays similar results. This time, the non-regional facilities were selected based

on the maximum infeasibility rule. The positive effect of considering individual regions

is much less significant, in particular, for P4. However, it must be pointed out that for

this instance, the maximum infeasibility rule without any regions performs exceptionally

well. Therefore, whether or not it is significantly less valuable to consider regional variable

selection with a maximum infeasibility search rule must be tested on other instances. ▲

Example A 5.7 shows the potential of the region-based variable selection rule. In the

following, we perform tests on instances from Section 1.3, to evaluate different parameter

settings and test the effectiveness.
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5.4.2. Experimental validation: pattern-based regional branching

In the following, we evaluate the performance of the regional variable selection scheme

on the instances from Section 1.3. Thereby, we restrict ourselves to those 126 instances

that require at least one variable selection decision in CPLEX’s state-of-the-art solver and

cannot be solved directly at the root node via various pre-processing schemes.

We are particularly interested in the following three questions:

1. Is regional branching variable selection an effective means to speed up the solution

process of a branching procedure?

2. How relevant is the choice of input parameters α, θ, and n for this effectiveness?

3. Is the effectiveness of regional variable selection related to properties of the problem

instance?

Table 5.14 displays the average solve time in seconds, the average solve time without

the time it took to invoke RegClus, the average number of nodes explored, the average

depth of the search tree when using the regional branch variable selection scheme on

those variables assigned to a service region, and CPLEX’s proprietary default branch

variable selection scheme procedure otherwise. The results are compared with the average

values obtained when solving the problem solely with CPLEX’s proprietary branch variable

selection scheme. The results are displayed for different input parameters of RegClus,

particularly different aggregation functions α, different target levels of coherence θ, and

different n, the number of infeasible solutions from the start of the search tree used to

determine the set of regions.

The results show that, on average, regional variable selection does not improve CPLEX’s

default branch variable selection procedure. Instead, the solve time increases by an average

of 12.4%, including the take it takes to invoke RegClus, and by an average of 8.3% to

perform solely the branching procedure. The number of nodes processed increases by an

average of 21.3%. Solely, the depth of the search tree decreases by an average of -5.7%.

However, the regional variable selection scheme was invoked and (potentially) altered the

variable selection decisions in a significant proportion of the processed nodes. In each

of these decisions, the inner-regional variable selection choice was performed based on

maximum infeasibility branching, a variable selection scheme inferior to CPLEX’s default

procedure. Consequently, to evaluate the effect of regional branch variable selection, a more

accurate assessment of the impact of the regional component is necessary. Therefore, in the

following, we compare the performance with and without regional branch variable selection

when all variable selection decisions are based on maximum infeasibility branching.

The results for maximum infeasibility branching are displayed in Table 5.15. They show an

entirely different picture and confirm the effectiveness of regional branch variable selection

in improving the performance of state-of-the-art branching procedures. Independently of

the choice of θ and α, the total solving time could be reduced compared to using solely

maximum infeasibility branching by an average of 8.6%, and an average of 11.6% when

not including the time it takes to invoke RegClus. This is surprising, as both the number
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5.4. Pattern-based regional branching

θ α n time (s) time without RegClus (s) nodes depth

0.01

sum
1 25.0 24.4 480.8 18.2
5 25.5 24.8 471.6 18.4

indicator
1 24.0 23.4 477.0 18.5
5 25.2 24.4 466.8 18.0

count
1 23.2 22.6 475.8 18.4
5 23.5 22.7 468.9 17.8

demand
1 26.7 25.9 484.2 18.7
5 25.9 24.5 462.6 17.9

profit
1 23.9 22.9 482.7 18.6
5 24.3 22.1 462.2 18.4

0.05

sum
1 23.7 23.2 414.7 18.1
5 23.5 22.8 407.6 18.4

indicator
1 24.0 23.4 494.3 19.2
5 25.6 24.9 479.0 17.8

count
1 24.0 23.4 490.1 18.9
5 23.7 22.9 470.4 17.6

demand
1 25.0 24.3 485.4 18.3
5 24.1 22.7 405.1 17.8

profit
1 24.5 23.6 477.1 18.4
5 24.6 22.4 422.8 18.2

0.1

sum
1 24.6 24.1 437.9 18.9
5 23.8 23.0 430.2 19.0

indicator
1 24.3 23.7 470.1 17.8
5 25.6 24.8 475.4 18.0

count
1 24.6 24.0 486.0 17.9
5 24.3 23.5 463.3 18.2

demand
1 25.1 24.4 494.8 19.0
5 24.0 22.5 423.7 18.8

profit
1 24.4 23.6 437.9 18.7
5 25.2 23.0 423.9 18.7

CPLEX default 21.8 - 380.3 19.4

Table 5.14.: Average performance of regional variable selection; non-regional variables are selected
according to CPLEX’s default procedure
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of nodes processed and the depth of the search tree increase slightly. Notice, however, that

not all nodes need the same time to solve, and thus the reduced solve times indicate that

the procedure effectively reduces the number of “difficult” nodes.

θ α n time (s) time without RegClus (s) nodes depth

0.01

sum
1 27.3 26.8 452.4 15.2
5 28.1 27.3 465.8 15.5

indicator
1 26.2 25.6 456.7 15.2
5 28.1 27.3 467.6 15.6

count
1 26.0 25.4 455.0 15.2
5 27.1 26.3 466.6 15.5

demand
1 28.4 27.7 451.2 14.8
5 28.1 26.6 451.1 14.7

profit
1 28.6 27.7 455.1 15.3
5 29.5 27.1 446.6 14.4

0.05

sum
1 27.1 26.5 461.3 15.5
5 28.1 27.4 470.3 15.9

indicator
1 26.5 25.9 463.9 15.2
5 28.0 27.3 467.6 15.7

count
1 26.3 25.7 462.1 15.2
5 27.4 26.6 464.3 15.6

demand
1 27.0 26.3 454.9 15.9
5 28.1 26.7 459.4 14.9

profit
1 27.0 26.1 452.6 15.3
5 29.6 27.5 465.0 14.9

0.1

sum
1 26.9 26.3 473.4 16.0
5 27.5 26.8 472.7 16.0

indicator
1 27.1 26.5 466.4 15.8
5 26.7 26.0 452.5 15.1

count
1 27.1 26.5 466.9 15.7
5 27.0 26.3 460.1 15.5

demand
1 27.1 26.4 465.7 15.7
5 28.4 27.0 471.0 15.3

profit
1 26.5 25.6 455.4 15.6
5 29.7 27.5 474.6 15.4

max. infeasibility 30.1 - 444.2 14.6

Table 5.15.: Average performance of regional variable selection; non-regional variables are selected
based on max. infeasibility

In both of the above tables, one can see that increasing the number of nodes included in S
from n = 1 to n = 5 almost consistently resulted in an increase of solve times, both with

and without including the time for RegClus. We observe similar trends when increasing

the number of considered nodes even further to 10, 15, or 20 nodes. We conclude that

including more nodes of possibly severely suboptimal solutions in RegClus is ineffective.

For future research, we suggest including only promising solutions, e.g., new incumbents.

In the following, we evaluate the performance of the procedure on individual instances

and take a closer look at the impact of different θ and α. As many of the considered

instances solve extremely fast, in the following, we reduce all considerations on the 22

problem instances that take at least 5 seconds to solve or require at least 10 branching

operations with CPLEX’s default procedure. The solve times of the instances presented

in Section 1.3 vary drastically and a concise depiction of differences requires different
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scales. Therefore, for both CPLEX default branching and branching solely with maximum

infeasibility branching, we determine the relative time difference between the time taken

with regional branch variable selection (timeA) and the time taken without regional branch

variable selection (timeB) such that

rel. time difference =
timeA − timeB

timeB
. (5.1)

Figure 5.8 depicts the distribution of the relative time differences for different α and dif-

ferent θ. As already observable from the average values in Table 5.14 and Table 5.15,

the solve time increases significantly for the majority of instances when using CPLEX’s

default variable selection scheme. Yet, it must be pointed out that in individual instances,

the average solve time decreases significantly by up to 50% through regional variable selec-

tion. However, the solve time decreases consistently compared to maximum infeasibility

branching. Thereby, a clear dominance of a certain choice of neither α nor θ is observable.

sum indicator count demand profit
−60%

−40%

−20%

0%

20%

40%

60%

re
l.

ti
m

e
d

iff
er

en
ce

θ
1% 5% 10%

sum indicator count demand profit

−50%

−25%

0%

25%

50%

re
l.

ti
m

e
d

iff
er

en
ce

(a) CPLEX’s default

sum indicator count demand profit

−50%

−25%

0%

25%

50%

re
l.

ti
m

e
d

iff
er

en
ce

(b) max. infeasibility

Figure 5.8.: Distribution of relative differences in solving time with and without regional branch
variable selection for different θ and α, n = 1

Figure 5.9 depicts the distribution of the relative time differences for different α, grouped

according to the previously determined average dependency values. Here, we observe a

significant difference, particularly when looking at the results for CPLEX’s default variable

selection procedure. In particular, the solving process is slowed for instances exhibiting

little to no interdependencies as indicated by Depavg < 0.1. Meanwhile, it is improved

and slowed down in equal proportions on instances exhibiting high interdependencies,
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5.5. Conclusion

indicating larger service regions. The results for maximum infeasibility branch variable

selection draw a similar picture. The reductions in the solving time are more significant

for instances exhibiting high interdependence structures.
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Figure 5.9.: Distribution of relative differences in solving time with and without regional branch
variable selection for different α and interdependence levels (θ = 0.01, n = 1)

The results are very promising and indicate that explicitly considering regional information

in the form of stronger and weaker coherence of certain areas of the facility-customer space

can significantly reduce the solving time required by B&B procedures. While the scheme

does not beat CPLEX’s default variable selection strategy, it would be interesting to see

whether an improvement could be observed when regional branching and that proprietary

strategy are combined. This default strategy could then determine the next branching

variable within a determined region. The regional variable selection allows for significant

improvement in the solve times when maximum feasibility branching is deployed.

5.5. Conclusion

We evaluate the degree to which larger service regions affect the difficulty of individual

problem instances. Larger in this context means that these regions are optimally served by

more than one facility, leading to interdependencies between these location decisions. Up

to this point, characteristics of instances that proved difficult to solve or decision patterns

that were particularly hard to identify were rarely examined. We explored the effect

the interdependence relationships of individual facilities have on both heuristic and exact

methods. A particular challenge is imposed by the fact that in both, heuristic methods
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and exact branching procedures, location decisions are evaluated sequentially. However,

the interdependence relationships mean that facilities may not be the best choice if they

serve customers alone but prove to be superior to other candidates only in combination.

The latter is a general attribute of solutions to a mixed-binary mathematical problem

in which the binary part of the problem exhibits a combinatorial dynamic. The inter-

dependencies in discrete location problems are often restricted to specific areas of the

facility-customer space. The latter, thereby, does not necessarily refer to the actual lo-

cations but the implied positions given the variable unit net profit combined with the

outreach of individual facilities given the tightness and profit ratio. We show that these

regions can already be detected from infeasible solutions early during the search process

and that their explicit consideration throughout the branching procedure can significantly

increase the effectiveness of branching decisions.

We summarize the main results of the previous chapter as follows:

• Large service regions significantly affect the performance of exact and heuristic so-

lution procedures as interdependent subsets of facilities are particularly difficult to

detect. Hence, solution algorithms should be tested regarding their ability to detect

these interdependent facilities and potentially include specific subroutines for this

purpose.

• Service regions can already be identified from integer infeasible solutions. Using

knowledge of the implied separation of the facility-customer space to search individ-

ual service regions sequentially can significantly improve the performance of branch-

ing procedures.

To the best of our knowledge, this is the first time the challenges combinatorial decision

patterns pose for heuristic and exact procedures to discrete location instances have been

discussed in detail. Furthermore, this is the first work that uses pattern recognition on

early, potentially infeasible regions in the search tree of a branching procedure to detect

interdependence relationships between individual decisions. At this point, the detected

relationships were only used to improve the variable selection process. Exploring the

degree to which the knowledge of these implied spatial relationships can be used to enhance

different components of branching procedures can be a valuable path to explore in future

research. For example, Yildiz et al. [2022] suggests the effectiveness of multi-variable

branching. This means that rather than branching on an individual variable and creating

two nodes that cut off its fractional value, one considers several variables in that branching

decision. The authors suggest creating two nodes that cut off the fractional value of a sum

of variables. This raises the question of which variables should be branched on together.

In their work on decomposition branching Yildiz et al. [2022] restricts all considerations to

works that imply a decomposable problem structure. Our pattern detection-based regional

clustering algorithm allows for identifying a decomposition of the facility-customer space

implied purely from the problem data. This is an exciting path to explore further as

it would allow decomposing larger instances independently of the mathematical problem

formulation but purely from characteristics implied by the data.
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6. Service regions and increasing demands

Location decisions oftentimes involve high investments and are taken on a strategic level.

Hence, models that explicitly consider time have received considerable attention [Melo

et al., 2006, Alumur et al., 2012a, Jena et al., 2015, Cortinhal et al., 2015]. Location

decisions are made over the course of a planning horizon, which Dunke et al. [2018] define

as “the time-frame corresponding to available data (meaningful/trustworthy information)

or the time span defined by a decision-maker for having the system fully operational and/or

appropriately adapted to the circumstances”. One can distinguish between continuous- and

discrete-time models depending on whether or not the moments for performing changes are

determined endogenously as part of the decisions or exogenously given. The vast majority

of works on facility location over time assume a discrete-time model. This means that

the planning horizon is divided into a discrete set of periods at the beginning of which

decisions can be taken [Nickel and Saldanha da Gama, 2019]. Usually, it is assumed that

these periods are of equal length and correspond to planning units such as years, quarters,

or months. In the subsequent chapter, we evaluate the effects of moving away from equal-

length periods to more general discretizations of the planning horizon, which requires the

following definitions.

Definition 6.1. A breakpoint, τ t, denotes a point in time at which decisions can be taken.

Definition 6.2. A discretization, T , of a planning horizon that comprises a defined (time)

interval, [τmin, τmax], is a sequence of breakpoints such that T := {τ1, τ2, . . . , τ t, . . . } with
t ∈ N, τmin = τ1 and τ t < τ t+1 < τmax.

As illustrated in Figure 6.1, the sequence of breakpoints induces a set of periods. Each

breakpoint τ t denotes the starting point of a period t that spans the interval [τ t, τ t+1) for

t ∈ 1, . . . , |T | − 1, and [τ t, τmax] for t = |T |, respectively. The index set of a discretization,

I(T ):= {1, 2, . . . , |T |}, denotes the set of periods a planning horizon is divided into. It

corresponds to the indices of the consecutive periods t. The starting point of period t is

the breakpoint τ t.

planning horizon

τmin τmax

Tτ1 τ2 τ3 τ4 τ5 τ6

1 2 3 4 5 6 I(T )

Figure 6.1.: Periods induced by a discretization T

When the planning horizon is divided into discrete periods, these periods must be linked

to one another, or else the problem will fall into |T | separate subproblems that optimize

each period individually [Nickel and Saldanha da Gama, 2019]. The Multi-period Capaci-

tated Facility Location Problem (with phase-in constraints) (MP-CFLP) links periods by
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ensuring that once a facility has been established, it operates until the end of the planning

horizon [Roodman and Schwarz, 1977]. It is a frequently used extension of the static CFLP

for situations where suppliers face increasing demands. The objective of the MP-CFLP

is to maximize the total profit obtained over the course of the planning horizon, the sum

of the total fixed costs, and the variable profits. The binary location decision yit is 1 if

facility i operates in period t and 0 otherwise. The non-negative allocation decisions xijt

denote the fraction of the demand of customer j served from facility i in period t. The

operation of a facility for the duration of a period has a time-dependent fixed cost fit. The

allocation of customers to facilities incurs variable transportation costs cij and generates a

variable profit rj per unit of the customer demand djt. In each period, customers cannot

be served more than their original demand (6.2), and the facility capacities qit per period

must not be exceeded (6.3). The location decisions of different periods are linked by the

phase-in constraint (6.4), which ensures that once a facility operates, it must continue to

operate until the end of the planning horizon.

MP-CFLP

max
∑

t

[∑
i

∑
j

(
rjt − cij

)
xijtdjt −

∑
i
fityit

]
(6.1)

s.t.
∑

i
xijt ≤ 1 j ∈ J, t ∈ I(T ) (6.2)

∑
j
djtxijt ≤ qityit i ∈ I, t ∈ I(T ) (6.3)

yit−1 ≤ yit i ∈ I, t ∈ I(T ) \ 1 (6.4)

yit ∈ {0, 1} i ∈ I, t ∈ I(T ) (6.5)

xijt ≥ 0 i ∈ I, j ∈ J, t ∈ I(T ). (6.6)

Switching from a static to a multi-period model increases the flexibility of decision-makers

as they may adapt their location-allocation policy to varying conditions, e.g., changing

customer demands. However, the price to pay is the complexity of the problem, as mul-

tiple periods make the problem increasingly difficult to solve due to the higher number

of variables and constraints. Alumur et al. [2012a] quantify the gain a decision-maker

receives in return for the additional computational complexity when shifting from a static

to a multi-period model.

Definition 6.3. The Value of the Multi-period Solution, VMPS, denotes the relative

arithmetic difference between the optimal objective value of the multi-period problem, z⋆MP ,

and the optimal objective value of its static counterpart, z⋆SC ,

VMPS :=
z⋆MP − z⋆SC

z⋆MP

. (6.7)

Example B 6.1 (Value of the Multi-period Solution (VMPS)) Consider problem instances

P4
1 and P4

2 from Example B. Table 6.1 depicts the optimal objective value and the number

of facilities operating in the optimal solution for the CFLP and the corresponding 4-period
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MP-CFLP. Furthermore, it displays the fraction of the total customer demand served over

the course of the planning horizon, further denoted by β(s). Contrasting one’s intuition,

for both instances, the objective value of the multi-period model is less than that of the

static model. An explanation can be derived straight from the mathematical programming

formulations of the CFLP and the MP-CFLP. In the static CFLP, the capacity constraint

(1.3) aggregates and thereby relaxes constraint (6.3) such that

(1.3)⇔
∑

t

∑
j
djtxij ≤

∑
t
qityi ∀i ∈ I ⇎ (6.3). (6.8)

For this reason, three more facilities, 21 rather than 18, are operating in the final period

of the multi-period solution to P4
1 compared to the static solution. Meanwhile, over the

course of the planning horizon, 5% less of the total demand is being served. This results

in a negative VMPS of −4.0%. For P4
2 , one additional facility is operating in the final

period of the multi-period solution. Furthermore, in the multi-period solution, 100% of the

demand (0.2% more than in the static problem) are served. The VMPS for P4
2 is −0.4%.

CFLP MP-CFLP
z⋆SC |I⋆SC | β(s) z⋆MP |I⋆MP | β(s) VMPS overlap(I⋆SC , I

⋆
MP )

P1 2373.1 18 93% 2281.8 21 88% −4.0% 1.0
P2 19803.9 7 99.8% 19709.4 8 100% −0.4% 0.7

Table 6.1.: Performance of CFLP and 4-period MP-CFLP (P4
1 -P4

2 , Ex. B)

Recall that the optimal solution to instance P1 was predominantly comprised of indepen-

dent facilities. The set of facilities operating in the solution to the multi-period model

is a superset of the facilities operating in the solution to the static model. The overlap

coefficient of the respective index sets is 1.0. The optimal solution to instance P2 predom-

inantly comprises interdependent facilities. The operating facilities in the solution to the

multi-period model differ significantly from those operating in the static solution as the

overlap coefficient is only 0.7, implying that facilities operating in the optimal solution

to the static instance are no longer optimal in the solution to the multi-period instances.

While the possibility of the latter is long-known, the results from Chapter 2 and Chapter 3

raise the question of whether the temporal stability of individual location decisions, as well

as the VMPS depend on the underlying decision patterns. ▲

A decrease in the objective value despite more accurate information being available and

used in the multi-period setting is counter-intuitive. Yet, it is a direct consequence of

the more accurate description of the temporal availability of capacity and occurrence of

customer demands over the course of the planning horizon. Still, moving to a multi-

period model not only increases the flexibility of the decision-maker but also increases the

restrictions regarding when to use limited resources. This is a rarely, if at all, discussed

trade-off in multi-period modeling. As each period itself can be seen as an aggregation

of several smaller periods, this trade-off is not only invoked when shifting from a static

to a multi-period model but whenever the number of periods the planning horizon is

divided into changes. Furthermore, decision patterns in the form of service regions already

130



6.1. Related work on the value(s) of the multi-period solution

observable in the static counterpart seem to impact the potential benefit of a multi-period

approach. We summarize the above aspects in the following research question:

RQ6: When is it worth explicitly considering time in the CFLP?

Several parts of the upcoming chapter have been published in Bakker and Nickel [2024].

6.1. Related work on the value(s) of the multi-period solution

Literature on facility location explicitly considering multiple periods is constantly increas-

ing, particularly in the context of supply chain management [Jena et al., 2015, Cortinhal

et al., 2015, Correia et al., 2018, Correia and Melo, 2021]. Yet, only a few authors quan-

tify the benefit of their approach or discuss how they determine the moments in time for

decision-making. In the following, we review existing work on the value of the multi-period

solution. After Alumur et al. [2012b] introduced the idea, Nickel and Saldanha da Gama

[2019] provide the first formal definition of the VMPS as the relative arithmetic difference

between the optimal objective value of the multi-period problem and the optimal objective

value of its static counterpart (compare Eq. (6.7)). But just as there is no single multi-

period model to a static CFLP, the static counterpart is also not defined uniquely. While

in Example B 6.1 the static model aggregates periods by summing up the parameters,

another option is to choose reference values, e.g., the maximum value of each parameter

over the planning horizon. Nickel and Saldanha da Gama [2019] distinguish between the

weak and the strong VMPS. The weak VMPS is obtained when comparing the optimal

solution of a multi-period model to the optimal solution of a static counterpart that is

based on some sort of data aggregation. The strong VMPS is obtained when comparing

the optimal solution to a multi-period model to that of a static counterpart for which

no data aggregation has been performed and whose solution would consequently also be

feasible in the multi-period context.

In the works that did examine the VMPS, the distinction between strong and weak VMPS

was not made. Alumur et al. [2012b] compare the solution of a 5-period model to the

solution obtained when first solving a 1-period model with the averaged parameter values

and then fixing the resulting optimal location decisions in the 5-period model. On average,

they observe a VMPS of 2%. Aras et al. [2015] apply the same procedure to a model for

locating recycling sites and report VMPS between 7.62% and 26.75%. Tari and Alumur

[2014] derive the static counterpart from the parameters’ maxima and then again fix the

resulting decisions in the multi-period model. Depending on the problem instance, they

report values between 0 and 33%. Kchaou Boujelben et al. [2016] present a multi-period

model in which only the allocation decisions are allowed to be altered over the planning

horizon and location decisions are static. The authors report a VMPS between 0.5%

and 1% and conclude that as computation times increase significantly when shifting to

a multi-period model, dynamic customer assignments do not yield sufficient benefit in

their case. Marković et al. [2017] compute the VMPS in the context of an evasive flow

capturing model. The authors repeatedly solve the static counterpart over the course

of the planning horizon based on the aggregated (summed) parameters that comprise a
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6.2. Static counterparts and their corresponding VMPS

subset of the periods. The authors observe that the VMPS increases with a steeper surge

in expected flow intensities per period, leading to the assumption that stronger changes in

the data may lead to greater values of the VMPS. Maŕın et al. [2018] report the average

VMPS observed over multiple instances of a stochastic coverage location problem. The

authors report the VMPS in absolute terms but observe that it is approximately five times

as high as the added benefit obtained from deploying a stochastic instead of a deterministic

approach as measured by the value of the stochastic solution.

All comparisons are made between multi-period and static models. The number of periods

or the granularity of planning decisions is not investigated. To the best of our knowledge,

the first and only authors to acknowledge that the number of periods a planning horizon is

divided into might significantly alter the quality and structure of the resulting solution are

Albareda-Sambola et al. [2009] in the context of multi-period incremental service facility

location problem. The authors do not use the VMPS but make a qualitative statement

and propose an ex-post what-if analysis to determine the number of periods that leads to

an equilibrium between costs and quality of service.

The review of literature shows that, up to this point, RQ5 is insufficiently addressed.

There is little insight into the conditions under which a multi-period modeling approach

is valuable. The reported values for the VMPS differ massively and range between 0

to 33%. This can partially be attributed to the choice of different static counterparts.

We discuss their implications regarding the interpretation of the VMPS in Section 6.2.

Nevertheless, even with consistent static counterparts, the VMPS still depends on the

underlying problem instance. While it is intuitive to assume that the degree of change in

the time-dependent parameters of the instance is a good indicator of the degree to which a

decision-maker may benefit from a multi-period model, examples can be found where this

relationship cannot be observed. Therefore, in Section 6.3, we discuss the implications of

discretizing the planning horizon into distinct periods in a restricted problem setting. In

Section 6.4, we use these insights to anticipate the effect of multi-period modeling based on

the characteristics of the problem data. We summarize our main findings in Section 6.5.

6.2. Static counterparts and their corresponding VMPS

A unique definition of a static counterpart to a multi-period model does not exist. Different

static counterparts may have different optimal solutions with different optimal objective

values, leading to different VMPS. In the following, we discuss several static counterparts

and their corresponding VMPS, as well as their interpretation in terms of quantifying

the aforementioned trade-off between added flexibility in decision-making and tighter con-

straints regarding the utilization of restricted resources. We illustrate all static counter-

parts at the MP-CFLP, a basic example of a multi-period, resource-constrained location

model.

6.2.1. The value of added flexibility

Nickel and Saldanha da Gama [2019] define the VMPS derived from a static counterpart in

which no aggregation has been performed on the data as a strong VMPS, further denoted
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6.2. Static counterparts and their corresponding VMPS

by VMPSs. The fact that data is not being aggregated implies that any feasible solution,

particularly any optimal solution, to the static counterpart will also be a feasible solution of

the multi-period model. A straightforward way to derive a static counterpart that fulfills

this criterion is to add constraints to the multi-period model that ensure that decision

variables take on the same value during all periods of the planning horizon.

For the MP-CFLP, we restrict this idea to the strategic location decisions. Preventing the

allocation decisions from fully exploiting available capacities in each period would lead to

very bad optimal objective values for the static counterpart while reflecting a situation of

little interest to a decision-maker. Thus, to obtain the static counterpart corresponding

to the VMPSs we add the following constraint to the MP-CFLP

yit = yit−1 ∀i ∈ I, t ∈ I(T ) \ 1. (6.9)

The resulting static counterpart suffers from the aforementioned time-induced restric-

tions on the utilization of the facilities’ capacities. At the same time, it cannot adapt

location decisions to changing parameters. Consequently, the relative difference between

the optimal objective value of this static counterpart and the optimal objective value

of the MP-CFLP perfectly captures the benefit resulting from added flexibility. Both

models share the same objective value. The set of feasible solutions to the MP-CFLP,

MMP := {(x, y)|(6.2)− (6.6)}, is a super-set of the set of feasible solutions of the described

static counterpart, MSC−s := {(x, y)|(6.2)− (6.6), (6.9)}. It follows that the optimal ob-

jective value of the static counterpart, z⋆SC−s, will always be less or equal to the optimal

objective value of the multi-period model, z⋆MP . This implies that VMPSs≥ 0.

6.2.2. The value of temporal information

Alumur et al. [2012b] and Aras et al. [2015] use a two-step approach to determine the

static counterpart. First, the authors first solve a 1-period model in which all parameters

are set to their average values over the planning horizon. The model is then solved, and

the optimal location decisions are stored. Second, the location decisions are fixed to these

values in the multi-period model. The resulting problem is solved to obtain the static

counterpart objective. Consequently, the solution found with this static counterpart will

also be feasible in the multi-period model as no aggregation is performed on the data. Yet,

the location decisions were obtained from a model using averaged values. The approach,

therefore, combines elements of a strong and a weak VMPS. We refer to the resulting value

as hybrid VMPS and denote it by VMPSw/s.

When applying the above to the MP-CFLP, we obtain the location decisions by solving

the CFLP and setting Dj , Fi, and Qi to the average values of djt, fit, and qit over the

planning horizon. We denote the resulting location decisions by y⋆avg. Then, we solve a

static counterpart for which we add the following constraint to the MP-CFLP

yit = y⋆avgi ∀i ∈ I, t ∈ I(T ). (6.10)

Again, the solutions of the static counterpart adhere to all additional restrictions im-
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6.2. Static counterparts and their corresponding VMPS

plied by the multi-period modeling while missing the added flexibility. Furthermore,

in this case, location decisions were made without taking the additional restrictions in-

duced by multiple periods into account. The 1-period, average-based model does not

capture the different ratios of total supply and total demand occurring over the course

of the planning horizon. Meanwhile, constraint (6.10) contains constraint (6.9). This

implies that the set of feasible solutions of the static counterpart to the VMPSw/s,

MSC−w/s := {(x, y)|(6.2)− (6.6), (6.10)}, is a subset of MSC−s. It follows that the as-

sociated objective value of the optimal solution, zSC−w/s⋆ , is less or equal z⋆SC−s ≤ z⋆MP ,

and therefore, VMPSw/s≥ VMPSs ≥ 0.

When is this inequality strict? For z⋆SC−w/s to be strictly greater than z⋆SC−s, the set of

location decisions y⋆avg must not constitute an optimal solution in the static counterpart

for the VMPSs. This implies that making location decisions based on average values

without considering the time-induced restrictions leads to location decisions that are sub-

optimal once these restrictions are taken into account. Therefore, the difference between

z⋆SC−w/s and z⋆SC−s can also be interpreted as the price of not knowing the temporal

development of the parameters. The absolute difference of the corresponding values of the

multi-period solution,
(
VMPSw/s − VMPSs

)
≥ 0, may also be interpreted as the value

of temporal information. This implies that the VMPSw/s itself overestimates the added

benefit resulting from the additional flexibility in the decision-making as part of it does

not come from added flexibility but from the inclusion of additional information in the

model.

It is not difficult to find conditions under which the value of temporal information is sig-

nificantly greater than 0. But are there also situations in which VMPSs = VMPSw/s

and nothing is to be gained from solely including temporal information? In the following,

we will show that this is exactly the case when capacities do not restrict the optimal solu-

tion, and one, therefore, would not benefit from explicitly modeling their more restrictive

bounds. This is, i.e., the case when qit ≥
∑

j djt for all i ∈ I and t ∈ T . According to

Leung and Magnanti [1989], such a capacitated facility location model equals an uncapac-

itated facility location model. The capacity constraints, in particular constraint (1.3) in

the CFLP and constraint (6.3) in the static counterpart for the VMPSs, can be replaced

by

xij ≤ yi ∀i ∈ I, (6.11)

and

xijt ≤ yit ∀i ∈ I, t ∈ I(T ), (6.12)

respectively. Given this replacement, the two models will have the same optimal objective

value if there exists an optimal solution of the static counterpart to the VMPSs, in which

the allocation decisions remain the same over the planning horizon. Thus, the following
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6.2. Static counterparts and their corresponding VMPS

constraint holds

xijt−1 = xijt ∀i ∈ I, ,∈ J, t ∈ I(T ). (6.13)

Such a solution would then also be a feasible solution of the CFLP.

For the uncapacitated facility location problem, there always exists an optimal solution

with xij ∈ {0, 1} for all i ∈ I, j ∈ J as it will always be an optimal allocation policy to

serve each customer fully from the most profitable operating facility. In consequence, if the

unit transport costs and profits are time-invariant and there are no capacity restrictions,

it is always optimal to allocate each customer to the same, most profitable facility across

all periods. In conclusion, we emphasize that in the uncapacitated facility location model,

knowledge about multi-period developments without the ability to adapt location decisions

accordingly does not yield any benefit. Meanwhile, in two-stage stochastic programming,

it is common to assume that only the allocation decisions can be changed over time after

uncertainty is disclosed. The above implies that it does not yield any benefit to switch

from a two-period to a multi-period two-stage stochastic program unless the capacity

restrictions of the underlying problem instance are binding.

6.2.3. The value of moving to a different discretization

In the introductory Example B, we compare the optimal solution of the MP-CFLP with

the optimal solution of the CFLP to determine the VMPS. The latter is a 1-period version

of the multi-period model in which all parameters are summed over the planning hori-

zon. Evidently, any optimal location-allocation policy will also be optimal in a model in

which parameters are averaged and vice versa. But, in contrast to the computation of the

VMPSw/s, we did not proceed to fix those location decisions in the multi-period model.

Instead, we interpreted the CFLP itself as the static counterpart. The solution of the

CFLP might not be a feasible solution to the multi-period problem as it may violate the

capacity restrictions of individual periods. Therefore, the resulting weak VMPS, further

denoted by VMPSw, captures both aforementioned aspects of shifting to a multi-period

model: the benefit of added flexibility in the decision-making and the added costs result-

ing from additional restrictions. Which of these two effects has a stronger impact on the

objective value is not clear and will be further examined in Section 5.3. Consequently,

neither one of the sets of feasible solutions to the CFLP and the MP-CFLP is a subset of

the other, and the VMPSw may be smaller or greater than 0.

The VMPSw compares the multi-period model to its aggregated, 1-period static counter-

part. However, the effect of switching to a multi-period model and thereby dividing the

planning horizon into discrete periods also depends on the chosen discretization T . Each

shift from a coarser to a more granular discretization resembles the shift from a static

to a multi-period problem in each period individually. Thus, we generalize VMPSw to

evaluate the effect of shifting from one discretization T 1 to a discretization T 2 and define

VMPS∆T 2

T 1 :=
z⋆T 2 − z⋆T 1

z⋆
T 2

, (6.14)
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6.2. Static counterparts and their corresponding VMPS

whereby z⋆T denotes the optimal objective value of the multi-period problem corresponding

to the discretization T . In the following, if T is a scalar, this implies a division into |T |
periods of equal length.

Example B 6.2 (Weak, strong, and hybrid VMPS) Table 6.2 displays the different values

for the VMPS for multi-period models corresponding to instances P4
1 and P4

2 from Exam-

ple B. As before, we assume that in the static instances, all parameters are aggregated

(summed) over the planning horizon, capacities and costs are time-invariant, and the de-

mand of each customer doubles over the course of the planning horizon, increasing by

constant steps each period. We assume all periods are of equal length, implying that the

first four periods of the 8-period model correspond to the first two periods of the 4-period

model and the first period of the 2-period model, and so on.

For all instances, the hierarchy VMPSws ≥ VMPSs ≥ VMPSw holds. It is striking that

the VMPSws is extremely high for the multi-period instances of P4
1 , ranging between 60%

and 80%. In the corresponding static counterparts, data was averaged over the planning

horizon; thus, location decisions were taken without anticipating that in the multi-period

setting, the demand in later periods significantly exceeds capacities. This is because several

of the facilities only become profitable later on in the planning horizon. While the multi-

period problems operate between 12 and 14 facilities in period 1, the static counterpart

problem operates 18. These facilities incur high fixed costs despite still serving less demand

over the course of the planning horizon, as their capacities do not suffice in the final periods.

We see that neither the VMPSs nor the VMPSw increase or decrease monotonically

in the number of periods. For P4
1 , we observe that while the 2-period model performs

worse than the static model and the 4-period model performs worse than the 2-period

model, the performance improves again when comparing the 8-period model with the 4-

period model. This non-monotonicity will be further discussed in the upcoming Section 5.3.

Furthermore, even though both instances face exactly the same influx in customer demand,

there is a notable difference in the value of multi-period modeling. We will discuss which

characteristics drive this difference in Section 5.4.

|T | z⋆MP VMPSw/s VMPSs VMPSw VMPS∆
|T |
|T |/2

P4
1

1 2373.1 - - - -
2 2304.9 62.4 3.8 -3.0 -3.0
4 2281.8 81.3 10.9 -4.0 -1.0
8 2296.5 66.3 9.8 -3.3 0.6

P4
2

1 19803.9 - - - -
2 19748.8 11.7 5.6 -0.3 -0.3
4 19709.4 11.4 7.5 -0.4 -0.2
8 19581.3 11.0 7.2 -1.1 -0.7

Table 6.2.: VMPS derived from different static counterparts for the 2-, 4-, and 8-period model (P4
1 -

P4
2 , Ex. B)

▲
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We summarize that the different static counterparts and their corresponding VMPS require

different interpretations. They allow for a comprehensive evaluation of the effect of multi-

period modeling and separately quantify

• the value of added flexibility in decision-making (VMPSs),

• the value of modeling parameter developments even without the ability to adapt

decisions accordingly (VMPSw/s − VMPSs),

• and the value of moving from one discretization of the planning horizon to another

(VMPS∆T2
T1
).

6.3. Effective, restrictive and obsolete breakpoints

Depending on the choice of a static counterpart, the effect of the multi-period model

is evaluated differently. Nevertheless, this does not answer whether the mere fact that

parameters change throughout the planning horizon suffices to expect a positive effect

of a multi-period model. It neither gives insights into determining a suitable number of

periods that allows a decision-maker to capture this potential benefit effectively. Under the

theoretical assumption of perfect data availability, increasing the number of breakpoints

can be seen as an approximation of an underlying continuous-time problem. When the

induced number of periods converges to infinity, the optimal objective value converges

to that of a continuous-time problem. The following demonstrates that this convergence

is not monotone, even in very restricted problem settings. Hence, predicting the effect of

adding more breakpoints on the objective value in general problem instances is impossible.
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(c) |T | = 2

Figure 6.2.: Temporal aggregation in an uncapacitated one-facility-one-customer problem

Consider a one-facility-one-customer problem for a planning horizon spanning the interval

[τmin, τmax]. The fixed cost and the facility’s capacity are constant functions of time

denoted by f(t) and q(t), respectively. The customer’s demand, d(t), is the only parameter

that changes over time and increases monotonically in t. For now, assume that the demand

d(t) does not exceed the capacity q(t) during the planning horizon, leading to an essentially

uncapacitated problem. Unit costs (c) and profits (r) are time-invariant. The net profit

η(t) can be derived as a function of t with

η(t) = (r − c) d(t)− f(t). (6.15)
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The situation is depicted in Figure 6.2a. The left axis denotes costs and profits, and the

right axis denotes quantities of demand and capacity. It is optimal to open the facility at

time

τA := min
{
τ ∈ [τmin, τmax]

∣∣ η(τ) ≥ 0
}
, (6.16)

as soon as variable profits exceed the fixed costs. The optimal objective value of the

continuous-time problem is

z⋆cont. =

∫ τmax

τA
η(t)dt := Bcont.. (6.17)

Figure 6.2b depicts the situation when the continuous-time setting is represented by a

static, single-period problem. The only point in time for decision-making is τ1 = τmin, the

beginning of the planning horizon. The demand function d1(t) is a constant function set

to the average value of d(t) throughout the planning horizon. As the resulting constant

profit, η1(t), is greater than zero, the optimal opening policy is to operate the facility

across the planning horizon. However, this implies it also operates throughout the time

interval [0, τA). Consequently, it incurs fixed costs during an interval during which the

incoming profits do not fully offset them. The amount of these fixed costs accumulates to

A1 = Acont. =

∫ τA

τmin

−η(t)dt. (6.18)

The profit a decision maker obtains from the single-period model is B1 = Bcont. −A1. In

Figure 6.2c, the planning horizon is split into two periods of equal length. The demand

function d2(t) is a piece-wise constant function, valuing the average of d(t) for the respective

periods. Operating the facility in both periods is optimal as the total attainable profit

already exceeds the total incurred fixed costs in the first period. This, however, also implies

that the objective value does not improve compared to the static single-period model. A2 =

A1 implies that B2 = B1. This illustrates that while the temporal aggregation induces

a loss in terms of profits, the time at which the planning horizon is divided determines

whether that loss can be reduced.

6.3.1. Effective and obsolete breakpoints

We distinguish between effective and obsolete breakpoints.

Definition 6.4. A breakpoint, τ t, is effective if the optimal objective value of the multi-

period problem corresponding to the discretization T 2 = T 1 ∪ τ t is strictly greater than the

optimal objective value of the multi-period problem corresponding to the discretization T 1

with τ t /∈ T 1 and thus VMPS∆T 2

T 1 > 0.

Definition 6.5. A breakpoint, τ t, is obsolete if the optimal objective value of the multi-

period problem corresponding to the discretization T 2 = T 1∪τ t equals the optimal objective

value of the multi-period problem corresponding to the discretization T 1 with τ t /∈ T 1 and

thus VMPS∆T 2

T 1 = 0.
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Figure 6.3.: Effective and obsolete breakpoints in a one-facility-one-customer problem

An obsolete breakpoint increases the size of the problem, but nothing can be gained from

it.

In the considered one-facility-one-customer setting, breakpoints are effective if, and only

if, they lie in the interval [0, τB] (Figure 6.3a). Thereby, τB denotes the point in time after

which the incurred fixed costs (Acont.) are offset by additional profits (Ccont.), such that

τB := max

{
τ ∈ [τmin, τmax]

∣∣∣∣∣

∫ τA

τmin

−η(t)dt ≥
∫ τ

τA
η(t)dt

}
. (6.19)

In particular, the effect of dividing the planning horizon into two periods is based on the

position of τ2, the starting point of period 2, with respect to τA and τB such that if

τ2 ∈ (τmin, τA): Operating the facility in period 1 is not profitable, and the facility is

opened only in period 2. The benefit of the multi-period approach equals the fixed

cost overhead in period 1 that can be avoided:

A2 =

∫ τ2

τmin

−η(t)dt, (6.20)

such that B2 = B1 +A2, thus B2 > B1. Consequently, the VMPSw is positive, and

the breakpoint is effective (Figure 6.3b).

τ2 ∈ (τA, τB): Operating the facility in period 1 is still not profitable. In the optimal

solution, it operates only in period 2. However, contrary to before, the entire fixed

cost overhead Acont. can be avoided. Meanwhile, as τ2 > τA, part of the profit that

could be obtained if the facility was opened earlier cannot be attained, particularly

the amount

C2 =

∫ τ2

τA
η(t)dt. (6.21)

Consequently, the attainable profit is B2 = Bcont. − C2 with C2 + C2 = Ccont. =

Acont.. As B1 = Bcont.−Acont. it holds that B2 > B1 and VMPSw > 0 (Figure 6.3c).
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6.3. Effective, restrictive and obsolete breakpoints

τ2 = τA: This is the optimal point in time for opening the facility: neither fixed costs can

be reduced, nor profits increased and B2 = Bcont..

τ2 ≥ τB: Dividing the planning horizon in the interval [τB, τmax] is obsolete. In the re-

sulting optimal solution, the facility operates throughout the planning horizon as the

net profit in period 1 is greater than zero. Consequently, C2 = Ccont. = Acont. and

B2 = B1 = Bcont. −Acont., thus VMPSw = 0.

Dividing the planning horizon into periods is only effective if the time interval during

which it is not profitable to operate the facility is separated from a time interval in which

it is.

6.3.2. Restrictive breakpoints
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Figure 6.4.: Temporal aggregation in a capacitated one-facility-one-customer problem

Now, let there be a moment after which the demand of the customer exceeds the facility’s

capacity (Figure 6.4a),

τC := min
{
τ ∈ [τmin, τmax]

∣∣ d(τ) ≥ q(τ)
}
. (6.22)

The profit function must be modified as not necessarily the full demand but the minimum

of demand and capacity is served

ηcap(t) = (rj − cij)min{d(t), q(t)} − f(t). (6.23)

After τC , not all demand can be served anymore. In particular,

Econt. =

∫ τmax

τC
d(t)− q(t)dt, (6.24)

cannot be satisfied. In consequence, the associated profit

Dcont. = (r − c)

∫ τmax

τC
d(t)− q(t)dt = (r1 − c11)E

cont., (6.25)

cannot be attained and the profit in the continuous-time capacitated problem is Bcont.
cap =

Bcont. −Dcont..

140



6.3. Effective, restrictive and obsolete breakpoints

Figure 6.4b illustrates the associated 1-period problem. Ignoring the temporal develop-

ments and simply looking at the aggregated parameters implies that the average demand

is below the average capacity, and hence, the 1-period problem assumes that all demand

can be served, such that

B1
cap = Bcont. −A1 +D1. (6.26)

Consequently, D1 is the benefit that arises from implicit warehousing. In an aggregated

time setting, it is implicitly assumed that inventory can be held throughout a period of time

without incurring additional costs. As Figure 6.4c depicts, this benefit diminishes when

the planning horizon is divided, e.g., into four periods, particularly when breakpoints move

towards the point in time τC . In period 4, the aggregated demand exceeds the capacity,

and the demand E4,

E4 =

∫ τ

τC
d4(t)− q(t)dt. (6.27)

cannot be served. However, the amount F 4,

F 4 =

∫ τC

τ4
q(t)− d(t)dt = Econt. − E4, (6.28)

can implicitly be pre-produced such that the total profit in the 4-period model is B4
cap =

Bcont. − C4 +G4 with G4 = (rj − cij)E
4 and G4 < G1 = D1.

Figure 6.4b illustrates the corresponding single-period problem. Ignoring the temporal

developments and simply looking at the aggregated parameters implies that the average

demand is below the average capacity throughout the planning horizon. Hence, in the

single-period problem, all demand can be served, such that B1
cap = Bcont.−A1+D1 , with

D1 = Dcont.. Consequently, D1 is the benefit that arises from implicit warehousing.

In order to fully attain this benefit, implicit pre-production must start at the latest at

the point in time τD, where the accumulated unused capacity before τC is as large as the

missing capacity after τC , such that

τD := max

{
τ ∈ [τmin, τmax]

∣∣∣∣∣

∫ τmax

τC
d(t)− q(t)dt ≤

∫ τC

τ
q(t)− d(t)dt

}
. (6.29)

In consequence, any breakpoint within the interval (τD, τmax) restricts the ability to benefit

of implicit warehousing (Figure 6.5a).

Definition 6.6. A breakpoint τ t is restrictive if the optimal objective value of the multi-

period problem corresponding to the discretization T 2 = T 1∪ τ t is strictly smaller than the

optimal objective value of the multi-period problem corresponding to the discretization T 1

with τ t /∈ T 1 and thus VMPS∆T 2

T 1 < 0.

In particular, for a two-period model, the position of τ2 relative to τC and τD affects the

attainable profit as follows:
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Figure 6.5.: Restrictive breakpoints in a one-facility-one-customer problem

τ2 ∈(τD, τC ]: The capacity in period 2 is not sufficient to serve all demand in that period.

However, it is possible to partially pre-produce at the beginning of that period. With

F 2 =

∫ τC

τ2
q(t)− d(t)dt, (6.30)

and G2 = (r−c)F 2 the additional attainable profit. With Dcont. = Gcont. = G2−G2,

we obtain that B2 = Bcont.
cap +G2 = B1 −Dcont. +G2 = B1 −G2 and thus B2 < B1

and VMPSw < 0 (Figure 6.5b).

τ2 ∈(τC , τmax): Throughout period 2, the demand exceeds the total capacity. The ex-

cess demand in this period cannot be served. However, as τ2 > τC the demand

exceeds the capacity already at the end of period 1 when implicit warehousing is

possible. Applying the same logic as before yields that B2 = Bcont.
cap +D2 = B1−D2

(Figure 6.5c), with

D2 = (r − c)

∫ τ2

τC
d(t)− q(t)dt. (6.31)

Consequently, for the one-facility-one-customer problem with constant costs, profits and

capacities, and monotonically increasing demands, the planning horizon can be divided

into three potentially overlapping intervals of interest: effective, obsolete, and restrictive.

Whether or not an additional breakpoint in one of these intervals results in an improvement

or deterioration of the objective value depends on the position of other existing breakpoints.

In the following, we discuss what this implies for the VMPS.

6.3.3. VMPS

There are two critical moments during the planning horizon: τA, the point in time at

which the demand suffices such that the facility can operate profitably, and τC , the point

in time at which the demand exceeds capacity. For any multi-period model, the position of

the breakpoints relative to these two moments determines its effectiveness. Let τ t denote
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6.3. Effective, restrictive and obsolete breakpoints

the starting point of period t. Further, let t(τA) denote the period that comprises the

point in time τA, such that

t(τA) := max
{
t ∈ I(t) | τ t ≤ τA

}
. (6.32)

Similarly, let t(τC) denote the period comprising τC ,

t(τC) := max
{
t ∈ I(t) | τ t ≤ τC

}
. (6.33)

With that, we generally define A(T ), C(T ), D(T ), and G(T ) as follows:

A(T ) =

∫ τA

τ t(τ
A)

−ηcap(t)dt, (6.34)

C(T ) =

∫ τ t(τ
A)+1

τA
ηcap(t)dt, (6.35)

G(T ) = (r − c)

∫ τC

τ t(τ
C )

q(t)− d(t)dt, (6.36)

D(T ) = (r − c)

∫ τ t(τ
C )+1

τC
d(t)− q(t)dt. (6.37)

With the above, we can set the profit obtained by the T -period model in relation to the

profit obtained by the continuous-time model via

B(T ) = Bcont. −min{A(T ), C(T )}+min{D(T ), G(T )}. (6.38)

If A(T ) < C(T ), then it is profitable to open the facility in period t(τA) as the profit

attainable during that period outweighs the fixed costs. Compared to the continuous-time

setting, the fixed costs A(T ) are incurred additionally and must be subtracted to obtain

B(T ). If A(T ) > C(T ), then it is not profitable to operate the facility in period t(τA),

and compared to the continuous-time setting, the profit C(T ) is not obtained. The second

minimum follows a similar logic.

Expressing B(T ) relative to the profit attainable in a continuous-time setting allows us

to express the VMPSs and the VMPSw as follows. The profit attainable by the strong

static counterpart of a multi-period problem corresponding to a discretization T is

B1
SCs

= Bcont. −min{A1, C1}+min{D(T ), G(T )}, (6.39)

as due to the explicit modeling of all capacity constraints the ability to hold implicit

warehousing is the same as in the multi-period problem. Therefore, we have that

VMPSs =
B1

SCs
−B(T )

B(T )
⇐⇒ 1

B(T )

(
min{A1, C1} −min{A(T ), C(T )}

)
︸ ︷︷ ︸

≥0

. (6.40)

By definition, in any single-period model, t(τA) = 1 and τ1 = τmin which, in turn, is less

or equal t(τA) in the |T |-period model. Thereby A(T ) ≤ A1 and their difference is upper
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bounded by Acont.. Similarly, it holds that C(T ) ≤ C1 and thus VMPSs ≥ 0.

Similarly, we have that D(T ) ≤ D1 and G(T ) ≤ G1 and for the VMPSw we obtain

VMPSw =
B1 −B(T )

B(T )
(6.41)

⇐⇒ 1

B(T )

(
min{A1, C1} −min{A(T ), C(T )}︸ ︷︷ ︸

≥0

+min{D(T ), G(T )} −min{D1, G1}︸ ︷︷ ︸
≤0

)
.

The two addends in the numerator of the VMPSw have a different sign. General state-

ments on which of the two will be larger in absolute terms cannot be made so that the

sign of the VMPSw can be positive or negative. This reasoning can be transferred to

VMPS∆T 2

T 1 , whereby we assume that the breakpoints induced by T 2 are a superset of

those induced by T 1, such that

VMPS∆T 2

T 1 =
B(T 1)−B(T 2)

B(T 2)
(6.42)

⇐⇒ 1

B(T 2)

(
min{A(T 1), C(T 1)} −min{A(T 2), C(T 2)}︸ ︷︷ ︸

≥0

+min{D(T 2), G(T 2)} −min{D(T 1), G(T 1)}︸ ︷︷ ︸
≤0

)
.

Again, no general statement can be made on the sign of VMPS∆T 2

T 1 . When T 1 ⊂ T 2,

it holds that t(τA) of T 1 is less or equal t(τA) of T 2 and thus A(T 2) ≤ A(T 1). The

same holds for C(T 2), D(T 2), and G(T 2). With increasingly granular discretization, both

minima converge to zero as we approach τA and τC , and the profit of the multi-period

problem converges to the continuous-time profit. However, no general statement on the

convergence speed of the two minima is possible. Therefore, the profit itself needs not to

converge monotonically. This implies that even in the one-facility-one-customer problem,

the effect of moving to a model with more periods cannot be anticipated.

6.3.4. Multiple facilities and cost-minimizing problems
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Figure 6.6.: Temporal aggregation in a multi-facility problem
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To what degree are the above considerations transferable to, first, a multi-facility, multi-

customer setting and, second, a cost-minimizing problem that requires full demand satis-

faction? In a multi-facility setting, each facility may have a different profit function. Thus,

there are two critical moments τAi and τCi for each facility. Nevertheless, as before, the

benefit a decision maker obtains from operating each individual facility in a multi-period

setting depends on the position of the breakpoints with respect to τAi and τCi . Figure 6.6

depicts the situation for a problem with two facilities (1 and 2), different profit functions

in a 2-period and a 4-period problem, respectively. It illustrates that different opening

policies are optimal depending on the relative position of the breakpoint τ to τAi and τCi .

Facility 2 incurs higher fixed costs but has a higher unit profit and, consequently, a steeper

slope. Operating it becomes profitable starting with the second half of the planning hori-

zon, such that τA2 = 0.5(τmax − τmin). For facility 1, operations become profitable after

a quarter of the planning horizon, thus at tauA=0.25(τ
max − τmin). When the planning

horizon is divided into two periods, the optimal opening policy is to open facility 2 in the

second period. However, if one increases the number of periods to 4, opening facility 1 at

the beginning of period 1 and leaving facility 2 closed throughout the planning horizon is

profitable. Consequently, the discretization of the planning horizon can have a significant

effect on the optimality of individual location decisions. Furthermore, the profit functions

of individual facilities are not independent of one another. Instead, whenever a facility

is opened, the profit functions of the remaining facilities change to the residual profit,

the profit a facility generates if operated in addition to the already open ones. As fixed

costs and capacity, however, are independent of the opening status of other facilities, this

implies that τAi and τCi change and depend on the set of already operating facilities.

The profit-maximizing problem formulation that serves demand only when profitable is

an extension of the more conventional formulation that requires total demand satisfaction

at minimal costs. In the one-facility-one-customer case, the above considerations are ob-

solete in the cost-minimizing formulation. Due to the demand satisfaction constraint, the

facility must operate as soon as the customer exhibits non-zero demand. However, all con-

siderations can be transferred straightforwardly from the multi-facility setting. Assuming

that sufficient capacity has been established to serve all demands, the profit functions of

individual facilities can be considered residual profit functions. The resulting effects in the

cost-minimizing problem are the same as in the profit-maximizing problem.

To summarize, there are two significant conclusions from the one-facility-one-customer

case. Firstly, with an increasing number of periods, the optimal objective value of the

multi-period problem converges to that of a continuous-time problem. However, that

convergence is not monotone, not even when previous breakpoints are maintained. Due to

implicit warehousing in capacitated problems, a more granular discretization has a positive

and a negative effect on the objective value. Which one prevails cannot be said even in

simple settings. Therefore, given a set of possible breakpoints, an exhaustive search is the

only way to determine the optimal set of breakpoints. Secondly, for each facility, there is

exactly one point in time at which it is profitable to open this facility, given a particular

network configuration. However, this also implies that when, for example, five facilities
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operate in the final period of a 32-period planning horizon, at least 27 of these breakpoints

are obsolete.

6.4. Drivers of the VMPS

The values of the multi-period solution reported in literature vary tremendously. While

some of this variance can be attributed to using different static counterparts (Section 6.2),

characteristics of the underlying problem instance have a significant effect. We discuss and

validate which characteristics contribute to a large VMPS. In Subsection 6.4.1, we start

with a discussion on how isolated parameter changes will affect the VMPS in the one-

facility-one-customer setting. We validate that expected effects translate to more complex

instances by altering individual parameters of instances P4
1 and P4

2 from Example B. It

is shown that the relative importance of fixed costs is a main indicator of the potential

VMPS. In Subsection 6.4.2, we transfer these findings to instances from Section 1.3. We

show that the relative importance of the fixed cost is the most significant indicator of the

potential value of a multi-period model. Furthermore, we relate the potential VMPS to

the size of the underlying service regions.

6.4.1. Isolated effects of altering individual parameters

In the following, we examine the isolated effects of parameter changes on the VMPSs,

the VMPSw, and the VMPSw/s. We discuss the effect on the one-facility-one-customer

problem and subsequently examine to which degree these effects translate to more complex

instances, in particular, instances derived similarly to P4
1 and P4

2 from Example B.

6.4.1.1. Capacity

All other conditions being equal, increasing the facility’s capacity in the one-facility-one-

customer problem implies that the point in time τC occurs later in the planning horizon.

This implies that Dcont., the profits lost due to the inability to hold implicit warehousing,

decreases. As Dcont. is an upper bound to the negative addend in the nominator of the

VMPSw (refer to Eq.(6.41)), increasing the capacity suggests that the VMPSw increases.

Meanwhile, the VMPSs should remain largely unaffected as implicit warehousing is nei-

ther possible in the static counterpart nor the multi-period model. For the VMPSw/s,

the associated static counterpart assumes that implicit warehousing is possible when de-

termining the location decisions. It is likely to open a subset of facilities whose capacities

are insufficient to serve the demands in later periods. The less restrictive the capacities

are, the lower the potential mismatch between established and required capacities in later

periods. With increasing capacities, the VMPSw/s is expected to decrease.

Example B 6.3 (Effect of increasing capacity on the VMPS) We gradually increase the

capacity of all facilities of instances P4
1 and P4

2 by a constant factor (1+λq) and evaluate the

VMPS for the resulting sequence of instances. Let {λl
q} denote the sequence of increasing

factors.
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Figure 6.7.: Effect of increasing capacity on the VMPSw (P4
1 -P4
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The results are depicted in Figure 6.7 and Figure 6.8. Figure 6.7 shows the development of

the VMPSw when the capacity of each facility is successively increased by up to 25%. For

both sequences of problem instances, the VMPSw increases with increasing capacities.

For P4
1 (Figure 6.7a), a 25% increase in the facilities’ capacities leads to an increase of the

VMPSw from −4.0% to −0.5%. For P4
2 (Figure 6.7b), which already has relatively large

capacities to begin with, a 25% capacity increase results in the VMPSw rising from to

−0.8% to 0.0%.

Furthermore, for P4
1 , we can see that this increase is not linear but drops at several

points before increasing again. For example, between λq = 0.16 and λq = 0.19, the

VMPSw drops from −0.7% to −2.1%. Such drops correspond to significant changes

in the subset of facilities operating in the final period of the optimal solution to the

multi-period problem. When the subset of operating facilities changes, the effects of the

one-facility-one-customer problem can no longer be transferred to the multi-facility case

straightforwardly. To measure the changes in the set of operating facilities, we compute

the Hamming distance between the vector of the optimal location decisions of the final

period in the instance with the current capacity increase, Y
λl
q

|T | , and the corresponding

vector optimal location decisions of the instance with marginally smaller capacities, Y
λl−1
q

|T | .

For λq = 0.19, the Hamming distance between these two decision vectors is 0.07, which

implies that the opening status of 7 of the 100 candidate facilities differs.

Figure 6.8 depicts the developments of the VMPSs and the VMPSw/s together with the

service level β, the fraction of the demand that is served over the course of the planning

horizon in the multi-period model. Again, effects are more significant for P4
1 , the instance

in which original capacities are more restrictive. As anticipated, the VMPSw/s is largest

when capacities are most restrictive, and the“false”assumption of implicit warehousing has

the most disastrous effect in the multi-period model. For P4
1 with original capacity levels,

the VMPSw/s is at 81.3%. When capacities are increased by 25%, that value decreases to

35.2%. For P4
2 , the same capacity increase only leads to a decrease from 13.5% to 12.5%.

147



6.4. Drivers of the VMPS

0.00 0.05 0.10 0.15 0.20 0.25
0%

10%

20%

30%

VMPSs VMPSw/s β

25%

50%

75%

100%

0.00 0.05 0.10 0.15 0.20 0.25

λq

0%

20%

40%

60%

80%

50%

100%

(a) P4
1

0.00 0.05 0.10 0.15 0.20 0.25

λq

0%

10%

20%

30%

50%

100%

(b) P4
2

Figure 6.8.: Effect of increasing capacity on the VMPSs and VMPSw/s (P4
1 -P4

2 , Ex. B)

Contrary to initial expectations, for P4
1 and λq ∈ [0, 0.25], the VMPSs increases from

10.9% to a maximum value of 25.7%. This, however, can be explained when looking at the

service level, as with the initial capacities, a larger proportion of the customer demands

cannot even be served. We assume that effects in the multi-facility instance correspond

to the accumulated effects expected at individual facilities. Hence, when the capacity in-

creases to the point that more facilities become profitable throughout the planning horizon

and serve demand that is otherwise not fulfilled, the increase in the pure number of oper-

ating facilities leads to a larger accumulated effect and, hence, a larger VMPSs. Similarly,

the slight decrease in the VMPSs, for instance, P4
2 from 8.8% to 6.5% can be explained

by the decrease in the number of facilities operating in the final period from 9 to 7. ▲

Example B 6.3 confirms that the effect of implicit warehousing decreases with increasing

capacities. The VMPSw increases in the sense that the absolute value of the negative

component decreases. The mismatch between the capacity assumed to be available in the

static counterpart of the VMPSw/s and the multi-period model decreases, and so does

the VMPSw/s. While we expected the VMPSs to remain largely unaffected, we observe

that, in particular, when the capacity increase leads to fewer facilities being opened, the

VMPSs also decreases as the accumulated benefit of opening facilities later on in the

planning horizon declines.

6.4.1.2. Fixed costs

All other conditions being equal, increasing the fixed costs in the one-facility-one-customer

problem implies that the point in time τA after which operating the facility becomes

profitable occurs later on in the planning horizon and consequently Acont. increases. As

Acont. is an upper bound for the positive addend of the nominator for the VMPSs and

the VMPSw, we expect both values to increase with increasing fixed costs. Consequently,

the VMPSw/s is also expected to increase.

Example B 6.4 (Effect of increasing fixed costs on the VMPS) Experiments on instances

P4
1 and P4

2 were conducted in the same way as for the capacity increase in Example B 6.3.

This time, only the fixed costs fit are multiplied with the constant factor (1 + λf ). For
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6.4. Drivers of the VMPS

P4
1 , small increases in the fixed costs already lead to several facilities being unprofitable.

The optimal solution for λf > 0.1 is to open no facility. Therefore, we explored primarily

negative values of λf . Results for the VMPSw, the VMPSs and the VMPSw/s are

depicted in Figure 6.9.
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Figure 6.9.: Effect of increasing fixed costs on the VMPSw, VMPSs and VMPSw/s (P4
1 -P4

2 , Ex.
B)

For P4
1 , the VMPSs increases in the interval of λf ∈ [−0.4,−0.15] from 20.5% to 23.9%.

For larger values of λf , the fixed costs are so large that they significantly alter the set of

optimal facilities, eventually leading to only a fraction of the total demand being served. In

that interval, the VMPSw decreases from −1.0% to −1.6%, while the VMPSw/s increases

from 21.9% to 45.1%.

For P4
2 , the VMPSs and the VMPSw/s increase. Capacities and profits are large enough

such that for all values of λf all demand is served throughout the planning horizon in

the multi-period model. When λf increases from −40% to +10%, the VMPSs increases

from 4.2% to 9.8%, and the VMPSw/s increases from 11.7% to 13.5%. Meanwhile, the

VMPSw decreases from −0.6% to −0.8%. ▲

Example B 6.4 confirms the positive effect increasing capacities have on the VMPSs

and the VMPSw/s. Meanwhile, the VMPSw remains largely unaffected and decreases

slightly with increasing fixed costs. With increasing fixed costs, capacity becomes relatively

more expensive, aggravating the effect of implicit warehousing. The static counterpart

establishes successively fewer facilities, assuming capacities to be available later. Thus,

the positive and negative components of the VMPSw increase with increasing fixed costs.

6.4.1.3. Variable profits

Increasing the variable profits implies that τA occurs earlier and Acont. decreases. With

similar reasoning as before, increasing profits can be expected to have the opposite effect

of increasing fixed costs.

Example B 6.5 (Effect of increasing variable profits on the VMPS) In the subsequent ex-

periment, the unit profit of each customer rj is multiplied by the factor (1+λr). Figure 6.10

depicts the effects on P4
1 and P4

2 .
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Figure 6.10.: Effect of increasing unit profits on the VMPSw, VMPSs and VMPSw/s (P4
1 -P4

2 ,
Ex. B)

The VMPSw converges to zero with increasing profits. Both the positive and negative

components decrease with increasing profits and consequently a decreasing relevance of

the fixed costs. Similarly, the VMPSs decreases as the added value of opening facilities

later in the planning horizon and saving fixed costs becomes less relevant in the objective

value. Interestingly, the VMPSw/s remains relatively constant at approx. 12% for P4
1 , and

approx. 11% for P4
2 . We explain this by the fact that the corresponding static counterpart

persistently establishes capacity in the “wrong” locations. For P4
2 , the overlap coefficient

(refer Def. 2.7) between the index set of facilities operating in the static counterpart and

the index set of facilities operating in the final period of the multi-period model is 0.86. ▲

6.4.1.4. Demand development

We assume that customer demand is the only parameter that varies over time. A homo-

geneous increase of d(t) over the course of the planning horizon will have the opposite

effect as an increase in capacity - Dcont. decreases - and a similar effect as an increase in

unit profit - Acont. increases. But what happens if the total demand over the planning

horizon remains the same but the time of its occurrence changes? Keeping the assumption

of monotonously increasing demands, this means asking what happens when δ, the ratio

between the demand in the final and the first period, increases. Increasing the slope of d(t)

implies that τA occurs later and τD occurs earlier in the planning horizon. Both, Acont. and

Dcont., increase. As both addends of the sum in the nominator of the VMPSw increase,

the effect can be positive or negative. The VMPSs and VMPSw/s can be expected to

increase.

Example B 6.6 (Effect of demand development on the VMPS) As described in Example B,

we assume that the demand increases in constant steps such that the demand in the final

period, period 4, equals δ times the demand in the initial period. In the following, we vary

δ between 100%, 500%, and 1000%. This means we vary the level of parameter change

over the course of the planning horizon. As the sum of all demands stays the same across

all considered instances, this means that with increasing δ, the demand in periods 1 and
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2 decreases, and the demand in periods 3 and 4 increases. The results are displayed in

Table 6.3.

δ VMPSs VMPSw VMPSw/s

P4
1

100% 10.9% -4.0% 81.3%
500% 52.8% -15.7% 243.1%
1000% 71.7% -19.8% 301.9%

P4
2

100% 7.5% -0.4% 11.4%
500% 22.6% 0.2% 31.6%
1000% 26.6% 0.1% 36.9%

Table 6.3.: Effect of increasing the level of demand increase δ on the VMPSw, VMPSs and
VMPSw/s (P4

1 -P4
2 , Ex. B)

For both instances, with increasing δ the VMPSs and the VMPSw/s increase. For P4
1 ,

the VMPSw decreases, indicating that the negative effect induced by implicit warehousing

outweighs the benefit of opening facilities later in the planning horizon. This is different

for P4
2 , for which the VMPSw increases slightly with increasing δ from -0.4% to 0.1%

for δ equaling 100% and 1000%, respectively. Nevertheless, the magnitude of the effect of

increasing δ on P4
1 and P4

2 differs significantly. The increases in the different VMPS are

significantly larger for instance P4
1 with smaller capacities and smaller underlying service

regions. We take a closer look at this in the following. ▲

Table 6.4 summarizes the above results. Example B 6.3 to Example B 6.6 indicate that

while the degree of change in the time-varying parameters - here, the customer demand -

significantly affects the potential benefit of a multi-period model, other characteristics of

the underlying problem instance, i.e., the ratio between demand and capacity, as well as

the ratio between attainable profits and fixed costs, are significant drivers for what might

be gained from moving to a multi-period approach.

VMPSs VMPSw VMPSw/s

Capacity qit ↗ ↘ ↗ ↘
Fixed Costs fit ↗ ↗ ↘ ↗
Unit profit rj ↗ ↘ ↗ ↘
Demand increase δ ↗ ↗ ↗ /↘ ↗

Table 6.4.: Expected isolated effect of parameter changes on different VMPS

6.4.2. Experimental validation: indicators for a large VMPS

More interesting than anticipating the effect of isolated parameter changes on the value

of the multi-period solution when given a reference point is the degree to which it is

possible to anticipate the potential value of a multi-period approach before the problem is

solved. This means either from the static counterpart or directly from the problem data.

While it is intuitive to suspect that the degree to which parameters change throughout the

planning horizon is a key indicator for the potential value of a multi-period approach, the

previous experiment indicates that the ratios of time-invariant parameters such as demand

versus capacities or fixed costs versus variable profits may outweigh the effect of significant
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demand increases. Looking at Table 6.4, one can see that all isolated parameter changes

that lead to an increase in the VMPSs imply an increase in the relevance of the fixed

costs. In particular, if - all other conditions being equal - capacities decrease, this implies

an increase in the unit fixed costs. So does decreasing unit profits or directly increasing

fixed costs. The significant role of the fixed costs relative to the unit profit can also be

seen in the one-facility-one-customer problem as in the simplified setting the VMPSs is

upper bounded by A∞/(B∞).

We quantify this relative importance of the fixed costs by two indicators. The first one

is derived from the static, single-period model, the CFLP in which all parameters are

aggregated. It sets the fixed costs incurred in the optimal solution in relation to the

profits generated by that solution. We denote the resulting ratio by FCw, such that

FCw :=

∑
i Fiy

⋆
i∑

i

∑
j(rj − cij)Djx⋆ij

, (6.43)

with y⋆i and x⋆ij the optimal location and allocation decisions in the CFLP. The second

indicator is the profit ratio determined directly from the problem data before solving any

mathematical program. It sets the average attainable unit profit in relation to the average

unit fixed costs (refer to Eq. (4.2)).
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Figure 6.11.: VMPSs grouped by (a) fixed cost ratio in static problem, (b) relative demand increase

For each instance of the data sets described in Section 1.3, we derive three 4-period in-

stances, postulating a constant demand increase of δ = 100%, 500%, and 1000%, respec-

tively. Figure 6.11 displays the distribution of the resulting VMPSs for the different sets,

grouped by FCw (Figure 6.11a) and δ (Figure 6.11b), respectively. Particularly for the
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instances from ORLIB, BAR-1991, and KLO-2007, the relative fixed costs FCw yield more

distinct distributions of the VMPSs than the relative demand increase δ.

Figure 6.12 depicts the VMPSs for all instances grouped by the profit ratio (Figure 6.12a)

and δ (Figure 6.12b), respectively.Furthermore, instances are grouped according to the av-

erage dependence density (see Def. 2.13) underlying the aggregated static instance. An

average dependence density below 0.1 indicates relatively small service regions in an op-

timal solution primarily composed of independent facilities. A larger average dependence

density indicates larger service regions and optimal solutions primarily composed of inter-

dependent subsets of facilities. Once again, independently of δ, instances with relatively

high unit fixed costs (profit ratio≤ 2.5) exhibit a distinctly higher VMPSs than those with

relatively lower fixed costs. Meanwhile, the distribution of the VMPSs for instances with

δ = 500% can hardly be distinguished from the distribution obtained when δ = 1000%.

A two-sided t-test cannot reject the null hypothesis that the two means are equal with a

statistical significance of 5% (p-value = 0.066).

[0
, 2

5)

[2
5,

50
)

[5
0,

10
0)

[1
00
, 2

00
)

≥
20

0

|I|

0.0

0.2

0.4

0.6

0.8

1.0

o
v
er
la
p
(I
?
,I
A
D
D

)

Depavg

[0, 0.1) ≥ 0.1

≤ 2.5 [2.5, 5) [5, 10) [10, 20) ≥ 20

profit ratio

0%

10%

20%

30%

V
M
P
S
s

(a)

100% 500% 1000%

δ

0%

10%

20%

30%

V
M
P
S
s

(b)

Figure 6.12.: VMPSs grouped by (a) profit ratio, (b) relative demand increase

Furthermore, we observe that, on average, the VMPSs between instances with high and

low average dependence density are relatively similar. However, in particular, for increasing

δ, the variation of the VMPSs in instances whose optimal solution is primarily composed of

independent facilities is significantly larger than for those instances whose optimal solution

is primarily composed of interdependent subsets of facilities. This can be explained by the

observations from Example B. When facilities are independent, they serve certain customer

regions by themselves. In the multi-period context, the customers in individual regions

are served only after the facility in that region is opened. Meanwhile, until the demand in
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that region suffices to offset the fixed costs in that region, the entire demand is lost. This

means that in a static counterpart, either the facility serving a particular region operates

throughout the planning horizon and accumulates high fixed costs in the beginning or

remains closed, and a lot of the potential profit is lost. If facilities serve larger service

regions as interdependent subsets, the multi-period model can open facilities successively,

redistributing customers within each service region as demand increases and more facilities

operate. At the same time, the static counterpart has more flexibility in finding a subset

of facilities that balances the trade-off between lost profits and fixed costs.

In conclusion, the relative importance of the fixed costs is a good indicator of whether or

not a model that allows us to open some facilities later on in the planning horizon will

benefit the problem described by a particular instance. It is a more reliable indicator of

the VMPS than the relative change of customer demand over the planning horizon.

6.5. Conclusion

Despite the VMPS being an established measure to quantify the benefit of a multi-period

modeling approach, the reasons for strong variations across different instances and reports

in literature are insufficiently explored. Even for a standard multi-period extension of

the CFLP as the MP-CFLP with phase-in constraints considered in this chapter, driving

factors for a high VMPS were unclear.

We first identified different definitions of the VMPS resulting from different static coun-

terparts as one explanation for the differences in reported values. We distinguish between

different aspects of multi-period modeling that can be quantified by different VMPS de-

rived from different static counterparts. In this context, we take a closer look at the fact

that in the capacitated case, moving to a multi-period model comes at two costs: increased

complexity and added restrictions regarding when to use limited resources. This stands

in contrast to the potential gain a decision-maker may derive from the added flexibility

in decision-making. Which of these effects dominates depends on the problem at hand.

Therefore, choosing the set of periods the planning horizon is divided into with care is

essential.

We examine a restricted one-facility-once-customer instance to gain insights into the con-

ditions under which moving to a multi-period model with phase-in constraints can be of

value. We show that the potential benefit of a multi-period model depends on the relative

position of the breakpoints, the moments in the planning horizon at which decisions can

be taken, to the moments at which, firstly, the profits outweigh the fixed costs, and, sec-

ondly, the demands exceed the capacity. We use these insights to identify primary drivers

in the parameters of a problem instance leading to a high VMPS. Experiments show that

not necessarily the degree to which the problem parameters change throughout the plan-

ning horizon but rather the degree to which the multi-period model allows reducing the

relevant cost components determines the value of a multi-period approach. Thus, only be-

cause decisions are taken in a temporal context, and some parameters change significantly

over the planning horizon, time is not necessarily an important aspect to consider in the

corresponding model.
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The main results of the previous chapter can be summarized as follows:

• Moving to a multi-period model not only increases the flexibility in decision-making

but also the restrictiveness regarding when to use restricted resources.

• The particular discretization of the planning horizon significantly affects the added

value of the multi-period approach and must consequently be chosen with care.

• The main driver of the added value of the multi-period model is not the degree

to which problem parameters change but the degree to which the model extension

allows reducing relevant cost parameters.

Evaluating firstly which modeling additions enrich decision-making for the data at hand

and then, secondly, deriving the level of granularity with which this aspect is included

in the model from the problem’s parameters are two insufficiently explored steps that

may open important new pathways for location modeling. In particular, our insights into

the sensitivity of the VMPS towards the position of breakpoints throughout the planning

horizon opens interesting avenues for further research. For example, several works in the

context of supply chain network design distinguish between tactical and strategic periods

[Albareda-Sambola et al., 2012, Badri et al., 2013, Correia and Melo, 2016]. Location

decisions can only be taken at strategic periods, a subset of the tactical periods at which

allocation decisions can be altered. While the number of strategic periods increases the

number of binary decision variables and thereby significantly affects the complexity of the

problem, the choice of strategic periods is not further explored at this point. Rather, it

is usually assumed to be, e.g., every second or fourth tactical period. Using our newborn

insights to determine strategic periods that are effective in the sense that they increase

the VMPS may potentially lead to better multi-period decision-making.
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7. Service regions and demand uncertainty

The strategic, long-lasting nature of location decisions not only introduces a temporal di-

mension but also uncertainty into the problem as usually what will happen in several years

is, at least to some degree, uncertain. Including uncertainty in mathematical programs

is a topic receiving considerable attention in OR literature in general and location prob-

lems, in particular. Thereby, different ways to include uncertainty into the mathematical

program exist. The two most prominent modeling paradigms are stochastic programming

and robust optimization. It is often argued that the availability of information on the

uncertain parameter or the risk attitude of the decision-maker specifies the best-suited

paradigm. However, with the increasing availability of data and a wide range of options

to incorporate different risk attitudes into the objective function, it is ultimately up to the

decision-maker to choose the most appropriate paradigm. Meanwhile, guidelines on the

impact of this choice on the resulting solutions and, in particular, the resulting decisions

are missing.

In the present work, we evaluate the degree to which underlying decision patterns in the

form of implicit service regions affect the added benefit of moving to a more comprehensive

model. In Chapter 5, we evaluated the effect of including temporal developments into the

model. This chapter looks at model formulations that include uncertainty in the demand

parameters. This leads to the following research question:

RQ7: When is it worth explicitly considering uncertainty in the CFLP?

To quantify the added value of the multi-period model, we drew on the VMPS as an

established measure in literature. Given the various modeling paradigms for including un-

certainty, such a measure is not readily available in the uncertainty context. In Section 7.1,

we provide a short overview of related work and conclude with an outline of the necessary

steps to provide an answer to RQ7.

7.1. Related work on modeling uncertainty in facility location prob-

lems

We present a short overview of different modeling paradigms to include uncertainty in a

mathematical program in Subsection 7.1.1. Thereby, the overview relies in large parts on

Bakker et al. [2020]. In Subsection 7.1.2, we review how these concepts have been applied

to facility location problems, particularly the CFLP and its extensions.

7.1.1. Modeling uncertainty

Methods for optimization under uncertainty have been studied intensely over the past

decades. Often triggered by a particular application, different paradigms to integrate un-

certainty into the decision problem have evolved. Although these models all intend to solve

a similar underlying problem, they differ strongly with respect to the uncertainty represen-

tation, the prescriptive solution information they provide, and the means of performance
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evaluation. A comprehensive review of different uncertainty paradigms with respect to

these aspects can be found in Bakker et al. [2020], in which we particularly emphasize the

relationship between time and uncertainty. Yet, the main challenges arising with respect

to choosing and comparing the solutions between different paradigms hold for static and

multi-stage problems alike. The latter assume a successive disclosure of uncertain param-

eters. Uncertainty in the coefficients and the constraints requires redefining the concepts

of optimality and feasibility, making a direct comparison between the solutions obtained

with models using different uncertainty paradigms difficult. In the following, we briefly

introduce the main uncertainty concepts and the challenges that arise, as pointed out in

the review.
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Figure 7.1.: Prominent methods for solving multi-stage stochastic programs have been derived from
three basic concepts: stochastic programming, robust optimization, and online opti-
mization, stemming from the fields of mathematical programming and computer sci-
ence, respectively [Bakker et al., 2020]

Figure 7.1 illustrates the relationship between the most prominent methods to handle

uncertainty in decision problems, with those particularly relevant to location modeling

highlighted in blue. Particularly when information is disclosed successively, and decisions

have to be taken multiple times in response to new inputs, methods from computer sci-

ence, i.e., online optimization, pose an alternative to modeling paradigms like stochastic

programming and robust optimization that stem from mathematical programming. De-

pending on the application, different methods are dominant, and several approaches com-

bining elements of different methods have been proposed. Given the long-lasting nature of

high-investment location decisions, stochastic programming and robust optimization are

the most common methods to deal with uncertainty in facility location problems and their

extensions. In recent years, a mixture of both, distributionally robust stochastic opti-

mization, gained further attention. We briefly introduce these methods in the following.

Thereby, we focus on how uncertainty in the parameters included in the mathematical pro-

gramming formulation, the definition of optimality and feasibility given this uncertainty,
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and how the value of explicitly including uncertainty in the model is quantified. Further-

more, we discuss existing measures quantifying the added value of the uncertainty-aware

approach. We review works applying these methods to the CFLP in Subsection 7.1.2.

7.1.1.1. Stochastic programming

Stochastic programming assumes that uncertain parameters are random variables follow-

ing a known probability distribution. According to the classification of decision envi-

ronments by Rosenhead et al. [1972], stochastic programming depicts the situation of

decision-making under risk. Originating from the seminal paper “Linear programming

under uncertainty” by Dantzig [1955], stochastic programming is, to our knowledge, the

first approach from within the OR community to deal with uncertainty in mathematical

programming-based optimization. To define optimality in the presence of uncertain co-

efficients in the objective function, the authors propose to optimize the expected value,

which implies the decision-maker has a risk-neutral attitude. To model different risk atti-

tudes but still comprise information on the uncertain parameters in a single, deterministic

value, other objective criteria have been proposed. The most prominent is the Conditional

Value at Risk [Rockafellar and Wets, 1976]. Regarding feasibility, stochastic programming

considered temporal relations between decisions and uncertainty observations early on by

introducing the concept of recourse — a partial decision to be fixed after uncertainty has

been disclosed so that feasibility is ensured, even if possibly at a high cost. This set-

ting is known as two-stage stochastic programming and is formalized by a nested problem

formulation in which the first stage decision has to be taken ex-ante, that is before the

realization of the uncertain parameter, and the second stage decision is taken ex-post,

after uncertainty has been disclosed. When the set of scenarios is discrete, a tractable

reformulation of a stochastic program is referred to as a deterministic equivalent.

7.1.1.2. Robust optimization

A practical drawback of stochastic programming is that probability distributions of un-

certain parameters are often hard – if not impossible – to identify and hence bound to

estimation errors [King and Wallace, 2012]. Robust optimization addresses this problem

by assuming that solely information on the set of possible outcomes and not their indi-

vidual likelihood is available. First proposed by Soyster [1973], it covers the situation of

decision-making under ambiguity. Uncertainty is formally described by an uncertainty set

that contains all possible realizations of the uncertain problem parameters. Robust fea-

sible solutions must be feasible for all potential realizations of the uncertain parameters.

Optimality is usually defined by a min-max cost or min-max regret objective. The uncer-

tainty set allows for a strict separation between the model of uncertainty and the actual

optimization problem. Thereby, the uncertain phenomenon is often described by primitive

uncertainties residing in box-shaped, ellipsoidal, or polyhedral uncertainty sets. These

primitive uncertainties affinely perturb the actual problem parameters from their nominal

values. Tractable reformulations for different forms of this uncertainty set have been pro-

posed and are referred to as robust counterparts [Bertsimas and Sim, 2004, Bertsimas and

Brown, 2009].
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When some decisions are to be taken only after uncertainty has been disclosed, one speaks

of adaptive or adjustable robust optimization [Ben-Tal et al., 2004]. As uncertainty sets are

often infinite, decision rules that yield second-stage recourse decisions for any realization

of the uncertain parameters are optimized as part of the robust counterpart. As general

decision rules are not tractable, considerations are usually restricted to a specified func-

tional form, often linear functions, whose parameters are decision variables in the robust

counterpart.

7.1.1.3. Distributionally robust optimization

Distributionally robust stochastic optimization combines ideas from robust optimization

and stochastic programming. It acknowledges that the probability distribution governing

the uncertain data is difficult to obtain and often subject to uncertainty itself [Wiesemann

et al., 2014]. Scarf [2005] propose a first formulation in which the optimization problem

is reformulated with respect to the worst-case costs over a set of probability distributions

assumed to contain the true probability distribution. Different forms of the ambiguity

set, the set of potential distributions, have been proposed [Ben-Tal and Nemirovski, 1998,

Delage and Ye, 2010], before Wiesemann et al. [2014] present a unifying framework for

modeling these sets.

7.1.1.4. Performance evaluation

Besides different concepts of optimality and feasibility and different uncertainty models,

stochastic programming and robust optimization primarily differ regarding their perfor-

mance measures. In stochastic programming, the benefit arising from explicitly considering

uncertainty is measured by the Value of the Stochastic Solution (VSS) and the Expected

Value of Perfect Information (EVPI). The VSS captures the difference between the ob-

jective value of the stochastic program and the expected objective value of the Expected

Value Problem (EVP), the expected outcome obtained when the first stage decisions are

taken in a purely deterministic setting in which all parameters have been set to their ex-

pected values. The VSS hence expresses what is gained by using a stochastic modeling

approach. The EVPI, on the other hand, measures what is lost because only probabilistic

– and not perfect – information is available. It is the difference between the expected

objective value when the realization of the uncertain parameter is known at the first stage

and the objective value of the stochastic program [Birge and Louveaux, 2011].

In contrast to stochastic programming, in which the added benefit of the more compre-

hensive model is quantified, in robust optimization, the price of robustness measures the

trade-off between feasibility violation probability and impact on the objective value [Bert-

simas and Sim, 2004]. In robust optimization, the objective is a worst-case objective, and

the requirement of robust feasibility usually comes at relatively high costs. Thus, this is

a loss-oriented view on including uncertainty. It asks how much needs to be paid to pro-

tect the solution against all, particularly the worst possible realizations of the uncertain

parameters.
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Summing up, stochastic programming and robust optimization use different formal de-

scriptions of the uncertain parameters, deploy different concepts of optimality and fea-

sibility under uncertainty, and evaluate the resulting solutions differently. This makes a

direct comparison extremely difficult. Nevertheless, both methods have been successfully

applied to the CFLP and its extensions, addressing a mutual goal: improving location

decisions in the face of parameter uncertainty.

7.1.2. Robust and stochastic variants of the CFLP

Several review papers discuss advances in facility location under uncertainty [Snyder, 2006,

Melo et al., 2009]. A recent overview is given in Correia and Saldanha da Gama [2019].

The authors distinguish between three major research directions stemming from differ-

ent sources of uncertainty: models accounting for “congestions” that address situations in

which customer demand for service has a probabilistic behavior, models that handle un-

expected disruptions in the network, e.g., the facilities or the transport links, and models

considering aspects arising from uncertainty in the problem parameters such as demands

or transport costs. In the following, we restrict our review to models of the latter kind. In

particular, we restrict ourselves to works considering uncertainty in the customer demand

of the CFLP and its extensions.

7.1.2.1. Stochastic facility location models

Many works apply stochastic programming to facility location problems, particularly the

CFLP and its extensions in supply chain network design. The strategic location and

tactical allocation decisions naturally yield a two-stage decision structure. The location

decisions are first-stage, here-and-now decisions. The allocation decisions are second-stage,

wait-and-see recourse decisions.

Laporte et al. [1994] present a model in which allocation decisions are also considered in the

first stage. The expected net revenue resulting from recourse transportation decisions is

considered in the second stage. Albareda-Sambola et al. [2011b] consider location decisions

in the first stage and, in the second stage, either allocate the demand to an existing

facility or outsource it to external suppliers. Lin [2009] present a stochastic version of

the single-source CFLP with service level requirements and uncertain demands. Nickel

et al. [2012] present a multi-period supply chain network design problem that includes

financial decisions with uncertainty in the demands and the interest rates. The authors

not only quantify the relevance of their approach by means of the relative value of the

multi-stage stochastic solution but also evaluate the effect the inclusion of uncertainty

has on the resulting location decisions. While all of the above works evaluate the added

value of the stochastic programming approach by means of the VSS, a comparison of the

decisions taken by the stochastic program to those taken by the expected value problem is

rarely performed. Nickel et al. [2012] compare the number of facilities operating and the

proportion of the customer demand served for a particular problem instance and report

significant differences in the decisions taken by the EVP and the stochastic program.
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7.1.2.2. Robust facility location models

Several authors address uncertainty in the parameters of facility location problems using

robust optimization. For the CFLP, two major contributions have been made by Baron

et al. [2010], who present the first static robust counterpart formulation to a location

transportation problem, and Ardestani-Jaafari and Delage [2018], who extend this model

to an adjustable robust counterpart.

Baron et al. [2010] are the first to present a robust counterpart to a CFLP with capac-

ity choice. The model is static in the sense that all decisions are ex-ante here-and-now

decisions. Location decisions have to be fixed at the beginning of the planning horizon.

However, customer allocations and capacity choices are made over a |T |-period planning

horizon. The demand parameters are uncertain and lie in either a box or an ellipsoidal

uncertainty set. The authors analyze the robust solutions in the decision space via the

number of operating facilities, their respective capacities, and the overall connectivity

of the resulting graph. They compare them with solutions from a deterministic model in

which all values are set to averages, the nominal values of the uncertainty sets. In their for-

mulation, the robust counterpart must simultaneously respond to higher potential demand

– requiring larger capacities – and lower potential revenue resulting from lower potential

demand. Consequently, they observe that with increasing uncertainty, the model opens

fewer facilities, resulting in lower fixed costs with higher per-facility capacities. Further-

more, they observe that with ellipsoidal uncertainty, the number of customers allocated to

more than one facility throughout the planning horizon increases.

Ardestani-Jaafari and Delage [2018] extend the model of Baron et al. [2010] to an adjustable

robust model in which only the location decisions are ex-ante here-and-now decisions, and

the allocation and capacity decisions are ex-post wait-and-see decisions. These decision

rules establish a functional relationship between wait-and-see decisions and uncertain pa-

rameters, in this case, the uncertain demand. The authors approximate this relationship

by affine functions and evaluate the effect of gradually increasing their complexity. In par-

ticular, they successively increase the number of uncertain parameters each decision rule

considers, i.e., whether the allocation decisions for a particular customer in a given period

consider only the demand of that specific customer in that period, all demands of all cus-

tomers in that period, or all demand of all customers up to that period. Furthermore, the

authors lift the demand uncertainty space to two dimensions, which allows them to react

differently to positive and negative perturbations of the nominal demand. Other works

presenting robust counterparts for extensions of the CFLP include Gülpınar et al. [2013],

who consider a formulation with a service level. Gabrel et al. [2014] and Zeng and Zhao

[2013] present cutting-place methods to solve similar problems with budgeted uncertainty.

Several authors present robust counterparts for hub location problems [Boukani et al., 2014,

Shahabi and Unnikrishnan, 2014, Zetina et al., 2017]. These works must be mentioned

because they commonly evaluate which hub locations are opened with different models. In

particular, Zetina et al. [2017] compare the number and indices of the hubs opened with

their proposed robust counterpart with budgeted uncertainty to those opened by a two-

stage stochastic program. Thereby, demand is assumed to be distributed uniformly over

161



7.2. Capacitated facility location with uncertain demand

the support of the uncertainty set. The authors compare the worst-case and average-case

performance of both the stochastic and robust solutions and observe that while the robust

solution performs only slightly worse on average, it performs significantly better in the

worst-case scenario.

7.1.2.3. Distributionally robust stochastic location models

Recently, authors applied distributional robust stochastic optimization to variants of the

CFLP. Zhu et al. [2018] present a distributionally robust model for the traffic sensor lo-

cation problem with uncertainty in the travel time data. Wang et al. [2020] present an

adaptive distributionally robust hub location problem with multiple commodities under

demand and cost uncertainty. Liu et al. [2022] use distributional robust optimization to

model state-dependent customer demands. Depending on, e.g., seasonal or socio-economic

conditions, the demand resides in different ambiguity sets, collections of probability distri-

butions for the uncertain demand parameters. The authors conduct a sensitivity analysis

to determine the impact of changes in the parameter values, which describe the ambigu-

ity set, on the optimal and worst-case objective values. This analysis is feasible since,

when the ex-ante location decisions are fixed, the second stage problem becomes a linear

program.

The review of literature demonstrates that while ample research on uncertain model vari-

ants of the CFLP has been performed, RQ7, under which conditions it is worth deploying

an uncertainty model, remains largely unaddressed. The general notion is that when

parameters are uncertain, an uncertainty-aware model is of value, and the appropriate

modeling paradigm is a direct consequence of the available data or the risk attitude of

the decision-maker. Particularly for the case of the CFLP no comparison of the solutions

resulting from stochastic and robust models exists at this point.

In Section 7.2, we present a unified model of the uncertain demand in the CFLP, which

can be used in stochastic programming and robust optimization. We subsequently derive a

two-stage stochastic program and an adjustable robust counterpart that both address the

same problem: finding the optimal location allocation policy given the presented uncertain

demand. In Section 7.3, we present concise measures that allow evaluating and comparing

the performance of the solutions obtained with different approaches in the objective value

space. To answer RQ7, we then turn to the decision space and evaluate to which degree

different modeling approaches recommend different decisions and to which degree they

recommend the same decisions but evaluate them differently. In this context, we relate

our findings to the size of the service regions underlying the problem instance. Up to this

point, all experiments are performed on instances from Example C. In Section 7.4, we

validate all findings on instances from data sets described in Section 1.3. We summarize

our main conclusions in Section 7.5.

7.2. Capacitated facility location with uncertain demand

In the following, we present a two-stage stochastic program and several variants of ad-

justable robust counterparts to the CFLP with uncertain demand. Variants of both mod-
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els can be found in literature. In particular, the presented two-stage stochastic program

can be found in Correia and Saldanha da Gama [2019]. The adjustable robust counterpart

formulations can be considered a simplification of the location-transportation model pre-

sented by Ardestani-Jaafari and Delage [2018]. Nevertheless, to the best of our knowledge,

this is the first time these two modeling paradigms are compared on a CFLP with a unified

model of the uncertain demand.

7.2.1. A unified model of uncertain demand

Depending on whether a stochastic programming or robust optimization approach is pur-

sued, the uncertain demand is either modeled by a set of discrete scenarios, a probability

distribution, or an uncertainty set. In the following, we assume that information on the set

of all possible scenarios and their individual likelihood is available. We derive scenario and

uncertainty sets that allow comparing the solutions obtained with stochastic programming

and robust optimization approaches.

We assume that only the customer demand is uncertain and denote the uncertain demand

of customer j by D̃j . We further assume that the uncertain demand of each customer is

linearly dependent on a single primitive uncertainty ξ∈ R, such that

D̃j(ξ) = D0
j + ξD̂j . (7.1)

Thereby, D0
j is the nominal demand perturbed by ξD̂j . The drift parameter D̂j can be

scaled so that the primitive perturbation parameter ξ can be normalized to the interval

[−1, 1]. The above is a standard way to describe uncertainty in robust optimization, and

the interval [−1, 1] is called the uncertainty set U .

To integrate this uncertainty model in a stochastic program, we assume that each primitive

uncertainty ξ is a random variable and that the interval [−1, 1] is the support of its

probability distribution. Furthermore, we assume that ξ has an expected value of 0. The

latter has the effect that the nominal demand D0
j equals the expected demand. We assume

that ξ follows a uniform distribution, such that ξ ∼ U [−1, 1]. However, any probability

distribution with the above mean and support could equally be applied. The uniform

distribution is a continuous probability distribution, which, as such, cannot be included in a

stochastic programming formulation. Instead, the probability distribution is approximated

by a finite set of scenarios Ω:= {ξ1, ξ2, . . . , ξ|Ω|} that are randomly drawn from U [−1, 1].
This is a state-of-the-art procedure, also called sample average approximation. We want to

ensure that the robust and the stochastic models include the same information on extreme

realizations of the random parameters, which is why for any set Ω, we set ξ1 := 1 and

ξ2 := −1. Furthermore, to ensure that Ω correctly captures the expected or nominal value

of each parameter, we generate further scenarios in Ω by randomly drawing ξ from U [0, 1]

and subsequently adding ξ and −ξ to the set of scenarios.

The above uncertainty model is very versatile and allows capturing a variety of uncertainty

settings. We examine three different settings with three different perturbation magnitudes.

For the first, we distinguish between global (g), local (l), and regional (r) uncertain effects
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by altering the number of primitive uncertainties that the uncertain customer demands

depend on. In particular, we distinguish between the following:

Global uncertainty: All demand parameters depend on the same, single primitive uncer-

tainty ξ, as described in Eq. (7.1) and Ug:= [−1, 1]. In this case, uncertainty reflects,

e.g., the economic situation. Notice that with different ratios between D0
j and D̂j ,

this might still allow one to model an effect of different magnitude for different

customers. However, assuming that all demand is affected by the same primitive

uncertainty specifies the direction and, hence, allows us to model situations with

high, low, and medium demand scenarios as common in stochastic programming.

Local uncertainty: Each parameter is affected by its own primitive uncertainty ξj , such

that D̃j(ξj) = D0
j +ξjD̂j . Thereby, the individual uncertain parameters ξj are mutu-

ally independent. The uncertainty set takes the form of a hypercube Ul:= [−1, 1]|J |.
Local uncertainty reflects a situation in which the demand of individual customers is

forecasted based on historical data and, consequently, subject to estimation errors.

Regional uncertainty: With regional uncertainty, we explore a mixed form of the above

commonly used uncertainty settings. In particular, we assume that there are a few

regional impacts that affect the uncertain demand of customers in a certain area

of the facility-customer space. The effect in a given region r ∈ R is modeled by a

primitive uncertainty ξr. Customers are assigned to a region based on their estimated

coordinates obtained with MDS (see Section 1.3). The uncertain demand of customer

j belonging to region r is then described by D̃j(ξr) = D0
j + ξrD̂j . The primitive

uncertainties affected different regions are again independent, and the uncertainty

set is a hypercube of reduced dimensionality Ur:= [−1, 1]|R|, with 2 ≤ |R| < |J |.

In the following, we refer to the vector of primitive uncertainties as ξ, regardless of its

dimensions. We refer to a particular realization of ξ by ξω.

Besides the uncertainty setting, we distinguish between different uncertainty magnitudes,

described by the percentage to which the demands maximally deviate from their nominal

or expected value. Therefore, p∈ [0, 1] denotes the perturbation level, such that D̂j=pD0
j

for all customers.

7.2.2. Two-stage stochastic capacitated facility location

We consider the classic stochastic programming formulation of the CFLP, which can also be

found in Correia and Saldanha da Gama [2019], further referred to as Two-stage Stochastic

CFLP (2SS-CFLP). Location decisions are first-stage decisions, and allocation decisions

are second-stage recourse decisions. In a profit-maximizing formulation, the second-stage

problem Q (y, ξ) has relatively complete recourse. It is always a feasible solution not to

serve any customer demand.
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2SS-CFLP

max−
∑

i
Fiyi + Eξ [Q (y, ξ)] (7.2)

s.t.yi ∈ {0, 1} i ∈ I (7.3)

with

Q (y, ξω) := max
∑

i

∑
j
(rj − cij)D̃j(ξ

ω)xij (7.4)

s.t.
∑

i
xij ≤ 1 j ∈ J (7.5)

∑
j
D̃j(ξ

ω)xij ≤ Qiyi i ∈ I (7.6)

xij ≥ 0 i ∈ I, j ∈ J. (7.7)

When ξ resides in a finite set of scenarios Ω, we can formulate a deterministic equivalent

to the above problem, which we further denote by Deterministic Equivalent Two-stage

Stochastic CFLP (2SS-CFLP-DE). The second-stage recourse decisions xijω denote the

fraction of the demand of customer j allocated to facility i in scenario ω. The probability

of scenario ω is denoted by πω.

2SS-CFLP-DE

max−
∑

i
Fiyi +

∑
ω∈Ω

πω

[∑
i

∑
j
(rj − cij) D̃j(ξ

ω)xijω

]
(7.8)

s.t.
∑

i
xijω ≤ 1 j ∈ J, ξω ∈ Ω (7.9)

∑
j
D̃j(ξ

ω)xijω ≤ Qiyi i ∈ I, ξω ∈ Ω (7.10)

yi ∈ {0, 1} i ∈ I (7.11)

xijω ≥ 0 i ∈ I, j ∈ J, ξω ∈ Ω.

(7.12)

The above formulation can be handed over to off-the-shelf MIP solvers. The optimal

objective value to the 2SS-CFLP-DE will subsequently be referred to as z⋆SP .

The state-of-the-art measure to quantify the value of a stochastic program compared

to a deterministic approach is to determine the VSS. It describes the relative increase

in the objective value when comparing z⋆SP to the expected objective value a decision-

maker obtains when making first-stage decisions based on the expected value problem.

To obtain the latter in the present setting, we solve the CFLP in which all uncertain

demand parameters are represented by their expected values which, in this case, implies

E(D̃j(ξ)) = D0
j + E(ξ)D̂j = D0

j . The resulting optimal location decisions, y⋆EV , are then

fixed as the first-stage decisions in the 2SS-CFLP-DE such that

yi = y⋆EVi
. (7.13)

The 2SS-CFLP-DE is then solved with these fixed location decisions to obtain the expected

objective value, z⋆EV . It represents the expected profit if uncertainty is not considered in
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the first stage.

Definition 7.1. The Value of the Stochastic Solution (VSS) is the relative arithmetic

difference between the optimal objective value of the stochastic program, z⋆SP , and the ex-

pected objective value when first-stage decisions are based on the expected value problem,

z⋆EV , such that

V SS =
z⋆SP − z⋆EV

z⋆EV

. (7.14)

As the set of feasible solutions to the deterministic equivalent is a superset of the set of

feasible solutions to the deterministic equivalent in which location decisions are fixed to

those of the expected value problem, it holds that V SS≥ 0. Notice that the concept of

the VSS is very similar to the hybrid VMPS, which evaluates the added benefit of a multi-

period model by comparing its objective value to that of a model using less, in that case,

temporally aggregated information. Based on the same rationale as for the hybrid VMPS,

we conclude that the VSS is only greater than 0 if the expected value problem opens a

different, non-optimal subset of facilities than the stochastic program.

Example C 7.1 (Stochastic programming vs. expected value solution) Consider instances

P̃1 and P̃2 from Example C and assume the demand is modeled according to the description

in Subsection 7.1.1 with three different perturbation levels, p ∈ {5%, 10%, 20%}, and
global (g), local (l), and regional (r) uncertainty settings. For the latter, we consider

two randomly determined regions. For each of the 6 resulting uncertain problems, we

determine the optimal solution to the 2SS-CFLP-DE, s⋆SP , and the optimal solution to

the expected value problem, s⋆EV . We derive |Ω| = 50 scenarios to be considered in the

deterministic equivalent.

V SS (%) Jacc(I⋆SP , I
⋆
EV ) overlap(I⋆SP , I

⋆
EV )

p g l r g l r g l r

P̃1

5% 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0
10% 1.9 0.7 2.5 0.9 0.9 0.9 1.0 1.0 1.0
20% 22.8 19.4 26.3 0.8 0.9 0.8 1.0 1.0 1.0

P̃2

5% 0.9 0.9 0.8 0.6 0.6 0.6 0.7 0.7 0.7
10% 1.6 1.8 1.4 0.8 0.8 0.8 0.9 0.9 0.9
20% 3.1 3.7 2.8 0.4 0.4 0.4 0.6 0.6 0.6

Table 7.1.: Difference between stochastic programming and expected value solution in objective
value and decision space (P̃1-P̃2, Ex. C)

Table 7.1 depicts the VSS as a measure of comparison in the objective value space, as well

as the Jaccard index (see Eq. (2.4)) and the overlap coefficient (see Def. 2.7) comparing the

similarity of the resulting solutions in the decision space – particularly, comparing the set

of facilities operating in s⋆SP , I
⋆
SP , and the set of facilities operating in s⋆EV , I

⋆
EV . As to be

expected, the VSS increases with an increasing perturbation level p. The magnitude of this

increase, however, significantly differs between P̃1 and P̃2. While for P̃2, the VSS never

exceeds 3.7%, for P̃1 it increases up to 26.3%. Also, the uncertainty setting affects the
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VSS of instances P̃1 and P̃2 differently. For P̃1, throughout all perturbation levels, regional

uncertainty (r) yields the greatest VSS. Meanwhile, for P̃2, local uncertainty yields the

largest VSS throughout.

Regarding the decision space, Table 7.1 compares the subset of facilities operating in the

optimal solution to the stochastic program with that of the expected value problem by

measures that consider only the location decisions. We will look closer at the differences in

the allocation decisions, particularly the implied service regions, in Section 7.3. However,

the location decisions indicate a significant difference between the effect that the inclusion

of uncertainty has on the optimal facilities in P̃1 compared to P̃2. Despite a significantly

higher VSS, the overlap coefficient for P̃1 is 1.0 throughout all 6 considered problems.

This means that one of the two sets of facilities is a subset of the other. In particular,

the facilities operating in the stochastic program are a subset of those operating in the

expected value problem. With an increasing perturbation level, the number of facilities

operating in the optimal solution to the stochastic program decreases. While for p = 5%,

the stochastic program and the expected value problem operate the same set of facilities,

the Jaccard index decreases with increasing p, indicating that fewer facilities operate in

the optimal solution to the stochastic program. Even though for P̃2, the VSS is lower than

for P̃1 throughout, the effect uncertainty has on the subset of optimal facilities is more

profound as both, the overlap coefficient and the Jaccard index, are significantly lower

than 1.0 throughout all considered uncertainty settings. Both decrease with increasing

perturbation levels, indicating large differences between the sets of optimal facilities. ▲

7.2.3. Adjustable robust capacitated facility location

We propose adjustable robust counterparts to the CFLP corresponding to the previously

presented stochastic program. The different versions deploy different decision rules and

different approximations of the uncertainty sets. Neither of them is straightforward, which

is why we introduce the concepts one after the other. The presented models can be

considered simplifications of the models presented by Ardestani-Jaafari and Delage [2018].

We start by presenting the initial formulation of the robust counterpart, leaning on the

formulation presented by Baron et al. [2010]. We then gradually extend the formulation

to match state-of-the-art modeling techniques that limit over-conservatism.

Consider the following robust version of the CFLP.

Adjustable Robust CFLP I

maxmin
ξ∈U
−
∑

i
Fiyi +

∑
i

∑
j
(rj − cij)D̃j(ξ)xij (7.15)

s.t.
∑

i
xij ≤ 1 j ∈ J (7.16)

∑
j
D̃j(ξ)xij ≤ Qiyi i ∈ I, ξ ∈ U (7.17)

xij ≥ 0 i ∈ I, j ∈ J (7.18)

yi ∈ {0, 1} i ∈ I. (7.19)
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In contrast to the two-stage stochastic program, where allocation decisions can be taken

after uncertainty is disclosed, the above robust formulation requires all decisions to be

taken upfront. However, notice that the fractional variable-based formulation of the al-

location decisions implies a certain degree of adaptivity. The actual transport volumes

in any scenario linearly depend on the realized demand. In particular, this can be con-

sidered as a naive decision rule in an adjustable robust counterpart, taking the form

XI
ij(D̃j) := xij(D

0
j + ξD̂j).

A simple way to transform the max-min profit objective into a simple maximization prob-

lem is by means of an auxiliary decision variable v, such that the objective (7.15) is replaced

by

max v (7.20)

s.t.−
∑

i
Fiyi +

∑
i

∑
j
(rj − cij)D̃j(ξ)xij ≥ v ξ ∈ U (7.21)

v ≥ 0. (7.22)

Two constraints of the resulting problem are affected by uncertainty: the constraint rep-

resenting the objective function (7.21), and the capacity constraint (7.17). Evidently, for

uncertainty sets that are defined by intervals or hypercubes, these constraints cannot be

handed over to state-of-the-art solvers as they require an infinite number of constraints

to account for all possible realizations of the uncertain parameters. A straightforward,

tractable, but over-conservative robust counterpart formulation is obtained by replacing

the uncertain parameters with their extreme values, such that we obtain the following.

Adjustable Robust Counterpart to the CFLP (ARC-CFLP)-I

max v (7.23)

s.t.−
∑

i
Fiyi

+
∑

i

∑
j
max{0, (rj − cij)}minξ∈U D̃j(ξ)xij ≥ v (7.24)

∑
i
xij ≤ 1 j ∈ J (7.25)

∑
j
maxξ∈U D̃j(ξ)xij ≤ Qiyi i ∈ I (7.26)

v, xij ≥ 0 i ∈ I, j ∈ J (7.27)

yi ∈ {0, 1} i ∈ I. (7.28)

Thereby, the minimum and maximum realizations of ξ ∈ U can be straightforwardly

determined as (−1, . . . ,−1) and (1, . . . , 1), respectively. Consequently, we know that

minξ∈U D̃j(ξ) = D0
j − D̂j , (7.29)

and

maxξ∈U D̃j(ξ) = D0
j + D̂j . (7.30)
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The reformulations rely on the fact that the greater equal constraints hold for all realization

of the uncertain parameters if they hold for the minimum parameter realization and,

similarly, the less or equal constraints hold for all realizations if they hold for the maximum

parameter realization. Thereby, the reformulation of constraint (7.21) as constraint (7.24)

must further restrict all considerations to allocations generating a positive net unit profit.

Consequently, we only consider those allocations that yield a net profit greater than 0 and

denote ηij := max{0, (rj − cij)}. This way it is ensured that the model never considers it

profitable to allocate customers to a facility that requires unit transportation costs that

outweigh unit profits. Notice that ηij can be evaluated in the preprocessing of any model

as no decision variables are involved.

The above robust counterpart formulation is overly conservative for two reasons. First,

since we model the uncertainty set as a hypercube, all demands may take on their worst-

case realization simultaneously. While these worst-case scenarios, in which all parameters

taken on their minimum or maximum value are also included in the scenario set Ω con-

sidered in the stochastic program, the robust counterpart only takes these worst-case

realizations into account. This leads to very conservative solutions.

Secondly, as pointed out by Ardestani-Jaafari and Delage [2018], the fractional-variable-

based formulation (decision rule XI
ij) makes the model overly conservative. Since the

uncertain demand affects both the objective and the capacity constraint, and both are

“protected” simultaneously, the model requires building capacities to serve the maximum

demand while expecting the minimal demand to generate profit. A consequence of the

fractional variable-based formulation is that every small fraction of the demand that is

served requires arbitrarily large capacities to be installed. As a result, the model cannot

fully exploit established capacities. Neither of the above problems is new, and we address

each separately with state-of-the-art countermeasures.

7.2.3.1. Affine decision-rules for allocation decisions

To overcome the conservatism induced by the fractional-variable-based formulation, Ardestani-

Jaafari and Delage [2018] suggest adding a constant component to the decision rule rep-

resenting the allocation decision, such that XII
ij (D̃j(ξ)) := wij + xijξD̂j , with wij ≥ 0 the

constant component of the allocation volume. The functional form of the resulting decision

rule is illustrated in Figure 7.2b. As the following robust counterpart formulation shows,

adding the constant component to the decision rule implies that uncertainty must also be

considered in the demand satisfaction constraint (7.33) and the non-negativity constraint

for the total transport volume (7.35). It is easy to see that both constraints are restricted

most strongly when the demand is minimal.
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ARC-CFLP-II

max v (7.31)

s.t.−
∑

i
Fiyi +

∑
i

∑
j
ηij

(
wij + xijξD̂j

)
≥ v ξ ∈ U (7.32)

∑
i
wij + xijξD̂j ≤ D0

j + ξD̂j j ∈ J, ξ ∈ U (7.33)
∑

j
wij + xijξD̂j ≤ Qiyi i ∈ I, ξ ∈ U (7.34)

wij + xijξD̂j ≥ 0 i ∈ I, j ∈ J (7.35)

v, wij , xij ≥ 0 i ∈ I, j ∈ J, ξ ∈ U
(7.36)

yi ∈ {0, 1} i ∈ I. (7.37)

Furthermore, Ardestani-Jaafari and Delage [2018] suggest lifting the uncertainty space to

allow treating positive and negative perturbations differently. As depicted in Figure 7.2c,

this means that the allocation decision rule is approximated by a piece-wise linear function.

In particular, each primitive uncertainty ξ is split into a positive and a negative component

ξ+ and ξ−, such that the uncertain demand becomes D̃j(ξ
+, ξ−) := D0

j + D̂jξ
+ − D̂jξ

−.

Let m denote the number of primitive uncertainties considered in the given uncertainty

setting. Then, the lifted uncertainty set is formally described by

U2 :=
{
(ξ+, ξ−) ∈ [0, 1]m × [0, 1]m

∣∣||ξ+ + ξ−||∞ ≤ 1,
}
. (7.38)

The resulting affine decision rule for the allocation decision becomes

XIII
ij (D̃j(ξ

+, ξ−)) := wij +
(
x+ijξ

+ − x−ijξ
−
)
D̂j . Integrating this decision rule into the

adaptive robust CFLP from above is straightforward to derive the ARC-CFLP-III.

D̃j(ξ)

Xij(D̃j(ξ))

Qi

xij

0

(a) XI
ij

D̂jξ−D̂jξ

Xij(D̃j(ξ))

Qi

D0
j

xij

wij

(b) XII
ij

D̂jξ
+D̂jξ

−

Xij(D̃j(ξ
+, ξ−))

Qi

D0
j

x+
ij

x−
ij

wij

(c) XIII
ij

Figure 7.2.: Increasingly flexible decision rules Ardestani-Jaafari and Delage [2018]

The optimal min-max objective value of the adjustable robust counterpart is denoted by

z⋆RC . The results demonstrate the over-conservatism of the fractional-variable-based deci-

sion rule (XI
ij). As the robust counterpart maximizes the worst-case profit, one intuitively

assumes that z⋆RC is the lowest attainable profit across all potential realizations of the un-

certain parameter. However, z⋆WC denotes the “actual” worst-case profit that is obtained

when the location decisions from the robust counterpart y⋆RC are fixed in the static CFLP,

and the problem is solved for all possible realizations of ξ, in particular for (−1, . . . ,−1).
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7.2. Capacitated facility location with uncertain demand

Definition 7.2. The worst-case gap, WC−gap, denotes the relative arithmetic difference

between the objective value of the (adjustable) robust counterpart, z⋆RC , and the worst

realization of the objective value in CFLP, z⋆RC(ξ
ω), in which location decisions have been

fixed to those of the (adjustable) robust counterpart and demands are set to the worst-case

realization of the uncertain parameter ξω∈U such that

WC − gap := max{0,
z⋆WC − z⋆RC

z⋆WC

}, with z⋆WC = min
ξω∈U

z⋆RC(ξ
ω). (7.39)

The WC − gap precisely captures the over-conservatism that results from approximating

a fully flexible adaptive decision rule by an affine approximation.

Example C 7.2 f (Different affine decision rule approximations in adjustable robust coun-

terparts) Table 7.2 displays the results obtained for robust counterparts with different

decision rules for instances P̃1 and P̃2. The perturbation magnitude p is again varied

between 5%, 10%, and 20%. The table displays z⋆RC , z
⋆
WC , and WC − gap as means of

comparison in the objective value space and compares the set of solutions operating in the

adjustable robust counterpart I⋆RC to those operating in the CFLP in which all parameters

have been set to their nominal (expected) values, I⋆EV using the overlap coefficient and

the Jaccard index. The results indicate a significant worst-case gap for instance P̃1 and

decision rule XI
ij . For p = 5%, the robust counterpart underestimates the worst-case profit

by 70.4%. For p = 10%, the worst-case profit is underestimated by 95.9%. For P̃2, the
worst-case gap is significantly smaller and does not exceed 1.6%. The restrictive capacities

in P̃1 contribute strongly to the worst-case gap as to be profitable, facilities must be highly

utilized. However, as the fractional variable-based formulation requires that the capacity

constraint must also hold for the highest demand realization, high utilization is impossible.

For P̃2, lower utilization levels are optimal, reducing the negative effect of the required

capacity buffers.

Including a constant allocation volume to the decision rule effectively solves the prob-

lem, and the worst-case gap gap reduces to 0 for XII
ij and XIII

ij . In particular, lifting

the uncertainty set does not improve the objective value for the considered instances.

Ardestani-Jaafari and Delage [2018] already point out that the robust counterpart to a

location-transportation problem can ignore positive perturbations as there is always a

worst-case optimal solution that adapts to negative demand perturbations but ignores

positive perturbations. As a consequence, x+ij is 0 in all optimal solutions obtained with

Xij(ξ)
III .

In addition, Table 7.2 displays the overlap between the subset of facilities operating in the

robust counterpart and those facilities operating in expected or nominal value problem,

the CFLP in which all parameters are set to their average or nominal values. The results

strongly resemble those from stochastic programming. For P̃1, the robust counterpart

opens a subset of those facilities operating in the expected value problem. Thereby, the

number of operating facilities reduces significantly, i.e., in the case of a fractional variable-

based decision rule (XI
ij). Meanwhile, for P̃2, the set of facilities operating in the optimal

solution changes substantially throughout all considered settings.

171



7.2. Capacitated facility location with uncertain demand

p Xij z⋆RC z⋆WC WC − gap overlap(I⋆RC , I
⋆
EV ) Jacc(I⋆RC , I

⋆
EV )

P̃1

5%
I 506.8 1712.3 70.4 1.0 0.5
II 2274.9 2274.9 0.0 1.0 0.9
III 2274.9 2274.9 0.0 1.0 0.9

10%
I 11.8 288.3 95.9 1.0 0.1
II 2174.2 2174.2 0.0 1.0 0.9
III 2174.2 2174.2 0.0 1.0 0.9

20%
I 0.0 0.0 0.0 0.0 0.0
II 1952.9 1952.9 0.0 1.0 0.8
III 1952.9 1952.9 0.0 1.0 0.8

P̃2

5%
I 18183.6 18242.4 0.3 0.7 0.6
II 18756.7 18756.7 0.0 0.5 0.3
III 18756.7 18756.7 0.0 0.5 0.3

10%
I 16509.5 16567.1 0.3 0.7 0.6
II 17682.6 17682.6 0.0 0.7 0.4
III 17682.6 17682.6 0.0 0.7 0.4

20%
I 12970.5 13178.1 1.6 0.3 0.2
II 15511.4 15511.4 0.0 0.6 0.3
III 15511.4 15511.4 0.0 0.6 0.3

Table 7.2.: Robust counterpart solution for different decision rule approximations (P̃1-P̃2, Ex. C)

▲

When uncertainty equals a hypercube, distinguishing between different uncertainty set-

tings in the form of a different number of primitive uncertainties is obsolete. All primitive

uncertainties take their worst-case values at either 1 or -1, which is all that is considered

in the above problem formulations. This changes when we consider polyhedral uncertainty

sets in the following.

7.2.3.2. Polyhedral uncertainty

Uncertainty sets in the form of hypercubes imply that the decision maker is willing to

protect a solution against the simultaneous deviation of all parameters to their worst-case

value. As Example C 7.2 demonstrates, this may come at potentially high costs. Bertsi-

mas and Sim [2004] propose polyhedral uncertainty sets. As pointed out in Section 7.1,

polyhedral uncertainty sets reflect the intuitive idea that it is unlikely that all parameters

deviate to their worst-case values simultaneously. They allow a decision-maker to choose

a desired protection level by specifying a maximum number of uncertain parameters that

may deviate to their worst-case realizations simultaneously. Formally, this means that in

any constraint with m uncertain parameters, the decision maker may choose a parameter

Γ ∈ [0,m] so that no more than Γ uncertain parameters may deviate to their worst-case

value at the same time. Depending on whether we consider global, local, or regional un-

certainty settings, we consider a different number of primitive uncertainties. This means

the number of uncertain parameters that affect a particular constraint differs, hence the

upper bound of the protection level Γ. Formally, the polyhedral uncertainty set can be

described as follows:

Upol.
2 :=

{
(ξ+, ξ−) ∈ [0, 1]m × [0, 1]m

∣∣||ξ+ + ξ−||∞ ≤ 1, ||ξ+ + ξ−||1 ≤ Γ
}
. (7.40)
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7.2. Capacitated facility location with uncertain demand

Including polyhedral uncertainty sets in the problem formulation is not trivial, and we will

describe the implications for each constraint in the following usingXIII
ij . For demonstrative

purposes, we assume that each customer is affected by a single primitive uncertainty ξj . We

discuss the implications of assuming global or regional uncertainty settings after presenting

the model.

Uncertain objective

The reformulation idea of Bertsimas and Sim [2004] relies on exploiting the duality of

the inner maximization problem. Thus, for the objective constraint, we first reformulate

objective (7.15) from a max-min profit to a min-max net cots formulation, such that

min
x+,x−,w,y

max
(ξ+,ξ−)∈Upol.

2

∑
i
Fiyi +

∑
i

∑
j
−ηij

(
wijt + (x+ijξ

+ − x−ijξ
−)D̂j

)
. (7.41)

Then, we separate the deterministic from the uncertain part, such that

∑
i
Fiyi +

∑
i

∑
j
−ηijwij

︸ ︷︷ ︸
deterministic

+max
(ξ+j ,ξ−j )∈Upol.

2

{∑
i

∑
j
−ηijD̂j(x

+
ijξ

+
j − x−ijξ

−
j )
}

︸ ︷︷ ︸
βobj(Γobj ,x+⋆

ij ,x−⋆

ij )

≤ v. (7.42)

The inner maximization problem βobj(Γobj , x+
⋆

ij , x−
⋆

ij ), is defined as follows

max
(ξ+j ,ξ−j )∈U

pol.
2

∑
j
D̂j

(∑
i
−ηx+⋆

ij ξ+j −
∑

i
−ηx−⋆

ij ξ−j
)

(7.43)

s.t.
∑

j

(
ξ+j + ξ−j

)
≤ Γobj

(
Zobj

)
(7.44)

0 ≤ ξ+j + ξ−j ≤ 1 ∀j ∈ J
(
pobjj

)
, (7.45)

the dual to which is

min
p,Z

ΓobjZobj +
∑

j
pobjj (7.46)

s.t. Zobj + pobjj ≥
∑

i
−ηijx+⋆

ij D̂j ∀j ∈ J (7.47)

Zobj + pobjj ≥ −
∑

i
−ηijx−⋆

ij D̂j ∀j ∈ J (7.48)

Zobj , pobjj ≥ 0 ∀j ∈ J. (7.49)

Given that ηij ≥ 0 per definition, as well as x+
⋆

ij ≥ and D̂j ≥, it is obvious that constraint
(7.47) is always fulfilled as it is implicitly ensured by the non-negativity constraints on the

dual variables (7.49). It can thus be omitted, and only constraints (7.48) and (7.49) must

be included in the robust counterpart formulation. This reformulation thus shows what

we concluded from the robust counterpart with box uncertainty: the worst-case objective

is only affected by negative perturbations of the demand parameters.
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7.2. Capacitated facility location with uncertain demand

Demand satisfaction constraint

Separating the deterministic and the uncertain part of the demand satisfaction constraint

yields

∑
i
wij

+max(ξ+j ,ξ−j )∈U
pol.
2

D̂j

{∑
i
x+ijξ

+
j −

∑
i
x−ijξ

−
j − ξ+j + ξ−j

}

︸ ︷︷ ︸
βdem
j (Γdem

j ,x+⋆
ij ,x−⋆

ij )

≤ D0
j ∀j ∈ J. (7.50)

As for all considered uncertainty settings, the uncertain customer demand is affected by

at most one primitive uncertainty, we obtain the following inner maximization problem

max
(ξ+j ,ξ−j )∈[0,1]2

D̂j

((∑
i
x+⋆
ij − 1

)
ξ+j +

(
1−

∑
i
x−⋆
ij

)
ξ−j
)

(7.51)

s.t.ξ+j + ξ−j ≤ 1
(
Zdem

)
(7.52)

ξ+j , ξ
−
j ≥ 0 ∀j ∈ J. (7.53)

Thus, the dual is

min
p,Z

Zdem
j (7.54)

s.t.Zdem
j ≥

(∑
i
x+⋆
ij − 1

)
D̂j (7.55)

Zdem
j ≥

(
1−

∑
i
x−⋆
ij

)
D̂j (7.56)

Zdem
j ≥ 0. (7.57)

As
∑

i x
+
ij is the fraction of the excess demand served by any facility, we can assume that

in the optimal solution, it holds that
∑

i x
+
ij ≤ 0. Constraint (7.55) can thus be omitted

from the formulation, and, again, the constraint is only affected by negative demand

perturbations.

Capacity constraint

Separating the deterministic and the uncertain part yields:

∑
j
wij +max

(ξ+,ξ−)∈Upol.
2

∑
j
D̂j

(
x+ijξ

+
j − x−ijξ

−
j

)

︸ ︷︷ ︸
βcap
i (Γcap

i ,x+⋆
ij ,x−⋆

ij )

≤ Qiyi ∀i. (7.58)

The inner maximization problem is

max
(ξ+j ,ξ−j )U

pol.
2

∑
j
D̂j

(
x+⋆
ij ξ+j − x−⋆

ij ξ−j
)

(7.59)

s.t.
∑

j

(
ξ+j + ξ−j

)
≤ Γcap

i (Zcap
i ) (7.60)

0 ≤ ξ+j + ξ−j ≤ 1 ∀j ∈ J
(
pcapij

)
. (7.61)
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7.2. Capacitated facility location with uncertain demand

which yields the following dual

min
p,Z

Γcap
i Zcap

i +
∑

j
pcapij (7.62)

s.t.Zcap
i + pcapij ≥ x+⋆

ij D̂j ∀j ∈ J (7.63)

Zcap
i + pcapij ≥ −x−⋆

ij D̂j ∀j ∈ J (7.64)

Zcap
i , pcapij ≥ 0 ∀j ∈ J. (7.65)

Given that x−⋆
ij ≥ 0 and D̂j ≥ 0, it is evident that Equation 7.64 can be dropped and only

positive demand perturbations affect the uncertain capacity constraints.

Non-negative transport volumes

Separating the deterministic and the uncertain parts yields

wij +min
(ξ+,ξ−)∈Upol.

2
D̂j

(
x+ij − x−ij

)
≥ 0 (7.66)

⇔wij −max
(ξ+,ξ−)∈Upol.

2
D̂j

(
−x+ijx

−
ij

)

︸ ︷︷ ︸
βnn
ij (Γnn

ij ,x+⋆
ij ,x−⋆

ij )

≥ 0. (7.67)

Again, there is at most one primitive uncertainty affecting the non-negativity constraint,

such that the inner optimization problem is:

max
(ξ+j ,ξ−j )U

pol.
2

D̂j(−x+⋆
ij + x−⋆

ij ) (7.68)

s.t.ξ+j + ξ−j ≤ 1 (Znn
i ) (7.69)

ξ+j , ξ
−
j ≥ 0. (7.70)

Thus, the dual is

min
p,Z

Znn
ij (7.71)

s.t.Znn
ij ≥ −x+ijD̂j (7.72)

Znn
ij ≥ x−ijD̂j (7.73)

Znn
ij ≥ 0. (7.74)

Once again, the non-negativity constraint is only affected by negative demand perturba-

tions.

Adaptive robust counterpart with polyhedral uncertainty

Given the above reformulation of the uncertain constraints, we obtain the following adap-

tive robust counterpart with polyhedral uncertainty, which we use in the following.
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7.2. Capacitated facility location with uncertain demand

ARC-CFLP

min
x+,x−,v,
w,y,p,Z

v (7.75)

s.t.
∑

i
Fiyi +

∑
i

∑
j
−ηijwij

+
∑

j
pobjj + ZobjΓobj ≤ v (7.76)

Zobj + pobjj ≥ −
∑

i
−ηijD̂jx

−
ij ∀j ∈ J (7.77)

∑
i
wij + Zdem

j ≤ D0
j ∀j ∈ J (7.78)

Zdem
j ≥

(
1−

∑
i
x−ij
)
D̂j ∀j ∈ J (7.79)

∑
j

(
wij + pcapij

)
+ ΓcapZcap

i ≤ Qiyi ∀i ∈ I (7.80)

Zcap
i + pcapij ≥ D̂jx

+
ij ∀j ∈ J, i ∈ I (7.81)

wij − Znn
ij ≥ 0 ∀j ∈ J, i ∈ I (7.82)

Znn
ij ≥ x−ijD̂j ∀j ∈ J, i ∈ I (7.83)

Zobj , pobjj , Zdem
j , Zcap

i , pcapij , x+ij , x
−
ij , wij ≥ 0 ∀j ∈ J, i ∈ I (7.84)

yi ∈ {0, 1} ∀i ∈ I. (7.85)

The ARC-CFLP was derived assuming a local uncertainty setting in which each customer

is affected by a single primitive uncertainty. When moving, e.g., to a global uncertainty

setting, there is only a single primitive uncertainty ξ, and the uncertainty set Ubox equals

the interval [−1, 1]. Restricting this interval by setting a budget of uncertainty Γ ∈ [0, 1]

essentially implies shrinking this interval. This means that the reformulation of those

constraints that consider more than one primitive uncertainty simplifies. In particular,

the reformulation of the objective function simplifies from (7.76) and (7.77) to

∑
i
Fiyi +

∑
i

∑
j
−ηijwij + ZobjΓobj ≤ v (7.86)

Zobj ≥ −
∑

j

∑
i
−ηijD̂jx

−
ij . (7.87)

Similarly, the reformulation of the capacity constraints (7.80) and (7.81) simplifies to

∑
j

(
wij + pcapij

)
+ ΓcapZcap

i ≤ Qiyi ∀ ∈ I (7.88)

Zcap
i ≥

∑
j
D̂jx

+
ij ∀i ∈ I. (7.89)

Meanwhile, the reformulations of those constraints that have always been affected by only a

single primitive uncertainty, i.e., the demand satisfaction constraints (7.78)-(7.79) and the

non-negativity constraints (7.82)-(7.83), remain unchanged. The robust counterpart pro-

tects individual constraints against uncertain perturbations independently of one another.

Thus, whether each constraint is affected by the same or different primitive uncertainties

does not make any difference. Obtaining reformulation for a regional uncertainty setting

is straightforward. In the following, we assume the same protection level Γ for each con-

straint and denote the optimal objective value to the ARC-CFLP for a given value of Γ
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7.2. Capacitated facility location with uncertain demand

by z⋆ARC−Γ.

Example C 7.3 (Adjustable robust counterparts with polyhedral uncertainty sets) We

solve P̃1 and P̃2 with different uncertainty settings and perturbation levels p = 5% and

p = 20% assuming a polyhedral uncertainty set with different budgets of uncertainty Γ.

Different uncertainty settings are dependent on a different number of primitive uncertain-

ties. Consequently, there are different upper bounds for Γ. Therefore, we express the

uncertainty budget as a percentage of its maximum value. If Γ= 0%, uncertainty is com-

pletely ignored, and, essentially, the nominal (or expected) value problem is solved. If

Γ= 100%, the model protects the decision-maker against all parameters deviating to their

worst case simultaneously, thus reflecting an uncertainty set in the form of a hypercube.

The development of z⋆ARC−Γ and the z⋆WC are displayed Figure 7.3 for different protection

levels Γ. Notice that this time, the objective value of the robust counterpart generally

exceeds the worst-case realization of the objective value. Decision rule XII is sufficiently

flexible to approximate the adjustable decision rule for the allocation decisions. Instead,

the lower protection levels Γ result in the ARC-CFLP underestimating the negative effect

of potential perturbations. The worst-case realization of the objective value in the CFLP

is obtained for a realization of the uncertain parameter that is not considered in the

polyhedral uncertainty set with protection level Γ. Throughout all considered problems,

we observe that reducing Γ may result in significantly lower worst-case objective values

than had one protected against that worst-case realization from the beginning. In other

words, for Γ = 0%, z⋆WC is less than z⋆WC for Γ = 100%. Furthermore, one can see that

the discrepancy between the objective value and the worst-case realization is largest for

global uncertainty, which considers only a single primitive uncertainty parameter. The

discrepancy is smallest for local uncertainty. This indicates that a budget of uncertainty

is particularly effective when it allows the consideration of trade-offs between different

primitive uncertainties rather than simply reducing the considered interval of a single

primitive uncertainty.

Once again, there is a significant difference between the development of z⋆ARC−Γ and z⋆WC ,

in P̃1 and P̃2. For P̃1, the z⋆ARC−Γ and z⋆WC coincide already for a budget of Γ = 20%. This

shows that the problem reacts very sensitively to the perturbation of some of the demand

parameters, approximately 20%. These customers are critical. Then, there is another 80%

of the customers for which the demand may decrease significantly. Yet, it has no effect

on the worst-case objective value, nor does it require a change in the location-allocation

strategy. For P̃2, the situation is contrary. The robust counterpart and the worst-case

objective decrease almost linearly with an increasing uncertainty budget Γ up until about

80%. This implies approximately 80% of the customers are critical to attaining the worst-

case objective value, while 20% are irrelevant.

Notice that the analysis of Figure 7.3 is usually what is referred to as analyzing the “price

of robustness” in robust optimization literature.
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Figure 7.3.: Robust counterpart objective and worst-case objective value for different uncertainty
settings and magnitudes with an increasing uncertainty budget Γ (P̃1-P̃2, Ex. C)

▲

In our view, the fact that robust counterparts have been developed for row-wise uncer-

tainty models and the customer demand in the CFLP is a parameter that affects several

constraints, leads to a discrepancy between what one intuitively wants to achieve with a

robust approach and what the model actually does. Baron et al. [2010] claim that their

robust counterpart formulation simultaneously protects a decision maker against high de-

mand, and therefore, high capacity requirements, and low demands, and therefore, low

potential profit. However, Ardestani-Jaafari and Delage [2018] already pointed out what

we illustrated in Example C 7.3: the resulting model is over-conservative and underes-

timates the actual worst-case attainable profit. However, all reformulations presented

by Ardestani-Jaafari and Delage [2018] lead to the fact that the model solely protects a

decision-maker against low demands as these are the only ones that affect the objective

value. Thereby, the model completely ignores the potential effect of high-demand realiza-

tions, which is a direct byproduct of the row-wise uncertainty model. In our view, this is

a severe impediment to making robust counterpart reformulation attractive for practical

applications, e.g., in supply chain network design.

Up to this point, we evaluated the solutions to the stochastic program and the robust

counterparts separately and compared solutions solely to deterministic formulations that

are oblivious to the underlying uncertainty. In the following, we compare the solutions

obtained with a stochastic program to those obtained with robust counterparts regarding
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their performance in the objective value space, as well as their similarities in the decision

space. We then relate this performance to the underlying service regions.

7.3. Comparison of robust counterpart and stochastic programming

solutions

We compare the solutions obtained with a stochastic program to those obtained with an

adjustable robust counterpart with polyhedral uncertainty and different protection levels

Γ. We start by looking at the performance in the objective value space (Subsection 7.3.1)

and subsequently compare solutions in the decision space (Subsection 7.3.2).

7.3.1. Average- and worst-case performance

Despite not previously performed on instances of the CFLP, the performance of robust

and stochastic solutions has been compared in several works. Usually, these works present

a novel robust counterpart formulation for a problem for which a stochastic programming

formulation already exists and seek to justify the relevance of the robust approach. The

standard procedure considers the set of scenarios Ω used in the stochastic programming

formulation. For each scenario ξω in Ω, a deterministic CFLP is solved in which first-stage

decisions are fixed either to those from the stochastic program or the robust counterpart.

This yields an empirical distribution of the objective values obtained with either model

formulation and, i.e., allows to compare the empirical worst-case and average-case realiza-

tion. To the best of our knowledge, most works conclude that while the robust counterpart

performs slightly worse on average, it performs significantly better in the worst case. An

example can be found in Zetina et al. [2017].

We perform a similar evaluation, fixing the location decisions in the respective deter-

ministic problems to those obtained from stochastic programming or adjustable robust

optimization.

Definition 7.3. The AVUS in a set of scenarios Ω with known probability πω is the average

probability-weighted difference in the optimal objective values between the CFLPs in which

demands are set to their realizations in the respective scenarios, Dj = D̂j(ξ
ω), and location

decisions are fixed to either the optimal location decisions in the uncertainty-aware solution

s̃, zωs̃ , or the optimal location decisions of the expected or nominal value problem, zωEV , such

that

AV US :=
∑

ω∈Ω
πω

zωs̃ − zωEV

zωEV

. (7.90)

The AVUS generalizes the idea of the VSS. If s̃ is the optimal solution to a stochastic

program, then AVUS equals the VSS. Similarly, we compare the added benefit of an

uncertainty-aware approach in the worst case.

Definition 7.4. The WCVUS in a set of scenarios Ω is the relative difference between the

worst-case objective value across all realizations of the uncertain parameter of the CFLP
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in which location decisions are fixed to the optimal location decisions in the uncertainty-

aware solution s̃⋆, zωs̃ , and the optimal location decisions of the expected or nominal value

problem, zωEV , such that

WCV US :=
minω∈Ω zωs̃ −minω∈Ω zωEV

minω∈Ω zωEV

. (7.91)

Notice that the WCVUS compares the minimum objective value obtained with the location

decisions from s̃ to the minimum objective value obtained with the location decisions from

the expected value problem. The scenarios for which these minima are attained may differ.

This, WCVUS measures the relative improvement of the objective value in the worst case

and not the worst-case improvement of the objective value.

Example C 7.4 (AVUS and WCVUS) Figure 7.4 displays the empirical distribution of

objective values obtained with the location decision from different models for P̃1 and P̃2,
in particular, the 2SS-CFLP-DE (zωSP ), and the ARC-CFLP (zωRC−Γ) with protection lev-

els Γ ∈ {50%, 75%, 100%}, respectively. The figures are derived for a global uncertainty

setting, allowing the realization of the uncertain parameter ξ to be displayed on a single

axis. The perturbation magnitude p is 5% and 20%, respectively. Throughout all settings

and solutions, we see that the robust counterpart solutions perform better in low-demand

scenarios (ξω → −1) and, with increasing demands (ξω → 1), are at some point outper-

formed by the stochastic programming solution. For example, for P̃1 and p = 5%, one can

see that for low-demand realizations, the objective values attained with robust counterpart

solutions exceed those obtained with the locations from stochastic programming. When ξ

exceeds −0.45, the stochastic programming solution outperforms the robust counterpart.

For p = 20%, the objective value attained with the stochastic programming solution out-

performs that of the robust counterpart already for ξ = −0.80. Notice that this implies

that the robust counterpart is only better in about 5% of all possible scenarios. Recall that

Example C 7.3 has shown that for P̃1, only 20% of the customers have a critical effect on

the worst-case objective value. Consequently, the empirical objective values obtained for

different uncertainty budgets Γ all take the same value, and the positive effect of reducing

the uncertainty budget is not visible.

For instance P̃2, perturbations of up to 80% of the customers affected the worst-case

realization. Figure 7.4b and Figure 7.4d demonstrate that decreasing the uncertainty

budget Γ provides a trade-off between worst-case protection and average-case performance.

The solutions obtained with Γ = 75% and Γ = 50% perform better than the stochastic

programming solution and worse than the adjustable robust counterpart solution for Γ =

100% in the worst case. Meanwhile, with decreasing Γ, they continue outperforming the

stochastic programming solution for increasingly high values of ξω.

Table 7.3 displays the AVUS and WCVUS. The results confirm observations from Fig-

ure 7.4. However, we observe that the impact of explicitly modeling uncertainty is sig-

nificantly higher in P̃1 than in P̃2. For P̃1 and p = 20%, the average-case performance

of models, including uncertainty, exceeds that of the expected value problem by a min-
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Figure 7.4.: Empirical distribution of objective values of different realizations ξω ∈ Ω for location
decisions from stochastic programming or adjustable robust counterparts (P̃1-P̃2, Ex.
C)

AVUS (%) WCVUS (%)
EV SP ARC-Γ EV SP ARC-Γ

p ξ 100% 75% 50% 100% 75% 50%

P̃1

5%
g 2363.9 0.0 -0.5 -0.5 -0.5 2234.3 0.0 1.8 1.8 1.8
l 2365.3 0.0 -0.6 -0.6 -0.6 2234.3 0.0 1.8 1.8 1.8

20%
g 1848.4 22.8 20.7 20.7 20.7 -1145.0 269.8 270.6 270.6 270.6
l 1911.9 19.4 16.8 16.8 16.8 -1145.0 194.1 270.6 270.6 270.6

P̃2

5%
g 19495.6 0.9 -2.3 -1.1 0.0 18482.8 -0.7 1.5 1.2 0.0
l 19542.9 0.9 -2.5 -0.9 -0.7 18482.8 -0.7 1.5 1.2 1.0

20%
g 18384.4 3.1 -12.4 -0.8 0.2 14303.8 -5.2 8.4 2.0 0.8
l 18583.8 3.7 -13.2 -9.5 -2.2 14303.8 -2.8 8.4 6.9 3.9

Table 7.3.: AVUS and WCVUS for stochastic programming and adjustable robust counterpart so-
lutions (P̃1-P̃2, Ex. C)
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7.3. Comparison of robust counterpart and stochastic programming solutions

imum of 16.8%, e.g., for the adjustable robust counterparts. Meanwhile, the worst-case

performance improves by up to 270.6%. At the same time, however, for perturbation mag-

nitudes less than 20%, the stochastic programming solution equals that of the expected

value solution, and AVUS and WCVUS are 0. In contrast, for P̃2, the AVUS does not

exceed 3.7% for any of the uncertainty-aware models. The WCVUS is at most 8.4% for

the stochastic program and a perturbation level of 20%. At the same time, it is noticeable

that for P̃1, the adjustable robust counterparts outperform the expected value solutions

even in the average case. This can be attributed to the extremely bad performance of that

solution in low-demand scenarios. ▲

Example C 7.4 demonstrates that the robust counterpart and the stochastic program-

ming solutions perform differently. As expected, the robust counterpart solution performs

slightly better in the worst case and slightly worse in the average case than the stochas-

tic programming solution. This is in line with previous findings and suggests that it is

indeed up to the risk preferences of the decision-maker which modeling approach is to be

preferred. Once again, the high discrepancy between the effect of uncertainty and the two

different problem instances is significant, and we take a closer look at what this implies in

terms of decisions taken in the following.

7.3.2. Service regions in stochastic and robust solutions

Example C 7.4 suggests that there are significant differences between the effect different

degrees and different models of uncertainty in the demand parameters have on the op-

timal location decisions. In some instances, a subset of location decisions is remarkably

robust towards both model choice and perturbation levels, while in other instances, minor

perturbations result in significant changes in the optimal facilities.

In Chapter 2, we identified service regions of varying size as an underlying persistent

decision pattern in the optimal solutions to CFLP instances. We observed that when these

service regions are small in the sense that their customers are best served by a single facility,

these facilities appear to be relatively persistent throughout well-performing solutions.

However, when these service regions are large and optimally served by a combination of

interdependent facilities, these subsets of facilities are relatively sensitive to minor changes

in the data. Meanwhile, the implied division into service regions is relatively persistent and

denotes the characterizing decision pattern underlying optimal and near-optimal solutions

to that instance.

We evaluate the degree to which the decisions of robust counterparts and stochastic pro-

grams facing the same level of demand uncertainty differ. While the differences in AVUS

and WCVUS of robust and stochastic solutions indicate that different decisions are taken,

it is unclear to which degree the robust counterpart solutions simply open fewer facilities

than the stochastic programming solutions. Furthermore, we evaluate the degree to which

the set of optimal deterministic solutions to the individual scenarios in Ω yields insights

into the solutions obtained by a stochastic program or an adjustable robust counterpart.

We denote the set of solutions Sdet := {s1, s2, . . . , sω}. In particular, we are interested
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7.3. Comparison of robust counterpart and stochastic programming solutions

in evaluating whether a high kernel persistence value KER(Sdet) is an indicator that the

same facilities or a subset thereof will also operate in the stochastic programming or robust

counterpart solution.

Secondly, we evaluate the degree to which the implied customer service regions derived

from Sdet represent the allocations in the stochastic programming or robust counterpart

solution. For this purpose, we derive a set of service regions R from the Sdet with the

help of RegClus (see Algorithm 2 in Chapter 3). We then derive SSP and SARC−Γ as the

sets of optimal solutions provided by the stochastic program and the adjustable robust

counterpart for each scenario in Ω. We fix the location decisions to those obtained with

the uncertainty-aware models and solve the CFLP for the different demand scenarios.

We then evaluate the degree to which the service regions obtained from the deterministic

solutions represent the allocations in SSP and SARC−Γ by determining the external loss

(ℓexternalα (R, S), see Def. 3.8).

Example C 7.5 (Service regions in uncertainty-aware solutions) In the following, we re-

strict all considerations to a local uncertainty setting, for which reducing the uncertainty

budget in the adjustable robust counterpart has the most profound effect. Table 7.4 de-

picts KER(Sdet) as well as the overlap coefficient and the Jaccard index for the pairwise

comparison between the set of optimal facilities operating in the expected value problem,

the stochastic program, and adjustable robust counterparts. For P̃1, the kernel persistence
is relatively high. It exceeds 85.1% for all perturbation levels. Meanwhile, there is a signif-

icant overlap between the facilities operating in the optimal solutions to the deterministic

problem and the optimal solutions to the stochastic program and robust counterparts. In

particular, the latter operate subsets of the expected value problem throughout. For P̃2,
the kernel persistence in Sdet is significantly lower and ranges between 54.2% and 34.2%

for perturbation levels of 5% and 20%, respectively. Meanwhile, the set of facilities oper-

ating in the expected value problem differs significantly from those operating in the robust

counterpart and the stochastic programming solutions. This suggests that a high kernel

persistence indicates that the facilities that persist throughout the deterministic optimal

solutions are also an essential component of the optimal solutions to models explicitly

considering uncertainty.

KER(Sdet) (%)
overlap(I⋆. , I

⋆
EV ) Jacc(I⋆. , I

⋆
EV )

p SP ARC−100% ARC−50% SP ARC−100% ARC−50%

P̃1

5 % 97.9 1.0 1.0 1.0 1.0 0.9 0.9
10 % 97.1 1.0 1.0 1.0 0.9 0.9 0.9
20 % 85.1 1.0 1.0 0.9 0.8 0.8 0.8

P̃2

5 % 54.2 0.7 0.5 0.7 0.6 0.3 0.4
10 % 46.4 0.9 0.7 0.7 0.8 0.4 0.4
20 % 34.2 0.6 0.6 0.8 0.4 0.3 0.6

Table 7.4.: Persistence of location decisions throughout Sdet as well as overlap-coefficient and Jac-
card index of facilities operating in EV and SP, ARC−100%, and ARC−50% (P̃1-P̃2,
Ex. C)

Furthermore, we determine service regions based on the set of deterministic solutions
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7.3. Comparison of robust counterpart and stochastic programming solutions

ℓexternalα (R′, .)
p (%) |R′| SSP SARC−100% SARC−50% average

P̃1

5 11 0.99 0.97 0.97 0.98
10 10 0.98 0.91 0.91 0.93
20 6 0.97 0.93 0.93 0.94

P̃2

5 4 0.87 0.98 0.96 0.94
10 5 0.80 0.82 0.92 0.85
20 3 0.96 0.78 0.97 0.90

R′ = R(Sdet, αprofit, 0.05)

Table 7.5.: Persistence of implied service regions from deterministic solutions in solutions to the
stochastic program and adjustable robust counterparts (P̃1-P̃2, Ex. C)

Sdet. Table 7.5 displays the number of regions the facility-customer space is separated

into for different perturbation levels, the aggregation function profit and a target level of

coherence of θ = 5 %. We see that for both instances and all perturbation levels, several

service regions can be distinguished. It furthermore shows that the optimal solutions to

the stochastic program and robust counterparts adhere to these regions as the average

ℓexternalα across all uncertainty-aware solutions significantly exceed 0.9 in 5 out of 6 cases.

Consequently, the implied division into the customer service region is a robust decision

pattern that characterizes not only optimal and near-optimal deterministic solutions but

also the optimal solutions to the models explicitly considering uncertainty.

(a) P̃1, R, SSP (b) P̃1, R, SARC−100% (c) P̃1, R, SARC−50%

(d) P̃2, R, SSP (e) P̃2, R, SARC−100% (f) P̃2, R, SARC−50%

Figure 7.5.: Visualization of customer service regions determined from the set of deterministic
solutions and SSP , SARC−100%, and SARC−50%, p = 20% (P̃1-P̃2, Ex. C)

The latter is confirmed when looking at the visualizations in Figure 7.5. It shows the
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regions and the solutions to the stochastic program and robust counterparts for a per-

turbation level of 20%. In particular, for P̃2, Figure 7.5d and Figure 7.5f illustrate that

when moving from a stochastic program to an adjustable robust counterpart with an un-

certainty budget of 50%, the same subsets of customers are served jointly, but with fewer

operating facilities. Customers are redistributed within the customer service regions that

were already identified by solely considering the deterministic solutions. ▲

7.4. Experimental validation: service regions and the value of mod-

eling uncertainty

We validate the main observations from Example C 7.4 and Example C 7.5 on the instances

from the sets BAR-1991, HOL-1999, and ORLIB from Section 1.3. For each instance, we

assume a local uncertainty setting and a perturbation level of p = 20%. We randomly

generate 50 scenarios for every instance.

Table 7.6 depicts the degree to which service regions obtained from Sdet reflect the im-

plied service regions in the solutions to individual scenarios obtained with the stochastic

program, and the adjustable robust counterparts for uncertainty budgets of Γ = 100%

and Γ = 50%. The number of service regions identified across all instances ranges be-

tween 1 and 12. Thereby, a small number of regions implies larger customer regions and

an increasing likelihood that a subset of interdependent facilities serves these regions. In

contrast, a high number of regions implies that these regions are relatively small in terms

of the number of customers and likely served by just a single independent facility. The

high values of ℓexternalα (R, S) indicate that the service regions derived from Sdet match

the service regions implied by the allocation decisions to the stochastic programming and

adjustable robust counterpart solutions.

|R|
1 2 3 4 5 6 7 8 9 10 12

# of instances 31 54 40 16 9 7 2 6 2 3 1
ℓexternalα (R,SSP )) 1.00 0.97 0.98 0.96 1.00 0.99 0.97 0.99 1.00 1.00 0.99
ℓexternalα (R,SARC−100%)) 0.99 0.93 0.92 0.91 0.91 0.95 0.90 0.79 0.91 0.95 0.74
ℓexternalα (R,SARC−50%)) 1.00 0.95 0.94 0.96 0.93 0.94 0.89 0.84 1.00 0.89 0.85

Table 7.6.: Average persistence of service regions in adjustable robust counterpart and stochastic
programming solutions (α=profit, θ = 5%)

Figure 7.6 depicts the performance in terms of AVUS and WCVUS grouped by the number

of service regions the facility-customer space can be partitioned into based on Sdet. Firstly,
the results confirm previous findings from literature in the sense that while the adjustable

robust solutions perform worse on average, they perform significantly better in the worst

case. Yet, what is remarkable is that the magnitude with which the performance of both

the stochastic programming and the adjustable robust counterpart solutions deviate from

the performance of the deterministic expected value solution decreases with an increasing

number of implied customer service regions.
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Figure 7.6.: Performance of adjustable robust counterpart and stochastic programming solutions
for instances with different numbers of identifiable service regions (α=profit, θ = 5%)
and a perturbation level p of 20%

Consider the implications of this observation. If good solutions to a particular problem

instance, and in particular also to corresponding instances with perturbed demand, can be

characterized by several small service regions that are served by only a few facilities, using

a model that explicitly accounts for uncertainty has little advantage toward simply using

the solution obtained from the expected value problem. The reason for this is simple. If,

in Sdet, we observe that customers are not re-distributed, but for all scenarios, the implicit

division into service regions remains the same, then this implies that for each region, the

model has two choices: operating the facility that optimally serves this region, or not.

This means that independently of the choice of the uncertainty model, the mathematical

program makes the same choice for each region in this persistent decision pattern, and there

is little to be gained (or lost) by moving to a more comprehensive modeling approach.

We assume, and this would be supported by the observations on P̃1 from Example C

7.5, that when the perturbation magnitude increases further, at some point, the robust

counterpart and stochastic programming solutions suggest not to open certain facilities

and consequently not to serve certain regions at all. In this case, we can expect both the

AVUS and WCVUS to increase sharply, as observed for perturbations with a magnitude

of 20% for P̃1 from Example C.

Notice that this also explains why, for P̃1, varying the uncertainty budget was of limited

value as already a perturbation of at most 20% of the customers sufficed for the model to

attain the worst-case objective value (see Figure 7.3). If the overall perturbation magni-

tude, the unrestricted uncertainty set, contains realizations for which it is not profitable
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to operate a facility in a particular, relatively small service region, then perturbing only

the customers in that region suffices to realize the aforementioned worst-case. While on

a global scale, this seems like there are only a few customers with perturbed demand, in

instances implicitly divided into several small service regions, the worst-case perturbation

implies that all these negative perturbations concentrate on just a single service region.

7.5. Conclusion

We compare the performance of a two-stage stochastic programming formulation and an

adjustable robust counterpart formulation of a CFLP with uncertainty in the customer

demands. We present the average and worst-case value of the uncertainty-aware solution

as a measure to quantify and compare the added value of a stochastic program or an

adjustable robust counterpart. Even though we are not the first to follow this idea, we

are the first to provide a formal description of this approach. Furthermore, we evaluate

the degree to which uncertainty-aware models alter the optimal decisions compared to a

deterministic, expected value problem. We derive characteristic decision patterns from

the set of deterministic optimal solutions to all scenarios and observe that these patterns

persist throughout the uncertainty-aware solutions. We subsequently analyze the degree to

which the size of the underlying service regions affects the added value of uncertainty-aware

models.

The main findings of the previous chapter can be summarized as follows:

• The solutions obtained with the adjustable robust counterpart perform slightly worse

on average but significantly better in the worst case than those obtained with a two-

stage stochastic program.

• Presented with a set of scenarios, the set of optimal deterministic solutions to

these scenarios can be used to identify service regions that persist throughout the

uncertainty-aware solutions.

• The size of these service regions significantly affects the potential added value of

moving to an uncertainty-aware model. In particular, the added value decreases with

increasing separability into smaller service regions as the options of the mathematical

program to redistribute customers to hedge against uncertainty decrease.

We also observe that in instances primarily composed of small service regions served by

independent facilities, the worst-case realization is reached even for a low uncertainty

budget. This suggests that the worst-case demand realization is primarily characterized

by perturbation in a particular (small) service region. An intriguing pathway for future

research is to identify this high-risk service region by backtracking the worst-case parameter

realization of the uncertain parameter using duality theory and complementary slackness.

This would allow for the identification of “high risk” demand profiles for a particular

problem instance or types of instances classified according to the size of the underlying

service regions.
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8. Conclusion

The capacitated facility location problem is a more than well-studied problem in location

literature. Nevertheless, a comprehensive understanding of what properties of the problem

instance cause the extremely varying behavior regarding the persistence of individual fa-

cilities in well-performing solutions, the performance of different algorithms, and the effect

of different modeling extensions has been missing. These relationships cannot be derived

by looking purely at the input data. Meaningful insights can only be taken in combination

with the mathematical program, i.e., the objective and the constraints. One way to implic-

itly consider this information is by using the information from one or more well-performing

solutions to the particular instance. We summarize our main insights regarding the three

components of our superordinate research question as follows.

Characteristic decision patterns and link to input data Rather than by a subset of fa-

vorable core facilities, well-performing solutions to a particular CFLP instance are

characterized by an implicit division of the facility-customer space into service re-

gions. Throughout these solutions, customers may be served from different facilities

but are persistently served from facilities within their service region. When a service

region is small in the sense that its customers can be served by a single facility op-

timally, this facility persists throughout well-performing solutions to that instance,

appearing to be part of a set of favorable core facilities. Meanwhile, when the service

regions are large in that their customers are served by more than one facility, these

facilities interdepend on one another and are often optimal only in combination.

We show that service regions found in well-performing solutions to a static, determin-

istic instance also characterize optimal solutions to model extensions that explicitly

include temporal developments or uncertainty in the demand parameters. They

abstractly describe a sense of regional coherence induced by the spatial patterns of

candidates and customers, the demand-capacity ratio, and the fixed-costs-profit ratio

that results in allocation strategies adhering to these regions performing better than

others. However, we show that the combination of overlaying effects in practically

infinite variations of problem instances makes it difficult to derive service regions

directly from the data. Rather, it is necessary to combine this with information

from the objective and constraints. In particular, we show that service regions that

characterize the optimal solution can be derived from the allocation matrices of sets

of well-performing and even integer-infeasible solutions to that instance. We propose

spectral biclustering as a pattern recognition technique to derive service regions on

arbitrary sets of solutions.

Link to solution algorithms The size of the service regions determines the level of inter-

dependence between facilities operating in the optimal solution. We show that the

interdependence of facilities serving the same service region significantly affects the

performance of both exact and heuristic solution algorithms. This can partially be

attributed to the fact that, at this point, the implied service regions and, thus, the
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implied relative position of individual facilities in the facility-customer space are

largely ignored. We show that it is possible to determine service regions early on

in the search process from infeasible solutions by means of pattern recognition. We

demonstrate the potential use of specifically acknowledging these service regions by

including them in the branch variable selection routine of CPLEX’s branch-and-cut

procedure.

Link to model extensions We examine the relationship between service regions and the

added value of modeling extensions, in particular, extensions that consider temporal

developments and uncertainty in the demand parameters. We draw on the value of

the multi-period solution to quantify the benefit of the multi-period approach and

present measures that allow quantifying and comparing the added value of a two-

stage stochastic program and an adjustable robust counterpart presented with the

same uncertainty setting. We conclude that to be of value, the extension must allow

the reduction of relevant cost components in the given problem instance. Further-

more, the instance must bear sufficient flexibility in the well-performing decision to

react to the added information. For multi-period models, we conclude that simply

because decisions are taken in a temporal context, and relevant parameters vary

over time, time is not necessarily an essential aspect to consider in the model. For

uncertainty-aware problems, we observe that uncertainty-aware solutions yield dif-

ferent insights depending on the size of the underlying service regions. For instances

with large service regions, uncertainty-aware models often choose different locations

than their deterministic counterparts, which perform better in the face of uncer-

tainty. In contrast, for instances with small service regions, the implied separation

of the facility-customer space is very rigid. It restricts the degree to which the model

may hedge against uncertainty, often leading to the same location decisions as the

deterministic counterpart.

This work can be seen as a first, partially experimental step towards addressing the over-

arching goal of improving modeling and solution techniques through an improved under-

standing of the interplay between data, decisions, models, and solution algorithms. How-

ever, the focus was restricted to the profit-maximizing version of the capacitated facility

location problem as a representative of discrete location problems. While it is reasonable

to assume that insights into the implied regional patterns translate to other problem for-

mulations, further experiments are necessary. On the one hand, it must be tested to which

degree the presented insights hold for cost-minimizing formulations of the problem and

other core location problems like the p-median problem or coverage location problems. On

the other hand, it must be evaluated whether the present findings hold when the presented

profit-maximizing formulation is extended to include, e.g., capacity expansion or inventory

decisions.

The presented results yield ample opportunity for further research, and we provided de-

tailed descriptions in the conclusions of the individual chapters. In particular, we see the

following main avenues.
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Improve solution procedures The presented algorithm to determine service regions in a

given problem instance already from non-optimal or infeasible solutions allows access

to information on the spatial relationships of facilities in the implied facility-customer

space during the search process. This gives insights into which facilities are close to

each other and compete to serve the same or overlapping subsets of customers. First

attempts to exploit this information during the search process are promising, yet

several further opportunities present themselves. For heuristics, we particularly see

significant potential in including information on service regions during the creation

of the buckets during kernel search. For exact branching procedures, we propose to

combine the information on service regions with novel approaches to multi-variable

branching that, up to this point, require external information on the regional struc-

ture.

While modern MIP solvers perform well for the CFLP, they stumble when tackling

more complex problems like stochastic programs or adjustable robust counterparts.

Notably, the decision patterns seen in static instances persist in these challenging sce-

narios. We see potential in exploring heuristic pattern-based separation procedures

to solve such problems.

Data-driven modeling Just because problem parameters change over time does not make

time a valuable aspect to be considered in the model. Similarly, a more granular

model of time does not necessarily lead to better decisions, nor do periods of equal

length ensure that relevant moments in time for decision-making are included. The

distinction between effective, obsolete, and restrictive breakpoints provides valuable

insights into the potential effect of a particular discretization of the planning horizon.

Yet, a directive on identifying the most effective discretization to a particular instance

purely from the data is still missing. Identifying characteristic developments of the

demand parameters that indicate effective breakpoints is a promising avenue for

further research and can contribute to deriving models from the data.

Classify discrete location instances The size of the service regions underlying different

problem instances significantly impacts the performance of solution algorithms, the

added value of modeling extensions, and the sensitivity of an optimal solution to

minor perturbations. This work solely considers the average number of dependence

relationships between facilities operating in the optimal solution as an indicator to

group instances into distinct categories. However, further opportunities to classify

problem instances regarding the number, size, and separability of their service regions

present themselves. They potentially yield insights into suitable choices for model

extensions or allow for the identification of high-risk perturbation profiles.

Discrete location problems are not the only class of problems in which certain subsets of

binary decision variables are likely to interdepend more strongly than others. Identify-

ing these problem classes and developing a standardized framework to detect regions of

stronger and weaker coherence can be an interesting pathway to explore for mixed-integer

programming.
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M. Fischetti, I. Ljubić, and M. Sinnl. Redesigning benders decomposition for large-scale

facility location. Management Science, 63(7):2146–2162, 2017. doi: 10.1287/mnsc.2016.

2461.

N. Fraiman and Z. Li. Biclustering with alternating k-means. ArXiv, abs/2009.04550,

2020.

V. Gabrel, M. Lacroix, C. Murat, and N. Remli. Robust location transportation problems

under uncertain demands. Discrete Applied Mathematics, 164:100–111, 2014. doi: 10.

1016/j.dam.2011.09.015.

195



Bibliography

S. L. Gadegaard, A. Klose, and L. R. Nielsen. A bi-objective approach to discrete cost-

bottleneck location problems. Annals of Operations Research, 267(1-2):179–201, 2018.

doi: 10.1007/s10479-016-2360-8.

X. Geng and Y. Wang. A model for reverse logistics with collection sites based on heuristic

algorithm. In W. E. Wong and T. Zhu, editors, Computer Engineering and Networking,

pages 395–402, Cham, 2014. Springer International Publishing. ISBN 978-3-319-01766-2.

A. M. Geoffrion and R. Nauss. Exceptional paper—parametric and postoptimality analysis

in integer linear programming. Management Science, 23(5):453–466, 1977. doi: 10.1287/

mnsc.23.5.453.
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H. Jia, F. Ordóñez, and M. Dessouky. A modeling framework for facility location of

medical services for large-scale emergencies. IIE Transactions, 39(1):41–55, 2007. doi:

10.1080/07408170500539113.

D. Jones, S. Firouzy, A. Labib, and A. V. Argyriou. Multiple criteria model for allocating

new medical robotic devices to treatment centres. European Journal of Operational

Research, 297(2):652–664, 2022. doi: 10.1016/j.ejor.2021.06.003.
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A. Expected kernel persistence

A. Expected kernel persistence

In a Laplace experiment the probability of an event equals the number of favorable events

divided by the total number of events. In the following we assume that S̃ is the result of

|S̃| = σ random drawings of n out of |I| facilities, whereby n is the ceiled average number

of facilities operating in the solutions in the set S such that

n :=

⌈∑
s∈S

∑
i∈I y

s
i

|S|

⌉
.

In Equation 2.6 we saw that the kernel persistence can be rewritten as the average number

of facilities operating across all solutions divided by the set of relevant candidates. Conse-

quently, if we approximate that average by n and consider the set of relevant candidates,

|IR(S̃)| a discrete random variable, we can determine the expected value of KER(S̃) via

E
(
KER(S̃)

)
= n ·

(
E
(
|IR(S̃)|

))−1
= n ·

(∑|I|
r=0

r · P
(
|IR(S̃)| = r

))−1

. (A.1)

Thereby, P
(
|IR(S̃)| = r

)
denotes the probability that the cardinality of IR(S̃) equals r.

Thereby, IR(S̃) =
{
i ∈ I

∣∣∑
s∈S̃ ysi > 0

}
is the result of two nested Laplace experiments. In

the first experiment we draw n out of |I| candidates in order to produce a single solution

s. The set of possible outcomes has the size
(|I|
n

)
. Then, in a second drawing, we draw σ

solutions out of these outcomes at random. Depending on whether a single solution may

occur more than once or not the number of possible outcomes of this second experiment

is either

((|I|
n

)
+ σ − 1

σ

)
(A.2)

combinations with repetitions, or

((|I|
n

)

σ

)
(A.3)

combinations without repetitions.

How do we derive the number of favorable events, that is, the number of events in which

we obtain a set S̃ in which exactly r distinct facilities operate across all solutions? For a

defined subset of candidates L with cardinality |L| = r we can derive the subset of events

in which only facilities of L occur in S̃ by

((r
n

)
+ σ − 1

σ

)
. (A.4)

However, if n < r then (A.4) still contains those events in which S̃ contains some but

not all of the candidates in L and consequently |IR(S̃)| < r. Therefore, (A.4) counts the

number of events in which |IR(S̃)| ≤ r.

Staying with the fixed subset L, to determine the number of events in which IR(S̃) = L
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and not IR(S̃) ⊂ L we must subtract all events in which |IR(S̃)| ≤ r−l for l ∈ 1, . . . , r − n.

Therefore, it is sufficient to subtract all events in which |IR(S̃)| ≤ r − 1. So, for example,

if r = 5, then we must subtract from (A.4) all events in which only 4 different candidates

operate across all facilities. For a fixed subset of r − 1 out of these r facilities in L this

is easy and can be determined according to (A.4) straightforwardly. However, we need to

subtract these events for all possible subsets of r − 1 out of r facilities. The events that

only facilities in different subsets of L of cardinality r − 1 operate in any solution are not

mutually exclusive. In particular, as we subtract the probability that “at most” r − 1 out

of r − 2 facilities are operating, different subsets of cardinality r − 1 have a significant

overlap of subsets if cardinality r − 2, r − 3, etc. Therefore, when considering the events

in which IR(S̃) ⊂ L with |IR| = |L| − 1 we are looking at
( |L|
|L|−1

)
non-mutually exclusive

events. The probability of the union of non-mutually exclusive events Ek, k ∈ K is known

to be

P

(⋃

k∈K
Ek

)
=
∑|K|

m=1

{
(−1)m−1

∑
M⊆K,
|M |=m

P (EM )

}
, (A.5)

with

P (EM ) = P
(⋂

k∈M
Ek

)
. (A.6)

Consequently, when S̃ is a multiset and individual solutions may occur more than once,

then we have

P (|IR(S̃)| = r) =

(|I|
r

){∑r
l=0(−1)l

((r−l
n )+σ−1

σ

)(
r

r−l

)}

((|I|n )+σ−1
σ

) . (A.7)

Otherwise, we have

P (|IR(S̃)| = r) =

(|I|
r

){∑r
l=0(−1)l

((r−l
n )
σ

)(
r

r−l

)}

((|I|n )
σ

) . (A.8)

Together with (A.1) the expectation of S̃ can be obtained straightforwardly.

Unfortunately, the closed from expressions of P (|IR(S̃)| = r) in (A.7) and (A.8) are

computationally inefficient. In particular, with increasing |I|, the nested coefficients((r−l
n )+σ−1

σ

)(
r

r−l

)
and

((r−l
n )
σ

)
quickly exceed limits for infinity for most data types. For ex-

ample, already for |I| = 100, n = 45 and σ = 4, when we want to determine P (|IR(S̃)| =
90),

((90−0
45 )
4

)
for l = 0 significantly exceeds 10100.

Therefore, in these cases, we approximate E
(
KER

(
S̃
))

by simple Monte Carlo simula-

tion. We generate K sets of solutions S̃K of cardinality σ composed of solutions which

represent random samplings of n out of |I| candidates. We subsequently count the number

of unique candidates |IR(S̃)|k in each set (or multiset) S̃k and approximate E
(
KER

(
S̃
))

by the average of the observed values of |IR(S̃)|k. As Table A.1 displays, for K = 1000
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we are able to approximate E
(
KER

(
S̃
))

with a precision of 2 digits for problems of

significant size.

K
|I| σ n 10 100 1000 10000 100000 exact

10 5 5 0.5050 0.5198 0.5151 0.5153 0.5155 0.5168
10 10 5 0.5000 0.5010 0.5003 0.5005 0.5004 0.5006
50 10 10 0.2283 0.2254 0.2240 0.2240 0.2240 0.2241
100 10 20 0.2250 0.2240 0.2239 0.2240 0.2241 0.2241

Table A.1.: Monte Carlo estimation for expected kernel persistence for different K
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