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ABsTRACT: Collective Thomson Scattering (CTS) diagnostics measure the scattering spectrum of
monochromatic incident radiation off collective fluctuations in the plasma. In this contribution, we
present the first results from the upgraded CTS diagnostic at Wendelstein 7-X (W7-X) operating
in the frequency range between 172 and 176 GHz. This frequency range allows for minimization
of noise originating from the electron cyclotron emission in the plasma. Consequently, the good
signal-to-noise ratio allows measurements of fast ions or bulk plasma parameters with higher
temporal resolution compared with the previously used 140 GHz system.
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1 Introduction

Collective Thomson scattering (CTS) diagnostic is used for diagnosing collective fluctuations in
plasmas caused by ion motion, turbulence or plasma waves. A high-power microwave beam or laser
beam is sent into the plasma, where it scatters off electrons. The collective regime of Thomson
scattering is defined by the characteristic length of resolved perturbation. If the resolved wave
vector ks = K¢ — Kj, where k; and kg stand for the wave vectors of incident and received scattering
radiation, respectively, exceeds the inversed Debye length, the scattering is incoherent. Otherwise it
is collective (coherent) Thomson scattering. This is expressed by the Salpeter parameter [1], which
should be much greater than one for the collective regime:

1
a=
ksAp

> 1, (1.1)

where « is the Salpeter parameter and Ap is the Debye length.

The diagnostic aimed at fast ion research operated at TFTR [2], ASDEX Upgrade [3-5],
TEXTOR [6, 7], LHD [8, 9], W7-AS [10, 11], GDT [12, 13], and will be installed at ITER [14].
The diagnostic is sensitive to the projection of the ion velocity distribution function on the direction
of ks [15]. Having prior knowledge about the shape of the distribution function (e.g. (drifted
bi-) Maxwellian, slowing down distribution, ring distribution, etc [16]) and combining CTS
measurements with other fast ion diagnostics enables reconstruction of the complete velocity
distribution function [17-20].

Initially, the CTS diagnostic at W7-X was designed for ion temperature (7;) measurements using
one of the heating gyrotrons as a source of probing radiation [21, 22]. The diagnostic delivered ion
temperature, however poor signal-to-noise ratio (SNR) due to strong electron cyclotron emission
(ECE) in the order of several keV required long averaging. Another drawback of using a heating
gyrotron as a source of probing radiation is that the measurement volume cannot be placed behind or
even near the electron cyclotron resonance layer for the chosen frequency range.



Consequently, a new frequency range for the diagnostic was selected based on the following
criteria:

* Low ECE power density,
* Technical capability of detuning existing heating gyrotrons to the new frequency,

* Low reflections from diamond discs that are used as air-vacuum interfaces in gyrotrons and in
the plasma vessel.

We showed, that the optimal frequency range is 171-177 GHz [22]. Indeed, this range is
located between the second and third harmonic of ECE coming from the plasma [23]. Theoretical
investigation showed that existing gyrotrons could emit microwave pulses of several ms particularly
at a frequency of 174 GHz, should their magnets be replaced to those which can deliver around 7.1 T
instead of currently used 5.6 T [24]. The prediction was proven experimentally. Additionally, we
showed that the frequency drift of the high-power gyrotron could be stabilized [25] which allows
CTS measurements with a narrow notch filter.

We upgraded the CTS receiver to the new frequency range by exchanging a 140 GHz corrugated
microwave horn with a smooth dual-frequency horn for the 140 and 174 GHz ranges. The horn
is followed by a waveguide switch which redirects scattering radiation either into the 140 GHz
radiometer or into the 174 GHz radiometer. Two key features of the new receiver are single-stage
heterodyne in contrast to the two-stage mixing in the 140 GHz arm and a new radiofrequency (RF)
amplifier from ELVA-1 with the gain of 14 dB and noise figure of 8 dB in the 170-180 GHz frequency
range. These improvements lowered the noise temperature of the 174 GHz CTS receiver to around
2 eV down from around 8 eV for the 140 GHz case. A detailed characterization of the new receiver is
reported separately [26].

This paper is organized as following. In section 2 we discuss the operational implications of the
diagnostic working at 174 GHz. The overlap sweep is shown in section 3. We discuss the properties
of thermal and fast ion signatures in the measured CTS spectra in sections 4 and 5, respectively.
Section 6 concludes the paper.

2 Implications of the 174 GHz probing radiation

The main advantage of the CTS diagnostic in the 174 GHz frequency range is that this range is located
exactly in between the second and third harmonics of ECE for plasmas confined within the last closed
flux surface, which means minimum possible noise from ECE in the measurements. However, it also
means that the microwave radiation is only weakly absorbed by the plasma. Corre et al. showed [27]
that direct irradiation of a graphite tile with a 140 GHz beam having an average unabsorbed power
of 240kW led to a temperature increase of the impacted tile to almost 1000 °C. Moreover, the
thermodynamic equilibrium was not achieved within 10 s of the discharge 20171121.13. The same
power is extracted from the gyrotron at 174 GHz during the CTS operation. Unabsorbed microwave
power in the 174 GHz frequency range is potentially harmfull for other microwave diagnostics which
are not equipped with notch filters for 174 GHz. This problem is not yet solved. In commissioning
experiments discussed in this paper, the shutters of all potentially endangered diagnostics were
closed. In the future they will be equipped with notch filters for the 174 GHz radiation or fast irises
if installation of a notch filter for some reason is impossible.



The CW operation of the 140 GHz gyrotron at 174 GHz has implications not only for W7-X but
for the gyrotron itself. The efficiency of the gyrotron is down from around 45% to about 15%. This
means that the thermal loads on the collector from the electron beam increase by more than 50%. The
gyrotron also produces far more stray radiation because the microwave launcher in the device is only
optimized to convert the TE»g g mode into a Gaussian beam. The conversion efficiency of other modes
is lower, as discussed in ref. [24]. High fluxes of stray radiation inside the gyrotron can lead to damages.

Considering these factors, we chose to operate the gyrotron at a duty cycle of 7%, 10 ms on and
130 ms off as it is shown in figure 1. The CTS measurements lasted 3 ms during the gyrotron-on
period, it was followed by a 3 ms ECE background measurement right after the gyrotron was turned
off. The sequence was repeated every 140 ms.

10 ms 130 ms

3 ms

3ms

CTS

BCKG

Figure 1. Timing of the gyrotron and data acquisiton in the CTS experiments.

3 Overlap sweep

One of the main validity proofs of CTS measurements is an overlap sweep, when the receiver beam
is swept across the probing beam. The scattering should take place only when two beams intersect,
so a bell-like shape of an integrated spectral power density as a function of the sweeping angle (or
time) is expected, should the received signal indeed originate from scattering.

A schematic of the overlap sweep in the shot 20230323.14 is shown in figure 2. The receiver
beam F1 is swept across the probing beam B1, which shines nearly perpendicular to the first wall,
slightly bent to the right. The receiver beam is swept from left to right and stopped at the final
location. Reflections of the probing beam B1 in such a configuration create secondary overlaps
futher on the right from beam B1.

On the left panel of figure 3 we demonstrate an integrated power spectral density (PSD) of the
lower frequency wing of the scattering spectra as a function of time during the discharge 20230323.14.
On the right panel of figure 3 the expected normalized PSD as a function of the receiver scanning
angle is plotted. The difference between the two is clear:

* The integrated spectra are never zero during the sweep;

* Values of integrated spectra do not fall back to the initial values in the beginning of the overlap
sweep.
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Figure 2. Schematic of the overlap sweep of the receiver beam F1 across the probing beam B1 in the W7-X
experiment 20230323.14.
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Figure 3. Left panel: integrated low frequency wing of the CTS spectra as a function of time during an
overlap sweep of the CTS receiver across the probing beam in the W7-X experiment 20230323.14. Right
panel: expected shape of integrated CTS spectra as a function of the scanning angle.

The ECE background never goes to zero and remains in the range 20-70eV [23, 26]. During
the gyrotron-on period a process of slight absorption of the 174 GHz probing beam and re-emission
in a broader spectral range takes place at the plasma edge. Consequently, the background subtraction
always leaves an offset in the spectrum and that is why the integrated PSD of the scattering spectra
during the overlap sweep never reaches zero.

Secondary overlaps from the reflected probing beam explain a slight decrease of the integrated
signal at the end of the overlap sweep compare to its maximum. For the next campaign a diffusor
structure will be milled into the impacted first wall tile in order to dissipate the probing beam into all
direction after the first reflection.



4 Thermal CTS spectra

It is important to see how much of an improvement the transition to the new frequency and re-design
of the receiver really helps to improve SNR, as shown in figure 4. Frequencies on both panels are
relative to frequencies of the probing beams. On the left panel one sees two normalized CTS spectra
from the W7-X discharge 20171011.53, when the CTS diagnostic operated at 140 GHz. The blue
curve is obtained by averaging over a single gyrotron pulse (5 ms). SNR of such a spectrum is poor
and the spectrum is not useful for T; inference. The red line shows a spectrum averaged over 14
gyrotron pulses (70 ms) and T; can be inferred from it [28], however temporal resolution is lost.
Moreover, due to refraction, the exact position of the overlap volume has large uncertainties [22].
The right panel shows a normalized spectrum averaged in a single gyrotron pulse over 3 ms in
the discharge 20230330.29. It has a good SNR allowing inference of not only the bulk plasma
parameters but also of fast ions. One also notices a narrow notch filter compare to the 140 GHz
case shown on the left panel, low refraction, and availability of plasma center, a location previously
unavailable due to the location of the ECRH absorption layer for measurements.
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Figure 4. Left panel: two scattering spectra for T; measurements from the W7-X dischargre 20171011.53
obtained with the 5 ms averaging (over a single gyrotron pulse, blue curve) and with 70 ms averaging (over 14
gyrotron pulses, red curve). Right panel: a scattering spectrum for T; measurements from the W7-X discharge
20230330.29 averaged over 3 ms (single gyrotron pulse). Both panels show normalized spectra and frequency
relative to the frequency of the source of the probing beam.

5 Fast ion measurements

W7-X is equipped with four neutral beam injectors (NBI), 55keV 1.8 MW each, which in future
will be expanded to eight sources [29]. The discharge 20230323.38 is shown in figure 5, where a
single neutral beam injector S4 fired for 5s, as seen on the upper panel. Since we do not have an
absolute calibration of the CTS receiver due to an urgent repair, we instead demonstrate the effect of
fast ions as follows. The CTS measurements were made throughout the discharge. A ratio of two
CTS spectra is shown on the lower panel. One taken during the NBI phase 28 ms before the injector
was switched off (PSDygp), over the spectrum taken 12 ms after NBI turned off (PSD;ong1). The
moments when the spectra are taken are indicated by black and magenta vertical lines on the upper
panel. Each of the measured spectra has three large contributions, namely ECE, thermal ion spectra,



and the fast ion spectrum:
ECE thermal FI
PSD g + PSDRg + PSDy;

= ECE thermal FI
PSD  ong1 + PSDongr + PSDyong:

, 6D

where R denotes the ratio, PSD is the power spectral density of the respective contribution which is
indicated in superscript. The phase of the discharge when the measurement was done is shown in the
subscript. It is important to emphasize that by ECE we do not mean the total ECE in the frequency
range but rather its increment during the 174 GHz gyrotron-on phase which cannot be removed by
background subtraction. The ECE increment is flat in our frequency range and typically accounts for
20-30eV. The thermal part of the spectra spans +500—700 MHz from the probing frequency and is
not expected to change between the two different phases. This is because 12 ms in the new discharge
phase, when the reference spectrum was taken, is an order of magnitude smaller than the energy
(200 ms) and particle (500 ms) confinement times. The fast ion feature of 55 keV hydrogen ions is
supposed to give a spectral response in the range +1500 MHz from the probing frequency [22]. Due
to the close to perpendicular CTS viewing geometry and close to radial NBI injection geometry, no
strong asymmetries in the fast ion spectral feature are expected.

Indeed, what we observe in figure 5 is an elevated ratio R between the two spectra by about
5% in the +£1300 MHz from the probing frequency. With no fast ion signatures we would expect,
disregarding the noise, the ratio curve to be flat with a value of 1. The lowering of the ratio R shows
where the bulk thermal spectrum is and how the fast ion signature gets weak compare to it. Knowing
our usual ECE levels, the fast ion signature is estimated to be at a level of 1-1.5¢eV.
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Figure 5. Upper panel: time traces of NBI and ECRH heating in discharge 20230323.38. The moments of
the CTS measurements are marked by vertical black (NBI phase) and magenta (no NBI phase) lines. Lower
panel: ratio R between the CTS spectra in the NBI and no-NBI phases of the discharge.



6 Conclusions

The CTS diagnostic at W7-X, including the receiver and the probing gyrotron, were modified to
measure around a probing frequency of 174 GHz. The modifications led to an improvement in the
amount of ECE noise that enters the receiver. The performance of the receiver itself was improved
by using a D-band RF amplifier, a single heterodyne architecture, and a narrow notch filter in
combination with the frequency-stabilized gyrotron.

The diagnostic acquires high quality spectra with SNR good enough to allow for both bulk ion
and fast ion measurements with a 3 ms time resolution.

Special protection measures for other RF diagnostics have to be implemented in order integrate
the CTS diagnostic into the set of standard operation diagnostics of W7-X.
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