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Abstract

In the last decades, superconducting circuits have made important contributions to
the study of quantum mechanical phenomena. Their performance approaches the
threshold allowing for fault tolerant quantum computation. However, the innate
complexity of solid-state physics exposes superconducting quantum circuits to inter-
actions with uncontrolled degrees of freedom degrading their coherence. Although
tremendous progress has been made to improve the coherence of superconducting
circuits, they still have to cope with various loss and decoherence mechanisms,
and with further improvements, it becomes increasingly challenging to track down
individual decoherence mechanisms.

By implementing a quantum Szilard engine with an active feedback control loop,
we show that a superconducting granular aluminum fluxonium qubit is coupled
weakly to a two-level system (TLS) environment of unknown physical origin, with
a relatively long intrinsic energy relaxation time exceeding 50ms. As part of the
hyperpolarization with the quantum Szilard engine, the TLSs can be cooled down,
resulting in a four times lower qubit population, or they can be heated up to manifest
themselves as a negative-temperature environment. We show that the TLSs and the
qubit are each other’s dominant loss mechanism and that the qubit relaxation is
independent of the TLS populations. Since the TLSs are much longer lived than
the qubit, non-exponential relaxation and non-Poissonian quantum jumps can be
observed. The incoherent relaxation dynamics of the system is described by the
Solomon equations, for which a rigorous derivation is presented starting from a
general Lindblad equation for the qubit and an arbitrary number of TLSs. In the
limit of large numbers of TLSs, the relaxation is likely to follow a power law, which is
deduced from the Solomon equations and confirmed experimentally. Moreover, the
measured non-Poissonian quantum jump statistics can be reproduced by a diffusive
stochastic Schrödinger equation. With increasing number of TLSs, entanglement and
measurement back action can be ignored, and the quantum jump statistics can also be
reproduced by the Solomon equations. The transition from a stochastic Schrödinger
equation model to the Solomon equations hints at a quantum-to-classical transition.
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Main results
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1 Introduction

Understanding the foundations of the world has always been a driving force for
mankind. With the advent of the second quantum revolution, heralded by the
control of individual quantum states, completely new possibilities are opening
up, and chances are high that we can wrest one or two secrets from quantum
mechanics. On the technological side, progress is expected from quantum sensing,
quantum simulations and quantum computation. The dream of universal quantum
computation, which is attracting a lot of attention, will probably still be a while in
coming. Nevertheless, qubit decoherence times, as well as readout and gate fidelities
are approaching the threshold for quantum error correction. In fact, it has recently
been demonstrated on a superconducting quantum hardware that quantum error
correction can prolong the lifetime of the computational subspace of the device
beyond the lifetimes of all the elements it is composed of [1].

Beyond quantum computing, superconducting quantum hardware, with its remark-
able design flexibility, is perfectly suited for fundamental research studies. In recent
years, numerous experiments have been presented, spanning from the development
of quantum hybrid systems [2, 3], to exploring quantum many-body effects and
thermodynamics [4–7], to the study and utilization of quantum measurement pro-
cesses [8–10]. Superconducting hardware will continue to develop into an exciting
research field, regardless of which platform ultimately proves most suitable for
quantum computation.

The basic building block in the quantum world is the two-level system. In the
context of quantum information processing, it is referred to as the quantum bit or
qubit. In contrast to its classical counter part, the classical bit, which can either take
on the value 0 or 1, the qubit can be in a complex superposition of its eigenstate
|#〉 = 
 |0〉+� |1〉 with the normalization |
 |2+ |� |2 = 1. This superposition, however,
does not yet make the qubit special. A superposition of two modes with different
amplitudes and phases can also be realized in the classical world [11]. The first main
peculiarity of quantum mechanics stems from the fact that the superposition is not
confined to a single qubit but extends over all elements in the system and even to
the environment of the system. The wave function of # two-level systems or qubits
takes on the form

|#〉 = 20 |11 . . . 1〉 + 21 |01 . . . 1〉 + · · · + 22#−1 |00 . . . 0〉 , (1.1)

with corresponding normalization. This exponential scaling of the state space is
what people wish to harness in quantum information.
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1 Introduction

In this work, the interaction with more than 50 two-level systems (TLSs) is observed.
While the corresponding state space can in principle still be handled by modern
classical supercomputers, the number of states already exceeds the estimated number
of atoms in the visible universe for 300 TLSs. It goes without saying that such a
system will never be tackled numerically in its full complexity. On the contrary, it
is also clear that with the control over # qubits, it is not possible to address the
full Hilbert space in a finite amount of time [12], which is why only a handful of
algorithms providing a quantum advantage are known to date [13].

In view of this immense Hilbert space, one may wonder to what extent the rich
quantum mechanical dynamics can be observed in experiments, and how our
classical reality emerges, especially when contemplating the deterministic evolution
of the wave function governed by the Schrödinger equation. A potential explanation
could lie in the second main peculiarity of the quantum world, the measurement
process. While the concept of quantum non-demolishing (QND) readout led to
the development of high fidelity quantum measurements, it is still unclear what
exactly happens during the collapse of the wave function, whether the dynamics
is still deterministic and governed by a much larger Hilbert space including the
measurement apparatus and the outsideworld or if the collapse is an intrinsic process
in addition to the deterministic evolution [14]. Nonetheless, the measured object is in
a product statewith the reset of theworld immediately after themeasurement process
when realized with high fidelity, before its dissolves again into its surrounding.

In conjunction with a fast feedback loop, the QND measurement process is the
key ingredient for implementing the quantum Szilard engine in this work, thereby
enabling the hyperpolarization of the heretofore unknown TLS environment in-
teracting with the qubit. The precise energy flow during the hyperpolarization,
whether coming from the measurement apparatus itself or from additional envi-
ronments that are in contact with the qubit [7], eludes current experimental access.
Nonetheless, by reproducing the measured non-Poissonian quantum jump statistics
with a diffusive stochastic Schrödinger equation, it will be shown that the qubit and
the TLSs become entangled. However, the quantum jump statistics approaches the
classical expectation with increasing system size and qubit relaxation, which may be
viewed as a quantum-to-classical transition. Moreover, when it comes to the average
incoherent relaxation dynamics of the qubit and the TLSs, the complexity can be
reduced to the #-dimensional Solomon equations, which are adapted in this work
from the nuclear magnetic resonance (NMR) community to the field of quantum
information.

The main focus of this thesis is the implementation of granular aluminum fluxonium
qubits and the study of their performance. A fluxonium consists of a Josephson
junction that is shunted by a large inductance, the so-called superinductance [15].
In this work, the superinductance is realized with the high kinetic inductance of
granular aluminum. In this way, the coherence properties of granular aluminum
(grAl) [16–18] can be studied conveniently in the single photon regime. It will be
shown that using granular aluminum in superconducting quantum devices allows
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1 Introduction

the implementation of compact designs, from superconducting qubits [19], over
readout resonators to microwave filters. In addition, the magnetic field resilience of
granular aluminum [20] will be valuable for realizing hybrid architectures consisting
of fluxoniums in conjunction with spins.

The thesis is divided into two parts. The first part presents the main results,
while the second part provides further detailed information on the quantization of
superconducting circuits, their design, fabrication and operation.

The first main result of this thesis, presented in Chpt. 2, is the implementation of a
quantum Szilard engine. After a short theoretical introduction of the quantum Szilard
engine, the latter is employed to hyperpolarize and thereby reveal the long-lived
heretofore unknown TLS environment interacting weakly with the qubit.

As a second main result, a rigorous theoretical description of the underlying qubit
TLS dynamics is presented in Chpt. 3. This comprises a derivation of the Solomon
equations, adapted from the field of nuclear magnetic resonance and extended to an
arbitrary number of TLSs, and a numerical modeling of themeasured non-Poissonian
quantum jumps statistics with the diffusive stochastic Schrödinger equation as well
as with the Solomon equations.

Finally, the results are summarized in Chpt. 4 and an outlook with suggestions for
future experiments is given.
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2 Two-level system hyperpolarization
with a quantum Szilard engine

In this chapter, the first main experimental results are presented, which led to the
discovery of a long-lived two-level system environment of yet unknown physical
origin that makes up the main loss mechanism of our granular aluminum fluxonium.
This environment is made visible by the quantum Szilard engine. At the beginning
of this chapter, the working principle of such an information-fueled thermodynamic
engine is introduced. This chapter is adapted in parts from Spiecker et. al., Nature
Physics 19, 1320–1325, 2023 (Ref. [21]).

2.1 The classical Szilard engine

To begin with, the classical Szilard engine as conceived by Szilárd [22] is briefly
reviewed. The concept of the Szilard engine shows that information about thermo-
dynamic fluctuations can be converted into negative entropy if one has in addition
the requisite experimental capabilities. Fig. 2.1 depicts the working principle of
the classical Szilard engine. The control of the Szilard engine can be imagined by
an intelligent being or by a sophisticated autonomous working apparatus. The
thermodynamic cycle begins with a classical particle in a box with unknown position
and velocity. In the next step, a piston wall is inserted in the middle of the box, and
a measurement is carried out, revealing weather the particle is trapped on the left
or the right side. This bit of information is only converted into negative entropy
when the entire system is now manipulated in such a way that the particle appears
to be always on the correct side of the piston, for instance by rotating the box. In
our experiment, we essentially flip the particle to the other side. With the weight
attached to the piston, the box can now be attached to a heat reservoir at temperature
)r. In the subsequent isothermal expansion, the energy Δ, = −)rΔ( can be extracted
from the reservoir, with

Δ( = −:B ln 2 (2.1)

being the entropy reduction of the particle in the box due to the intervention and
:B being the Boltzmann constant. Once the energy is extracted, the piston can be
removed and the system returns to the starting point of the thermodynamic cycle.
What we have achieved in total is that we gained energy by cooling down a reservoir.

9



2 Two-level system hyperpolarization with a quantum Szilard engine

Figure 2.1: The classical Szilard engine. Thermodynamic cycle of the classical Szilard engine cooling a
reservoir. Starting point is the particle in the empty box (left). After insertion of the piston
wall and measurement of the particle position (middle) a weight is attached at the correct
side of the piston. In the subsequent isothermal expansion the heat Δ&r = )rΔ(r is extracted
form the reservoir and converted into potential energy Δ, by lifting the weight (right). The
cycle closes when the piston leaves the box.

This is clearly a violation of the second law of thermodynamics. When we consider
a large number of these systems operated in parallel or sequentially, neither the
measurement without manipulation nor the manipulation without access to the
measurement information will extract a positive energy outcome on average. It
is the conjunction of both ingredients that leads to the violation of the second
law of thermodynamics. This conflict is usually solved by considering the entropy
production in the intelligent being or the measurement apparatus that is caused by
the erasure of the measured bit of information at the end of the cycle. According to
Landauer’s principle, at least the entropy Δ(m ≥ :B)a ln 2 is produced in the erasure
process, with )a being the temperature of the measurement apparatus [23–25]. For
further discussions, see Ref. [26]. Regardless of whether or not information must be
stored by the apparatus, one may instead assume that the second law is valid to allow
for a theoretical comparison between different engines. In experiments, certainly
much more energy is required for operating the system than can be obtained from
the single particle.

2.2 The quantum Szilard engine

There are various ways in which the classical Szilard engine can be transferred to
the quantum world. One possibility that is often discussed in the literature is to
consider the quantum mechanical wave function of a quantum particle confined
by the potential wells of the box [27, 28]. In this case, however, the operation and
performance is slightly different compared to the classical Szilard engine since the
isothermal insertion of the piston in form of a potential barrier can not be performed
without additional work [27, 28]. In addition, the operation is not entirely quantum
mechanical because the insertion andmovement of the piston is described by classical
variables, and hence, the extraction of energy results form a coupling of the quantum
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2.2 The quantum Szilard engine

Figure 2.2: The quantum Szilard engine. Schematic of the entire thermodynamic system consisting of
the measurement apparatus, the qubit and the TLS reservoir. For a closed system, the internal
energy *tot is constant, while the entropy (tot can only increase irreversibly according to the
second law of thermodynamics. The negative entropy production by the qubit preparation
must therefore be compensated by an entropy production Δ(m in the measurement apparatus,
which is released at temperature )a. As a consequence, performing the qubit preparation
consumes the energy Δ,a. The measurement and the feedback is performed by the intelligent
being, as conceived by Szilard [22]. Reproduced from Ref. [21].

to the classical world. Instead, we will consider another implementation of quantum
Szilard engines, depicted in Fig. 2.2, where the classical particle is replaced by a
qubit [29–31]. This realization is very close to its classical counterpart, although
three notable minor differences remain, as discussed below.

First of all, the qubit can bemeasured in its groundor excited state,which corresponds
to the measurement of the classical particle to the left or right side of the piston.
In thermal equilibrium, the probabilities of measuring the qubit in its ground or
excited state are given by the Boltzmann statistics. These probabilities may also be
emulated by the classical Szilard engine when the piston is inserted off-centered,
meaning that the probabilities to measure a particle to the left or to the right of the
piston are not equal.

Second, the qubit is brought in contact with a quantum mechanical heat reservoir,
labeled TLS reservoir in Fig. 2.2. Consequently, the qubit and the reservoir are
in general entangled. However, when a measurement of the qubit is performed,
the entanglement with the environment is destroyed, resulting in a measurement
back action on the environment, and the qubit is projected to one of its eigenstates.
In the classical Szilard engine, no work is performed on the particle during the
measurement. Interestingly, for the quantum Szilard engine, this is only true on
average. The corresponding energy fluctuation as well as the measurement back
action can be experimentally observed, as discussed in Sec. 3.7.3.

These two points show from a thermodynamic point of view, that immediately after
the measurement the qubit can be interpreted as a classical particle.

11



2 Two-level system hyperpolarization with a quantum Szilard engine

The third point therefore constitutes the main difference, namely the extraction of
energy: For the classical Szilard engine, an isothermal expansion converts the entropy
in Eq. 2.1 into energy, no matter on which side the particle is found. In contrast,
for the quantum Szilard engine, energy can only be extracted when the qubit was
projected to the excited state, for instance by a stimulated emission. This means that
only the average qubit energy is extracted, which is less than for the classical Szilard
engine even if the position of the piston is adjusted to the populations of the qubit.

2.2.1 Measurement and entropy

Completing Szilard’s thought experiment, we imagine the measurement apparatus
with an energy storage,a that provides the energy required for the measurement
process and a thermal bath at temperature )a, where the negative entropy from the
projected qubit can be compensated. Clearly, as we consider the whole system to be
closed, the inner energy *tot must be conserved and, according to the second law of
thermodynamics, the entropy (tot can only increase irreversibly (Fig. 2.2).

Figure 2.3: Generalized qubit system
with degenerate energy level mani-
folds and energy difference &.

For the quantitative discussion of the Szilard engine,
we will consider a generalized qubit system with
potentially degenerate energy levels. This allows us
to show that the measurements and reset of the qubit
can produce different amounts of entropy, which has
to be considered when comparing the efficiencies of
various information powered engines. The energy
level structure is depicted in Fig. 2.3. For = = < = 1
we have the experimental situation of the qubit.

In thermal equilibrium, the qubit system is measured
with the probabilities

? =
=

= + <4�&
and @ =

<4�&

= + <4�&
(2.2)

in the excited and ground state manifold, respectively, with the qubit energy & and
� = 1/:B)r defined by the temperature )r of the reservoir in thermal equilibrium.
The internal energy of the qubit is simply *q = ?&. Furthermore, considering the
statistical ensemble, the entropy amounts to

(q

:B
= − =

= + <4�&
ln

(
1

= + <4�&

)
− <4�&

= + <4�&
ln

(
4�&

= + <4�&

)
(2.3)

= �*q − �& + ln
(
= + <4�&

)
. (2.4)

Next, we first focus on the less entropy demanding measurement that projects the
qubit system onto its excitation manifolds, without resolving the individual levels.

12



2.2 The quantum Szilard engine

If the experiments were post-selected according to the measurement outcome, the
entropies

(q,|g〉
:B

= ln<, and
(q,|e〉
:B

= ln = (2.5)

would be obtained for a projection to the ground or excited energy manifold,
respectively.

When taking the statistical average over all experiments, the measurement must
be followed by a conditional reset to the target manifold in case the system was
projected to the opposite manifold. However, if the manifolds are of different size
= ≠ <, a full reset is not possible, as it would mean to destroy the difference in
entropy. In other words, since the reset is a unitary operation, both manifolds must
have the same dimensionality, and hence < = =. With this constriction the average
entropy reduction after a conditional reset is simply

Δ(q

:B
= ? ln ? + @ ln @, (2.6)

which is always negative. Once again, the information of themeasurement alone is not
equivalent to entropy reduction. Negative entropy is only produced in conjunction
with the ability to react to the thermodynamic fluctuations, i.e. information is
gained in terms of Shannon’s entropy. The maximum average entropy reduction of
Δ(/:B = − ln 2 is attained for equal population in the manifolds, which implies an
infinite temperature or a vanishing energy level splitting.

Now, we turn to a more powerful measurement that can distinguish between all
< + = states. After such a measurement, the system is in a pure state. It produces a
maximum average entropy reduction of Δ(/:B = − ln(= + <) in the limit of �&→∞,
in accordance with the previously mentioned limit for the qubit. This is also the
reason why the quantum Szilard engine in Ref. [32], which operates on several
bosonic particles, can exceed the work output Δ, = :B)r ln 2. If their Szilard engine
had been equipped with gate operations that could shuffle bosons from one side
of the piston to the other, even larger output powers would be achievable. In fact,
the same entropy reduction may be interpreted and obtained by several binary
measurements Δ(/:B = − ln 2 log2(= + <) = − log(= + <). We see here that for a fair
comparison of the engine efficiencies, the energy cost of a measurement must be
taken into account, which, following Szilard’s reasoning, results from the assumption
that the second law of thermodynamics should remain valid.

2.2.2 Efficiency

The Szilard engine can be used both to cool and to heat the reservoir. The heat pump
and refrigeration cycles are depicted in Fig. 2.4 for a qubit with thermal excitation as
observed in the experiment.

13



2 Two-level system hyperpolarization with a quantum Szilard engine

Figure 2.4: Quantum Szilard engine heating and cooling cycle. Temperature-entropy diagram of the
heating (left panel) and cooling cycle (right panel) of the quantum Szilard engine. Note the
negative temperatures for the heating cycle indicating the population inversion of the qubit.
Before the measurement the qubit is in thermal equilibrium with the reservoir. The colored
areas correspond to the heat transferred with the reservoir. They amount to Δ&r = & −*q and
Δ&r = −*q for heating and cooling, respectively. Reproduced and adapted from Ref. [21].

Since the measurement apparatus is considered to be a thermodynamic engine,
the entropy reduction in the qubit system has to be compensated by an entropy
productionΔ(m ≥ −Δ(q by themeasurement apparatus in order for the second lawof
thermodynamics to remain valid. Consequently, the apparatus must be connected to
a heat bath into which it can unload the entropy. When this bath is at the temperature
)a, the measurement requires the work Δ,m = −)aΔ(m. Furthermore, one can argue
that the measurement process should not depend on the temperature of the qubit
system. Thus, for the binary measurement Δ(m ≥ :B)a ln 2 must hold, as was first
conjectured by Szilárd [22]. In the following we will drop this assumption and
use the exact entropy reduction, since it allows for a simple comparison with the
theoretical maximum performance given by the Carnot cycle.

Cooling cycle

In order to cool the reservoir, the qubit is reset to its ground state. From the
thermalization process after the reset it follows Δ*q = *q > 0. With this definition
it follows for the three steps:

1. Measurement: The measurement requires the work −)aΔ(m.
2. Reset: From the reset of the qubit to the ground state one can in principle extract

in average the work Δ*q, which may be used to lift up again the weight of the
measurement apparatus.

3. Thermalization: The reservoir is cooled down by Δ&r = −Δ*q < 0. Here, the TLS
reservoir is assumed large enough so that its temperature)r stays approximately
constant.

14



2.2 The quantum Szilard engine

Figure 2.5: Energy and entropies for the cooling cycle. a Average qubit energy as a function of the qubit
energy splitting. The dark blue curve corresponds to the measured thermal qubit temperature,
while the light blue curve corresponds to the temperature that is reached after cooling the
TLSs. b Various entropies for the cooling cycle as defined in the text as a function of the
normalized inverse temperature �& = &/:B)r of the reservoir. The dotted gray lines in both
panels indicate the experimental situation.

The coefficient of performance (COP) is defined as the ratio of extracted heat and
amount of energy used, and hence

COP = |Δ&r |
−Δ,tot

=
Δ*q

)aΔ(m − Δ*q
(2.7)

Since the reservoir did not change its temperature, a reversible entropy can be
defined via Δ&r = )rΔ(rev < 0, which is also valid when the temperature in the bath
is negative, in which case Δ(rev becomes positive. We may then write, assuming
Δ(m = −Δ(q holds

COP = −)rΔ(rev
−)a(Δ(q − Δ(rev + Δ(rev) + )rΔ(rev

=
)r

)a − )r + )a Δ(irrΔ(rev

, (2.8)

where we defined the irreversible entropy reduction Δ(irr = Δ(q − Δ(rev < 0 that
emerges from the measurement process. From Eqs. 2.4 and using that < = =, it
follows

Δ(irr
:B

= �& − ln
(
1 + 4�&

)
= − ln

(
1 + 4−�&

)
< 0. (2.9)

For the entropy ratio one obtains

Δ(irr
Δ(rev

=
1 + 4�&
�&

ln
(
1 + 4−�&

)
=

1
�&
+ 1

2�&4�&
+ . . . for �&→∞, (2.10)

showing that the Szilard engine refrigerator can reach the maximum theoretical
efficiency in the limit of vanishing temperature or infinite qubit energy. However, as is
typical for purely reversible processes, the cooling power given byΔ*q = �&/(1+ 4�&)
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2 Two-level system hyperpolarization with a quantum Szilard engine

vanishes exponentially. The temperature dependencies of the average qubit energy
as well as of the various entropies are shown in Fig. 2.5.

Note that the COP remains correct even if the temperatures of the reservoir and the
measurement apparatus are negative. A negative COP simply means that energy is
extracted as a byproduct from the inverted reservoirs.

Heating cycle

In order to heat the reservoir the qubit must be reset to its excited state. From
the thermalization process after the reset, it follows Δ*q = *q − & < 0. With this
definition it follows for the three steps:

1. Measurement: The measurement requires the work −)aΔ(m.
2. Reset: The reset of the qubit to the excited state requires the additional work Δ*q

on average.

3. Thermalization: The reservoir is heated by the amount Δ&r = −Δ*q > 0. As
before, the TLS reservoir is assumed large enough so that its temperature )r
stays approximately constant.

Analogously, it holds

COP = |Δ&r |
−Δ,tot

=
& −*q

)aΔ(m + & −*q
=

)r

)r − )a + )a Δ(irr
−Δ(rev

. (2.11)

Here, we have Δ(rev/:B = �& − �*q for the reversible entropy and the irreversible
entropy amounts to Δ(irr/:B = − ln

(
1 + 4�&

)
< 0. For the entropy ratio, we therefore

obtain

Δ(irr
−Δ(rev

=
1 + 4−�&

�&
ln

(
1 + 4�&

)
, (2.12)

which, in contrast to Eq. 2.10, vanishes for negative temperatures.

2.3 The granular aluminum fluxonium

After having introduced the working principle of the Szilard engine, the remaining
sections of this chapter deal with the experimental realization and its application
to uncover hidden environments. The quantum Szilard engine is realized with
a superconducting fluxonium qubit implemented, which uses the high kinetic
inductance of grAl for its superinductor.

In the following, the granular aluminum fluxonium is briefly presented,while further
in-depth discussions on the design and implementation are provided in Part II of this
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2.3 The granular aluminum fluxonium

Figure 2.6: The granular aluminum fluxonium with a SQUID-junction and readout resonator. a, b False-
colored optical image of the granular aluminum fluxonium and its readout antenna. The device
is fabricated in a single three-angle evaporation lithography step. The first two aluminum
layers (blue) are used to implement the conventional Al/AlOx/Al-junction and form the
antenna. The granular aluminum zero angle evaporation implements all the inductances. The
granular aluminum wires have a width of ∼ 200 nm (red). The regions where the granular
aluminum is shunted by aluminum underneath are colored in violet. c Equivalent circuit of
the resonator fluxonium system. The antenna couples via the capacitance �c to the microwave
waveguide for readout and qubit control. More details on the circuit and parameters are
provided in Sec. 6.2 and Tab. 6.1. d Energy spectrum of the fluxonium as a function of the
applied external flux 	ext around the half flux sweet spot at which the experiments were
performed. e Fluxonium potential and representation of the first three wave functions at the
half flux sweet spot shown in panel d. The fluxonium parameters are !q = 234 nH, �q = 7.0 fF
and at this flux position �J = 5.9 GHz. Reproduced and adapted from Ref. [18].

thesis. The fluxonium consists of a Josephson junction that is shunted by a so-called
superinductance [15]. Typically, these superinductors are implemented by Josephson
junction arrays. For the granular aluminum fluxonium, the junction array is simply
replaced by a granular aluminum wire. Initially, the main motivation was to greatly
reduce the number of modes in the wire (Sec. 5.2) and thereby potentially improve
the qubit readout. Concomitant, the coherence properties of granular aluminum
can be studied, which is illustrated by this work.

A granular aluminum fluxonium inductively coupled to its readout antenna, is
depicted in Fig. 2.6a, b. The circuit is fabricated in a single lithography step. A detailed
description of the fabrication is given in Sec. 7.1. The junction of the fluxonium
features a superconducting quantum interference device (SQUID), which allows the
Josephson energy of the fluxonium to be tuned with an externally applied magnetic
field. In this way, the fluxonium-resonator system can be brought in a regime with
excellent readout conditions, as we reported in [33]. The equivalent circuit of the
fluxonium and readout resonator system is shown in Fig. 2.6c. Quantization of
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2 Two-level system hyperpolarization with a quantum Szilard engine

this circuit yields the fluxonium spectrum and information about the dispersive
frequency shift of the resonator as a function of the fluxonium state. A general
introduction to circuit quantization is given in Chpt. 5. The quantization of the bare
fluxonium as well as of the fluxonium together with its readout resonator is detailed
in Sec. 5.3 and Sec. 6.2, respectively. Fig. 2.6d depicts the fluxonium spectrum with
respect to the ground state around the half flux sweet spot, at which most of the
measurements were carried out. At this half flux position, the fluxonium spectrum
forms a well defined qubit system with qubit frequency 5q = 1.2 GHz separated by
6.8GHz from the higher levels. The corresponding wave functions are plotted in
Fig. 2.6e. An enlarged view of the measured and calculated spectrum is shown in
Sec. 5.3.2. The device is placed in a microwave waveguide with an extra port to drive
the qubit. For furter details on the microwave setup see Sec. 7.3.

2.3.1 Quantum non-demolishing readout and active reset

The implementation of the quantum Szilard engine ideally requires a textbook
quantum mechanical measurement of the qubit and depending on the measurement
outcome an active decision and control to reset of the qubit to its target state.
Performing a textbook quantum mechanical measurement means that the qubit is
projected to the corresponding eigenstate of the measurement outcome, where it
can then be measured again with absolute certainty. As discussed in more detail in
Sec. 2.2, only both ingredients, measurement and control, produce a pure qubit state
on average.

The non-destructive measurement is by no means trivial to achieve and led to
the concept of quantum non-demolishing (QND) measurements. Nowadays, the
QND readout of superconducting qubits is achieved by measuring the dispersive
frequency shift of the qubit’s readout cavity [34, 35]. Further insights on how to
design the dispersive readout are provided in Chpt. 6.

The dispersive readout, as typically implemented, is only approximately QND. With
increasing numbers of circulating photons in the readout resonator detrimental
demolishing effects are usually encountered. These demolishing effects can also be
observed in our device. Fortunately, they occur at different flux values than those
used in the experiment, as can be seen in Fig. 6.3b and Fig. 6.6. The origin of this
non-QND behavior has puzzled the community for almost two decades [36–39], and
it is only recently that non-perturbative methods can predict these non-QND effects
almost quantitatively at large photon numbers [40]. The fact that one is essentially
forced to use low photon numbers led to the development of parametric amplifiers
placed downstream, as close as possible to the sample [41–44].

Surprisingly, we find that most of our granular aluminum fluxoniums can be read
out at half flux using large photon numbers. For the fluxonium presented here, an
active reset fidelity without using a parametric amplifier of 99 % and 93 % for the
ground and excited state, respectively, could be achieved with =̄ = 74 photons and an
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2.3 The granular aluminum fluxonium

Figure 2.7: Qubit readout and active reset. a Schematic drawing of the microwave setup for measuring
the readout cavity and controlling the qubit. The experiments are orchestrated by the field
programmable gate array (FPGA) controller from Quantum Machines, with an internal
real-time feedback latency of ∼ 200 ns. b Pulse sequence and timings of the active reset. The
readout pulse (blue) that excites the resonator is 128 ns long. The integration of the resonator
ring-down with decay time � = 280 ns of the field occurs after 400 ns once the distorted signal
has left and the qubit is projected. In case the qubit has to be reset, a �-pulse with a Gaussian
envelope of � = 10 ns is played in a 48 ns window (red). The readout pulses are separated by
880 ns. c Scatter plot of the complex reflection coefficient (11 of the readout signal for the qubit
in equilibrium (left panel) and after qubit preparation in |g〉 and |e〉 (right panels). Adapted
from Ref. [21].

integration time of about half a microsecond [33]. The reason for the photon resilience
is not entirely clear, but could have its origin in the absence of low-lying modes
present in junction array fluxoniums, as discussed in Sec. 5.2. Nevertheless, the
parametric amplifier, tuned to 20 dB of gain, is of great value for the operation of the
quantum Szilard engine, as it allows for a significant reduction of =̄, thereby allowing
the qubit to interact freely with its environment in between the measurements. In
addition, in future experiments one could use a phase controlled pulse to empty the
cavity after the readout [45, 46].

A schematic drawing of the experiment with the microwave electronics providing
the real time capabilities is shown in Fig. 2.7b. A complete drawing of the microwave
setup can be found in Sec. 7.3. The intermediate frequency pulse sequence for
the active reset that is generated by the field programmable gate array (FPGA)
electronics is depicted in Fig. 2.7c. The integration of the resonator ring-down occurs
relatively late after 400 ns once the distorted readout signal has left the system. The
internal latency of the controller to set up the conditional�-pulse and the subsequent
measurement pulse is about 200 ns. Fig. 2.7c depicts the active reset from thermal
equilibrium to |g〉 and |e〉 as used for the quantum Szilard experiment. As will be
shown later in Fig. 2.16a, the presence of a long-lived environment, which is the
main loss mechanism for the qubit, allows improving the active reset by polarizing
the environment beforehand. In this way, an active reset of 99.8 % for |g〉 and 98.3 %
for |e〉 could be achieved.
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2 Two-level system hyperpolarization with a quantum Szilard engine

Figure 2.8: Coherence measurements of the qubit. a Measured Ramsey decay with Gaussian envelope
(blue points are measured and solid lines are fits). b Echo decay, which contains both
exponential and Gaussian components. The arrow indicates the 1/4-time. c Selection of
measured CPMG decays (points) with exponential fits (solid lines). d Coherence times as a
function of the H-pulse repetition time in the CPMG sequence. The coherence times and the
corresponding standard deviation errors are obtained from the exponential fits (panel c). The
lines connecting the markers with error bars are guides to the eye. Reproduced from Ref. [21].

2.3.2 Coherence of the SQUID-fluxonium

Before the qubit relaxation is discussed in detail in the following sections, the
coherence properties of the SQUID-fluxonium are briefly presented. In Fig. 2.8
various coherence measurements of the fluxonium are depicted. The relatively
low coherence compared to the qubit’s relaxation time )1 = 21.5 µs is most likely
caused by local flux noise which, leads to a fluctuating Josephson energy of the
SQUID-junction. Since the flux-dependent Josephson energy is operated at a point
with non-zero slope (s. Fig. 5.15), the qubit frequency is in first order sensitive to
local flux noise, even if it is at a sweet spot with regards to global flux.. In contrast, for
one of the standard granular aluminum fluxoniums with only one junction that have
been fabricated on the same wafer, a coherence time of )2 = 28 µs was measured,
while for the echo sequence a coherence time of )2 = 46 µs was achieved, close to the
limit given by the qubit’s relaxation time.
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2.4 Superconducting qubit environments

Figure 2.9: Superconducting qubit environments. Schematic drawing of the fluxonium qubit and the rich
environment typical for superconducting circuits. It includes counterclockwise: free electronic
spins that may be Zeeman split by an external magnetic field [47, 48] or via the hyperfine
interaction [49], radiation loss into the readout and qubit drive ports [50] or into spurious
modes including phonons [51], Shiba spins [52], trapped vortices [53, 54], quasiparticles [55],
adsorbed molecules on the surface [56], and dielectric TLSs [57]. Reproduced from Ref. [21].

The Gaussian envelope for the Ramsey sequence in Fig. 2.8a reveals a significant
contribution of slow noise. Consequently, the coherence can be drastically increased
with the number of refocusing pulses (Fig. 2.8b,c). The decay of the Carr-Purcell-
Meiboom-Gill (CPMG) sequence is well described by an exponential function with
a maximum coherence exceeding the qubit’s relaxation time (Fig. 2.8d). Since
the coherence is closely related to the qubit’s frequency noise, the dip visible at
5 = 1/2ΔCH = 0.77 MHz indicates an excess noise source. While the frequency noise
is expected to come from flux noise, it is possible that the TLS environment also
contributes to this frequency noise and overall decoherence behavior.

2.4 Superconducting qubit environments

The innate complexity of solid-state physics exposes superconducting quantum
circuits to interactions with uncontrolled degrees of freedom,which degrade their co-
herence. For this reason, superconducting qubits are relatively short-lived compared
to other quantum platforms such as nitrogen vacancy centers [58] and donor spins
in silicon [59]. The complex environment that can be observed in superconducting
circuits is depicted in Fig. 2.9. In order to improve the qubit life time it is important
to identify the main loss mechanism of the qubit.
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2 Two-level system hyperpolarization with a quantum Szilard engine

While some of these environments stand out due to their very clear signature,
for instance an increased loss rate at the hyperfine transition of hydrogen [49] or
frequency fluctuations in charge qubits due to a fluctuating quasiparticle back-
ground [60], others are best characterized by directly manipulating the environment
of the superconducting circuit. To give a few examples, free electronic spins can be
tuned in resonance with magnetic field [47, 48, 61], quasiparticles can be generated
by strong saturation pulses or by ionizing radiation [62, 63], and dielectric TLSs can
be tuned with strain and electric field [57, 64, 65]. In the case of strongly coupled
TLSs one may even operate them coherently via the superconducting qubit [64–67].

Speaking now of the general class of TLSs, such as spins, dielectric TLSs, and
potentially also trapped quasiparticles, the situation changes drastically when the
TLSs are weakly coupled to the qubit, cannot be resolved spectrally, and are short-
lived compared to the qubit lifetime. These TLSs may still be investigated with
harmonic oscillators and by varying the TLS saturation [68–70]. However, as we will
show in Chpt. 3, for a qubit these TLSs provide a Born-Markovian environment with
a relaxation that is independent of the TLS populations. In addition, due to the short
lifetime, the TLS population remains unchanged by qubit operations. As the last
strategy, one may vary the qubit coupling to capacitive, inductive, and other lossy
environments and thereby identify the main loss mechanism [71].

If the TLSs have a similar or even longer lifetime than the qubit, direct manipulation
and observation of the TLS environment is possible again. In this case, one may either
use simple saturation pulses (Sec. 2.6) or hyperpolarize the TLSs with the quantum
Szilard engine protocol, similar to the hyperpolarization protocols available for
nuclear magnetic spins [72, 73]. The beauty of the quantum Szilard engine approach
is its independence of the physical origin of the TLSs, which allows to uncover
heretofore hidden environments.

2.5 Origins of non-exponential relaxation

There exist many possible reasons for observing non-exponential qubit relaxation.
Often the non-exponential relaxation is caused by a fluctuating relaxation time. For
instance, a steep relaxation at the very beginning is likely to originate from an occa-
sional quasiparticle burst produced by cosmic or ambient radioactive radiation [63,
74, 75]. A bi-exponential relaxation can hint at a nearby toggling dielectric TLS [76]
or a fluctuating quasiparticle background [71]. Assuming the latter scenario, the
relaxation of the qubit population ?q from the excited state can be described by

?q(C) = (1 − ?th) ·
(
@ · 4−C/)q + (1 − @)

)
· 4−C/)r + ?th , (2.13)

with the probability @ that a quasiparticle is present giving rise to an additional
decay rate defined by )q, whereas in the absence of the quasiparticle the qubit relaxes
with the decay time )r to the thermal equilibrium population ?th.
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Figure 2.10: Flux dependent relaxation of the single junction fluxonium. a Bi-exponential relaxation at
zero flux. The continuous line corresponds to the model in Eq. 2.13. b Exponential relaxation
at half flux. Reproduced from Ref. [18].

In principle, one can generalize the relaxation to an arbitrary number of exponential
functions and corresponding probabilities. For quasiparticles, one often assumes a
Poisson distribution %�(=) and a relaxation that increases linearly with the number
= of quasiparticles [71]. This distribution is rather mathematically motivated, as it
allows the relaxation to be expressed again in closed form. It holds [71]

?q(C) = (1 − ?th) · 4−�(1−4
−C/)q ) · 4−C/)r + ?th. (2.14)

From a physical point of view, the Poisson distribution is rather unlikely because of
the quadratically increasing recombination probability of the quasiparticles [62, 74].
Especially in light of quasiparticle-induced qubit losses at the tiny fluxonium junction
[71], the presence of several quasiparticles seems implausible. In Refs. [71], [77] and
in Fig. 2.10 adapted from Ref. [18], a bi-exponential relaxation perfectly describes
the experimental findings. Since flux qubits biased at half flux are insensitive to
quasiparticle loss at the junction due to the destructive quasiparticle interference [55,
71], the presence and absence of a non-exponential relaxation at zero and half flux
(Fig. 2.10) hints at the presence of a quasiparticles.

In order to determine whether a given set of relaxation curves can be attributed to
the same fluctuating qubit relaxation, one can subtract a single thermal equilibrium
population from all relaxation curves and then normalize the curves by the initial
amplitudes. If the curves do not match, the underlying statistics may have changed,
or the relaxation dynamics could be caused by a memory effect in the environment,
as will be shown in the next section.

2.6 Heating with 0-pulses

A simple experiment to find out whether the qubit is coupled to a finite size long-
lived environment is to repeatedly excite the qubit by a sequence of �-pulses [78].
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2 Two-level system hyperpolarization with a quantum Szilard engine

Figure 2.11: Heating without active feedback. a Top panel: schematic of the pulse sequence consisting of
#� repeated �-pulses spaced by C� = 100 µs, followed by a standard free decay experiment.
The value for C� is chosen larger than the intrinsic qubit decay time but smaller than the
relaxation of the environment in order to heat the environment. Left panel: Free decay of the
qubit for various #� . The curves are shifted horizontally for visibility. Right panel: Measured
relaxation curves taken from the left panel, normalized and plotted in log-scale. For our
device, the ostensibly increased relaxation time is an illusion, and it is explained by the
increased environmental temperature which in turn heats the qubit, as demonstrated in
panel b (right panel). Consequently, this heating of the environment forbids to compare
scaled and shifted non-exponential relaxation curves. b Top panel: schematic of the pulse
sequence similar to the one in panel a, except that the free decay is measured following
qubit initialization in |g〉 or |e〉. The left panel measurements after initialization in |e〉 appear
similar to the corresponding ones in panel a, while, strikingly, after initialization to |g〉 (right
panel) non-monotonic evolutions of the qubit population are observed due to the heat stored
in the environment. The solid lines are simultaneous fits using the theoretical model of
Eqs. 2.22 and 2.22 including the �-pulse sequence on the qubit. Reproduced from Ref. [21].

One should of course make sure that the altered relaxation and temperature is not
caused by a trivial heating of the qubit environment, for instance a heating of the
microwave setup from the �-pulses. A good control experiment is to replace the
�-pulses with 2�-pulses to make sure it is indeed the qubit excitation that causes
the different behavior.

A sequence (Fig. 2.11a, top) that does not require active reset capabilities was
introduced in Ref. [78] and applied to flux qubits. The �-pulses are separated by
C� = 100 µs, chosen to be longer than the intrinsic qubit decay time but shorter than
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the relaxation of the environment, in order to heat the environment. The relaxation
dynamics of the SQUID-fluxonium depending on the number #� of �-pulses is
shown in Fig. 2.11a (left). Since the curves do not match after the normalization, as
described in the previous section, the environment of the qubit must have changed.
This, however, does not allow to claim an increased relaxation time of the qubit. For
our qubit, the seemingly increased )1-time is simply due to the heated environment,
as will be shown using an active reset sequence.

Instead of measuring the qubit relaxation with the remaining qubit polarization,
in the second sequence (Fig. 2.11b, top) the qubit is actively reset to |e〉 or |g〉 from
where the free relaxation to thermal equilibrium is measured. The relaxation is
shown in Fig. 2.11b (left and right panels). Of particular importance is the qubit
initialization to the ground state. In the subsequent evolution the qubit heats up and
overshoots its thermal population ?th proving an increased temperature of the qubit
environment. The theoretical model shown in Fig. 2.11 follows from the integration
of the Solomon equations (Eqs. 2.22 and 2.23) and includes the �-pulse sequence.

2.7 Hyperpolarization with the quantum Szilard engine

To enhance the manipulation of the qubit environment compared to the �-pulse
sequence presented in the previous section, a quantum Szilard engine can be
implemented using the qubit and its active feedback control. Alternatively, one can
also use an autonomous feedback [72]. For instance, the fast flux tunable fluxonium
presented in Sec. 7.1 can be tuned in resonance with its readout resonator to quickly
dump the qubit excitation into the transmission line. Back at the operating point,
the qubit can be inverted if the environment is to be heated. In fact, this protocol
implements the quantum Otto engine [79].

As will be seen later, the Szilard engine hyperpolarizes the qubit environment and
can even produce negative temperatures in the environment. The hyperpolarized
environment reveals that the qubit is weakly coupled to a TLS environment of
unknown origin, which relaxes over tens of milliseconds. Conversely, this so-far
undiscovered environment can now be identified as the dominant loss mechanism
of our qubit, and one may dread that similarly acting environments are ubiquitous
in superconducting hardware.

In order to efficiently manipulate the TLS environment, the TLS must ideally provide
the main loss mechanism for the qubit while in turn being approximately lossless,
as schematized in Fig. 2.12a. The polarization sequence for heating or cooling the
TLSs is depicted in Fig. 2.12b. Each cycle of the Szilard engine consists of a qubit
preparation, which is followed by a cross relaxation between the qubit and the
TLSs. In this way, photons that leave the qubit-TLS system are immediately detected
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Figure 2.12: Working principle of the Szilard engine. aAswill be shown in Sec. 2.8, the qubit environment
can be modeled as a collection of polarizable TLSs and a global bath responsible for the
so-called “intrinsic loss” of both qubit (Aq) and TLSs (At). The TLSs act as heat reservoir,
because they provide the main relaxation channel for the qubit (Aq .

∑
: A

:
qt) while being

approximately lossless (At ≈ 0). b Schematic illustration of the qubit and TLS populations
during the polarization sequence. Each cycle of the Szilard engine consists of a qubit
preparation followed by the cross relaxation between the qubit and the TLSs. After each
cycle the polarization of the TLSs increases. Reproduced from Ref. [21].

and, depending on the desired polarization, removed or added to the system again.
Consequently, the TLS polarization follows the actively stabilized qubit state, and
the amount of heat in the TLS environment varies with the operation time of the
Szilard engine.

2.7.1 Free decay measurements

The experimental workflow to investigate the TLS environment is depicted in
Fig. 2.13. The experiment begins with the TLS polarization sequence by stabilizing
the qubit to either |g〉 or |e〉 using # active feedback preparations. This sequence
implements the quantum Szilard engine as proposed in Fig. 2.12b. The active
feedback preparations are separated by Crep = 2 µs, which is much shorter than the
qubit lifetime of )1 = 21.5 µs to reliably detect each photon passing the qubit, but also
longer than the 140 ns ring-down time of the ∼ 20 resonator photons so that most of
the time the qubit and the TLSs can freely interact with each other in between the
measurements. Having realized in Fig. 2.11b the importance of measuring the qubit
relaxation from |g〉 or |e〉, the polarization is followed by a qubit initialization.

The qubit relaxation is shown in Fig. 2.14a after heating the TLSs for various times
# · Crep. Note the logarithmic G-axis from 300 µs onwards, which is necessary to
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Figure 2.13: Control sequence implementing the Szilard engine and the free decay measurement.
The active feedback preparations implementing the Szilard engine are separated by 2µs,
much shorter than the qubit’s relaxation time )1 = 21.5 µs, but longer than the resonator is
populated with photons. The polarization sequence is followed by a qubit initialization to
|g〉 or |e〉 to measure the free decay of the qubit. Adapted from Ref. [21].

depict the slow relaxation visible over the course of 50ms. For the relaxation with
# = 104 and qubit initialization to |g〉, it can be seen that the qubit rapidly heats up
and reaches a population inversion of ∼ 60 %.

Due to the long relaxation time, measuring the entire data set with 10000 single
shot qubit measurements for each of the 52 time points would take more than
three days if the system was always given 50ms to relax to thermal equilibrium.
Here, the measurement time was reduced to ∼ 23 h by shortening the waiting time
between repetitions and by iterating over the time points first to reduce the effect
of accumulating heat. Still, these relatively long experiments were often affected
by fluctuations in the environment. One of these data sets is shown in Fig. 2.13b.
This data set with 47 time points and 5000 averages was recorded in 41 h (error
in Ref. [21]) using a longer waiting time between repetitions than in panel b. In
addition, the cooling of the TLSs was measured interleaved. Interestingly, the curves
can be grouped into at least four families, suggesting different configurations of the
TLS environment. The relaxation dynamics is mainly affected by the most resonant
TLSs, which give the main contributions to the cross relaxation and contribute to
the relaxation in particular at the beginning of the relaxation curves. The data set
shown in the panel b was selected to be one of the few without fluctuations.

Drifts and fluctuations during the relatively long measurement time complicate
the accurate description of the data with a theoretical model. In addition, during
the polarization and the free decay the qubit experiences different decoherence
processes, as the readout is not perfectly QND (s. Sec. 2.9). These limitations can be
overcome by a much faster measurement scheme based on stroboscopic quantum
jumps, which will be introduced in the next section. Since the data acquisition time
for quantum jumps experiments is more than ten times faster, such fluctuations are
less likely to be observed. Nevertheless, in some of these quantum jump experiments
we observe rapid fluctuations of the non-Poissonian quantum jump distributions
in great similarity to Ref. [53]. These fluctuations are presented and discussed in
Sec. 3.7.6 and are identified as fluctuations of the single most resonant TLS.
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Figure 2.14: Free decay of the qubit after running the Szilard engine polarizing to |e〉. a Free decay
of the qubit after polarization to |e〉 for various times # · Crep followed by an initialization
to either |g〉 or |e〉. Note the logarithmic G-axis from 300µs onwards, which is required to
depict the slow relaxation dynamics. The qubit reaches a population inversion of ∼ 60 %
after being initialized in |g〉. The curves are the mean of 10 iterations with in total 10000
single shot qubit measurements per data point recorded within 23 h. b In some data sets,
fluctuations at the beginning of the relaxation curves can be observed. The color coding is
used to indicate quantitatively different time evolutions, which can be grouped in at least
four families (blue, orange, green and red), suggesting at least four different configurations
of the TLS environment. Following Eq. 2.21, the main contributions can be expected from
the most resonant TLSs that affect in particular the beginning of the relaxation curves. A
corresponding behavior for each trace index is also observed for the curves after polarization
to |g〉, which are measured interleaved (not shown). The data points are based on 5000
averages measured in 41 h and with a longer waiting time between repetitions as in panel b.
The data set shown in the left panel was selected to be one of the few without fluctuations.
Reproduced from Ref. [21].

2.7.2 Stroboscopic quantum jump measurements

The free decaymeasurement presented in the previous section has the disadvantages
of being relatively slow as every time point has to be recorded separately. To speed
up the measurements, we can exploit the fact that the qubit readout is more than
96% quantum non-demolishing (s. Fig. 2.7c, Sec. 2.9 and Ref. [33]). This means that,
on average, the populations of the density matrix are not significantly affected by
the readout pulse, and we can perform repeated single shot qubit measurements
to monitor the qubit relaxation. The control sequence is depicted in Fig. 2.15a.
The repetition time of the qubit measurements during the polarization and qubit
monitoring was chosen to be the same, such that the qubit experiences the same
decoherence processes. The main advantage of the stroboscopic jump method is the
possibility to determine the qubit’s transition rates A↑,↓, which allows to distinguish
between changes in the energy relaxation rate and changes in the equilibrium
population of the qubit.

28



2.7 Hyperpolarization with the quantum Szilard engine

Figure 2.15: Control sequence implementing the Szilard engine and stroboscopic quantum jumps.
a Control sequence similar to Fig. 2.13 except that the qubit relaxation is measured with
stroboscopic quantum jumps. We use the same measurement repetition time of Crep = 2 µs
for the polarization and the qubit monitoring. b Typical stroboscopic quantum jump trace
during qubit monitoring (as shown in panel a). The solid line indicates the assigned qubit
state. Reproduced from Ref. [21].

A typical quantum jump trace is shown in Fig. 2.15b. Here, the qubit was initially
measured in the excited state. After some time, the qubit is measured in the ground
state due to qubit relaxation to thermal equilibrium, and from time to time it is
measured again in the excited state due to the finite temperature. The average qubit
population defines the thermal equilibrium population ?th = 12 %, corresponding
to a temperature of )eff = 28.3 mK. This temperature should be compared with the
thermal population of the free decay measurements (Fig. 2.14a), where we find
?th = 16 % corresponding to the true qubit temperature ) = 34 mK. For comparison,
the temperature of the dilution refrigerator is ∼ 25 mK.

Fig. 2.16 and Fig. 2.17 show measured qubit relaxation curves for the various
polarization and initialization scenarios. The 20 different scenarios were measured
interleaved in 25 iterations with in total 2500 repetitions. The 100 repetitions in each
iteration were separated by additional 50 ms for further relaxation of the system.
In retrospect, this waiting was not needed. It would probably be better to continue
the stroboscopic measurements to ensure a constant effective temperature (2.9). The
entire data set was recorded within 3.5 h. Approximately half of the time was used to
transfer the data of each iteration from the FPGA control server to the measurement
computer. The theoretical model plotted on top of the data is discussed in Sec. 2.8.

As already demonstrated for the free decay measurements (Fig. 2.14a), after suf-
ficiently long polarization times to the excited state the qubit reaches population
inversion (# ≥ 103, Fig. 2.16b, right). Here, the population inversion is slightly less
pronounced, potentially due to the cooling influence of the stroboscopic measure-
ments. However, the population inversion can be confirmed even more directly
by the inversion of the transition rates A↑ > A↓ (Fig. 2.20a in Sec. 2.7.5). A notable
consequence is that for # = 104 the preparation fidelity for the excited state is
higher than for the ground state (Fig. 2.20a, inset). Therefore, measuring the active
reset fidelity with a fast repetition time, without letting the system relax to thermal
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2 Two-level system hyperpolarization with a quantum Szilard engine

Figure 2.16: Qubit evolution after running the Szilard engine. a Measured relaxation of the qubit after
polarization to |e〉 for various times # · Crep followed by an initialization to either |g〉 or
|e〉. Note the logarithmic G-axis from 300 µs onwards.The exponential decay curves shown
in dotted lines, with the decay times indicated by the corresponding labels, are guides to
the eye to illustrate the highly non-exponential relaxation of the environment (Fig. 3.10).
The inset shows the preparation infidelity of the initialization. We observe an increasing
fidelity with # , in particular for the initialization in |e〉. The errorbars show the one sigma
confidence intervals of the binomial distribution with 2500 repetitions. b Scatter plots of the
complex reflection coefficient (11 for the relaxation curves shown in panel a for # = 104.
The left panels illustrate the reduced relaxation of the excited state population vs. time. The
right panels demonstrate that the qubit undergoes a population inversion due to interactions
with the environment. Notably, the |f〉-state is not populated, as illustrated by the absence
of a third cloud in the (11 distribution (cf. Fig. 2.18c). The continuous lines correspond to
the theoretical model of Eqs. 2.22 and 2.23, applied to all measured curves simultaneously.
Reproduced from Ref. [21].

equilibrium, can lead to an overestimation of the active reset fidelity. Last, it should
be noted that the population inversion does not involve higher qubit states, as
illustrated by the absence of the |f〉-state population. The |f〉-state becomes only
noteworthily populated for experiments at higher temperatures (cf. Fig. 2.18c).
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2.7 Hyperpolarization with the quantum Szilard engine

Figure 2.17: Qubit evolution after running the Szilard engine. Measured relaxation of the qubit after
polarization to |g〉 followed by an initialization to either |g〉 or |e〉. Compared to Fig. 2.16a,
the opposite effect is visible: the environment is cooled by the polarization sequence,
demonstrating that the heat flow in the environment is not the trivial result of heating due
to repeated microwave readout and control pulses. The upper curves are shifted upwards by
5% for better visibility. The theoretical curves use the same parameters as that in Fig. 2.16.
Reproduced from Ref. [21].

Before continuing, it should be noted that the relaxation shows clear signatures of
a long-lived TLS environment. On the one hand there is the population inversion,
and on the other hand the temperature-independent relaxation time that is shown
in Fig. 2.20b. However, it could still be argued that the population inversion is the
result of a trivial heating process. For example, the environment could, to a large
extend, be heated by the microwave control pulses and the population inversion by
a few percent on top could be the result of a demolishing qubit readout.

The bullet-proof experiment that disproves this hypothesis is to cool the environment
using same control pulses by polarizing the qubit to the ground state, in which
case the qubit becomes the only heat sink in the system. The experimental results
showing the cooling of the reservoir are depicted in Fig. 2.17 for various polarization
and initialization scenarios. Note that for # = 104 and after initialization to |e〉 a
non-monotonic relaxation can also be observed for the cooling. The qubit reaches its
minimal population after approximately one millisecond before warming up again.

2.7.3 Hyperpolarization at higher temperature

Due to the relatively low thermal qubit population, the cooling in Fig. 2.17 is
less pronounced than the heating of the TLSs in Fig. 2.17a. For this reason, the
hyperpolarization was also measured at higher fridge temperature. Fig. 2.18 shows
the results for a fridge temperature set to 75mK. The hyperpolarization is still
visible at a fridge temperature of 150mK (not shown), but much less pronounced,
most likely due to a vanishing intrinsic qubit lifetime. In contrast, an increasing

31



2 Two-level system hyperpolarization with a quantum Szilard engine

Figure 2.18: Relaxation measurements at T = 75 mK. a, b Qubit relaxation after polarization to |e〉 and
|g〉, respectively, for various times # · Crep followed by an initialization to |g〉 or |e〉. Note
that at 75mK the final thermal population is higher, therefore increasing the visibility of
the cooling effect in comparison to Fig. 2.17. The curves corresponding to initialization in
|e〉 are shifted upwards by 10% for better visibility. For the stroboscopic qubit monitoring
the repetition time was set to Crep = 5 µs in order to decrease quantum demolition effects.
c Histogram of the complex reflection coefficient (11 acquired from the last millisecond of the
relaxation curves shown in panel a and b. For the thermal populations of the states |g〉, |e〉
and |f〉 we expect (67.7, 31.9, and 0.4)% and we measure (70.6 ± 0.2, 28.8, and 0.4 ± 0.2)%.
For |g〉 and |e〉 the discrepancy is likely due to quantum demolition effects caused by the
readout (s. Sec. 2.9). The populations are obtained from a Gaussian mixture model fit to the
(11 distribution using the scikit-learn library [80]. Reproduced from Ref. [21].

dephasing of the qubit and the TLSs with temperature should not affect the qubit
cross relaxation into the TLS environment (s. Sec. 3.6 and Fig. 3.11).

2.7.4 Extraction of the transition rates

The common method for extracting qubit transition rates from quantum jump traces
is to analyze the traces sequentially in time. This means that a latching filter is first
applied to handle transient or ambiguous measurement points. Then, A↑,↓ can be
inferred from the average qubit dwell times in the ground and excited state. The
main drawback of this approach is that the time resolution is limited by the time
required for a jump to occur.

In contrast, in the procedure presented here, we analyze the sufficiently large
number" of quantum jump traces at each time index : in the sequence. This allows
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2.7 Hyperpolarization with the quantum Szilard engine

Figure 2.19: Extraction of qubit transition rates. a Typical measured (11 scatter plot extracted for a given
time point from the " stroboscopic quantum jump traces. The three regions discriminate
between areas in the (11 plane where we declare the qubit state with certainty larger than
99.98%, highlighted in dark green for |g〉 and light green for |e〉, and where the qubit state is
subject to state discrimination errors, highlighted in gray. For measurements in the gray area
the state is declared to be undetermined. b Between two successive sets of " measurements
we compute the transition probabilities C8 9 between the three regions. Assuming the qubit
is perfectly polarized in |g〉 or |e〉, the probabilities for measurements to be declared with
certainty are given by Bg and Be, respectively. Reproduced from Ref. [21].

for a precise and fast extraction of the time-evolving population and transition
rates. However, the method is subject to certain conditions. Most importantly,
the state discrimination must be large enough so that most measurements can be
unambiguously assigned to a qubit state and the amount of false state assignments is
negligible. Next, the probability of missing a quantum jumpmust be small (Crep < )1).
Furthermore, the probability of measuring transient dynamics must be small. Ideally,
the measurement is a short (compared to )1) but strong projective readout pulse. In
addition, it will be assumed here that the |f〉-state population is negligible. If the
conditions are met, the method is valid for arbitrary squeezed pointer states and
the accuracy is only limited by the available statistics. For finite size environments,
however, there is a systematic error in the determination of the transition rates. The
stroboscopic qubit measurements lead to correlated fluctuations in the environment,
as will be discussed in more detail in Sec. 3.

The error we have to deal with is the state discrimination error due to the finite
signal, meaning that the pointer states of the complex reflection coefficient (11
overlap (Fig. 2.18c). Three regions in the complex plane are defined corresponding
to the qubit in the ground or excited state, or to an undecided state (Fig. 2.19a).
The regions are chosen in such a way that the probability to mistake the qubit’s
ground and excited state can be neglected (in our case it may happen in ∼ 0.2‰
of the measurements). From the measured " = 2500 stroboscopic quantum jump
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2 Two-level system hyperpolarization with a quantum Szilard engine

traces, one can obtain a distribution similar to the one shown in Fig. 2.19a at each
time stamp :, and with that the three population probabilities ?g, ?e and ?u. By
comparing successive measurement results in each of the " quantum jump traces
the nine transition probabilities C8 9 can be extracted (Fig. 2.19b). In other words,

©­«
?g
?e
?u

ª®¬:+1

=
©­«
Cgg Ceg Cug
Cge Cee Cue
Cgu Ceu Cuu

ª®¬ · ©­«
?g
?e
?u

ª®¬: , (2.15)

with
∑
8 ?8 = 1 and

∑
8 C8 9 = 1. The latter, summing the columns of C8 9 , simply states

that the system can either be found in the same region as previously measured or
in one of the two other regions. Therefore, out of these three population and nine
transition probabilities only eight are independent values. Moreover, given the 5.6 �
state separation in our measurement, the probability to measure state u is small
(1 − Bg,e ≈ 2.5 %), the rates Cug and Cue have low statistical weight and will not be
used in the analysis. Nevertheless, we are left with six values, which are sufficient
to extract the five parameters of interest: the qubit population ?q, the probabilities
%|g〉,|e〉 and %|e〉,|g〉 that the qubit has jumped up or down, and the probabilities Bg
and Be, which declare the qubit states with certainty. Instead of computing the most
likely set of parameters, there is fortunately a much simpler solution. We have

Cgg = (1 − %|g〉,|e〉)Bg ,
Cge = %|g〉,|e〉Be ,

Ceg = %|e〉,|g〉Bg ,

Cee = (1 − %|e〉,|g〉)Be ,
(2.16)

which can be inverted to give

Bg =
CggCee − CgeCeg
Cee − Cge

, Be =
CggCee − CgeCeg
Cgg − Ceg

. (2.17)

Since the probabilities Bg and Be are time-independent, they can be averaged along
the time trace to achieve a higher precision. Finally, Bg and Be are used to obtain the
successive quantum jump probabilities corrected for state discrimination errors:

%|g〉,|g〉 = 1 − %|g〉,|e〉 = Cgg/Bg , %|e〉,|e〉 = 1 − %|e〉,|g〉 = Cee/Be , (2.18)

yielding the transition rates

A↑ = − log%|g〉,|g〉/Crep , A↓ = − log%|e〉,|e〉/Crep. (2.19)

For the qubit population one may either use ?q = 1 − ?g/Bg or ?q = ?e/Be. Ideally,
one chooses the regions such that Bg = Be, in which case the most likely estimator for
the qubit population is

?q =
=e

=g + =e
. (2.20)
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2.7 Hyperpolarization with the quantum Szilard engine

Figure 2.20: Population inversion and constant relaxation rate, signatures of the TLS environment.
a Measured (light color) and calculated (dark color) qubit transitions rates A↑,↓ following
initialization to |g〉 or |e〉 and polarization to |e〉 with # = 10, to 104 shown in the left and
right panel, respectively. The measured rates are extracted from the same quantum jump
traces used to extract the qubit relaxation (Fig. 2.16a), with the logarithmic time-axis starting
at 500µs. For long polarization times the rates are reversed in the beginning, meaning
that the qubit sees a negative temperature environment. Note that in all cases the |g〉-state
initialization visibly cools the environment, suggesting a heat capacity of only a few energy
quanta. To reduce the statistical noise, a five-point moving average filter was applied,
corresponding to a 10µs window. Furthermore, the first 10 µs of the orange and green curves
are omitted due to the low statistics; it is unlikely to have two consecutive . 5 µs intervals
between jumps. Similarly, these rates are overestimated in the beginning by preferably
detecting short )1 fluctuations of the qubit. b Relaxation time A1 obtained from the A↑,↓ rates
in panel a for # = 104. The A1 rate is constant compared to the changes in A↑ and A↓ shown
in panel a, i.e. A1 is independent of the environmental populations, which indicates a TLS
environment. c Equilibrium population of the qubit ?eq extracted from the A↑,↓ rates. The
dashed lines show the corresponding qubit population ?q relaxation taken from Fig. 2.16a.
We extrapolate an effective population of the environment ?eq = 78 % at C = 0. In all panels,
the theoretical curves use the same parameters as that in Fig. 2.16. Reproduced from Ref. [21].

2.7.5 Negative temperatures and constant relaxation time

As was explained in the previous section, the time-evolving transition rates
(Fig. 2.20a) are obtained from the stroboscopic quantum jump traces by using
A↑ = − ln

(
%|g〉,|g〉

)
/Crep and A↓ = − ln

(
%|e〉,|e〉

)
/Crep, where % is the probability to

measure the same qubit state in successive measurements. These rates define the
relaxation rate A1 = A↑+A↓ and the equilibrium population of the qubit ?eq = A↑/A1 (s.
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2 Two-level system hyperpolarization with a quantum Szilard engine

Sec. 2.8). Note that the noise magnitude varies with the qubit population (Fig. 2.20a)
because the rates A↑,↓ are based on conditional probabilities.

Remarkably, after a heating sequence with # = 104, the qubit relaxation rate A1 is
comparably constant (Fig. 2.20b); in contrast ?eq follows a non-exponential relaxation
for time scales up to 50ms. From the overlayed theoretical model, we can ascribe
a hyperpolarization of ?TLSseq = 97 % for the TLSs at the end of the polarization
sequence, which, when taking into account the intrinsic loss of the qubit, gives the
measured ?eq = 78 % (Fig. 2.20c, and Eqs. 3.70 and 3.71). Conversely, after a cooling
sequence with # = 104, ?eq = 3.0 % is extracted, as can be ascertained in Fig. 2.17
using that the qubit population ?q = 2.0 % ≈ ?eq after 1/A1. Hence, the Szilard engine
cooled the environment to an effective temperature of 16mK, which is well below
the temperature of ∼ 25 mK of the dilution refrigerator and the effective temperature
)eff = 28.3 mK corresponding to the qubit population ?th = 12.0 % (s. Sec. 2.7.2 and
Fig. 2.23). The TLS hyperpolarization is even lower, ?TLSseq = 3.4‰ =̂ 9.9 mK, limited
by the qubit preparation infidelity. The values are extrapolated from the theoretical
model, which will be explained in the next section. For both, heating and cooling,
the hyperpolarization values are among the highest reported in literature [81, 82].

2.8 Theoretical modeling

The Solomon equations that describe the relaxation of the qubit coupled to an
arbitrary number of TLSs is derived in full rigor in Chpt. 3. The main results thereof
are used here to model and interpret the experimental findings.

The constant relaxation rate A1 as well as the observed population inversion indicate
an environment consisting of TLSs. The system is therefore modeled assuming the
qubit to be coupled to a countable number of TLSs with populations ?:t . The cross
relaxation rates A:qt between the qubit and the TLSs are given by [83, 84]

A:qt =
262A2

A2
2 + �2

:

, (2.21)

where �: is the detuning between the qubit and the :th TLS, 6 their transverse
coupling strength, and A2 the sum of their decoherence rates. Since the TLSs can in
turn excite the qubit, we conclude that the qubit and the TLSs are close in frequency.
This means that they relax approximately to the same thermal population ?th (note
that the qubit is well thermalized, as discussed earlier). Finally, we introduce intrinsic
relaxation rates for the qubit and the TLSs, Aq and A:t , respectively, capturing the
remaining environment (Fig. 2.12a).
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2.8 Theoretical modeling

The relaxation dynamics is governed by the so-called Solomon equations [83],
extensively used in the field of nuclear hyperpolarization [85]. The equations read

¤?q = −Aq(?q − ?th) −
∑
:

A:qt(?q − ?:t ) (2.22)

¤?:t = −A:t (?:t − ?th) − A:qt(?:t − ?q), (2.23)

where we identify the constant qubit relaxation rate A1 = Aq +
∑
: A

:
qt and the

time-dependent equilibrium population

?eq =

(
Aq?th +

∑
:

A:qt?
:
t

)
/ A1. (2.24)

During this polarization sequence of length # · Crep, the qubit population is approxi-
mately constant, corresponding to the targeted preparation state. As a consequence
of Eq. 2.23, the Solomon equations predict an exponential relaxation for the TLSs to
their new steady-state value. Immediately after the polarization sequence at C = 0,
the TLS populations ?:t,0 := ?:t (C = 0) are given by

?:t,0 =
(
?th − ?:s

)
4
−
(
A:qt+At

)
#Crep + ?:s (2.25)

with steady-state values

?:s =
At?th + A:qt
At + A:qt

or ?:s =
At?th

At + A:qt
(2.26)

for heating or cooling of the environment, respectively. These initial TLS populations
?:t,0 are shown in Fig. 2.21 for various polarization times, assuming that the TLSs
are equally spaced in frequency with otherwise identical parameters. In view of
this initial hyperpolarization the polarization sequence may also be interpreted as
a spectral hole burning. The extraction of the system parameters that lead to this
distributions are discussed in the next paragraph.

So far, the model in Eqs. 2.22 and 2.23 requires two rates for each TLS. In order
to extract meaningful information from the measurements by virtue of Eq. 2.21
simplifying assumptions have to be made and the number of fitting parameters
needs to be reduced. Since the TLS polarization is observed in different qubits and at
different qubit frequencies (s. Supp. Ref. [21]) the TLSs are expected to be randomly
distributed in frequency. This distribution is simplified by modeling them to be
equally spaced in frequency with �: = :Δ + Δ0, where Δ0 ∈ [0,Δ/2] defines a shift
of the TLS ladder with respect to the qubit frequency. This is justified by the fact
that we are mainly interested in capturing the slow, non-exponential relaxation at
millisecond timescales. With the same argument, we can assume the same 6 and
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2 Two-level system hyperpolarization with a quantum Szilard engine

Figure 2.21: TLS hyperpolarization. Initial TLS populations ?:t,0 plotted versus their detuning �: for
various polarization times # · Crep, with Crep being the repetition time of the stroboscopic
qubit preparations to |e〉 (top panel) and |g〉 (bottom panel). The TLS populations were
calculated using Eq. 2.25. Reproduced from Ref. [86].

A2 for all TLSs. The price being payed using these simplification is that the model
captures less accurately the initial features of the decay curves, at C < 300 µs. Indeed,
these features are a fingerprint of the exact TLS configuration, and they fluctuate in
time, as can be seen in Fig. 2.14b.

The simplified model allows to rewrite Eq. 2.21 in the form A:qt = 01
2/[12 + (: + 12)2],

showing that 6, Δ, Δ0 and A2 do not appear independently in the model. Instead,
6 =

√
0A2/2, Δ = A2/1 and Δ0 = 2A2 can be determined for a given decoherence

rate from a successful fit of the model. The fit procedure is further restricted by
inserting the measured qubit relaxation rate A1 = 1/21.5 µs (Fig. 2.20b), leaving us
with only two essential fit parameters Aq and 1. The parameter 2 has only a minor
influence at the beginning of the relaxation curves and leads to a rescaling of the
other parameters to keep the qubit relaxation constant (s. Supp. in Ref. [21]). As
will be discussed in more detail in Chpt. 3.7.5, for a finite size heat reservoir there
is a systematic error when determining the qubit transition rates from quantum
jumps. In Chpt. 3 the rate A1 = 1/18.5 µs is used, which agrees a bit better with the
measured non-Poissonian quantum jump statistics and describes equally well the
measured relaxation curves.

The robustness of the model is illustrated by the fact that a fit of only the first
millisecond to one of the stronger polarized relaxation curves (e.g. polarization to
|e〉 for # = 103 with initialization in |g〉 or |e〉) is sufficient to describe the highly
non-exponential relaxation of all measurements on the entire relaxation range up to
50ms (Fig. 2.16a, Fig. 2.17, Fig. 2.20 and Fig. 3.10c in Chpt. 3). Further details of the
fitting procedure are presented in the Supplementary of Ref. [21].
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2.9 SPAM errors and quantum demolition effects

Using the lower bound A2 ≥ A
q
2 ≈ 0.5 MHz, where Aq2 is the decoherence rate of the

qubit (Sec. 2.3.2), 6 ≥ 2� · 12 kHz and Δ ≥ 2� · 167 kHz are extracted. In Chpt. 3, a
TLS decoherence of At2 = 1.0 MHz is used for most of the quantum jump simulations.
In this case, we have 6 = 2� · 22 kHz and Δ = 2� · 500 kHz. The comparably small
coupling strength 6 � A

q
2 is consistent with the fact that no avoided level crossings

in the qubit spectrum are observed. Notably, this argument remains valid even for
higher decoherence because 6 and Δ scale with

√
A2 and A2, respectively. Using an

upper bound for the decoherence A2 ∼ 1/10 ns � 5q, comparable to values reported
in Ref. [65] for dielectric TLSs, gives 6 < 2� · 170 kHz and Δ < 2� · 35 MH.

Furthermore, the two contributions of the qubit relaxation can be calculated: one
rate is due to interactions with the TLSs, ATLSsqt =

∑
: A

:
qt = 35.9 kHz, and the other is

the remaining intrinsic relaxation Aq = 10.7 kHz. The TLS bath is therefore identified
as the dominant loss mechanism. Remarkably, the fit also indicates that the intrinsic
relaxation time exceeds 1/At ≥ 50 ms, which is orders of magnitude longer than
previously measured relaxation rates of dielectric TLSs [64, 66, 87]. This fact leads us
to believe that we are reporting a new type of TLS environment, possibly related to
spins [52, 88] or trapped quasiparticle TLSs [89]. Finally, we would like to mention
that A:qt ≥ At for |: | ≤ 15, which means that the qubit is the main decay channel for
at least the first few tens most resonant TLSs.

Following Szilárd’s seminal paper [22], the homonymous engine uses measured
information as fuel (Sec. 2.2). In the first iteration of a cooling sequence starting
from thermal equilibrium ) = 28.3 mK, the engine extracts on average the internal
energy Δ* = 0.24 :B) from the qubit, corresponding to an entropy reduction
of Δ(q = 0.37 :B, which should be compared with the entropy produced by the
measurement apparatus :B ln 2 ≈ 0.69 :B (Sec. 2.2). From the rate equation we
can calculate the optimal working regime for our Szilard engine. Using the fitted
parameterswe infer that themaximumheat reductionΔ&R = 0.11 :B) in the reservoir
occurs 68 µs after the qubit initialization. Thus, at most half of the extracted heat
from the qubit can be used to cool the reservoir. This surprisingly small value seems
to be in conflict with the TLS bath being the dominant loss mechanism ATLSsqt ≈ 3.3Aq.
This discrepancy can simply be explained by the finite size of the reservoir. The
qubit only interacts strongly with the few most resonant TLSs. Consequently, when
the qubit is reset to its ground state, the temperature of these TLSs will reduce and
the qubit can not reach its prior energy, thus Δ&R < Δ*q()R). The finite size and
the effect of a single �-pulse is best visible at higher and negative temperatures,
showing a significant cooling of the TLSs (Fig. 2.20).

2.9 SPAM errors and quantum demolition effects

The following section provides further insight into the polarization process. The
analysis can be used to disentangle state preparation and measurement (SPAM)
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2 Two-level system hyperpolarization with a quantum Szilard engine

Figure 2.22: Active feedback qubit preparations during the polarization sequence. Measured prob-
abilities %′� (blue) and %′�� (yellow) during the polarization sequence to play a �-pulse or
respective two successive �-pulses for polarization to |e〉 (left panels) and polarization to
|g〉 (right panels). The continuous lines in green and violet show the theoretically expected
behavior due to TLS polarization. The theoretical curves in black and gray include state
discrimination errors. In light green %corrected

� is shown, i.e. the measured %′� corrected
for SPAM errors. The insets show the measured auto-correlation function %′�...�(�) of the
polarization sequence averaged over all " experimental repetitions, over = > 9000, where
the TLS polarization is approximately constant. Reproduced from Ref. [21].

errors from relaxation and may render useful to identify spurious correlations in
the feedback control, which can hint at memory effects in the qubit environment.

During the polarization sequence one can observe a decrease in active feedback
preparations of the qubit. We quantify the probability to play a �-pulse on the
qubit by %′�, with prime denoting the measured probabilities containing all sorts of
errors and correlations. These probabilities are shown in Fig. 2.22 (light blue). In the
following we show how to extract the portion %� (without prime) which originates
solely from qubit relaxation.

For comparison, we will first derive the results for an ideal quantum Szilard engine
with perfect reset capabilities. In addition, we assume that the polarization of the
TLSs follows Eq. 2.25, which in turn gives ?eq(C). We thereby neglect the relaxation of
the system in between themeasurements. The evolution of%� during the polarization
sequence is explained by the TLS environment that becomes increasingly more
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polarized. The probability to measure the qubit relaxed from its target state during
the repetition time Crep is given by

%�(C) =
{
[1 − ?eq(C)] − [1 − ?eq(C)]4−A1Crep , for polarization to |e〉,
[?eq(C) − 0] − [?eq(C) − 0]4−A1Crep , for polarization to |g〉.

(2.27)

Since A1 is constant, the polarization of the TLSs is entirely encoded in ?eq(C). Note
that the first term in each equation gives the probability to require a �-pulse after the
qubit has reached the equilibrium population. The calculated %� curves are shown
in Fig. 2.22 (solid green lines).

For completeness, using A1 = A↑ + A↓ and ?eq = A↑/A1, Eq. 2.27 can be approximated
to reveal the following relation with the transition rates:

%�(C) ≈
{

1 − 4−A↓(C)Crep , for polarization to |e〉,
1 − 4−A↑(C)Crep , for polarization to |g〉,

(2.28)

with the approximation being of order O
(
A↓A↑C

2
rep/2

)
, corresponding to the prob-

ability that a double quantum jump was undetected within Crep. We thus obtain
A↑,↓ = − log(1 − %�)/Crep, which is the formula used in Sec. 2.7.4. We want to remark
the following: (i) when A1 is constant and known, one can directly solve Eq. 2.27
and obtain both A↑,↓-rates, (ii) when A1 is unknown one can only extract one of the
transition rates for each polarization state by solving Eq. 2.28, and (iii) linearizing
both equations gives A↑,↓ = %�/Crep, however, this approach entails an additional
quadratic error compared to solving Eq. 2.28.

As mentioned in the introductory paragraph, in the experiment %� is altered by
various errors to give the measured %′�. In the insets of Fig. 2.22 we show the
auto-correlation function %′�...�(�) = �[%′�(C + �)%′�(C)] of the �-pulse sequence with
the expectation value � taken over all " repetitions, over the last 1000 pulses of the
sequence where the TLS polarization reached its steady state. For a well behaved
Born-Markovian environment and in the absence of SPAM errors, the �-pulses are
uncorrelated. This means that the probability to have two �-pulses in succession
equals %′�� := %′�...�(Crep) = %′�2, and more generally %′�...�(� > 0) = %′�2. Instead, as
we show in Fig. 2.22, we observe a strong excess probability, in particular for %′��.
Indeed, if the qubit state is falsely detected or if the reset is unprecise, there will be
an increased probability to reset the qubit in the next round.

Next, two approaches are presented to explain and correct the SPAM errors. First,
we show to which extend the SPAM errors are caused by state discrimination
errors, which can easily be included into the model by forward propagation. In the
experiment the threshold to play a �-pulse was chosen to be exactly in-between
the qubit’s pointer states. Therefore, we have a state discrimination error of ?error|g〉 =

2.42‰ and ?error|e〉 = 2.68‰, which was extracted from a Gaussian mixture model
fit to the complex scatter parameter (11. The difference results from the slightly
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2 Two-level system hyperpolarization with a quantum Szilard engine

squeezed noise, as can be seen in Fig. 2.14c. For details on the squeezing s. Ref. [90].
When these errors are included into model Eq. 2.27, the state discrimination error
perfectly explains the polarization to |g〉 data. However, for polarization to |e〉 a
good agreement can only be observed in the beginning (Fig. 2.22, black and gray
curves). At this level, the following effects could become relevant and explain
the remaining difference: The qubit TLS relaxation in between the measurements
must be considered, in particular after a false detection and reset to the ground
state, the latency between measurement and �-pulse leads to additional SPAM
errors, and ultimately the measurement back action on the TLSs leads to additional
correlations (Sec. 3.7.3).

Since the state discrimination can not account for all SPAM errors and since all the
other mentioned errors are difficult to predict, the second approach is to correct the
measured %′� by themeasured excess probability of %′��. Let %� be the probability that
the qubit has to be reset due to its relaxation and let @ be the probability that the active
feedback step yields a SPAM error. We will assume that an error will be corrected
with certainty in the next round, thereby truncating higher order error propagation.
Higher order processes where the qubit relaxed and got falsely measured in its target
state are also excluded. Under these assumptions the probability to find a �-pulse
due to a SPAM error is %SPAM = (1 − %SPAM)@, and hence %SPAM = @/(1 + @), which is
also the probability to find a �-pulse that corrects the previous SPAM error. Similarly,
the probability to find a �-pulse due to relaxation is (1 − %SPAM)%� = %�/(1 + @).
Adding these three probabilities gives %′�, while summing the probabilities of all
five combinations resulting in two successive �-pulses gives %′��. We have

%′� =
%� + 2@

1 + @ (2.29)

%′�� =
%2
� + 2@%� + @(1 + @)

1 + @ . (2.30)

Longer ranged correlations are approximately and increasingly more uncorrelated
%′�...�(� > Crep) ≈ %′�2. The above equations can be inverted, allowing to disentangle
relaxation and SPAM error contributions:

%corrected
� := %� =

%′� − (2 − %′�)%′��
(1 − %′�)2

(2.31)

@ =
%′�� − %′�2

(1 − %′�)2
. (2.32)

The corrected %corrected
� curves are shown in Fig. 2.22 and match well the theoretical

curves %�. At the end of the polarization sequence (from the insets) we extract for
the SPAM errors @ = 5.5‰ and @ = 2.2‰ for polarization in |e〉 and |g〉, respectively.
The accuracy of %corrected

� and @ is limited by all neglected higher order errors and
moreover by all the other unexplained excess probabilities starting with %�...�(2Crep).
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2.9 SPAM errors and quantum demolition effects

Figure 2.23: Quantum demolition effects induced by the readout. Thermal qubit population ?th as
a function of the repetition time. The demolition errors & |e〉,|g〉 of the qubit measurement
have a cooling effect on the qubit. When not visible the error bars are in the range of
the measured black points. The inset illustrates the periodic steady-state dynamics of the
qubit and the TLSs calculated with the Solomon equations. The qubit and TLS populations
are enclosed approximately by the qubit populations ?preq and ?

post
q before and after the

qubit measurement, respectively. The calculated curves modeling the data are based on
the assumption that the population of the intrinsic qubit environment, given by the free
decay ?th, remains unchanged with decreasing repetition time Crep. If the intrinsic qubit
environment increases in temperature due to the stroboscopic measurements, the lower set
of curves can describe the data as well. For more details see text. Reproduced and extended
from Ref. [21].

Estimating readout demolishing effects

It should be noted that the intrinsic qubit relaxation Aq includes already relaxation
processes that originate from demolishing effects of the qubit measurement. The
lower true intrinsic qubit relaxation Afreeq during free decay is visible in the prolonged
relaxation of the free decay measurements (Fig. 2.14a). In the Supplementary of
Ref. [21], the qubit transition rates for various readout repetition times are contrasted.
However, the finite size TLS environment precludes a precise estimation of the qubit
transition rates due to the non-Poissonian quantum jump statistics, i.e. correlated
fluctuations in the TLS reservoir (Sec. 3.7). The overestimation of the measurement
induced relaxation rate in Ref. [21] greatly exceeds the extracted intrinsic qubit
relaxation.

In the following, the analysis of Ref. [21] is therefore extended to yield a more precise
estimate of the true intrinsic relaxation Afreeq and the demolition errors & |e〉,|g〉 from
the readout. The information is extracted from the change in thermal population
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2 Two-level system hyperpolarization with a quantum Szilard engine

with decreasing readout repetition time. Certainly, interleaved hyperpolarization
experiments with different readout repetition times would be more informative.

Let ?preq and ?postq denote the qubit population before and after the measurement,
respectively. These populations are related by

?
post
q = (1 − & |e〉)?

pre
q + & |g〉(1 − ?

pre
q ). (2.33)

If the repetition time Crep of the measurements is short compared to all relaxation
rates in the system, the relaxation in between the measurements is described by the
qubit’s true intrinsic lifetime in the steady state. We thus obtain another relation

?
pre
q =

(
?
post
q − ?freeth

)
· 4−Afreeq Crep + ?freeth . (2.34)

We make use here of the fact that the qubit is the dominant loss mechanism for
the TLSs, hence the TLS populations will settle to the average qubit population,
i.e. ?:t ≈

(
?
pre
q + ?

post
q

)
/2. It is only when Crep > 1/max(A:qt) that the non-exponential

relaxation begins to make a minor difference. The steady-state dynamics is depicted
in the inset of Fig. 2.23. In the free decay limit, when Crep →∞, the two equations are
again exact with ?preq approaching the thermal population ?freeth , which is defined by
the temperature of the intrinsic qubit environment. In this limit, the TLS populations
also approach ?freeth .

Solving both equations yields the thermal qubit population as a function of the
repetition time. In addition, we can use the constraint Aq = Afreeq + Amq with the mea-
surement induced qubit relaxation rate Amq = − log

(
1 − & |e〉

)
/Crep − log

(
1 − & |g〉

)
/Crep

and Crep = 2 µs, as used in the experiment. From the measured thermal population
(Fig. 2.23), we extract the demolition errors & |e〉 = 15‰ and & |g〉 = 2.0‰ and the
true intrinsic qubit lifetime )free

q = 460 µs, which would be measured in free decay
and in the absence of the TLS environment. This lifetime should be compared
to the measured intrinsic lifetime )q = 90 µs, which shows that the stroboscopic
measurements contribute dominantly to the intrinsic qubit loss.

The presented analysis is based on the assumption that the stroboscopic measure-
ments do not heat up the intrinsic qubit environment. If the environment heats up, a
lower intrinsic qubit lifetime could also explain the data. In Fig. 2.23, an additional
set of curves is shown assuming lower demolishing errors and an increased intrinsic
qubit relaxation. In order to explain the measured thermal population, the heating
of the intrinsic environment must reach a 25 % population for Crep = 2 µs, which
corresponds to a temperature of ∼ 50 mK. Since the heating in general and higher
temperatures are increasingly unlikely, we conclude that qubit lifetimes of several
hundred microseconds can be expected if the TLS environment can be removed in
future.
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3 Solomon equations

The experiments presented in the previous chapter have revealed the presence
of a long-lived TLS environment. The relaxation dynamics of the qubit and the
TLSs have been modeled with the Solomon equations. This chapter provides fur-
ther experimental and theoretical insights into their dynamics. The survey begins
with a rigorous derivation of the Solomon equations and ends with the stochastic
Schrödinger equation for modeling the non-Poissonian quantum jump statistics of
the qubit. The first sections are intended to simplify the introduction to the vast
field of open quantum systems and to lay the foundations for the derivation of the
Solomon equations. The treatise presented here is an extended and restructured
version of Spiecker et. al., Phys. Rev. A 109, 052218, 2024 (Ref. [86]).

3.1 Overview

Relaxation processes induced by spin environments are encountered in many areas
of experimental physics, therefore in theoretical physics they are a popular toy model
for understanding decoherence processes and the crossover from the quantum to
the classical world [72, 91–103]. A thorough understanding of spin relaxation was
first achieved by studying long-lived nuclear spins in the field of nuclear magnetic
resonance (NMR). One of the most important NMR spectroscopy methods for the
structural analysis of molecules and even proteins [85, 104, 105] is based on the
nuclear Overhauser effect and its description via the Solomon equations [83].

The Solomon equations were originally derived for only two interacting nuclear
spins [83]. Since the complexity of the relaxation grows exponentially with the
number of nuclear spins, the Solomon equations can not be generalized without
further ado. In case that the emergence of multispin phenomena contributes signif-
icantly to the relaxation process, one may either design the experiment in such a
way to suppress their effects or include the dominant cross-correlations between the
nuclear spins into the dynamics [106]. Often, these cross-correlations lead only to
minor contributions, so that the Solomon equations remain the method of choice to
describe the relaxation [85, 104].

Coming from outside the field of NMR, there are several reasons why it is difficult
to translate the effect of multispin phenomena to other systems such as our system,
i.e. the fluxonium qubit coupled to a large number of long-lived TLSs. First and
foremost, one has to overcome the NMR language hurdle: The rates are expressed in
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3 Solomon equations

Figure 3.1: Qubit and long-lived TLSs. The qubit acts as the central spin for the surrounding TLSs.
Under the presence of decoherence, their interaction leads to a mutual cross-relaxation with
individual cross-relaxation rates A:qt.

terms of the correlation time, internuclear distances and orientations in space. The
situation is additionally complex due to the vectorial character of the spins, which
gives rise to multiple interaction terms, and finally the spins may have even larger
quantum numbers, giving rise to quadrupolar spin lattice relaxation [85, 106, 107].

In contrast to NMR, the superconducting qubits and the TLSs are of a very different
physical nature. Therefore, we can expect the qubit to interact with a large number
of TLSs with potentially different frequencies, coupling strengths and coherence
times, as illustrated in Fig. 3.1. For this reason, a new derivation of the Solomon
equations is presented for an XX-type interaction and an arbitrary number of TLSs.
The derivation starts from a general Lindblad equation [108, 109] for the qubit and
the TLSs. To our knowledge, such a derivation of the Solomon equations has not
been given in the literature. It turns out that the Solomon equations provide an
excellent approximation, in particular for the experimental situation of long-lived
TLSs.

In view of the experimental findings presented in Chpt. 2, we show how to deal with
Solomon equations of infinite size fora given cross-relaxation distribution anddeduce
that the relaxation follows a power-law on long time scales. Beyond superconducting
devices, the analysis may also prove useful for the accurate description of dipolar
relaxation processes, similar to Ref. [110]. Moreover, we contrast the Solomon
equations with the widely used Bloch-Redfield master equation, which is applicable
when the TLSs form a Born-Markovian environment.

Certainly the main difference to NMR experiments is our ability to measure a
single element, the qubit. Instead of looking at the average dynamics, the real-time
dynamics can be investigated. This raises the question to what extent it is possible to
measure entanglement effects, i.e. cross-correlations between the qubit and the TLSs.
As a first step in this direction, we will look at the statistics of the qubit dwell times
in its ground and excited state, which is essentially extracted from a single quantum
jump trace. We show that the measured non-Poissonian quantum jump statistics of
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3.1 Overview

our superconducting qubit can be reproduced by a diffusive stochastic Schrödinger
equation. Surprisingly, the quantum jump statistics can also be generated in a much
simpler way using the Solomon equations by essentially neglecting the measurement
back action on the TLSs. This procedure can therefore serve as a testbed to study the
quantum-to-classical transition [14, 111]. The quantum jump analysis can readily
be utilized on quantum processors with the TLSs replaced by qubits. A reduced
measurement back action could indicate the transition to a chaotic regime as a result
of an interaction with a larger Hilbert space, as discussed in Ref. [112].

The system that will be discussed in the following sections consists of a mesoscopic
superconducting qubit that interacts with = TLSs via an XX-type coupling, while the
TLSs are assumed to be non-interacting. The system Hamiltonian is then given by

� =
ℏ$q

2 �Iq +
=∑
:=1

ℏ$:

2 �I
:
+

=∑
:=1

ℏ6:�
G
q�

G
:
, (3.1)

where $q and $: are the frequencies of the qubit and the :th TLS, 6: is their coupling
strength and �G,Iq and �G,I

:
denote their Pauli matrices. The physics of the central spin

model [113–115] as of Eq. 3.1 with added dissipation is generally complex and an
active field of research, including phenomena such as superradiance [116, 117], state
revivals [118–120], and exceptional points [121]. With increasing decoherence in the
system one can expect a transition from coherent oscillations to a regime where the
expectation values of the populations follow a simple rate equation. This means that
the qubit population ?q should be governed by a linear differential equation of the
form

¤?q(C) = −A1(C) · [?q(C) − ?eq(C)] (3.2)

with potentially time-dependent coefficients A1(C), the qubit relaxation rate, and
?eq(C), the equilibrium population, i.e. the qubit population at which ¤?q(C) would
vanish. In contrast to the time-convolutionless master equation [122], the coefficients
A1(C) and ?eq(C) are given by the current TLS populations, which in turn might
depend on the qubit history. The main task is therefore to validate Eq. 3.2 and to
derive exact or approximate solutions for different scenarios, which in retrospect
allow to draw conclusions about the TLS environment.

It should be noted that by observing the qubit population dynamics alone, A1(C) and
?eq(C) are a priori unknown functions that can not be disentangled. However, if one
has access to both qubit transition rates A↑,↓, for instance by resetting the qubit to
its ground or excited state and measuring the subsequent population change, the
time-dependent transition rates are given by

A↑(C) = ¤?q(C)
��
?q=0 and A↓(C) = −¤?q(C)

��
?q=1 (3.3)
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after resetting to the ground or excited state, respectively. This method is applicable
to any qubit with active state reset capability. With Eq. 3.2, one then obtains the
usual expressions

A1(C) = A↑(C) + A↓(C), (3.4)
?eq(C) = A↑(C)/A1(C). (3.5)

For a TLS environment it turns out that A1 is constant over time, i.e. it does not depend
on the TLS populations, which also implies that A1 is temperature-independent (cf.
Eqs. 3.48 and 3.69 and Fig. 2.20b).

3.2 Qubit and a single TLS

Figure 3.2: Cross-relaxation between
the qubit and a single TLS. Adapted
from Ref. [21].

The principle of cross-relaxation can be best under-
stood in the semi-classical framework of the stochas-
tic Liouville equation. Time-dependent stochastic
Hamiltonians have first been introduced by Ander-
son and Kubo to explain the motional narrowing of
line-shapes in NMR [123, 124]. In view of the ex-
perimental findings of long-lived TLSs and a qubit
decoherence that exceeds the qubit relaxation by an
order of magnitude, we will first discuss the cross-
relaxation of the qubit and a single TLS (Fig. 3.2) and assume the system to be
lossless to allow for a much simpler and more instructive analysis. In this case, the
environmental perturbation of the qubit and the TLS can be thought of as a classical
longitudinal noise source. The time-dependent Hamiltonian reads

�tot =
ℏ$q

2 �Iq +
ℏ$t

2 �It + ℏ6 �Gq�Gt + ℏ�q(C)�Iq + ℏ�t(C)�It . (3.6)

Here, $q and $t are the qubit and TLSs frequencies, respectively, 6 is the coupling
strength and �q,t are classical noise sources with a certain power spectral density
and zero mean. The time-dependent system wave function

#(C) =
∑

2:(C) |E:〉 (3.7)

can be expressed in the computational basis |E:〉. The wave functions |E0〉, |E1〉,
|E2〉, |E3〉 correspond to the states |11〉, |01〉, |10〉, |00〉, respectively, with the first
entry for the qubit and the second for the TLS. For more details on the notation see
App. B. With respect to this basis, the matrix elements H<= = 〈E< |� |E=〉 yield the
time-dependent Hamiltonian in matrix form

Htot = ℏ
©­­­«
�
2 6

�
2 6

6 − �
2

6 − �
2

ª®®®¬ + ℏ
©­­­«
��(C)

��(C)
−��(C)

−��(C)

ª®®®¬ . (3.8)
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Here, the sum frequency � = $q + $t, the difference frequency � = $t − $q, and the
mutual dephasings ��(C) = �t(C)−�q(C) and ��(C) = �q(C)+�t(C) have been introduced.
The Hamiltonian can be decomposed into two manifolds, namely the single- and
the two-photon manifold. In the former, the excitation is conserved and undergoes
flip-flop processes (zero quantum transitions), while in the latter the excitation
undergoes flip-flip processes (double quantum transitions). Since the derivation
is analogous in both manifolds, we continue in the single-photon manifold, which
gives the main contribution to the population transfer. The Hamiltonian of the
single-photon manifold can be written as

� = �0 + ��(C) =
ℏ�
2 �I + ℏ6�G + ℏ�(C)�I (3.9)

using the shorter notation � := �� . The evolution of the density matrix is given by
the Liouville-von Neumann equation

¤� = − 8
ℏ
[�0 + ��(C), �]. (3.10)

In superoperator notation the equation is of the form

¤� = (ℒ0 + ℒ�(C))� = ℒ(C)�, (3.11)

where ℒ0 and ℒ� are denoted as Liouvillian superoperators. These superoperators
may as well be represented in matrix form acting on the density matrix that must be
cast in form of a vector, � = (|21 |2 , 222

∗
1 , 212

∗
2 , |22 |2)) . For more details see App. B. To

give an example, the Liouvillian for the free evolution is of the form

ℒ0 = 8
©­­­«

0 −6 6 0
−6 � 0 6
6 0 −� −6
0 6 −6 0

ª®®®¬ . (3.12)

Since ℒ0 and ℒ�(C) do not commute, the Liouville-von Neumann equation can not
be solved by a simply matrix exponential. Nevertheless, it has the formal solution
�(C) = 	(C − C0)�(C0) with 	(C) being the propagator.

A first insight into the stochastic dynamics can be obtained when the noise �(C) is
considered as a Poisson process, meaning that �(C) is non-zero only for very short
random moments in time during which it reaches large amplitudes. In the limit of
vanishing interaction time the noise can be seen as a trace of �-functions appearing
on average with the rate �. The free evolution, encoded in ℒ0 can be neglected
during the interaction, and integration of ℒ�(C) yields the propagator

	! =

©­­­«
1

4 8!

4−8!

1

ª®®®¬ , (3.13)
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describing jumps in phase with the random variable ! that belongs to a probability
distribution %(!). Without loss of generality, the distribution %(!) can be assumed
to be of zero mean.

A single realization of this stochastic process is characterized by the set of jumps
{C1 , !1; . . . ; C= , !=} within the time C, which yields the density matrix

�(C) = 	0(C − C=)	!= . . .	0(C2 − C1)	!1	0(C1 − C0)�(C0). (3.14)

Here,	0(C) = 4ℒ0C is the propagator of the unperturbed system, which is of the form

	0(C) = S
©­­­«
1

4 8ΩC

4−8ΩC

1

ª®®®¬ S) , with S =

©­­­­­­«

1√
2

26
2Ω

26
2Ω

�√
2Ω

0 −Ω+�2Ω
Ω−�
2Ω

26√
2Ω

0 Ω−�
2Ω −Ω+�2Ω

26√
2Ω

1√
2
− 26

2Ω − 26
2Ω

�√
2Ω

ª®®®®®®¬
. (3.15)

This propagator describes vacuum Rabi oscillations between the qubit and the TLS
with the Rabi frequency Ω =

√
�2 + 462. Fig. 3.3 depicts trajectories for strong and

seldom events as well as for weak and frequent events. In both cases a stochastic
population transfer between the qubit and the TLS is visible. It can be seen that the
state vector of the single photon manifold essentially performs a random walk over
the excitation Bloch sphere.

In experiments, one often only has access to the statistical density matrix �(C) =
〈	(C − C0)〉�(C0), averaged over many individual trajectories. We therefore wish to
find an effective propagator 	eff(C − C0) = 4ℒeff(C−C0) ≈ 〈	(C − C0)〉 that is local in time.
For random jumps in phase this averaging can be performed exactly (s. App. C) and
the dynamics is governed by

¤� = ℒeff� = (ℒ0 − �(1 − 〈	!〉))�. (3.16)

The diagonal form of 	! allows us to introduce the mutual dephasing as A2 =

�(1 − 〈4 8!〉). Assuming for simplicity a Gaussian distribution for the phase with
variance �2, one finds

A2 = �(1 − 4− �2
2 ) (3.17)

and conseqeuently

� =

√
2 ln �

� − A2
∝ 1√

�
for � � 0 (3.18)

with the typical scaling of the Wiener process as � approaches infinity.

At this point, it should be emphasized that the derivation of jumps in phase are highly
idealized and unphysical since infinite energies are involved. A physically motivated
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3.2 Qubit and a single TLS

Figure 3.3: Stochastic cross-relaxation. Vacuum Rabi oscillations between the qubit and TLS in the
single photon manifold under the presence of random jumps in phase for � = 2� · 0.5 MHz
and 6 = 2� · 0.1 MHz. To the left the qubit (light green) and TLS population (dark green) is
shown as a function of time and to the right the stochastic state trajectory is depicted on the
Bloch sphere of the single photon manifold. a Trajectory for � = 0.2 MHz and a Gaussian
distribution for %(!) with � = 2� · 0.2. The red lines in the Bloch sphere indicate the jumps.
b Trajectory for � = 2 GHz and � = 2� · 0.002. This large number of weak events renders this
trajectory a solution of the stochastic Schrödinger equation.

modeling of the noise can be achieved with the Kubo-Anderson process [123–126].
This process was first conceived to explain the motional narrowing of line shapes
in NMR, which undergo a transition from a Gaussian to a narrowed Lorentzian
line shape with increasing temperature and hence motion in the system. However,
as long as the noise is finite the tails of the line shape will fall off much faster
than predicted by the Lorentzian line shape [125]. The Lorentzian line shape may
therefore be seen as the white noise limit, as will be shown explicitly in Sec. 3.3.
The idea of the Kubo-Anderson process is to consider a Poisson process of jumps in
frequency according to some frequency distribution. For the simple Kubo oscillator
the averaging of the propagator can be obtained analytically [126]. Here, the qubit
and TLS averaging is much more complicated due to the off-diagonal coupling
term [127]. Alternatively, one may approximate the stochastic propagator 〈	(C)〉,
which is discussed in great detail in Ref. [125]. We present thereof the relevant
derivation and conditions that lead to a time-local master equation.

In short summary, the effective Liouvillian ℒeff gives a good approximation when
the noise is sufficiently weak and incoherent, which allows us to integrate the noise
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independently on short time scales. For our system we can already surmise that
for the correlation time �c of the noise it must hold �c � 2�/Ω. It follows that the
coherence entries of the density matrix accumulate an additional random phase !
within the correlation time. For isotropic noise, one then obtains the decoherence
rate A2 = (1 − 〈4 8!〉)/�c, in congruence with the previous derivation.

More explicitly, ℒeff can be obtained approximately in the interaction picture using
second-order perturbation theory [125]. The density matrix in the interaction picture
is defined by �I = 4−ℒ0C� and governed by the equation of motion

¤�I = 4−ℒ0Cℒ�(C)4ℒ0C�I = ℒI(C)�I. (3.19)

The formal solution �I(C) = *(C , C0)�I(C0) is given by the Dyson series

*(C , C0) = 1 +
∫ C

C0

dC1ℒI(C1) +
∫ C

C0

dC1ℒI(C1)
∫ C1

C0

dC2ℒI(C2) + . . . . (3.20)

It follows that the evolution of the statistical density matrix in the Schrödinger
picture is given by

¤� = ℒ0� + 4ℒ0C 〈 ¤�I〉

= ℒ0� + 4ℒ0C d
dC 〈*(C , C0)〉 �I(C0)

= ℒ0� + 4ℒ0C 〈4−ℒ0Cℒ�(C)4ℒ0C〉︸               ︷︷               ︸
=0

�I(C0)

+
C∫

C0

dC′〈ℒ�(C) 4−ℒ0(C−C′)︸    ︷︷    ︸
≈1

ℒ�(C′) 4−ℒ0(C−C′)︸    ︷︷    ︸
≈1

〉 · 4ℒ0C �I(C0)︸︷︷︸
≈�I(C)

+ . . .

≈ ©­«ℒ0 +
1
2

∞∫
−∞

〈ℒ�(0)ℒ�(�)〉d�ª®¬ � = ℒeff �. (3.21)

Several assumptions have been made above. First, it is assumed that the noise
is isotropic. Next, the noise is assumed to be sufficiently incoherent such that
�c � 2�/Ω and consequently C0 ≈ C − �c. Furthermore, it is assumed that the noise
is weak enough so that �I(C0) can be approximated by its current time �I(C) and
the Dyson series can be terminated at the second order. These assumptions may
be summarized as the narrowing condition [125]. Further details can be found in
Ref. [128]. Finally, the noise is assumed to be stationary, which allows to extend
the integral boundaries to infinity and links the decoherence rate A2 = 2(��(0) with
the power spectral density (��($) of the noise �(C) [129]. The effective Liouvillian
derived here coincides with the one in Eq. 3.16.

Since the population (�11 + �22) ∈ [0, 1] in the single-photon manifold is conserved,
Eq. 3.21 is a special case of the Bloch equations [130, 131]. Defining the polarization
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Figure 3.4: Qubit and TLS cross-relaxation. a, b Relaxation of the polarization I in the single-photon
manifold of the qubit-TLS system for various decoherence rates A2 (panel a) and frequency
detunings � (panel b). The coupling strength 6 was chosen similar to the experiment (Sec. 2.8).
Reproduced from Ref. [86].

I = �11 − �22, and directions G = 2 · Re(�21), and H = 2 · Im(�21), the Liouville-von
Neumann equation is of the form

d
dC

©­«
G
H
I

ª®¬ = − ©­«
A2 � 0
−� A2 26
0 −26 0

ª®¬ · ©­«
G
H
I

ª®¬ . (3.22)

It immediately follows from the steady-state solution that, on average, both states
of the single-photon manifold are equally populated. For a finite temperature,
this steady-state solution contradicts the Boltzmann distribution when the qubit
and the TLS have different energies. This result is typical for stochastic Liouville
equations and a consequence of the real valued noise acting as an infinite temperature
environment [127]. The steady state solution is a good approximation as long as
the energy difference is small in comparison to the temperature. In Fig. 3.4 various
solutions of Eq. 3.22 are depicted. The computation is discussed in the next section.

3.2.1 Coherent and incoherent cross-relaxation

The cross-relaxation between the qubit and the TLS is composed of coherent relax-
ation in form of damped vacuum Rabi oscillations and incoherent relaxation, see
Fig. 3.4. This section is devoted to quantifying their contributions with a focus on
the condition that allows to neglect the coherent population transfer.

Solving Eq. 3.22 requires finding the roots of the characteristic polynomial, which is
cubic and can not easily be factored. Fortunately, the structure of the characteristic
polynomial of ℒeff in Eq. 3.22 allows for a good approximation in a wide parameter
range. It holds

�3 − 2A2�
2 + (A2

2 + �2 + 462)� − 462A2 = 0, (3.23)
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3 Solomon equations

and by defining � = �/A2 we obtain

�3 − 2�2 +
A2

2 + �2 + 462

A2
2

� − 4
62

A2
2
= 0. (3.24)

Now, let �8 denote the roots of the above polynomial and let �0 denote the real root
with lowest value in case that all roots are real. For the corresponding eigenvectors one
finds E8 =

(
��8/(1 − �8), −A2�8 , 26

)) , which do not form an orthogonal basis since
ℒeff is not a normal operator. Nevertheless, when �0 → 0 one can already surmise
from the form of the eigenvectors that this eigenvalue contributes dominantly to
the relaxation. Unfortunately, it is not straightforward to give a quantitative answer,
particularly because the eigenvalues can become degenerate. It is therefore very
instructive to derive a fewproperties of the roots that allow for a better understanding
of the resulting relaxation dynamics.

When A2
2 + �2 � 462 or, equivalently, when �0 → 0, the root �0 can be approximated

to first order,

�0 ≈
462

A2
2 + �2 + 462

. (3.25)

Besides the negligible term 462 in the denominator and an overall factor of 2,
we obtain once again the cross-relaxation rate (cf. Eq. 3.61). The factor of 2 in the
numerator simply results from the fact that�0 describes the qubit and TLS relaxation,
whereas the cross-relaxation rate Aqt is a transition rate between the qubit and TLS.

The next two roots �1,2 can in principle be expressed with the help of �0. However,
this requires a case analysis on the sign of the discriminant� of the third-order poly-
nomial and furthermore no intuition for the behavior of the roots is gained. Instead,
a different approach is presented. First, using the Routh-Hurwitz stability criterion,
one can easily show that Re(�8) ∈ (0, 1]. Second, we have

∑
8 �8 = 2. Thus, whenever

�0 → 0 we have that Re(�1,2) → 1, and if the discriminant1 � > 0, the imaginary
part is given by Im(�1,2) = ±

√
(�2 + 462)/A2

2 − �0 + 3/4�2
0 → ±

√
�2 + 462/A2. As a

side note, the value �8 = 1 is realized for one root if and only if � = 0. In this special
case, the polynomial decomposes into (� − 1)(�2 − � + 462/A2

2 ) = 0 with solutions

�8 = 1 ∨ �9 ,: =
1
2 ±

√
1
4 −

462

A2
2
. (3.26)

1Note that there are different sign conventions in the definition of the discriminant.
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3.2 Qubit and a single TLS

With this understanding of the roots, it becomes advantageous to express the
relaxation dynamics with the help of the roots. The relaxation dynamics, following
an initial condition G0, H0, and I0, can be expressed as

I(C) =
2∑
8=0
(1 − �8)

(1 − �8+1)(1 − �8+2)26A2 G0 + 26� H0 + �8+1�8+2 �A2 I0

(�8+1 − �8)(�8+1 − �8)�A2
· 4−�8A2C ,

(3.27)

where we defined �8+3 = �8 cyclically. More compactly one may write

I(C) =
2∑
8=0
(D8G0 + E8H0 + F8I0)4−�8A2C =

2∑
8=0

284
−�8A2C . (3.28)

Next, it must be shown that 20 → I0 for �0 → 0. In this case, after approximately the
decoherence time 1/A2, when the initial coherent onset has vanished, the remaining
term is the slow decay of the polarization from I0 at the rate �0A2. Using Eq. 3.24
and our knowledge of the roots, one finds

D0 =

√
�0�1�2(1 − �0)(1 − �1)(1 − �2)

(�1 − �0)(�2 − �0)
= O(√�0), (3.29)

E0 =

√
�0�1�2

(�1 − �0)(�2 − �0)
= O(√�0), (3.30)

F0 =
(1 − �0)�1�2

(�1 − �0)(�2 − �0)
= 1 − O(�0). (3.31)

Here, we see here that the incoherent relaxation with 4−�0A2C with the prefactor 20 is
well behaved when �0 → 0.

In order to also be concrete for the coherent population transfer with 4−�1,2A2C , the
prefactors 21,2 must be handled, which may diverge when the eigenvalues become
degenerate. One way to circumvent the divergence is to calculate the area � under
the relaxation curve by integrating Eq. 3.28, which can then be compared to the
corresponding exponential decay with the rate �0A2. The area simplifies to

�(G0 , H0 , I0) =
∞∫

0

I(C)dC =
∞∫

0

2∑
8=0

284
−�8A2CdC

=
�G0 + A2H0

26A2
+
A2

2 + �2

462A2
I0. (3.32)

Interestingly, the inverse of the prefactor of I0 is exactly the two-fold cross-relaxation
rate Aqt (Eq. 3.61). It can therefore be concluded that Aqt is the average rate when the
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3 Solomon equations

system starts in an incoherent state, meaning that G0 = H0 = 0. There is still a fraction
of I0 that decays coherently, which can be quantified as

& =
©­«�(0, 0, I0) −

∞∫
0

I04
−�0A2C dCª®¬

/ ∞∫
0

I04
−�0A2C dC

= �0

(
�1 + �2

�1�2
− 1

)
, (3.33)

approaching zero for �0 → 0. Similarly, one might wonder to what extend an initial
coherence is converted into polarization. With Imax = �11 + �22 he maximal area is
found to be

max
G0 ,H0

�(G0 , H0 , I0) =

√
I2
max − I2

0

√
A2

2 + �2

26A2
. (3.34)

This area should be compared to �0A2 to give the effectively reached polarization

Ieff = �0

√
I2
max − I2

0

√
A2

2 + �2

26 , (3.35)

which approaches zero for �0 → 0.

In Fig. 3.5 the relative error & of neglecting the coherent cross-relaxation is shown as
a function of the mutual decoherence and detuning. In summary, we conclude from
Eq. 3.33 that if A2

2

√
+ �2 > 46 and equivalently when �0 → 0, the relaxation of the

population is governed by

¤I = −�0A2I. (3.36)

Solomon equations

For sake of completeness, the current scenario of longitudinal noise allows for a
convenient derivation of the Solomon equation. From Eq. 3.36, it follows for the
populations in the single photon manifold

¤�22 = − ¤�11 = −�0A2
�22 − �11

2 . (3.37)

Insertion of the population expectation values ?q = �00 + �22 and ?t = �00 + �11
and for simplicity neglecting the relaxation in the two photon manifold yields the
Solomon equations [83]

¤?q = −
�0A2

2 ?q +
�0A2

2 ?t , (3.38)

¤?t = −
�0A2

2 ?t +
�0A2

2 ?q , (3.39)
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3.3 Bloch-Redfield equation

Figure 3.5: Fraction of coherent cross-relaxation. Relative proportion & of the initial polarization that
does not relax via the incoherent cross-relaxation rate, as a function of the detuning and
decoherence. Note the quadratic axes. The black curve shows where the discriminant� is zero.
For � > 0 the polarization can show oscillatory behavior. In the region where 2

√
A2 + �2 > 46,

the incoherent cross-relaxation becomes the dominant relaxation mechanism. For reference,
the green dashed line shows where the TLSs are located in the experiment assuming a mutual
decoherence of A2 = 0.5 MHz (Sec. 2.8). Reproduced from Ref. [86].

with the incoherent cross-relaxation rate [83, 84, 127]

Aqt =
�0A2

2 ≈ 262A2

A2
2 + �2

. (3.40)

3.3 Bloch-Redfield equation

For a later comparison with the Solomon equations, we briefly review the opposite
limit,where the qubit is weakly coupled to a large number of TLSs such that they form
a Born-Markovian environment for the qubit. As a result, the qubit will experience
a quantum mechanical noise source. The reduced density matrix of the qubit is
governed by the Bloch-Redfield master equation, which was first put forward by
Wangsness and Bloch [132, 133] and later refined by Redfield for the off-diagonal
entries of the density matrix [134]. The Bloch-Redfield master equation rests on the
Born approximation and the first and second Markov approximations. Typically, the
secular approximation is used in addition to yield a master equation of Lindblad
type. With the secular approximation the derivation is analogous to the quantum
optical master equation that describes the interaction of a system with a bosonic
environment [122].

In the interaction picture, the density matrix of the total system is governed by
¤�tot = − 8ℏ [�int(C), �tot], with �int denoting the interaction Hamiltonian of Eq. 3.1.
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3 Solomon equations

Unlike in Sec. 3.2, the superscript I denoting the interaction picture is omitted here
for clarity. Formal integration of this equation and reinsertion yields

¤�tot(C) = −
8

ℏ
[�int(C), �tot(C0)] −

1
ℏ2

C∫
C0

[�int(C), [�int(C′), �tot(C′)]]dC′. (3.41)

At this point, the equation is still exact. However, when the Markov approximations
are applied, it turns out that a more accurate strategy would have been to use the
correct secondorder approximation of theDyson series, essentially as used in Eq. 3.21.
This less stringent derivation has already been emphasized by Redfield [134] and is
known as coarse graining. It does not require the twoMarkov approximations and the
secular approximation. Its full potential has been recognized later by Schaller [135].

In proceeding forward, the Born approximation has to be applied. It is a rather
obscure and crude approximation, which entails several assumptions that are shortly
discussed in the following. As we are interested in the dynamics of the qubit’s
reduced density matrix �q, we can trace out the TLS bath in Eq. 3.41. However, a
dynamical equation for �q is only obtained if the qubit and TLS bath are uncorrelated,
i.e. �tot = �q ⊗ �TLSs. It is clear that the system and the bath will become entangled
after a short time, which renders this ansatz invalid on the long run. Wemay however
imagine that the system is constantly reinitialized in a product state. A meaningful
solution can only be expected when the bath state is chosen at random for the
reinitialization. The density matrices of the qubit and TLS bath should therefore be
thought of as a statistical mixture. The density matrix of the TLS bath is typically
assumed to be diagonal, which is also known as the random phase assumption [134].
In order to obtain a solution that is valid on long time scales, it is further assumed
that the bath is in an equilibrium state �̄TLSs that does not evolve in time. This also
means that the TLS populations should not be altered significantly by the qubit,
which is justified when the qubit interacts weakly with a large number of TLSs. The
Born approximation is summarized as follows:

¤�q(C) = −
1
ℏ2

C∫
C0

Tr{[�int(C), [�int(C′), �q(C′) ⊗ �̄TLSs]]}dC′. (3.42)

The first term on the right hand side of Eq. 3.41 vanishes, since �̄TLSs is assumed
to be diagonal. For a small number of TLSs with a long intrinsic lifetime, the Born
approximation is certainly not fulfilled, requiring a description with the Solomon
equations (s. Sec. 3.4). In addition, the Solomon equations remain valid when the
qubit and the TLSs are entangled.
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3.3 Bloch-Redfield equation

Next, � = C − C′ is introduced and the first and second Markov approximations are
applied, i.e. evaluating the qubit’s density matrix at the current time C and extending
the integration over the bath correlation function �(�) to infinity. We then obtain

¤�q(C) = −
1
ℏ2

∞∫
0

�(�)[�Gq(C), �Gq(C − �)�q(C)]

+ �∗(�)[�q(C)�Gq(C − �), �Gq(C)]d�. (3.43)

With the secularapproximation,whichmeans removing the explicit time-dependence,
the above equation becomes the Bloch-Redfieldmaster equation,which is of Lindblad
type. The bath correlation function is given by

�(�) = ℏ2
∑
:

62
:
Tr{�G

:
(C)�G

:
(C − �)�̄TLSs} (3.44)

= ℏ2
∑
:

62
:

[
?:t 4

8$:� + (1 − ?:t )4−8$:�
]
. (3.45)

The density matrix of the TLS bath contains the populations ?:t of the TLSs. Typically,
the TLSs are assumed to be in thermal equilibrium and given by the Fermi-Dirac
distribution ?:t = =($:). As a consequence, the qubit will relax to the same thermal
equilibrium with ?q = =($@).
The usual way to continue the derivation from Eq. 3.45 is to consider the limit
where the TLSs become dense in frequency with a vanishing coupling strength such
that they form a spectral coupling density �($) = 〈62�t〉($), with �t being the TLS
density [136, 137]. However, we will see in Sec. 3.4 and Sec. 3.7 that the sheer amount
of TLSs does not necessarily lead to a Born-Markovian environment. The transition
to a density should rather be viewed as an ensemble average over qubit and TLS
frequencies for many instances of the experiment. In Fig. 3.6a we illustrate �($) and
the qubit’s density of states �q. The correlation function can now be expressed via
the integral

�(�) = ℏ2
∫ ∞

0
�($)

[
?t($)4 8$� + (1 − ?t($))4−8$�

]
d$ (3.46)

= ℏ2
∫ ∞

−∞
[B($) + 0($)]4 8$�d$, (3.47)

where we introduced the symmetric B($) = B(−$) and antisymmetric 0($) = −0(−$)
frequency components of the bath correlation function with B($ ≥ 0) = �($)/2 and
0($ > 0) = �($) · [?t($) − 1/2], which help to compute the half-sided inverse Fourier
transform in Eq. 3.43.
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3 Solomon equations

Figure 3.6: Illustrative model for a cross-relaxation distribution. a Spectral coupling density � of the
TLSs and density of states �q of the qubit. The TLSs are randomly distributed in frequency
with individual coupling strength to the qubit and intrinsic decoherence. b Density of cross-
relaxation rates following from Eq. 3.50 for a random TLS frequency distribution, assuming
the same coupling strength 6 and mutual decoherence A2 for all TLSs. The parameters are
taken from Ref. [21]. If the TLSs have some distribution in 6 and A2, the divergence at the
maximal cross-relaxation rate washes out and disappears, whereas the divergence for low
cross-relaxation rates remains. The color gradient from blue to gray illustrates the increasing
frequency detuning between the TLSs and the qubit of the corresponding cross-relaxation
rates. Reproduced from Ref. [86].

Next, we can rewrite Eq. 3.43 as ¤�q = ℒ�q in superoperator notation. Separating ℒ in
its real and imaginary parts, we define ¤�q = ¤�relaxq + ¤�Lamb

q = Re(ℒ) · �q + 8Im(ℒ) · �q.
The real-part describes the qubit relaxation and decoherence

¤�relaxq

2��($q)
= −1

2

(
2�00 �01
�10 −2�00

)
+ ?t($q)�I . (3.48)

Here, we obtain the important result that the qubit relaxation A1 = 2��($q) and de-
coherence A2 = A1/2 are independent of the TLS populations [138]. For completeness,
the imaginary part incorporates the Lamb shift

¤�Lamb
q = 8 P.V.

∞∫
−∞

2$qB($)
$2
q − $2

d$ ·
(

0 −�01
�10 0

)
, (3.49)

where the integral has to be evaluated bymeans of the Cauchy principal value. Again,
there is no dependence on the TLS populations. Note that by also integrating over
negative frequencies, contributions from counter-rotating waves are included in the
Lamb shift, and thus, the Lamb shift vanishes for a constant spectral coupling density.
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3.4 Derivation of Solomon’s equations

If we had applied the rotating-wave approximation already in the Hamiltonian
in Eq. 3.1, the Lamb shift would not contain contributions from counter-rotating
waves [136, 139] and for a constant spectral coupling density the Lamb shift would
diverge.

In view of the following section, the Bloch-Redfield master equation can also be used
to estimate the cross-relaxation rate between the qubit and a single TLS. Assuming
the qubit and TLS spectral densities are Lorentz distributions centered at $q and
$q + � with linewidths Aq2 and At2, respectively (s. Fig. 3.6a), then, for a short time
such that the Born approximation remains valid, we can calculate the average qubit
relaxation rate using partial fractions

Aqt = 2�62
∞∫
∞

1
�

At2(
$ − ($q + �)

)2 +
(
At2

)2 ·
1
�

A
q
2(

$ − $q
)2 +

(
A
q
2
)2 d$

=
262A2

A2
2 + �2

(3.50)

with the mutual decoherence A2 = A
q
2 +A

t
2. This is exactly the result from Eq. 3.40 that

was obtained in Sec. 3.2 and shows that the Lorentzian line shape corresponds to the
white noise limit. Expanding the scope to include multiple TLSs, the components
of the total loss rate of the qubit A1 = Aq +

∑
: A

:
qt can now be defined. The rate Aq

accounts for additional losses from other environments. If the TLS detunings �: are
randomly distributed in frequency, Eq. 3.50 defines the density of the cross-relaxation
rates �(Aqt) depicted in Fig. 3.6b. Note that adding the rates implicitly assumes that
higher order coherent effects in the system can be ignored, as discussed in detail in
the next section.

3.4 Derivation of Solomon’s equations

For a small number of TLSs, the Born approximation is no longer valid since their
populations will be altered by the qubit excitation [140, 141]. Ideally, we want to treat
the qubit and the TLSs on equal footing. In experiments, the dissipation required to
yield a master equation is naturally provided by the surrounding environment of the
qubit and the TLSs. In NMR, this environment is known as the spin-lattice, for which
a detailed derivation can be found in Ref. [128]. The spin-lattice can either bemodeled
as a classical noise source in the framework of the stochastic Liouville equation or
treated quantum mechanically, essentially following the Bloch-Redfield formalism.
Based on these results, we will construct the Liouvillian from a general Lindblad
equation. The Lindblad equation takes over the role of randomization, which was
implicitly assumed in the derivation of the Bloch-Redfield master equation within
the Born approximation.

61



3 Solomon equations

The general idea behind the Solomon equations is to reduce the Liouvillian to an
equation of motion for the expectation values of the qubit and TLS populations [83,
106]. As will be discussed in more detail in the following, in case the decoherence
and frequency spread in the system are large in comparison to the couplings,
coherent effects can be neglected. An intermediate step is therefore the derivation of
Pauli’s master equation for the diagonal components of the density matrix. Here,
we use the adiabatic elimination of the coherences. Alternatively, one may derive
the Pauli master equation from a generalized Schrieffer-Wolff transformation [142],
yet others refer to it as the Nakajima-Zwanzig-Markov-Pauli master equation [143].
However, as already mentioned above, beyond the qubit and a single TLS, deriving
closed-form solutions is practically in-feasible due to the emergence of multispin
phenomena (cross-correlations), which are discussed in NMR within the framework
of magnetization modes [106].

In this context, the main focus is to present a compact derivation of the Solomon
equations, which we show to follow from the Markov approximations for the
coherences and from the neglect of higher order coherent processes. The derivation
is accompanied by showing explicit calculations for the case of a qubit coupled to a
single TLS. The Lindblad equation for the Hamiltonian in Eq. 3.1 with individual
dissipators for the qubit and each of the TLSs can be expressed as

¤� = − 8
ℏ
[�, �] +

∑



!
�!
†

 −

1
2 {!

†

!
 , �}. (3.51)

Here, !
 are the corresponding Lindblad operators. These dissipators are given

by
√
A
9

↓ · �
9
−,

√
A
9

↑ · �
9
+, and

√
A
9
!/2 · �

9
I for relaxation, excitation and dephasing,

respectively. The index 9 is used to denote both the qubit and the TLS variables.
Casting the Liouville-von Neumann equation (Eq. 3.51) in superoperator notation
¤� = ℒ�, the Liouvillian ℒ can be represented by a matrix and � by a vector (App. B).
In view of Nakajima-Zwanzig’s projection operator technique [144], the density
matrix � =

(
�D , �C

)) may be sorted for diagonal entries �D (populations) and
non-diagonal entries �C (coherences). Then, Eq. 3.51 reads

¤� =
(
� R)

R C

)
�. (3.52)

The matrix � depends only on the decay rates A 9↑,↓ and describes the relaxation of the
system to thermal equilibrium. The matrix R couples populations and coherences,
giving rise to vacuum Rabi oscillations and energy exchange between the qubit
and the TLSs. Therefore, its matrix elements R<= are either zero or amount to
one of the coupling terms, in short R<= ∈ {0,±8 6:}. The matrix C describes the
oscillations, decoherence and interference of the coherences between the qubit
and TLSs as well as between the TLSs. Since the �G-coupling in Eq. 3.1 induces
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3.4 Derivation of Solomon’s equations

only one-photon (flip-flop) and two-photon (flip-flip) transitions, we can order the
coherences �C =

(
�CZ , �CD , �CR , �Q

)) and bring Eq. 3.52 into the form

¤� =

©­­­­­­«

� R)
Z R)

D 0 0
RZ CZ 0 S)Z 0
RD 0 CD S)D 0
0 SZ SD CR 0
0 0 0 0 Q

ª®®®®®®¬
� (3.53)

with the indices Z and D denoting those entries that give rise to zero and double
quantum transitions, respectively, i.e. excitation differences. The dynamics of the
remaining coherences that do not directly couple to populations are described
by CR and couple via SZ,D to the relevant coherences. Similar to R, one finds
SZ,D;<= ∈ {0,±8 6:}. All irrelevant coherences �Q between even and odd photon
states undergo an independent evolution described by Q. The matrix Q makes up
half the size of the Liouvillian. For the qubit and a single TLS, CR and SZ,D do not
exist, and a similar transformation leads to the so-called Redfield kite [106, 145]. The
matrix structure of the Liouvillian is depicted in Fig. 3.7 as an illustration for the
qubit coupled to one, two, and three TLSs.

We may further decompose CZ,D = DZ,D − OZ,D with D being diagonal and in
charge of the oscillation and decoherence of the relevant coherences. The entries
DZ,D;<< , e.g. describing the coherence of the qubit with the :th TLS, are of the form
DZ;<< = −A:2 ± 8�: and DD;<< = −A:2 ± 8�: , with the mutual decoherence A:2 = A

q
2 +A

t:
2

and the general detunings �: = $: − $q and �: = $q + $: . The decoherence of the
qubit Aq2 and of the TLSs At:2 are as usual of the form A2 = A! + A1/2 with A1 = A↑ + A↓.
In case the qubit is coupled to only one TLS, the matrix OZ,D is zero. For more
TLSs, the coherences of different photon manifolds can interfere when the TLSs
undergo relaxation processes [146, 147]. Thus,OZ,D;<= ∈ {0,±At:↑ ,±A

t:
↓ } (App. B), and

in case the TLSs are lossless, the matrices CZ,D are diagonal. For completeness, even
though not applicable in the experiment, there are additional off-diagonal matrix
elements that arise from vacuum Rabi oscillations in the scenario where the TLSs are
coupled with each other. In this case, one has OZ,D;<= ∈ {0,±At:↑ ,±A

t:
↓ ,±8 6:}. Lastly,

it is important to mention that the diagonal entries of CR always contain various
combinations of decoherences and detunings.

In the case of a qubit and a single TLS, one finds for the density matrix entries
�<= = 〈E< |�|E=〉 of the single-photon manifold [84]:

¤�11 = 8 6(�12 − �21) − (At↓ + A
q
↑ )�11 + Aq↓ �00 + At↑�33 ,

¤�21 = 8 6(�22 − �11) −
(
A
q
2 + A

t
2 − 8�

)
�21 , (3.54)

¤�22 = 8 6(�21 − �12) − (Aq↓ + A
t
↑)�22 + At↓�00 + Aq↑ �33 ,
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3 Solomon equations

Figure 3.7: Liouvillian matrix structure. Liouvillian ℒ in the block structure as stated in Eq. 3.53 for
the qubit and a one TLS, b two, and c three TLSs. Non-zero real entries from A

9

↑,↓ are colored
in blue, non-zero imaginary entries from the couplings 6: are colored in red, and non-zero
real and imaginary entries from various relaxation, dephasing and frequency contributions
are colored in black. Zero entries are colored according to the block structure. I would like
acknowledge SymEngine and SymPy for providing a convenient computer algebra system.
Reproduced and extended from Ref. [86].

and �12 = �∗21. For the definition of the wave functions see Sec. 3.2 and App. B. In case
the mutual decoherence A2 = A

q
2 +A

t
2 is large compared to the time scales on which the

occupations �11 and �22 vary, one may approximate �21 by the population-dependent
steady state value, which leads to overdamped vacuum Rabi oscillations (3.2). In
view of Eq. 3.52, this means

�C = −C−1R · �D. (3.55)

This approximation is best understood in the framework of Nakajima-Zwanzig’s
master equation [144, 148]. Solving the dynamics of the coherences in Eq. 3.52 gives

�C(C) = 4C(C−C0)�C(C0) +
∫ C−C0

0
4C�R �D(C − �)d�. (3.56)

Insertion in the dynamics of the populations results in the integro-differential
equation

¤�D(C) = ��D(C) + R) 4C(C−C0)�C(C0) +
∫ C−C0

0
R) 4C� R �D(C − �)d�. (3.57)
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3.4 Derivation of Solomon’s equations

Under the assumption that the populations vary slowly compared to the relaxation
of the coherences, several approximations can be performed. First of all, the second
term can be neglected as we are only interested in the slow population dynamics
on long time scales. It should be noted that it is often assumed instead that the
coupling between system and environment is switched on at C0. In this case, the initial
system bath coherences vanish on average. However, in experiments the coupling
to the environment is usually always on, which means that the initial coherences
�C(C0) will most likely not vanish in thermal equilibrium (Eq. 3.55). The only way
to remove the system bath correlation is a projective measurement on the system.
Next, we can also apply the first and second Markov approximations, as we did for
the Bloch-Redfield equation (Sec. 3.3). This means to approximate �D by its current
time �D(C − �) ≈ �D(C) and to extend the integration to infinity, yielding

¤�D(C) = ��D(C) + R)C−14C�R
���∞
0
�D(C)

=

(
� − R)C−1R

)
�D(C) = ℒD �D(C). (3.58)

This proves that Eq. 3.55 follows from the two Markov approximations. For a
quantitative discussion of the Markov approximations recall the derivation for the
qubit and the TLS in Sec. 3.2.

If the qubit is coupled tomore than one TLS, calculating the inverse ofC is not feasible.
However, sincewe assumed for theMarkov approximation that the coherences vanish
rapidly, the diagonal entries of C must be large in comparison to the off-diagonal
entries. Therefore, the inverse can be approximatedup to second order in the diagonal
entries (App. D). If the TLSs are lossless (and not interacting with each other) the
matrices CZ,D are diagonal and the inverse can readily be computed. Otherwise, we
need to approximate CZ,D to be diagonal (App. D) to yield the Solomon equations.
It holds

R)C−1R ≈ R)
ZC−1

Z RZ + R)
DC−1

D RD (3.59)
' R)

ZD−1
Z RZ + R)

DD−1
D RD. (3.60)

Depending on the situation, one finds up to first or second order the cross-relaxation
rates AΔ:qt between the qubit and the :th TLS. The cross-relaxation rates are of the
form [83, 84]

AΔ:qt =
262

:
A:2

(A:2 )2 + Δ2
:

(3.61)

with Δ: ∈ {�: , �:}. As a reminder, A:2 is the sum of the qubit and TLS decoherence
rates. The derivation of the formula can be tracked in Eq. 3.54 when the coherence
�12 is approximated by its population-dependent steady state value. In the case of a
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3 Solomon equations

qubit and a single TLS, where none of the previously discussed approximations are
needed, the relaxation matrix can be written as

ℒD =

©­­­­«
−Aq↓ − A

t
↓ A

q
↑ At↑ 0

A
q
↓ −Aq↑ − A

t
↓ 0 At↑

At↓ 0 −Aq↓ − A
t
↑ A

q
↑

0 At↓ A
q
↓ −Aq↑ − A

t
↑

ª®®®®¬
+

©­­­­«
−A�qt A�qt

−A�qt A�qt
A�qt −A�qt

A�qt −A�qt

ª®®®®¬
(3.62)

and similarly for more TLSs (s. App. E).

So far, we were able to reduce the 4=+1-dimensional Liouvillian in Eq. 3.52 for the
qubit and = TLSs to a 2=+1-dimensional rate equation for the occupations. However,
the goal is to reduce the rate equation even further to the (= + 1)-dimensional
Solomon equations, describing the expectation values of the populations, i.e. the
measurable population probabilities ? 9 . In general, one can not expect that there is
an equation of motion for a closed set of expectation values, which is why several
truncation strategies exist in the literature [149–153]. As will be shown in the next
paragraph, the approximations in Eqs. 3.59 and 3.60 are sufficient to obtain the
Solomon equations for an arbitrary number of TLSs, which is the central result of this
derivation. For physical intuition, one can think of the approximation in Eq. 3.59 as
neglecting coherence between TLSs, i.e. the TLSs are not cooperative, and in Eq. 3.60
as ignoring interference between different cross-relaxation pathways [146].

As already mentioned, the Solomon equations were originally derived for two
nuclear spins, analogous to a qubit with a single TLS. In this case, the derivation
is straightforward and was first presented by Solomon [83]. The general idea is to
find a coordinate transformation S for �D that leads to a covariant description of
the probabilities. The probabilities are obtained by computing the corresponding
partial traces. With our choice of ordering the diagonal entries (App. B), it holds that

?q =
∑

b</2c integer
�<< , ?:t =

∑
b</2:c integer

�<< , 1 =
∑
<

�<< . (3.63)

Next, a basis transformation S is applied on �D defining �′D = S · �D with
�′D =

(
?q ?1

t . . . ?=t 1 . . .
)) , leading to the dynamics ¤�′D = S · ℒD · S−1�′D.

Note that the unity in the line above is required to describe the excitations from the
ground state. As proven in App. E, on the basis of Eq. 3.60, the new rate equation is
of the form

S · ℒD · S−1 =
©­«

Ā �̄↑ 0 · · · 0

· · ·
ª®¬ , (3.64)
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3.5 Analytical solutions and approximations

where Ā is a (=+1)-dimensional square matrix and �̄↑ is a (=+1)-dimensional vector.
They define the Solomon equations, which are independent of the microscopic
structure of the populations, as reflected by the zeros to the right of �̄↑. Because of
this decoupling, the matrix elements below the horizontal line are irrelevant for
the dynamics of the probabilities. Ā and �̄↑ describe the relaxation and excitation
processes of the probabilities, respectively. The bar on top of Ā and �̄↑ denotes that
the rates are altered by the two-photon cross-relaxation rates A�:qt . The Solomon
equations comprise the following new relevant rates: the cross -elaxation rates
Ā:qt := A�:qt − A�:qt , the transition rates of the TLSs Āt:↑,↓ := At:↑,↓ + A�:qt , and the qubit
transition rates Ā

q
↑,↓ := A

q
↑,↓ +

∑
: A

�:
qt . However, in the usual regime A:2 � $q for

superconducting qubits, contributions from two-photon processes are negligible.

In our scenario, where the TLSs are not interacting with each other, we obtain for Ā
a so-called arrow-head type matrix so that the Solomon equations are of the form

¤p = −

©­­­­­­«

Ā
q
1 +

∑
Ā:qt −Ā1

qt . . . −Ā:qt
−Ā1

qt Ā1
1 + Ā1

qt
...

. . .

−Ā=qt Ā=1 + Ā
=
qt

ª®®®®®®¬
p +

©­­­­­­«

Ā
q
↑
Ā1
↑
...

Ā=↑

ª®®®®®®¬
(3.65)

with the usual definition Ā1 = Ā↑ + Ā↓.
Finally, it should be noted that the proof in App. E is also valid when the TLSs are
interacting with each other. This means that the Solomon equations are correct as
long as the approximations that lead to the cross-relaxation rates in Eq. 3.61 can be
justified. In general, it is very difficult to foresee the range of validity when the TLSs
become coherent and close in frequency [154]. At some point a collective behavior
of the TLSs comes into play, where the TLSs essentially form a large single spin, as
discussed in detail in the context of superradiance [116, 117, 154].

3.5 Analytical solutions and approximations

The rich relaxation dynamics of the Solomon equations allow us to draw conclusions
on the connectivity and strength of the cross-relaxation rates. In NMR, the measured
cross-relaxation rates contain information on the nuclear spins and their distances.
This paved the way for the broad field of two-dimensional NMR spectroscopy [105].
Similarly, it will be shown in this section that the relaxation dynamics on long
time scales contains information on the cross-relaxation distribution. From this
distribution, one might be able to draw conclusions on the frequency and spatial
distribution of the TLSs and get an idea of their physical nature. For instance, if
there is a dipolar coupling between the qubit and the TLSs, one has 6: ∝ 1/A3,
with A being the distance to the qubit. When the TLSs are spread on the surface
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3 Solomon equations

around the qubit, we count the number :(A) ∝ A2 of TLSs within A and consequently
A:qt ∝ 1/A6

:
∝ 1/:3. In case the TLSs are spread in all three dimensions one obtains

A:qt ∝ 1/:2. For the scenario presented in Fig. 3.6, when the coupling and the mutual
decoherence are approximately constant but the TLSs are spread in frequency, the
distribution A:qt ∝ 1/:2 can be expected.

In order to simplify the discussion, it will be assumed that the mutual decoherence
of the qubit and the TLSs is strong enough (A:2 > 46: , s. Sec. 3.2) for the Solomon
equations to be valid. For superconducting qubits this assumption is not always
fulfilled. For instance, it is possible to observe coherent oscillations with dielectric
TLSs [87, 155]. For weakly coupled TLSs, e.g. spins, this regime is applicable. When
we compute the cross-relaxation distribution, it is further assumed that A:2 � $q such
that two-photon processes A�qt can be neglected (Eq. 3.61). Note that this assumption
might not be valid for low-frequency fluxonium qubits [156]. Both assumptions
and the form of the cross-relaxation rate Eq. 3.61 imply that the qubit will only
exchange energy significantly with those TLSs that are close in frequency, �: ' A:2 .
We will therefore assume that the qubit and the TLSs relax approximately to the
same thermal population ?th = A

9

↑/A
9

1. Moreover, all TLSs are assumed to be of the
same physical origin, suggesting a single intrinsic relaxation rate for the TLSs. Under
these assumptions, we can now rewrite the Solomon equations: the bar on top of the
rates is removed to indicate the neglect of two-photon processes, and for convenience
the intrinsic relaxation rates Aq = A

q
1 and At = At:1 are introduced. The Solomon

equations then read

¤p = −
©­­­­­«
Aq +

∑
A:qt −A1

qt . . . −A:qt
−A1

qt A1
t + Aqt

...
. . .

−A=qt A=t + Aqt

ª®®®®®¬
p +

©­­­­­«
Aq
At
...

At

ª®®®®®¬
?th. (3.66)

Following from Eqs. 3.3 and 3.4, it holds for the qubit

A↑(C) = Aq?th +
∑
:

A:qt?
:
t (C), (3.67)

A↓(C) = Aq(1 − ?th) +
∑
:

A:qt(1 − ?:t (C)), (3.68)

A1 = Aq + ATLSs , (3.69)

where it can be seen once again that the total qubit relaxation rate A1 is independent
of the TLS populations. The qubit relaxation induced by the TLSs is given by
ATLSs =

∑
: A

:
qt. From Eq. 3.5 it follows

?eq(C) =
Aq?th +

∑
: A

:
qt?

:
t (C)

A1
. (3.70)
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3.5 Analytical solutions and approximations

Similarly, one can introduce

?TLSseq (C) =
∑
: A

:
qt?

:
t (C)∑

: A
:
qt

, (3.71)

which would be the equilibrium population of the qubit in the absence of intrinsic
qubit loss, and hence it serves as a measure for the TLS population.

The structure of the arrow-headmatrix in the Solomon equations entails many useful
properties [157, 158]. Without loss of generality, it can be assumed that the rates are
non-zero A:qt > 0 and sorted A:qt ≥ A:+1

qt . Using this definition, we can state one of the
most important properties: The interlacing theorem yields immediately the relations

�0 > A1
qt + At ≥ �1 ≥ · · · ≥ A=qt + At ≥ �= , (3.72)

�0 > A1 ≥ �= (3.73)

for the eigenvalues. Furthermore, �= ≥ min{Aq , At} is equal if and only if Aq = At. The
inequality (Eq. 3.72) shows that the cross-relaxation distribution translates approx-
imately into the same distribution for the eigenvalues of the Solomon equations.
In order to shorten the notations the out-of-equilibrium population p∗ = p − pth is
introduced in the following, where pth =

(
?th , . . . ?th

)) is the steady-state for the
system in thermal equilibrium.

3.5.1 The case of identical cross-relaxation rates

The system of differential equations can be solved analytically for the special case
when all cross-relaxation rates are identical, A:qt = Aqt. While this case is likely not
relevant for dielectric TLSs in superconducting devices, it might be applicable for
an environment consisting of hyperfine split spins given their narrow frequency
distribution [61]. When the system is driven out of equilibrium by operating the qubit,
e.g. following the polarization protocol described in Sec. 2.8, the TLSs will always be
populated identically. This means that the (= − 1)-fold eigenvalue �1 = At + Aqt does
not take part in the relaxation dynamics, which will therefore be bi-exponential. The
analytical solutions are derived in App. F.

The relaxation of the qubit and the corresponding transition rates A↑ and A↓ are
depicted in Fig. 3.8 for different numbers of TLSs with different initial populations.
The qubit initialization, typically to the ground state ?q,0 = 0 or excited state ?q,0 = 1,
leads to distinct long-term relaxation dynamics. This can be observed in particular
for a small number of TLSs, as shown in Fig. 3.8a. The qubit initialization does not
affect the starting value for the transition rates. However, since the initialization
adds or removes one quanta in the system, we notice a difference in the relaxation
on longer time scales, as shown in Fig. 3.8b. The bi-exponential relaxation in this
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3 Solomon equations

Figure 3.8: Qubit relaxation and transition rates for identical cross-relaxation rates. a Relaxation of
the qubit population ?q and equilibrium population ?eq following qubit initialization to |g〉
or |e〉. All = TLSs are assumed to have the same initial population ?∗t,0. The curves with the
higher initial TLS population are shifted in time for better visibility. Between the left and
right panel, only the number = is varied. Additionally, a thermal population ?th = 0.12 and
lossless TLSs At = 0 are assumed. The parameters were chosen to resemble the experimental
findings [21]. b Qubit transition rates A↑,↓ corresponding to the relaxation shown in panel a.
Not surprisingly, the cooling and heating effect from the qubit initialization, i.e. the difference
between e.g. the orange and red curves is less pronounced for increasing =. All curves are
obtained from Eqs. F.3 and F.4, and using Eqs. 3.67, 3.68, and 3.70. Reproduced from Ref. [86].

scenario is qualitatively similar to the experimental results presented in Ref. [21], but
insufficient to describe the slow and non-exponential relaxation observed on long
time scales (cf. Fig. 3.10b). These effects can only be explained when the rates A:qt are
not identical. Instead, a few fast and many slow cross-relaxation rates are required.

Considering the limit of infinitely many weakly coupled TLSs such that ATLSs is
constant, it holds �0,2 ∈ {A1 , At}. Then it follows from Eq. F.4 that the TLSs evolve
independently of the qubit with ?∗t (C) = ?∗t,04−AtC , while the qubit dynamics remains
bi-exponential, governed by

¤?q = −A1?q + ATLSs?∗t,04−AtC + A1?th , (3.74)

as may also read from the Solomon equations. To be more precise, in the interesting
scenario in which the TLSs are long-lived, At < A1, we have �2 = At + ATLSs(Aq −
At)/(A1−At)/=+O(1/=2), and for the TLSs it then holds that ?∗t (C) = ?∗t,04−�2C +O(1/=).
In the limit = � 1 with the TLSs being initially in thermal equilibrium ?∗t,0 = 0, their
relaxation thus becomes asymptotically decoupled from the qubit decay, justifying
the Born approximation in this limit.
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3.5 Analytical solutions and approximations

3.5.2 The case of distributed cross-relaxation rates

Continuing with the scenario of distributed cross-relaxation rates, it can be assumed
without loss of generality that all the transfer rates are non-zero and distinct from
each other. This is justified because if relaxation rates happen to be identical, their
eigenvalues do not individually take part in the relaxation dynamics of the qubit
and can be collapsed with Givens rotations, as was illustrated in the previous case
analysis. The eigenvalues �< of an irreducible arrow-head matrix are given as the
roots of the so-called Pick function [158]:

5 (�) = Aq +
∑

A:qt − � −
∑ (A:qt)2

A:qt + At − �
= 0. (3.75)

The corresponding eigenvectors can be expressed via

E< =
(
1 A1

qt/(A1
qt + At − �<) . . . A=qt/(A=qt + At − �<)

))
. (3.76)

Fortunately, one can find that ‖E< ‖2 = − % 5
%�

���
�<

. The fundamental solution of the
Solomon equations from Sec. 3.5 can now be written as

p(C) =
©­­«
1/‖E0‖ . . . 1/‖E= ‖

...
...

ª®®¬ ·
©­­«
4−�0C

. . .
ª®®¬

·
©­­«

1/‖E0‖ . . .
...

1/‖E= ‖ . . .

ª®®¬ p∗(0) + pth. (3.77)

When initially only the qubit is out of equilibrium, it follows from Eq. 3.77

?q(C) =
=∑

<=0

4−�< C

‖E< ‖2
?∗q,0 + ?th (3.78)

and from Eq. 3.70 with the help of Eq. 3.75 one finds

?eq(C) =
=∑

<=0

A1 − �<
A1

· 4
−�< C

‖E< ‖2
?∗q,0 + ?th , (3.79)

where one may recognize Eq. 3.2 when inserting Eq. 3.78 in Eq. 3.79.

Polynomial relaxation

In the following, possible long-term relaxation behaviors of the system are discussed.
Since ?q and ?eq decay in a similar way on long time scales (s. Eqs. 3.78 and 3.79),
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3 Solomon equations

the qubit population ?q(C) will be used to discuss the relaxation, which is directly
accessible in experiments. In particular, we are interested in the emergence of non-
exponential relaxation curves that must arise by virtue of Eq. 3.78 from the sum of
many exponential functions. Obviously, if the qubit interacts with a finite number
of TLSs, the relaxation can be approximated on long time scales by ?q(C) ≈ 
4−�= C ,
and the non-exponential behavior can only appear for C < 1/�= . An exponential
relaxation will also be seen for an infinite number of TLSs that have a finite lifetime
At > 0, in which case ?q(C) ≈ 
4−AtC is obtained on long time scales, as can be deduced
from Eq. 3.72, and therefore, a non-exponential behavior can only appear for C < 1/At.
Thus, a non-exponential relaxation appears on long time scales for a large number
of TLSs that are long lived, At ≈ 0, and with eigenvalues �8 that vanish continuously
with �8 − At → 0.

As an insightful example, we will now discuss the experimental situation in which
the TLSs are spread in frequency. For the modeling, the TLSs are assumed to be
equally spaced in frequency with spacing Δ. In this case, the cross-relaxation rates
(Eq. 3.61) are given by

Aℎqt =
012

12 + (ℎ − 12)2 with ℎ ∈ Z, (3.80)

where 0 = 262/A2, 1 = A2/Δ, 2 = Δ0/A2, and Δ0 describes a frequency shift of the
TLSs with respect to the qubit frequency. Due to the periodicity, Δ0 can be restricted
to Δ0 ∈ {0,Δ/2}. Here, the index ℎ is used to clarify that these rates are not sorted
(Eq. 3.72). In case 1 � 1, which corresponds to a high TLS density, many TLSs
interact with the qubit with a similar rate. In this case, a good approximation on
moderate time scales is given by the previous case study in Sec. 3.5.1. In the case
1 . 1, as in our experiment, we have the interesting situation in which the rates
vanish continuously.

Next, the relaxation dynamics following from Eq. 3.78 is computed on long time
scales. For the distribution in Eq. 3.80, the analysis below can only be applied for
the special cases Δ0 = 0 (one TLS in resonance with the qubit), Δ0 = Δ/4 (equally
spaced detunings |�: |), and Δ0 = Δ/2 (maximum detuning between the closest
two TLSs and the qubit). For more details see App. F.2. However, since we are
mainly interested in the long time dynamics, we can slightly approximate the rate
distribution to yield a simpler and more instructive analysis. We use

A:qt = 0/:2 with : ∈ N+ (3.81)

→ ATLSs =
∑

A:qt =
0�2

6 . (3.82)
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3.5 Analytical solutions and approximations

Figure 3.9: Pick function and its derivative. a Pick function 5 (�′)/0 and b its derivative − 5 ′(�′)/0 plotted
over the reciprocal coordinate I = 0/�′. Note the quadratic G-axis. The black points show the
solution of the Pick function. The red curve shows the interpolation of the norms ‖E< ‖2 as
given by Eq. 3.84. The local approximation of the Pick function with two poles is depicted
by the brown curve. The parameters are chosen similar to the experiment with 0 = 20 kHz,
Aq = 10 kHz, and At = 0. For more details see App. F.2.

Note that for a direct comparison with the distribution defined in Eq. 3.80, the
parameter 0 needs to be scaled by a factor of 4. With the new distribution, the Pick
function (Eq. 3.75) can be simplified and expressed in a closed form:

5 (�) = Aq − At −
�′

2 −
�0
2

√
�′

0
cot

√
�20

�′
(3.83)

with�′ = �−At. Furthermore, ‖E< ‖2 can be computed using the fact that by definition
5 (�<) = 0. We obtain

‖E< ‖2 = − 5 ′(�)
���
�<
= − % 5

%�′

���
�′<

=
1
2 +

3ATLSs − (Aq − At)
20

0

�′<
+
(Aq − At)2

02
02

�′<
2

= 1/2 + �I< + �2I2
< . (3.84)

Here, we further introduced I< = 0/�′< . We will see that the linear and quadratic
terms in I< give rise to different long-term relaxation dynamics. The Pick function
and its derivative are depicted in Fig. 3.9.

The next step is to evaluate the sum in Eq. 3.78 on long time scales. The derivation is
presented in App. F. In the situation in which �2 = 0, which essentially describes
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the dilution of the initial qubit excitation into the TLS environment, the long-term
relaxation dynamics is governed by

?∗q,approx.(C) = lim
C→∞

?∗q(C) =
√
�

2�
4−AtC

(0C)1/2
?∗q,0. (3.85)

In the experimentally more likely situation in which �2 > 0, the relaxation dynamics
becomes

?∗q,approx.(C) = lim
C→∞

?∗q(C) =
√
�

4�2
4−AtC

(0C)3/2
?∗q,0. (3.86)

The long time relaxation dynamics is likely to be hidden in the noise when initially
only the qubit is brought out of equilibrium. A simple way to improve the visibility
is to also initialize a few of the most resonant TLSs, as in the experiment (s. Fig. 2.21).
Then, for a large number of TLSs where we have �′< → 0, one can deduce from
Eqs. 3.76 and 3.77 that the long time solution is still valid. We just have to replace
?∗q,0 with the total out-of-equilibrium excitation

∑
9 ?
∗
9 ,0. The long-term solution sets

in under the condition C � 1/�= with = such that ?∗
:,0 = 0 for : > =. In Fig. 3.10a

several relaxation curves are shown verifying the power-law decay on long time
scales, which can also be observed in the experiment (s. Fig. 3.10b). However, in the
experiment the above condition is only approximately fulfilled, since all TLSs were
at least partially excited by the polarization sequence (s. Fig. 2.21).

Generalization

As discussed at the beginning of this chapter, one can also expect other cross-
relaxation distributions in experiments. In the following, we will therefore discuss
the long time behavior for a general cross-relaxation distribution of the form

A:qt = 0/:3 with 3 > 1 and : ∈ N+ (3.87)

→ ATLSs =
∑

A:qt = �(3) (3.88)

with � being the Riemann zeta function. The derivation of the limit behavior is
similar to the one presented above and is given in App. F. The difficulty is to
determine the value of �, for which analytical expressions can be derived for integer
values of 3, as shown in App. F.2. For � = 0, the relaxation dynamics approaches

?∗q,approx.(C) = lim
C→∞

?∗q(C) =
A(1 + 1

3
)

�
4−AtC

(0C)1/3
?∗q,0. (3.89)

Here, A denotes the Gamma function. For �2 > 0 it becomes

?∗q,approx.(C) = lim
C→∞

?∗q(C) =
A(2 − 1

3
)

�23

4−AtC

(0C)2−1/3 ?
∗
q,0. (3.90)

For 3 � 1, this solution sets in very late and will be difficult to observe in the
experiment unless the system is approximately lossless, i.e. �→ 0.
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3.5 Analytical solutions and approximations

Figure 3.10: Polynomial relaxation. a, b Qubit relaxation with only the qubit being excited initially (blue
lines) or with the first 9 TLSs being excited in addition (orange lines). The black curves show
the limit solution of either Eqs. 3.85 or 3.86. We use the distribution A:qt = 4012/:2 with 0
and 1 as in panel c. Panel a shows the scenario without any losses in the system Aq = At = 0,
simulated with 2000 TLSs, whereas panel b depicts the scenario with the intrinsic qubit loss
Aq as in panel c and simulated with 100 TLSs. c Qubit relaxation taken from Sec. 2.8 for
different lengths of the TLS polarization sequence to the excited state. To reduce the noise,
a 5th-order Savitzky-Golay filter with increasing window length F(C) = C/2 was applied to
the data. The curves # = 101 - 103 are shifted leftwards for better visibility by factors of√

10. The continuous lines show the exact result (Eq. 3.77) using the distribution of Eq. 3.80
with 0 = 25.5 kHz, 1 = 0.48 and 2 = 0, slightly updated compared to Sec. 2.8. The initial
polarization is modeled with Eq. 2.25 as shown in Fig. 2.21. The simulation was carried out
with 101 TLSs, with more than 50 TLSs required for convergence. The limit solution Eq. 3.86
deviates with increasing initial polarization, since the condition C � 1/�= with ?∗k,0 = 0 for
: > = is not fulfilled (s. text and Fig. 2.21). Reproduced from Ref. [86].
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Figure 3.11: TLS induced qubit relaxation. Total cross-relaxation rate ATLSs as a function of the mutual
decoherence A2 for various TLS frequency densities 1/Δ. The shift of the TLS ladder with
respect to the qubit frequency is encoded in Δ0, i.e. the detuning to the most resonant TLS.
The dashed line indicates the threshold above which the calculation of the cross-relaxation
rate Eq. 3.50 is no longer valid. In this region the qubit and the most resonant TLSs undergo
damped vacuum Rabi oscillations (for more details see Sec. 3.2). Reproduced from Ref. [86].

3.6 Qubit relaxation as a function of the mutual
decoherence

This section discusses the qubit relaxation as a function of the mutual decoherence
A2. It follows from Eq. 3.61 that the added qubit relaxation induced by a single TLS
is a non-monotonic function in A2, which vanishes in both limits of A2 → 0 and
A2 →∞. The contribution to the relaxation is maximized when A2 = �, amounting to
Aqt = 62/�. When the TLSs are spread in frequency with a single coupling strength
6 and mutual decoherence rate A2, the sum of the distribution in Eq. 3.80 can be
evaluated analytically and results in

ATLSs =
∞∑

ℎ=−∞

012

12 + (ℎ − 12)2

= �01
sinh(2�1)

cosh(2�1) − cos(2�12) (3.91)
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3.7 Non-Poissonian quantum jumps

with 0, 1 and 2 as defined in Eq. 3.80. Since A2 cancels in the prefactor 01 = 262/Δ,
the result of the Bloch-Redfield master equation can be recovered for sufficient
decoherence such that 1 & 1:

ATLSs ≈
2�62

Δ
= 2�62�t , (3.92)

with �t being the TLS density. In Fig. 3.11 the qubit relaxation is plotted as a function
of the mutual decoherence for various TLS densities. Note that if the qubit is mainly
coupled to a single TLS, the qubit relaxation can be improved by increasing the
decoherence of the TLS, e.g. by changing the ambient temperature or by applying
saturation pulses to the TLS. However, this improvement is lost for multiple TLSs,
since the spectral broadening due to the increased A2 exposes the qubit to far detuned
TLSs. Another method for increasing A2 and changing qubit relaxation is to exploit
the photon shot noise dephasing during qubit readout, as recently demonstrated in
Ref. [159].

3.7 Non-Poissonian quantum jumps

Understanding the quantum jump statistics of a qubit can give valuable insight into
the real-time dynamics, which is lost when looking at the statistical density matrix.
For instance, when the qubit is in contact with a Born-Markovian environment, the
quantum jumps are Poisson-distributed, i.e. the qubit undergoes an exponential
relaxation. When the qubit is coupled to a finite-size TLS environment, a non-
Poissonian statistics can be expected due to measurement-induced temperature
fluctuations in the TLS environment (Fig. 3.14). The non-Poissonian statistics is
visualized by taking a histogram of the qubit dwell times in the excited or ground
state (Fig. 3.12). The quantum jump statistics are extracted from quantum jump traces
obtained by stroboscopic projective qubit measurements at equidistant intervals, as
introduced in Sec. 2.7.2. For the extraction, the stroboscopic quantum jump traces
that have been recorded for the qubit relaxation measurements can be used, however
only taking the part where the qubit is in equilibrium. In this way, the extracted
system parameters can be used to model the quantum jump statistics.

In this section, it will be shown that the measured quantum jump statistics can be
reproduced using a diffusive stochastic Schrödinger equation (SSE) (Fig. 3.17) and
also, somewhat surprisingly, using the Solomon equations (Fig. 3.18). While the SSE
offers a more complete picture by tracking the entanglement of the qubit and the
TLS system, the stochastic evolution of the wave function becomes computationally
demanding with increasing system size. In addition, the SSE is not unique as it
depends on the system details. In a nutshell, the quantum mechanical challenge is
to describe the flow of excitation and energy during the measurement process, in
particular when additional environments of the qubit [7] and the TLSs are included.
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3 Solomon equations

Figure 3.12: Non-Poissonian quantum jumps. Measured non-Poissonian quantum jump statistics of
the fluxonium qubit dwell times in the excited state (|e〉, left panel) and the ground state
(|g〉, right panel). The quantum jump statistics is extracted from 100 quantum jump traces
of the # = 1 and initialization to |g〉 experiment and using the last 40ms where the qubit
is in thermal equilibrium. The total number of counts was rounded off to 12000. The bin
size corresponds to the measurement repetition time of Crep = 2 µs. For |g〉, the histogram
was binned by a factor of three in order to reduce the noise. Fluctuations of the statistics are
discussed in Sec. 3.7.6 and are given as a video in Ref. [160]. Reproduced from Ref. [86].

Using the Solomon equations implicitly assumes that the measurement back action
on the TLSs does not change their population expectation values. Therefore, one
can not expect an agreement with the SSE in general. Indeed, as will be shown
numerically in Sec. 3.7.4 that both procedures can lead to distinct quantum jump
distributions for a small number of TLSs that dominate intrinsic qubit loss. This
allows us to differentiate between quantum and classical behavior. Measuring the
quantum jump statistics can therefore be used to identify a reduced measurement
back action as well as to investigate a quantum-to-classical transition with an
increasing number of TLSs.

Before proceeding with the experimental results, the role of the measurement back
action will be clarified in the following. At this point, it should be emphasized
that the TLSs in the experiment, while being approximately lossless, provide the
main loss mechanism for the qubit. For now, additional environments are therefore
neglected and the closed qubit-TLS system is considered. Let |#i〉 and |#f〉 denote
the wave functions before and after a projective qubit measurement, respectively.
Following a textbook quantum mechanical measurement on the qubit, |#f〉 will be a
product state with the qubit being projected either to

��g〉 or |e〉, and hence

|#f〉 =
{
|e〉 ⊗

��#′TLSs〉 with prob. ?q ,��g〉 ⊗ ��#′′TLSs〉 with prob. 1 − ?q ,
(3.93)

with the TLS wave function altered depending on the measurement outcome. In
this setting, three scenarios representing very different back action properties will
be highlighted in the following.

The first scenario shows that the excitation difference of the qubit before and after
the measurement can be provided by the TLSs. Letℳ(<) denote the <th excitation
manifold. Then, if |#i〉 ∈ ℳ(<), it follows that |#f〉 ∈ ℳ(<) and the excitation
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3.7 Non-Poissonian quantum jumps

number is conserved. Here, the measurement process does not change the excitation
number, but if the qubit and TLS photon energies are different, it must account for
the energy difference.

The second scenario is essentially opposite to the first and contains those wave
functions where the expectation values of the TLS populations remain unchanged
by the qubit measurement. For example, suppose that the qubit and the TLSs are in
the non-entangled product state, then it holds

|#i〉 =
(√

1 − ?q
��g〉 +√

?q4
8! |e〉

)
⊗ |#TLSs〉 (3.94)

→ |#f〉 =
{ |e〉 ⊗ |#TLSs〉 with prob. ?q ,��g〉 ⊗ |#TLSs〉 with prob. 1 − ?q.

(3.95)

Here, the excitation difference of the qubit must be provided entirely by the mea-
surement process.

Lastly, in general, in the third scenario, the excitations can change arbitrarily. Consider,
for instance, the following wave function, which is a mixture of two excitation
manifolds:

|#i〉 =
√

1 − ?q
��g〉 ⊗ |!〉 +√

?q4
8! |e〉 ⊗ |"〉 , (3.96)

where |!〉 ∈ ℳ(<) and |"〉 ∈ ℳ(=). After the measurement, the final wave function
will be either in |#f〉 ∈ ℳ(<) or in |#f〉 ∈ ℳ(= + 1). Here, we see that the total
excitation difference must be provided by the measurement process, and that
repeated measurements on the qubit have a tendency to steer the system into an
excitation manifold. For several TLSs in higher excitation manifolds, this purification
will become less effective and will likely not compete with relaxation processes that
provide transitions between neighboring manifolds. For an experimental verification
of a spin bath purification, see Ref. [98].

3.7.1 Stochastic Schrödinger equation

The following sections outline the simulations with the stochastic Schrödinger
equation (SSE). These simulations clarify the previous discussion about the mea-
surement back action, give insights into the polarization process, and can reproduce
the measured non-Poissonian quantum jump statistics. The stochastic simulation
is cross-checked with the Solomon equations, in which context a limit case of the
Solomon equations is investigated as well.

Quantum trajectories must, on average, reproduce the dynamics of their underlying
master equation. However, the unraveling of master equations is not unique [161],
but can sometimes be motivated by the underlying physical processes [9, 122, 162].
A successful modeling of the measured quantum jump statistics may therefore
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distinguish different unravelings and could reveal a deeper understanding of the
qubit environmental interaction.

Following the discussion in the previous section, we will first consider a closed
system consisting of the qubit and the finite TLS environment under the presence of
pure dephasing. A natural choice of modeling the dephasing is to think of it as a
diffusive process as the result of a classical noise source, as explained in Sec. 3.2.
In order to speed up the simulation, the random phase jump events in time can be
combined to yield a stochastic Gaussian increment for each integration time step. In
other words,

dC∫
0

�(C′)dC′ =
√

A!
2 d,, (3.97)

where d, is the Wiener increment with variance dC. To further speed up the
simulation, the rotating-wave approximation can be applied for the �

q
G�

k
G qubit

TLS interaction (Eq. 3.1). This allows us to keep the integration time step in the
interaction picture on an acceptable level in the order of the coupling strength and
decoherence. Due to the longitudinal noise, transformation to the interaction picture
can be performed exactly via

|#I(C)〉 =
∏
9

4

8
©­«
$9 C

2 +

√
A
9
!
2 ,

9

C )
ª®¬ � 9I |#(C)〉 , (3.98)

with, 9

C denoting independent Wiener processes for the qubit and the TLSs.

3.7.2 Limits of the Solomon equations by cooperative TLSs

In Fig. 3.13 various SSE simulations of the qubit relaxation are shown and compared
to the predictions of the Solomon equations. Of particular interest is the validity of
the Solomon equation with increasing coherence in the TLS reservoir. Since the SSE
simulation presented so far is lossless, and due to the rotating-wave approximation,
the relaxation occurs independently in all excitation manifolds. To fill up all these
manifolds the system is initialized in a product state with populations ?q = 0.9 and
?:t = 0.1 and random phases. The Solomon equations can still give accurate results
even in the limit of infinite TLS coherence, provided that the TLSs are spectrally
broadened. As a typically rule of thumb, deviations can be expected on time scales on
the order of the inverse TLS energy splitting [134]. This estimation can probably be
made more precise by regarding also the coupling strength. In the limit of vanishing
spectral broadening, the TLSs behave cooperatively and form a single spin with
larger quantum number. As a consequence, the qubit can only exchange energy with
a single photon subspace of the Hilbert space and decays to only ∼ 50 % on long
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3.7 Non-Poissonian quantum jumps

Figure 3.13: SSE simulation of the qubit relaxation with increasing TLS coherence. SSE simulation
(dashed curves) andprediction by the Solomon equations (solid curves) of the qubit relaxation
for a reservoir consisting of 5 TLSs symmetrically spaced in frequency around the qubit
frequency. The parameters have been chosen similar to the experiment with A

q
! = 0.5 MHz,

6 = 2� · 10 kHz and Δ = 2� · 100 kHz. For the incoherent scenario (purple curves) a TLS
dephasing of At:! = A

q
! is used, while for the more coherent scenarios the TLS dephasing is set

to zero. For the spectrally coherent TLS environment (orange curves) the TLS energy spacing
Δ is set to zero in addition. The integration was performed with time steps dC = 100 ns and
the relaxation is based on 500 trajectories.

time scales. In this regime, the derivation of the Solomon equations is no longer
valid, since the inverse of C can no longer be computed as some of the diagonal
entries of CR vanish (Sec. 3.4).

3.7.3 Quantum jumps of a lossless system

A stroboscopic quantum jump trace simulated with the SSE is shown in Fig. 3.14. To
illustrate the different back action scenarios discussed in the beginning of Sec. 3.7,
the system wave function was initialized in a product state with populations ? 9 = 0.2
and random phases. The fluctuating and varying excitation in the system comes
solely from the measurement process indicating mainly scenario three. The second
scenario is only realized for the first measurement. Eventually, these fluctuations
come to an end when the system state is trapped in one of the photon manifolds; in
the case shown here, the system is trapped in the two-photon manifold. From here
on, the dynamics is described by the first scenario.

Next, the SSE is used to visualize the polarization process (Fig. 3.15). For this, the
measurement is followed by an instantaneous reset of the qubit to its target state. It
turns out that, on average, the polarization follows the prediction of the Solomon
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Figure 3.14: Illustration of the measurement back action. Simulation of a stroboscopic quantum jump
trace using the stochastic Schrödinger equation. The qubit is measured with a repetition
time Crep = 2 µs, as can be seen in the inset. At C = 0, the system is in a product state with
populations ? 9 = 0.2 and random phases. Eventually, the system will be trapped, here in
the two-photon manifold, where the total population (black lines) remains constant. The
parameters are the same as of the incoherent scenario in Fig. 3.13, except that a lower TLS
dephasing A

t:
! = 0.1 MHz is used here. Adapted from Ref. [86].

equations (Eq. 2.25), for which there is probably a simple explanation that considers
the measurement back action. However, since for moderate polarization times the
fluctuations in the polarization translate to correlated TLS populations, a precise
modeling of the qubit relaxation following this polarization process must ideally
also include these correlations.

3.7.4 Quantum jumps of a lossy system

Due to the trapping behavior (Fig. 3.14), the lossless SSE is not suited to simulate
longer quantum jump traces with a specific average qubit population corresponding
to a certain temperature. In reality, this temperature is defined by additional qubit
environments that are responsible for its intrinsic relaxation, essentially providing
transitions between excitation manifolds of the qubit-TLS system. Since the simula-
tion is already computationally very expensive for a few TLSs, including additional
degrees of freedom seems hopeless.

We must therefore find a stochastic simulation scheme that can emulate the intrinsic
qubit environment. Ideally, it should also incorporate the far detuned long-lived
TLSs that are seen in the experiment but cannot be included in the simulation for the
very same reason. Thinking of this mind-blowingly large Hilbert space consisting
of all the TLSs and also the intrinsic qubit environment and with all these photon
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3.7 Non-Poissonian quantum jumps

Figure 3.15: Illustration of the polarization process. Various SSE simulated trajectories of the total system
excitation

∑
9 ? 9 during qubit polarization to |g〉 and |e〉 in the left and right panel, respectively.

On average, the trajectories correspond to the prediction of the Solomon equations (Eq. 2.25).
The parameters for the simulation are the same as used in Fig. 3.14.

number conserving interactions (in the rotating-wave approximation), it becomes
clear that transitions between excitation manifolds, in case they are generated by the
measurement, will not change the dynamics fundamentally. This means that the
non-Poissonian quantum jump statistics must appear already within an excitation
manifold. Confining the dynamics to one excitation manifold allows us to consider
more elements, just enough to include the most resonant TLSs and to model the
intrinsic qubit environment.

These reduced simulations are then compared with the second approach, a diffusive
SSE that includes qubit losses. However, since both stochastic simulations capture
the measurement back action, they still scale exponentially with the number of
elements. For this reason, a third, much faster approach is presented in the next
section. It involves simulating quantum jumps using the Solomon equations, which
neglect the measurement back action in the system.

Beginning with the first approach, we decided to investigate a system consisting of
16 elements trapped in the three-photon manifold. Since all states will be equally
populated on average, a finite temperature can be modeled corresponding to a
thermal population of ?th = 3/16, similar to the experiment. To illustrate that the
SSE and the Solomon equations lead to distinct non-Poissonian quantum jump
distributions, it is considered here that the entire measured cross-relaxation ATLSs
originates from only one or two long-lived TLSs in resonance with the qubit. The
remaining 14 or 13 weakly coupled TLSs, which can for instance be imagined as
dielectric TLSs, are used to emulate the measured intrinsic qubit loss. They are
also assumed to be on resonance with the qubit. For all TLSs, a dephasing rate
At:! = 1.0 MHz is used, which removes a minor coherent onset in the quantum jump
distribution that can be seen when the TLS coherence exceeds the measurement
repetition time (s. Supp. in Ref. [86]). For this reason, the integration time step was
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Figure 3.16: Comparison of various simulated quantum jump statistics. a Simulated quantum jump
statistics of the qubit dwell times in |e〉 (left panel) and |g〉 (right panel), respectively,
assuming that the qubit is coupled strongly to = = 1 or 2 TLSs that are in resonance with
the qubit such that their cross-relaxation adds up to the total measured cross-relaxation
ATLSs. The distributions for = = 2 are shifted upwards by a factor of 10 for better visibility.
The black dashed line shows the exponential distribution that would be obtained for a
Born-Markovian qubit environment. In the lossless SSE simulation, the qubit couples in
addition weakly to (15 − =) TLSs in resonance with the qubit. They emulate the measured
intrinsic qubit relaxation Aq. The simulation is carried out in the three-photon manifold. The
thermal population was therefore set to ?th = 3/16 in all simulations. For the dephasing,
the rates Aq! = 0.5 MHz and At! = 1.0 MHz are used. The stochastic simulations are carried
out with dC = 1/32 µs. The histograms are generated as described in Fig. 3.12, except that all
distributions are based on 20000 counts here. Reproduced from Ref. [86].

reduced to dC = 1/32 µs. The simulation in the three-photon manifold provides
enough excitations to populate the qubit and the strongly coupled TLSs. The qubit
will therefore experience a fluctuating temperature (s. Eq. 3.71) resulting from the
random walk on the hypersphere. The simulation results are depicted in Fig. 3.16.

In the second approach, transitions between the excitation manifolds are induced
by modeling the qubit relaxation with jump operators. They can be interpreted as
measurements on the qubit’s intrinsic environments. In the spirit of the previous
lossless simulation, where the excitation diffuses between the qubit-TLS system
and the intrinsic qubit environment, a diffusive SSE is needed where the energy
diffuses between excitation manifolds. In contrast, in the commonly used quantum
jump method, relaxation happens abrupt as a jump, which can be thought of as a
photon detection [163]. The diffusive unraveling of the Lindblad equation was first
introduced by Gisin and Percival [164], however, not in its most general form [161].
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3.7 Non-Poissonian quantum jumps

For a comprehensive derivation that shows the connection to the quantum jump
method, see Ref. [165]. The state evolution can be computed as follows:

|#I(C + dC)〉 = |#I(C)〉 −
8

ℏ
�int(C) |#I(C)〉 dC (3.99)
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with 〈!
〉 = 〈#I |!
 |#I〉, the qubit jump operators !1 =
√
A
q
↓ · �

−
q and !2 =

√
A
q
↑ · �

+
q ,

and independent complex Wiener increments d,
 . Each step is followed by a
normalization of the wave function. The great advantage of this unraveling is
its invariance when transforming between the Schrödinger and the interaction
picture [161]. This allows the modeling of the dephasing as introduced in the
beginning of Sec. 3.7.1. The complex noise makes perfectly sense when thinking of
all these dephasing TLSs that add and extract bits of energy with random phases. In
fact, the diffusive unraveling can also be interpreted to originate from a heterodyne
photodetection of the system [122, 162]. Nevertheless, it is still surprising and
satisfying to see (Fig. 3.16) that the simulation with the lossy SSE yields the same
statistics than the lossless SSE in the enlarged Hilbert space and confined in one
excitation manifold.

As already mentioned and and as will be explained in detail in the next section, the
Solomon equations can also be used to simulate quantum jump traces. However,
as can be seen in Fig. 3.16, the resulting statistics is in general distinct from each
other. This shows that the measurement back action has a measurable effect on
the real time quantum jump dynamics, which is lost when looking at the average
relaxation dynamics. Strikingly, the measurement back action can be investigated
without direct excess to the long-lived TLS environment. However, with increasing
number of TLSs, the effect of the measurement back action vanishes, and the statistics
becomes exponential.

3.7.5 Comparison to experiment

After having verified that the lossy SSE can emulate the intrinsic qubit environment
in form of weakly coupled dephasing TLSs, we now turn to the experimental
situation. Fig. 3.17 shows the results of the lossy SSE simulation, which reproduces
the measured quantum jump statistics. The computational complexity could be
kept on an acceptable level by recognizing that in particular the most resonant TLS
contributes dominantly to the non-Poissonian quantum jump statistics. Accordingly,
the simulation was performed for the qubit and the seven most resonant TLSs.
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Figure 3.17: Comparison between SSE-simulated and measured quantum jumps. a SSE simulation
of a quantum jump trace similar to Fig. 3.14, but including qubit relaxation and the seven
most resonant TLSs. The cross-relaxation of the remaining TLSs was added to the intrinsic
qubit loss. For the dephasing, the rates A

q
! = 0.5 MHz and At! = 1.0 MHz are assumed.

b Measured and SSE-simulated quantum jump statistics of the qubit dwell times in |e〉
and |g〉, respectively. The black dashed line shows the expected exponential distribution
for a Born-Markovian qubit environment with qubit relaxation A1 = Aq + ATLSs in thermal
equilibrium corresponding to ?th. The histograms are generated as described in Fig. 3.12.
Reproduced from Ref. [86].

In fact, a simulation with only the most resonant TLS and where all other TLSs
are incorporated into the intrinsic qubit environment gives already a very good
agreement with the experimental findings. This can be surmised from Fig. 3.16,
which shows already similar distributions in comparison to the experiment. In
addition, the resemblance of the distributions with those generatedwith the Solomon
equations (Fig. 3.16) tells us that the effect of the measurement back action can in
good approximation be neglected in the experiment, which brings us to the third
approach, the modeling of the quantum jumps using the Solomon equations.

Suppose the measurement process is not changing the TLS populations, which
means that the second back action scenario is realized. Then, the Solomon equations
can be integrated to obtain the qubit population at the time of the upcoming
measurement and yield the probabilities of the measurement outcome. Starting
in thermal equilibrium, we can generate a quantum jump trace and compute the
fluctuating energy in the TLS bath that in turn influences the measurement outcome
of the qubit (s. Fig. 3.18a, b). Note the continuous TLS population in contrast to the
SSE simulation in Fig. 3.17a that includes the measurement back action. The resulting
martingales for the energies in the system are similar to Pólya’s urn model, except
that the qubit and the TLSs can (i) saturate and (ii) decay into their environments.
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Figure 3.18: Comparison between Solomon-equations-simulated and measured quantum jumps.
a Schematic simulation of a quantum jump trace using the Solomon equations. The blue
points show the positions and outcomes of the measurement at Crep intervals. The qubit
is projected to its eigenstates with the probability corresponding to the calculated qubit
population ?q. In the lower panel we show the excess population of the TLSs. It is assumed
that the population of the TLSs remains unchanged by the measurement process. In between
the measurements the system evolves according to the Solomon equations (Eq. 3.77).
b Simulation of a longer quantum jump trace following the same method as in panel a with
the device parameters from Ref. [21]. Here, only the qubit and excess TLS populations are
shown at the time of the measurement. Due to the heat capacity of the environment and the
relatively low thermal population ?th = 0.12, the quantum jumps appear bunched when the
TLS temperature is increased. c, d Measured and Solomon-equations-simulated quantum
jump statistics of the qubit dwell times in |e〉 and |g〉, respectively. The black dashed line
shows the expected exponential distribution for a Born-Markovian qubit environment with
qubit relaxation A1 = Aq + ATLSs in thermal equilibrium corresponding to ?th. The histograms
are generated as described in Fig. 3.12. Reproduced from Ref. [86].

The quantum jump statistics generated in this way is contrasted in Fig. 3.18c, d with
the experiment and shows quantitatively an even better agreement than the SSE in
Fig. 3.17.

Importantly, it should be noted that measuring non-Poissonian quantum jump
statistics hampers the accurate extraction of the qubit’s transition rates A↑,↓. In
thermal equilibrium, the extraction of the transition rates as discussed in Sec. 2.7.4
is equivalent to determining the inverse of the average qubit dwell times. As a
consequence of the non-exponential distributions the qubit lifetime is overestimated.
In Sec. 2.7.5, a qubit lifetime of )1 = 21.5 µs was extracted, while here )1 = 18.5 µs
was used for the quantum jump simulations. The effect is even more drastic in
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Figure 3.19: Second order correlation function. Second order correlation function 6(2)(�) of the measured
and simulated quantum jump traces shown in Fig. 3.17 and Fig. 3.18. The dashed black curve
shows the correlation function for a Born-Markovian environment.

Fig. 3.21. Here, the rates )↑ = 71.6 µs and )↓ = 6.2 µs have been measured and the
rates )↑ = 52.1 µs and )↓ = 4.3 µs have been used in the simulation to reproduce the
measured statistics. The qubit lifetime can only be extracted precisely when the
TLSs are in a well defined state, meaning that the TLSs fluctuate independently
around their mean population. A well defined reservoir state is given after the
TLS hyperpolarization. The increased relaxation rate A1 that can be seen at the
beginning of the measurements shown in Fig. 2.20b can be modeled when the rates
are extracted from quantum jump traces simulated by the Solomon equations.

So far we only looked at the statistics of the qubit dwell times, which are also known
as the waiting time distributions [136]. There are of course numerous other statistics
that could be investigated and could potentially better tell apart the quantum jump
traces generated by the SSE or Solomon equations. In Fig. 3.17a and Fig. 3.18b, it
can be seen that the rate of quantum jumps increases with increasing energy and,
more precisely, with increasing temperature in the system. The highest rate will be
observed when the qubit experiences infinite temperature. When we interpret the
quantum jump from the excited state to the ground state as the result of a photon
emission, the second order correlation function 6(2)(�) = 〈�(C + �)�(C)〉/〈�(C)〉〈�(C + �)〉
can be computed from the intensity �(C) ∈ {0, 1} of emitted photons [166–168]. The
correlation functions are depicted in Fig. 3.19. Since the qubit is a single photon
emitter the photons must be antibunching on short time scales. However, for longer
times, one finds 6(2)(�) > 1, which indicates thermal light, i.e. photon bunching.
The correlation function for a Born-Markovian qubit environment is shown as well.
Here, the correlation function is simply 6(2)(�) = 1− 4−A1� < 1, since the emittance of
a photon is proportional to the qubit population.
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3.7.6 Fluctuations in the TLS environment

Besides the occasional reconfiguration of the TLS environment presented in Sec. 2.7.1,
the system can also undergo rapid fluctuations, which can last for longer periods
of time. These fluctuations can be well studied by measuring quantum jump
distributions, which can be done in a few seconds [53].

Fig. 3.20a shows the qubit lifetime that has been extracted from the quantum jumps
distributions of the various interleaved relaxation measurements shown in Fig. 2.16
and Fig. 2.17. Except where the qubit lifetime jumps to ∼ 30 µs, the quantum jump
distributions all show the non-exponential behavior that can be seen in Fig. 3.18 and
Fig. 3.17, showing the quantum jump distribution at the position of the black arrow.
The lifetime is determined from the average qubit dwell times )↑ = 〈C |g〉〉 = 1/A↑ and
)↓ = 〈C |e〉〉 = 1/A↓ and using )1 = 1/(A↑ + A↓). It should be noted that the extraction
of the transition rates as discussed in Sec. 2.7.4 is an average over all iterations.
The fluctuations of the qubit lifetime can therefore easily be overseen. If the qubit
environment is stable and in thermal equilibrium, both approaches yield the same
qubit lifetime. This comparably stable qubit environment is certainly one of the
reasons for the successful modeling of the relaxation measurements in Sec. 2.7.2.

Fig. 3.20bc shows the situation of rapid fluctuations of the quantum jump distribu-
tions and qubit lifetime. Interestingly, when the qubit lifetime is short, in particular
the quantum jump statistics of the ground state becomes highly non-exponential,
and when the qubit lifetime is long, the statistics becomes exponential, except for
the very first few bins in the ground state distribution. For lifetimes comparable to
the ones extracted in Fig. 3.20a, the distributions (blue histogram in Fig. 3.20c) are
similar to those measured in Fig. 3.20a.

These fluctuations between Poissonian and non-Poissonian statistics have been
observed before on a junction array fluxonium with very similar time-scales [53]. It
has been speculated that these fluctuations originate from a fluctuating quasiparticle
background. Periods where the number of excess quasiparticles is stable would
show a Poissonian statistics and have been denoted as quiet, whereas periods with a
fluctuating number of excess quasiparticles would yield a non-Poissonian statistics
and have been denoted as noisy. However, there are a few indications in Ref. [53] that
rather suggest the presence of a two-level system environment in addition to excess
quasiparticles that certainly exist, in particular after a strong quasiparticle generation
pulse. First of all, it can be seen in the Supplementary of Ref. [53] that the qubit
temperature after the generation pulse relaxes slowly with millisecond time-scales,
similar to the findings in Fig. 2.16. Strikingly, the qubit temperature does not relax
exponentially to the idle temperature in the absence of quasiparticle generation
pulses but relaxes to higher temperatures. In principle, this could be explained by the
microwave periphery that is heated up by all these strong microwave quasiparticle
generation pulses. Furthermore, a rather low quasiparticle density was extracted
during the noisy period, which remained an open question. Even more revealing,
measurements on the same device reported in Ref. [71] show, after qubit excitation
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Figure 3.20: Fluctuations in the TLS environment. a Comparably stable qubit lifetime extracted from
the various interleaved relaxation measurements shown in Fig. 2.16 and Fig. 2.17. Here, the
lifetime is determined from the average qubit dwell times of the quantum jump statistics. In
thermal equilibrium this approach coincides with the method presented in 2.7.4. The black
arrow shows the position of the quantum jump statistics depicted in Fig. 3.18 and Fig. 3.17.
The time resolution is ∼ 25 s, partially limited by the data transfer (Sec. 2.7.2). b Comparably
unstable qubit lifetime,measured every ∼ 10 s by recording a 1.5 s long stroboscopic quantum
jump trace with a repetition time of Crep = 1.5 µs. The data was recorded in same cooldown
eight days prior to the measurements shown in panel a. c Quantum jump statistics for
different qubit lifetimes indicated by the arrows in panel b. Interestingly, when )1 is short, in
particular the quantum jump statistics of the ground state becomes non-exponential and
when )1 is large the statistics becomes exponential. The blue histogram was chosen to be
similar to the one shown in Fig. 2.16 and Fig. 2.17. The unstable qubit behavior resembles the
fluctuations reported in Ref. [53] measured on a junction array fluxonium. In this publication,
Poissonian and non-Poissonian statistics have been denoted as quiet and noisy behavior,
respectively.

with a �-pulse, fluctuating bi-exponential relaxations with a fast component on the
order of hundreds of microseconds and a slow component on the order of 1-2ms.
In measurements following a saturation pulse single exponential relaxations of up
to 8ms have been measured. This was interpreted as a fluctuating quasiparticle
background, however, a long lived TLS environment as reported here could be an
alternative explanation. In the following, it will be shown that the fluctuations in
Fig. 3.20bc arise from the most resonant TLS.
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Figure 3.21: Observation of measurement back action. Quantum jump statistics of the qubit with
the strongly coupled resonant TLS taken from Fig. 3.20c. The Solomon equations can not
reproduce the measured quantum jump statistics, in contrast to the SSE, which considers the
measurement back action. For further details see text.

3.7.7 Observation of measurement back action

The fluctuating qubit lifetime to larger values reaching ∼ 35 µs with a corresponding
exponential quantum jump distribution (Fig. 3.20bc) can only be explained by
a decoupling of the TLS environment. The reason is that a fluctuating intrinsic
qubit environment can not improve the qubit lifetime to ∼ 35 µs, and moreover, the
TLSs would still give a non-exponential quantum jump statistics. Interestingly, a
complete decoupling of the most resonant TLS yields precisely the 35 µs lifetime. In
addition, the decoupling of the most resonant TLS can also explain the exponential
quantum jump distribution, since the non-exponential statistics comes mainly from
the dominant TLS (Sec. 3.7.5). The logical consequence is that the extracted qubit
lifetime of 5.7 µs is the result of a strongly increased coupling between the most
resonant TLS and the qubit. Assuming a mutual decoherence of A2 = 1.5 MHz,
a coupling of 2� · 53 kHz is needed in contrast to the 2� · 22 kHz-coupling of all
the other TLSs (Sec. 2.8). With this strongly coupled TLS, the Solomon equations
fail to qualitatively reproduce the measured quantum jump statistics, as can be
seen in Fig. 3.21. The simulated statistics is unaffected by the number of TLSs
that are included in addition to the most resonant TLS. In contrast, the lossy SSE
still reproduces the measured highly non-exponential quantum jump statistics
because it accounts for the measurement back action. The SSE simulation was simply
performed for the qubit and the most resonant TLS. The qubit lifetime was adjusted
to )1 = 4.0 µs, which yields the coupling strength 2� · 65 kHz for the most resonant
TLS. When a lower TLS decoherence of At2 = 0.1 MHz is assumed, the extracted
qubit lifetime increases due to the quantum Zeno effect, since the measurement
repetition time Crep = 1.5 µs is shorter than the mutual decoherence. To compensate
the quantum Zeno effect, the qubit life time has to be further decreased in the
simulation.

In conclusion, what we see here is indirect evidence of the measurement back action
on the TLS. The fact that the qubit and the TLS get highly entangled during their
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free evolution after the projective measurement was detected even though the qubit
and the TLS are relatively weakly coupled and exposed to strong dephasing. It is the
energy that is shuffled around by the measurement process that makes the difference
in the measured statistics. Since with increasing numbers of TLSs the statistics can be
described with the Solomon equations, which neglect the measurement back action,
we observed here a quantum-to-classical transition, in the sense that superpositions
and measurement back action are not observed in the classical world.
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The aim of this work was to implement granular aluminum fluxoniums and to
investigate their performance. The presented fluxonium was one of the first imple-
mentations using disordered high kinetic inductance materials. Meanwhile, several
other high kinetic inductance materials have been investigated and are used in
various kinds of quantum devices [169, 170]. Still, granular aluminum stands out for
its very high tunable kinetic inductance, its magnetic field resilience [48, 171] and
its compatibility with the standard shadow-evaporation fabrication technique. The
first noteworthy peculiarity that we routinely observe in our granular aluminum
fluxoniums is the resilience to large photon numbers during the qubit readout.
The reason for this photon resilience is likely a consequence of the cleaner mode
structure of the granular aluminum superinductor in contrast to conventional high
impedance quantum circuits that are implemented with junction arrays. With an
appropriate meandering of the superinductor, very compact designs can be imple-
mented, which further lifts the spurious modes far beyond the operational frequency
range and allows the implementation of ultra high impedance circuits. When it
comes to arguably the most important figure of merit for superconducting qubits,
the qubit lifetime, we have measured values of up to a hundred microseconds, which
is an order of magnitude lower than state-of-the-art fluxonium qubits implemented
with junction arrays. Thus, the objective was to find the dominant loss mechanism.
Extrapolating from resonator measurements and the overall flux dependence of the
qubit lifetime, inductive loss from trapped quasiparticles in granular aluminum
was expected to be the limiting loss mechanism of our granular aluminum devices.
This notion was in line with further experiments that could reproduce previous
findings in the field, showing that a sequence of saturation pulses could alter the
qubit relaxation dynamics, which was interpreted as an enhanced quasiparticle
diffusion [78].

The first part of this work dealt with the implementation of a quantum Szilard
engine using active feedback control to drastically increase the interaction of the
qubit with its environment. To date, the quantum Szilard engine presented in this
work is one of the most complete experimental realizations of its kind described in
the literature. Using the quantum Szilard engine, we were able to hyperpolarize the
qubit environment and could show that the qubit is coupled to a heretofore unknown
two-level system (TLS) environment. Interestingly, the qubit and the TLSs are each
other’s dominant loss mechanism. Limited only by the qubit preparation fidelity,
the achievable TLS hyperpolarization is close to unity as a consequence of the, in
our experiment immeasurable, long intrinsic lifetime of the TLSs exceeding 50ms.
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Concomitantly, the qubit’s population exhibits remarkably long and non-exponential
relaxation dynamics. The presented work therefore sheds new light on previous
experiments and showcases the challenges and pitfalls of extracting )1 from qubit
population relaxation data. By extracting )1 from stroboscopic quantum jump traces,
we show experimentally that the qubit lifetime is unchanged for negative, infinite,
and cryogenic temperatures, thereby ruling out the enhanced quasiparticle diffusion
hypothesis, at least for our qubit. The often proposed idea of increasing the qubit
lifetime by saturating the TLS must also be clearly rejected. The only certain way to
increase the qubit lifetime is to remove the TLS environment.

The second part of this work dealt mainly with the theoretical description of the
qubit relaxation in the presence of a long-lived TLS environment. An infinite number
of weakly coupled TLSs provides a Born-Markovian environment for the qubit.
In this case, the well known Bloch-Redfield master equation is the method of
choice to describe relaxation and decoherence of the qubit. However, the situation
changes drastically for a finite number of long-lived TLSs, as the Born approximation
is no longer valid. This situation is typically found in NMR experiments. The
underlying dynamics of the qubit and the TLSs may be interpreted as the nuclear
Overhauser effect. For this reason, a rigorous derivation of the Solomon equations
has been presented, adapted to the field of quantum information and extended for an
arbitrary number of TLSs. The accuracy of the Solomon equations is demonstrated
by describing the measured qubit relaxation on time scales more than three orders
of magnitude longer than the qubit lifetime. On long time scales, the relaxation
is described by a power-law, which was deduced from the Solomon equations
and confirmed experimentally. In future work, it would be interesting to derive
expressions for the TLS induced qubit decoherence and Lamb shift, analogous to
the derivation of the Solomon equations.

Since the average relaxation, described by the Solomon equations, hides the quantum
mechanical complexity, we asked ourselves whether the underlying stochastic
dynamics that is essential for the cross-relaxation could be uncovered andunderstood
by investigating the real-time dynamics of the stroboscopic quantum jump traces.
To our surprise, we found both long periods of stable non-exponential quantum
jump distributions and periods where the quantum jump statistics undergoes rapid
fluctuations between highly non-Poissonian statistics with short )1 and Poissonian
statistics with longer qubit lifetime. A very similar fluctuating behavior has been
observed before on junction array fluxoniums and was attributed to a fluctuating
quasiparticle background [53]. Using the diffusive stochastic Schrödinger equation,
wewere able to reproduce the highly non-Poissonian quantum jump distribution and
to show that the fluctuations are caused by the most resonant TLS. Thus, the coupling
strength between the qubit and the TLSs can take on values as high as ∼ 65 kHz,
which could potentially also be larger when a higher TLS dephasing is assumed.
Moreover, for this rather strong interaction, entanglement and measurement back
action are essential to reproduced the measured distribution.
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Interestingly, with increasing system size, and as long as individual TLSs do not
completely dominate the dynamics, we show that the Solomon equations can also
be used to describe the measured non-Poissonian quantum jump statistics. Since
this procedure neglects entanglement and measurement back action but can still
reproduce the measured statistics, it indicates that there is a transition after which
local measurements on the qubit can no longer distinguish between quantum
mechanical and classical statistics, which can be viewed as a quantum-to-classical
transition. The conditions that allow for the modeling of the quantum jumps with
the Solomon equations need to be further investigated. Finally, different stochastic
unravelings of the system dynamics should be studied to see which one of these can
reproduce the measured statistics.

Outlook
Certainly, the next important step is to identify the physical origin of these long-lived
TLSs. One the one hand, the long lifetime of the TLSs suggests that the TLSs are
spins. Since the TLS environment could be observed at various frequencies, the TLSs
must be composed of at least two spins that are coupled together, e.g. via the dipolar
interaction. A spatial distribution of the spins would then translate into a frequency
distribution. Indeed, such a broad spin frequency distribution can be observed in
experiments [172]. On the other hand, the coupling strength that we extracted in our
experiments is rather large compared to the coupling that was achieved in Ref. [3]
with an ultra low impedance resonator. This suggests that the TLSs are trapped
quasiparticles, Shiba spins or other subgap states in the superconductor. It could
certainly be that the disordered nature of granular aluminum is susceptible to such
environments, however it would be very unlikely if this environment is completely
absent in junction array fluxoniums. The observation of similar effects in the past
and further experiments that have been presented to us seem to indicate that these
long-lived TLSs are ubiquitous to superconducting hardware.

Therefore, the following experiments are suggested. Using a fast-flux tunable
fluxonium, the Szilard engine may be operated at various frequencies. In this case,
the active feedback is no longer needed and can be replaced by a fast flux reset.
This experiment could reveal the frequency distribution of the TLSs. In addition,
the flux tunability would allow mapping out the spectral hole that was burned into
the TLS environment. In this way, the decoherence and the lifetime of the TLSs can
be determined. The first steps in this direction have already been undertaken. The
spectral hole burning and lifetime measurements have recently been presented on a
dielectric TLS environment using the methods developed in this thesis [173].

In order to investigate a possible magnetic field susceptibility of the TLSs, the
fluxonium can be placed in an in-plane magnetic field. Fortunately, the magnetic
field can be rather moderate, as the spin transitions only need to be lifted above the
qubit frequency. One may also place a few spins on purpose in the vicinity of the
superinductor to investigate in more detail the underlying stochastic dynamics as
well as cooperative effects.
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5 Quantum circuits

In this chapter, the quantization of superconducting circuits is introduced. The
circuit quantization is detailed for various circuits that have been encountered over
the course of this thesis. The main focus is to provide insights into the characteristics
of junction arrays and granular aluminum (grAl) and the quantization of various
flux type qubits. The calculations are compared to experiments performed with grAl
fluxoniums.

5.1 Circuit quantization

The quantization of superconducting circuits has been discussed in numerous
publications [174–177] and has gained renewed interested in the last years [178–183].
Certainly the most widely used circuit quantization technique is the canonical
quantization that was introduced by Devoret [175], which was further worked out
by Vool [176]. One of the main motivations was to develop a procedure that makes
no difference between superconducting elements and normal conducting cavities
or waveguides. For this reason, their recipe is straightforward to apply and has
become the core of automatized circuit quantization software packages [184, 185].
However, by treating the gauge invariant flux and the flux of the superconducting
wave function on equal footing, the method has the drawback of not yielding the
correct absolute ground state energy of the system. For the very same reason,
analytical expressions of the Hamiltonian are not necessarily unique and may
result in more complicated expressions. Even more importantly, for time-dependent
external flux biases, additional terms must be included to yield correct predictions,
as was demonstrated in a recent experiment [186].

The canonical quantization, i.e. the derivation of the Hamiltonian from a classical
Lagrangian, is certainly the first obstacle one encounters, since one is used to directly
setting up the Hamiltonian for all the elements in the system. In addition, one
may be concerned by Groenewold’s theorem [187], which states that the canonical
quantization can be ambiguous. Similarly, we are forced to treat the kinetic non-
linear Josephson energy in the Lagrangian as the potential energy. If we had to
include also nonlinear capacitance terms, predicted to play a role for very small
capacitances [188], the canonical quantization would simply not be viable, as the
Legendre transformation could not be performed uniquely. Fortunately, there is
always the option to fall back on a microscopic theory, as demonstrated by the circuit
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quantization of Eckern long before the first experimental observation of coherence
in superconducting qubits [188].

There is yet another complication in the quantization of circuits. A Hamiltonian
must consist solely of independent degrees of freedom, i.e. generalized coordinates.
For instance, connecting inductors in a node while neglecting its capacitance to
other nodes removes a degree of freedom but leaves behind a constraint. These
constraints must be removed beforehand, either by deriving a Lagrangian with
generalized coordinates or by means of a symplectic transformation [181]. Nonlinear
constraints are discussed in [182] and can be removed by the Born-Oppenheimer
approximation [189]. An illustrative example is given in Sec. 5.2.1.

In the following, the circuit quantization is motivated from amicroscopic perspective
by considering the superconducting condensate. The energy contributions of all
basic elements are derived before proceeding with increasingly complex circuits.

The superconducting condensate

A microscopic derivation of superconducting circuits would ideally begin similar to
to the Jellium model. The system Hamiltonian would include all the electrons in
the circuit, or at least the condensed Cooper pairs, the positive background field
of the nuclei, which confines the electrons to the circuit, and moreover it should
also include the quantized electromagnetic field. With this Hamiltonian, it should
even be possible to study quantum fields, i.e. the quantization of distributed circuits
such as the long junction qubit [190, 191]. Since such a derivation is by far out of the
scope of this thesis, a conceptually similar approach of greatly reduced complexity
is presented instead.

Close to zero temperature one may use the Gross-Pitaevskii equation [192, 193] to
describe the condensate of # repulsive Cooper pairs. The model Hamiltonian can
be written as

� =

#∑
8=1

(p8 − @A)2
2< +*(r8) +

∑
8< 9

6�(r8 − r9). (5.1)

Here, p is the momentum operator of the Cooper pairs with mass < = 2<e and
charge @ = −24 . The magnetic vector potential is encoded in A. The potential * may
first of all be used to confine the condensate in the superconducting circuit, but
also to model Josephson junction tunnel barriers as well as the complex structure of
granular aluminum. Finally, the repulsive interaction with coupling strength 6 is
modeled as a contact potential.

Since the weakly interacting Cooper pairs will largely condensate in the same state,
except for a small fraction called the quantum depletion [194], we can approximate
the wave function as

Ψ = #(r1)#(r2) . . .#(r# ). (5.2)
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Within this Hartree-Fock approximation and following the Rayleigh-Ritz method
(see also Sec. 5.3.4), the eigenfunctions and corresponding eigenenergies of the
Hamiltonian in Eq. 5.1 are best approximated by solutions of the Gross-Pitaevskii
equation

ℎ#(r) =
( (p − @A)2

2< +*(r) + 6(# − 1)|#(r)|2
)
#(r) = &#(r). (5.3)

This equation is also derived within the Ginzburg-Landau theory together with ad-
ditional equations for the superconducting current and the magnetic field [195]. The
Gross-Pitaevskii equation is also known as the non-linear Schrödinger equation [196].

Given a single particle solution # with single particle energy &, the energy of the
entire condensate is � = #&. Consequently, adding or removing a Cooper pair from
the condensate is linked to the energy &, which therefore plays the role of a chemical
potential. Since the condensate can be assumed to fill more or less homogeneously
the superconducting circuit with volume + , we can transition to the rotating frame
of the condensate via #→ #4−8/ℏ�C with � = 6(# − 1)/+ , which essentially removes
the interaction energy in Eq. 5.3.

For the excitation of the condensate, the eigenenergies � = # · & are relevant.
As a short-cut one often defines # =

√
=s(r)4 8!(r) normalized to # Cooper pairs,

which introduces the Cooper pair density =s(r) and the superconducting phase !(r).
Alternatively, one can instead multiply the Hamiltonian by # and use a normalized
wave function.

Basic elements

Figure 5.1: Superconducting wire with
length ;, width F and height ℎ shunted by a
capacitance �.

We begin with the most basic element, an in-
ductance formed by a superconducting wire
with length ;,widthF andheight ℎ as shown in
Fig. 5.1. We will for now assume that *(r) = 0
inside the wire so that the condensate den-
sity is homogeneous. Thus, considering the
axis along the wire and assuming for simplic-
ity that the vector potential pointing along
the wire is constant and amounts to �, the
Cooper pairs of a moving condensate must be
described by virtue of Eq. 5.3 by a plane wave
#(G) = 4 8

ℏ
?G/
√
+ . The movement in the wire can only be enabled when it is shunted

by a capacitor with capacitance �, which allows the accumulation of charges at
the capacitor plates. Consequently, a condensate displacement by the distance G
corresponds to the charge @ = −24/; · G per Cooper pair on the capacitor plates.
This coordinate transformation directly defines the corresponding flux operator
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) = −;/24 · ?, so that [@, )] = 8ℏ. The wave function can now be represented as
#(G) = 4 8

ℏ
)@/
√
+ and even more instructive

#(G) = 4−2�8 )
	0

G
; /
√
+, (5.4)

where the superconducting flux quantum 	0 = ℎ/24 has been introduced. In order
to treat ) as the position operator, one has to redefine the charge operator to be
negative, i.e. @ := −@, so that [), @] = 8ℏ.

In the Hamiltonian of the inductive wire shunted by the capacitance, the potential for
the capacitor must be added, considering also offset charges @g that can be induced
by quasiparticles or gate voltages. The Hamiltonian � = #ℎ then reads [176]

� =
#

2
(? + 24�)2

2<e
+
(@ − @g)2

2� (5.5)

=
1
2

(
442=s
2<e

) (
Fℎ

;

)
() − ;�)2 +

(@ − @g)2

2� (5.6)

=
() −	ext)2

2!kin
+
(@ − @g)2

2� . (5.7)

In the second line, the specific kinetic inductance ;kin = 2<e/442=s that arises from
the momentum of the Cooper pairs can be identified. In the last line, the kinetic
inductance !kin = ;kin ;/Fℎ was introduced as well as the magnetic flux 	ext = ;�,
essentially as the integrated vector potential along the wire.

Since the electromagnetic field energy was not included in the derivation, the
geometric inductance !geo must be added to the total inductance of the wire ! =
!kin + !geo. In fact, for materials with a low kinetic inductance, the geometric
inductance !geo gives usually the dominant contribution. For very sophisticated
designs, the kinetic inductance can even be negligible [197]. In contrast, for high
kinetic inductance materials such as granular aluminum, the geometric inductance
can be neglected. Here, the increased kinetic inductance is not the result of a reduced
electron density, but a consequence of the complex potential landscape *(r) > 0.
The condensate gains in potential energy when a phase gradient is imprinted on the
condensate, similar to the effective electron mass in solid-state physics. In the dirty
limit, valid for granular aluminum but also for thin film aluminum, it holds [17]

;kin =
ℏ�

�Δ
. (5.8)

Here, � is the specific resistivity measured at the critical temperature )c, and Δ is the
superconducting gap at zero temperature. For granular aluminum, one can use in
good approximation the room temperature resistivity, since the residual resistance
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ratio (RRR) is close to one [17, 198]. Alternatively, granular aluminum may also be
modeled as a network of Josephson junctions, see Sec. 5.2.3.

After having introduced the role of inductors and capacitors, we now turn to the key
element of superconducting circuits, the Josephson junction. A Josephson junction
is a weak link between two superconductors, which enables the coherent tunneling
of Cooper pairs across the junction, known as the Josephson effect. In conventional
Josephson junctions of superconducting qubits, the tunnel barrier is implemented
as an insulating oxide barrier. Since the barrier thickness is vanishingly small, on
the order of ∼ 2 nm [199], the junction potential does not depend on the magnetic
vector potential, and its kinetic energy contribution to the Hamiltonian is given by
the potential [195]

+()) = −�J cos
(

2�
	0

)

)
, (5.9)

with �J being the Josephson energy and ) the flux difference of the superconducting
condensate across the junction. In general, this potential energy contains higher
order harmonics [200, 201], which have recently been observed in qubit spectroscopy
measurements [199]. The derivative of +()) with respect to ) gives the current
phase relation [201]

�()) = �c sin
(

2�
	0

)

)
, (5.10)

with the critical current �c = 2�/	0 · �J.

5.1.1 The superconducting ring

Figure 5.2: Superconducting ring with
inductance !, here illustrated with a
trapped flux and corresponding mag-
netic field B.

Certainly, the simplest superconducting circuit is
the superconducting ring as shown in Fig. 5.2.
It even comes with an anharmonic level struc-
ture. Unfortunately or fortunately, it is almost
impossible to drive its transitions [202]. The su-
perconducting ring is the essential part of gra-
diometric fluxoniums [203] (s. Sec. 5.3.1). The
persistent current can be used as a local magnetic
field bias [203, 204], but also as a magnetic field or
non-linearity sensor in case of nonlinear inductors
(s. Sec. 5.2.5). Following the previous section, the
Hamiltonian of the superconducting ring with
potentially time-dependent external flux is

� =
() −	ext(C))2

2! . (5.11)
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Due to the periodic boundary condition, this Hamiltonian is solved by the wave
functions

#<(') =
1√
+
4 8<'4−

8
ℏ

∫
&(C)dC . (5.12)

Here, < is the number of trapped flux quanta and ' the angular coordinate. These
wave functions belong to time-dependent energies

�< =
(<	0 −	ext(C))2

2! (5.13)

that display the energy of the screening currents. As an example, suppose that
the superonducting ring is made of granular aluminum with a kinetic inductance
of ! = 500 nH. In the absence of a magnetic field, the fundamental transition will
therefore be

ℎ 501 =
	2

0
2! = 6.45 GHz. (5.14)

Assuming a moderate resistivity of ;kin = 500 pH/sq and a wire width F = 250 nm,
the ring consists of B = 1000 squares and has a diameter of 80 µm. For this geometry,
we can calculate the additional geometric inductance. The ring may be imagined
wrapped around a cylinder, for which an analytical formula is available1. For B � 1,
it holds

!geo ≈ �0A

(
ln

(
8B
2�

)
− 1

2

)
= 0.33 nH. (5.15)

This shows that the geometric inductance in our fluxonium designs gives corrections
in the percent level.

The usual argument for the endurance of persistent currents is that Cooper pairs are
formed of electrons with opposite momentum. When Cooper pairs break apart and
recombine they can not change the momentum of the condensate. Considering the
electromagnetic environment, one might wonder why a persistent current can not
be excited by incoming radiation as well as decay into its ground state by emitting
a photon. For superconducting rings with a ring inductance in the nH-range, one
can first of all argue that the transition frequency easily exceed the superconducting
gap. Incoming radiation will thus rather break Cooper pairs apart, since in addition,
the corresponding wavelengths are smaller than the dimensions of the ring. This
argument is not sufficient for superconducting ringsmade out of granular aluminum.
After all, it is the large angular momentum of the ring that can not be carried away

1The exact formula by Lorenz [205], here rearranged in Nagaoka’s form [206], is !geo =

2�0AB
3�

1√
1−:2

[
1−:2

:2 ( (:) − �(:)) + �(:) − :
]
, where A is the radius of the cylinder, :2 = B2/(B2 + �2)

with B being the number of squares around the cylinder jacket, and �,  denote the elliptic integrals.
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by a single photon, in accordance with the physics of nearly stable nuclear spin
isomers. Nonetheless, reliably driving transitions with large field amplitudes should
in principle still be possible [207].

5.1.2 The charge qubit

Figure 5.3: Equivalent circuit of the
charge qubit with capacitance � and
Josephson energy �J.

The charge qubit is certainly the most widely used
qubit type in superconducting quantum hardware.
In particular, the transmon [208] with its reduced
sensitivity to charge noise enables a multitude of
sophisticated experiments [3, 7, 9, 62]. In this section,
the theory of the charge qubit is briefly reviewed [208]
to lay the foundations for the upcoming sections.

The equivalent circuit of the charge qubit simply con-
sists of a Josephson junction with Josephson energy
�J that is shunted by a capacitor with capacitance �, as depicted in Fig. 5.3. The
capacitance is partly formed by the intrinsic capacitance of the junction as well as by
an additional shunting capacitance, which allows to independently adjust the qubit
frequency and sensitivity to charge noise, and gives the qubit its required dipole
moment. The Hamiltonian reads

� =
1

2� (@ − @g)
2 + �J cos

(
2�
	0

)

)
. (5.16)

In this form, the Hamiltonian is not very practical. A more convenient Hamiltonian
can be obtained by transitioning into a scaled coordinate system, i.e. introducing
new operators of the form G = )/B and correspondingly ? = B · @. For instance, the
potential energy may be visualized in units of flux quanta, hence B = 	0. An even
more compact Hamiltonian is obtained for B = 	0/2�. This introduces the phase
operator ! := G = )/B and the number operator = := ?/ℏ = B · @/ℏ. Since the reduced
Planck constant was absorbed in the number operator, we now have = = −8%/%!, or
equivalently [!, =] = 8. Using these dimensionless operators, the Hamiltonian takes
on the form

� =
1
2�C(= − =g)2 + �J cos(!). (5.17)

Here, we introduced the charging energy �C = 442/�. Note that the nowadays more
common definition of �C = 4

2/2� is not used here, for good reasons2.

2The definition �C = 42/2� stems historically from single electron transistors [209] and reminds us
that Cooper pairs are formed by two electrons. For consistency, we should then also use the flux
quantum and resistance quantum of the electron. The definition used here is consistent with the usual
definition of the inductive energy �L. For �L, we have no other choice, since it has to coincide with �J,
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Yet another scaling should be mentioned that is practical when comparing differ-
ent Hamiltonians. In fact, for the comparison of multidimensional Hamiltonians
this scaling is even mandatory (s. Sec. 6.3). The idea is to essentially rescale the
Hamiltonian in Eq. 5.17 even further. Using B = 	0/2� · �1/2

C we obtain

� =
1
2
(? − ?g)2

ℏ2 − �J cos
(√
�CG

)
(5.18)

=
1
2
(? − ?g)2

ℏ2 − �J +
ℏ2$2

2 G2 − �224 G
4 + . . . , (5.19)

where we can identify the angular frequency $ of the harmonic oscillator via
ℏ$ =

√
�J�C. With this scaling, all Hamiltonians describe a particle with mass< = ℏ2

and all information of the spectrum is encoded in the potential.

Charge dispersion

Since the phase difference of the condensates on each of the islands can only be
between −� and �, the potential energy as well as the wave functions should be
imagined wrapped around a cylinder. Mathematically speaking, the wave functions
are subject to the periodic boundary condition

#(!) = #(! + 2�). (5.20)

This boundary condition is responsible for giving discrete energy levels, but also
making the qubit charge sensitive.

For a constant or slowly drifting offset charge in time, we can make the ansatz #(!) =
4 8=g!#′(!), or equivalently, we can introduce the Hamiltonian �′ = 4−8=g!�4 8=g! for
the wave function #′. We obtain

�′ =
1
2�C=

2 + �J cos(!). (5.21)

The corresponding eigenfunctions#′
=:

with eigenenergies �=,: are known asMathieu
functions. Due to the periodic potential landscape they are of the form

#′=:(!) = 4
8:!D=:(!) (5.22)

with the wave vector : restricted to the first Brillouin zone and D=:(!) being periodic
with the same periodicity as the potential. The boundary condition Eq. 5.20 is
satisfied when we choose : = −=g, yielding the eigenfunctions

#=,=g(!) = 4 8(=g+:)!D=:(!) = D=,−=g(!) (5.23)

where the prefactor of one-half arises from the Taylor expansion of the cosine. Using �C as defined
here yields more symmetric and compact formulas. Why should we drag along a factor of eight in all
relevant calculations and formulas?
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5.1 Circuit quantization

Eq. 5.24

Figure 5.4: Spectrum of the charge qubit. Wave functions #′=,=g of the charge qubit with
√
�J�C = 5 GHz

and
√
�J/�C =

√
2 for an a even and b odd number of offset electrons. c Spectrum as a function

of the offset charge. The Bloch bands are indicated in light gray. d Charge dispersion &= as a
function of

√
�J/�C. The approximation formula is depicted by the dashed black line.

with corresponding energies �=,=g that are offset charge dependent.

The energies �=,: are dense in : and form separated Bloch bands. For �J/�C > 1, the
energy width & of the lower Bloch bands can be approximated by [208]

&= =

√
�J�C
√
�

25=+4

=!
4

√
�J

�C

2=+1

4
−8

√
�J
�C . (5.24)

In practice, deviations of the sinusoidal current phase relation can lead to amplifica-
tion of the charge dispersion [199]. Finally, the energy spread of the lowest band
can be used as a rough approximation for the fluxoniumqubit frequency (s. Sec. 5.3.5).

The wave functions and their charge dispersion are depicted in Fig. 5.4 for the lower
levels. The numerical approximation of the Mathieu functions is discussed in the
next paragraph.
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Numerical diagonalization

A convenient and fast method for diagonalizing the Hamiltonian in Eq. 5.17, which
exploits the periodic symmetry, is to develop the wave function in the charge basis:

"<(!) = 〈! |"<〉 =
4 8<!

√
2�
. (5.25)

In this basis, the matrix elements of the Hamiltonian are simply

H<,= = 〈"< |� |"=〉 =
�C
2 (= − =g)

2�<,= −
�J

2 (�<,=+1 + �<,=−1), (5.26)

which is a tridiagonal matrix structure that can efficiently be diagonalized numeri-
cally.

Since for
√
�J/�C > 1 the wave functions are well defined by the harmonic potential,

one can use the wave functions of the harmonic oscillator to approximate the lower
charge qubit states. The harmonic oscillator wave functions are of the form

ℎ=(G) = 〈G |ℎ=〉 =
(
�2

�

)1/4 1√
2==!

H=(�G)4−
�2G2

2 , (5.27)

with H= denoting the Hermite polynomials of order =. The parameter � depends on
the scaling B. For the Hamiltonian in Eq. 5.17, we have � = 4

√
�J/�C, while for the

Hamiltonian in Eq. 5.18, we find � =
√
ℏ$.

The flux and charge operators can now be expressed with the creation and annihila-
tion operators of the harmonic oscillator. It holds

G =
1√
2�
(0† + 0), ? =

8ℏ�
√

2
(0† − 0). (5.28)

With these operators, the Hamiltonian in Eq. 5.19 becomes

�′ ≈ ℏ$
(
0†0 + 1

2

)
− �J −

�C
96 (0

† + 0)4 , (5.29)

and in first order approximation we obtain the energies [208]

�= ≈ −�J + ℏ$
(
= + 1

2

)
− �C

16

(
=2 + = + 1

2

)
. (5.30)

Note that the offset charge dependence is lost since harmonic oscillator states do not
obey the periodic boundary condition.
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5.2 On junction arrays and granular aluminum

In the following section, the transition from junction arrays to granular aluminum is
discussed. The complexity showcases the need of the Born-Oppenheimer approxi-
mation that is introduced in the beginning with an illustrative example.

5.2.1 Two junctions in series

Figure 5.5: Two junctions in series and shunted
by a capacitor a without and b with junction
capacitors.

Nonlinear kinetic elements are often defined
by their current phase relation. The current
phase relation can then be integrated to yield
the potential energy for the Hamiltonian up
to a constant offset energy. A convenient
method of modeling networks of non-linear
kinetic elements is therefore to derive the
current phase relation. However, this strat-
egy does not alwayswork [182]. For example,
a junction in series with an linear inductor
can have multiple solutions. In practice, the
ambiguity of the solution branches is lifted
when the charging energy of the individual
elements is taken into account. However, this comes at the cost of an increased
Hilbert space, which may be reduced using the Born-Oppenheimer approximation.

As an illustrative example, we show here the solution of two possibly distinct
Josephson junctions in series that are shunted by a capacitor, as depicted in Fig. 5.5.
In Ref. [210], we presented the analytical solution of the Hamiltonian via the current
phase relation of both junctions. This derivation is briefly reviewed and compared
to the Born-Oppenheimer approximation in the next paragraph.

The current phase relation of both junctions is obtained by solving

�c1 sin(!1) = �c2 sin(!2 − !1), (5.31)

with �c8 being the critical currents of the two junctions. The flux variables without
prime denote the flux of the condensate with respect to the ground node flux,
whereas the variables with prime denote the flux difference across the junctions
(Fig. 5.5). The above equation has always two distinct solutions !1 and !1 + �.
We have to choose the branch that is energetically favored, i.e. the branch where
the currents are driven by the voltage. In order to choose the right branch, we
can assume without loss of generality that �c1 > �c2 . Then, using the identity
sin(G − H) = sin(G) cos(H) − cos(G) sin(H), we find

!1 = arctan
(

sin(!2)
A + cos(!2)

)
, (5.32)
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Figure 5.6: Two junctions in series. a Distribution of the total flux ) on both junctions. b Current phase
relation of two junctions in series and c corresponding potential energy.

where we defined A = �c1/�c2 ≥ 1. The flux that drops at the junctions )′
8
is depicted

in Fig. 5.6. Insertion of !1 in the current phase relation of the first junction yields the
new current phase relation �(!) of the two-junction element, where we introduced
for convenience ! := !2. We find

�(!) = �c1

sin(!)√
A2 + 2A cos(!) + 1

. (5.33)

Integration of the current phase relation gives the potential energy

+(!) = −
√
�2
J1
+ 2�J1�J2 cos(!) + �2

J2
(5.34)

= −�J1 − �J2 +
�J1�J2
�J1 + �J2

!2

2 −
A2 − A + 1
A2 + 2A + 1

�J1�J2
�J1 + �J2

!4

24 + . . . . (5.35)

First, it should be noted that the potential energy at the origin is simply the sum of
both Josephson junction energies. This expected value can always be enforced by
choosing the integration constant. Besides the constant energy offset, we recover for
A →∞ the junction potential of the weaker junction. A closer look reveals that we
obtain an effective Josephson energy �′J via

�′J
!2

2 :=
�J1�J2
�J1 + �J2

!2

2 =
)2

2(!1 + !2)
, (5.36)

which shows that the inductances of the junctions can simply be added, as one
would naively expect. The reduced anharmonicity given by the fourth order term
shows already that junctions in series tend towards a linear inductance, as may
directly be seen by the slanted current phase relation. The current phase relation
and potential energy are shown in Fig. 5.6b, c.
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Born-Oppenheimer approximation

The derivation of the current phase relation leads to a potential that is 2�-periodic.
This result is quite confusing on first glance. Wewould rather expect a 4�-periodicity,
since a phase drop of ±� can be accumulated on each of the junctions before the
wave function turns into itself. Is the reduced periodicity the result of omitting the
energetically unfavored solution branch? This puzzle is solved by considering the
enlarged Hilbert space that emerges when the junction capacitances are included.
The derivation of the Hamiltonian is discussed in more detail in the upcoming
section on junction arrays. Here, we use these results in order to focus on the
Born-Oppenheimer approximation.

The two-dimensional Hamiltonian of the circuit depicted in Fig. 5.5b is

� =
1
2q′) 1

�21 + �22 + 2122

(
� + 22 −�
−� � + 21

)
q′

− �J1 cos
(
!′1

)
− �J2 cos

(
!′2

)
. (5.37)

In order to simplify the analysis, we will next assume that 21 = 22 =: 2. The two
Josephson energies can remain independent.

Next, we can choose a new coordinate system 5′′ = S−15′ and correspondingly
q′′ = S)q′, with

S =
( 1

2 −1
1
2 1

)
, S−1 =

(
1 1
− 1

2
1
2

)
, (5.38)

which yields the Hamiltonian

� =
1
2n′′)

(
�� 0
0 �2

)
n′′ − (�J1 + �J2) cos

(
!′′1
2

)
cos

(
!′′2

)
− (�J1 − �J2) sin

(
!′′1
2

)
sin

(
!′′2

)
, (5.39)

where we define the charging energies �� = 442 · 2/(2� + 2) and �2 = 442/(22). Since
we can identify the direction !′′2 to be always the lighter particle, we rewrite the
potential as

+ = − sgn
(
�Σ(!′′1 )

)
�J(!′′1 ) cos

(
!′′2 − arctan

(
�Δ(!′′1 )
�Σ(!′′1 )

))
, (5.40)

with �J(!′′1 ) =
√
�2
J1
+ 2�J1�J1 cos

(
!′′1

)
+ �2

J2
, �Σ(!′′1 ) = (�J1 + �J2) cos

(
!′′1 /2

)
, and

�Δ(!′′1 ) = (�J1 − �J2) sin
(
!′′1 /2

)
. For details on the latter formula, see Sec. 5.3.2.

The Born-Oppenheimer approximation implies to determine the energy of the lighter
particle in dependence of the position of the heavy particle. The energy of the light
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Figure 5.7: Full quantum mechanical treatment of two junctions in series. Two Josephson junctions
in series with the parameters �J1 = 20 GHz, �J2 = 10 GHz, � = 50 fF, 2 = 10 fF, resulting
in �� = 2.8 GHz and �2 = 7.7 GHz. The parameters were chosen such that the first order
perturbation can be applied in good approximation. a Two-dimensional potential energy
landscape + as a function of )′1,2. The position of minimal energy is depicted by the red solid
line. b Born-Oppenheimer potential +BO experienced by the heavy particle and potential
+ corresponding to the red line in panel a. c Energy and admittance of the light particle
justifying the Born-Oppenheimer and first order approximation. d Predicted qubit transition
frequencies in comparison to the exact diagonalization using a two-dimensional charge basis.

particle becomes the potential landscape of the heavy particle. From Eq. 5.40 we see
that the light particle is simply described by a charge qubit Hamiltonian centered at
the position

!′′2 = arctan
(
�J1 − �J2
�J1 + �J2

tan
(
!′′1
2

))
. (5.41)

This dependence resembles already the classical equation, indeed insertion of !′
8

yields Eq. 5.31.

The energy of the light particle in the ground state is given by Eq. 5.30 in first order
approximation. The potential of the heavy particle is therefore

+BO = −�J(!′′1 ) +
1
2

√
�J(!′′1 )�c −

�c
32 . (5.42)

The first term gives exactly the same potential energy as derived in the previous
paragraph using the current phase relation. The next two terms are essentially Lamb
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shift corrections of the enlarged Hilbert space. The low lying energy spectrum can
now conveniently be computed in first order approximation. In Fig. 5.7 we show
the potential landscape and contrast the approximated and exact qubit transition
frequencies. The Born-Oppenheimer approximation yields indeed a good agreement
with the exact result obtained by numerical diagonalization using a two-dimensional
charge basis (cf. Eq. 5.25).

5.2.2 Josephson junction arrays

Figure 5.8: Equivalent circuit of a junction ar-
ray, assuming identical junctions with Joseph-
son energy �J and capacitance 2 and that the
charging of the junction islands to a common
ground can be neglected. The array is shunted
by the capacitance �, thereby implementing a
!�-resonator shown to the right.

The kinetic inductance of low impedance
flux qubits [211] and high impedance fluxo-
niums [15] is typically implemented by con-
necting a few up to hundreds of Joseph-
son junctions in series. In view of the high
kinetic inductance of granular aluminum,
which may also be modeled as network of
Josephson junctions (s. Sec. 5.2.3), it is worth-
while understanding how the inductance is
formed and to get an idea of the quantum
mechanical complexity.

Junction arrays are often implemented as
a stripline resonator and usually theoreti-
cally modeled as such [202, 212]. This means
that each junction island has a capacitance
to ground, modeling the charging energy, in
addition to the capacitances to its neighbor-
ing islands. This yields a mode structure that
approaches the junction plasma frequency
with decreasing wavelength [202]. In con-
trast, junction arrays that are implemented in “free space” have essentially no
capacitance to ground and only minor capacitances to distant junction islands in
the array. This means that almost all modes can be found at the plasma frequency.
Minimizing the capacitances is an important strategy to avoid frequency crowding,
not only between neighboring quantum circuits but also within the circuit. For
instance, spurious modes in the array can degrade the readout quality as well as the
prediction of the qubit’s dispersive shift on the resonator in the design process. In
practice, this means that high impedance circuits are ideally implemented without
any nearby metallic ground plane and as compact as possible, e.g. by stacking the
junctions, by meandering the inductor when using kinetic inductance materials [19],
or by lifting the circuit from the substrate [222].

The upcoming analysis will examine the junction array from the direction of
negligible capacitance to a common ground. For simplicity, we neglect any geometric
inductance between the junctions as well as spurious capacitances between the
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junction islands that will lift the degeneracy of all the plasma modes shifting
them to lower frequencies. Even though not necessarily needed for most parts of
the derivations, we will assume that the junction array capacitances as well as
the Josephson energies are identical. The starting point is the circuit depicted in
Fig. 5.8. Without the capacitance � shunting the junction array we would have =
uncoupled charge qubits with the plasma frequency 5p =

√
�J�c/ℎ and �c = 442/2.

The Lagrangian of the system is

ℒ = 1
2 2
¤)2

1 +
1
2 2(
¤)2 − ¤)1)2 + · · · +

1
2 2(
¤)= − ¤)=−1)2 +

1
2�
¤)2
=

+ �J cos(!1) + �J cos(!2 − !1) + · · · + �J cos(!= − !=−1). (5.43)

In order to simplify the transition to the Hamiltonian, i.e. the calculation of the
inverse of the capacitance matrix, we can transition to the primed coordinate system,
as depicted in Fig. 5.8, which exploits the symmetry of the system. In this coordinate
system, the Lagrangian is of the form

ℒ = 2

2
¤5′)

©­­«
1

. . .

1

ª®®¬ ¤5′ +
�

2
¤5′)

©­­«
1 . . . 1
...

. . .
...

1 . . . 1

ª®®¬ ¤5′
+ �J cos

(
!′1

)
+ �J cos

(
!′2

)
+ · · · + �J cos(!′=). (5.44)

Here, we can already surmise that the interesting dynamics will happen in the space
diagonal (1 . . . 1)) , which sees the capacitance =� + 2, whereas all other orthogonal
directions experience the capacitance 2. With this information on the eigenvalues of
the capacitance matrix, we can find the inverse and arrive at the system Hamiltonian:

� =
1
22q′)

©­­«
1

. . .

1

ª®®¬ q′ + 1
2

(
1

=2� + =2 −
1
=2

)
q′)

©­­«
1 . . . 1
...

. . .
...

1 . . . 1

ª®®¬ q′

+ �J cos
(
!′1

)
+ �J cos

(
!′2

)
+ · · · + �J cos(!′=). (5.45)

In the usual transmon regime, the wave function will be confined to the center of
the hyper-cube. In the diagonal direction, the potential landscape amounts to

+()′, . . . , )′) = −=�J cos
(
)′
√
=

)
= −=�J +

1
2�J)

′2 − · · · . (5.46)

Interestingly, in contrast to the capacitance, the Josephson inductance remains
unchanged. The =-fold Josephson energy is compensated by the enlarged periodicity
of
√
=	0 in the diagonal direction. This implies an exponential decrease in = for

the charge dispersion in diagonal direction, since �J and �� = 442/(=� + 2) scale
linearly with =, at least for large = (cf. Sec. 5.1.2). At first glance, the naive picture
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that junctions in series amounts to adding their inductances seems not correct. We
are rather looking at the center of mass mode that is =-times as heavy.

In order to clarify this point even further, we can perform an orthogonal basis
transformation S) that maps the basis vectors of the old basis e′

8
on the basis

e′′
8
. We denote the new coordinates as 5′′ = S)5′. Defining e′′1 = (1, . . . , 1)) the

capacitance matrix will be diagonal in the new basis. The non-linear potential
can not be diagonalized simultaneously and gives rise to a large number of non-
linear coupling terms. These nonlinear interactions could be the reason for various
quantum demolishing effects during the qubit readout that seem to be more
detrimental in junction array fluxoniums [213] in comparison to our granular
aluminum fluxoniums [203]. It should be noted that the space diagonal e′′1 becomes
increasingly orthogonal to e′

8
with =, since e′′1

) · e′
8
= 1/
√
= vanishes asymptotically.

A coordinate transformation that yields a Hamiltonian with reduced complexity
can be obtained for = being a power of two. In this case, we can use the fast Haar
wavelet basis as the new coordinate system. The new basis vectors point in different
corners of the hyper cube. To illustrate the pattern, we depict here the coordinate
transformation for = = 8, which is of the form

5′ =

©­­­­­­­­­­­­­­«

1√
8

1√
8

1√
4

0 1√
2

0 0 0
1√
8

1√
8

1√
4

0 − 1√
2

0 0 0
1√
8

1√
8
− 1√

4
0 0 1√

2
0 0

1√
8

1√
8
− 1√

4
0 0 − 1√

2
0 0

1√
8
− 1√

8
0 1√

4
0 0 1√

2
0

1√
8
− 1√

8
0 1√

4
0 0 − 1√

2
0

1√
8
− 1√

8
0 − 1√

4
0 0 0 1√

2
1√
8
− 1√

8
0 − 1√

4
0 0 0 − 1√

2

ª®®®®®®®®®®®®®®¬
5′′, (5.47)

and similar for larger =. Insertion into Eq. 5.45 yields

� =
1
2q′′)

©­­­­«
1

=�+2
1
2

. . .
1
2

ª®®®®¬
q′′ − �J

=∑
9=1

cos

(
=∑
:

S9:!′′:

)
. (5.48)
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Due to our choice of the Haar wavelet basis, one can easily see that along the axes of
the new coordinate system the potential appears to be

+(!′′1 , 0, . . . , 0) = =�J cos
(
!′′1√
=

)
,

...

+(0, . . . , 0, !′′
=/2 , 0, . . . , 0) = 4�J cos

(
!′′
=/2√
4

)
,

...

+(0, . . . , 0, !′′= ) = 2�J cos
(
!′′=√

2

)
.

(5.49)

However, the off-axis potential is not simply a sum of the above potentials, but entails
all kinds of coupling terms to various order. The sum in the cosine functions contains
always 1+ log2(=) terms. Using the identity cos(G + H) = cos(G) cos(H) − sin(G) sin(H)
each cosine function can be split into a sum of = products and in total =2 products
of 1 + log2(=) cosine and sine functions. A basis transform that has no zeros would
instead give a sum of =2=−1 products of = cosine and sine functions. In such a basis,
the diagonalization and computation of matrix elements is clearly hopeless, while
in the Haar basis the identification of spurious couplings could be manageable.

A general strategy to escape the jungle of modes and couplings is (i) increasing the
plasma frequency of the junctions, ideally to far beyond the resonator frequency to
allow for an unhindered multi-photon readout, and (ii) increasing the admittance
of the junctions so that the wave functions are well confined to the center of the
hypercube. For a desired inductance, (i) and (ii) require to increase the number of
junctions,which additionally yields the previouslymentioned asymptotic decoupling
that can also be seen in the Haar basis transformation. This pretty much pinpoints
to granular aluminum and was one of the the main motivations for using it.
Nevertheless, it might be worthwhile to design junction array fluxoniums and
readout resonators with inductors composed of 2= junctions.

Junction array fluxonium

By adding a junction with energy �′J parallel to the shunt capacitance, we obtain a
fluxonium Hamiltonian. The external flux dependence can be included by taking
into account the finite length of the junction array capacitors. This mean that a tiny
geometric inductance must be added in between the junction barriers. We will not
discuss this complication and simply include the flux bias in the final Hamiltonian.
One might wonder whether the fluxonium junction indeed experiences the low
impedance resonance mode that we derived for the junction array. This turns out
not to be the case, since the added junction term amounts to

�′J cos
(
!′1 + · · · + !′=

)
= �′J cos

(√
=!′′1

)
. (5.50)
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Figure 5.9: Illustration and modeling of granular aluminum. a Illustration of the disordered network
of crystalline aluminum grains (blue) embedded in an aluminum oxide matrix. The grains
are connected via tunneling barriers (red) and possibly also form constrictions. b Model of
a granular aluminum wire assuming regularly ordered grains forming a homogeneous 3D
junction network.

Introducing yet another scaling for the fluxonium degree of freedom )′′′1 =
√
=)′′1 ,

we obtain

� =
1
2

=

=� + 2 @
′′′
1

2 − =�J cos
(
)′′′1 −	ext

=

)
− �′J cos

(
!′′′1

)
+ �⊥ (5.51)

≈ 1
2

=

=� + 2 @
′′′
1

2 + 1
2
�J

=
()′′′1 −	ext)2 + �′J cos

(
!′′′1

)
− =�J + �⊥ (5.52)

with �⊥ = �()′′′1 , @
′′
2 , )

′′
2 , . . . , @

′′
= , )

′′
=) denoting the Hamiltonian orthogonal to the

qubit mode, which will disappear in the cause of the Born-Oppenheimer approxi-
mation.

5.2.3 Granular aluminum

Granular aluminum consists of crystalline aluminum grains that are embedded
in an aluminum oxide matrix. The grains have a rather uniform grain size of
3 nm–4 nm [16] and form a network of Josephson junctions in the superconducting
state, yielding the high kinetic inductance [17]. The disordered junction network is
illustrated in Fig. 5.9a.

As long as no flux is trapped inside the granular aluminum film, the phase front of the
superconducting condensatewave functionwill evolve in average continuously along
the wire. We may therefore model the network assuming the grains are arranged
regularly, as shown in Fig. 5.9b. The next approximation, assuming identical junction
barriers between the grains, is certainly an oversimplification, but it allows to model
the film as a junction array, since there is no phase variation across the wire [212].

117



5 Quantum circuits

Now, let ;kin be the kinetic inductance of a wire and 0, 1, and 2 the edge lengths of
the cuboid surrounding the grain (s. Fig. 5.9b). Then, we find for the inductance of a
grain as well as for the slice

!gr =
;kin2

01
, and !slice =

;kin2

Fℎ
. (5.53)

Assuming an inductance ! consisting of < slices, it must hold

< =
!

!slice
=

√
!+

;kin22 =

√
!+

!gr+gr
, (5.54)

where we introduced the volume of the wire + and the volume of the grain
+grain = 012. Using the result of the previous section, the potential energy of the
granular aluminum wire is

* = −
<	2

0
4�2!slice

cos
(! − !ext

<

)
= −

+�gr

+gr
cos

(√
�L+gr

�gr+
(! − !ext)

)
. (5.55)

We neglect here the constant offset energy of all the the junctions that connect the
grains within the slice. In the last step, we introduced the Josephson energy �gr
between the grains as well as the energy �L of the inductor.

5.2.4 Granular aluminum resonator

Wewill nowdiscuss a lumpedelement granular aluminum resonator, as implemented
for instance for the readout of our granular aluminum fluxoniums [18]. The lumped
resonator consists of a capacitorwith charging energy �C and the granular aluminum
wire that we model with Eq. 5.55. The time-dependent flux can be removed as usual.
Approximating the potential up to fourth order yields the Hamiltonian

� =
�C
2 =2 −

+�gr

+gr
+ �L

2 !2 −
�2
L+gr

+�gr

!4

24 . (5.56)

Now, using first the approximation of Eq. 5.30 gives the nonlinear energy spectrum

�= = −
+�gr

+gr
+ ℏ$

(
= + 1

2

)
− ℏ

2$2

16+
+gr

�gr

(
=2 + = + 1

2

)
(5.57)

and the self-Kerr  of the resonator, here defined as  = ℏ2$2+gr/16+�gr [212].

As an insightful example, we can use the results of Winkel [20] to extract typical
parameters of granular aluminum, i.e. the Josephson junction energy �gr between
the grains as well as the effective grain size 2.
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First of all, from the stated inductance and the size of the grAl wire, we extract
;kin = 11.4 nHnm. From the specific resistivity � = 1800 µΩcm measured at room
temperature3, we obtain a kinetic inductance resistivity ratio of


 = 0.63 nH/kΩ. (5.58)

This value agrees with the predictions of the Mattis-Bardeen theory. Using the
measured critical temperature of )c = 2.2 K and the relation Δ = 1.76:B)c, a ratio
of 
 = 0.63 nH/kΩ is expected from Eq. 5.8, in agreement with the experimental
findings. Forhigher resistivities above the dome of the critical temperature [16],where
also deviations from the BCS-theory are observed [198, 214], values of 
 = 0.9 nH/kΩ
have been measured [63].

Next, from Eq. 5.57 and using the measured self-Kerr  = 2.24 MHz, we can extract
a grain energy to volume ratio of

�gr

+gr
= 1.55 MHz/nm3 , (5.59)

and furthermore from Eq. 5.54, we obtain

2 =

√
	2

0
4�2 ;kin

+gr

�gr
= 96 nm. (5.60)

This grain size is more than one order of magnitude larger than the previously
mentioned physical grain size of 3 nm–4 nm. This discrepancy has been noticed in
Ref. [212] and was attributed to a potentially imprecise photon number calibration.
Since the measurements ofWinkel have been photon number resolving, it has instead
been argued that several grains could be shunted together, forming effectively larger
grain structures, as can be seen in [52].

Before going into further details, one could fear that the measured nonlinearity in
Ref. [20] was superimposed by a possible contact junction between the grAl film
and the shunting aluminum pads. Although this contribution was argued to be
negligible, supported by measurements in magnetic field, an even more precise
measurement of the nonlinearity would be desirable, which will be discussed in the
next section.

3As was mentioned before, for a comparison with the Mattis-Bardeen formula the resistivity should be
measured at the critical temperature. Fortunately, in the resistivity range that we typically use, the
granular aluminum films have a residual resistance ratio (RRR) that is close to unity [17, 198].
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5.2.5 Granular aluminum nonlinear interference

Figure 5.10: Resonator with capacitance
� and field tunable granular aluminum
ring inductance with inductances !1 and
!2 enclosing the external flux 	ext.

A precise method to measure the grAl nonlin-
earity is to inductively couple a resonator to a
granular aluminum ring. The resonator emulates
a four probe measurement of the nonlinear induc-
tance that can be tunedwith the externalmagnetic
field, i.e. by inducing screening currents in the
ring. The circuit is shown in Fig. 5.10, which was
inadvertently implemented in our gradiometric
fluxoniums [203]. The underlying physics is in
great similarity to the superconducting nonlinear
asymmetric inductive element (SNAIL) [215].

The potential energy of both grAl wires with inductances L1,2 and volumes +1,2 may
be expressed by a Taylor expansion *tot =

∑
: *: following Eq. 5.55. Including the

external magnetic fluxes !ext1,2 and a possible trapping of < flux quanta4, it holds

*: = −
+1�gr

+gr

(√
�L1+gr
�gr+1
(! − !ext1)

)2:

(2:)! −
+2�gr

+gr

(√
�L2+gr
�gr+2
(2�< − ! − !ext2)

)2:

(2:)! .

(5.61)

Next, we parameterize the inductances !1 = (1−sin(�))/2 ·! and !2 = (1+sin(�))/2 ·!
via � and the total inductance of the loop ! = !1 + !2. We define the limit of linear
inductors as the unperturbed Hamiltonian �0. Introducing !′ = ! − !min shifted to
the flux dependent potential minima, we find

�0 =
�C
2 =2 − +1 ++2

+g
�g +

�L
2 (2�< − !ext)2 +

4�L

2 cos2(�)!
′2 , (5.62)

with !ext = !ext1 + !ext2 . Not surprisingly, the screening current in the loop yields
the flux-dependent offset energy.

Now, one can calculate the nonlinear perturbance, that arises from *2. It can be
decomposed (not recommended by hand) as a Taylor expansion in !′ with terms up
to fourth order:

, =

4∑
;=0

2;!
′; . (5.63)

4For further details on how to include the external fluxes see Sec. 5.3.1.
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The prefactors are

20 = −
�2
L

96
+gr

�gr

+2 ++1 − 2(+2 −+1) sin(�) + (+1 ++2) sin2(�)
+1+2

· (2�< − !ext)4 ,

21 = −
�2
L

12
+gr

�gr

+2 −+1 − (+1 ++2) sin(�)
+1+2

· (2�< − !ext)3 ,

22 = −
�2
L

4
+gr

�gr

+1 ++2
+1+2

· (2�< − !ext)2 , (5.64)

23 = −
�2
L

3
+gr

�gr

+2 −+1 + (+1 ++2) sin(�)
+1+2 cos2(�) · (2�< − !ext) ,

24 = −
�2
L

6
+gr

�gr

+2 ++1 + 2(+2 −+1) sin(�) + (+1 ++2) sin2(�)
+1+2 cos4(�) .

With the coefficient 24 we find again a nonlinear resonator that is independent on
the magnetic field and trapped persistent currents. With increasing flux, 23 yields
a cubic perturbation and hence allows for three wave mixing processes that are
utilized in SNAILs.

However, since the correction on the resonator frequency first appears in second
order perturbation5, we obtain a quadratic flux dependence that is small compared
to the corrections of 22. In addition, choosing identical inductors, the third order
term can completely be removed. The main contribution comes therefore from 22,
which allows to define the flux tunable inductive energy of the resonator

�res
L =

4�L

cos2(�) + 222. (5.65)

The relative frequency shift of the second order term is

Δ 5 (2)

5
= −�L cos2(�)

16
+gr

�gr

+1 ++2
+1+2

(2�< − !ext)2. (5.66)

Interestingly, the highest sensitivity is reached for identical inductances and with
the grAl volumes as small as possible. Ideally, the grAl volumes are also chosen
identical to remove the third-order nonlinearity.

5The third order term gives in second order perturbation an energy correction of Δ 5
(3)
=
5

=

− �L cos2(�)
4608

√
4�L�C
cos(�)2

+2
gr
�2
gr

[+2−+1+(+1++2) sin(�)]2
+2

1 +
2
2

· (30=2 + 30= + 11) · (2�< − !ext)2, with = being the photon

number.
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Figure 5.11: Nonlinear resonator frequency shift. Resonator phase response arg((11) of the gradiometric
fluxonium as a function of the external flux and of the drive frequency. The flux was
calibrated with nearby non-gradiometric fluxoniums. The dashed black line shows the
extracted frequency shift of Δ 5 = 6.1 MHz at 121	0. The parameters are �r = 22.0 fF,
extracted from simulations and prior experiments6, which yields !r + !s = 22.3 nH. The
shared inductance !s ≈ 2.8 nH was extracted from the dispersive shift by the qubit, but can
also be inferred from the design. The inductance of the ring amounts to ! = 307 nH with a
grAl volume + = 2.97 µm3. The measurement data was taken from Ref. [203].

If both inductors are made with the same cross section such that !8 = 
+8 , the
formula simplifies to

Δ 5 (2)

5
= −1

4
�L
+

+gr

�gr
· (2�< − !ext)2. (5.67)

In our gradiometric fluxonium design, the resonator was implemented with an ad-
ditional inductance �Lr in series to the inductive ring. The corresponding inductance
can simply be added to the tunable inductance of �L(!ext), which yields a reduced
sensitivity of

Δ 5 (2)

5
= − �Lr

�Lr + 4�L
cos2(�)

�L cos2(�)
16

+gr

�gr

+1 ++2
+1+2

· (2�< − !ext)2. (5.68)

From themeasured frequency shift that is shown in Fig. 5.11 and from the parameters
of the circuit stated in the caption, we extract

�gr

+gr
= 2.2MHz/nm3 (5.69)

6In Ref. [203], the resonator inductance was inferred from the rather small shared inductance.
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for a specific inductance of ;kin = 10.6 nHnm. Similar to the value stated before, we
obtain 2 = 67 nm.

The question remains how to explain the discrepancy between effective and physical
grain size. In Ref. [90], the scaling of the effective grain size 2 as a function of the film
resistivity is shown, estimated from the data of Ref. [212]. It shows an increasing
effective grain size with the film resistivity, ranging from 10 nm to 70 nm. This could
mean that an increasing disorder of the junction barriers must be taken into account.
Numerical simulations of 3D junction networks seem to support this conjecture.
However, solving accurately the nonlinear current phase relation in large networks
is numerically challenging and time-consuming and for this reason not part of this
thesis. Nevertheless, an alternative point of view is to imagine that higher resistivities
appear as a smaller grAl volume, which therefore increases the nonlinearity.

5.3 The flux qubit

Figure 5.12: Equivalent circuit of the flux
qubit. It consists of a Josephson junc-
tion with energy �J that is shunted by a
capacitance � and inductance !, which
encloses the external flux 	ext.

In this section, a detailed analysis of flux type
qubits is presented. The equivalent circuit is de-
picted in Fig. 5.12. The inductive shunt of the
junctions prevents the qubit from being suscep-
tible to slowly varying electric fields, which can
be caused by charge noise or gate voltages in the
environment. The voltage difference that drops
over the Josephson junction will cause a current
flow through the inductor until the electric field
is compensated. This insensitivity can also be seen quantum mechanically. In its
most general form, the Hamiltonian of the flux qubit reads [188, 216]

� =
1

2� (@ − @g)
2 + 1

2! () −	ext)2 − �J cos
(

2�
	0

)

)
. (5.70)

If the offset charge @g is constant in time, the transformation 4−8@g)/ℏ�4 8@g)/ℏ will
remove the offset charge from the Hamiltonian. However, for a time-dependent
offset charge, this transformation leads to additional terms in the time-dependent
Schrödinger equation. In particular for ultra large inductors, charge noise could
become again a non-negligible source of decoherence. Similarly, for an external flux
constant in time, we may simply shift the coordinate system )→ ) +	ext, which
yields

� =
1

2� @
2 + 1

2!)
2 − �J cos

(
2�
	0
() +	ext)

)
. (5.71)

Using the scaled coordinates introduced in Sec. 5.1.2, we obtain

� =
1
2�C=

2 + 1
2�L!

2 − �J cos(! + !ext), (5.72)
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where we introduced the inductive energy �L = 	2
0/4�2!. Furthermore, in the

coordinate system of unified particle mass < = ℏ2, the Hamiltonian reads

� =
1
2
?2

ℏ2 +
ℏ2$2

2 G2 − �J cos
(√
�CG + !ext

)
, (5.73)

where the angular frequency $ =
√
�L�C/ℏ of the harmonic oscillator can be

identified.

5.3.1 The gradiometric fluxonium

Figure 5.13: The gradiometric fluxonium
with external fluxes 	l and 	r in the left
and the right loop.

A variation of the fluxonium qubit is the gra-
diometric fluxonium [203, 217]. When cooled
down in a magnetic field, it can be biased at
half flux. In addition, it is insensitive to global
field drifts. The circuit is depicted in Fig. 5.13.
For simplicity, it is assumed that the induc-
tances shunting the junction to the left and to
the right are of equal size. The potential energy
of the inductors is

+! =
1

2!
(
)l − (	s +	d)

)2 + 1
2!

(
)r − (	s −	d)

)2
, (5.74)

where the sum and the difference of the external fluxes 	s = (	l + 	r)/2 and
	d = (	l − 	r)/2, respectively, was introduced. The flux of the superconducting
phase has to add up to integer values of flux quanta )l + )r = <	0. For clarity,
) = )r is introduced. After some little algebra, one finds

+! =
1

2(!/2)
(
) −

(<
2 	0 −	d

))2
+ 1

2(!/2)
(<

2 	0 −	s

)2
. (5.75)

This shows first of all that a homogeneous external magnetic field does not enter the
fluxonium Hamiltonian, but only gives rise to persistent screening currents. Only
local flux sources that produce a field gradient over the sample can be used to bias
the fluxonium.

Note that by blindly following the circuit quantization rules, closing the branch to
the left and to right of the junction requires introducing three flux quantization
conditions, two for the left and right loops and one for the persistent current loop.
In addition, it leads to the neglect of the persistent current energy [218].

5.3.2 The SQUID fluxonium

Superconducting qubits are often implemented with a flux tunable Josephson
energy by implementing the junction as a superconducting quantum interference
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5.3 The flux qubit

Figure 5.14: Equivalent circuit of the SQUID fluxonium. a Premature circuit of the fluxonium with a
SQUID junction and b correct circuit diagram including the geometric inductance of the
SQUID. The inner Josephson junction with energy �Ji encloses the external flux 	l, whereas
the outer Josephson junction with energy �Jo encloses an additional flux 	s, which is the
external flux of the SQUID.

device (SQUID). Themain experimental results presented in this thesiswere obtained
with a SQUID fluxonium [18, 33]. For further details on the design, see Sec. 7.1.

The equivalent circuit of the SQUID fluxonium is shown in Fig. 5.14a with the SQUID
formed by the two junctions. Being pedantic, the circuit diagram of the SQUID is
premature. Flux biasing the SQUID in this form is not possible, since the external
flux only appears in the inductor. In practice, however, the finite length of the feed
lines always results in a non-negligible geometric inductance. The correct circuit
is therefore the one shown in Fig. 5.14b. Its circuit quantization and its reduction
to a one dimensional Hamiltonian using the Born-Oppenheimer approximation is
discussed in Ref. [189].

As discussed in Sec. 5.3, for a time-independent external flux bias, the Hamiltonian
can be transformed so that the flux bias appears in the potential of the Josephson
junctions. The potential of the Hamiltonian is

+ =
1

2! )2 − �Ji cos
(

2�
	0

(
) +	l

) )
− �Jo cos

(
2�
	0

(
) +	l +	s

) )
. (5.76)

Here, the inner junction with a Josephson energy �Ji encloses the external flux 	l.
The outer junction with a Josephson energy �Jo encloses an additional flux 	s with
the inner junction, which is the external flux of the SQUID. The Josephson energies
in Eq. 5.76 can be rewritten as

�Ji cos(! + !l) + �Jo cos(! + (!l + !s))
= �Σ(!s) cos(! + !l + !s/2) − �Δ(!s) sin(! + !l + !s/2)

= sign (�Σ(!s)) ·
√
�Σ(!s)2 + �Δ(!s)2 · cos

(
! + !ext + arctan

(
�Δ(!s)
�Σ(!s)

))
= �eff

J (!s) · cos
(
! + !eff

ext(!l , !s)
)
, (5.77)

where the flux dependent energies are �Σ(!s) = (�Ji + �Jo) cos(!s/2) and �Δ(!s) =
(�Jo −�Ji) sin(!s/2) defining the flux tunable Josephson energy �eff

J of the fluxonium.
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Figure 5.15: Measured and calculated energy spectrum of the granular aluminum SQUID fluxonium.
At the SQUID frustration the spectrum approaches that of a harmonic oscillator. The
hyperpolarization with the Szilard engine was mainly studied at the indicated flux, but
also at the two neighboring flux sweet spots. The slight deviations to the theoretical model,
especially at higher frequencies, are likely caused by spurious capacitances in the design.
We expect the first self-resonant mode of the fluxonium superinductor in the range of
15GHz. The extracted parameters are ! = 233.7 nH, � = 6.96 fF, �Ji + �Jo = 20.23 GHz,
�Jo − �Ji = 0.66 GHz, and A = 50.0.

The linear external flux is given by !ext = !l + !s/2, showing that the SQUID flux
contributes half to the external flux bias of the fluxonium. It should be noted that in
case the two junctions are not identical, the nonlinear flux roll-off given by the inverse
tangent tells apart which of the two junctions has the larger or smaller Josephson
energy. In contrast, this is not possible for a charge qubit that is implemented with a
SQUID. In Fig. 5.15, the measured and calculated energy spectrum of the SQUID
fluxonium is shown.

In our experiment, a homogeneous magnetic field is applied to our circuit. If the
areas of the enclosing loops have the ratio A = �l/�s, the flux in the SQUID is related
to the external flux by

!s

2 =
1

2A + 1 · !ext. (5.78)

Last, it should be mentioned that for a SQUID fluxonium the condition for destruc-
tive quasiparticle interference at both Josephson junctions can no longer be met
simultaneously when the SQUID is partially frustrated. The SQUID fluxonium will
therefore in general not decouple from quasiparticle loss at the junction [55, 71]. The
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quasiparticle destructive interference condition requires the condensate to have a
phase difference of � across the junction. Hence, we must have

!l = 2�: + � ∧ !s = 2�<, <, : ∈ Z, (5.79)

and it follows that the Josephson energies add up to −
(
�Ji + �Jo

)
cos(!) resulting in

a flux qubit biased at half flux, but leaving no room for tuning the Josephson energy.
For example, in our quantum Szilard engine experiment, the device was operated at
	ext = 20.48	0 and designed with A = 50.0 ± 0.1, therefore we have

!s =
2

2A + 1 · !ext = 0.41 · 2�,

!l =

(
1 − 1

2A + 1

)
· !ext = 20.28 · 2�,

!l + !s =

(
1 + 1

2A + 1

)
· !ext = 20.69 · 2�.

(5.80)

5.3.3 Diagonalization via the harmonic oscillator basis

The wave functions of the fluxonium have to be solved numerically. For a fast
convergence, it is expedient to develop the wave functions with a suitable set of basis
functions. A natural choice are the eigenfunctions of the harmonic oscillator with the
nonlinear Josephson potential being the perturbance [219]. The harmonic oscillator
wave functions are stated in Eq. 5.27. As before, the parameter � depends on the
coordinate system. In the basis of the dimensionless operators, i.e. the Hamiltonian
in Eq. 5.72, we have � = 4

√
�L/�C.

The flux and charge operators can now be expressed with the creation and annihila-
tion operators of the harmonic oscillator. It holds

)

	0
=

!

2� =
1√
8�2

4

√
�C
�L
(0† + 0) =

)ZPF

	0
(0† + 0), (5.81)

@

24 = = =
8√
2

4

√
�L
�C
(0† − 0) = 8 ·

@ZPF

24 (0
† − 0). (5.82)

The flux and charge zero point fluctuations (ZPF) may further be simplified to yield
the symmetric form

)ZPF

	0
=

√
/

4�'Q

@ZPF

24 =

√
'Q

4�/ , (5.83)

with the impedance / =
√
!/� and the resistance quantum 'Q = ℎ/442. In the

regime where / ≈ 'Q, the flux and charge fluctuations are of similar size. In this
regime, flux qubits are denoted as fluxonium qubits [15].
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With respect to the harmonic oscillator basis, the Hamiltonian matrix elements are

H<,= = 〈ℎ< |� |ℎ=〉 = ℏ$
(
= + 1

2

)
�<,= − �J 〈ℎ< |cos(! + !ext)|ℎ=〉 , (5.84)

The junction term must first be decomposed using

cos(! + !ext) = cos(!ext) cos(!) − sin(!ext) sin(!) (5.85)

before it can be integrated analytically. It holds [220]

〈ℎ< |cos(!)|ℎ=〉 =
∞∫
∞

〈ℎ< |!〉 〈! |ℎ=〉 cos(!)d!

=

∞∫
∞

cos(1H)
√

2<+=<!=!�
H<(H)H=(H)4−H

2dH

=


(−1) <̃−=̃2

1<̃−=̃√
2<̃−=̃<̃!/=̃!

L<̃−=̃
=̃

(
12

2

)
4−

12
4 , < + = even,

0, < + = odd,
(5.86)

where we used the substitution H = �! and defined <̃ = max(<, =) and =̃ =

min(<, =) as well as 1 = 1/� =
√

8�2)ZPF/	0. Similarly, we have

〈ℎ< |sin(!)|ℎ=〉 =


0, < + = even,

(−1) <̃−=̃−1
2

1<̃−=̃√
2<̃−=̃<̃!/=̃!

L<̃−=̃
=̃

(
12

2

)
4−

12
4 , < + = odd. (5.87)

Numerical diagonalization of the Hamiltonian gives the eigenenergies and corre-
sponding eigenfunctions. In Fig. 5.16a, b the wave function representation for zero
and half flux is shown,while in Fig. 5.16c the eigenenergies are depicted as a function
of the external flux. The qubit frequency can be tuned over a wide range and forms
a well separated qubit system at half flux. In Fig. 5.16d, the speed of convergence is
depicted.
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Figure 5.16: Spectrum and convergence of the fluxonium. a Wave function representation of the
fluxonium at zero flux and b at half flux for ! = 300 nH, � = 5 fF and �J = 9 GHz. c Energy
spectrum with respect to the ground state as a function of the external flux. d Relative error
of the eigenenergies depending on the number of harmonic oscillator states used for the
diagonalization.

5.3.4 LCAO-diagonalization

The diagonalization with the harmonic oscillator basis is only efficient as long as all
energies are of comparable size. In the regime where the junction is shunted by a
comparably loworultra-high impedance resonator, otherdiagonalization approaches
can becomemore efficient. Representative circuits with a comparably low impedance
are the original flux qubit and the heavy fluxonium [221], while the regime of ultra-
high impedance is best represented by the quasicharge7 qubit [222], where �L was
substantially decreased by the implementation of a so-called hyperinductance. The
regime of ultra-high impedance circuits can conveniently be reached using the
high kinetic inductance of granular aluminum and could allow the study of high
dimensional topologically protected qubits [223].

The reason why the diagonalization with the harmonic oscillator basis becomes
inefficient is the fastwave functionmodulation inducedby the cosine potential,which

7In my opinion, the name blochnium, which is also used is rather misleading. The ultra-high impedance
is implemented in such a way as to keep the average level spacing given by ℏ$ =

√
�L�C in the

microwave regime. The formation of Bloch bands requires instead the limit �L → 0 with �J , �C being
finite.
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requires a large number of harmonic oscillator states (s. Fig. 5.16d). Especially for
higher dimensional systems, this basis is not suitable. Since the potential landscape
of superconducting circuits resembles that of a molecule, it is not far to seek to use a
linear combination of atomic orbitals (LCAO). The advantage is not only a smaller
number of basis functions, but it also avoids the computation of high order Laguerre
polynomials. However, the speed of convergence is only on credit, since the set of
atomic orbital wave functions is generally overcomplete. In this case, the convergence
will slow down approximately with the number of sites, and on top, the method
becomes numerically unstable. When a high precision is required, one should rather
look for an orthogonal wavelet basis, ideally with analytical Hamiltonian matrix
elements. The LCAO method, also known as the tight-binding model, has been
covered in the literature [224]. Here, we follow a slightly different approach: instead
of approximating the potential with ladder operators, we derive the analytical
integrals. As an instructive example, the diagonalization of an ultra-high impedance
fluxonium is shown.

The eigenfunctions # of the Hamiltonian can be approximated by a linear superpo-
sition of atomic orbital wave functions ": . We therefore make the ansatz

# =
∑
:

2:": =
∑
:

(0: + 81:)": . (5.88)

Following the Rayleigh-Ritz method, the eigenfunctions are best approximated by #
when the gradient of the corresponding energy

�(01 , 11 , 02 , 12 , . . . ) =
〈# |� |#〉
〈# |#〉 (5.89)

vanishes. This leads to the condition

∇� = 1
〈# |#〉

©­­­­­«
∇ 〈# |� |#〉 − 〈

# |� |#〉
〈# |#〉︸     ︷︷     ︸

�

∇ 〈# |#〉

ª®®®®®¬
= 0. (5.90)

Defining thematricesH<,= = 〈"< |� |"=〉 andS<,= = 〈"< |"=〉 leads to the generalized
eigenvalue problem

Hc = �Sc. (5.91)

For the atomic orbital states, we use the harmonic oscillator basis in each of the
wells of the cosine potential. Ideally, these atomic orbitals should be positioned at
the local potential minimum. Unfortunately, the positions of the minima are not
equidistantly spaced but slightly shifted to the side by the harmonic potential, and
the exact positions are not analytically available. However, in the regime of interest,
the use of approximate positions will be quickly compensated by higher orbitals and

130



5.3 The flux qubit

will only affect the convergence of higher excited states. The use of equidistantly
spaced atomic orbitals greatly reduces the number of matrix elements that have to
be calculated.

For the atomic orbitals "=; , we therefore use the harmonic oscillator states ℎ= with
excitation = positioned at !; = 2�; − !ext. The atomic orbitals functions are

"=;(!) =
(
�2

�

)1/4 1√
2==!

H=(�(! − !;))4−
�2(!−!; )2

2 . (5.92)

The parameter � may also be used to speed up the convergence. Here, we use
� = 4

√
�J/�C, which corresponds to the energy ℏ$p =

√
�J�C in the junction potential,

with $p denoting the plasma frequency.

All integrals for the calculations of the matrix elements are analytical thanks to the
Taylor expansion of the Hermite polynomials

�=(G + H) =
=∑
8=0

(
=

8

)
�8(G)(2H)=−8 . (5.93)

It is useful to introduce the distance 3:; = �(!; −!:) and the center B:; = �(!; +!:)/2
of two atomic orbitals. For example, using the substitution H = �!, the calculation
of the overlap integrals simplifies to

〈"<: |"=;〉 =
1√

2<+=<!=!�

∞∫
∞

�<

(
H − B + 32

)
�=

(
H − B − 32

)
4−(H−B)

2
4−

32
4 dH.

(5.94)

Defining G = H − B and using Eq. 5.93, we obtain for the integral �<,=(3) := 〈"<: |"=;〉
the expression

�<,=(3) =
4−

32
4

√
2<+=<!=!�

∞∫
∞

<∑
8=0

=∑
9=0

(
<

8

) (
=

9

)
�8(G)�9(G)3<−8(−3)=−94−G

2dG

=
4−

32
4

√
2<+=<!=!

min(<,=)∑
8=0

28 8!
(
<

8

) (
=

8

)
3<−8(−3)=−8 , (5.95)

where we used the orthogonality of the Hermite polynomials with respect to the
Gaussian weight.
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The matrix element calculations of the Hamiltonian follow the same line. First, we
define the integrals

IG<,=(3) =
4−

32
4

√
2<+=<!=!�

·
∞∫
∞

G�<

(
G + 32

)
�=

(
G − 32

)
4−G

2dG

=

√
<

2 · I<−1,=(3) +
√
=

2 · I<,=−1(3), (5.96)

IG2
<,=(3) =

4−
32
4

√
2<+=<!=!�

·
∞∫
∞

G2�<

(
G + 32

)
�=

(
G − 32

)
4−G

2dG

= IG<,=(3) + I<,=(3)/2. (5.97)

The harmonic potential can now be expressed as

〈"<: |
�L!2

2 |"=;〉 =
�L4

− 32
4

√
2<+=<!=!�

∞∫
∞

�<

(
G + 32

)
(G − B)2

2�2 �=

(
G − 32

)
4−G

2dG

=
ℏ$2

2$p

(
�G

2
<,=(3) − 2B�G<,=(3) + B2�<,=(3)

)
. (5.98)

Next, the kinetic energy has to be computed. It holds

〈"<: |−
�C
2

%2

%!2 |"=;〉 =
(
−�C

2
%2

%!2 |"<:〉
)†
|"=;〉

⇔
ℏ$p

4 〈"<: |2= + 1 −
(
G − 32

)2

|"=;〉 =
ℏ$p

4 〈"<: |2< + 1 −
(
G + 32

)2

|"=;〉 .

Taking the average of the left and right formula, a symmetric formula in <, = can be
obtained:

〈"<: |−
�C
2

%2

%!2 |"=;〉 =
ℏ$p

2

(
−�G2

<,=(3) +
(
< + = + 1 − 3

2

4

)
�<,=(3)

)
. (5.99)

Finally, the overlap with the cosine potential needs to be computed. Here, the
equidistant choice of the atomic orbitals plays to our strength:

〈"<: |−�J cos(! + !ext)|"=;〉 =

= −
�J4
− 32

4
√

2<+=<!=!�

∞∫
∞

cos
(
G

�
+ 2�; + 2�:

2

)
H<

(
G + 32

)
H=

(
G − 32

)
4−G

2dG

= −
(−1);+:�J4

− 32
4

√
2<+=<!=!�

<∑
8=0

=∑
9=0

(
<

8

) (
=

9

)
3<−8(−3)=−9 ·

∞∫
∞

cos (1G)�8(G)�9(G)4−G
2dG

= −(−1):+;�J Icos<,=(3, 1), (5.100)
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Figure 5.17: Spectrum and convergence of an ultra-high impedance fluxonium. a Wave representation
of the ultra-high impedance fluxonium at half flux for ! = 3000 nH,� = 2 fF and �J = 20 GHz.
For the diagonalization, the ground state orbitals in the lowest 8 wells and additional 54
orbitals in the lowest 6 wells are used. b Energy spectrum with respect to the ground state as
a function of the external flux. c Comparison of the relative error of the eigenenergies in
dependence of the number of basis functions used for the diagonalization. d Eigenvalues of
the S matrix sorted in descending order, showing that out of the 62 orbitals only about 40
are linearly independent.

where we define again 1 = 1/�. The solution of the remaining integral was given
in the previous section. For non equidistantly spaced orbitals, one also needs the
integral Isin<,=(3, 1), for which simply the cosine in Icos<,=(3, 1) has to be replaced with
the sine function. All together, the Hamiltonian matrix elements read

H<:,=; =
ℏ

2

(
$p

(
< + = + 1 −

32
:;

4

)
+ $2

$p
B2
:;

)
I<,=(3:;)

+ ℏ$
2

$p
B:; IG<,=(3:;) + ℏ

$2 − $2
p

2$p
IG2
<,=(3) − (−1):+;�J Icos<,=(1, 3:;).

(5.101)

The diagonalization of an ultra-high impedance fluxonium is shown in Fig. 5.17a.
In Fig. 5.17b, it can be seen that the energy dispersion of the ultra-high impedance
fluxonium becomes flat with respect to the applied external flux [222]. Therefore, the
ultra-high impedance fluxonium plays a similar role in relation to the flux qubit as the
transmon does for the charge qubit. The speed of convergence of the LCAO-method
is greatly improved compared to the diagonalization using the harmonic oscillator
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states, as can be seen in Fig. 5.17c. The fact that mainly the orbitals of the six lowest
sites have been used shows that roughly five states per site are required to obtain a
good convergence. This will also be discussed in more detail in the next section. For
more than five orbitals per site, the convergence slows down and becomes numerical
unstable for more that ten orbitals per site. This can be explained by Fig. 5.17d
showing the eigenvalues of the S matrix in descending order. From the 62 orbitals
used for the diagonalization only about 40 states are linearly independent.

5.3.5 Fluxonium qubit approximation formula

In this section, the LCAO-method will be used to derive an approximation for the
fluxonium qubit frequency biased at half flux. The approximation using the two
ground state orbitals in each of the wells is not very precise due to the shape of
the Gaussian wave function and approximation of the local minima. Nevertheless,
the formula provides a good estimate in the regime

√
�J/�C < 1, where the charge

dispersion formula becomes unprecise (cf. Fig. 5.4).

Let |"0〉 = |l〉 and |"1〉 = |r〉 denote the Gaussian wave functions in the left and the
right well, respectively. Close to half flux their center positions are !l = −�/2 −
(!ext − �) and !r = �/2 − (!ext − �) in first order in the external flux. Here, we
introduced the distance � between the states, which is kept as free parameter that
can in principle be used to minimize the ground state energy. For instance, � may be
chosen to match the exact minima of the wells at half flux. This, however, requires to
solve the transcendental equation �/2 = �J/�L sin(�/2) numerically. In first order
approximation, this equation yields � ≈ 2�/(1 + �L/�J), valid for �J � �L. With
only the ground states present < = = = 0, the calculations of the matrix elements
following Eq. 5.101 are greatly simplified and amount to

S8 9 = 4−
32
8 9
4 → S =

(
1 4−

�2�2
4

4−
�2�2

4 1

)
, (5.102)

H8 9 =

[
�C�2

2

(
1
2 −

32
8 9

4

)
+ �L

2�2

(
1
2 + B

2
8 9

)
− �J4

− 12
4 cos

(
1B8 9 + !ext

) ]
· 4−

32
8 9
4 .

(5.103)

The approximate eigenenergies are the eigenvalues of the matrix G = S−1H. We have

G =
1

1 − 4−
�2�2

2

·
(
H00 −H104

− �2�2
4 H01 −H114

− �2�2
4

H10 −H004
− �2�2

4 H11 −H014
− �2�2

4

)
. (5.104)
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5.3 The flux qubit

Eq. 5.107
Eq. 5.104, exact �

Figure 5.18: Convergence of the LCAO method for a typical fluxonium. a Approximation of the energies
and b of the qubit frequency for an increasing number of orbitals # in total. For the dashed
blue line, the exact distance of the potential minima at half flux is used for � and � =

√
�J/�C.

The parameters are ! = 300 nH, � = 5 fF and �J = 15 GHz.

Next, we will derive an approximation formula exactly at half flux where the
symmetry G00 = G11 can be exploited. The eigenenergies �0,1 of the fluxonium and
the fluxonium qubit frequency 501 = (�1 − �0)/ℎ are then given by

�0,1 = G00 ± |G01 | (5.105)

ℎ 501 = 2|G01 | =
�����4�2

4 �C − 4�J4
− 1

4�2 + �2

4 �L

���� · 4−
�2�2

4

1 − 4−
�2�2

4

(5.106)

≈
((
�2 − 44−

1
4
√
�C/�J

)
�J + �2�L

)
· 4−�

2
√
�J/�C

1 − 4−�2
√
�J/�C

. (5.107)

In the last step, the approximations � = 2� and � = 4
√
�J/�C were inserted. The

denominator may be approximated as well, since the overlap of the left and the right
wave function is usually quite small. We keep it here for completeness.
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In order to compare this approximation to the charge dispersion of the charge qubit,
we rewrite �J = ℎ 5p

√
�J/�C, with 5p being the plasma frequency, and consider the

limit
√
�J/�C > 1, assuming as well �J � �L. This gives the limit behavior

501/ 5p ≈ (�2 − 4)
√
�J

�C
4
−�2

√
�J
�C , (5.108)

which approaches faster to zero than the charge dispersion formula (cf. Eq. 5.24),
reading for the first band

501/ 5p ≈
16√
�

4

√
�J

�C
4
−8

√
�J
�C . (5.109)

The reason for this distinct limit behavior is that the orbitals are too strongly confined
by approximating the cosine with a quadratic potential. Due to the Gaussian wave
functions in the ground state, this approximation enters exponentially in the overlap
integrals.

In Fig. 5.18, the diagonalization of a typical fluxonium is shown. Indeed, the
approximation of the ground state is not very accurate. The comparison of the
orange and dashed blue line shows that the first excited state orbitals are needed
to shift the wave functions to the exact potential minima. The second excited state
orbital, shifted by the third, is needed to adjust the frequency to the cosine potential.
An excellent agreement with the exact energies is achieved with five orbitals in each
well. For typical fluxonium qubits, the gain in computational complexity is only
minor. Around 20 states are needed for the harmonic oscillator basis (cf. Fig. 5.16)
compared to the 10 states for the atomic orbital basis. However, if the orbital positions
and frequencies are optimized beforehand, the choice of selected orbitals, e.g. the
ground state and the fifth state, may already give a satisfying approximation of
the lower energy spectrum. For the diagonalization of multidimensional circuits,
this gives of course a huge computational speedup, especially considering that the
computational complexity of matrix diagonalization grows with O(#3).
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6 Dispersive readout

A key ingredient for the successful implementation of quantum error correction
codes but also for the quantum Szilard engine is the realization of a textbook
quantum mechanical measurement. The ideas of realizing such ideal measurements
have been put forward in the field of gravitational wave detectors [225] and resulted
in the concept of quantum non-demolishing (QND) measurements. While in some
experimental platforms, such as trapped ions, the QND readout is naturally available
and allows for the observation of quantum jumps [166, 226, 227], sophisticated
interactions in systems with harmonic potentials have to be engineered to repeatedly
observe single photons without destroying them [228, 229]. In a similar fashion,
the QND readout of superconducting devices is typically implemented [34, 35]
and enabled us to read out the granular aluminum fluxonium using large photon
numbers [33].

Since the measurement process is still far from understood, e.g. the cause and timing
of the wave function collapse, one usually imagines that the system Hamiltonian �s
is coupled via the interaction Hamiltonian �int to the outside world. The outside
world somehow implements the measurement apparatus,which performs a textbook
measurements with the operator $. The idea of the QND measurement is now as
follows [230]: In order to obtain a precise measurement result, it should be possible
to measure the system repetitively. Once the system got projected, it should not
evolve in time so that it can be measured again. This can be achieved when the
measurement operator commutes with the system Hamiltonian, i.e. [�s , $] = 0.
Similarly, the system should also not act back on the measurement apparatus and
modify the measurement signal, which requires [�int , $] = 0. An ideal Hamiltonian
for QND measurements of a qubit would comprise a longitudinal interaction of the
form

� = ℏ$r0
†0 +

ℏ$q

2 �I +
ℏ"
2 0†0�I , (6.1)

where $r and $q denote the resonator and qubit frequencies, respectively. The
interaction between the qubit and the resonator yields a mutual dispersive frequency
shift that is encoded in ". The detection of resonator photons leads in first place
to a fluctuating photon number giving rise to qubit dephasing. However, once the
environment has “decided” on the qubit state and absorbed all resonator photons
with a specific frequency, the qubit is projected in one of its eigenstates. The energy
difference before andafter the projectionmust eitherbe providedby themeasurement
apparatus [231–233] or by the qubit environment [7, 86] (s. Sec. 3.7.3).
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6 Dispersive readout

In case it is meaningful to assign the excitation numbers =r and =a for the resonator
and the artificial atom, respectively, to the energy spectrum, the resonator transition
frequencies $r can be extracted via

ℏ$r,|=a〉(=r) = �|=r ,=a〉 − �|=r−1,=a〉 . (6.2)

Similarly, the transitions frequencies $8 9 of the artificial atom can be obtained via

ℏ$8 9(=r) = �|=r , 9〉 − �|=r ,8〉 (6.3)

in dependence of the number of photons in the resonator. The dispersive frequency
shift " can conveniently be defined as a relative quantity between two different
atomic states. Hence, we define

ℏ"8 9(=r) = ℏ$r,| 9〉(=r) − ℏ$r,|8〉(=r) (6.4)
= ℏ$8 9(=r) − ℏ$8 9(=r − 1). (6.5)

Often, the shift with respect to the ground state 8 = 0 is considered.

6.1 Jaynes-Cummings model

A convenient way to obtain approximately the longitudinal interaction in Eq. 6.1
is the dispersive readout scheme [34, 35, 234]. Here, a transverse coupling with
coupling strength 6 is paired with a large detuning � � 6 between the resonator and
the qubit frequencies. Although analytical solutions for the quantum Rabi model
have been found in recent years [235], the concept of the dispersive shift can be
well understood with the Jaynes-Cummings model employing the rotating-wave
approximation:

� = ℏ$r

(
=r +

1
2

)
+
ℏ$q

2 �I + ℏ6(0†�− + �+0). (6.6)

As will be shown in Fig. 6.5a, the rotating-wave approximation is only valid for low
photons numbers. Clearly, we can expect avoided level crossings in power whenever
$01(=r) vanishes or approaches $A . To give a rough idea, the photon number where
" vanishes for the first time and changes sign is in the order of $01(0)/"(0). Indeed,
we see in Fig. 6.5a that the dispersive shift undergoes an oscillating behavior as a
function of the photon number.

Continuing with the Jaynes-Cummings model and assuming a negative detuning
� = $q − $r < 0, the energies are given by

�|=r ,g〉 = ℏ$r=r +
ℏ

2

√
�2 + 462=r , (6.7)

�|=r ,e〉 = ℏ$r(=r + 1) − ℏ2

√
�2 + 462(=r + 1), (6.8)
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6.2 Fluxonium with readout resonator

where we should keep in mind that the corresponding wave functions are a mixture
of qubit and resonator states. For clarity, the notation |g〉 for =a = 0 and |e〉 for =a = 1
is used here.

For moderate photon numbers, it holds

ℏ$r,|g〉 = ℏ$r +
ℏ

2

(
� −

√
�2 − 462

)
− ℏ6

(
6√

�2 − 462
− 6
�

)
=r + . . . (6.9)

≈ ℏ$r +
ℏ62

�
+ 2ℏ64

�3 =r + . . . , (6.10)

ℏ$r,|e〉 = ℏ$r −
ℏ

2

(√
�2 + 462 − �

)
+ ℏ6

(
6

�
−

6√
�2 + 462

)
=r + . . . (6.11)

≈ ℏ$r −
ℏ62

�
− 2ℏ64

�3 =r + . . . , (6.12)

with the approximations valid for � � 6. For large photon numbers, the dispersive
shift vanishes slowly according to

ℏ$r,|g〉 = ℏ$r +
ℏ6

2
√
=r
+ . . . , ℏ$r,|e〉 = ℏ$r −

ℏ6

2
√
=r
+ . . . . (6.13)

Despite the oscillating behavior, this scaling seems also to be valid for the quantum
Rabi model (Fig. 6.5a). Since the signal-to-noise ratio (SNR) of the readout increases
as
√
=r, the integration time to measure a certain number of signal photons has a

lower limit. However, this bound is very low. In practice, and if the qubit can handle
that many photons, the resonator coupling to the transmission line marks the speed
limit for the state discrimination of the qubit [236].

6.2 Fluxonium with readout resonator

Nowadays, the standard way to read out superconducting artificial atoms is the
dispersive readout scheme, as introduced in the previous section. For this, a readout
mode, which can be implemented either as a cavity or as a lumped element resonator,
is weakly coupled inductively or capacitively to the artificial atom. In Fig. 6.1, the
equivalent circuit diagram of the fluxonium together with its readout resonator is
shown for both coupling types. In the following, the system Hamiltonian is derived
for both coupling types. Furthermore, it will be shown that both coupling strategies
can yield the same energy spectrum.
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Figure 6.1: Dispersive fluxonium readout. Equivalent circuit diagram of the readout resonator being a
inductively or b capacitively coupled to a fluxonium.

Starting with the inductive coupling, the Lagrangian reads:

ℒ = 1
2�r ¤)r

2 + 1
2�q ¤)q

2 + �J cos
(
	0
2� )q

)
−
()r − )s −	ext,r)2

2(!r − !s)
−
()s −	ext,s)2

2!s
−
()q − )s −	ext,q)2

2(!q − !s)
. (6.14)

Here, �r and �q are the capacitances, !r and !q the inductances, and )r and )q the
fluxes of the resonator and the fluxonium with Josephson energy �J, respectively.
The shared inductance and corresponding flux are denoted by !s and )s.

It is worthwhile to introduce the gauge invariant fluxes to speed up the upcoming
analysis. For example, we can write

)r − )s −	ext,r = ()r − (	ext,r +	ext,s)) − ()s −	ext,s) = )̃r − )̃s. (6.15)

This means that the external flux has to be tracked through the inductive branches
in the same way as the superconducting phase.

The equation of motion has a constraint that needs to be removed. We have

d
dC

%ℒ
% ¤)s

=
%ℒ
%)s

=
%ℒ
%)̃s

⇔ 0 =
)̃r − )̃s

!r − !s
+
)̃q − )̃s

!q − !s
−
)̃s

!s

⇔ )̃s =
(!r!s − !2

s ))̃r + (!q!s − !2
s ))̃q

!r!q − !2
s

. (6.16)

Insertion of )̃s into Eq. 6.14 yields an unconstrained Lagrangian, which can be
Legendre-transformed to give the system Hamiltonian

� =
1
2q)

(
1
�r

0
0 1

�q

)
q + 1

2
1

!r!q − !2
s
5)

(
!q −!s
−!s !r

)
5 − �J cos

(
	0
2� )q

)
, (6.17)
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6.2 Fluxonium with readout resonator

with 5 = ()r − (	ext,r + 	ext,s), )q − (	ext,q + 	ext,s))) and q = (@r , @q)) . As usual,
the time-independent external flux can be removed in the resonator, while for the
fluxonium we define 	ext = 	ext,q +	ext,s, which is the total flux enclosed by the
junction. Moving to the natural basis, we can define the capacitive and inductive
energies and matrices via

� =
1
2n)

(
�Cr 0
0 �Cq

)
n + 1

2>
)

(
�Lr −�Ls
−�Ls �Lq

)
> − �J cos

(
!q

)
(6.18)

=
1
2n)ECn + 1

2>
)EL> − �J cos

(
!q

)
. (6.19)

In contrast, when the resonator is capacitively coupled to the fluxonium, there is no
constraint variable, and the Hamiltonian can directly be stated:

� =
1
2

1
�r�q − �2

s
q)

(
�q �s
�s �r

)
q + 1

25
)

(
1
!r

0
0 1

!q

)
5 − �J cos

(
	0
2� )q

)
(6.20)

=
1
2n)ECn + 1

2>
)EL> − �J cos

(
!q

)
. (6.21)

There are two main approaches to diagonalize the Hamiltonian numerically. First,
we show the simpler version, which is computationally less demanding, especially
when high photon numbers in the resonator are considered. Here, one simply uses
the product states〈

!A!@
��ℎ<ℎ=〉 = ℎ<(!r)ℎ=(!q) (6.22)

with the harmonic oscillator stated as defined in Eq. 5.27 with �r =
4
√
�Lr/�Cr and

�q = 4
√
�Lq/�Cq . The calculation of the matrix elements H<=,:; = 〈ℎ<ℎ= |� |ℎ: ℎ;〉 can

be separated into fluxonium and resonator terms, except for the coupling, which
can be expressed as

−�Ls!r!q = −�Ls!
ZPF
r !ZPF

q (0†r + 0r)(0†q + 0q), for inductive,

�Cs @r@q = −�Cs @
ZPF
r @ZPFq (0†r − 0r)(0†q − 0q), for capacitive

coupling. This means that the coupling is almost identical except that the rotating
terms 0†r 0q and 0†q0r and counter rotating terms 0†r 0†q and 0r0q have different signs
with respect to each other. Here, it seems that the type of coupling could lead to
different energy spectra.

Before we delve further into this question, the second approach of diagonalizing the
Hamiltonian must be briefly mentioned, which was the first approach presented in
the literature [219]. Using an orthogonal transformation S that diagonalizes ℏ282,
one obtains

� =
1

2ℏ2 p′)p′ + ℏ
2

2 x′)
(
$′1

2 0
0 $′2

2

)
x′ − �J cos

(
DG′1 + EG

′
2
)
. (6.23)
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Here, the primed variables denote the coordinates, D and E are scalars resulting from
the coordinate transformation, and $′1 and $′2 are the frequencies of the resonator
and the qubit in the absence of the nonlinear interaction, i.e. with �J = 0. Depending
on the degree of coupling it might no longer be meaningful to identify qubit and
resonator directions, which is why the coordinates are simply denoted as G′1 and G′2.
The advantage of this approach is that the linear Hamiltonian is diagonal and the
perturbation lies solely in the nonlinear potential. However, a clear disadvantage
of this approach is that the Laguerre polynomials for the resonator states have to
be evaluated, which is computationally expensive, especially when high photon
numbers in the resonator are to be investigated.

6.3 Mapping between inductive and capacitive coupling

In the following, it will be shown that the inductive and capacitive coupling can
result in the same system Hamiltonian. As was briefly mentioned in Sec. 5.1.2, the
idea is to transition to a coordinate system where the particle has the same effective
mass ℏ2 in all dimensions. In principle, this means to introduce the coordinates
x = 2�/	0 ·E−1/2

C 5 and p) = q)	0/2� ·E1/2
C . However, as for real numbers, computing

the square root of a matrix is not a unique matter, since any E1/2
C → E1/2

C S with S
being orthogonal is equally suited. For the inductive coupling, the natural choice is
to compute element-wise the square root of EC. The Hamiltonian then becomes

� =
1

2ℏ2 p)p + ℏ
2

2 x)E1/2
C ELE1/2

C x − �J cos
(√
�CqGq

)
. (6.24)

In this new coordinate system, we can now define the omega matrix as

ℏ282 := E1/2
C ELE1/2

C = ℏ2
(
$2
r −62

−62 $2
q

)
. (6.25)

Note that due to the squared energies, 62 does not correspond to the frequency
splitting of the harmonic modes at the avoided level crossing. Instead, when $r =

$q := $, the eigenfrequencies are $1,2 =
√
$2 ± 62 ≈ $ ± 62/(2$) − · · · .

Can the Hamiltonian of the capacitive coupling be mapped onto the Hamiltonian
of the inductive coupling? The naive approach would be to first diagonalize the
capacitance matrix EC = SDS) and to compute the square root via E1/2

C = SD1/2S) .
The resonator coordinate would then appear in the cosine potential and would have
to be removed by an additional rotation. The choice of keeping the direction of
the fluxonium unchanged allows for a simpler and even algebraic transformation.
This strategy is also interesting for even higher dimensional systems, where the
diagonalization of EC can no longer be calculated analytically. The idea is to compute
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the unique Cholesky decomposition of EC = LL) with L being an upper triangular
matrix. One obtains

L = ©­«
√
�Cr −

�2
Cs

�Cq

�Cs√
�Cq

0
√
�Cq

ª®¬ . (6.26)

Now, we can define x = L−15 and p = L)q and obtain

ℏ282 = L)ELL =
©­­­«
�Lr�Cr −

�Lr�
2
Cs

�Cq
�Lr�Cs

√
�Cr
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as well as the nonlinear potential

−�J cos
(√
�CqG@

)
. (6.28)

The sign difference in the off-diagonal entry of the omega matrix can simply be
removed by changing the sign of the resonator axis. By choosing the right energies
�Lr , �Lq , and �Cs this matrix can coincide with the omega matrix for the inductive
coupling (s. Eq. 6.25). We therefore obtain the same energy spectrum of the resonator
and fluxonium. However, the matrix elements for the charge and flux fluctuations
are most likely different. This means that one of the coupling approaches may be
superior when it comes to optimizing dissipation.

6.4 Sorting of the states

Diagonalization of the coupled resonator fluxonium Hamiltonian gives a complex
energy spectrum, as can be seen in Fig. 6.2a. As mentioned in the beginning of
this chapter, the states should ideally be sorted for excitations in the resonator and
the fluxonium. Clearly, for a strong coupling, the sorting of the states is no longer
meaningful due to the overlap of the states. For weak coupling, a first idea would be
to compare the states with the product states of the uncoupled resonator fluxonium
system, for example by finding the states with the maximal overlap. It turns out
that this approach fails already for very weak coupling. In addition, this sorting
also lacks the connection to the experiment, since nature can not know about the
underlying product basis. It is therefore desirable to think of a sorting that is based
on the eigenstates and mimics the experiment.

When the drive of the resonator is turned on, neighboring resonator states will
undergo Rabi oscillations. The matrix elements between the states determine the
speed of the Rabi oscillations and on which states the resonator climbs up the
excitation ladder during the displacement pulse. In steady-state and depending on

143



6 Dispersive readout

Figure 6.2: Sorting the spectrum. a Unassigned energy spectrum of the resonator fluxoniumHamiltonian
as a function of the external flux. b Resonator charge dipole moment between the ground
state |0, 0〉 and all yet unassigned states, corresponding to the energy spectrum shown in
panel a. The first excited resonator state |1, 0〉 can unambiguously be identified. c Assigned
energy spectrum using different colors for the qubit states. For the parameters see Tab. 6.1.
d Assigned spectrum modulo the resonator frequency in the ground state, showing the lowest
250 states with energies up to 120 GHz and thus up to 28 qubit and 16 resonator excitations.
The figure was created with the bfqcircuits library [237].

the initial qubit state, the resonator will end up in a displaced coherent state, which
can be a highly deformed state in phase space [40].

A much more robust sorting approach is therefore the following: we search for the
next yet unassigned state |:, ;〉, which has the highest dipole momentwith the current
state |<, =〉. Since the resonator is usually driven capacitively, the absolute value of
the charge dipole moment |@ZPFr 〈<, = |0†r − 0 |:, ;〉 | is computed. The dipole moments
are depicted in Fig. 6.2b. Starting in the ground state |0, 0〉, we climb up the resonator
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Table 6.1: Parameters for studying the coupled resonator fluxonium system. These parameters have been
targeted for the fabrication of the granular aluminum fluxoniums.

resonator fluxonium coupling

!r = 25 nH
�r = 20 fF

!q = 300 nH
�q = 5 fF
�J = 9 GHz

!s = 3 nH

Table 6.2: Parameters used for generating Fig. 6.3b. The values had to be slightly adjusted compared to
those extracted from the spectrum in Fig. 5.15.

resonator fluxonium coupling

!r = 22.0 nH
�r = 22.0 fF

!q = 233.7 nH
�q = 6.90 fF

�Ji + �Jo = 20.50 GHz
�Jo − �Ji = 0.62 GHz

A = 50.0

!s = 0.64 nH

excitation ladder until the highest computed resonator photon number is reached.
Then, we start all over again with the lowest yet unassigned state, which must be
|0, 1〉, the first excited state of the fluxonium qubit. This recipe is continued until all
states of the spectrum are assigned. The sorting can be accelerated by searching the
next state only within a small energy window corresponding to the next resonator
photon energy. In case all states have been assigned in this energy interval, the
sorting can no longer be trusted beyond this point. At the end of sorting, an energy
limit can be returned, below which the state assignment can be trusted. The sorted
states are depicted in Fig. 6.2c. A convenient way to display the spectrum for large
energies, is to plot the spectrum modulo the resonator frequency as presented in
Fig. 6.2d, showing the spectrum with up to 28 qubit and 16 resonator excitations. For
a high fidelity readout avoided level crossings should be avoided. For instance, the
eights qubit state at half flux in Fig. 6.2d gets dangerously close to the first excited
state.

Exactly the same sorting strategy has recently been used to explain the ionization of
transmon qubits during the readout [40], which has puzzled the community almost
since the invention of the dispersive readout scheme [34, 35].

The resonance frequency of the resonator is likely to branch at higher photon numbers
due the increasing number of avoided level crossings and hybridizations with nearby
levels. This effect can also be observed for our fluxonium. In Fig. 6.3a, the measured
resonator response of the SQUID fluxonium is shown. Here, the qubit is mostly in
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Figure 6.3: Resonator response as a function of the external flux. a Measured resonator response
of the SQUID fluxonium as a function of the external flux and the drive frequency. The
measured fluxonium spectrum is shown in Fig. 5.15. b Calculated resonator frequency
5r,|6〉(=r) = $r,|6〉(=r)/2� for the qubit being in the ground state, i.e. =a = 0. For the parameters
see Tab. 6.2.

the ground state, except when the external flux is close to half flux integer values,
where the qubit is also thermally excited (cf. energy spectrum in Fig. 5.15). In the
resonator response fine features are visible, some of which are also predicted by the
sorting algorithm. Since the algorithm selects only the state with maximal dipole
overlap, not all features are detected. For a quantitative agreement, the full resonator
response must be computed quantum mechanically [40].

The spectrum at large photon numbers might explain the often exploited sideband
cooling and population inversion with large photon numbers at particular flux spots,
as can be seen in Fig. 6.6 in the next section. As was already mentioned above,
for a high fidelity qubit readout, it is therefore important to design the fluxonium
spectrum in such a way that no avoided level crossings or nearby levels are present
in the spectrum up to large photon numbers.

6.5 Dispersive shift

The dispersive frequency shift " of the resonator induced by the fluxonium inherits
the complexity of their joined energy spectrum. Due to the avoided level crossings in
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Figure 6.4: Dispersive shift of the fluxonium. a Dispersive shift "01 and b frequency shift Δ 5q of the
fluxonium qubit as a function of the external flux and for various photon numbers. For
parameters see Tab. 6.1.

the spectrum, the dispersive shift is likely to undergo abrupt changes as a function
of the external flux, as can be seen in Fig. 6.4a, where the dispersive shift of the
fluxonium qubit is shown. The frequency shift Δ 5q of the qubit is shown in Fig. 6.4b
for various photon numbers =r in the resonator. Here, we define the shift relative to
the bare qubit frequency when the resonator is in the ground state. Thus,

ℎΔ 5q(=r) = (�|=r ,1〉 − �|=r ,0〉) − (�|0,1〉 − �|0,0〉). (6.29)

The amount of features in the dispersive shift increases with the number of photons
in the resonator, as can be seen in Fig. 6.4. If the parameters are tuned in the right
way, these frequency collisions can to a large extent be avoided. In this case, the
dispersive shift of the resonator changes rather smoothly with increasing photon
numbers. In Fig. 6.5, the dispersive shift of the resonator is depicted for the quantum
Rabi and the Jaynes-Cummings model (panel a), and for the fluxonium (panel b) as
a function of the number of photons in the resonator. For the fluxonium, we show in
addition the dependence for the higher fluxonium states |f〉 and |h〉, corresponding
to =a = 2 and =a = 3. While the Jaynes-Cummings model predicts a rather slow
dependence of the dispersive shift with =r, the dispersive shifts from the quantum
Rabi model and induced by the fluxonium varymuch faster and "01/2� = 5r,|e〉− 5r,|g〉
undergoes several changes in sign. Interestingly, the pull of the fluxonium ground
state has almost no power-dependence for more than 200 photons in the resonator.

This complex dependence is certainly challenging, but also bears great potential,
since the spectrum can be engineered to yield an almost perfect QND Hamiltonian
(Eq. 6.1) that is valid for large photon numbers and should allow for a very fast
readout with high fidelity. For instance, one may replot Fig. 6.5b with �J = 11 GHz,
which yields almost no photon number dependence for the ground and excited state.
An experimental proof for the existence of high fidelity readouts in fluxonium qubits
using large photon numbers has been demonstrated with our granular aluminum
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6 Dispersive readout

Figure 6.5: Power dependence of the dispersive shift. a Dispersive frequency shift of the resonator for the
qubit being in the ground or excited state with respect to the resonator’s bare frequency 5r,6=0
as a function of the photon number =r in the resonator. The continuous lines depict exact result
of the quantum Rabi model, while the dashed lines correspond to the Jaynes-Cummings model
(Eqs. 6.9 and 6.11), which rests on the rotating-wave approximation (RWA). The resonator and
qubit frequencies, 5r,6=0 = 7.12 GHz and 5q = 978 MHz, respectively, correspond to those in
panel b. The coupling 6 = 2�·80 MHzwas chosen to yield a dispersive shift of "01 ≈ 2�·2 MHz.
b Dispersive frequency shift of the resonator in dependence of the resonator photon number
for the lowest four fluxonium levels at half flux. For the parameters see Tab. 6.1. The bare
frequency 5r,�J=0 for vanishing coupling �J = 0 was subtracted from the resonator frequency
5r. The calculations were performed using #r = 380 and #a = 50 harmonic oscillator states
for the resonator and the fluxonium.

fluxonium [33]. Note that in reality, there are various spurious modes besides the
resonator mode that complicate the situation. The use of granular aluminum instead
of junction arrays (s. Sec. 5.2.2) is certainly advantageous here, since the plasma
frequency of granular aluminum lies at much higher frequencies than the plasma
frequency of junction arrays, resulting in fewer spurious modes in the relevant
frequency range.

The dispersive shift was measured experimentally by recording continuous quan-
tum jump traces at moderate photon numbers using a parametric amplifier. For
comparison, the dispersive shift is also calculated with the numerical model. Fig. 6.6
shows the measured and calculated dispersive shift of the SQUID fluxonium in
dependence of the external flux close to four different half flux integer values. The
measured dispersive shift can be well described by the numerical model for all four
half flux integer values.

Interestingly, it can be seen in the measurements that the thermal qubit population
does not show a smooth behavior over flux, i.e. with increasing qubit frequency.
Instead, distinct features appear, showing effects of side-band cooling and population
inversion. Since themeasurementwas carried out atmoderate photon numbers, these
features are likely caused by avoided level crossings in the spectrum at higher photon
numbers. However, the fact that the amount of features increases with decreasing
qubit frequency in the four panels could also indicate the presence of other effects in
the environment. Another remaining puzzle is the vanishing dispersive shift of the
excited state in the upper left panel, which is not predicted by the theory. However,
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Figure 6.6: Measured dispersive shift close to half flux integer values. Measured (black histogram)
and calculated (dashed lines) dispersive shift of the SQUID fluxonium as a function of the
external flux 	ext close to different half flux integer values for each of the panels. The qubit
frequency at half flux is given in each panel. For the corresponding fluxonium spectrum
and the fluxonium parameters see Fig. 5.15. The dispersive shift was measured by recording
continuous quantum jump traces at moderate photon numbers using a parametric amplifier.
The measured phase arg((11)was binned in one degree steps and transformed into frequency.
The thermal qubit population is overlayed by features showing effects of side-band cooling
and population inversion, which are likely caused by avoided level crossings in the spectrum.
Interestingly, in the upper left panel, the measured dispersive shift of the excited state vanishes
close to the qubit’s half flux, which is not predicted by the theory. A possible explanation
could be a vanishing qubit lifetime. In all panels, a drive frequency of 5drive = 7.248 GHz was
used to probe the resonator.

this feature could also be an artifact of a vanishing qubit lifetime that falls well
below the integration time used in the vector network analyzer. In this case, we can
no longer distinguish between the ground state and excited state and an average
response is measured.
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This chapter details some of the experimental techniques used in the thesis, includ-
ing design and fabrication, the sample holder and the magnetic shielding, and the
microwave periphery for measurement and control. Although all measurements
presented in this work were conducted on granular aluminum (grAl) fluxoniums de-
signed for a microwave waveguide sample holder, experiments were also performed
on grAl fluxoniums in a 2D architecture featuring a fast flux line, in collaboration
with Patrick Paluch. Both designs and their fabrication will be briefly presented.

7.1 Design and fabrication

The parameters targeted for the fabrication of the waveguide samples, which hold
approximately also for the samples in the 2D architecture, are stated in Tab. 6.1. In
the following, the choice of these parameters is detailed.

In the previous chapter, the dispersive readout scheme has been discussed. In
particular, itwasmentioned that for a highquality readoutwith large photon numbers
the energy spectrum has to be optimized to avoid frequency collisions leading to
unwanted sideband transitions. For this purpose, it is therefore advantageous to
choose a rather high readout frequency compared to the qubit frequency in order
to yield a lower mode density. A large resonator qubit detuning also leads to a
weaker dependence of the dispersive shift on the photon number in the resonator.
An additional and unrelated reason for choosing a high readout frequency is to avoid
thermal population of the resonator, which would otherwise lead to photon shot
noise dephasing of the qubit. For this reason, the readout frequencies are typically
chosen above 5GHz. Our waveguide sample holder (Sec. 7.2) is impedance matched
in the 6-8GHz frequency range. Readout frequencies in this range were also targeted
for the 2D architecture, even though this architecture comes without additional
frequency restrictions.

The coupling of the readout resonator to the microwave transmission line was
engineered to yield a resonator linewidth of �/2� ∼ 1 MHz, which allows for a fast
ring up and ring down of the resonator photons within a few hundred nanoseconds.
While a fast ring up can always be achieved by increasing the input power, a fast ring
down with a phase controlled cancellation pulse [45] ideally requires knowledge
about the qubit state [46], limiting the total readout pulse length, in this case to
at least the latency of the readout electronics. Choosing � > 2� · 1 MHz would

151



7 Experimental techniques

yield an even faster resonator population. However, if the dispersive shift "01 of the
qubit is not increased accordingly, the readout signal vanishes. The readout signal is
optimized by designing the dispersive shift "01 of the fluxonium qubit biased at half
flux such that "01 ∼ �. Further increasing "01 does not improve the readout signal
but still increases the photon shot noise induced qubit dephasing. Depending on the
design, a large dispersive shift can also degrade the qubit lifetime due to the Purcell
loss, i.e. radiation loss of the qubit via the resonator into the microwave lines. For
the microwave waveguide, which has a cutoff frequency of 6GHz, the Purcell loss
into the microwave lines can be neglected. If, however, the resonator has intrinsic
losses due to other broadband environments, the qubit will inherit these losses in
dependence of the qubit resonator coupling.

We decided for the inductive resonator fluxonium coupling scheme. The main
advantages is that no additional capacitor pads at the Josephson junction are needed,
which are prone to dielectric losses from to surface TLSs [65]. This argument is
one of the motivations for the development of mergemons [238, 239]. Overall, the
fluxonium and resonator parameters that we converged on are similar to designs
reported in the literature [71, 240].

The first design idea was to produce the fluxonium, the superinductor and the
junction entirely out of granular aluminum. The antenna pads for the resonator
would have been added in a second optical lithography step. Since it was rather
difficult to get the right junction resistance, this design was given up. Instead,
a three-angle shadow evaporation process was developed to implement both a
conventional Al/AlOG/Al Josephson junction and the grAl superinductance in a
single electron beam lithography step.

The main steps of the fabrication process are illustrated in Fig. 7.1. A table with
the detailed fabrications steps is given in App. G. The three-angle process employs
a commonly used bi-layer resist stack [241] on top of a c-plane sapphire wafer.
For the bottom layer, the EL-13 copolymer MMA resist is used (MicroChem) and
spin-coated to a thickness of 950 nm. The second layer consists of the A4 PMMA
resist (MicroChem), here a thickness of 200 nm is targeted. Finally, a thin gold
layer is sputtered on top for the subsequent e-beam writing (Fig. 7.1a). The e-beam
lithography system (JEOL) that writes the desired pattern into the resist uses an
acceleration voltage of 50 kV. Due to the rather low acceleration voltage, the electrons
scatter in the resist, which leads to a broadening of the exposed area towards the
substrate. In addition, the electrons reflect from the substrate and create a second
undercut after the development of the resist. After the e-beam exposure the gold layer
is removed with a 15% Lugol solution and the resist is developed in an isopropanol
(IPA) water solution with ratio 3:1 cooled to 6 °C to increase the contrast of the two
resist layers. This resist stack enables the fabrication of undercuts (Fig. 7.1b) and
bridges [241, 242]. In conjunction with a tilted shadow electron beam evaporation
of the aluminum and granular aluminum films, this resist stack allows for flexible
design patterning. For the lift-off process, the sample is exposed to N-Ethyl-2-
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Figure 7.1: Illustration of the fluxonium fabrication by a three-angle shadow evaporation process.
a E-beam writing of the pattern into the bi-layer resist. The lower resist is more sensitive to the
e-beam exposure than the upper resist. This enables the fabrication of bridges (not shown)
and undercuts (panel b). b Development of the resist and shadow evaporation. The first two
aluminum layers are evaporated under ±30° tilt angle. The first layer is oxidized to form the
junction barrier. The grAl film is evaporated with zero tilt angle. c Lift-off process to remove
the resist and all the metal layers attached to it.

pyrrolidone (NEP) at a temperature of 90 °C for a duration of 90min, followed by
rinsing in acetone and IPA.

The single lithography step comes along with a few restrictions on the resist
patterning. The superinductor that is implemented with a granular aluminum
film must be interrupted by the junction. This essentially demands for a Dolan
bridge [242]. Since granular aluminum is prone to quasiparticles [63] and has a
higher critical temperature than aluminum, the aluminum junction area could act
as a quasiparticle trap, thereby degrading the lifetime of the qubit. The idea was
therefore to connect the granular aluminum film to the junction leads far away
from the junction. In this way, the quasiparticles can potentially recombine and
thermalize before reaching the junction. Note that fluxoniums biased at half flux
are only insensitive to quasiparticle losses at the junction if the quasiparticles are
thermalized [55]. For the SQUID fluxonium, the destructive quasiparticle interference
can not fully be reached, as discussed in Sec. 5.3.2. It would certainly be interesting
to implement the junction with materials that have a higher superconducting gap
than granular aluminum, e.g. using a Nb/AlOG/Nb trilayer. This, however, becomes
only relevant if the TLS environment has been identified and its dominant influence
has been averted.

The junction resist structures that achieve the desired pattern are a combination of a
Dolan bridge and undercuts, as shown in Fig. 7.2. The fabrication is now as follows:
First, the junction is patterned with two aluminum evaporations from left and right
with a tilt angle of ±30°, interrupted by a static oxidation of the first layer. For the
oxidation of the SQUID fluxonium, we used 15mbar for a duration of 5:30min.
In other fabrication runs the duration was adjusted depending on the targeted
Josephson energy and junction design. The first layer has a thickness of 20 nm,
while the second layer thickness is 30 nm to overcome the height difference. The two
aluminum layers also pattern the resonator antenna pads or the capacitor shoe in the
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Figure 7.2: Three-angle shadow evaporation. a Schematic of the sapphire wafer and resist stack for
patterning the Josephson junction of the fluxonium together with its aluminum feedlines.
b, c Top view of the resist stack as shown in panel a for other pattern geometries, where the
junction size is insensitive to height fluctuations of the resist stack. The green area indicates
the area where the lower resist has been dissolved. The aluminum evaporation to form the
junction is performed from left and right under ±30° tilt angle. The grAl wire byproducts,
evaporated with zero tilt angle, do not touch the junction and its feedlines. Reproduced and
adapted from Ref. [18].

2D architecture. Next, the grAl film is deposited straight from the top by evaporating
aluminum in an oxygen atmosphere. For the sample on which the hyperpolarization
experiment was carried out, a thickness of 40 nm was deposited at a rate of 0.3 nm/s
to overcome the thickness of the previous Al layer. The resistance of the grAl film
fluctuates strongly between different depositions, since it is exponentially sensitive
to the dynamical oxygen pressure [17], which builds up by the combination of
oxygen supply, pumping of the chamber, and the oxidation of the evaporating
aluminum. In subsequent developments, the evaporation rate was increased to
1 nm/s, thereby greatly reducing the resistivity fluctuations. In addition, an in situ
resistance measurement device was integrated, which allows adapting the thickness
and thus the sheet resistance to further compensate fluctuations. A proper connection
to the aluminum wires is ensured by additional contact pads that will be discussed
below.

The junction pattern depicted in Fig. 7.2a shows the resist structure that was used to
fabricate the sample on which the hyperpolarization experiment was carried out.
The final junction patterns can be seen in Fig. 7.3 and Fig. 7.4. In later fabrications,
the structure was optimized as illustrated in Fig. 7.2b, c to yield a junction area that
is independent of the exact height of the resist stack.

A potential disadvantage of the presented designs is that the junction is hidden
under the bridge. The cleaning of the wafer from residual resist by a plasma
descum process prior to the evaporation of the metals may not clean the junction
area that effectively. However, we did not observe any significant junction aging
over the years. A second disadvantage of the three angle approach is that the
granular aluminum wires can not be freely patterned. The width of the grAl wires
is limited to ∼ 300 nm. The shared inductance in Fig. 7.2b has a width of 250 nm.
The maximum width can in principle be increased with a higher resist stack, larger
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Figure 7.3: Contact pads for secure contacting of grAl and aluminum layers. a Idealized illustration of
the shadow evaporation of the 30 nm thick aluminum layer and the 40 nm thick grAl layer
evaporated straight from the top. The aluminum evaporation can either appear from the left
(top), perpendicularly to the drawing plane (middle), or from the right (bottom). Only in the
top scenario a continuous growth of the grAl film is ensured. The other scenarios are likely to
give constrictions. b Contact pads of the shared inductance implementing the top scenario of
panel a. The shared inductance has a width of 250 nm and the inductance of the superinductor
has a width of 170 nm. c Contact pads for the junction realizing the top scenario of panel a. If
no argon milling of the contact pads is applied before the grAl evaporation, the area of the
parasitic junction should be enlarged by increasing the length of the contact pads. Regions
where the grAl film is shunted by aluminum underneath are false-colored in violet.

angles, and with a 100 keV e-beam writer, where the scattering of the electrons in
the resist is less pronounced. Moreover, wires in horizontal direction are shunted by
the aluminum layers underneath (Fig. 7.3 and Fig. 7.4). Nevertheless, a zick-zack
meandering of the superinductor under 45° angles would in principle be possible.
This would allow reducing the area of the superinductor loop. In this way, the
frequencies of the spurious modes of the superinductor loop can be increased. We
decided for a simple design process, considering the fact that the spurious modes
of the superinductor loop have been simulated to be above 14 GHz for the targeted
inductance of !q = 300 nH.

In order to ensure a good connection from the grAl film to the aluminum layers,
connection pads have been added. The main purpose of the pads is not only to
reduce a potential contact resistance but also to ensure a continuous grAl film over
the step of the aluminum layers (s. Fig. 7.3a). The schematics of the layers is certainly
idealized. In reality, the edges are presumably rounded. Nevertheless, ideally the
top scenario of Fig. 7.3a is realized, where the grAl film grows over the averted
edge of the aluminum film. This should be implemented for both aluminum layers.
The contact pads in Fig. 7.3b, c have been designed to realize this scenario. In later
developments, an argon milling step was introduced before the grAl evaporation to
remove the oxide of the lower aluminum layer resulting from the junction oxidation
step at the contact pads. In addition, the oxygen flow for the grAl evaporation was
added to the aluminum evaporation shortly (∼ 10 s) before opening the shutter in
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Figure 7.4: Granular aluminum fluxonium design. a Close-up of the false-colored optical image of the
granular aluminum fluxonium shown in Fig. 2.6. Indicated are the resonator inductance !r,
the shared inductance !s, and the qubit inductance !q. b False-colored SEM image of the
SQUID. Regions where the grAl film is shunted by aluminum underneath are false-colored in
violet.

front of the sample. Simultaneously, the rate control was adapted to the new mass
flow such that the rate is stable again when the shutter opens.

A close-up of the false-colored optical image of the SQUID fluxonium depicted
in Fig. 2.6 is shown in Fig. 7.4, together with a false-colored scanning electron
microscope (SEM) image of the SQUID.

7.2 Sample holder

The first grAl fluxoniums were fabricated for the waveguide sample holder. Here, the
samples can be fabricated in a single lithography step. The interior of the waveguide
sample holder can be seen in Fig. 7.5a, showing a cut through the 3D model of the
high frequency simulation software (HFSS) from Ansys. The microwave readout
port to the left is impedance matched to the waveguide, which has a cutoff frequency
at around 6GHz. The brass screws are used to optimize the transmission in the
6-8GHz range. In practice, two identical waveguide sample holders are clamped
together without their copper lids and the microwave transmission is optimized with
the screws. The screws are then fixed with silver paste to stay in position. The quality
factor of the readout resonator is simulated with HFSS to yield the corresponding
� ∼ 1 MHz linewidth. In order to drive the qubit at frequencies below the waveguide
cut-off, a drive port is needed that couples weakly to the readout antenna. The wafer
with the samples is diced to 10 mm × 15 mm chips. On the chip, we typically place
four fluxonium resonator circuits 2mm apart with readout frequencies separated
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Figure 7.5: HFSS models of the sample holders. a Waveguide sample holder with impedance matched
readout port to the left and qubit drive port to the right. The brass screws are used for
impedance matching. The chip sits a quarter wave length away (7GHz) from the end of the
waveguide at the antinode of the electric field. b Sample holder for two fluxoniums in a 2D
architecture. The ports to the left an right are for the fluxonium readout and the port in the
middle is used for fast-flux biasing and qubit driving. Only the inner part of the ground plane
is superconducting, the remaining part is a thick normal conducting silver ground plane. Not
shown are the screws fastening the wafer in the corner and all the wire bonds to the cooper
box ensuring a proper ground.

by ∼ 150 MHz by simply changing the grAl wire length of the resonator inductor.
The chip sits a quarter wave length (7GHz) away from the end of the waveguide at
the antinode of the electric field. It is thermally anchored and held in place with
silver paste or vacuum grease. Two of the four SQUID fluxoniums came out with
symmetric SQUIDs, which made it possible to tune the Josephson energy to lower
values and to enter an suitable fluxonium regime. The hyperpolarization of the TLSs
was mainly investigated on these fluxonium samples (s. Supp. Ref. [21]).

The 2D architecture for superconducting qubits requires a lot more engineering
than the 3D waveguide. However, the benefit is a significant gain in experimental
freedom. In particular, the ability of designing local fast-flux lines enables many
possibilities such as Floquet-engineering of the spectrum [243], fast-flux qubit reset
and control [50, 156], as well as the hyperpolarization experiments discussed in
the outlook. Moreover, fluxoniums qubits, with their compact footprint, small stray
capacitance, large anharmonicity, and state-of-the-art coherence times, render them
ideal for multi-qubit experiments within a 2D architecture [244].

The main goal of the project was to gain experience with the 2D architecture and to
try a few uncommon concepts. The sample holder and the chip layout for the 2D
architecture are shown in Fig. 7.5b. In order to compare the fluxonium performance
to the performance in the waveguide, the fluxoniums were implemented in exactly
the same way, except that the readout resonator was adapted to the coplanar
waveguide (CPW) geometry (Fig. 7.6a and Fig. 7.7a, b). The first challenge is to
enable a precise global flux biasing of the fluxoniums with their rather large loop
area of 150 µm × 25 µm. For this purpose, it must be ensured that there is no flux
trapping and pinning in the vicinity of the fluxonium. A superconducting backside
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Figure 7.6: Coplanar waveguide design and sample box. a Optical image of the first design, distinguished
by the flux holes in the CPW. The silver ground plane of this four-year-old sample shows
signs of oxidation (yellowish stain). b View through the wire bonder showing the microwave
taper to the hand-cut coaxial cable.

metalization must therefore be omitted. Similarly, the nearby superconducting
ground plane should be a fractal that does not contain superconducting loops or
compact superconducting areas larger than the fluxonium area. In order to avoid low
frequency modes in the ground plane the fractal needs to be terminated by a normal
metal ground plane (Fig. 7.6a and Fig. 7.7a). In addition, the chip is suspended in air
to prevent low frequency modes in the substrate (Fig. 7.5b). Furthermore, no printed
circuit board (PCB) is used to miniaturize the size of the copper box. Instead, we
directly wire-bond the CPWs to the coaxial cables (Fig. 7.5b and Fig. 7.6b). The lowest
self resonant modes in the box are the �/2 modes of the CPW grounds. If needed,
these modes can be shifted to higher frequencies by wire-bonding from ground to
ground over the CPW, ideally to the normal metal ground to prevent flux trapping.
The termination with the normal metal ground plane has yet other advantages.
All the spurious modes in the design that exist at higher frequencies have a low
quality factor and are not relevant from a quantum mechanical perspective. In
addition, the thick normal metal ground plane acts as a phonon trap, which could
reduce the number of excess quasiparticles in the fluxonium [245, 246] and prevent
correlated qubit errors [247]. Last but not least, the normal metal ground plane
should thermalize the wafer more efficiently, especially when normal metal gold
wire bonds are used in addition.

The first implementation can be seen in Fig. 7.6. The design consists of two fluxoniums
with corresponding readout resonators, which can be addressed with the left- and
right-going CPWs. The fast-flux line in the middle was designed to yield a mutual
inductance of 2 pH with the fluxonium loops, such that 1mA is needed to flux bias
the fluxoniums by one flux quantum. The fluxoniums and the resonator inductances
are fabricated prior to the ground planes with the three-angle process that was
described in the previous section. In the first design, aluminum was used for the
superconducting ground plane and the CPW was implemented with flux holes.
Since we still observed jumps in the flux biasing of the fluxoniums, the design was

158



7.2 Sample holder

Figure 7.7: Close-up of the coplanar waveguide design. a Optical images of the second design, distin-
guished by the thin superconducting CPW ground and the dark gray niobium aluminum
ground plane. b Close-up of the fluxonium and its readout resonator. c Close-up of the
resonator inductance and the ∼ 3 nH inductive Purcell filter. d Microwave taper to the coaxial
cable.

adapted for the second implementation, see Fig. 7.7. Here, the flux holes in the
CPW ground plane have been removed. It was made sure by simulations that the
losses in the CPW are still negligible. In addition, the superconducting ground plane
was implemented with 45 nm niobium, evaporated in three 15 nm steps, and 5 nm
aluminum on top. The main motivation for adding the aluminum layer on top was
to use our calibrated argon milling process for contacting the 200 nm thick silver
ground plane in the second optical lithography step. For the silver ground plane, a
4 nm niobium sticking layer was used. In the new design, no flux jumps could be
observed anymore.

In the 2D architecture, we measured the longest qubit relaxation times of up to
100 µs. Although these values are due to the frequency characteristics of granular
aluminum, as will be shown in a publication in the near future, it shows that the 2D
architecture is in no way inferior to the waveguide sample holder. The compact high
impedance resonator, along with what is probably the smallest Purcell filter in the
literature, may be the future domain of application of granular aluminum. In the
presented design, the dispersive shift was difficult to predict, probably due to the
asymmetric capacities of the fluxonium loop to the ground plane. In this respect, the
design should certainly be improved in the future. Here, the design was intended to
be as identical as possible to the design for the waveguide. A potential improvement
would be to open the central area for the global flux at the bottom such that the
superconducting ground plane is simply connected. This could reduce potential
creeping currents in the ground plane.

Magnetic and thermal radiation shielding

The samples must be shielded from magnetic fields and residual thermal radiation
from higher temperature stages. First, the magnetic field is attenuated by a �-
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7 Experimental techniques

Figure 7.8: Shielding of the samples. a Magnetic �-metal shield. b Aluminum shield forced on a copper
barrel for magnetic field and thermal radiation shielding c Waveguide sample holder with
flux bias coil. The microwave port to the left is used for the qubit readout and the port to
the right is used for driving the qubit. For further details see Fig. 7.5a. d Sample box for the
2D architecture. The port in the middle is used for fast-flux biasing and driving of the two
fluxoniums, while the other ports are used for their readout. The microwave cables are fixed
with silver paste. For further details see Fig. 7.5b. The global flux bias coil is mounted on top
of the copper lid (not shown).

metal shield (Fig. 7.8a). The remaining magnetic field is further shielded and
pinned by the superconducting aluminum shield that is forced on a copper barrel
(Fig. 7.8b). Only tiny holes remain for the direct current (DC) flux bias lines. This layer
therefore provides a good shielding from residual thermal radiation. The waveguide
sample holder and the sample box for the 2D architecture are shown in Fig. 7.8c, d,
respectively. The sample holder lids are additionally closed with an indium sealing
preventing thermal radiation from entering the sample box. The indium sealing
was omitted in some of the experiments, which did not seem to harm our samples.
However, this may only be true for the rather short (∼ 10 µs) coherence time of our
samples. Nevertheless, probably the first thing to worry about is the shielding of
the microwave cables. The copper post is mounted to the mixing chamber plate of a
commercial wet 3He/4He dilution refrigerator (Oxford Instruments Kelvinox 100)
reaching ∼ 25 mK.
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7.3 Microwave setup

Figure 7.9: Experimental setup for qubit state measurements and active feedback. The OPX instrument
from Quantum Machines (top left image) provides the active feedback capabilities. The
signal and the reference are interfered computationally by the OPX to extract the � and
& quadratures. We keep the intermediate frequency ��r of the readout fixed at 62.5MHz
yielding 16 samples per period for the integration. All microwave lines going into the cryostat
are attenuated and filtered. The stainless steel microwave line of the readout input (green)
provides additional −30 dB attenuation to the 1.6 K-stage (not shown). For more details see
text. Reproduced from Ref. [21].

7.3 Microwave setup

In Fig. 7.9, a schematic of the microwave electronics setup for the fluxonium mea-
surement and manipulation is shown. The experimental workflow is orchestrated
by the OPX instrument from Quantum Machines (top left image in Fig. 7.9). This
FPGA-based instrument can be programmed to measure and estimate the qubit
state in real-time using the �&-demodulated readout signal. Depending on the
measurement outcome, it can trigger a �-pulse in order to prepare the qubit in its
target state.

The microwave cabling is somewhat more complicated due to an interferometric
setup that was required to purify the two-channel microwave generators, which
operate in continuous wave (c.w.) mode. The channels use different frequencies to
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account for the mixers operating on opposite sidebands. Using mixers for the same
sideband would work equally well. In later experiments, these sources have been
replaced by a single high-quality source with a frequency stability for which phase
drifts of the complex scatter parameter are negligible. The attenuation and filtering
of the microwave lines going into the fridge is required to shield the sample from
thermal radiation. The home-made infrared (IR) filter ensures an attenuation of
more than −10 dB for frequencies larger than 60GHz. This filter was later placed
between the sample and the circulator in order to filter also thermal radiation
running backwards. The readout signal reflecting from the sample is first amplified
with a home-made Josephson junction parametric amplifier (JPA), which provides
+20 dB of gain [44]. The pump tone for the JPA is fed into the readout line with a
directional coupler providing minimal loss for the readout signal. After the JPA
the readout signal passes a 40 dB isolation before it is further amplified by a high-
electron-mobility transistor (HEMT). At room temperature, the readout signal is
routed through a home-made tunable filter in order to suppress the JPA pump tone,
after which it is further amplified, down-converted to the intermediate frequency,
and finally recorded.
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A Notation of the qubit TLS basis functions

Thewave function |#〉 of the qubit and the = TLSs can be expressed as |#〉 = ∑
8 28 |E8〉,

with the basis functions

|E0〉 = |1111 . . . 1〉 , |E1〉 = |0111 . . . 1〉 ,
|E2〉 = |1011 . . . 1〉 , |E3〉 = |0011 . . . 1〉 ,

...
...

|E2=+1−2〉 = |1000 . . . 0〉 , |E2=+1−1〉 = |0000 . . . 0〉 .

(A.1)

Here, the first entry stands for the qubit, the second for the TLS : = 1, the third for
the TLS : = 2, and so forth, with 0 and 1 denoting the ground and excited state,
respectively. In this basis, the density matrix reads

� = |#〉 〈# | =
©­­«
202
∗
0 202

∗
1 · · ·

212
∗
0 212

∗
1

...
. . .

ª®®¬ . (A.2)

B Liouvillian in superoperator notation

In order to rewrite the Liouville-von Neumann equation in form of a matrix
differential equation, the action on each of the density matrix entries must be
computed. Following Ref. [137], the trick is to rewrite the equation first in tensor
notation. Defining �⃗ =

∑
�<= |<〉 ⊗ |=〉, it follows

(A ⊗ 1) �⃗ =
∑
8 9

�8 9

(∑
=<

A=< |=〉 〈< |8〉
)
⊗ | 9〉

=
∑
=9<

A=<�<9 |=〉 ⊗ | 9〉 =
∑
=9

(A�)=9 |=〉 ⊗ | 9〉 = ⃗(A�) (B.1)
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and analogously

(1 ⊗ B) �⃗ =
∑
8 9

�8 9 |8〉 ⊗
(∑
=<

B=< |=〉 〈< | 9〉
)

=
∑
8=<

�8<B=< |8〉 ⊗ |=〉 =
∑
8=

(
�B)

)
8=
|8〉 ⊗ |=〉 = ⃗(

�B)
)
. (B.2)

Similarly, the replacement (A ⊗ B))�⃗ = (A ⊗ 1)(1 ⊗ B))�⃗ = ⃗(
A�B)

)
holds.

Now,using these substitutions and the fact that theHamiltonian� = �) is symmetric
and the dissipators !
 = !∗
 are real valued, the Lindblad equation (Eq. 3.51) becomes

ℒ⃡ = − 8
ℏ
(� ⊗ 1 − 1 ⊗ �) +

∑



!
 ⊗ !
 −
1
2 (!

)

!
 ⊗ 1 + 1 ⊗ !)
!
). (B.3)

Casting the tensor products in ℒ⃡ and �⃗ in matrix and vector form finally gives the
desired matrix differential equation, which can then be sorted for diagonal entries
and the various coherences.

With the Liouvillian ℒ⃡ in tensor form, the matrix elements can easily be computed.
For example, for the qubit coupled to two TLSs, one of the off-diagonal entries of CZ
originates from

ℒ<= = 〈100| ⊗ 〈010| ℒ⃡ |101〉 ⊗ |011〉 = AC2↓ . (B.4)

C Dephasing from phase jumps

The statistical density matrix is obtained by averaging over all quantum jump
trajectories with their statistical weight. The averaging over the phase jumps can
directly be performed so that only the averaging over different numbers = of jumps
and their timing remains. Therefore,

�(C) =
∞∑
==0

∫ C

0
dC=

∫ C=

0
dC=−1 · · ·

∫ C2

0
dC14−�(C−C= )�4−�(C=−C=−1) · · ·�4−�(C1−C0)

· 4ℒ0(C−C= )〈	!〉4ℒ0(C=−C=−1) · . . . · 〈	!〉4ℒ0(C1−C0)�(C0). (C.1)

The probability 4�(C−C= ) ensures that after the =th jump no other jump occurs. Rear-
ranging Eq. C.1 yields

�(C) = 4(ℒ0−�1)C
[ ∞∑
==0

∫ C

0
dC=

∫ C=

0
dC=−1 · · ·

∫ C2

0
dC1

4−(ℒ0−�1)C=�〈	!〉4(ℒ0−�1)C= · . . . · 4−(ℒ0−�1)C1�〈	!〉4(ℒ0−�1)C1
]
4−(ℒ0−�1)C0�(C0).

(C.2)
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Approximating the inverse of the coherence matrix

The term in the brackets can be recognized as the Dyson series of �〈	!〉 in the
interaction picture with respect to the Liouvillian ℒ0 − �1. Indeed, taking the
derivative shows that �(C) solves the differential equation

¤�(C) =
(
ℒ0 − �(1 − 〈	!〉)

)
�(C). (C.3)

D Approximating the inverse of the coherence matrix

For the derivation of the Solomon equations, we need to compute C−1, where we
can make use of the block-wise inversion formula. We write C as

C =

(
CZD S)ZD
SZD CR

)
, (D.1)

with the index ZD denoting the joint matrices. Under the assumption that the inverse
matrices C−1

ZD and (CR − SZDC−1
ZDS)ZD)−1 exist, the upper left block of the inverse

matrix C−1 is

C−1
ZD + C−1

ZDS)ZD
(
CR − SZDC−1

ZDS)ZD
)−1

SZDC−1
ZD. (D.2)

Next, the Neumann series is used to obtain a Taylor expansion for the inverse of a
matrix. Recall that for a matrix T it holds in general

(1 − T) · (1 + T + T2 + · · · + T=) = 1 − T=−1. (D.3)

Thus, in case ‖T‖2 < 1, the Neumann series converges and it holds

(1 − T)−1 =

∞∑
:=0

T: . (D.4)

Now, for the decomposition A = D −O with D being diagonal, we can write

A = D
1
2

(
1 −

(
1 −D−

1
2 AD−

1
2

))
D

1
2

and for the inverse, it follows

A−1 = D−
1
2

(
1 −

(
1 −D−

1
2 AD−

1
2

))−1
D−

1
2

= D−
1
2

(
1 −D−

1
2 OD−

1
2

)−1
D−

1
2

= D−
1
2

( ∞∑
:=0

(
D−

1
2 OD−

1
2

) :)
D−

1
2

= D−1 +D−1OD−1 +D−1OD−1OD−1 + . . . , (D.5)
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converging as long as ‖D−1/2OD−1/2‖2 < 1. With this expansion, we find in lowest
order in the diagonal entries

C−1 = D−1
ZD +D−1

ZDOZDD−1
ZD +D−1

ZDS)ZDD−1
R SZDD−1

ZD + O
(
D−4

)
. (D.6)

E Proof of the transformation in Eq. 3.64

For more TLSs, it is expedient to express the rate equation ℒD with the help of spin
creation and annihilation operators. These operators obey the anticommutation
relations

{�−9 , �
+
9 } = 1, {�−9 , �

−
9 } = {�

+
9 , �

+
9 } = 0 (E.1)

for the same element, while for different elements 9 ≠ 8 they commute with each
other:

[�−9 , �
−
8 ] = [�

+
9 , �

+
8 ] = [�

−
9 , �

+
8 ] = 0. (E.2)

Using these operators, the non-Hermitian rate equation ℒD can now be expressed
for an arbitrary number of TLSs. For brevity, we will focus on the scenario that the
TLSs are not interacting with each other. We have

ℒD =

=∑
9=0

A
9

↓(�
−
9 − �

+
9 �
−
9 ) +

=∑
9=0

A
9

↑(�
+
9 − �

−
9 �
+
9 )

+
=∑
9=1

A
� 9
qt (�+9 �

−
0 − �−9 �

+
9 �
+
0 �
−
0

+ �−9 �
+
0 − �+9 �

−
9 �
−
0 �
+
0 )

+
=∑
9=1

A
�9
qt (�+9 �

+
0 − �+9 �

−
9 �
+
0 �
−
0

+ �−9 �
−
0 − �−9 �

+
9 �
−
0 �
+
0 ),

(E.3)

where we use the index 9 = 0 for the qubit and 9 > 0 to denote the TLSs. The covariant
vectors 〈E8 | such that ?8 = 〈E8 | �D as well as 1 = 〈1| �D can be created via

〈E8 | = 〈0| �−8
∏
9≠8

(1 + �−9 ), (E.4)

〈1| = 〈0|
∏
9

(1 + �−9 ). (E.5)

The next step is to show that these vectors are mapped onto each other when they are
applied to the rate equation in Eq. E.3 from the left. The first sum simply results in
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〈E8 | ℒD = −A8↓ 〈E8 | + · · · . In a similar way, the second sum vanishes for 9 ≠ 8. However,
for 9 = 8 the simplification is more intricate. Here, we can show

〈0| �−8 (�
+
8 − �

−
8 �
+
8 ) · · · = 〈0| �

−
8 (�
+
8 − 1 + �+8 �

−
8 ) · · ·

= − 〈E8 | + 〈0| (1 + �−8 − 1)(�+8 + �
+
8 �
−
8 ) · · ·

= − 〈E8 | + 〈0| (1 + �−8 )(�
+
8 + 1 − �−8 �

+
8 ) · · · −�����〈0| (�+8 · · ·

= − 〈E8 | + 〈1| − 〈0| (1 + �−8 )(�
+
8 − �

−
8 �
+
8 ) · · ·︸                             ︷︷                             ︸

���〈0|�+
8
···= − 〈E8 | + 〈1| , (E.6)

thus, 〈E8 | ℒD = · · · + A8↓(〈1| − 〈E8 |) + · · · . The third sum yields

〈E0 | ℒD = · · · +
=∑
9=1

A
� 9
qt

(〈
E 9

�� − 〈E0 |
)
+ · · · , (E.7)

〈E8 | ℒD = · · · + A�8qt (〈E0 | − 〈E8 |) + · · · for 8 > 0. (E.8)

Finally, the fourth sum goes to

〈E0 | ℒD = · · · +
=∑
9=1

A
�9
qt

(〈
E 9

�� − 〈E0 | + 〈1|
)
, (E.9)

〈E8 | ℒD = · · · + A�8qt (〈E0 | − 〈E8 | + 〈1|) for 8 > 0. (E.10)

The last two equations can be incorporated into the previous equations by redefining
the rates as stated in the main text. Thus, we have 〈E8 | ℒD =

∑
9 Ā8 9

〈
E 9

�� + Ā↑,8 〈1|.
Consequently, for any evolution following ¤�D = ℒD�D, we obtain the Solomon
equations for the expectation values of the populations:

¤?8 = 〈E8 | ¤�D = 〈E8 | ℒD�D =
∑
9

Ā8 9? 9 + Ā↑,8 . (E.11)

F Analytic solutions and approximations

F.1 The case of identical cross-relaxation rates

As discussed in the main text, the system dynamics must be governed by the two
eigenvectors v0,2 =

(
G0,2 1 . . . 1

)) and corresponding eigenvalues �0,2 = −AqtG0,2 +
At + Aqt with

−2AqtG0,2 = Aq + (= − 1)Aqt − At︸                  ︷︷                  ︸
( )

±
√
( )2 + 4=A2

qt︸          ︷︷          ︸
√

. (F.1)
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Given the initial out-of-equilibrium populations of the qubit ?∗q,0 := ?∗q(C = 0) and of
the TLSs ?∗t,0 := ?∗t (C = 0), it holds

p∗(0) =
?∗t,0 − @

2 v0 +
?∗t,0 + @

2 v2 (F.2)

with @ = (2Aqt?∗q,0 + ( ) ?∗t,0)/
√

, and the qubit and TLS dynamics finally read

?∗q(C) =
G0
2 (?

∗
t,0 − @)4−�0C + G2

2 (?
∗
t,0 + @)4−�2C ,

?∗t (C) =
1
2 (?

∗
t,0 − @)4−�0C + 1

2 (?
∗
t,0 + @)4−�2C .

(F.3)

(F.4)

The time-dependent transition rates and the equilibrium population can now be
easily computed using Eqs. 3.67, 3.68 and 3.70.

F.2 The case of distributed cross-relaxation rates

The Pick function of the distribution Eq. 3.81 may first be brought into the form

5 (�) = Aq − At −
0

0/�′ −
∞∑
:=1

0

0/�′ − :2 (F.5)

with �′ = � − At. Here, we see the nature of the Pick function: it is a meromorphic
function of I in the complex plane, with I = 0/�′ = 0/(� − At). The sum in Eq. F.5
can be expressed in closed form. It holds

5 (I)
0

= � − 1
2I −

�

2
√
I

cot�
√
I, (F.6)

where � = (Aq − At)/0 was introduced. The normalization can now conveniently be
calculated via

‖E< ‖2 = − 5 ′(�)
���
�=�<

= I2 %

%I

5 (I)
0

����
I=I<

=
1
2 +

(
�2

4 −
�

2

)
I< + �2I2

< . (F.7)

Here, we see that ‖E< ‖2 is a continuous function of I< , which allows the use of
simple approximations for the roots I< in the next step.

So far, our analysis is still exact. We are left with the evaluation of the sum in Eq. 3.78,
which becomes an integral on long time scales. This motivates to interpret I as
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a continuous function of <. The structure of Eq. 3.72 with the rates A:qt, given by
Eq. 3.81, suggests

�< =
0

(< + 1
2 + �(<))2

+ At (F.8)

⇒ I(<) =
(
< + 1

2 + �(<)
)2
, (F.9)

where we defined the deviation �(<) ∈ (−1/2, 1/2).
As a side note, a very good approximation can be found for the <th-root when
the Pick function is approximated piecewise by its surrounding poles, as shown in
Fig. 3.9. This approximation will be used later for the analysis of a more general rate
distribution. Here, we obtain:

I(<) ≈ <2 + < + 1/� + 1/2 − sgn(�)
√
<2 + < + 1/�2 + 1/4, (F.10)

which becomes I(<) = <2 + < + 1/2 for � = 0. At first glance, when the derivative
5 ′ is also approximated by the surrounding poles, insertion of Eq. F.10 gives the
correct limit ‖E< ‖2 → �2<4 for large < and �2 > 0. However, when checking �2 = 0,
one obtains the slightly inaccurate limit ‖E< ‖2 → 2<2 instead of ‖E< ‖2 → �<2 =
(�2/4)<2 according to Eq. F.7.

With the function I(<) we have everything needed to evaluate the sum in Eq. 3.78
on long time scales. We begin with the simpler scenario where �2 = 0, which
essentially describes the qubit relaxing into the TLS environment. Defining H(<) =(
G(<) + 1/2+�(<)√

0C

)
and G(<) = <√

0C
, we have

∞∑
<=0

4−�
′
< C

‖E< ‖2
=

1√
0C

∞∑
<=0

4
− 1
H(<)2

1/2
0C + � H(<)

1√
0C

≈ 1√
0C

∞∫
0

4
− 1
H(<(G))2

1/2
0C + � H(<(G))

dG ≈ 1√
0C

∞∫
0

4
− 1
G2

1/2
0C + �G2

dG

≈ 1√
0C

∞∫
0

4
− 1
G2

�G2 dG =
√
�

2�
1

(0C)1/2
, (F.11)

where at first the sum was approximated by an integral, requiring
√
0C � 1, which

also allows the second approximation (1/2 + �)/
√
0C ≈ 0, since |� | < 1/2. In the last

step, the denominator was approximated, which is valid when
√
0C � 1/

√
2�.
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The scenario �2 > 0 can be treated similarly. We have

∞∑
<=0

4−�
′
< C

‖E< ‖2
≈ 1
(0C)3/2

∞∫
0

4
− 1
G2

1/2
(0C)2 +

�
0C G

2 + �2G4

1√
0C

≈ 1
(0C)3/2

∞∫
0

4
− 1
G2

�2G4 dG =
√
�

4�2
1

(0C)3/2
, (F.12)

which in addition to the previous scenario requires
√
0C �

√
�/�2. The final limit

relaxation behaviors are stated in the main text. The approximation of the sum by
the integral is depicted in Fig. F.1.

Figure F.1: Evaluation of the sum. The parameters are chosen similarly to the experimentwith 0 = 20 kHz,
Aq = 10 kHz and At = 0 and correspond to the Pick function in Fig. 3.9.

Generalization

For the generalized distribution Eq. 3.87, we find analogously

5 (�) = Aq − At −
0

0/�′ −
∞∑
:=1

0

0/�′ − :3
. (F.13)

Unfortunately, to our knowledge, this function can not be expressed in a closed form,
nor can its derivative be expressed via the function itself. For integer values of 3,
one can express 5 as a sum of digamma functions, which for even integers can be
rewritten as a sum of cotangents. In App. F.2, we show the relevant cases 3 = 3 and
3 = 4. We will therefore proceed as discussed before and approximate 5 piecewise by
its surrounding poles. For �2 > 0,we then find ‖E< ‖2 → �2(<+1/2+�(<))23 for large
< in congruence with Eq. F.7. For �2 = 0 one finds in leading order ‖E< ‖2 → 8/32<2,
which surprisingly is always quadratic in < and not with the power of 3, as one
might surmise from Eq. F.7. Note, as discussed before, the prefactor 8/32 is only an
approximation. For instance, for 3 = 3 the correct prefactor is 4�2/27 and for 3 = 4
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one finds �2/8 (cf. App. F.2). We therefore continue by reintroducing the prefactor �
via ‖E< ‖2 → �<2 for large <. Similar as previously, we have for �2 = 0

∞∑
<=0

4−�
′
< C

‖E< ‖2
≈ 1
(0C)1/3

∞∑
<=0

4
− 1
H(<)3

� <2
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1
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≈ 1
(0C)1/3
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0

4
− 1
G3

�G2 dG =
A(1 + 1

3
)

�
1

(0C)1/3
(F.14)

with the approximation becoming valid for (0C)1/3 � 1. Here, A denotes the Gamma
function. For �2 > 0 we find

∞∑
<=0

4−�
′
< C
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≈ 1
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4
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�23

1
(0C)2−1/3 , (F.15)

which is again only valid when (0C)1/3 � 1. The final relaxation behaviors on long
time scales are stated in the main text.

Special solutions

In the following, we will derive a few more exact solutions for the Pick function. We
begin with the Lorentzian distribution as defined in Eq. 3.80. Note that in the case
of 212 ∈ Z, the cross-relaxation rates are not distinct from each other, and the Pick
function is not directly applicable. In this case, the irrelevant eigenvalues given by
the degenerate cross-relaxation rates have to be treated beforehand. The analysis is
then very similar to the one shown in the following, which is valid for 212 ∉ Z. The
Pick function can be rewritten as

5 (�)
0
≡ � − 1

I
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12
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I − 1

) ]
.

(F.16)

Moving from the first to the second line requires I > 1, which becomes valid for
� & �0. Unfortunately, when taking the derivative, the divergent cotangents terms
can not be removed simultaneously, except for the symmetric cases 12 ∈ {0, 1/4, 1/2}.
For instance, for 12 = 1/4 we obtain

5 (�)
0

= � − 1
I
+ �1√

I − 1
tan

(
2�1
√
I − 1

)
(F.17)
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and

‖E< ‖2 = 1 + 1
2
(�I< − 1)I<
(I< − 1)2 + �212I2

<

I< − 1 + (�I< − 1)2. (F.18)

Note, when expressing this solution as a continuous function I(<) = (</2 + 1/4 +
�(<)/2)2 = (< + 1/2 + �(<))2/4, the TLSs with negative and positive detuning have
to be considered. In order to compare this result with the one from the distribution
defined in Eq. 3.81, the parameter 0 must be scaled by a factor of 4.

Next, we discuss the distribution defined in Eq. 3.87, which can be solved analytically
for integer values 3 > 1. We only present the illustrative calculations of 3 = 3 and
3 = 4. For 3 = 4, it holds
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Expressing the oscillating cotangent through regular terms via the Pick function
yields

‖E< ‖2 =
3
8 +

�I1/4
<

4 coth
(
� 4√I<
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+ �2I

2/4
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8 − �I<
4
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Representing this solution again as a continuous function I(<) = (< + 1/2 + �(<))4,
we obtain the expected behavior in the limit < → ∞, and we find � = �2/8. In
general,when 3 is even, 5 contains 3/2 cotangent functions with complex coefficients.
Rewriting the oscillating cotangent on the real axis using the Pick function gives a
continuous function for ‖E< ‖2.
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In principle, we can use the same strategy for 3 = 3:
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where #0 is the digamma function and �( 3√I) = O(1/I4/3) is an integral expression
that vanishes continuously and sufficiently fast as I →∞. The integral expression
enters as

#(I) = ln(I) − 1
2I −
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0

(
1
2 −

1
C
+ 1
4−C − 1

)
4−ICdC (F.22)

for Re(I) > 0. By taking the derivative and removing the divergent cotangent, one
obtains � = 4�2/27. The procedure essentially works for any integer 3 ≥ 2. In case
one is only interested in the closed form expression for ‖E< ‖2, one may only use the
reflection formula once to yield the cotangent via #0(1− 3

√
I) = � cot

(
� 3
√
I
)
+#0( 3

√
I).

Here, the poles on the negative real axis are canceled with #0( 3
√
I).

173



Appendix

G Detailed fabrication steps

Table G.1: Fabrication steps for the three-angle fabrication of granular aluminum fluxoniums.

# description parameters
1 EL-13 spin coating ramp rate: 1000 rpm/s, speed: 2000 rpm,

spin time: 100 s, HP: 200 °C, 5min→∼ 950 nm
2 A-4 spin coating ramp rate: 1000 rpm/s, speed: 2000 rpm,

spin time: 100 s, HP: 200 °C, 5min→∼ 200 nm
3 gold sputtering
4 e-beam writing

(JOEL 50 keV)
5 gold removal Lugol solution 15%, 10 s
6 development IPA / H2O 3:1 @ 6 °C, 90 s, slightly move wafer
7 e-beam evaporation

(PASSYS)
1. plasma descum O2 10 sccm, Ar 5 sccm, 2min,

voltage: 200V, current: 10mA
2. getter pumping titanium evap. with shutter closed, 0.2 nm/s, 2min
3. Al evaporation 1.0 nm/s, tilt: 30°, 20 nm
4. junction oxidation 15mbar, 5:30min

• ∼ 40 s needed to reach pressure
5. Al evaporation 1.0 nm/s, tilt: −30°, 30 nm
• later added:
5.1 argon milling Ar 4 sccm, 1min, voltage: 400V, current: 15mA

6. grAl evaporation 0.3 nm/s, O2 1.0-1.5 sccm, tilt: 0°, 40 nm
• later changed to 1.0 nm/s, O2 4.0-6.0 sccm
• further improvement:
(i) rate stabilization to 0.8 nm/s with no oxygen
(ii) add oyxgen and adjust rate control to 1.0 nm/s
(iii) rate stabilization for 10 s, open shutter

8 lift-off N-Ethyl-2-pyrrolidone (NEP) @ 90 °C, 90min,
rinsing in IPA and Ethanol
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