
A comparison of different approaches
to solve the SLAM problem on a

Formula Student Driverless race car

Master’s Thesis of

Nick Le Large

Institute of Measurement and Control Systems
Karlsruhe Institute of Technology

Reviewer: Prof. Dr.-Ing. Christoph Stiller
Advisor: Frank Bieder, M.Sc.

Karlsruhe, November 2020

KIT – The Research University in the Helmholtz Association www.kit.edu

Declaration / Erklärung

Ich versichere hiermit wahrheitsgemäß, die Arbeit bis auf die dem Aufgabensteller
bereits bekannten Hilfsmittel selbständig angefertigt, alle benutzten Hilfsmittel voll-
ständig angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer
unverändert oder mit Abänderungen entnommen wurde.

Nick Le Large
Karlsruhe, 19.11.2020

iii

Acknowledgements

First and foremost, I want to thank Professor Dr.-Ing. Christoph Stiller, head of
MRT, for supervising this external thesis.

Further, I wish to express my sincere appreciation to my supervisor, Frank Bieder,
for his willingness to support and supervise my work and for the excellent advice he’s
given me throughout the entire project. This thesis would not have been possible
without him.

Next, I want to express my gratitude to the entire team at KA-RaceIng. Even
under the extraordinary circumstances of the 2020 season, I will always keep the
time I could spend with this great group of people in good memory. A big thank
you goes to everyone who helped me by proofreading this thesis. Specifically, I want
to thank Luca Wahl and Simon Schäfer for their dedication and for supporting the
research I conducted during my time at KA-RaceIng.

An important puzzle piece in the making of this thesis was the ground truth map,
and I want to thank Jakob Weisgerber, research associate at the Geodetic Institute,
for his help acquiring it.

I want to express my deepest gratitude to my parents and my grandparents for
providing me with all the support I needed throughout my entire studies and for
always making it possible for me to take not the shortest but the most interesting
path.

Last but not least, from the bottom of my heart, a very special thanks goes to my
fiancée, Anjana. Her patience, her understanding and her support always kept me
going.

v

Abstract

The Formula Student Driverless competition challenges students all over the world
to develop and build self-driving single-seater race cars. One of the greatest chal-
lenges of any autonomous vehicle is the problem of ”Simultaneous Localization and
Mapping”, or SLAM in short. There are a number of approaches to solve this problem
but unfortunately, there is no silver-bullet solution as an algorithm’s performance
highly depends on the given use case.

To find the best possible approach for the application on a Formula Student Driver-
less race car, this thesis presents two very different algorithms - EKF SLAM and
GraphSLAM - and their respective implementation on the vehicle.

To form an objective opinion on which algorithm performs better, a tool is pre-
sented that allows continuous measurements of the performance of the algorithms.
The algorithms are analyzed with respect to their accuracy and their efficiency. The
latter is important because to work in the extreme conditions of a racing applica-
tion, the algorithms have to be real-time capable at high frequencies with limited
computational resources.

Simultaneously, there are high demands on the accuracy of the algorithms. A
Formula Student track is very narrow compared to the vehicle, leaving little room
for error. The accuracy is measured by comparing the SLAM-generated map to a
ground truth map which was acquired using high-precision DGPS measurements.

All data sets used in this thesis were recorded on a Formula Student Driverless race
car, without the need for simulated input. This requires the algorithms to func-
tion in real-world conditions, such as non-linear vehicle behavior or non-Gaussian
measurements, that will deviate from assumptions made when implementing the
algorithms.

The results of the evaluation show that both algorithms achieve real-time capability
thanks to a parallelized architecture, with GraphSLAM draining the computational
resources much faster than EKF SLAM. However, the analysis of the maps generated
by the algorithms shows that GraphSLAM outperforms EKF SLAM in terms of
accuracy.

vii

Kurzfassung

Der Formula Student Driverless Wettbewerb fordert Studenten auf der ganzen
Welt dazu heraus, in selbstständing entwickelten und gebauten einsitzigen Renn-
wagen gegeneinander anzutreten. Eine der größten Herausforderungen eines jeden
autonomen Fahrzeugs ist das

”
Simultaneous Localization and Mapping”-Problem,

kurz SLAM-Problem (Engl.: Simultanes Lokalisieren und Kartieren). Es existieren
verschiedene Ansätze, um das SLAM-Problem zu lösen. Allerdings gibt es keinen
Königsweg, da die Leistungsfähigkeit eines Algorithmus stark vom speziellen An-
wendungsfall abhängt.

Um den bestmöglichen Ansatz für den Einsatz auf einem Formula Student Driver-
less Rennwagen zu identifizieren, stellt diese Arbeit zwei sehr unterschiedliche Algo-
rithmen - EKF SLAM und GraphSLAM - und deren jeweilige Implementierung auf
dem Fahrzeug vor.

Um objektiv entscheiden zu können, welcher der beiden Algorithmen besser funktio-
niert, wird ein Werkzeug vorgestellt, welches die Qualität der Ergebnisse kontinuier-
lich misst. Die Algorithmen werden mit Hinblick auf ihre Präzision und ihre Effizienz
evaluiert. Letzteres ist wichtig, da die Algorithmen selbst unter den extremen Be-
dingungen des Einsatzes auf einem Rennwagen und mit limitierten Ressourcen in
Echtzeit arbeiten müssen.

Gleichzeitig ist die Anforderung an die Genauigkeit der Algorithmen sehr hoch.
Eine Formula Student Rennstrecke ist im Vergleich zum Fahrzeug sehr schmal, was
nur eine geringe Toleranz für Fehler erlaubt. Um die Genauigkeit zu messen, wird die
durch den Algorithmus generierte Karte mit einer Referenzkarte verglichen. Diese
wurde unter Nutzung eines hochpräzisen DGPS-Messgerätes erstellt.

Alle Datensätze, die in dieser Thesis verwendet werden, wurden auf einem Formula
Student Driverless Fahrzeug aufgenommen, was eine Evaluierung ohne simulierte
Daten möglich macht. Die Algorithmen müssen daher unter Bedingungen funktio-
nieren, wie sie in der echten Welt zu finden sind, wie z.B. nicht-lineares Fahrzeugver-
halten oder nicht-Gauß’sche Sensormessungen. Diese Bedingungen weichen von An-
nahmen ab, die bei der Implementierung der Algorithmen getroffen wurden.

Die Ergebnisse der Evaluierung zeigen, dass beide Algorithmen dank einer paral-
lelisierten Architektur in Echtzeit arbeiten, wobei GraphSLAM mehr Ressourcen
verbraucht als EKF SLAM. Im Hinblick auf die Genauigkeit zeigt die Analyse, dass
die Schätzungen des GraphSLAM denen des EKF SLAM überlegen sind.

ix

Contents

Abstract vii

Kurzfassung ix

Acronyms xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 3

1.3 Outline . 4

2 Related Work 5

2.1 SLAM in General . 5

2.2 SLAM in Driverless Racing . 6

3 Fundamentals 7

3.1 Basic Concepts . 7

3.2 Graph Theory . 17

3.3 Least Squares Optimization . 19

3.4 Data Association . 22

3.5 Localization . 24

4 Underlying Conditions and Preliminaries 27

4.1 Formula Student . 27

4.2 Base Car . 31

4.3 Autonomous Pipeline . 34

4.4 SLAM: Initial Situation . 39

5 System Modeling 41

5.1 Reference Frames . 41

5.2 Motion Model . 42

5.3 Measurement Model . 44

5.4 Uncertainties . 45

5.5 Filtering False Positive Measurements 50

6 EKF SLAM 53

6.1 EKF Localization . 53

6.2 EKF SLAM . 53

xi

xii Contents

7 GraphSLAM 63

7.1 Graph Structure . 63

7.2 The GraphSLAM Algorithm . 64

7.3 GraphSLAM Implementation . 66

8 Experimental Evaluation 71

8.1 Data Sets . 73

8.2 Architecture . 74

8.3 Accuracy . 74

8.4 Efficiency . 79

9 Conclusion and Future Work 89

9.1 Summary . 89

9.2 Conclusion . 91

9.3 Application of GraphSLAM in 2020 91

9.4 Future Work . 92

List of Figures 95

List of Tables 97

List of Algorithms 99

Bibliography 101

Acronyms

ACU Autonomous Computing Unit

DGPS Differential Global Positiong System

DNF Did Not Finish

DOO Down or Out

DQ Disqualified

EBS Emergency Brake System

EKF Extended Kalman Filter

FS Formula Student

FSD Formula Student Driverless

FSG Formula Student Germany

FSO Formula Student Online

GPU Graphics Processing Unit

ICP Iterative Closest Point

IMU Inertia Measurement Unit

JCBB Joint Compatibility Branch and Bound

KIT Karlsruhe Institute of Technology

MPC Model Predictive Controller

OC Off-course

RES Remote Emergency System

ROS Robot Operating System

SLAM Simultaneous Localization and Mapping

USS Unsafe Stop

UTM Universal Transverse Mercator

xiii

1 Introduction

1.1 Motivation

Driver Assistance and Safety

The automotive industry is changing rapidly due to technological progress in the
field of automation. Automation in road vehicles has come a long way since the
introduction of features like cruise control or ABS. Today’s vehicles come equipped
with an increasing number of automation systems that improve comfort and safety.
These systems play a significant role in the reduction of deadly road accidents.
Figure 1.1 shows the drop of fatal accidents in Germany during the past decades,
even though the number of registered vehicles increased tenfold over the past 60
years [43].

Figure 1.1: Number of traffic accident fatalities since 1950 [40].

The next step from driver assistance systems is to remove the need for a driver
altogether. Going from assisted driving to autonomous driving is a huge challenge for
different reasons. Aside from legal and ethical questions that need to be answered,
the consumer must accept the new technology and must be ready to hand over
control to a machine. However, the benefits an autonomously driven vehicle has
over a manually driven car are significant. In 2018, the number of accidents in

1

2 1. Introduction

Germany caused by driver mistake was more than 6 times larger than all other
causes combined, including technical faults, road surface conditions or obstacles [32]
[33] [34] [35].

The increased safety in addition to an improved comfort promised by autonomous
vehicles leads the automotive industry to use a big portion of their investments for
the development of autonomous driving. In 2017, this portion was only surpassed
by the budget spent on the drivetrain [38]. These numbers are explained by the
fact that autonomous driving is challenging from a technological standpoint as well.
When taking the human out of the equation, the machine must be able to respond
to unknown situations in order to ensure a reliable system. Therefore, it needs to
accomplish all the tasks a human would. This includes perceiving the environment
and the objects in it, estimating the ego position, predicting what other road users
will do, planning a trajectory accordingly and finally giving the correct acceleration
and steering input to follow that trajectory.

Racing and Technological Advancement

When it comes to new technology in the automotive industry, racing has quite of-
ten played a key role in fueling innovation and pushing cars to the limit of what is
possible. Technologies like all-wheel drive, semi-automatic gearboxes or materials
like carbon fiber have made their way into production vehicles through their appli-
cation in race cars. Racing series, like Formula E or Roborace have been founded
specifically with this in mind. Formula Student (FS) is another competition with
this purpose but the race cars are developed exclusively by students. The cars are
competing in various, loosely connected events all over the world. Following the tech-
nological trend, various Formula Student competitions, including Formula Student
Germany (FSG), introduced the Formula Student Driverless (FSD) competition.
In slightly adjusted disciplines compared to the counterpart competitions Formula
Student Combustion and Formula Student Electric, the students are required to
overcome the technological challenges mentioned above to build a fully autonomous
race car.

The SLAM Problem

One of these challenges is localizing the car in an environment whilst at the same
time mapping that environment. This task is often referred to as a hen-or-egg
problem, as localization requires a map and vice versa. In robotics, this dilemma is
called Simultaneous Localization and Mapping (SLAM).

SLAM is not restricted to autonomous cars but has a broad field of use cases, from
autonomous submarines [29] and drones [26] to robot vacuums [24]. Because of this,
it has been widely researched since the 1980s [17] but is still an extremely relevant
topic today. Years of research resulted in different mathematical approaches in the
attempt of solving the SLAM problem, each having a specific set of advantages
and disadvantages. Choosing the correct approach highly depends on the use case
scenario.

1.2. Problem Statement 3

1.2 Problem Statement

Localization and mapping can be one of the bottlenecks of the overall system.
First of all, bad localization performance leads to inaccurate maps and vice versa.
But additionally, in autonomous racing, if the map quality is not sufficient, the
trajectory planning needs to diverge from the ideal racing line in order to leave big
enough safety margins to assure the vehicle will not leave the track. The controller
highly depends on the quality of the localization because it will try to reduce the
difference between the estimated state and the planned state. If the localization
is not accurate enough, the controller will not be able to reduce the error and the
vehicle might leave the track. In the worst case, the SLAM algorithm might even
diverge, which will inevitably lead to an emergency break manoeuver and no points
scored in that particular run.

In order to assure high map and localization quality, it is essential that the best
possible algorithm for the specific use case is chosen. With this in mind, this thesis
aims to answer the following question:

Which approach to the SLAM problem results in the best performance
in the context of an autonomous Formula Student race car?

To answer this question, it must be established what ”best performance” actually
means and how it can be measured. For this purpose a benchmarking tool will be
implemented.

As for the SLAM algorithm itself, two of the most prominent approaches will be
implemented. A more classical approach based on the Kalman Filter and a more
recent solution, a graph based approach. It must be ensured that the algorithms are
performing in real-time and have the proper interfaces to communicate and work
together with the other modules of the autonomous pipeline.

If these prerequisites have been fulfilled, the algorithms can then be tested and
evaluated in order to answer the question above.

4 1. Introduction

1.3 Outline

In Chapter 2, related work that this thesis is built upon is presented. This includes
publications that address topics such as the SLAM approaches used in this thesis or
related publications by other Formula Student teams.

Chapter 3 presents the necessary theoretical background.

Boundary conditions that influence the SLAM algorithms, such as the various dis-
ciplines of Formula Student Driverless, the base car used to record the analyzed data
sets, or the autonomous pipeline, are presented in Chapter 4.

Chapter 5 addresses the modeling of the system, relevant to both of the SLAM
algorithms, such as the used reference frames or the motion and measurement mod-
els.

Chapters 6 and 7 discuss the SLAM algorithms - EKF SLAM and GraphSLAM
- and their respective implementation.

The method used to evaluate the algorithm’s performance is presented in Chapter
8, followed by the results from evaluating the algorithms presented in Chapters 6
and 7.

Finally, in Chapter 9, the conclusion from these results is drawn and future work
on the subject is discussed.

2 Related Work

2.1 SLAM in General

SLAM is not a new problem. It dates back to the late 1980s, when Durrant-Whyte
[2] and Smith and Cheesman [1] started laying the foundation for this field of re-
search by introducing methods to describe robots in a probabilistic way. A few years
later, Smith, Cheesman and Self presented representations for maps containing spa-
tial, uncertain information in the form of landmarks that are revised incrementally
[3]. In 1991, Leonard and Durrant-Whyte identified mapping and localization as a
fundamental problem of mobile robotics [4]. It was recognized that the vehicle state
and all landmark positions would indeed be correlated. Therefore, localization and
mapping would have to be formulated as a combined problem.

Representing this break-through, the term SLAM was established by Durrant-
Whyte et al. in 1995 [5]. However, because all early approaches to the SLAM
problem were based on a Kalman Filter, combining the problem meant that the
state vector would have to include all landmarks as well as the vehicle state. Var-
ious approaches aim at reducing the computational complexity of filter based ap-
proaches resulting from such a big state vector. Bailey and Durrant-Whyte give
a great overview of the methods used to do so [16]. State augmentation, for ex-
ample, is a technique where the structure of the problem is used to only compute
small blocks of the state vector and covariance matrix when applying the motion
model [11]. State augmentation will deliver optimal results and is used in one of
the algorithms presented in this thesis. Another method to reduce the algorithm’s
complexity is presented by Thrun et al., who take advantage of the sparse structure
of the problem when it is transformed into information space by neglecting close to
zero elements of the information matrix [13]. However, the problems the algorithms
in this thesis are faced with consist of less than 1,000 landmarks. Techniques that
deviate from the optimal solution are not needed, so they are not further discussed
hereafter.

A different approach to the SLAM problem is based on smoothing instead of filter-
ing. Lu and Milios were the first to formulate the SLAM problem using constraints
to connect robot poses and to formulate a global optimization problem from these
constraints in 1997 [7]. However, the computational resources available at the time
limited the use for such algorithms because of the high complexity they introduced.
Since then, impressive progress has been made in modern computing as well as on
the field of sparse linear algebra, which is why approaches based on smoothing are
popular more than ever nowadays and are referred to as state-of-the-art techniques
for solving the SLAM problem [20]. In 2006 Thrun and Montemerlo introduced
the GraphSLAM algorithm [18] based on the work of Lu and Milios. One of the
algorithms presented in this thesis is largely based on this approach.

5

6 2. Related Work

2.2 SLAM in Driverless Racing

Choosing the best possible approach to solve the SLAM problem is very dependent
on context. External factors, such as the number and type of available sensors or the
size of the environment that is going to be mapped, may rule out certain algorithms
or favor others. This thesis aims at finding the best approach for a Formula Student
Driverless vehicle. This implies some extreme requirement due to the fact that it is
a racing application and at the same time relaxes other requirements because the
setting is very well defined.

Formula Student Driverless is a fairly new competition. In Germany it is was
introduced in 2017. But since it is a sport performed exclusively by students, there
are a number of publications discussing various parts of the autonomous system
of these race cars. Zeilinger et al. [27] and Valls et al. [30] present the overall
autonomous system of their respective vehicles. Both teams utilize SLAM algorithms
based on an Extended Kalman Filter (EKF) and while they give a good overview over
the building blocks needed for autonomous racing, they only touch SLAM briefly
and do not evaluate different approaches. Nekkah et al. present the software stack
of the autonomous vehicle that this thesis is based on [42]. However, the presented
SLAM algorithm has since been improved. For the purposes if this thesis, it serves
as a base line for the experimental evaluations made in Chapter 8.

SLAM evaluations have been performed in the context of Formula Student Driver-
less: Kabzan et al. use a fastSLAM algorithm and provide data of an evaluation
of the algorithm [36]. Anderson and Baerveldt chose and discussed another algo-
rithm, ORB-SLAM2 [28]. Wahlqvist implemented an EKF SLAM algorithm on a
modified remote controlled car to test different motion priors with an application
on a Formula Student Driverless car in mind [39]. Similarly, Brunnbauer and Bader
implemented and evaluated an EKF based localization algorithm on a 1:10 car [31].
However, no concrete comparison to a different SLAM algorithm is made in any of
these references.

Outside of Formula Student, SLAM approaches are evaluated, for example, in the
context of Roborace [37] or the DARPA challenge [19]. However, these settings differ
quite significantly from the Formula Student application that this thesis covers.

To the knowledge of the author, no comparison of fundamentally different ap-
proaches to the SLAM approach have been made in the context of a Formula Student
Driverless application. This thesis presents an evaluation of both a filter-based and
a smoothing-based SLAM algorithm, based on real-world data collected by a For-
mula Student Driverless race car. For this, the used algorithms and their respective
implementation are introduced in Chapters 6 and 7.

3 Fundamentals

In this chapter, the theoretical background needed to solve the SLAM problem is
established. If not stated otherwise, the fundamentals of the SLAM problem and
the approaches to solve it are taken from Probabilistic robotics [14].

3.1 Basic Concepts

3.1.1 Uncertainty

All algorithms presented in this thesis are based on probabilistic approaches. These
approaches have proven to be more robust and to have weaker requirements on the
accuracy of a robot’s1 model or the robot’s sensors.

This is due to the fact that any real world application of a robot is faced with
uncertainties. For example, sensor input will never be completely accurate and
even the robot’s movement is uncertain. A control input to make the robot move
somewhere can only be as accurate as the motors that perform this movement.
Additionally, external influences such as slip or dynamically changing tire diameters
will increase the uncertainty of the motion model that is being used. Because of
this, many robotics applications rely on estimating a probability density function,
which allows the robot to use the received input over time as well as implemented
models to continuously improve its estimates.

Probabilistic algorithms come at the price of higher computational complexity when
compared to their more traditional counterparts because instead of computing a sin-
gle guess, they try to find a complete probability density. However, recent improve-
ments made in computer hardware allow for tremendous performance at a very low
cost making probabilistic algorithms more relevant than ever.

3.1.2 Probability Theory

This section presents some basic probabilistic concepts and their respective mathe-
matical notation. Many variables used in this thesis are modeled as random vari-
ables that can take on multiple values depending on probabilistic laws. A random
variable X could take on a specific value x. The probability of this outcome can be
denoted as:

p(X = x) (3.1)

The sum of the probability of all possible values of the random variable must sum
up to 1. For discrete probability functions, this is expressed by:∑

x

p(X = x) = 1 (3.2)

1A robot is per definition a machine that is capable of handling complicated series of tasks
automatically [44]. This definition applies to the race car that is referred to throughout this
thesis, so ”robot” and ”vehicle” or ”car” will be used synonymously.

7

8 3. Fundamentals

Analogously, it holds for continuous functions that:∫
p(X = x)dx = 1 (3.3)

To simplify the notation, the random variable is usually omitted, so p(X = x) is
abbreviated by p(x).

Most random variables in this thesis will be described by continuous probabil-
ity density functions. A very common density function is the one-dimensional
normal distribution or Gaussian distribution with a mean µ and a variance
σ2:

p(x) = (2πσ2)−
1
2 exp

(
−1

2

(x− µ)2

σ2

)
(3.4)

The normal distribution is abbreviated using N (x;µ, σ2).

If x is a multi-dimensional vector, the multivariate normal distribution is used.
It is defined like this:

p(x) = det(2πΣ)−
1
2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(3.5)

µ is the mean vector, while Σ represents the covariance matrix which is a sym-
metric and positive semidefinite matrix.

Alternatively, a multivariate Gaussian distribution can also be represented in
canonical parametrization using the information matrix Ω and the informa-
tion vector ξ. These parameters are defined as

Ω = Σ−1 (3.6)

and
ξ = Σ−1µ (3.7)

The canonical parametrization of a Gaussian can be obtained by multiplying out
the exponent in Equation (3.5):

p(x) = det(2πΣ)−
1
2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(3.8)

= det(2πΣ)−
1
2 exp

(
−1

2
xTΣ−1x+ xTΣ−1µ− 1

2
µTΣ−1µ

)
(3.9)

= det(2πΣ)−
1
2 exp

(
−1

2
µTΣ−1µ

)
exp

(
−1

2
xTΣ−1x+ xTΣ−1µ

)
(3.10)

When using η as a normalizer to combine all constants in the equation above, the
Gaussian can be represented by:

p(x) = η exp

(
−1

2
xTΣ−1x+ xTΣ−1µ

)
(3.11)

= η exp

(
−1

2
xTΩx+ xT ξ

)
(3.12)

The joint distribution of two random variables X and Y is given by:

p(x, y) = p(X = x and Y = y) (3.13)

3.1. Basic Concepts 9

X and Y are independent random variables if:

p(x, y) = p(x)p(y) (3.14)

A probability
p(x | y) = p(X = x | Y = y) (3.15)

is called conditional probability and is defined as:

p(x | y) =
p(x, y)

p(y)
∀ p(y) > 0 (3.16)

If X and Y are independent, the following relation can be concluded from Equations
(3.14) and (3.16):

p(x | y) =
p(x)p(y)

p(y)
= p(x) ∀ p(y) > 0 (3.17)

This means that ifX and Y are independent, knowing about Y carries no information
if X is of interest.

A consequence of this is the so called Theorem of total probability for discrete
values:

p(x) =
∑
y

p(x | y)p(y) (3.18)

Analogously, for continuous values:

p(x) =

∫
y

p(x | y)p(y)dy (3.19)

Another important result is the Bayes rule:

p(x | y) =
p(y | x)p(x)

p(y)
(3.20)

Since p(y) does not depend on x, it is the same for all possible values x. Therefore,
the notation of Equation (3.20) is often simplified by replacing p(y)−1 by a normalizer
η:

p(x | y) = ηp(y | x)p(x) (3.21)

The Bayes rule will play an important role in this thesis. If x is to be inferred
from y, then p(x) will be referred to as prior probability distribution, and y
is called data. After incorporating y, the distribution p(x | y) is referred to as
posterior probability distribution. Bayes rule allows this to be flipped, i.e.
to infer y assuming that x was the case. The probability p(y | x) is often called
the generative model because it describes how state variables X cause sensor
measurements Y .

The rules presented thus far can be conditioned on arbitrary variables, for example
a variable Z. Conditioning the Bayes rule on Z = z results in:

p(x, y | z) =
p(y | x, z)p(x | z)

p(y | z)
∀ p(y | z) > 0 (3.22)

For independent values, conditioning Equation (3.14) on another variable z results
in a property called conditional independence:

p(x, y | z) = p(x | z)p(y | z) (3.23)

10 3. Fundamentals

This is equivalent to:
p(x | z) = p(x | z, y) (3.24)

p(y | z) = p(x | z, x) (3.25)

It is important to note that conditional independence does not generally imply ab-
solute independence and vice versa:

p(x, y | z) = p(x | z)p(y | z) 6=⇒ p(x, y) = p(x)p(y) (3.26)

p(x, y) = p(x)p(y) 6=⇒ p(x, y | z) = p(x | z)p(y | z) (3.27)

3.1.3 State, Map and Environment Interaction

State

The vehicle and its surroundings can be described by the state. The state is referred
to as x, the state at a specific time t is denoted as xt. The contents of the state
depend on the specific context and may include different variables. In this thesis,
the vehicle pose as well as landmark locations are frequently used:

The vehicle pose consists of the location and the orientation of the vehicle in a
given reference frame. In three dimensions there are three Cartesian coordinates
and three angles, so six variables in total. However, the algorithms described in this
thesis operate in two dimensions where there are only two Cartesian coordinates xv
and yv and one angular component ϕv that can be combined in a vehicle pose vector:

x =

xvyv
ϕv

 (3.28)

Note that in this case xv is a scalar describing a Cartesian coordinate and not a
state vector.

Alternatively, the vehicle pose could be represented as a special Euclidean group
SE(n) with n being the number of dimensions. This representation has the benefit of
performing a transformation of an object with a single operation. In two dimensions
the same vehicle pose can be represented as:

x =

(
R t
0 1

)
=

cosϕv − sinϕv xv
sinϕv cosϕv yv

0 0 1

 (3.29)

Here, R is a rotational matrix and t is a translational vector.

The environment surrounding the robot can also be captured in the state. There
are different ways to describe the environment (see Section 3.1.3). One such way
is to use landmarks. Landmarks are stationary, distinct features, well suited to be
used for orientation. For example, in two dimensions the state of the environment
could be described by two Cartesian coordinates. This assumes the orientation of a
landmark to be irrelevant. The resulting state could be described as:

x =

x1
y1
x2
y2
...

 (3.30)

3.1. Basic Concepts 11

In this case, xj and yj represent the position of the j-th landmark.

There are of course many more potential state variables, since the description of
the robot and its environment highly depends on the specific use case. Possibilities
range from binary states describing a sensor’s status to states containing point clouds
describing the environment received from range scanners. However, none of these
will be needed in this thesis, so they are not further discussed.

Map

Whether or not a map is given in advance, the map needs to be represented in a way
the vehicle can process. A map m is a list of objects together with their respective
properties that can be indexed in different ways:

• Feature-based maps use an index to describe a specific feature on the map.
The content of the mapped object includes its Cartesian location.

• In location-based maps, the index corresponds to a location in the world
reference frame.

The latter are also referred to as volumetric maps, as they contain information about
any location in the world. This also includes information about the absence of an
object. This is in contrast to feature-based maps where the environment is only
known at the mapped features. However, this makes it easier to adjust a map,
for example when a new sensor measurement improves the location estimate of a
feature. Additionally, this representation is more computationally efficient because
it requires less data to store a map.

Choosing the correct type of map is a matter of context and mostly depends on the
kind of environment the robot is in as well as the requirements made towards the
efficiency of the algorithm using this map. In this thesis, the environment is built
from well distinguishable features that will be chosen as landmarks. The require-
ments towards real-time capability, and therefore efficiency, are very high. Because
of this, feature-based maps are used throughout this thesis.

Equation (3.30) is a possible representation for this kind of map. However, a
map may contain additional information about the features in it to simplify the
recognition of that feature. This includes, for example, the orientation, size or color.

Environment Interaction

The robot interacts with the environment in different ways resulting in different
information that is available to the robot. There are two contrasting types of inter-
actions:

Measurements using environment sensors allow the robot to obtain infor-
mation about the current state of the environment it is in. These sensors include
cameras or range sensors and the incoming data will be referred to as measurement
or observation. The measurements will be assumed to be received at discrete time
steps neglecting for example time differences in a range scan due to a rotating sen-
sor. A measurement at the time t will be denoted zt. Observations usually increase
the knowledge of the environment and therefore decrease a robot’s uncertainty. Se-
quences of observations are denoted as:

zt1:t2 = zt1, zt1+1, . . . , zt2 for t1 ≤ t2 (3.31)

12 3. Fundamentals

In contrast, the robot can use its actuators to influence the world. These operations
are referred to as control actions. For example, the robot could assert forces to
move objects in the environment. However, in this thesis the control input that is
used to move the robot itself is of more relevance. Control actions are performed
between two time steps, so a control input in the time interval (t − 1; t] is referred
to as ut. Sequences of control inputs are denoted analogously to Equation 3.31.
These operations change the state and since the robot’s actuators are noisy and
the environment might also change due to external factors, the robot’s uncertainty
usually increases.

A typical control input in robots would be the robot’s velocity. However, since the
velocity is usually a result of the controller rather than the manipulated variable
itself, the velocity can alternatively be measured and then interpreted as a control
input. Sensors to gather information about the velocity could be wheel encoders
(sensors that count wheel revolutions) or an inertia measurement unit. These sensors
are referred to as odometry sensors and deliver odometry data.

For convenience, the robot is assumed to deliver a control input at every time step.
If the state does not actually change between the times t− 1 and t, this is done by
setting the control ut to zero.

It is assumed that the robot first executes the control input ut and then receives
the measurement zt.

Marcov Assumption

A state xt is called complete if information about past states, controls or measure-
ments do not improve the ability to predict the future state. This does not require
the future to be a deterministic function of the state, but it means that variables
prior to the current state do not influence the stochastic evolution of the future state.

The task of an algorithm might be to compute the current state from previous
states, controls and measurements. If a state is complete, this task can be reduced
like this:

p(xt | x0:t−1, z1:t−1, u1:t) = p(xt | xt−1, ut) (3.32)

Similarly, the process by which measurements are generated can be reduced, too:

p(zt | x0:t, z1:t−1, u1:t) = p(zt | xt) (3.33)

This means that a future state is only dependent on the state before and the control
input in the transition between these two time steps. A measurement at time t
only depends on the state at the same time. These properties are examples of
conditional independence. A system of such conditionally independent stochastic
variables is fulfilling the Marcov assumption. The Marcov assumption or Marcov
condition describes a directed graph where a child node is only depending on its
direct parent [8].

Equation (3.32) is referred to as state transition probability, while Equation
(3.33) is called measurement probability. Note that these equations are proba-
bilistic functions rather than deterministic ones.

These two equations together describe a dynamic stochastic system of the robot
and its surroundings that is referred to as hidden Marcov model or dynamic
Bayes network. Figure 3.1 visualizes such a network.

3.1. Basic Concepts 13

Figure 3.1: A dynamic Bayes network.

As with many theoretical assumptions, the Marcov assumption is often violated
in reality. For example, there might be dynamics in the environment that are not
represented in the state or the probability equations described above might be inac-
curate. It would of course be possible to improve the model by, for example, adding
more variables to the state in order for the description of the world to become closer
to reality. However, such a model would still not fully represent reality and would
increase the complexity of the system. So in practice a trade off is made in order to
have systems which are real-time capable.

Prediction and Correction

A state xt cannot be measured directly but has to be concluded from the measure-
ments and control inputs. It is therefore distinguished between the actual state xt
and the robot’s internal belief bel(xt). A belief can be expressed by the conditional
probability:

bel(xt) = p(xt | z1:t, u1:t) (3.34)

If the current measurement zt is not yet incorporated into the belief, such a posterior
is often referred to as prediction and is denoted like this:

bel(xt) = p(xt | z1:t−1, u1:t) (3.35)

Computing bel(xt) from bel(xt) is called correction or measurement update
because it corrects the predicted belief using the current measurement.

3.1.4 Bayes Filter

A very general approach to calculating the belief is the Bayes filter algorithm.
It recursively computes the belief bel(xt), given the belief from the previous time
step bel(xt−1) as well as the measurement zt and the control action executed by
the robot ut. In other words, the algorithm tries to recursively find the probability
distribution given by Equation (3.34). For this, the state is assumed to be complete.
The algorithm is derived by first applying the Bayes rule described in Equation 3.20:

p(xt | z1:t, u1:t) =
p(zt | xt, z1:t−1, u1:t)p(xt | z1:t−1, u1:t)

p(zt | z1:t−1, u1:t)
(3.36)

= ηp(zt | xt, z1:t−1, u1:t)p(xt | z1:t−1, u1:t)

14 3. Fundamentals

Exploiting the assumption of a complete state and the resulting conditional inde-
pendence allows to simplify this equation to:

p(xt | z1:t, u1:t) = ηp(zt | xt)p(xt | z1:t−1, u1:t) (3.37)

Therefore, the belief is calculated as follows:

bel(xt) = ηp(zt | xt)bel(xt) (3.38)

Next, the predicted belief bel(xt) is expanded using Equation (3.19):

bel(xt) = p(xt | z1:t−1, u1:t) (3.39)

=

∫
p(xt | xt−1, z1:t−1, u1:t)p(xt−1 | z1:t−1, u1:t)dxt−1

Again, assuming a complete state results in the following simplification:

p(xt | xt−1, z1:t−1, u1:t) = p(xt | xt−1, ut) (3.40)

Additionally, ut can be omitted in p(xt−1 | z1:t−1, u1:t) because it does not influence
the state xt−1. Therefore, Equation (3.39) can be reduced to:

bel(xt) =

∫
p(xt | xt−1, ut)p(xt−1 | z1:t−1, u1:t−1)dxt−1 (3.41)

Combining Equations (3.38) and (3.41) results in the Bayes filter algorithm.

Algorithm 1: Bayes filter

Input: bel(xt−1), ut, zt

Output: bel(xt)

1 forall xt do

2 bel(xt) =
∫
p(xt | xt−1, ut)p(xt−1 | z1:t−1, u1:t−1)dxt−1

3 bel(xt) = ηp(zt | xt)bel(xt)
4 end

5 return bel(xt)

The Bayes filter, described in Algorithm 1, is split into two steps. In line 2, a
new control input ut is processed to compute the prediction. In the second step,
expressed by line 3 of the algorithm, the algorithm processes a new measurement to
correct the prediction made before, hence the name correction.

Since the algorithm works recursively, an initial state has to be defined. This is
usually done in one of two ways: Either the state is very well know, for example
because it is defined that way. Then the probability is centered around that value
while assigning a zero probability everywhere else. Or the state is completely un-
known, in which case a uniform distribution over the domain of the initial value is
used.

3.1. Basic Concepts 15

3.1.5 The Kalman Filter

One of the earliest and most famous implementations of the Bayes filter is the
Kalman filter. The equations used in Algorithm 1 cannot be solved in a closed
form for any state transition or measurement equation. However, the Kalman filter,
like all algorithms in the family of the Gaussian filters, assumes a (multivariate)
Gaussian distribution for the belief, which does make it possible to find a closed
form solution.

For the belief to be Gaussian, the Kalman filter requires some assumptions on top
of the Marcov assumption. First of all, the initial belief bel(x0) must be Gaussian.
Using an initial mean µ0 and an initial covariance Σ0, according to Equation (3.5),
the following formulation of the initial belief can be used:

bel(x0) = p(x0) = det(2πΣ0)
− 1

2 exp

(
−1

2
(x0 − µ0)

TΣ0
−1(x0 − µ0)

)
(3.42)

Additionally, the state transition probability p(xt | ut, xt−1) and the measurement
probability p(zt | xt) must be linear in its arguments, with added Gaussian noise.
The former is represented by:

xt = Atxt−1 +Btut + εt (3.43)

The latter is expressed with the following equation:

zt = Ctxt + δt (3.44)

Here, xt−1 and xt are state vectors, ut is the control vector, and zt is the measurement
vector at time t. All these vectors will be expressed as vertical vectors of the form:

xt =

x1,t
x2,t

...
xn,t

 , ut =

u1,t
u2,t

...
um,t

 , and zt =

z1,t
z2,t
...
zk,t

 (3.45)

n is the number of states, m is the dimension of the control vector and k represents
the number of measurements made in this particular time step.

At, Bt and Ct are matrices of the sizes n×n, n×m, and k×n, respectively. Using
these matrices, the state transition function and the measurement function become
linear.

εt and δt in Equations (3.43) and (3.44) are Gaussian random vectors modeling the
uncertainties of the state transition and the measurement. They are zero mean with
a covariance represented by Qt and Rt, respectively.

Plugging Equations (3.43) and (3.44) into the definition of a multivariate Gaus-
sian distribution as described in Equation (3.5) results in the state transition and
measurement equations in the following form:

p(xt | ut, xt−1) = det(2πQt)
− 1

2 (3.46)

exp

(
−1

2
(xt − Atxt−1 −Btut)

TQt
−1(xt − Atxt−1 −Btut)

)
p(zt | xt) = det(2πRt)

− 1
2 exp

(
−1

2
(zt − Ctxt)TRt

−1(zt − Ctxt)
)

(3.47)

16 3. Fundamentals

The Kalman Filter Algorithm

These assumptions used on the Bayes filter described in Algorithm 1 result in the
Kalman filter algorithm2:

Algorithm 2: Kalman Filter

Input: µt−1,Σt−1, ut, zt

Output: µt,Σt

1 µ̄t = Atµt−1 +Btut

2 Σt = AtΣt−1A
T
t +Qt

3 Kt = ΣtC
T
t (CtΣtC

T
t +Rt)

−1

4 µt = µ̄t +Kt(zt − Ctµ̄t)
5 Σt = (I −KtCt)Σt

6 return µt,Σt

As described above, the Kalman filter represents the belief using a Gaussian dis-
tribution, i.e. by the mean µt and the covariance Σt. The input to the algorithm is
the belief of the previous time step t− 1 represented by µt−1 and Σt−1 as well as the
control input ut and the measurements zt of the current time step.

First, the predicted belief bel(xt) is calculated and represented by µ̄t and Σt. This
is done using the state transition Equation (3.43) with µt−1 substituted for xt−1 to
incorporate the control input ut. Additionally, the covariance is adjusted to account
for the increased uncertainty due to the state transition.

In the following lines the measurements are incorporated to together form the cor-
rection step. For this, the Kalman gain Kt is computed. The Kalman gain can
be seen as a measure that describes to what extent the measurement is trusted and
therefore incorporated into the predicted state. This can be seen in line 4 where Kt

acts as a weight between the actual measurements zt and the expected measure-
ments Ctµ̄t. Finally, in line 5 the covariance is adjusted to account for the added
information given by the measurements.

The Kalman algorithm then returns the new belief bel(xt) represented by µt and
Σt.

The efficiency of the algorithm is dominated by either line 3 or line 5 depending
on the specific use case. Line 3 requires an inversion of a k × k matrix. With the
most efficient algorithms this can be done in O(k2.4). However, the Kalman-based
SLAM algorithm presented later in this thesis consists of hundreds of states and is
therefore typically rather limited by the multiplication of the n× n matrices in line
5 resulting in an O(n2) complexity.

The Extended Kalman Filter

While the Kalman filter itself works very efficiently, the linear algorithm described
above has a very limited field of use, as it can only be used with very simple systems.

2A complete mathematical derivation of the Kalman Filter can be found in section 3.2.4 of Prob-
abilistic robotics [14].

3.2. Graph Theory 17

Reality is highly non-linear, so the EKF loosens the linearity assumption using a
nonlinear state transition function g and a non-linear measurement function h:

xt = g(ut, xt−1) + εt (3.48)

zt = h(xt) + δt (3.49)

g replaces At and Bt used in Equation (3.43) and h replaces Ct in Equation (3.44).
However, using these functions directly will result in a non-Gaussian belief. To
include nonlinear functions into the Kalman filter, the EKF approximates the true
belief by a Gaussian belief using a first order Taylor expansion. For the state
transition, g is linearized around the mean µt−1:

g(ut, xt−1) ≈ g(ut, µt−1) +
∂g(ut, µt−1)

∂µt−1
(xt−1 − µt−1) (3.50)

= g(ut, µt−1) +Gt(xt−1 − µt−1)

Similarly, h is approximated around the predicted mean µ̄t:

h(xt) ≈ h(µ̄t) +
∂h(µ̄t)

∂µ̄t
(xt − µ̄t) (3.51)

= h(µ̄t) +Ht(xt − µ̄t)

Here, Gt and Ht represent the ”slope” of the functions g and h and are referred to
as Jacobians.

Using these linear approximations, the state transition and measurement equation
can be formulated as Gaussian distributions:

p(xt | ut, xt−1) = det(2πQt)
− 1

2 exp

(
−1

2
[xt − g(ut, µt−1)−Gt(xt−1 − µt−1)]T

(3.52)

Qt
−1[xt − g(ut, µt−1)−Gt(xt−1 − µt−1)]

)
p(zt | xt) = det(2πRt)

− 1
2 exp

(
−1

2
[zt − h(µ̄t)−Ht(xt − µ̄t)]T (3.53)

Rt
−1[zt − h(µ̄t)−Ht(xt − µ̄t)]

)
Using these equations and the Kalman filter algorithm described in Algorithm 2, the
EKF algorithm (Algorithm 3) can be obtained.

3.2 Graph Theory

A graph in the sense of discrete mathematics is a structure of objects where some
pairs of these objects may be related to one another. The GraphSLAM algorithm
presented later in this thesis is based on representing the SLAM problem in such a
structure, therefore it is introduced here. The foundation for this section is taken
from [9].

18 3. Fundamentals

Algorithm 3: Extended Kalman Filter

Input: µt−1,Σt−1, ut, zt

Output: µt,Σt

1 µ̄t = g(ut, µt−1)

2 Σt = GtΣt−1G
T
t +Qt

3 Kt = ΣtH
T
t (HtΣtH

T
t +Rt)

−1

4 µt = µ̄t +Kt(zt − h(µ̄t))

5 Σt = (I −KtHt)Σt

6 return µt,Σt

(a) A graph consisting of 4 vertices and 4
edges.

(b) A directed graph consisting of 4 vertices
and 4 edges.

(c) A weighted, directed graph consisting of
4 vertices and 4 edges.

Figure 3.2: Graph examples.

3.3. Least Squares Optimization 19

3.2.1 Definitions

A graph G is a mathematical construct consisting of a set of vertices (or nodes)
V (G), a set of edges E(G) and relations between these two sets, i.e. an edge is
associated with two vertices called its endpoints.

A directed graph H consists of a set of vertices V (G), a set of edges E(G) and
an ordered pair of vertices for each edge. The first vertex of the ordered pair is
called the tail of the edge, the second vertex is the head.

A weighted graph J consists of a set of vertices V (G), a set of edges E(G) and a
function assigning a weight to each edge. A weighted graph may also be directed.

Figure 3.2 shows an example for these a types of graphs.

3.2.2 Matrix Representation

Instead of listing all edges and vertices, a graph can be represented using an adja-
cency matrix. Let G be a graph with a set of vertices V (G) = v1, . . . , vn and a set
of edges E(G) = e1, . . . , em. The adjacency matrix A(G) is a n×n matrix, in which
each entry ai,j is the number of edges of G with the endpoints vi, vj. The adjacency
matrix is always symmetric.

The adjacency matrix for the graph depicted in Figure 3.2a is:

A(G) =

0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

 (3.54)

For weighted graphs, an entry of the adjacency matrix ai,j contains the sum of
weights associated with all edges with the endpoints vi, vj. If vi and vj are not
connected, ai,j is zero. The adjacency matrix A(J) for the weighted graph in Figure
3.2c is:

A(J) =

0 10 3 0
10 0 6 0
3 6 0 2
0 0 2 0

 (3.55)

3.3 Least Squares Optimization

The following section quickly introduces the idea behind least squares optimization.
For more details, [21] is recommended.

The GraphSLAM algorithm presented in this thesis formulates SLAM as an op-
timization problem. It is solved by minimizing a cost function built by a sum of
constraints:

F (x) =
∑
i,j

e(xi, xj, zij)
TΩije(xi, xj, zij) (3.56)

x∗ = argmin
x

F (x) (3.57)

20 3. Fundamentals

x is a state vector where xi and xj each represent a block of that state. They are
connected by a constraint with the mean zij and the information matrix Ωij. x

∗ is
the state where the cost function is minimal. e(xi, xj, zij) describes an error function
measuring how well that constraint is satisfied by xi and xj. For simplicity, the error
function is written as:

e(xi, xj, zij) = eij(x) (3.58)

Various optimization techniques are available, with Gauss-Newton and Levenberg-
Marquardt being some of the most popular. The idea behind both of these algo-
rithms is to approximate the error function by its first order Taylor expansion around
an initial guess x̃:

eij(x̃+ ∆x) ≈ eij(x̃) + Jij∆x (3.59)

Jij is the Jacobian of eij computed in x̃. This is used to approximate a constraint
in Equation (3.56):

Fij(x̃+ ∆x) = eij(x̃+ ∆x)TΩijeij(x̃+ ∆x) (3.60)

≈ (eij(x̃) + Jij∆x)TΩij(eij(x̃) + Jij∆x) (3.61)

= eTijΩijeij︸ ︷︷ ︸
cij

+2 eTijΩijJij︸ ︷︷ ︸
bij

∆x+ ∆xT JTijΩijJij︸ ︷︷ ︸
Hij

∆x (3.62)

= cij + 2bij∆x+ ∆xTHij∆x (3.63)

The full cost function in Equation (3.56) is then approximated:

F (x̃+ ∆x) =
∑
i,j

Fij(x̃+ ∆x) (3.64)

≈
∑
i,j

cij + 2bij∆x+ ∆xTHij∆x (3.65)

= c+ 2bT∆x+ ∆xTH∆x (3.66)

Here, c =
∑
cij, b =

∑
bij and H =

∑
Hij.

This quadratic form of the cost function is minimized in ∆x by solving the linear
system

H∆x∗ = −b (3.67)

and adding the increment ∆x∗ onto the initial guess x̃

x∗ = x̃+ ∆x∗ (3.68)

The Gauss-Newton approach will solve the optimization problem by iterating the
linearization in Equation (3.63), the solution in Equation (3.67) and adding the
increment in Equation (3.68) until a termination criterion is met (e.g. maximum
number of iterations or minimal increment size).

By adding a damping factor λ to Equation (3.67), the Levenberg-Marquardt algo-
rithm controls the convergence to prevent overshooting:

(H + λI)∆x∗ = −b (3.69)

3.3. Least Squares Optimization 21

Algorithm 4: Levenberg-Marquardt Algorithm [23]

Input: x̃

Output: x∗

1 λ = λinit

2 while !converged do

3 H, b = buildLinearSystem(x̃)

4 e = error(x̃)

5 x̃old = x̃

6 ∆x̃ = solve((H + λI)∆x̃ = −b)
7 x̃ += ∆x̃

8 if e < error(x̃) then // Repeat iteration with increased damping

9 x̃ = x̃old

10 λ ∗= 2

11 else // Reduce damping for faster convergence

12 λ /= 2

13 end

14 x∗ = x̃

15 return x∗

The Levenberg-Marquardt algorithm is described in Algorithm 4. First, the damp-
ing is initialized in line 1. The system is then linearized in line 3 and the current
value of the cost function is determined in line 4. In line 5 the current guess is
backed up, in case the iteration needs to be repeated. After solving the linear sys-
tem and adding the resulting increment onto the current guess in lines 6 and 7, the
cost function is evaluated again. If the overall error was reduced by the last step,
the damping is decreased to increase the step size and to therefore reduce the time
needed for convergence. If the error has increased, the damping is increased and the
last iteration is repeated.

By adding a (small) value to the main diagonal of the H-matrix, it is also assured
that the linear system always is of full rank, which prevents numerical instabilities.

The g2o-library [21] used for the GraphSLAM algorithm presented in this thesis
uses some more advanced techniques to improve the optimization, for example:

• The library utilizes a generalization to solve optimization problems that are
not parameterized in Euclidean space but, for example, in special Euclidean
groups; see Equation (3.29).

• Additionally, because of the way the cost function is built, the resulting lin-
earized system will have a sparse structure that can be used to solve the opti-
mization problem more efficiently. For more details, as to how the optimization
is improved, see [21].

22 3. Fundamentals

3.4 Data Association

A crucial part of any SLAM algorithm is the so called data association. While it
is not part of this thesis, it is part of the algorithms presented here, so it is briefly
introduced. The theoretical foundation for this section is taken from [10].

Data association is the process of matching a measured landmark to a mapped
landmark in order to perform the correction resulting from this measurement. This
is a difficult problem because both the measured and the mapped landmark are not
known precisely but are estimated in a probabilistic way. Because of this, the correct
match is not always obvious. A wrong association may lead to a divergence of the
SLAM algorithm that the data association is used for, which is why it is important
to use a robust algorithm for this task.

There are various ways to solve this problem. However, only the algorithm used in
this thesis will be presented. The Joint Compatibility Branch and Bound (JCBB)
algorithm promises to be very robust while maintaining an efficiency that allows it
to be real-time capable, which is why it is used for the given use case.

To solve the data association problem, the JCBB algorithm uses an interpretation
tree. The tree is built of k levels where k is the number of measurements made
in the particular time step. A node at level i contains an interpretation of all
measurements above the i-th level. From every node, there are n branches. Here, n
is the number of possible matchings, i.e. the number of mapped landmarks plus one
additional branch for the possibility that no matching is possible. The task of the
data association algorithm is to choose the path through the tree that contains the
best interpretations of the measurements. Mathematically, this means finding the
hypothesis Hk that pairs most observed landmarks to a mapped landmark.

To determine which branch is actually the one containing the best associations, the
local - or individual - compatibility and the global - or joint - compatibility are used.

The individual compatibility is computed from the actual measurement zi and
the expected measurement ẑi. The expected measurement in turn is computed using
the inverse measurement equation:

ẑi = h(xv,m) (3.70)

xv expresses the current vehicle state, while m is the map. This equation will be
further discussed in Section 5.3. From this, the Mahalanobis distance of the
measured landmark i to the mapped landmark j is computed:

D2
ij = (zi − ẑi)TP−1ij (zi − ẑi) (3.71)

Here, Pij corresponds to the covariance matrix representing the mapped landmark’s
uncertainty. An observed and a mapped landmark are deemed compatible depending
on the Chi-squared test with confidence level α:

D2
ij < χ2

α (3.72)

The joint compatibility is computed using the interpretation of all previous asso-
ciations. The joint innovation fHi

is calculated like this:

fHi
=

(
fHi−1

zi − ẑi

)
=

z0 − ẑ0
z1 − ẑ1

...
zi − ẑi

 (3.73)

3.4. Data Association 23

The joint compatibility is calculated as follows:

D2
Hi

= fTHi
C−1Hi

fHi
(3.74)

CHi
is the covariance of the joint innovation, computed from the uncertainties of the

mapped landmarks. Analogously to the individual compatibility, a joint compatibil-
ity is deemed consistent when:

D2
Hi
< χ2

α (3.75)

To increase the algorithm’s efficiency, a branch and bound approach is used. A
search for the best hypothesis can be stopped if no better hypothesis than the current
one is possible. Also, the most promising nodes in the interpretation tree can be
explored first. The core of the JCBB algorithm is the recursive function described
in Algorithm 5.

Algorithm 5: JCBB

Input: H, i

Output: Best hypothesis

1 if i > k then // Current node is leaf node

2 if pairings(H) > pairings(Best) then

3 Best = H
4 end

5 else

6 foreach j in m do // Traverse down branches from current node

7 if individual compatibility(i, j) and joint compatibility([H j]) then

8 JCBB([H j]), i + 1) // Accept matching

9 end

10 end

11 if (pairings(H) + size(m) - i > pairings(Best)) then // Better hypothesis

possible

12 JCBB([H 0], i + 1) // Declare node as unmatched

13 end

14 end

Since the algorithm works recursively, it expects a hypothesis as input together
with the current level i. The first hypothesis to call the algorithm will just be an
empty one.

If the current node is a leaf node, the number of matchings in the current hypothesis
is compared to the number of matchings in the best hypothesis so far. If the current
hypothesis is better, it is declared as the new best.

If the current node is not a leaf node, the branches from the current node are tested
for individual and joint compatibility. In other words, it is checked if the currently
looked at measurement i is a possible matching for the mapped landmark j. If so,
the matching is accepted and the algorithm is called recursively for the next level in
the interpretation tree.

24 3. Fundamentals

If no compatible matching could be found but it is still possible to find more match-
ings than the currently best hypothesis, the node is declared as unmatched and the
algorithm moves on to the next level. If the latter is not possible, the current hy-
pothesis can safely be disregarded, limiting the computational complexity.

3.5 Localization

Localization is the problem of finding the robot’s pose in a given environment.
The pose cannot be sensed directly in the sense of a robot possessing noise-free
sensors determining the pose. Instead, the pose has to be computed from data.
The localization problem covered in this thesis is a local one because compared to
a global problem the initial pose is roughly known and can be estimated using a
Gaussian probability distribution. Additionally, the environment is assumed to be
static, which is a valid approach seeing that the tracks the vehicle competes on are
made up of cones that aren’t moved (see Section 4.1.3) and it is ensured that neither
people nor animals are on the track at any time.

3.5.1 Marcov Localization

A very straightforward approach to solve the localization problem is to apply the
Bayes filter described in Algorithm 1 to the problem, resulting in the Marcov local-
ization algorithm:

Algorithm 6: Marcov Localization

Input: bel(xt−1), ut, zt,m

Output: bel(xt)

1 forall xt do

2 bel(xt) =
∫
p(xt | xt−1, ut,m)p(xt−1 | z1:t−1, u1:t−1,m)dxt−1

3 bel(xt) = ηp(zt | xt,m)bel(xt)

4 end

5 return bel(xt)

The algorithm is very similar to the Bayes filter. The difference is that in the
Marcov localization the map m is incorporated into the algorithm. It plays a role
mainly in the measurement update (line 3), but it is sometimes incorporated into
the prediction (line 2) as well. With a roughly known initial pose, the first belief
can be expressed by:

bel(x0) = det(2πΣ0)
− 1

2 exp

(
−1

2
(x0 − µ0)

TΣ0
−1(x0 − µ0)

)
(3.76)

3.5. Localization 25

3.5.2 EKF Localization

The EKF localization algorithm described in Algorithm 7 can be derived from the
Marcov localization, just as the general EKF algorithm was derived from the Bayes
filter.

Algorithm 7: EKF Localization

Input: µt−1,Σt−1, ut, zt

Output: µt,Σt

1 µ̄t = g(ut, µt−1,m)

2 Σt = GtΣt−1G
T
t +Qt

3 Kt = ΣtH
T
t (HtΣtH

T
t +Rt)

−1

4 µt = µ̄t +Kt(zt − h(µ̄t,m))

5 Σt = (I −KtHt)Σt

6 return µt,Σt

Again, the map is incorporated into the measurement update. In practice, this is
used to compute the expected measurement. For this, the expected location of a
measurement is needed, which is the mapped location. Additionally, the map may
be used during the state transition, however, this is not always the case.

In the case of localization, the state vector xt typically contains only the robot’s
pose. An implementation of this algorithm is discussed below in Chapter 6 where
the EKF localization algorithm used in this thesis is presented.

With the theoretical foundation discussed in this chapter, the next chapter presents
the system that the SLAM algorithms need to work within and other boundary
conditions constraining the implementation of the algorithms.

4 Underlying Conditions and
Preliminaries

4.1 Formula Student

Formula Student is an international design competition for students. With self-
developed and self-built race cars, the participating teams compete in various events
all over the world.1

4.1.1 History

In 1981, the Formula Student SAE2 was held for the first time [51]. Starting as
a small event with four participating schools in the United States of America, the
concept grew more and more popular with the first competition in Europe being
held in 1998 at MIRA Proving Ground in the United Kingdom [50]. In 2006, the
German event, FSG, took place for the first time at the Hockenheimring [49].

So far, only race cars powered by an internal combustion engine had been compet-
ing. In 2010, FSG introduced a competition for electric vehicles. Finally, in 2017,
FSG added a competition for autonomous race cars, the FSD.

4.1.2 KA-RaceIng

KA-RaceIng is a Formula Student team consisting of students of the Karlsruhe
Institute of Technology (KIT). Founded in 2006, the team currently consists of
around 70 active members. Every year, the team competes with multiple vehicles.
Driverless race cars have been developed since the introduction of FSD in 2017.
Recent accomplishments in the driverless competition include multiple second places
in Formula Student Germany and overall first places in Formula Student East (2018)
and Formula Student Spain (2019) [45].

4.1.3 Disciplines

The goal of a Formula Student event is to collect as many points as possible in
multiple disciplines. These disciplines also consist of so called static disciplines,
including the Engineering Design competition, where the teams have to explain
and justify their respective vehicle design to experts from motorsport and the auto-
motive industry. Especially in FSD, a substantial amount of points can be scored
here, so the focus of the teams is not only to build the fastest car but also to get
a deep understanding of their work and to be able to justify engineering decisions
made throughout the entire development phase.

1While the various events are independent competitions, they follow similar rules and require the
same challenges to be overcome. Because of this, they are often summarized as one competition.
In this thesis, the term ”Formula Student” will be used for this.

2SAE: Society of Automotive Engineers

27

28 4. Underlying Conditions and Preliminaries

Overall, a team is able to score up to 1000 points [48]. Table 4.1 shows how the
points are split between the different disciplines.

Table 4.1: FSD - Maximum points awarded [48].

Points
Static Events
Business Plan Presentation 75
Cost and Manufacturing 100
Engineering Design 300
Dynamic Events
Skid Pad 75
Acceleration 75
Autocross 100
Efficiency 75
Trackdrive 200
Overall 1000

Aside from the above-mentioned Engineering Design, the dynamic events are
most relevant in the context of developing a SLAM algorithm with the different
disciplines having different requirements of the algorithm.

The tracks are marked with cones that use a color code as depicted in Figure
4.1. Yellow and blue cones mark the right and the left boundary of the track,
respectively, while small orange cones mark exit and entry lanes and big orange
cones will be placed before and after start, finish and timekeeping lines.

(a) Start, finish
and timekeep-
ing lines.

(b) Exit and en-
try lanes.

(c) Right track
boundary.

(d) Left track
boundary.

Figure 4.1: The cones used for marking the track [47].

Acceleration

In the Acceleration event the cones are positioned in a straight line with a length
of 75 m. The rules state that the cones will be placed approximately 5 m apart with
a track width of at least 3 m. Since teams are allowed to walk the track before
the event and use analogue measurements devices, it is possible to measure cone

4.1. Formula Student 29

positions and generate an approximate map for the event offline, in which case the
vehicle does not need to solve the SLAM problem but will only have to localize itself
on that map.

Skidpad

Opposed to the acceleration runs, in the Skidpad event, the teams showcase the
maximum lateral acceleration their vehicle can handle. In an ”8”-shaped layout the
vehicle needs to drive four circles, two in each half of the ”8”, with only the respective
second lap being timed. Figure 4.2 shows the track layout with all previously known
measurements. The circle diameters as well as the number of cones on each circle
is known, so again, an approximate map could be generated offline. The exact
positioning of a cone is not known beforehand, though.

Figure 4.2: Skidpad track layout [48].

Autocross

The Autocross event is the most demanding discipline in the context of the SLAM
algorithm because the track layout is not known beforehand, which means that
solving the SLAM problem is necessary. However, the rules state some guidelines as
to how the track can be designed [48]:

• Straights: No longer than 80 m.

• Constant turns: up to 50 m diameter.

• Hairpin turns: Minimum of 9 m outside diameter (of the turn).

• Miscellaneous: Chicanes, multiple turns, decreasing radius turns, etc.

• The minimum track width is 3 m.

• The length of one lap is approximately 200 m to 500 m.

30 4. Underlying Conditions and Preliminaries

An exemplary map is shown in Figure 4.3 that was generated using the data recorded
during the 2019 FSG Autocross event and processed by the GraphSLAM algorithm
presented in this thesis.

Figure 4.3: FSG 2019 Autocross map. Cone sizes increased for better visibility.

The primary goal in Autocross is finishing one lap as quickly as possible. How-
ever, the teams should also try to generate a high-quality map in this run because
information collected during Autocross may be used in the Trackdrive event.

Trackdrive

On the same track used in Autocross, the teams now have to complete ten con-
secutive laps. The map generated in Autocross can and should be used. Therefore,
the challenges for the SLAM algorithm are different from the Autocross event. The
algorithm must be robust enough to not diverge in ten laps. The location given by
the SLAM algorithm is also used for counting laps, as the vehicle has to stop on its
own after finishing the run. Also, because the map is known beforehand, the speed
of the vehicle is generally a lot higher compared to Autocross, decreasing the quality
of sensor measurements.

Efficiency

The score for the Efficiency discipline is not determined in a separate event but
during the Trackdrive event. The time integrated voltage and current output are
multiplied to determine the energy used for the run. Regenerated energy is partially
subtracted from the total energy used and a score is calculated from that value as
well as the overall best efficiency of all teams and the time needed for the Trackdrive.

4.2. Base Car 31

Scoring

Aside from the time needed for a run, there are other factors influencing the final
score of a dynamic discipline. Additional points will be awarded for finishing at
least one run without a Did Not Finish (DNF) or Disqualified (DQ). Points can be
deducted for the following reasons [48]:

• A cone is Down or Out (DOO) if the cone has been knocked over or the entire
base of the cone lies outside the box marked around the cone in its undisturbed
position.

• An Off-course (OC) occurs when the vehicle has all four wheels outside the
track boundary as indicated by edge marking.

• An Unsafe Stop (USS) is defined as not stopping within the specified area
and/or not entering the finish-state.

Table 4.2 shows the consequences these penalties have for the score awarded for a
run depending on the discipline [48]. A DNF or a DQ will of course result in zero
points.

Table 4.2: Penalties in FSD [48].

Acceleration Skidpad Autocross Trackdrive
DOO 2 s 0.2 s 2 s 2 s
OC DNF DNF 10 s 10 s
USS DNF DNF DNF -50 points

Map Availability

When it comes to the SLAM module of the software stack, the biggest difference
between the various dynamic disciplines is whether or not a map is available. If a
map is available, the vehicle only needs to localize itself, i.e. the SLAM problem does
not need to be solved.

Acceleration and Skidpad are special cases because it is possible to generate an
approximate map, based only on information taken from the rule book. This has
proven to work in the past but with an improved SLAM algorithm it may not be
necessary. Depending on whether or not a map is generated, the algorithms will
either solve the SLAM problem or work in a localization-only mode.

For the purposes of this thesis, only data generated during Trackdrive and Autocross
will be evaluated because these are the most demanding disciplines when it comes
to the SLAM module. From the results of this analysis, conclusions can then be
drawn with respect to Acceleration and Skidpad as well.

4.2 Base Car

The data sets used in this thesis were recorded on KA-RaceIng’s 2019 driverless
car, the KIT19d, depicted in Figure 4.4. The hardware platform is provided by the
KIT15e that originally competed in the 2015 Formula Student Electric competition.
The vehicle was then retrofitted with the sensors needed to race autonomously.

32 4. Underlying Conditions and Preliminaries

Figure 4.4: Hardware platform: The KIT19d.

The electric, all-wheel drive single seater has a top speed of approximately 120 km
h

and accelerates from standstill to 100 km
h

in roughly 2.5 s. Combined, the four motors
- one per wheel - deliver a continuous power output of 92 kW and a short term output
of up to 120 kW.

4.2.1 Sensors

To measure the environment, the vehicle uses two types of sensors: In the front of
the car three lidars (IBEO LUX Model 2010) deliver information about the distance
of the surroundings in the form of a point cloud. Mounted on the highest position
of the car, the main roll hoop, are the two cameras (Basler dart daA1600-60uc) that
are used to validate cone measurements and to find color information.

Additionally, each of the four motors is fitted with a hall sensor measuring its
respective angular velocity. Using the fixed gearing ratio and the wheel’s diameter,
the wheel speeds are calculated from this measurement. An Inertia Measurement
Unit (IMU) (Xsens MTi-G-710) is mounted in the center of the car. Together, these
sensors are used to compute a velocity estimate of the vehicle.

The steering system was retrofitted with a steering actuator to allow the car to
follow a planned trajectory. The steering system was also equipped with a steering
sensor measuring the current steering angle.

4.2. Base Car 33

4.2.2 Autonomous Computing Unit

The Autonomous Computing Unit (ACU), often referred to as ”Car PC”, is mounted
on the back of the car. It consists of consumer-grade components that are fitted in
a carbon fiber housing. The specifications are listed in Table 4.3.

Table 4.3: Components of the ACU.

Mainboard Gigabyte Z390N
RAM 32BG G-Skill RipJaws V
CPU Intel Core i7 9700K (8 Core) (TDP 95W)
GPU None

Most notably, the ACU works without a Graphics Processing Unit (GPU). This is
achieved with the architecture of the perception pipeline that uses a neural net but is
capable of running on the CPU. See Section 4.3.3 for details. This is a great benefit
because GPUs draw a lot of power, reducing the efficiency scoring. Additionally,
because the ACU is powered by the low voltage system of the car, the power the
ACU can draw from the battery is very limited.

4.2.3 Safety

Because racing with autonomous prototypes is dangerous, safety is the number one
priority. This is why the Formula Student rules require the vehicle to be equipped
with a shutdown circuit as depicted in Figure 4.5.

Figure 4.5: The shutdown circuit [48].

In essence, if any module of the shutdown circuit fails, the car will perform an
emergency braking maneuver. This means that the high voltage system powering

34 4. Underlying Conditions and Preliminaries

the drive train is disconnected, the Emergency Brake System (EBS) is released and
the emergency state is indicated with an intermittent sound and flashing blue lights.
The EBS is a passive pneumatically actuated system.

An emergency brake maneuver will for example be performed in the following cases:

• Emergency stop requested by the user, using the Remote Emergency System
(RES).

• The ACU requests a stop because one of the nodes has stopped responding.

• The battery management system detects a fault with the battery, for example
overheating.

Especially the first two examples are relevant to the SLAM algorithm: If the algo-
rithm diverges, the car will likely go off track and must be stopped manually by the
team. Should the algorithm, for example, enter a state where it is not responsive,
the supervisor node (see Section 4.3.2) has to engage the emergency brake maneuver
for safety reasons. Of course, no points will be rewarded in such a case so having a
robust, real-time capable SLAM algorithm is essential.

4.3 Autonomous Pipeline

The SLAM algorithms presented in this thesis have to be implemented into a com-
plete autonomous pipeline to allow for driverless racing. The system can roughly be
divided into the following modules:

• Perception: Measuring the environment and delivering the cone positions to
the SLAM algorithm.

• SLAM: Taking the measurements from the perception pipeline as well as odom-
etry measurements to estimate the map and the current position on it.

• Planning: Recognizing the track on the given map and planning the best
possible trajectory on it, including the target velocity.

• Control: Minimizing the error between the estimated and the target pose and
velocity and communicating needed wheel torques and steering angles with the
hardware interfaces.

The utilized software stack of the KIT19d is introduced in great detail by Nekkah
et al. [42] but shall be summarized in the following section.

4.3.1 Software Framework

All above mentioned modules are realized using Robot Operating System (ROS)3

nodes. ROS is an open-source robotics software framework and the standard software
tool in many robotics applications. It was started in 2007 at the Stanford Artificial
Intelligence Laboratory and is being maintained and developed by the Open Source
Robotics Foundation since 2014 [46]. The framework allows for the code to be
written in multiple programming languages. All code in the implementation of this
autonomous pipeline is written in C++ with the exception of the image processing
that is implemented using Python.

3www.ros.org

www.ros.org

4.3. Autonomous Pipeline 35

ROS allows the developer to implement an abstract, decentralized system architec-
ture by using peer-to-peer communication. Nodes communicate directly with each
other via a message system. Publishers will send a message to a topic and sub-
scribers will listen to that topic. The publisher is not affected, whether there are
none, one, or multiple subscribers to a topic. This allows for great flexibility. The
full autonomous pipeline can be split into smaller modules that can be developed,
maintained and tested as separate units. Individual units can be exchanged without
affecting the overall system.

In addition to the beneficial architecture, ROS comes with a number of handy tools
to improve the development workflow. To name a few:

• RViz allows visualizing messages.

• rosbags can record, play and manipulate messages. Testing a new algorithm
can be accomplished by sending messages from a recording while having the
new node running and processing these recorded messages.

• Dynamic reconfigure allows to change parameters online using a graphical user
interface.

• rqt graph is able to visualize the nodes and the messages they are sending.

4.3.2 Architecture

Figure 4.6 shows an overview of the complete software architecture of the au-
tonomous system. The individual nodes are explained in more detail below.

The software pipeline starts with the driver ws. In this workspace, all drivers
needed to process the incoming sensor measurements are implemented. Here, all
data is transformed into ROS messages and published to be made available to the
rest of the system. For example, the lidar point clouds and the cameras images will
be used in the perception ws.

4.3.3 Perception

The perception pipeline takes advantage of the different strengths of both sensor
types, the lidar and the camera. The main advantage of the lidar is the highly precise
distance measurement, while the main advantage of the cameras is the semantic
information that can be extracted from a camera image. Due to the high accuracy
of the lidar, the camera serves only as a verification of objects, while the actual
measurements are taken from the lidar directly.

The lidars and cameras are synchronized using a hardware trigger. After a scan
of the environment, the lidar point clouds from the different lidar sensors are trans-
formed into the same coordinate frame for further processing. To filter and cluster
the point cloud, the DBSCAN algorithm is used [6]. Clusters that represent potential
cone measurements are then projected into image space.

To reduce computational complexity, only areas of the image where a cone is pro-
posed by the lidar, will be further investigated. For this, the distance of the potential
cone is used to mark the region of interest in the image using a bounding box as
shown in Figure 4.7. Using only the projected cluster as the center of the region of
interest has been shown to not be robust enough, as can be seen in Figure 4.7a. To

36 4. Underlying Conditions and Preliminaries

F
igu

re
4.6:

O
verv

iew
over

th
e

fu
ll

sy
stem

arch
itectu

re.

4.3. Autonomous Pipeline 37

correct the bounding boxes, the unique color of the cones is taken advantage of.
Using the center of the area of the respective color, the center of the bounding box
is moved as depicted in Figure 4.7b.

(a) Before the bounding box correction. (b) After the bounding box correction.

Figure 4.7: Correction of the projected bounding boxes to fully contain a cone.

The bounding box and its content is then cut out of the full image and fed into
a convolutional neural network. The network will then classify the content of
the image to either be no cone or a cone of either blue, yellow or orange colour.
Because this is a rather easy task for such a network and because only the region
of interest is investigated, no GPU is needed. This is a great advantage in terms of
power consumption.

All verified cone measurements will then be passed on to the SLAM algorithm.

4.3.4 Planning

The trajectory planning algorithm differs depending on the driven discipline. For
example, in Trackdrive the full path can be planned before the car starts driving
because the map is known. In Autocross, however, the trajectory needs to be planned
live and updated at every time step to account for newly mapped cones or corrections
of their respective position. But in principle, the planning algorithm works the same
in all of the disciplines and can only deliver good results if a sufficiently accurate
map is supplied.

First of all, the way points need to be found. Way points are points on the middle
line of the track that will be used to plan the path. They are computed by connecting
all cones using Delauny triangulation and then sorting and filtering these triangles
using geometric constraints like maximum opening angles or vertex distances. The
way points are the middle points of the edges of the remaining triangles. The way
points are connected by cubic splines to form the planned path.

The next step is to find the target velocity for each point on the planned path.
For this purpose, a GGS-diagram is used. In this diagram, the maximum possible
lateral and longitudinal acceleration are plotted depending on the vehicle speed.
The latter is necessary because the aerodynamics of a Formula Student race car
greatly affect the maximum possible acceleration by increasing the downforce with
increasing velocity. Figure 4.8a shows the GGS-diagram of a Formula Student race

38 4. Underlying Conditions and Preliminaries

car. Using the maximum acceleration, the maximum velocity is computed for each
point on the track. Figure 4.8b shows the final result of the planning module. The
cones are represented as blue and yellow dots with the planned path in red. On the
vertical axis, in green, the target velocity is shown.

(a) GGS diagram of a FS race car. (b) Planned path (red) and velocity (green).

Figure 4.8: Planning module: GGS diagram and final result.

The trajectory can now be optimized to, for example, resemble the racing line
instead of passing through the middle points. However, since a Formula Student
track is very narrow compared to the car, it is only sensible to do so if the localization
is very precise. Otherwise the vehicle might hit more cones and the overall score will
be worse because of the resulting penalties.

4.3.5 Controller

The task of the controller is to reduce the distance between the planned path and
the estimated vehicle pose in lateral direction, and to reduce the difference between
the planned and the estimated longitudinal velocity. The information available to
the controller is the velocity and pose estimate delivered by the SLAM module as
well as the planned trajectory delivered by the planning module. The outputs of the
controller are torque requests for each of the four wheels and the desired steering
angle. Implemented are two separate controllers:

In longitudinal direction, a simple PI-Controller minimizes the error between
the current and the target velocity.

In lateral direction, the vehicle utilizes a Model Predictive Controller (MPC)
[12] to reduce the distance to the planned path. By predicting the state for the near
future (the prediction horizon) with an implemented vehicle model, the controller
can react to errors, before they occur.

The output of the longitudinal controller is the desired acceleration, the output
of the lateral controller is the desired yaw moment, resulting in an overdetermined
system.

To solve this and to implement an active yaw control (torque vectoring), Optimal
Control Allocation [15] is used. By solving an optimization problem, the torques
can be split between the wheels to achieve the desired linear acceleration and yaw

4.4. SLAM: Initial Situation 39

rate, whilst also considering constraints like the limits of grip of tires with a lower
load.

The controller can of course only decrease the pose error efficiently if the actual
vehicle pose delivered by the SLAM module is an accurate estimate.

4.4 SLAM: Initial Situation

The KIT19d, of course, also solved the SLAM problem, otherwise no autonomous
driving would have been possible. While the implemented algorithm was working in
principle, the SLAM module turned out to be one of the performance bottlenecks of
the system.

The approach used in 2019 was based on an EKF. In principle, it was based on the
EKF localization algorithm as described in Algorithm 7. To build the map, a very
simple and therefore efficient method was chosen: A landmark was mapped at the
position of its very first detection and then never corrected afterwards. With this
simplification, the landmark positions did not need to be included in the state.

The 2019 FSG Autocross track consisted of 155 cones. Since the EKF’s computa-
tional complexity is squared in the number of states (O(n2)), including the map into
the state makes a enormous difference. While the 2019 squared number of states
was n2 = 32 = 9, an EKF SLAM algorithm that will update all cone positions in all
time steps would have n2 = (3 + 155 ∗ 2)2 = 97969.

However, the high efficiency is paid for with a very low accuracy. In fact, the vehicle
performance had to be reduced in certain situations to limit the wheel slip, which in
turn improved the odometry measurements. Having good odometry measurements
reduces the overall drift in a SLAM algorithm, which means that corrections using
the measurements of the surroundings are less important to reduce drift.

Since racing is about always going to the limit in terms of performance, the SLAM
algorithm used by the car needed to be improved. To make an informed and objective
decision, two algorithms should be implemented and compared with respect to their
performance.

In the remainder of this thesis, two algorithms - EKF SLAM and GraphSLAM -
are presented, their performance is compared and finally, a conclusion is drawn as
to which of the algorithms should be used in the future at KA-RaceIng.

5 System Modeling

5.1 Reference Frames

Figure 5.1: Reference frames and relevant variables used throughout this thesis. The
’X’ marks the locations of the j-th landmark.

The reference frames that will be used throughout this thesis are depicted in Figure
5.1. All problems will be regarded as two-dimensional. This greatly reduces the
computational complexity and due to the flat nature of a Formula Student track,
this is a valid assumption.

The global reference frame (or world reference frame) {xg, yg} is defined by
the starting position of the vehicle. When initializing, the vehicle will define its
starting position to be xg = 0, yg = 0, heading in the direction of the global x-axis.
The vehicle coordinates are defined by the global position (xv, yv) and the vehicle
heading ϕv:

x =

xvyv
ϕv

 (5.1)

The global coordinates of the j-th landmark are described by xj,g and yj,g. Because

41

42 5. System Modeling

cones are used as landmarks, the heading is neither measurable nor helpful when
solving the SLAM problem, so only their respective position is of interest.

The local reference frame (or vehicle reference frame) {xl, yl} is defined by the
vehicle coordinates: The origin is located at the current position of the car, i.e. xv
and yv. The local x-axis is pointing in the direction of the vehicle heading, i.e. ϕv.

The position of the landmark within this local reference frame can be described ei-
ther by the cartesian coordinates xj,l and yj,l or the respective cylindrical coordinates
rj and θj. The transformations between these coordinates are given by:(

xj,l
yj,l

)
=

(
rj cos(θj)
rj sin(θj)

)
(5.2)(

rj
θj

)
=

(√
x2j,l + y2j,l

atan2(yj,l, xj,l)

)
(5.3)(

rj
θj

)
=

(√
(xj,g − xv)2 + (yj,g − yv)2

atan2(yj,g − yv, xj,g − xv)− ϕv

)
(5.4)

5.2 Motion Model

The motion model is used to compute the state transition and describes the robot’s
movement in the environment, given the control input ut. It is a common approach to
actually measure a robot’s motion resulting from a control input instead of using the
control input itself, as it eliminates error sources caused, for example, by inaccurate
actuators. The motion model used throughout this thesis is a very simple one
because it must be computationally efficient. Also, it only has to be accurate in
the short term, as the predicted pose will be corrected using measurement data.

The vehicle is assumed to move with constant velocity between time steps. This
assumption will of course be violated in reality. However, the prediction is performed
at a high frequency and results have shown this assumption to be accurate enough
for the given purpose. The resulting motion model can be expressed like this:xv,tyv,t

ϕv,t

 =

xv,t−1yv,t−1
ϕv,t−1

+

cos(ϕv) − sin(ϕv) 0
sin(ϕv) cos(ϕv) 0

0 0 1

v̂xv̂y
ˆ̇ϕ

∆t (5.5)

=

xv,t−1yv,t−1
ϕv,t−1

+

cos(ϕv)v̂x∆t− sin(ϕv)v̂y∆t
sin(ϕv)v̂x∆t+ cos(ϕv)v̂y∆t

ˆ̇ϕ∆t

 (5.6)

The 3 × 3 matrix in this equation is effectively a rotation matrix transforming the
vehicle speed into the global coordinate frame. v̂ = (v̂x, v̂y, ˆ̇ϕ)T is the true velocity,
which is unknown, so the motion model is approximated using the measured velocity
and Gaussian noise with a covariance of Qt:xv,tyv,t

ϕv,t

 =

xv,t−1yv,t−1
ϕv,t−1

+

cos(ϕv)vx∆t− sin(ϕv)vy∆t
sin(ϕv)vx∆t+ cos(ϕv)vy∆t

ϕ̇∆t

+N (0, Qt) (5.7)

= g(ut, xt−1) +N (0, Qt) (5.8)

5.2. Motion Model 43

As described in Equation (3.50), the function g can be approximated using a Taylor
expansion:

g(ut, xt−1) ≈ g(ut, µt−1) +Gt(xt−1 − µt−1) (5.9)

g(ut, µt−1) is obtained by replacing the unknown state xt−1 by the mean of the
current belief µt−1. The Jacobian Gt can be expressed like this:

Gt =

1 0 (vxsin(µt−1,ϕv)− vy cos(µt−1,ϕv))∆t
0 1 (vx cos(µt−1,ϕv)− vy sin(µt−1,ϕv))∆t
0 0 ∆t

 (5.10)

Handling Dropped Odometry Messages

For various reasons, it may occur from time to time that an odometry message is
not processed in time and the next message is therefore dropped. Generally, this
is not a big issue. The pose estimate using the odometry data is a rough guess
anyway, which is why the pose is corrected in the update step of EKF SLAM or the
optimization of GraphSLAM.

If messages are dropped too frequently, however, the pose estimate may be too
fraudulent to be corrected later on. Because of this, and to improve the short-term
estimate (which is the one used by the controller), dropped messages are considered
in the motion model by increasing the time step ∆t depending on the number of
dropped messages.

The motion model used here can be regarded as a numerical integration of the
velocity estimates to form a pose estimate. Increasing the step width is therefore
equivalent to reducing the resolution of the integration. While this obviously reduces
the precision when compared to integrating with full resolution, the estimate is still
more precise than it would be when just skipping a step of the integration.

5.2.1 Velocity Estimation

The motion model described above depends on a velocity estimate as input. While
the rotational velocity ϕ̇ is delivered directly from the IMU, the linear velocity is
not measured directly. Instead, the axle speeds are measured at the electric motors
ωmot and a linear velocity vx is computed using the gearing ratio igear and the tire
radius rtire. Experiments have shown that the best results are obtained when using
the wheel speeds of the rear axle ωrlmot and ωrrmot and combining them into a single
velocity estimate to account for different speeds of the left and right side when
turning.

vx =
2πrwheel

(ωrl
mot+ω

rr
mot)

2

igear
=
πrwheel(ω

rl
mot + ωrrmot)

igear
(5.11)

This of course only allows for a longitudinal velocity estimate. Since there are no
sensors on the car that allow for a velocity estimate in lateral direction, the lateral
velocity is assumed to be zero.

vy = 0 (5.12)

While this assumption is clearly fraudulent, it can be used here because the lateral
velocity is low enough for the SLAM algorithm to be able to correct the resulting
positioning error.

44 5. System Modeling

5.3 Measurement Model

The measurements of surroundings landmarks are processed using cylindrical coor-
dinates. This way, the two dimensions of a measurement can be regarded as inde-
pendent. The position measurements are made by a lidar sensor, so this assumption
is feasible and results in zeros in the off-diagonal entries of the measurement noise
matrix Rt.

The measurement model is formulated using Equation (5.4). Analogously to the
motion model, the measurement is not exact, therefore the measurement model is
approximated using a Gaussian noise term:(

rj
θj

)
=

(√
(xj,g − xv)2 + (yj,g − yv)2

atan2(yj,g − yv, xj,g − xv)− ϕv

)
+N (0, Rt) (5.13)

= h(xt, j,m) +N (0, Rt) (5.14)

The Taylor approximation is:

h(xt, j,m) ≈ h(µt, j,m) +Ht(xt − µt) (5.15)

When defining

δ =

(
δx
δy

)
=

(
µxj,g − µxv
µyj,g − µyv

)
(5.16)

and q = δT δ, the Jacobian Ht can be expressed like this:

Ht =
∂h(µt, j,m)

∂µv
=

(
−√qδx −

√
qδy 0

δy −δx −q

)
(5.17)

Here, µj = (µxj,g µyj,g)T is the robot’s belief of the j-th landmark’s position in the
global coordinate frame and µv = (µxv µyv µϕv)T is the internal belief of the vehicle’s
pose in the world frame.

In the case of EKF SLAM, the state vector will contain the landmark position.
Therefore, the complete Jacobian contains zeros in all places except for the partial
Jacobians ∂h(µt,j,m)

∂µv
and ∂h(µt,j,m)

∂µj
. For the latter follows:

Ht,j =
∂h(µt, j,m)

∂µj
=

(√
qδx

√
qδy

−δy δx

)
(5.18)

5.3.1 Inverse Measurement Model

When a new landmark is initialized, the inverse measurement model hinv is needed.
This equation uses a measurement and transforms it into state space:(

xj,g
yj,g

)
=

(
xv + rj cos(ϕv + θj)
yv + rj sin(ϕv + θj)

)
+N (0, Rt) (5.19)

= hinv(xv, zj) +N (0, Rt) (5.20)

The Taylor approximations with respect to the mean of the belief of the vehicle state
µv and the measurement zj are:

H inv
v =

∂hinv(µv, zj)

∂µv
=

(
1 0 −rj sin(µϕv + θj)
0 1 rj cos(µϕv + θj)

)
(5.21)

H inv
j =

∂hinv(µv, zj)

∂zj
=

(
cos(µϕv + θj) −rj sin(µϕv + θj)
sin(µϕv + θj) rj cos(µϕv + θj)

)
(5.22)

5.4. Uncertainties 45

5.4 Uncertainties

The uncertainties of the measurements are represented in the covariance matrices
of the motion model (Qt) and the measurement model (Rt). Both of these uncer-
tainties can be tied to sensor input. Finding good values for these uncertainties
is crucial because they have an enormous impact on the algorithm’s performance.
Wrong uncertainties quickly lead to a diverging filter because the algorithm over-
or underestimates the certainty of the vehicle’s pose or a landmark’s location. To
make matters more complicated, the uncertainties are not generally constant values
and may change depending on the vehicle state.

To find the best possible values, the error of the control and measure input was
modeled. Assuming worst-case scenarios, the error is calculated given the current
vehicle state. Interpreting the resulting error as the standard deviation allows to
find the covariance by squaring the resulting error. This is of course a very rough
estimate of the uncertainty. There may be additional error sources not considered
in the error models. And since worst-case scenarios are used, the sensor input might
actually be more accurate than expected. However, if the error would be known
exactly, there wouldn’t be a need to look at this from a probabilistic point of view.

5.4.1 Motion Uncertainty

Longitudinal Uncertainty

The sensor input available to the algorithms will first of all be the wheel speeds.
As described above, they are used to calculate the longitudinal velocity vx. Aside
from the error induced by the hall sensor measuring the motor revolutions ehall, the
main error source here is the slip s resulting from the torque applied to the wheels.

The Pacejka tire model is used to determine the longitudinal and lateral forces
a tire will transfer given the longitudinal slip or side slip angle, respectively. For
the purposes of the following estimation, this relation will be flipped and the slip
will be estimated using the linear section of the Pacejka tire model. The gradient
for this section for the longitudinal tire model glo can be estimated from the plot
depicted in Figure 5.2. Here, the contact force is chosen rather low. If the wheel load
increases, for example for the outer wheel in a corner, the slip will actually reduce.
But since the following estimation is assuming a worst-case scenario, this will not
be considered.

From the definition of slip [25]

s =
vx − v̂x
v̂x

(5.23)

the error eslip,x can be estimated by multiplying the slip with the velocity:

s =
vx − v̂x
v̂x

≈ vx − v̂x
vx

=
eslip,x
vx

=⇒ eslip,x ≈ svx (5.24)

Here, vx represents the vehicle speed estimated from wheel speeds and v̂x represents
the true vehicle speed.

In conclusion, for the uncertainty of vx follows:

σvx = e2hall + e2slip,x = e2hall + (
gloigear
rtire

Tmotvx)
2 (5.25)

46 5. System Modeling

Figure 5.2: Pacejka tire model: Force vs. slip (longitudinal). Contact force: 400 N.

Since the torque is measured at the electric motors, the gear ration igear needs to be
considered. rtire is the tire’s dynamic radius to convert the drive torque into the tire
force.

Lateral Uncertainty

In lateral direction, the main error velocity vy is slip as well. Just as in longitudinal
direction, the slip is estimated using tire data. Using the side slip angle β and a
small-angle approximation, the lateral velocity is

vy = v sin β ≈ vxβ. (5.26)

From the single track model depicted in Figure 5.3, β can be approximated to

β = − lr
R

+ αr. (5.27)

The corner radius R is approximated using a small steering angle δ and assuming
no slip angles αf and αr:

R ≈ l

tan δ
≈ l

δ
(5.28)

The rear slip angle αr needed in Equation (5.27) is computed using the longitudinal
velocity and tire data. The lateral acceleration of the car is:

ay =
v2x
R

(5.29)

From the acceleration and the vehicle weight mv results the lateral force Fy

Fy = aymv (5.30)

5.4. Uncertainties 47

Figure 5.3: Single track model.

Figure 5.4: Pacejka tire model: Lateral force vs. slip angle. Contact force: 400 N.

48 5. System Modeling

which is used to obtain αr
αr = glatFy (5.31)

glat is the gradient of the linear section of the lateral Pacejka tire model that can
be seen in Figure 5.4.

Combining these equations results in the approximated lateral velocity error evy :

evy = vy (5.32)

≈ vxβ (5.33)

= vx(−
lr
R

+ αr) (5.34)

≈ vx(−
lr
l
δ + glatmvv

2
x) (5.35)

=
glatmv

l
δv3x −

lr
l
δvx (5.36)

The uncertainty is again calculated by squaring the error:

σvy = e2vy (5.37)

While this is of course a very rough approximation, there now is a coupling between
lateral uncertainty, speed and steering angle. High speeds and high steering angles
will result in high lateral velocity uncertainty.

Rotational Uncertainty

The IMU delivers sensor data for the yaw rate. The error induced by this sensor
itself is the main source of error for this measurement, so the uncertainty for the
yaw rate is computed using:

σϕ̇ = e2ϕ̇ (5.38)

Transformation into State Space

The uncertainties described here are uncertainties for the velocity in the vehicle
coordinate frame, i.e. in control space.

Qt,l =

σvx 0 0
0 σvy 0
0 0 σϕ̇

 (5.39)

To apply the uncertainty to the SLAM algorithm, the noise must be transformed
into state space. To do this, the approximated motion model g(ut, xt−1) described
in Equation (5.8) is derived with respect to the control input ut

Vt =
∂g(ut, xt−1)

∂ut
=

cosϕv∆t − sinϕv∆t 0
sinϕv∆t cosϕv∆t 0

0 0 1

 (5.40)

and applied to the motion noise in control space Qt,l to result in the motion noise
in state space Qt:

Qt = Vt Qt,l V
T
t (5.41)

5.4. Uncertainties 49

5.4.2 Measurement Uncertainty

Analogously, the sensor uncertainty for the environment measurements must be
determined. The landmark position will be delivered using the lidar, so first of all, the
measurement noise of the lidar itself needs to be considered. Since all measurements
will be processed using cylindrical coordinates, the noise of the range and the bearing
measurement can be regarded as independent.

An additional error source is the clustering algorithm used. The landmark’s position
will be estimated by grouping all points that are considered to be corresponding to
the same landmark and computing the middle point of this cluster. This does not
necessarily coincide with the actual middle point of the landmark. In fact, since
a landmark can just be measured from one side at a time, the clustering middle
point will likely have an offset to the actual middle point. This must be considered
when setting the uncertainty parameters for the SLAM algorithm. It is also worth
mentioning that an offset like that breaks the Gaussian assumption. The next section
explains, how the algorithms can work despite this.

5.4.3 Limiting the Minimal Uncertainty

During the development of the algorithms a problem kept arising: Cones, especially
near the start, were mapped twice. It seemed as if the data association algorithm
failed to match cones even though they were very close together.

The reason for this lies in a systematic error made by the perception pipeline: The
measurement of a cone will always resemble the outer shell of the cone rather than
the center of the cone. This is because a cone can always be seen from one side only
and the clustering algorithm defines the center of a measured cone to coincide with
the center of the clustered points. This means that the cluster center will always be
near the shell of the cone instead near its center, which results in all measurements
being closer to the car than they should be. The resulting error is systematic,
meaning that the measurement’s probability density does not have a zero mean and
is therefore not Gaussian.

This phenomenon turned out to be a big issue because the algorithms would over-
estimate the certainty of the cone position because the vehicle re-observes the same
systematic error many times. This results in cone positions that are off by a few
centimeters but have a very high certainty. Because of this, the Mahalanobis dis-
tance, that is used by the data association algorithm, grows very large. So, when
re-observing the cone from another side, when for example the starting straight is
visible from the opposite straight, it will be regarded as a new cone.

The phenomenon is visualized in Figure 5.5. The cones are visualized transpar-
ently so that the covariance visualization is visible. The covariance is visualized
using an ellipse at the bottom of the cone with the orientation and the radii of the
ellipse is determined using the Eigenvectors and the Eigenvalues, respectively. In
this example, the uncertainty is equal in all directions, so the ellipse resembles a
circle.

In Figure 5.5a the covariance is not limited. This results in two mapped cones, each
at the position of the outer shell of the actual cone, as can be seen in Figure 5.5b.
Because the covariance is not limited, with multiple measurements confirming the

50 5. System Modeling

(a) Missing association be-
cause of overestimated
certainty.

(b) Combination of the
wrong and correct
associations.

(c) Measurements from
both directions suc-
cessfully matched.

Figure 5.5: Effect of limiting the minimal uncertainty. Covariance visualized by
black ellipse.

systematic error it shrinks to very small values (i.e. the cone position is determined
to be very certain).

In Figure 5.5c, the correct measurement is visualized. It is in between the two false
measurements and could be associated because the minimal uncertainty was limited
to account for the cone’s volume.

5.5 Filtering False Positive Measurements

Depending on the quality of the sensor data and the perception pipeline, the SLAM
algorithm will have to deal with a number of false positive detections. Generally, a
false detection is not a big issue for the algorithm. If, for example, a fixed object like
a fire extinguisher is falsely classified as an orange cone, it can still be used by the
SLAM algorithm to localize the car. If a false positive measurement is the result of
sensor noise or similar, it is likely that it will not occur very often in the same area,
so it would not be used (often) to correct the state.

Still, false positives are an issue for two reasons. First of all, trajectory planning
is only interested in the map of the track itself. With more landmarks other than
cones on the map (such as a fire extinguisher), the trajectory planning algorithm
must be increasingly robust and filter them out. Secondly, the process of data
association becomes increasingly difficult because all false positive measurements
still need to be regarded as possible matchings for new incoming measurements. The
computational complexity of the data association depends on the size of the map
and the number of measurements, so it will take longer if there are a large number
of false positives.

A very simple way to deal with this issue is to count the number of times a particular
landmark has been seen. The SLAM algorithms will only publish landmarks on the
map if they are confirmed, i.e. they have been seen often enough. This already
improves the situation for the trajectory planning.

To deal with the problem of data association, a map cleaning is performed fre-

5.5. Filtering False Positive Measurements 51

quently. This means that with a certain rate all landmarks are checked, as to whether
or not they have been seen often enough to be confirmed. If a cone is under that
threshold and also outside the perception range, it is removed from the map. The
latter restriction is necessary because of course every landmark is under the thresh-
old when it is seen for the first time. As long as it could be seen for a second time,
i.e. as long as it is within the perception range, it must be tracked and cannot be
removed from the map.

Having discussed the basic concepts relevant to both algorithms, in the following
two chapters, EKF SLAM and GraphSLAM and their respective implementation is
presented.

6 EKF SLAM

6.1 EKF Localization

When the vehicle is driving in the Trackdrive discipline, the map previously created
in Autocross will be available. Therefore, it is not necessary to solve the SLAM
problem in this discipline, but instead the vehicle must only find its location on
said map. Since this problem is easier to solve, the localization algorithm shall
be discussed first. Based on the general EKF localization algorithm, described in
Chapter 3 (Algorithm 7), the implementation of the EKF localization is described
in Algorithm 8.

The EKF localization algorithm begins with the prediction step. The actual pre-
diction can be found in line 6 where the new mean belief is updated according to
the motion model defined in Equation (5.8). In line 7, the covariance of the belief
Σt is updated using the Jacobian of the motion model Gt that was computed in line
2 and the motion uncertainty Qt that was computed in line 3 and mapped into state
space in lines 4 and 5.

The update step starts in line 8. First, the measurement noise Rt is computed.
Afterwards all measurements z1:it are associated to the map. For this, the JCBB im-
plementation of the MRPT library1 is utilized. To improve efficiency, only landmarks
within the perception range of the vehicle are considered for association. If there
are landmarks for which no associations could be found, they will not be further
considered in the case of localization.

The matched landmarks, however, are used to update the belief. For each of them,
the corresponding expected measurement ẑjt is computed in line 13. In line 14, the
Jacobian of the measurement equation is computed for the current measurement,
as described in Equation (5.17). Using these prerequisites, in lines 15 through 17,
the Kalman equations are calculated to compute Kalman gain Kt and the updated
mean of the belief µt and the covariance Σt.

6.2 EKF SLAM

If there is no map available to the robot, the difficulty increases significantly. To
create that map and to find the location on it, i.e. solving the SLAM problem, all
that is available to the robot are the measurements z1:t and the controls u1:t.

6.2.1 The EKF SLAM Algorithm

The EKF SLAM algorithm is very similar to the EKF localization algorithm de-
scribed in Section 6.1 (Algorithm 8). However, some adjustments have to be made
for the algorithm to be able to solve the SLAM problem.

1Mobile Robot Programming Toolkit: www. mrpt. org

53

www.mrpt.org

54 6. EKF SLAM

Algorithm 8: EKF Localization (Implementation)

Input: µt−1,Σt−1, ut, z
1:i
t

Output: µt,Σt

Prediction

1 ϕv = µt−1,ϕv

2 Gt =

1 0 (vxsin(ϕv)− vy cos(ϕv))∆t

0 1 (vx cos(ϕv)− vy sin(ϕv))∆t

0 0 ∆t

3 Qt,l =

σvx 0 0

0 σvy 0

0 0 σϕ̇

4 Vt =

cosϕv∆t − sinϕv∆t 0

sinϕv∆t cosϕv∆t 0

0 0 1

5 Qt = Vt Qt,l V

T
t

6 µ̄t = µt−1 +

cos(ϕv)vx∆t− sin(ϕv)vy∆t

sin(ϕv)vx∆t+ cos(ϕv)vy∆t

ϕ̇∆t

7 Σt = GtΣt−1G

T
t +Qt

Update

8 Rt =

(
σr 0

0 σθ

)
9 associateObservedLandmarks()

10 forall matched landmarks zjt do

11 δ =

(
δx

δy

)
=

(
µxj,g − µxv
µyj,g − µyv

)
12 q = δT δ

13 ẑjt =

(√
q

atan2(δy, δx)

)

14 Ht =

(
−√qδx −

√
qδy 0

δy −δx −q

)
15 Kt = ΣtH

T
t (HtΣtH

T
t +Rt)

−1

16 µ̄t = µ̄t +Kt(z
j
t − ẑ

j
t)

17 Σt = (I −KtHt)Σt

18 end

19 µt = µ̄t

20 Σt = Σt

21 return µt,Σt

6.2. EKF SLAM 55

The state is expanded to additionally contain information about the landmark
states because they become part of the estimation. The orientation of the cones that
will be used as landmarks in the algorithm cannot be measured with the available
sensors and is therefore of no use. Instead, only the respective x- and y-position of
a landmark will be considered and estimated. The resulting state vector will look
like this:

x =
(
xv yv ϕv x1,g y1,g x2,g y2,g . . .

)T
(6.1)

Here, x1,g and y1,g describe the coordinates of the first landmark in the global refer-
ence frame and so on. The state vector is therefore of size (2N + 3)× 1 where N is
the number of mapped landmarks.

Operating with higher-dimensional vectors and matrices of course increases com-
putational complexity. Therefore, if not all entries of a vector or a matrix need to be
adjusted in an equation, block operations are utilized where only parts of the vector
or the matrix are changed. This is expressed using vector.block(beginRow, num-
berOfRows) and matrix.block(beginRow, beginColumn, numberOfRows, numberOf-
Columns). Due to the length of the algorithm, it is split into two parts. The
prediction is described in Algorithm 9 and the update is described in Algorithm 10.

Prediction

Algorithm 9: EKF SLAM Prediction

Input: µt−1,Σt−1, ut

Output: µ̄t, Σ̄t

1 ϕv = µt−1,ϕv

2 Gt =

1 0 (vxsin(ϕv)− vy cos(ϕv))∆t

0 1 (vx cos(ϕv)− vy sin(ϕv))∆t

0 0 ∆t

3 Qt,l =

σvx 0 0

0 σvy 0

0 0 σϕ̇

4 Vt =

cosϕv∆t − sinϕv∆t 0

sinϕv∆t cosϕv∆t 0

0 0 1

5 Qt = Vt Qt,l V

T
t

6 µ̄t,v = µt−1,v +

cos(ϕv)vx∆t− sin(ϕv)vy∆t

sin(ϕv)vx∆t+ cos(ϕv)vy∆t

ϕ̇∆t

7 Σt =

(
GtΣvv,t−1G

T
t GtΣvm,t−1

(GtΣvm,t−1)
T Σmm,t−1

)
+Qt

8 return µ̄t,Σt

Since the environment is assumed to be static, in the prediction step only the
vehicle state is adjusted while the landmark states remain constant. The first 5

56 6. EKF SLAM

lines are equal to the respective lines in the EKF localization algorithm described
in Algorithm 8. Line 6 looks very similar, too, but it should be noted that a block
operation is performed here where only the first three entries of the state vector are
adjusted.

The belief of the covariance matrix is split into four blocks to increase the efficiency
of the algorithm:

Σt =

(
Σvv,t Σvm,t

Σmv,t Σmm,t

)
(6.2)

Σvv,t is the 3×3 block in the top left corner, Σmm,t is the 2N×2N block in the lower
left corner and Σvm,t and Σmv,t are 3 × 2N and 2N × 3 matrices in the top right
and the botton left corner, respectively. Since the covariance matrix is symmetric,
it follows that:

ΣT
vm,t = Σmv,t (6.3)

Since the map wasn’t adjusted in the prediction, neither is Σmm,t, which in practice
is by far the largest block.

Update

The update step described in Algorithm 10 begins by performing the data associa-
tion. This step is identical to the EKF localization algorithm. However, landmarks
that could not be matched will be added to the map. This is done using Algorithm
11, which is explained below.

The update of the EKF SLAM algorithm varies to that of the EKF localization
algorithm. Because the covariance matrix may be a very large matrix in the case of
EKF SLAM, it will only be adjusted once per time step by using a so called batch
update. As before, the expected measurement ẑjt and its respective difference ∆z to
the actual measurement zjt is computed for each observation in lines 7 to 10. But
instead of performing the update directly, the computed information is accumulated
in a 2i× 1 matrix with i being the total number of measurements in the time step.

Similarly, the Jacobi Matrix H is computed for each measurement. Since the mea-
surement equation only depends on the vehicle state and the state of the currently
looked at landmark, only the respective columns of H are non-zero. To increase
computational efficiency, only the non-zero elements are computed:

Hj
t,v =

∂h(µ̄t, j,m)

∂µ̄v
=

(
−√qδx −

√
qδy 0

δy −δx −q

)
(6.4)

Hj
t,j =

∂h(µ̄t, j,m)

∂µ̄j
=

(√
qδx

√
qδy

−δy δx

)
(6.5)

Again, the computed data is accumulated in a matrix with two lines per measure-
ment. The Jacobian with respect to the vehicle state Hj

t,v is inserted into the first

three columns while the Jacobian with respect to the landmark state Hj
t,j is inserted

into the columns that correspond to its position in the state vector (its unique id
idj). To conclude the iteration, the accumulated measurement uncertainty matrix
Rt is filled. Rt is zero except for its main diagonal.

Finally, the Kalman equations are calculated in lines 18 to 22.

6.2. EKF SLAM 57

Algorithm 10: EKF SLAM Update

Input: µ̄t,Σt, z
1:i
t

1 associateObservedLandmarks()

2 initializeUnmatchedLandmark()

3 Ht = Zeros(2 i, N) // i = number of matched measurements, N = number of

states

4 ∆zt = Zeros(2 i, 1)

5 Rt = Zeros(2 i, 2 i)

6 forall matched landmarks zjt =
(
rjt θjt

)T
do

7 δ =

(
δx

δy

)
=

(
µ̄xj,g − µ̄xv
µ̄yj,g − µ̄yv

)
8 q = δT δ

9 ẑjt =

(√
q

atan2(δy, δx)

)
10 ∆zt.block(2j, 2) = zjt − ẑ

j
t

11 Hj
t,v =

(
−√qδx −

√
qδy 0

δy −δx −q

)

12 Hj
t,j =

(√
qδx

√
qδy

−δy δx

)
13 Ht.block(2j, 0, 2, 3) = Hj

t,v

14 Ht.block(2j, 2 idj + 3, 2, 2) = Hj
t,j

15 Rt(2j, 2j, 1, 1) = σr

16 Rt(2j + 1, 2j + 1, 1, 1) = σθ

17 end

18 Kt = ΣtH
T
t (HtΣtH

T
t +Rt)

−1

19 µ̄t = µ̄t +Kt∆zt

20 Σt = (I −KtHt)Σt

21 µt = µ̄t

22 Σt = Σt

23 return µt,Σt

58 6. EKF SLAM

Initializing New Landmarks

Algorithm 11: Initializing New Landmarks

Input: µ̄t,Σt z
1:k
t

1 forall unmatched measurements zit =
(
rit θit

)T
do

2 µ̄i,x = µ̄xv + rit cos(µ̄ϕv + θit)

3 µ̄i,y = µ̄yv + rit sin(µ̄ϕv + θit)

4 µ̄t =
(
µ̄t µ̄i,x µ̄i,y

)T
5 H inv

v =

(
1 0 −rj sin(µ̄ϕv + θit)

0 1 rj cos(µ̄ϕv + θit)

)
6 H inv = Zeros(2, N)

7 H inv.block(0, 0, 3, 3) = H inv
v

8 H inv
i =

(
cos(µ̄ϕv + θit) −rk sin(µ̄ϕv + θit)

sin(µ̄ϕv + θit) rk cos(µ̄ϕv + θit)

)

9 Ri
t =

(
σr 0

0 σθ

)

10 Σt =

(
Σt Σ

T

t H
inv

H invΣt H invΣtH
inv,T +H inv

i Ri
tH

inv,T
i

)
11 end

12 return µ̄t, Σ̄t

To initialize newly observed landmarks, the algorithm described in Algorithm 11
is used. First, the measurement is transformed into state space using the inverse
measurement model described in Section 5.3. This new state is appended to the
current predicted belief µ̄t in line 4.

The covariance matrix is updated using the Jacobians of the inverse measurement
model hinv. The Jacobian with respect to the measurement H inv

i is used to transform
the measurement uncertainty into state space. The Jacobian with respect to the state
is computed in lines 5 to 7. Since the Jacobian is zero at the columns corresponding
to the landmark states, only the first 2× 3 block is non-zero.

The new covariance matrix is defined in line 10 by appending 2 new lines and
columns that are computed using the Jacobians described above.

6.2.2 EKF SLAM Implementation

While the EKF SLAM algorithm utilizes the equations described above, some spe-
cific implementation details should be explained. There are a number of factors that
required a different implementation to the usual Kalman architecture.

First of all, the high speeds of the car require very high update rates. The controller
works with a frequency of 50 Hz, so a new pose estimate should be delivered at least
every 20 ms.

6.2. EKF SLAM 59

Secondly, the computation times of the prediction and the update step differ quite
significantly. In the prediction step, only the vehicle pose and the respective blocks
of the covariance needs to be manipulated, while in the update step, the full map
is corrected and therefore the complete state and covariance matrix need to be ad-
justed. Additionally, in the update step, the data association needs to be performed,
which may require a significant amount of the available computation time depending
on the amount of landmarks seen in a particular time step.

Finally, the sensors delivering the input data for the algorithm work at different
frequencies. Odometry data is available at roughly 100 Hz or every 10 ms, whereas
a perception scan is only delivered at 25 Hz or every 40 ms. It would of course be
possible to only use every fourth odometry measurement and to predict over a longer
time step, i.e. 40 ms. This, however, causes problems with the real-time capability
of the overall system, due to the update frequency the controller requires.

Linear Structure

Figure 6.1: Linear structure of the EKF SLAM algorithm.

Originally, the algorithm was implemented as depicted in Figure 6.1. The Kalman
filter would perform multiple predictions before an update step was computed. While
this implementation did work in principal and solved the problems of the different
input frequencies and the required output frequency, the algorithm turned out to
not be real-time capable. The reason for that is the amount of time taken by the
update step. Due to the linear architecture, the update step needed to be completed
before the next prediction started, which often wasn’t the case.

Parallel Structure

Figure 6.2: Parallel structure of the EKF SLAM algorithm.

The answer to the problem of real-time capability is parallelization. Figure 6.2
depicts the architecture that the implemented algorithm works with. It is very
similar to the linear structure shown in Figure 6.1, however, the update step is
moved onto a second thread. Doing so allows the algorithm to keep processing
odometry data and publishing predicted pose estimates while in the background
computing the update. Once the update is completed, the pose the update started

60 6. EKF SLAM

with is corrected. To account for the predictions made since the update started, the
pose delta since then is added onto the updated pose.

This process solves all of the problems mentioned above: The input data is pro-
cessed at different frequencies, there is always a short-term pose estimate for the
controller to work with and the update step may take up all of the available time
until a new measurement is available. In fact, the algorithm has proven to be ro-
bust enough to work with update steps taking even longer than that. In that case,
information is lost because the algorithm has to drop incoming messages but the
predictions can continue without interruption.

Example

Figure 6.3: Exemplary estimates made by the parallel EKF SLAM implementation.

Figure 6.3 shows a 1-dimensional example of the estimates made by the parallel
structure of EKF SLAM. The input in this example will be (in order):

• One odometry measurement

• One set of observations

• Three odometry measurements

In this example, computing a prediction will take 1 ms, whereas computing an update
will take 25 ms. Just as in the hardware platform presented in Section 4.2, odometry
measurements will be available every 10 ms, while observations of the environment
are delivered every 40 ms.

Starting from the robot’s initial belief µ0, the first received odometry mea-
surement will trigger a prediction which will result in a new predicted estimate µ̄1.
Next, the perception pipeline delivers a new set of measured landmarks. This
allows the SLAM algorithm to correct the estimate made in the prediction step just
before.

However, since the update step may take up a long time, it is computed on a second
thread. Because in this example, computing the update step will take 25 ms, two
odometry measurements will be received in the meantime. Without the paral-
lelization, these measurements could not be taken into account and the information
would be lost. With the parallelization, however, the odometry measurements will
trigger predictions, even though the update is computed in the background. Since µ̄1

is the most current estimate, the predictions will continue from that state, resulting
in the predicted states µ̄2 and µ̄3. This allows the SLAM algorithm to continuously
publish vehicle pose estimates with a constant frequency of 100 Hz, ensuring that
there is always an up-to-date pose estimate available to the controller.

Once the update step has been completed, there is a corrected estimate µ1 for
the state that the update step started with, µ̄1 in this example. Next, the algorithm
needs to account for the predictions made since the update started. It does so, by

6.2. EKF SLAM 61

first computing the delta of the states from the estimate the algorithm started with
and the most current estimate. In this example, this means:

∆µ̄ = µ̄3 − µ̄1 (6.6)

The computed delta is then added onto the updated state µ1 to adjust the newest
predicted pose µ̄3, resulting in µ̄3,new:

µ̄3,new = µ1 + ∆µ̄ (6.7)

Note that this is still a predicted state, even though it is only available after an
update step is completed. Also, when computing ∆µ̄, only the difference in the
vehicle pose needs to be considered. The environment is assumed to be static so it
is not changed in the prediction step.

Finally, the last odometry measurement is delivered and a new predicted state
µ̄4 is computed starting from the most current state estimate µ̄3,new. After this, the
cycle repeats.

Even though the update step took very long, no information was lost in this ex-
ample. This would even be the case if computing the update step took up to 40 ms
(time until new observations are delivered).

Before the EKF SLAM algorithm presented in this chapter is analysed in terms of
its performance, the GraphSLAM algorithm is presented in Chapter 7.

7 GraphSLAM

The GraphSLAM algorithm differs from the EKF SLAM algorithm in many ways.
Instead of filtering the input data (control inputs u1:t and measurements z1:t), Graph-
SLAM, as the name suggests, builds a graph containing all available information in
the form of mathematical constraints. This allows the algorithm to solve the full
SLAM problem, i.e. to find an estimate for all landmarks and all vehicle poses.
The task of the algorithm is to build the graph from the given control inputs and
measurements, to formulate a minimization problem and to finally find the config-
uration for all vehicle poses and landmark positions that best fulfills all constraints
by solving this minimization problem.

Extracting the best estimate by solving the graph is computationally expensive.
Adding a new constraint to the graph, however, is a very cheap operation. This
property will later be used in the implementation to allow the algorithm to perform
in real-time.

The computational complexity of the algorithm is linear in the number of con-
straints. As a consequence, the GraphSLAM’s complexity increases over time op-
posed to the EKF SLAM which has a complexity that grows only when the map
size increases.

Keeping track of all constraints is a crucial advantage of the GraphSLAM algorithm
because it allows for the motion and measurement equations to be linearized again at
a later point in time. EKF SLAM is not able to do this, which is why GraphSLAM
promises more accurate estimates.

The GraphSLAM algorithm presented in this chapter is implemented utilizing the
g2o library [21].

7.1 Graph Structure

The graph used to represent the SLAM problem is a weighted, directional graph
consisting of two types of edges and two types of vertices1. The graph structure is
visualized in 7.1.

Each vehicle pose is represented by a pose vertex and each mapped landmark is
represented by a landmark vertex. Consecutive pose vertices are connected by
odometry edges. Landmark vertices are connected to all vehicle poses they have
been measured from using landmark edges.

The GraphSLAM will be represented using the information matrix Ω and the in-
formation vector ξ. New edges will result in a local addition of an edge to the
information matrix.

1Vertex and node are synonymous in this context and will be used as such.

63

64 7. GraphSLAM

Figure 7.1: Structure of the graph representing the SLAM problem.

7.2 The GraphSLAM Algorithm

Just as the EKF SLAM algorithm, the GraphSLAM algorithm uses the control
command u1:t and the measurements z1:t as an input. Each of these inputs triggers
an event, wich results in the creation of new edges and possibly new vertices.

A new odometry input is used to generate a new pose vertex using the motion
model described in Section 5.2. Additionally, the new pose vertex is connected with
the pose node before it. The constraint that links these poses can be formulated as
follows:

(xt − g(ut, xt−1))
TQ−1t (xt − g(ut, xt−1)) (7.1)

A new observation will first of all trigger the data association. Observations that
were able to be matched to a mapped landmark will be linked to the vehicle pose
that the measurement had been made from using a landmark edge. The resulting
constraint is:

(zit − h(xt,m))TR−1t (zit − h(xt,m)) (7.2)

For each unmatched observation, i.e. for landmarks that have never been seen
before, a new landmark vertex will be created and connected using a landmark edge
just as the matched landmarks above. h in Equation (7.2) is the measurement model
discussed in Section 5.3.

The resulting information matrix will be zero everywhere except for the entries on
the main diagonal and those corresponding to an edge. For example, the structure
of the information matrix corresponding to Figure 7.1 is visualized in Table 7.1.

7.2. The GraphSLAM Algorithm 65

Table 7.1: Structure of the information matrix corresponding to Figure 7.1.

x
t−

1
L

x
t

L

x
t+

1
L

L
M

n

L
M

n
+
1

L
M

n
+
2

L
M

n
+
3

xt−1
xt
xt+1

LMn

LMn+1

LMn+2

LMn+3

The sum of all constraints has the form:

JGraphSLAM =xT0 Ω0x0 +
∑
t

(xt − g(ut, xt−1))
TQ−1t (xt − g(ut, xt−1)) (7.3)

+
∑
t

∑
i

(zit − h(xt,m))TR−1t (zit − h(xt,m))

The first constraint xT0 Ω0x0 is called anchoring constraint and fixes the problem to
a global reference frame by initializing the first vehicle pose to x0 = (0, 0, 0)T . This
is needed because all constraints discussed above are relative constraints and hold
no information about the global reference frame. Without the anchoring constraint,
the cost function is invariant to a rigid body transformation, which results in the
system of equations being under-determined.

The cost function JGraphSLAM is a sum of squared errors which has the structure
of Equation (3.56). The task of the algorithm is to minimize all errors, i.e. to
minimize the cost function. This is done using the Levenberg-Marquardt algorithm
as explained in Section 3.3.

7.2.1 Initializing New Landmarks

To provide the best initial guess to the optimization algorithm, in Autocross newly
observed landmarks are mapped using the inverse measurement equation discuessed
in Section 5.3.1: (

xj,g
yj,g

)
=

(
xv + rj cos(ϕv + θj)
yv + rj sin(ϕv + θj)

)
(7.4)

7.2.2 Fixing Nodes

Depending on the discipline that the vehicle is in, specific nodes may need to be
fixed. In Autocross, the very first vehicle pose node is fixed. By doing so, the
connecting odometry edge acts as an anchoring constraint, as explained above.

In Trackdrive, the map is available from the start and will not be adjusted any-
more. Although it would be possible to further correct the map, in Trackdrive the
vehicle tends to drive faster than it would in Autocross. This results in less accurate
sensor measurements which is why the map quality would likely not improve during
Trackdrive.

66 7. GraphSLAM

In practice, that means that all nodes representing landmarks will be fixed when
the map is loaded initially. They will then not be further corrected during the
optimization. For the application of the algorithm this is a great advantage because
it essentially works the same in both Autocross and Trackdrive.

The j-th node can be fixed by manipulating the H-matrix in Equation (3.67) in
one of two ways:

• The identity matrix is added to the block corresponding to the j-th node.

• The rows and columns corresponding to the j-th node are suppressed and not
considered during the optimization.

7.2.3 Outlier Handling

Since neither the sensors nor the perception pipeline deliver perfect results, there is
always the chance of outlier measurements. Outlier measurement may have a serious
impact on the estimation quality because the optimization problem is formulated
using squared errors. A squared error cost function is a good way to quickly correct
bigger deviations of the correct state. However, in the case of outlier measurements,
they imply a big deviation that is in fact not correct and results in a loss of accuracy
if it is not dealt with.

To prevent outliers from having a fatal impact, the cost function is formulated in a
slightly adjusted way using a so called Huber kernel. The idea is to penalize errors
up to a certain threshold in a quadratic manner but to not increase that penalty
as drastically if the error is above the threshold. This is done using the Huber loss
function:

JHuber(e) =

{
e2

2
if |e| < δ

δ(|e| − c
2
) otherwise

(7.5)

Here, δ is the parameter defining the error threshold.

The Huber loss function is visualized and compared to the squared error loss func-
tion in Figure 7.2.

7.3 GraphSLAM Implementation

Just as EKF SLAM, GraphSLAM must process incoming odometry data and ob-
servations. However, in GraphSLAM the correction of the map and the vehicle pose
is moved into a separate step, the optimization. The computational complexity of
the optimization is linear in the number of edges, so depending on the number of
edges, the optimization may take a long time. Because of this, the implementation of
the GraphSLAM algorithm is parallelized. The key idea is to move the optimization
onto a second thread so that it can run in the background, while the algorithm is
still collecting all incoming data. The implementation of the two threads is discussed
in the next section.

7.3. GraphSLAM Implementation 67

Figure 7.2: Comparison of the Huber loss function (blue, δ = 1) and the squared
error loss function (black).

Figure 7.3: Architecture of thread 1 of the GraphSLAM implementation.

68 7. GraphSLAM

7.3.1 Thread 1

Figure 7.3 shows a flow chart of the first thread. As described above, the task of the
first thread is to collect all incoming data. Additionally, it publishes short-term
vehicle pose estimates, so that there is always a continuous, high-frequency estimate
available to the controller. Whenever new data is available, a function is triggered
within the code.

Incoming odometry data is used to first of all publish a new pose estimate using
the motion model described in Section 5.2. Next, the corresponding graph objects,
a new pose node and odometry edge, are created based on the new, estimated pose.
However, these graph objects are not added to the graph yet. This is to allow thread
2 of the implementation to work on an optimization in the background. Once an
optimization has been started, it is not possible to change the optimization problem
by adding new nodes and edges to the graph, therefore, the new graph objects will
instead be stored in a buffer.

Incoming observations of the environment must first of all be associated to the
map, using the algorithm described in Section 3.4. Depending on the current disci-
pline, i.e. depending on whether or not the algorithm works on a given map, it will
add unknown landmarks to the map and create a landmark node or it will discard
them. For each measurement, a landmark edge is created. Again, the nodes and
edges created in this step will not be added to the graph yet.

7.3.2 Thread 2

A flow chart of the second thread is depicted in Figure 7.4. The task of this thread
is to use all the information collected in the first thread to build and solve the
graph, increasing the overall accuracy of the estimated path and map.

Because a graph optimization is a computationally expensive process, thread 2 is
usually slower than thread 1. This means that when thread 2 starts over, it is likely
that thread 1 created some nodes and edges in the meantime. Thread 2 will then
empty the buffer created in thread 1 to extend the graph with these new graph
objects. In the case of Trackdrive, where a map will be loaded at the start of the
run, the landmark nodes are fixed because the map will not be further optimized in
this discipline.

Now the graph optimization can be started. Iteratively, the motion and measure-
ment equations are linearized around the current estimates of the respective nodes,
the cost function is built and minimized. In Autocross, once the optimization is
finished, the map will be updated with the new estimates. After this, thread 2 can
start over by adding new nodes and edges created in thread 1.

7.3.3 Adjusting New Poses

Similar to the parallel EKF SLAM implementation presented in Section 6.2.2, after
an optimization is done, the short-term pose estimates made since the optimization
started must be adjusted. This is done by applying the motion model to all poses
computed since the latest optimized pose using all velocity estimates made in the
time the graph was being optimized. Because this operation is performed on the

7.3. GraphSLAM Implementation 69

Figure 7.4: Architecture of thread 2 of the GraphSLAM implementation.

same data that the odometry processing works on, the latter has to wait for this
adjustment to finish.

7.3.4 Sliding Window

The GraphSLAM algorithm presented in this thesis has a sliding window imple-
mented that may be activated if necessary. The idea behind this approach is to
reduce the computational burden of the graph optimization step by reducing the
number of edges and therefore the number of constraints. The sliding window can
be adjusted by a parameter (online or offline) that limits the number of edges that the
graph will use in the optimization. Of course, this approach is a trade-off: Reducing
the number of edges improves the algorithm’s efficiency but reduces its accuracy.

In Chapters 6 and 7, both algorithms and their respective implementation were
presented. The next chapter discusses the evaluation of both algorithms with respect
to their performance to make an objective decision about which algorithm will be
used in the future.

8 Experimental Evaluation

Figure 8.1 shows a visualization of the map and path estimated by both of the
algorithms. From looking at these results, it can be concluded that the algorithms
work as intended and that the SLAM problem can be solved in principle. However,
drawing a conclusion on which of the algorithms worked better (and how much
better) than the other is not possible when only considering the visualization of the
resulting maps and paths.

To determine whether a SLAM algorithm works well or not, two things should be
considered. The

• accuracy and the

• efficiency

of the algorithm.

The latter can be measured rather easily. To measure the efficiency of an algo-
rithm, two measures were used: The time taken to process incoming data (and in
the case of GraphSLAM, the time taken for the optimization itself) and the CPU
usage over the course of a lap, or in the case of Trackdrive: Ten laps.

The run times are important because if one of the callbacks (e.g. processing odom-
etry data) takes too long, the next message cannot be processed in time and infor-
mation will be lost. While both algorithms are robust enough to handle dropped
messages occasionally, if this occurs too often, it is likely for the SLAM algorithm
to diverge. The CPU usage is another important factor. For the vehicle to be
able to drive autonomously, a number of algorithms and services need to run at the
same time. Namely the perception pipeline, the trajectory planning, the controller,
the sensor drivers and a supervisor managing all algorithms. All these algorithms
tend to become more complex as their development continues. Additionally, the
computational resources are limited by external factors, such as the budget, cool-
ing, packaging and power consumption, so keeping the CPU usage of the individual
algorithms as low as possible is essential.

Measuring the accuracy is a difficult problem in itself. When comparing the
resulting map and path of the algorithms, one might be able to spot differences
in landmark positions. However, it is impossible to say which of the algorithms is
closer to the correct placement of landmarks without having a reference. Luckily, it
was possible to acquire such a reference in the form of a ground truth map of a
track built on the KIT’s campus. The positions of all cones have been marked on
the ground and were measured using a high-precision Differential Global Positiong
System (DGPS) device. The track layout is depicted in Figure 8.2. The DGPS
measurements have an error below 1 cm. Considering the extent of the marking
itself, it is safe to assume that the error of the measured cone positions is below
5 cm.

The performance of the algorithms is evaluated not only for the algorithms pre-
sented in this thesis but last year’s algorithm is used as a base-line. To differenti-
ate the algorithms, last year’s algorithm will be referred to as ”EKF SLAM 2019”,
whereas the EKF SLAM algorithm presented here will be referred to as ”EKF SLAM
2020”.

71

72 8. Experimental Evaluation

(a) EKF SLAM 2020

(b) GraphSLAM

Figure 8.1: The map and path estimated by the SLAM algorithms running on the
same data set of one lap of Autocross. Cone size increased for better
visibility.

8.1. Data Sets 73

Figure 8.2: Track layout that was measured using DGPS.

8.1 Data Sets

The performance analysis was conducted on two data sets, one for Autocross and
one for Trackdrive. The Autocross data set was recorded on the campus of the KIT
on above mentioned track. To better understand the results of the performance
measurements, the data set was analyzed visually and checked for false positive
and false negative measurements. The result is a total of:

• False positive measurements: 5

• False negative measurements: 3

As discussed in Section 5.5, the algorithms are set such that a cone will only be
added to the map after it has been seen at least 3 times. This reduces the number
of false positive landmarks on the map to 2. Increasing the parameter further than
that is not sensible. Because of the delay in mapping introduced by it, the trajectory
planning algorithm may not know the track far enough ahead and the car will have
to reduce its speed.

The false negative measurements may be the result of something, e.g. another cone,
disturbing the view so that it is never detected. This analysis is necessary because
false positive and false negative measurements are errors occurring outside the scope
of the SLAM algorithm. Therefore, they should not influence the performance mea-
surements of the SLAM algorithms.

The second data set is a Trackdrive recording. It is from the FSG Trackdrive event
of 2019. Since in Trackdrive the map is preloaded, an evaluation of the map will not
help with the comparison of the algorithms. Therefore, the Trackdrive analysis does
not necessarily have to be conducted on the measured track and will only be done
with respect to the efficiency of the algorithms.

74 8. Experimental Evaluation

8.2 Architecture

When developing the performance measurements, the goal was to implement a tool
that is easy to use, expandable and has a minimal impact on the measurements
themselves. To achieve this, the accuracy measurements were implemented in a
separate ROS node that runs in parallel to either one of the SLAM nodes.

The efficiency must be measured within the code of the SLAM algorithm, but
measuring the efficiency has very little impact on the performance. Additionally,
the efficiency measurements can be deactivated using a pre-compile directive, to
completely remove the impact the measurements have on the overall system.

Measuring the accuracy is a process that takes more resources, but moving the
tool into a separate node means that no code of the SLAM algorithm needs to be
modified and that the measurements can be turned on and off as is preferred. Addi-
tionally, since both SLAM algorithms use the same interfaces, the performance mea-
surements need to be implemented only once and the comparison could for example
be expanded to other SLAM approaches. The accuracy and efficiency measurements
will then be published in a unique namespace and can either be visualized live using
rqt plot or recorded and the visualized in a post-processing script developed in Mat-
lab. Naturally, processing data in retrospective allows for some additional analysis,
so that is the method used in all plots presented in this chapter.

8.3 Accuracy

8.3.1 Method

Data Association

As described in the beginning of this chapter, the data available to measure the
SLAM algorithm’s accuracy is the SLAM-generated map and the ground truth map.
Most of the accuracy measures introduced below rely on a comparison of these two
maps. To be able to compare a cone’s estimated position to the ground truth, it
must first be determined which cone on the SLAM generated map corresponds to
which cone on the ground truth map.

The reader may recognize this problem as being essentially the same problem that
the SLAM algorithms must solve to find the cone on the map corresponding to a
current measurement. This process is called data association and was introduced in
Section 3.4. To solve this problem, the same algorithm to solve the problem of data
association can be re-used for the accuracy measurements.

Reference Frame Transformation

The next challenge that arises is that the two maps that shall be compared are not
in the same frame of reference. The ground truth map was generated using Universal
Transverse Mercator (UTM) coordinates. To make the following easier, the origin
of the reference frame was then moved onto the center of the line where the vehicle
will be staged when starting a run. According to the Formula Student rules [48],
that is 6 m in front of the finish line. Finally, the reference frame is rotated such

8.3. Accuracy 75

that the x-axis points in the direction of the starting straight. The SLAM-generated
map will have its origin at the point where the vehicle was started with the x-axis
being aligned with the vehicle heading.

Moving the ground truth reference frame in the way described makes comparing
the two maps easier, but small offsets and rotations between the two coordinate
frames may have big impacts on cones far away from the origin. That will first of
all make it harder to find a match on the reference map and more importantly will
distort the accuracy measurements.

To solve this, the two reference frames must first be matched such that the overall
error of all cone positions is as small as possible. Only then does it make sense to
compare the positioning of corresponding cones on both maps. To achieve this, the
Iterative Closest Point (ICP) implementation of the pcl library [22] is used. ICP
is an algorithm that tries to find the transformation between two point clouds that
reduces the sum of squared distances between the closest neighbor points. For this
purpose, the maps are interpreted as point clouds. Because of the transformation
described above, the maps will already match relatively well which makes it easy for
ICP to find a close match.

Once the transformation has been found for a data set, the actual accuracy mea-
surements can be performed.

8.3.2 Cone Count

Before comparing the two maps, looking at the number of cones on the SLAM-
generated map can give a first idea of how well the algorithms performed. Since the
total number of cones on the track is known, looking at the total number of mapped
cones can give an insight to the following:

Too many mapped cones usually occur when the data association algorithm does
not match cones that do in fact correspond, which is, for example, the case when
overestimating a cone’s certainty (see Section 5.4.3), when there are high errors in
the cone positions or if the algorithm diverged.

Too few cones could for example point to a too restrictive filtering of false positive
cones (see Section 5.5).

Figure 8.3 shows the results for one lap of Autocross. The number of cones are very
similar for EKF SLAM 2020 and GraphSLAM but EKF SLAM 2019 tends to map
too many cones, which is likely due to the lower accuracy of the algorithm. At the
end of the run, EKF SLAM 2020 and GraphSLAM are mising one cone, which can
be accounted to the false positive and false negative measurements discussed above
in Section 8.1.

76 8. Experimental Evaluation

Figure 8.3: Autocross: Number of cones mapped over the course of the lap.

8.3.3 Matching Ratio and Error Threshold

The very first result, when comparing the SLAM-generated map to the ground
truth map, is received when performing the data association. For how many cones
of the SLAM-generated map was it possible to find a correspondence on the ground
truth map? If a match could not be found, there are two possible reasons:

• The perception pipeline delivered a false positive measurement or

• the error of the estimated cone position is too big for the data association
algorithm to find a match.

The matching ratio is calculated by dividing the number of matched cones by the
number of cones on the SLAM generated map.

As described in Section 8.1, the number of false positive landmarks in the data set,
after filtering, is 2. With a total of 185 cones on the track, the matching ratio at the
end of the run, with an ideal SLAM on this data set, should be close to 99 %, which
is the case for both EKF SLAM 2020 and GraphSLAM as can be seen in Figure 8.4.
Both algorithms drop to values between 93 % and 97 % in the middle section but do
recover from this. EKF SLAM 2019 drops to about 86 % in the middle section und
finishes the lap with less than 90 % of matchings made.

Before looking at the concrete values of the errors of the estimated cone positions,
another measure is of interest: The percentage of mapped cones with a positioning
error above a certain threshold. In this case, the threshold is chosen to be 30 cm,
which is roughly the diameter of a cone. Positioning errors below this threshold are
less of an issue because the car will have to plan its trajectory with a safety margin
anyway. Considering that Formula Student tracks are very narrow in comparison
to the car, a larger positioning error will force the car to plan its trajectory on the
middle line of the track in order to not hit any cones. While that was the case in
the 2019 season, current developments of the trajectory planning and the controller

8.3. Accuracy 77

Figure 8.4: Autocross: Matching ratio and ratio of matched cones with a positioning
error above a threshold of 30 cm.

of the car include using the racing line to further reduce lap times.

As shown with the dashed line in Figure 8.4, EKF SLAM 2019 has most of the
map, or about 74 %, above the threshold. In reality, it is actually worse than that.
The positioning error can of course only be computed for cones where a corresponding
pair could be found on both maps. As discussed, more than 10 % of the map could
not be matched, which is likely because of a positioning error that is significantly
higher than the threshold of 30 cm.

The graph of EKF SLAM 2020 also rises to values of up to 53 %, however, at
around 30 s and 35 s into the recording, big drops of the graph can be seen. This
can be explained by loop closures. When leaving the opposite straight at around
three quarters of the track, there are multiple spots where the car re-observes cones
that were mapped very close to the beginning. Because the drift was the lowest
at the start of the track, the certainty of the cone positions is very high and the
positioning error of the cones is very low. This allows the algorithm to use the
new measurements of the old cones to reduce the drift significantly and therefore to
increase the overall accuracy.

This process can not be observed in the graph of EKF SLAM 2019 because this
algorithm never corrects the cone positions and therefore cannot reduce the error.

GraphSLAM performs a lot better, with a maximum of 10.5 % of cones above the
positioning error threshold and roughly 2 % at the end of the run.

8.3.4 Mean Squared Error

Figure 8.5 shows the mean squared error of the positions of all mapped cones where
a corresponding cone was found on the reference map, per time step. This value is
interesting because it gives a very absolute and precise measure of the accuracy over

78 8. Experimental Evaluation

Figure 8.5: Autocross: Mean squared error of all mapped cone positions.

the course of the lap. The squared error is chosen to penalize far away cones more
than closer estimates.

Many observations similar to the ones described in Section 8.3.3 can be made.
GraphSLAM is the most accurate algorithm followed by EKF SLAM 2020 with a
big improvement over EKF SLAM 2019. In Figure 8.5, the graph of the latter
increases almost continuously to a value of 0.388 m2. Again, this is due to the lack
of corrections made. The increasing error reflects the drift over the course of the
lap.

EKF SLAM 2020 and GraphSLAM finish the lap with much better values of
0.044 m2 and 0.019 m2, respectively. GraphSLAM’s superior accuracy is also shown
by the fact that it is at constantly low values, whereas EKF SLAM 2020 increases
to significantly higher values over the course of the lap that are only corrected after
loop closure.

GraphSLAM: Sliding Window Accuracy

In the case of GraphSLAM, the accuracy and the efficiency of the algorithm can be
weighted against each other using a sliding window as introduced in Section 7.3.4.
To determine the impact a sliding window has on the accuracy of the algorithm,
different window sizes are compared to a run where the sliding window is turned
off. The accuracy can then be compared using the mean squared error measure
presented above. The window sizes are chosen such that they include roughly 5 s,
10 s, 20 s, and 30 s worth of constraints. The results are depicted in Figure 8.6.

The results confirm the expected: The larger the sliding window, the smaller the
mean squared error. However, it can also be seen that doubling the size of the
sliding window does not cut the mean squared error in half. When the window is
very small, the resulting error is very high. Doubling the window size from 5 s to
10 s improves the results significantly, whereas increasing the window size from 20 s

8.4. Efficiency 79

Figure 8.6: GraphSLAM: Impact of sliding windows of various sizes in regards to
the algorithm’s accuracy.

to 30 s barely makes a difference. The best results are, of course, achieved without
a sliding window.

8.4 Efficiency

With any system that must work in real-time, efficiency is crucial. Additionally, as
described in Section 4.3, there are a number of other algorithms that will have to
run at the same time, meaning that computational resources, especially the CPU,
must be shared between these algorithms.

The following section first discusses the run times of the algorithms which is im-
portant for real-time capability. After that, the CPU usage of all algorithms is com-
pared. Because opposed to the accuracy measurements the efficiency measurements
do not depend on a ground truth, the evaluation is performed for both Autocross
and Trackdrive.

8.4.1 Run Times

Autocross

Incoming odometry data and observations trigger a callback in both algorithms.
The time taken to compute the callback is measured and plotted in Figure 8.7.
To smooth the result, the runtimes are filtered using a moving average filter. The
maximum time an odometry processing may take before information is lost is marked
in the plot.

Odometry measurements are processed so quickly that they are barely visible

80 8. Experimental Evaluation

Figure 8.7: Autocross: Time taken to process new odometry data and observations
(filtered).

in the plot. GraphSLAM takes the longest for this, but even the highest peak at
around 37 s is below half a millisecond. The same peak can be seen in EKF SLAM
2020 and has a simple explanation. After each odometry processing, the algorithms
check whether a lap has been completed. In the case of Autocross, if it has, the
algorithms will write the map to the disk automatically so that it can be loaded
during Trackdrive. EKF SLAM 2019 did not have that feature implemented (the
map had to be extracted manually from the recorded data), hence there is no peak
in the plot.

Another interesting observation in this data is that the time taken by Graph-
SLAM to process odometry data increases over the course of the lap. This can
be explained by the adjustment of the new poses as presented in Section 7.3.3. As
discussed further below, the duration of an optimization will increase during the lap,
meaning that more short-term pose estimates are being made based on the velocity
estimate. Since they need to be corrected after the optimization and because the
odometry processing has to wait for that to happen, the time for the odometry pro-
cessing will increase over the course of the lap. There may be room for improvement
here, but as can be seen in Figure 8.7, the odometry data is easily processed quickly
enough.

The dashed lines represent the times taken by the algorithms to process obser-
vations. First of all, it should be noted that processing an observation is allowed to
take up to 40 ms. If it takes longer, new observations cannot be processed in time
and information is lost. All algorithms perform their computations well within that
time limit.

The first thing that stands out when looking at the three graphs are the local
peaks. They can be explained by the number of landmarks observed in a particular
time step. All algorithms ran on the same data set, so the number of observed

8.4. Efficiency 81

landmarks is the same for each algorithm at each time step, which is why the peaks
are occurring at the same time for all three algorithms. The number itself mostly
depends on the orientation of the vehicle with respect to the track. If the car faces
the middle point of the track, it may be able to see parts of the opposing end of
the track and is hence able to observe a large number of landmarks. Whereas if
the car’s heading is oriented towards the outside of the track, it may only be able
to observe a few cones of the track right in front of it. Because every observation
must be associated to the map and the SLAM algorithms themselves iterate over all
observed landmarks in a time step, the run time of the callback increases.

The next observation is an unexpected one: EKF SLAM 2019 actually takes
longer than EKF SLAM 2020. This should not be the case because EKF SLAM
2019 only corrected the vehicle pose, whereas EKF SLAM 2020 corrects both the
vehicle pose and the map. There are two likely explanations for this: As could be
seen in Section 8.3.4, EKF SLAM 2019 is by far the least accurate of the algorithms.
A less accurate map makes it more difficult for the data association algorithm to
find the correct matchings. Cones mapped far away from their actual position may
have multiple possible matchings, so the algorithm must check more possibilities in
order to find the correct solutions, which may take a very long time.

However, the mean squared error is almost the same for all the algorithms until the
car starts driving as could be seen Figure 8.5. Still, the run time of the observation
processing is higher even at the beginning. This small offset cannot be explained
with the data association. EKF SLAM 2020 is of course built on EKF SLAM 2019,
but most of the code has been rewritten in the development process. During this
phase, the code quality increased and a lot of overhead was removed by more efficient
code which may explain the increased run times of EKF SLAM 2019.

Figure 8.8: Autocross: Time taken to process new odometry data and observations
and to optimize the graph (filtered).

82 8. Experimental Evaluation

When comparing EKF SLAM 2020 and GraphSLAM, it can be seen that they
take a similar amount of time in the beginning with an increasing offset because
EKF SLAM 2020 takes longer towards the end of the run. An EKF’s computational
complexity is squared in the number of states. Because the map is part of the state
and built over the course of the lap, the number of states increases continuously.
Therefore, the computation time of EKF SLAM 2020 increases until the map is
complete.

However, the comparison between the observation processing of EKF SLAM 2020
and GraphSLAM is not a fair one. EKF SLAM 2020 will correct the map and the
vehicle pose in this step, whereas GraphSLAM merely prepares the optimization,
which is not shown in Figure 8.7 but is included in Figure 8.8.

As mentioned earlier, the GraphSLAM’s computational complexity is linear in the
number of edges and the number of edges is linear in time. This means that the
time taken for the optimization increases of the course of a lap. As can be seen in
the plot, this time dwarfs the run times of the odometry and observation processing.
It should be noted that unlike processing the input data, optimizing the graph does
not have a fixed time limit. Optimizing with a higher frequency will surely increase
the short-term accuracy but if an optimization takes longer, no information is lost
because collecting data and optimizing the graph is done on separate threads.

The accuracy presented in Section 8.3 was achieved with one optimization for every
ten sets of observations, i.e. every 400 ms. This means that the optimization could
even be performed three times as often without reaching that limit in this data set.

GraphSLAM: Sliding Window Run Times

Figure 8.9: GraphSLAM: Impact of sliding windows of various sizes in regards of the
algorithm’s efficiency in Autocross.

As discussed in Section 8.3.4, using a sliding window reduces the accuracy. The
reason to use a sliding window anyway is the improved efficiency. To understand

8.4. Efficiency 83

the gain in efficiency from using a sliding window, the same window sizes earlier
compared with respect to their accuracy are now compared in terms of efficiency.
The results are depicted in Figure 8.9.

As expected, the runtimes of the optimization scales linearly in the number of edges,
i.e. the size of the window. Choosing the right windows size or whether a sliding
window should be used at all should therefore be a compromise between the required
accuracy and the available resources.

Trackdrive

Figure 8.10: Trackdrive: Time taken to process new odometry data and observations
(filtered).

Figure 8.10 shows the same analysis discussed above but in a Trackdrive scenario.
This means two things: The time to complete the discipline is a lot longer because
a Trackdrive consists of ten laps, and the algorithms switch to a localization-only
mode since the map is known from the start. This means that both EKF SLAM
algorithms now essentially work the same way. The filter state consists only of the
vehicle state. Measured observations will only be used to correct the vehicle pose.

The difference that can be seen between the observation processing of EKF SLAM
2019 and EKF SLAM 2020 can only be explained by increased code quality and
decreased overhead. It can also be seen that in Trackdrive, the run time of the
observation processing of EKF SLAM is roughly constant and generally a lot
lower than it was in Autocross.

Adjusting the poses after an optimization is done takes longer, the longer the opti-
mization was. This can be observed in the graph of the odometry processing of
GraphSLAM. The curve increases and shows that eventually the odometry process-
ing takes longer than the observation processing. However, it is still within the time
limit of 10 ms.

84 8. Experimental Evaluation

Figure 8.11: Trackdrive: Time taken to optimize the graph (filtered).

Just as in Autocross, the optimization that can be seen in Figure 8.11 takes
significantly longer than all other processes. For better visibility, odometry and
observation processing are not included in this plot. Because a Trackdrive run takes
a lot longer compared to an Autocross run, the long run time of the optimization
is a bigger issue as a single optimization takes over 350 ms. However, the algorithm
was set to start an optimization every 400 ms, so even in this Trackdrive dataset, no
optimization was missed.

Still, in Trackdrive it is sensible to use a sliding window. As was shown in Section
8.3.4, the accuracy of a 30 s window is very close to the accuracy when the sliding
window is turned off. In the Trackdrive depicted in Figure 8.11, the sliding window
was set to around 100 s. This results in a roughly constant computation time from
100 s onwards and the accuracy should be sufficient. However, without a ground
truth path, the accuracy in Trackdrive cannot be measured.

8.4.2 CPU Usage

Finally, the usage of computational resources of the algorithms is analyzed. The
CPU usage is measured with a frequency of 10 Hz. At every point of measurement,
the percentage of time the CPU was not idling since the last measurement is cal-
culated. For example, if none of the CPU cores was idling during the last time
step, the CPU usage was at 100 %. Just as the run time measurements, the CPU
measurements are smoothed with a moving average filter during post-processing.

Before discussing the actual results, Table 8.1 shows a comparison of the CPU
used for the analysis presented in this thesis versus the CPU that is built into the
ACU. The CPU Mark is an average of eight different tests performed on the CPU2.

1Source: www.cpubenchmark.net
2Explanation of all tests: www.cpubenchmark.net/cpu_test_info.html

www.cpubenchmark.net
www.cpubenchmark.net/cpu_test_info.html

8.4. Efficiency 85

Table 8.1: Comparison: CPU used for analysis (left) vs. CPU used by ACU (right)1.

Intel Core i5-4690K Intel Core i7-9700K
Clockspeed 3.5 GHz 3.6 GHz
Turbo Speed Up to 3.9 GHz Up to 4.9 GHz
Physical Cores 4 8
Single Thread Rating 2158 2906
CPU Mark 5580 14740

Higher values correspond to better performance. The CPU mark of the ACU’s
processor is roughly 2.6 times higher than that of the CPU that the analysis has
been conducted on. This means that in absolute values, the CPU loads plotted in
this section will be higher than they would be, had the algorithms run on the car.
However, the relative differences can still be compared.

Autocross

Figure 8.12: Autocross: CPU usage (filtered).

The CPU load during one lap of Autocross can be seen in Figure 8.12. When
comparing the CPU loads of EKF SLAM 2019 and EKF SLAM 2020, a similar
observation as in Section 8.4.1 can be made: The EKF SLAM 2019 should be more
efficient due to it not correcting the map, but the CPU usage of both EKF SLAM
algorithms is nearly the same. The reasons are likely the same too. The data
association algorithm is the same but due to the less accurate map, matching the
correct cones is harder. Additionally, increased code quality and decreased overhead
are beneficial for an efficient algorithm. The increasing complexity of EKF SLAM
2020 due to the increasing size of the state vector can not be seen in this plot.

The CPU usage of GraphSLAM turns out to be a larger issue than the run times.
With an increasing number of constraints, the optimization becomes the dominant

86 8. Experimental Evaluation

process in terms of CPU load after around 20 s. At the end of the run, GraphSLAM
takes up close to 45 % of the CPU, almost twice the value of both EKF SLAM
algorithms.

GraphSLAM: Sliding Window CPU Usage

Figure 8.13: GraphSLAM: Impact of sliding windows of various sizes in regards of
the algorithm’s CPU usage in Autocross.

Adding a sliding window made a significant difference in the run time of the opti-
mization run times. Figure 8.13 shows the difference in CPU usage using the same
window sizes. During the first half of the run, no clear pattern can be seen, but after
roughly 20 s, the CPU usage increases with the size of the sliding window. The slid-
ing window affects only the optimization. At the start of a run, other processes, such
as the data association, are more dominant which may be why no clear structure
can be seen at first.

The only window size where the CPU usage is decreased significantly is the smallest
one (5 s). All other windows reach a maximum CPU load of 40 % to 45 %. In
conclusion: In terms of CPU usage, a sliding window does not make a big difference
in Autocross.

Trackdrive

In Trackdrive, all algorithms work in a localization-only mode. That means that
both EKF SLAM algorithms only have the three vehicle states in their respective
state vector and that landmark nodes are fixed in the graph. This results in a
CPU usage that is generally lower than in Autocross. Due to the amount of time
a Trackdrive takes, the sliding window does have a significant effect on the CPU
usage. In this case, the sliding window was set to 100 s, which is about two and a
half laps worth of constraints.

8.4. Efficiency 87

Figure 8.14: Trackdrive: CPU usage (filtered).

Just as in Autocross, the maximum GraphSLAM CPU load is roughly twice that
of EKF SLAM 2020 which is between 15 % and 20 % most of the time.

The fact that the CPU usage of the EKF SLAM 2019 is actually lower than that
of EKF SLAM 2020 is unexpected. Since both algorithms work essentially the same
way, the CPU usage was expected to be similar as well. One reason for this may
be the parallelized structure of the new algorithm. It allows the algorithm to work
on multiple callbacks at the same time on different CPU cores. With the way the
CPU usage is measured, the maximum CPU usage of EKF SLAM 2019 is 25 % on
the machine used for the analysis because it only uses one of the four available CPU
cores. EKF SLAM 2020 may use up to 100 %. Additional features implemented in
the new algorithm, like online parameter changes or better visualization, utilize this
increased potential at the cost of higher CPU usage.

In this chapter, the performance of both algorithms was presented in great detail. In
Chapter 9, a conclusion is drawn from the results and possible future improvements
of the algorithms and the method of the performance analysis are discussed.

9 Conclusion and Future Work

9.1 Summary

In this thesis, two SLAM algorithms - EKF SLAM and GraphSLAM - were pre-
sented and analyzed with respect to their performance.

The detailed performance analysis is summarized in Table 9.1. The rows marked
as Final are the values measured at the end of the run, whereas Min and Max are
the extreme values measured at any time during the run.

All accuracy measures lead to the same conclusion: GraphSLAM is the superior
algorithm in terms of precision followed by EKF SLAM 2020 which is still a huge
improvement over EKF SLAM 2019. However, while EKF SLAM 2020 delivers rea-
sonable results at the end of the run, the measured accuracy drops quite significantly
over the course of the lap and is only corrected later. This means that EKF SLAM
2020 will deliver relatively accurate maps but may struggle with localization during
the run, which might require the velocity to be limited in order to not hit any cones
or offend the track limits. That is different with the GraphSLAM algorithm which
continuously delivers highly accurate results.

The accuracy comes at a price of course and that is visible when looking at the
efficiency measurements, specifically the CPU load. Regardless of the discipline,
GraphSLAM is more demanding in terms of the computational resources of the car.
In Trackdrive, the CPU usage can be reduced by activating the sliding window. In
Autocross, however, because of the shorter time span of the discipline, the benefit of
reducing the amount of constraints barely makes a difference. In Trackdrive, the car
does not need to map the environment as a map is available from the start, which
is why the overall CPU load is lower compared to Autocross. This means that even
though Autocross is shorter, it is the critical discipline with respect to both accuracy
and efficiency.

The time taken to process incoming odometry data and observations differs be-
tween the algorithms but is not an issue due to the parallelized architecture im-
plemented in EKF SLAM 2020 and GraphSLAM. In the case of GraphSLAM, the
optimization will take an increasing amount of time the more constraints are added
to the graph which may turn out to be an issue during Trackdrive. However, this
issue can easily be addressed with a sliding window. Even without a sliding window,
no optimization was missed in the data sets presented because GraphSLAM will
deliver accurate estimates even when optimizing at a rather low rate.

89

90 9. Conclusion and Future Work

T
ab

le
9.1:

S
u
m

m
ary

of
th

e
resu

lts
of

th
e

p
erform

an
ce

an
aly

sis
d
iscu

ssed
in

C
h
ap

ter
8.

E
K

F
S
L

A
M

2
0
1
9

E
K

F
S
L

A
M

2
0
2
0

G
ra

p
h
S
L

A
M

A
u
to

cross
T

rack
d
rive

A
u
to

cross
T

rack
d
rive

A
u
to

cross
T

rack
d
rive

Accuracy

N
u
m

b
er

of
C

on
es

[-]
(S

hou
ld

be
185)

F
in

al
187

-
184

-
184

-

M
atch

in
g

R
atio

[%
]

M
in

85.71
-

93.33
-

93.26
-

F
in

al
88.24

-
98.91

-
98.91

-

C
on

es
A

b
ove

T
h
resh

old
[%

]
M

ax
74.39

-
53.74

-
10.50

-

F
in

al
73.94

-
14.84

-
2.20

-

M
ean

S
q
u
ared

E
rror

[m
2]

M
ax

0.3894
-

0.1060
-

0.0296
-

F
in

al
0.3875

-
0.0436

-
0.0189

-

Efficiency

M
ax

im
u
m

R
u
n

T
im

es
[m

s]

O
d
om

etry
P

ro
cessin

g
(M

axim
u

m
10

m
s)

0.01
0.01

0.20
0.18

0.43
2.11

O
b
servation

P
ro

cessin
g

(M
axim

u
m

40
m

s)
4.67

5.30
2.83

1.50
1.84

3.56

O
p
tim

ization
-

-
-

-
118.60

358.70

C
P

U
U

sage
[%

]
M

ax
24.03

16.79
26.14

19.08
43.93

36.09

9.2. Conclusion 91

9.2 Conclusion

In the beginning of this thesis (Section 1.2), the following research question was
posed:

Which approach to the SLAM problem results in the best performance in the con-
text of an autonomous Formula Student race car?

Using the results summarized above, this question can now be answered:

The first conclusion to be drawn is that both of these algorithms are capable of
solving the SLAM problem and are therefore valid approaches. When measuring the
performance of a SLAM algorithm purely using the accuracy of its estimates, the
answer is straight forward: GraphSLAM. The algorithm has proven its superior
accuracy when compared to EKF SLAM 2020 with all measures presented in Section
8.3.

However, the algorithm must run on the ACU which has limited computational
resources due to external restrictions such as weight, power consumption and bud-
get. In addition to the SLAM algorithm, there are a number of other algorithms
running at the same time. Comparing only the accuracy of the algorithms is not
sufficient for a real-world application.

While first tests on the car point towards sufficiently available processing power,
this limitation of the GraphSLAM algorithm should be kept in mind. Should com-
putational resources be an issue, using EKF SLAM 2020 instead is a valid option.
The lower accuracy will the be made up for by the decreased CPU usage, which may
eventually lead to a better overall performance.

9.3 Application of GraphSLAM in 2020

The GraphSLAM algorithm presented in this thesis has been successfully tested
in real-world applications. The first Trackdrive using this algorithm was completed
in October 2020. Thanks to extensive testing on the available data sets and the
performance evaluations presented in this thesis, the algorithm was functional right
away.

Because of the COVID-19 pandemic, the 2020 Formula Student events had to be
cancelled. However, the Formula Student Online (FSO)1 competition was intro-
duced at short notice. FSO is a simulation event that replaced the physical events
in Hungary and the Netherlands. KA-RaceIng participated along with the Formula
Student teams from Delft (MITeamDelft), Hamburg (e-gnition Hamburg), Munich
(TUfast Racing), and Prague (eForce FEE Prague Formula). The dynamic events
were reduced to only include Autocross and Trackdrive which are the most demand-
ing disciplines for the SLAM algorithm. The competition was split into three days.
Each day would feature a unique track that was unknown beforehand where an Au-
tocross needed to be completed followed by a Trackdrive using the generated map.
A significant difference to a physical Formula Student event was the fact that access
to the software pipeline was not permitted on the day of the event, which meant

1formulastudentonline.com

formulastudentonline.com

92 9. Conclusion and Future Work

that all software nodes had to be started and stopped automatically and the map
had to be stored and loaded without user interaction.

The software stack of the autonomous system was running on a server where it was
connected to a separate computer running the simulation. The simulation would de-
liver sensor data, whereas the autonomous system sent torque and steering requests
to the simulation. Given that the software stack on the actual race car fundamen-
tally has the same interfaces, the autonomous pipeline was untouched for the most
part. Aside from parameter changes and the inclusion of different sensors, the per-
ception pipeline was using only the lidar due to the limited ability of the simulation
to deliver robust camera data.

The results of all disciplines relevant to the SLAM module are listed in Table
9.2. Note that in contrast to most Formula Student competitions, a total score of
1250 points was possible.

Table 9.2: FSO results [41].

Autocross Trackdrive Eng. Design Overall

Score Place Score Place Score Place Score Place

Karlsruhe 150 1 125 1 500 1 1127.4 1

Hamburg 20 4 0 4 443 2 831.5 2

Munich 0 5 0 4 422 3 667.2 3

Prague 30 3 10 3 259 4 571.1 4

Delft 56.47 2 27.89 2 0 5 84.4 5

The GraphSLAM algorithm presented in this thesis proved to be robust and accu-
rate and helped the team win the overall event.

9.4 Future Work

9.4.1 Hardware Setup 2021

For the 2021 season, the algorithms need to be adjusted to a new hardware setup.
Specifically, the perception sensors will change. The new lidar, a Hesai Pandar40p,
has a significantly increased number of points per scan and may therefore increase
the perception range and the number of cones detected within that range. While
that is of course a great improvement, the increased number of detected cones must
be processed by the SLAM algorithms, which may be challenging. The process of
data association will take longer and both algorithms must iterate over all landmarks
seen in a specific time step. It must therefore be ensured that the time taken by
the algorithms to process the increased amount of data is still within the time limit
dictated by the lidar’s frequency. The latter will decrease to either 10 Hz or 20 Hz,
depending on the lidar settings, allowing the SLAM algorithms more time to process
the observations.

In 2021, the car may have an additional sensor, a Kistler SFII ground speed
sensor. This sensor is capable of delivering high precision velocity measurements in

9.4. Future Work 93

both longitudinal and lateral direction. Such a velocity sensor is of course a great
benefit when evaluating the motion model. The velocity estimate is more precise and
available in lateral direction and at a very high rate of up to 250 Hz. When having
a good motion estimate, the correction made in the update step (EKF SLAM) or in
the optimization using landmark edges (GraphSLAM) is smaller and the algorithms
in turn are more robust.

Opposed to the 2019 season, the KIT21d will have additional hardware to improve
the aerodynamics of the car, namely a front and rear wing. In 2019, the car
occasionally reached the physical limits of the car which made this step necessary
to further improve the overall performance. For the SLAM algorithms, this poses
another challenge because higher velocities imply fewer landmark measurements and
increased slip (although the latter would be less of an issue with the aforementioned
ground speed sensor).

9.4.2 Improving the SLAM Algorithms

The SLAM algorithms themselves are of course subject to improvement as well.
Depending on the physical tests with the new hardware, a decision between the
algorithms must be made. As discussed in Section 9.2, this decision mainly depends
on the available computational resources and the efficiency of the overall software
stack.

The tool to measure the performance developed for and presented in this thesis can
then play an important role in improving the chosen SLAM algorithm. The first
step would be to test combinations of different parameter settings on test data
acquired with the new hardware setup. Both algorithms are highly dependent on
their respective parameters, so testing different setups and measuring their respective
performance is crucial.

When acquiring the ground truth map, multiple track variations were measured
allowing the course to either have very narrow or very fast corners. As soon as data
is recorded on these track variations with the new hardware, the SLAM algorithms
should be evaluated with respect to all these variants. This allows for an even better
analysis of the algorithms.

The improved accuracy of the 2020 algorithms may allow for lower requirements
to the data association algorithm that takes a significant portion of the time
when processing new observation. Using a simpler algorithm, for example a nearest
neighbor approach, may actually improve the overall performance, especially with
the increased perception range in mind.

Another possible improvement concerns the motion model. The model presented
in Section 5.2 is a very simple model which was chosen to ensure low odometry
processing times. However, as could be seen in Section 8.4.1, the runtimes of pro-
cessing odometry data are more than tenfold below the maximum allowed duration
of 10 ms, so using a more sophisticated motion model is surely an option. In the
case of GraphSLAM it is also conceivable to use different motion models for the
short-term estimate delivered to the controller and the odometry constraint used to
optimize the estimate.

The measurement model could be improved with respect to the systematic error
discussed in Section 5.4.3. Limiting the uncertainty as it was presented in this

94 9. Conclusion and Future Work

thesis did fix the problem, however, adjusting the measurement model to reduce the
systematic error may lead to better results. This could for example be achieved by
adding the mean radius of a cone to each range measurement or to use the three-
dimensional measurement to account for the offset depending on the z-value of the
measurement.

The parallelization of the GraphSLAM algorithm could be optimized with respect
to the adjustment of new poses (see Section 7.3.3), which turned out to increase the
computation time of processing new odometry data (see Section 8.4.1).

Considering the vehicle’s pitch and roll angles when projecting the cone mea-
surement into two-dimensional space should drastically improve the accuracy of the
measurements. Strictly speaking, this is not part of the SLAM module but should
be considered in the perception pipeline. However, improving the quality of mea-
surements will of course improve the quality of the path and map estimates and
simplify the process of data association.

Finally, there are other approaches to the SLAM problem that have not been
discussed in this thesis but could be implemented and evaluated using the bench-
marking tool presented in Chapter 8. However, the benefit of implementing another
approach should be considered carefully.

List of Figures

1.1 Number of traffic accident fatalities since 1950 [40]. 1

3.1 A dynamic Bayes network. 13

3.2 Graph examples. 18

4.1 The cones used for marking the track [47]. 28

4.2 Skidpad track layout [48]. 29

4.3 FSG 2019 Autocross map. Cone sizes increased for better visibility. . 30

4.4 Hardware platform: The KIT19d. 32

4.5 The shutdown circuit [48]. 33

4.6 Overview over the full system architecture. 36

4.7 Correction of the projected bounding boxes to fully contain a cone. . 37

4.8 Planning module: GGS diagram and final result. 38

5.1 Reference frames and relevant variables used throughout this thesis.
The ’X’ marks the locations of the j-th landmark. 41

5.2 Pacejka tire model: Force vs. slip (longitudinal). Contact force: 400 N. 46

5.3 Single track model. 47

5.4 Pacejka tire model: Lateral force vs. slip angle. Contact force: 400 N. 47

5.5 Effect of limiting the minimal uncertainty. Covariance visualized by
black ellipse. 50

6.1 Linear structure of the EKF SLAM algorithm. 59

6.2 Parallel structure of the EKF SLAM algorithm. 59

6.3 Exemplary estimates made by the parallel EKF SLAM implementation. 60

7.1 Structure of the graph representing the SLAM problem. 64

7.2 Comparison of the Huber loss function (blue, δ = 1) and the squared
error loss function (black). 67

7.3 Architecture of thread 1 of the GraphSLAM implementation. 67

7.4 Architecture of thread 2 of the GraphSLAM implementation. 69

8.1 The map and path estimated by the SLAM algorithms running on
the same data set of one lap of Autocross. Cone size increased for
better visibility. 72

8.2 Track layout that was measured using DGPS. 73

8.3 Autocross: Number of cones mapped over the course of the lap. . . . 76

8.4 Autocross: Matching ratio and ratio of matched cones with a posi-
tioning error above a threshold of 30 cm. 77

95

96 List of Figures

8.5 Autocross: Mean squared error of all mapped cone positions. 78

8.6 GraphSLAM: Impact of sliding windows of various sizes in regards to
the algorithm’s accuracy. 79

8.7 Autocross: Time taken to process new odometry data and observa-
tions (filtered). 80

8.8 Autocross: Time taken to process new odometry data and observa-
tions and to optimize the graph (filtered). 81

8.9 GraphSLAM: Impact of sliding windows of various sizes in regards of
the algorithm’s efficiency in Autocross. 82

8.10 Trackdrive: Time taken to process new odometry data and observa-
tions (filtered). 83

8.11 Trackdrive: Time taken to optimize the graph (filtered). 84

8.12 Autocross: CPU usage (filtered). 85

8.13 GraphSLAM: Impact of sliding windows of various sizes in regards of
the algorithm’s CPU usage in Autocross. 86

8.14 Trackdrive: CPU usage (filtered). 87

List of Tables

4.1 FSD - Maximum points awarded. 28

4.2 Penalties in FSD [48]. 31

4.3 Components of the ACU. 33

7.1 Structure of the information matrix corresponding to Figure 7.1. . . . 65

8.1 Comparison: CPU used for analysis vs. CPU used by ACU. 85

9.1 Summary of the results of the performance analysis. 90

9.2 FSO results [41]. 92

97

List of Algorithms

1 Bayes filter . 14

2 Kalman Filter . 16

3 Extended Kalman Filter . 18

4 Levenberg-Marquardt Algorithm . 21

5 JCBB . 23

6 Marcov Localization . 24

7 EKF Localization (General) . 25

8 EKF Localization (Implementation) 54

9 EKF SLAM Prediction . 55

10 EKF SLAM Update . 57

11 Initializing New Landmarks . 58

99

Bibliography

[1] Randall Smith and Peter Cheeseman. “On the Representation and Estimation
of Spatial Uncertainty”. In: The International Journal of Robotics Research 5
(Feb. 1987). doi: 10.1177/027836498600500404.

[2] H. F. Durrant-Whyte. “Uncertain geometry in robotics”. In: IEEE Journal on
Robotics and Automation 4.1 (1988), pp. 23–31. doi: 10.1109/56.768.

[3] Randall Smith, Matthew Self, and Peter Cheeseman. “Estimating Uncertain
Spatial Relationships in Robotics”. In: Autonomous Robot Vehicles. Ed. by
Ingemar J. Cox and Gordon T. Wilfong. New York, NY: Springer New York,
1990, pp. 167–193. isbn: 978-1-4613-8997-2. doi: 10.1007/978- 1- 4613-

8997-2_14. url: https://doi.org/10.1007/978-1-4613-8997-2_14.

[4] J. J. Leonard and H. F. Durrant-Whyte.“Simultaneous map building and local-
ization for an autonomous mobile robot”. In: Proceedings IROS ’91: IEEE/RSJ
International Workshop on Intelligent Robots and Systems ’91. 1991, 1442–
1447 vol.3. doi: 10.1109/IROS.1991.174711.

[5] Hugh Durrant-Whyte, David Rye, and Eduardo Nebot. “Localization of Au-
tonomous Guided Vehicles”. In: Robotics Research. Ed. by Georges Giralt and
Gerhard Hirzinger. London: Springer London, 1996, pp. 613–625. isbn: 978-1-
4471-0765-1.

[6] Martin Ester et al. “A density-based algorithm for discovering clusters in large
spatial databases with noise”. In: AAAI Press, 1996, pp. 226–231.

[7] F. Lu and E. Milios. “Globally Consistent Range Scan Alignment for Environ-
ment Mapping”. In: Auton. Robots 4.4 (Oct. 1997), pp. 333–349. issn: 0929-
5593. doi: 10.1023/A:1008854305733. url: https://doi.org/10.1023/A:
1008854305733.

[8] Peter Spirtes, Clark N. Glymour, and Richard Scheines, eds. Causation, predic-
tion, and search. 2nd ed. Adaptive computation and machine learning. Cam-
bridge, Mass: MIT Press, 2000. isbn: 9780262284158; 0262284154.

[9] Douglas B. West. Introduction to Graph Theory. 2nd ed. Prentice Hall, Sept.
2000. isbn: 0130144002.

[10] J. Neira and J. D. Tardos. “Data association in stochastic mapping using the
joint compatibility test”. In: IEEE Transactions on Robotics and Automation
17.6 (2001), pp. 890–897.

[11] Stefan Williams. “Efficient Solutions to Autonomous Mapping and Navigation
Problems”. PhD thesis. Jan. 2001. Chap. 2.4.1.

[12] E.F. Camacho, C. Bordons, and C.B. Alba. Model Predictive Control. Ad-
vanced Textbooks in Control and Signal Processing. Springer London, 2004.
isbn: 978-1-8523-3694-3.

[13] Sebastian Thrun et al. “Simultaneous Localization and Mapping with Sparse
Extended Information Filters”. In: I. J. Robotic Res. 23 (July 2004), pp. 693–
716. doi: 10.1177/0278364904045479.

101

https://doi.org/10.1177/027836498600500404
https://doi.org/10.1109/56.768
https://doi.org/10.1007/978-1-4613-8997-2_14
https://doi.org/10.1007/978-1-4613-8997-2_14
https://doi.org/10.1007/978-1-4613-8997-2_14
https://doi.org/10.1109/IROS.1991.174711
https://doi.org/10.1023/A:1008854305733
https://doi.org/10.1023/A:1008854305733
https://doi.org/10.1023/A:1008854305733
https://doi.org/10.1177/0278364904045479

102 . Bibliography

[14] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics.
Cambridge, Mass.: MIT Press, 2005. isbn: 0262201623 9780262201629.

[15] P. Tondel and T. A. Johansen. “Control allocation for yaw stabilization in
automotive vehicles using multiparametric nonlinear programming”. In: Pro-
ceedings of the 2005, American Control Conference, 2005. 2005, 453–458 vol.
1. doi: 10.1109/ACC.2005.1469977.

[16] T. Bailey and H. Durrant-Whyte. “Simultaneous Localisation and Mapping
(SLAM) Part 2 : State of the Art”. In: 2006.

[17] Hugh Durrant-Whyte and Tim Bailey. “Simultaneous Localisation and Map-
ping (SLAM): Part I The Essential Algorithms”. In: Robotics & Automation
Magazine 13 (Jan. 2006).

[18] Sebastian Thrun and Michael Montemerlo.“The Graph SLAM Algorithm with
Applications to Large-Scale Mapping of Urban Structures”. In: I. J. Robotic
Res. 25 (May 2006), pp. 403–429. doi: 10.1177/0278364906065387.

[19] Lars B. Cremean et al. “Alice: An Information-Rich Autonomous Vehicle for
High-Speed Desert Navigation”. In: The 2005 DARPA Grand Challenge: The
Great Robot Race. Ed. by Martin Buehler, Karl Iagnemma, and Sanjiv Singh.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 437–482. isbn: 978-
3-540-73429-1. doi: 10.1007/978-3-540-73429-1_14. url: https://doi.
org/10.1007/978-3-540-73429-1_14.

[20] G. Grisetti et al. “A Tutorial on Graph-Based SLAM”. In: IEEE Intelligent
Transportation Systems Magazine 2.4 (2010), pp. 31–43. doi: 10.1109/MITS.
2010.939925.

[21] R. Kümmerle et al. “G2o: A general framework for graph optimization”.
In: 2011 IEEE International Conference on Robotics and Automation. 2011,
pp. 3607–3613.

[22] Radu Bogdan Rusu and Steve Cousins. “3D is here: Point Cloud Library
(PCL)”. In: IEEE International Conference on Robotics and Automation
(ICRA). Shanghai, China, May 2011.

[23] Cyrill Stachniss. lecture notes: Robot Mapping. Feb. 3, 2014.

[24] Evan Ackermann and Erico Guizzo. iRobot Brings Visual Mapping and Nav-
igation to the Roomba 980. 2015. url: https : / / spectrum . ieee . org /

automaton/robotics/home- robots/irobot- brings- visual- mapping-

and-navigation-to-the-roomba-980 (visited on 05/11/2020).

[25] Frank Gauterin and Hans-Joachim Unrau. Skript zu ”Grundlagen der Fahr-
zeugtechnik II”. 2017.

[26] L. von Stumberg et al. “From monocular SLAM to autonomous drone explo-
ration”. In: 2017 European Conference on Mobile Robots (ECMR). 2017.

[27] Marcel Zeilinger et al. “Design of an Autonomous Race Car for the Formula
Student Driverless (FSD)”. In: May 2017.

[28] Marcus Anderson and Martin Baerveldt. “Simultaneous localization and
mapping for vehicles using ORB-SLAM2”. MA thesis. Gothenburg, Sweden:
Chalmers University of Technology, May 2018.

https://doi.org/10.1109/ACC.2005.1469977
https://doi.org/10.1177/0278364906065387
https://doi.org/10.1007/978-3-540-73429-1_14
https://doi.org/10.1007/978-3-540-73429-1_14
https://doi.org/10.1007/978-3-540-73429-1_14
https://doi.org/10.1109/MITS.2010.939925
https://doi.org/10.1109/MITS.2010.939925
https://spectrum.ieee.org/automaton/robotics/home-robots/irobot-brings-visual-mapping-and-navigation-to-the-roomba-980
https://spectrum.ieee.org/automaton/robotics/home-robots/irobot-brings-visual-mapping-and-navigation-to-the-roomba-980
https://spectrum.ieee.org/automaton/robotics/home-robots/irobot-brings-visual-mapping-and-navigation-to-the-roomba-980

103

[29] F. Demim et al. “SLAM Problem for Autonomous Underwater Vehicle using
SVSF Filter”. In: 2018 25th International Conference on Systems, Signals and
Image Processing (IWSSIP). 2018.

[30] Miguel Valls et al. “Design of an Autonomous Racecar: Perception, State Es-
timation and System Integration”. In: (Apr. 2018).

[31] Axel Brunnbauer and Markus Bader. “Traffic cone based self-localization on a
1 : 10 race car”. In: 2019.

[32] Statistisches Bundesamt. Causes of accidents involving personal injury - Ex-
ternal causes. 2019. url: https://www.destatis.de/EN/Themes/Society-
Environment/Traffic-Accidents/Tables/causes-accidents-personal-

injury2.html (visited on 05/01/2020).

[33] Statistisches Bundesamt. Causes of accidents involving personal injury - Im-
proper behaviour of pedestrians. 2019. url: https://www.destatis.de/

EN/Themes/Society-Environment/Traffic-Accidents/Tables/causes-

accidents-personal-injury3.html (visited on 05/01/2020).

[34] Statistisches Bundesamt. Causes of accidents involving personal injury - Tech-
nical faults. 2019. url: https://www.destatis.de/EN/Themes/Society-
Environment/Traffic-Accidents/Tables/causes-accidents-personal-

injury1.html (visited on 05/01/2020).

[35] Statistisches Bundesamt. Driver-related causes of accidents involving personal
injury. 2019. url: https : / / www . destatis . de / EN / Themes / Society -

Environment/Traffic- Accidents/Tables/driver- mistakes.html (vis-
ited on 05/01/2020).

[36] Juraj Kabzan et al. “AMZ Driverless: The Full Autonomous Racing System”.
In: (May 2019).

[37] Felix Nobis et al. “Autonomous Racing: A Comparison of SLAM Algorithms
for Large Scale Outdoor Environments”. In: Feb. 2019, pp. 82–89. doi: 10.
1145/3332305.3332319.

[38] statista. Verteilung der Investitionen durch Unternehmen aus der Automo-
bilindustrie nach Zieltechnologien im Jahr 2017. 2019. url: https://de.

statista.com/statistik/daten/studie/1040890/umfrage/verteilung-

der - investitionen - durch - unternehmen - der - automobilindustrie -

nach-bereichen/ (visited on 05/01/2020).

[39] Kristian Wahlqvist. “A Comparison of Motion Priors for EKF-SLAM in Au-
tonomous Race Cars”. MA thesis. Stockholm, Sweden: KTH, School of Elec-
trical Engineering and Computer Science (EECS), July 2019.

[40] Statistisches Bundesamt. Trend in the number of persons killed in road traffic
accidents. 2020. url: https://www.destatis.de/EN/Themes/Society-

Environment / Traffic - Accidents / _Graphic / _Interactive / traffic -

accidents-persons-killed-year.html (visited on 05/01/2020).

[41] Formula Student Online Results. 2020. url: https://formulastudentonline.
com/?page_id=712 (visited on 05/22/2020).

[42] Sherif Nekkah et al. “The Autonomous Racing Software Stack of the KIT19d”.
In: arXiv e-prints, arXiv:2010.02828 (Oct. 2020), arXiv:2010.02828. arXiv:
2010.02828 [cs.RO].

https://www.destatis.de/EN/Themes/Society-Environment/Traffic-Accidents/Tables/causes-accidents-personal-injury2.html
https://www.destatis.de/EN/Themes/Society-Environment/Traffic-Accidents/Tables/causes-accidents-personal-injury2.html
https://www.destatis.de/EN/Themes/Society-Environment/Traffic-Accidents/Tables/causes-accidents-personal-injury2.html
https://www.destatis.de/EN/Themes/Society-Environment/Traffic-Accidents/Tables/causes-accidents-personal-injury3.html
https://www.destatis.de/EN/Themes/Society-Environment/Traffic-Accidents/Tables/causes-accidents-personal-injury3.html
https://www.destatis.de/EN/Themes/Society-Environment/Traffic-Accidents/Tables/causes-accidents-personal-injury3.html
https://www.destatis.de/EN/Themes/Society-Environment/Traffic-Accidents/Tables/causes-accidents-personal-injury1.html
https://www.destatis.de/EN/Themes/Society-Environment/Traffic-Accidents/Tables/causes-accidents-personal-injury1.html
https://www.destatis.de/EN/Themes/Society-Environment/Traffic-Accidents/Tables/causes-accidents-personal-injury1.html
https://www.destatis.de/EN/Themes/Society-Environment/Traffic-Accidents/Tables/driver-mistakes.html
https://www.destatis.de/EN/Themes/Society-Environment/Traffic-Accidents/Tables/driver-mistakes.html
https://doi.org/10.1145/3332305.3332319
https://doi.org/10.1145/3332305.3332319
https://de.statista.com/statistik/daten/studie/1040890/umfrage/verteilung-der-investitionen-durch-unternehmen-der-automobilindustrie-nach-bereichen/
https://de.statista.com/statistik/daten/studie/1040890/umfrage/verteilung-der-investitionen-durch-unternehmen-der-automobilindustrie-nach-bereichen/
https://de.statista.com/statistik/daten/studie/1040890/umfrage/verteilung-der-investitionen-durch-unternehmen-der-automobilindustrie-nach-bereichen/
https://de.statista.com/statistik/daten/studie/1040890/umfrage/verteilung-der-investitionen-durch-unternehmen-der-automobilindustrie-nach-bereichen/
https://www.destatis.de/EN/Themes/Society-Environment/Traffic-Accidents/_Graphic/_Interactive/traffic-accidents-persons-killed-year.html
https://www.destatis.de/EN/Themes/Society-Environment/Traffic-Accidents/_Graphic/_Interactive/traffic-accidents-persons-killed-year.html
https://www.destatis.de/EN/Themes/Society-Environment/Traffic-Accidents/_Graphic/_Interactive/traffic-accidents-persons-killed-year.html
https://formulastudentonline.com/?page_id=712
https://formulastudentonline.com/?page_id=712
http://arxiv.org/abs/2010.02828

104 . Bibliography

[43] statista. Anzahl der gemeldeten Pkw in Deutschland in den Jahren 1960 bis
2020. 2020. url: https://de.statista.com/statistik/daten/studie/
12131/umfrage/pkw-bestand-in-deutschland/ (visited on 05/01/2020).

[44] Oxford Advanced American Dictionary. Definition of ”robot”. url: https://
www.oxfordlearnersdictionaries.com/definition/american_english/

robot (visited on 07/08/2020).

[45] KA-Raceing e.v. Erfolge. url: https://www.ka-raceing.de/erfolge (vis-
ited on 05/22/2020).

[46] Alexander Entinger. Einführung in das Robot Operating System. url: https:
/ / m . heise . de / developer / artikel / Einfuehrung - in - das - Robot -

Operating-System-3273655.html?seite=all (visited on 05/25/2020).

[47] Formula Student Germany. Formula Student Handbook 2020. url: https:

//www.formulastudent.de/fileadmin/user_upload/all/2020/rules/

FSG20_Competition_Handbook_v1.0.pdf (visited on 05/25/2020).

[48] Formula Student Germany. Formula Student Rules 2020. url: https://www.
formulastudent.de/fileadmin/user_upload/all/2020/rules/FS-Rules_

2020_V1.0.pdf (visited on 05/22/2020).

[49] Formula Student Germany. History of Formula Student Germany. url: https:
//www.formulastudent.de/about/chronicle/ (visited on 05/22/2020).

[50] Institution of Mechanical Engineers. History of Formula Student. url: https:
//www.imeche.org/events/formula-student/about-formula-student/

history-of-formula-student (visited on 05/22/2020).

[51] Formula SAE. History of Formula SAE. url: https://www.fsaeonline.
com/page.aspx?pageid=c4c5195a-60c0-46aa-acbf-2958ef545b72 (visited
on 05/22/2020).

https://de.statista.com/statistik/daten/studie/12131/umfrage/pkw-bestand-in-deutschland/
https://de.statista.com/statistik/daten/studie/12131/umfrage/pkw-bestand-in-deutschland/
https://www.oxfordlearnersdictionaries.com/definition/american_english/robot
https://www.oxfordlearnersdictionaries.com/definition/american_english/robot
https://www.oxfordlearnersdictionaries.com/definition/american_english/robot
https://www.ka-raceing.de/erfolge
https://m.heise.de/developer/artikel/Einfuehrung-in-das-Robot-Operating-System-3273655.html?seite=all
https://m.heise.de/developer/artikel/Einfuehrung-in-das-Robot-Operating-System-3273655.html?seite=all
https://m.heise.de/developer/artikel/Einfuehrung-in-das-Robot-Operating-System-3273655.html?seite=all
https://www.formulastudent.de/fileadmin/user_upload/all/2020/rules/FSG20_Competition_Handbook_v1.0.pdf
https://www.formulastudent.de/fileadmin/user_upload/all/2020/rules/FSG20_Competition_Handbook_v1.0.pdf
https://www.formulastudent.de/fileadmin/user_upload/all/2020/rules/FSG20_Competition_Handbook_v1.0.pdf
https://www.formulastudent.de/fileadmin/user_upload/all/2020/rules/FS-Rules_2020_V1.0.pdf
https://www.formulastudent.de/fileadmin/user_upload/all/2020/rules/FS-Rules_2020_V1.0.pdf
https://www.formulastudent.de/fileadmin/user_upload/all/2020/rules/FS-Rules_2020_V1.0.pdf
https://www.formulastudent.de/about/chronicle/
https://www.formulastudent.de/about/chronicle/
https://www.imeche.org/events/formula-student/about-formula-student/history-of-formula-student
https://www.imeche.org/events/formula-student/about-formula-student/history-of-formula-student
https://www.imeche.org/events/formula-student/about-formula-student/history-of-formula-student
https://www.fsaeonline.com/page.aspx?pageid=c4c5195a-60c0-46aa-acbf-2958ef545b72
https://www.fsaeonline.com/page.aspx?pageid=c4c5195a-60c0-46aa-acbf-2958ef545b72

	Abstract
	Kurzfassung
	Contents
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Outline

	2 Related Work
	2.1 SLAM in General
	2.2 SLAM in Driverless Racing

	3 Fundamentals
	3.1 Basic Concepts
	3.2 Graph Theory
	3.3 Least Squares Optimization
	3.4 Data Association
	3.5 Localization

	4 Underlying Conditions and Preliminaries
	4.1 Formula Student
	4.2 Base Car
	4.3 Autonomous Pipeline
	4.4 SLAM: Initial Situation

	5 System Modeling
	5.1 Reference Frames
	5.2 Motion Model
	5.3 Measurement Model
	5.4 Uncertainties
	5.5 Filtering False Positive Measurements

	6 EKF SLAM
	6.1 EKF Localization
	6.2 EKF SLAM

	7 GraphSLAM
	7.1 Graph Structure
	7.2 The GraphSLAM Algorithm
	7.3 GraphSLAM Implementation

	8 Experimental Evaluation
	8.1 Data Sets
	8.2 Architecture
	8.3 Accuracy
	8.4 Efficiency

	9 Conclusion and Future Work
	9.1 Summary
	9.2 Conclusion
	9.3 Application of GraphSLAM in 2020
	9.4 Future Work

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

