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Tag der mündlichen Prüfung: 7. Februar 2024
Referent: Prof. Dr. Gholamreza Nakhaeizadeh
Korreferentin: Prof. Dr. Melanie Schienle



Acknowledgments

I would like to express my sincere gratitude to my supervisors Prof. Gholamreza Nakhaeizadeh

(Karlsruhe Institute of Technology) and Prof. Melanie Schienle (Karlsruhe Institute of Technol-

ogy) for accepting the role of supervision and for their meticulous review of my work. I specially

thank Prof. Frank J. Fabozzi (Johns Hopkins University) for the valuable feedback and com-

ments on the two papers on which Chapters 3 and 5 are based on. I would like to thank Prof.
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Chapter 1

Introduction

Corporate bonds are a key means for firms to raise capital from buy and hold investors, such as

insurance companies or pension funds, in exchange for a predictable and stable cash flow. Given

the recent decade of low interest rate policies, corporate bond markets have hit record highs in

new bond issuance, bringing into question whether credit risk is accurately accounted for by the

financial industry, academics, and regulators.1 In fact, as of finalizing this dissertation, evidence

of increasing default rates among U.S. corporate bond issuers emerges as a result of squeezed

cash flows and worsening refinancing conditions due to the recent switch to a quantitative

tightening monetary policy regime.2

To assess a bond’s credit risk across its life cycle, three parameters have to be considered.

The probability of default (PD) captures the likelihood that a bond issuer will default on its

issued debt. The recovery rate (RR), or 1 - loss given default (LGD), measures the proportion

of a bond’s value that investors are able to recoup in the case of default. Exposure at default

(EAD) is the investor’s investment amount at risk. Thus, a bondholder’s expected loss (EL) can

be quantified via EL = PD× (1−RR)×EAD. Since the seminal work of Altman (1968), who

introduces a scoring model to predict chances of a firm’s bankruptcy, various studies followed

on explaining the probability of default. However, the recovery rate, i.e., the fraction of an

1 For example, Goldstein, Jiang, and Ng (2017) pose the question whether corporate bond markets become
increasingly fragile with feedback externalities to the real economy. Bessembinder, Spatt, and Venkataraman
(2020) raise concerns about potential financial fragility due to the increasing capital allocation in corporate
bonds and thus market size growth, and a deteriorating creditworthiness of bond issuers.

2 See, for example, a recently published article by S&P Global Ratings: Default, Transition, and Recovery:
The U.S. Speculative-Grade Corporate Default Rate Could Rise To 4.5% By June 2024 (August 17th, 2023) avail-
able via https://www.spglobal.com/ratings/en/research/articles/230817-default-transition-and-recovery-the-u-s-
speculative-grade-corporate-default-rate-could-rise-to-4-5-by-jun-12825499 (Retrieved on October 25th, 2023).

1

https://www.spglobal.com/ratings/en/research/articles/230817-default-transition-and-recovery-the-u-s-speculative-grade-corporate-default-rate-could-rise-to-4-5-by-jun-12825499
https://www.spglobal.com/ratings/en/research/articles/230817-default-transition-and-recovery-the-u-s-speculative-grade-corporate-default-rate-could-rise-to-4-5-by-jun-12825499


investment amount that is to be repaid to investors in the event when the issuer fails to meet

its contractual obligations before the bond’s maturity, has received less attention.

While the recovery rate has traditionally been assumed fixed at 40% of investment (see,

for example, Altman and Kishore (1996)), today’s standard recovery rate estimation models

explain it as a function of fundamental drivers such as bond and firm characteristics, as well

as indicators of liquidity, supply and demand in the defaulted securities, and macroeconomic

conditions.3 These models, however, neglect pricing implications from the over-the-counter

(OTC) bond market microstructure, and adverse contagion and cascade effects in financial

markets prominently spotlighted during the Global Financial Crisis of the late 2000s and the

COVID-19 pandemic of the early 2020s. Moreover, the hybrid nature of defaulted bonds which

share characteristics of both stocks and bonds is not considered, and prediction models have

limited real-world applicability. Nevertheless, since the introduction of the Basel II and Basel

III accords, banks in the G20 countries are allowed to consider their own internal ratings based

(IRB) approaches to calculate risk-weighted assets (RWA) for determining capital requirements

and for stress testing. Thus, both investors and regulators are in need of more adequate credit

risk assessment.

The main focus of this dissertation is to enhance our understanding of how, and to what

extent, recovery rates of defaulted bonds are formed after a bond’s default event, relying on

data-science based approaches. As such, it aims at offering new explanations and improved

recovery estimation models. This dissertation investigates the drivers of credit risk, synthesizing

disparate sources of heterogeneity in recovery rates of defaulted corporate bonds. In particular,

it captures economic mechanisms from different perspectives that allow to make inferences on

recovery rates of the defaulted debt securities, and introduces new recovery rate models that

improve the determination of corporate bond recovery rates. In the following, the dissertation

outline, research topics, and the knowledge discovery approach are presented.

3 See, for example, Varma and Cantor (2005), Altman, Brady, Resti, and Sironi (2005), Acharya, Bharath,
and Srinivasan (2007), Jankowitsch, Nagler, and Subrahmanyam (2014), Mora (2015), and Nazemi and Fabozzi
(2018).
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1.1 Outline and Research Topics

Prior to default, a bond represents a creditor’s claim on a defined fraction of the issuer’s economic

value (e.g., in form of a quarterly coupon payment, and repayment of the par amount at

maturity). A default event alters the risk-return profile of a bond materially, as coupon payments

are often halted, and ultimate repayment of the par amount becomes questionable. Thus,

immediately after default, a bondholder’s claim on the defaulted firm’s economic value, or even

the firm’s economic value itself, are uncertain. The bond’s claim will now be subject to a series

of negotiations among equity and debt holders, contractual provisions embedded in the bond

indentures, such as collateral and seniority, and the value that is still preserved within the

firm’s operations or its assets. Typical bond investors often sell once a bond defaults, spurred

by internal or external regulations that restrict investment decisions, as is often the case for

pension funds, insurance companies, or bond mutual funds. Hence, default events initiate the

need for an ownership change from buy-and-hold investors to specialized vulture investors. For

the bondholders who sell timely after default, the recovery rate will be equal to the price they

obtain in the bond sale transaction. However, given the OTC market structure of bond markets,

supply and demand do not meet on an efficient centralized exchange as for equities, and thus,

arranging and pricing a transaction are likely not only a function of the seller’s and buyer’s

views on the defaulted firm’s fundamentals.

Using detailed bond trading and pricing data of defaulted U.S. corporate bonds from the

Trade Reporting and Compliance Engine (TRACE), Chapter 2 examines investors’ and dealers’

trading patterns in defaulted bonds. While the subsequent Chapters 3, 4 and 5 investigate the

drivers of recovery rates from a fundamental perspective, Chapter 2 captures the endogenously

adapting microstructure of the OTC bond market, the associated price effects, and thus identi-

fies the intermediation mechanism at work once a bond defaults. Beyond fundamental recovery

drivers, it therefore highlights the importance of the dealer network and dealers’ expertise for

defaulted bond intermediation.

When a bond defaults, the natural holders of bonds change from buy-and-hold to special-

ized vulture investors, leading to elevated trading levels around the default event. As shown

in Chapter 2, post-default intermediation shifts to dealers with prior expertise in the defaulted

bond. It identifies primary dealers that are critical for the intermediation of bonds from in-

3



vestors that need to sell quickly in response to the default surprise. These primary dealers locate

higher-valuation counterparties within the opaque OTC market through elongating intermedi-

ation chains and provide immediacy and liquidity through their inventory, thereby stabilizing

the market functioning. While previous studies estimate aggregate recovery rates, this study

captures investors’ idiosyncratic response to bond default and the heterogeneity of recovery

rates not only across bonds, but also across investors even in the same bond: If investors trade

with primary dealers, they obtain a recovery premium of 8% over the mean recovery, lowering

credit risk ex-ante. Having identified pricing implications from the OTC market microstructure

on the defaulted bonds, the subsequent Chapters 3 and 4 investigate fundamental drivers of

bond recoveries, and Chapter 5 targets the improvement of modeling accuracy.

As mentioned above, recoveries are determined by creditors’ claims on a defaulted firm’s

economic value in its operations or assets. Acharya, Bharath, and Srinivasan (2007) show that

industry-wide distress causes a decrease in recovery rates, given that a defaulted firm’s assets

disposal channel is impaired by a lower demand for its assets, in line with the phenomenon

of fire-sales described by Shleifer and Vishny (1992). Chapter 3 expands the research on the

asset disposal channel from a network-based perspective and provides interesting insights in the

formation of recovery rates in the context of complex economic interactions between industries.

Creating a network representation of the U.S. economy, this chapter establishes a relation

between recovery rates of defaulted bonds and the issuing firm’s position within the U.S. econ-

omy network of inter-industry trade. Because trade relationships between industries facilitate

the transfer of assets from one industry to the other, bonds in better connected or central in-

dustries recover more than bonds in peripheral industries. Inter-industry connections not only

serve the transfer of firm assets, but also economic shocks. The study shows that distress within

an industry propagates across industry borders and affects recoveries in adjacent industries con-

nected via close trade ties. Finally, recovery rates in the core of the inter-industry network are

more closely related to macroeconomic conditions than in the periphery.

In Chapter 4, corporate bond recovery rates are examined in relation to observable condi-

tions in financial markets. Because a bond default event alters the bond’s risk-return profile and

investment characteristics from normal bond-type (low-risk, low-return) to equity-like (higher

risk up to the total loss, with potentially higher returns), this chapter considers both condi-
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tions in the bond and the stock markets as drivers of recovery. Standard asset pricing models

use factors that reflect the relationship between returns of individual assets and the prevailing

market-wide conditions. Thus, a variety of equity and bond risk factors have been identified

over the last decades.4 This chapter examines the sensitivity of corporate bond recovery rates

to equity risk factors, bond risk factors, and other observable conditions in equity and bond

markets. Thereby, this chapter exposes a relationship between the prevailing financial market

conditions and the pricing of defaulted corporate bonds. Moreover, it contributes to under-

standing the integration of equity and bond markets (see, for example, Choi and Kim (2018)

and Kelly, Palhares, and Pruitt (2023)).

Chapter 5 examines recovery rates via machine learning to improve the modeling accuracy

while accounting for the time-varying structure of recovery rates that is not reflected in tradi-

tional recovery rate models or even more advanced models that also employ machine learning.

Thereby, it offers a new modeling approach for accurate recovery rate estimation that is more

suitable for real-world applications than approaches from the literature. In fact, until today, the

time variation in recovery rates has gained little attention in the literature (see, for example,

Kalotay and Altman (2017)). Because one can only make predictions on recovery outcomes

with information available at the time of default, out-of-sample tests are likely biased due to

incorporating data of defaulted bonds from the same issuer for training the model, or from

employing data of later points in time.

This chapter shows that machine learning techniques significantly outperform traditional

approaches not only out-of-sample as documented in the literature but also in various out-of-

time prediction setups. Among the machine learning models, the newly applied sparse power

expectation propagation approach provides the most compelling out-of-time prediction results.

Motivated by the association of systematic factors with the time-varying characteristic of recov-

ery rates, we study the effect of text-based news measures to account for bond investors’ expec-

tations about the future which translate into market-based recovery rates. Especially during

recessions, government-related news are associated with higher recovery rates. Although ma-

chine learning is a data-driven approach rather than considering economic intuition for ranking a

group of predictors, the most informative groups of predictors for recovery rates are nevertheless

4 See, for example, Fama and French (1993), Jensen, Kelly, and Pedersen (2023), and Dickerson, Julliard, and
Mueller (2023)
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economically meaningful.

The final chapter, Chapter 6, concludes the work, summarizes the research performed in

this dissertation, and gives an outlook on topics that remain for future research.

1.2 Knowledge Discovery Approach

In order to obtain the research results, this dissertation relies on the Cross-Industry Standard

Process for Data Mining (CRISP-DM) as a data mining process model that assists the knowl-

edge discovery in the underlying data.5 CRISP-DM is considered the industry standard for data

science projects (see, for example, Kutzias, Dukino, Kötter, and Kett (2023)). Following Chap-

man, Clinton, Kerber, Khabaza, Reinartz, Shearer, and Wirth (2000), the CRISP-DM reference

model comprises six phases of a data science project’s life cycle: Business understanding, Data

understanding, Data preparation, Modeling, Evaluation, and Deployment. Figure 1.1 illustrates

the different phases and sequences within the CRISP-DM reference model. In order to provide

transparency on the knowledge discovery approach, the dissertation’s alignment with each of

the model’s phases is presented in the following.

Business understanding

As mentioned above, the recovery rate is one of the three key parameters to estimate credit

risk. Given the sheer growth of the corporate bond market over the recent years with potentially

elevated risks of bond market fragility and the increasing regulatory focus on the IRB approach

under Basel II and III, understanding and modeling of the recovery rate has gained in importance

for practitioners, academics, and regulators alike. Accurate models for recovery rates allow bond

investors to understand the drivers and determinants of economic loss in case of a default event.

Risk managers, e.g. in banks, need to estimate the recovery rate for determining the capital

reserves that have to be held available. Finally, regulators benefit from understanding how bond

markets operate under stress in order to develop policies that preserve market stability. Thus,

there is a need for developing a comprehensive understanding of the emergence of corporate bond

5 Funded by the European Commission, CRISP-DM was developed by a consortium of U.S. and European
industrial and commercial organizations: NCR Systems Engineering Copenhagen (U.S. and Denmark), Daim-
lerChrysler AG (Germany), SPSS Inc. (U.S.) and OHRA Verzekeringen en Bank Groep B.V (The Netherlands)
(Chapman, Clinton, Kerber, Khabaza, Reinartz, Shearer, and Wirth, 2000).
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Figure 1.1: Phases of the CRISP-DM reference model (Own illustration following Chapman,
Clinton, Kerber, Khabaza, Reinartz, Shearer, and Wirth (2000)).

recovery rates and how to accurately estimate them. To achieve this objective, the recovery rate

has to be analyzed from various perspectives. Therefore, Chapter 3 sheds light on the OTC

trading microstructure in defaulted bonds. Chapters 3 and 4 investigate new fundamental

explanations of recovery rates, and Chapter 5 offers a more accurate and real-world oriented

approach to recovery rate estimation.

Data understanding

In order to create rich datasets of defaulted bonds, a broad set of data sources is considered.

Default events are identified by collecting data from Moody’s Default & Recovery Database

(DRD), Mergent Fixed Income Securities Database (FISD), S&P Capital IQ fixed-income data,

and data from Thomson Reuters. Because default rates and recovery rates are sensitive to

the economic cycle, the data spans from 2001–2016 (Chapters 3 and 5) and from 2004–2016

(Chapters 2 and 4), thus, capturing the entire economic cycle including periods before, during,

and after the Global Financial Crisis (GFC). As bonds trade in opaque OTC markets, the

pricing of bonds is not readily accessible as for equities, which typically trade on centralized

exchanges where prices are published immediately. Therefore, bond prices were difficult to

obtain historically. Today, bond pricing data is available from data vendors that aggregate the
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data from different sources, and from regulatory bodies who publish the reported transaction

data with a substantial time lag. While the recovery rate in Chapters 2 and 4 is determined

based on bond prices that are obtained via S&P Capital IQ from the Intercontinental Exchange

(ICE) and considers dealer quotes, live trading levels and data of executed trades, data from the

Trade Reporting and Compliance Engine (TRACE) is obtained for Chapters 2 and 4. Because

the employed TRACE data sample is available only after 2004, the datasets’ time frames differ.

The literature considers a host of explanatory variables, such as bond and firm characteristics

or macroeconomic conditions, for recovery rate estimation (see, for example, Altman, Brady,

Resti, and Sironi (2005), Acharya, Bharath, and Srinivasan (2007), Bruche and Gonzalez-

Aguado (2010), Jankowitsch, Nagler, and Subrahmanyam (2014), and Nazemi and Fabozzi

(2018)). This data is collected from various data sources and described in more detail in the

respective chapters of this dissertation. In each chapter, further explanatory variables are in-

troduced to improve our understanding and modeling accuracy of recovery rates. For a better

understanding of the data, descriptive statistics illustrate the nature and trends within this

newly applied data. Chapter 2 relies on detailed transaction data from the Trade Reporting

and Compliance Engine (TRACE), which allows not only the identification of individual bond

dealers to form a network representation of the inter-dealer U.S. corporate bond market but also

to trace each bond as it flows from an investor that sells to a dealer, through the dealer network,

and then to another investor. This characteristic of the data enables the observation of endoge-

nous dynamics within the OTC microstructure in response to bond default events. Chapter 3

relies on input-output tables provided by the U.S. Bureau of Economic Analysis (BEA) to create

an inter-industry network representation of the U.S. economy. Although the network structure

does not exhibit a strong time variation, the data allows to expand on industry-specific recovery

rate drivers due to inter-industry trade connections. Chapters 4 and 5 rely on various data from

U.S. financial markets and text-based news to complement the traditional recovery rate models.

In order to match bond-specific data obtained from different data sources, CUSIP identifiers

are utilized. For time-series data, the most recent observations prior to default are matched

with the respective default event, and industry-specific data is matched with a bond issuer’s

SIC (Standard Industrial Classification) or NAICS (North American Industry Classification

System) industry identifier. After constructing the datasets, these comprise cross-sectional
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default observations with various attributes.

Data preparation

To prepare the data for employing in recovery rate estimation, various data cleaning tasks were

performed. For example, TRACE data contains erroneous transaction reports, which are re-

moved through a filter suggested by Dick-Nielsen and Poulsen (2019). Furthermore, TRACE

also contains multiple reports of the same trade, thus, duplicate entries are removed. Moreover,

potentially falsely reported prices are filtered following Jankowitsch, Nagler, and Subrahmanyam

(2014). Corrupted data is removed, and also data for which important accompanying data or

features are not available. For example, when creating bond market liquidity measures in Chap-

ter 4, the bond trading information from TRACE must be matched with bond characteristics

from FISD. Hence, only bonds that are available in both databases are considered.

Moreover, dimension reduction techniques and feature selection are performed in order to

obtain a reasonable dataset. In Chapter 2, a dealer’s centrality is considered as a control

variable. In order to obtain dealer centrality, however, principal component analysis (PCA) is

performed to extract a meaningful centrality representation from a host of alternative centrality

measures created with methodologies from network theory. As each of these measures capture

different dimensions and definitions of centrality, PCA allows to reduce these measures to only

one universal centrality representation. In Chapter 4, where multiple variables from bond and

stock markets are considered, principal component analysis is used to reduce dimensions for

highly correlated variables. This allows, for example, to obtain one liquidity proxy from twelve

bond market liquidity features. Naturally, these variables are correlated with each other as

they all capture market liquidity in different ways. Due to the large number of macroeconomic

factors, Chapters 3 and 5 further use feature selection techniques (SparseStep, MC+, and

stability selection).6

Modeling

The task is to estimate the recovery rate, i.e., the bond’s price as a fraction of 100% of the

bond’s par value. In the recovery rate literature, OLS regression models are the standard con-

6 Data preparation is implemented via Microsoft Excel, SAS, Python, MATLAB, and R.
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vention to explain the influence of explanatory variables on the recovery rate (see, for example,

Varma and Cantor (2005), Altman, Brady, Resti, and Sironi (2005), Acharya, Bharath, and

Srinivasan (2007), Jankowitsch, Nagler, and Subrahmanyam (2014), Mora (2015), and Nazemi

and Fabozzi (2018)). To improve modeling accuracy, machine learning techniques are applied

(see, for example, Qi and Zhao (2011), Yao, Crook, and Andreeva (2015), and Nazemi and

Fabozzi (2018)). However, improved modeling accuracy via machine learning often comes at

the cost of reduced interpretability.

As Chapter 2 captures the endogenously adapting OTC microstructure of the bond mar-

ket for explaining recovery rates, it relies on an OLS approach for recovery rate estimation,

complemented with instrumental variable (IV) approaches to allow for consistent and unbiased

estimation of the causal effect of primary dealers on bond pricing. For binary dealer classifi-

cation tasks, generalized linear regressions with a Probit link are utilized. Chapters 3 and 4

also rely on OLS regression for estimating the effect of the tested explanatory variables on the

recovery rate. The objective of Chapter 5 is to improve the recovery rate modeling accuracy

while accounting for its time-varying structure. Therefore, it not only considers OLS regression,

but also machine learning models in various out-of-time prediction settings. These settings are

more close to real-world estimation problems than the explanatory studies which aim at ex-

plaining the formation of recovery rates. Hence, these out-of-time prediction settings generate

more realistic predictions that can be directly implemented by practitioners.

In addition, variable importance ranking methodology is utilized in Chapters 4 and 5 to form

an understanding of which of the competing groups of factors matter the most for recovery rate

estimation. For machine learning models and variable importance ranking, hyperparameters

have to be selected. To do so, grid search with cross-validation is performed. Depending on

the objective, different model evaluation metrics are considered. For understanding the effects

of newly introduced explanatory variables in Chapters 2, 3, and 4, p-values based on clustered

standard errors are used. The (adjusted) coefficient of determination shows how much of the

recovery rates’ variation can be explained by the linear models. In addition, other metrics such

as RMSE or MAE are used in Chapters 3 and 5, which employ machine learning models.7

7 Modeling is implemented via Python, MATLAB, and R.

10



Evaluation

Model robustness is furthermore checked in various ways, e.g., by altering model specifications

with various alternative control variables, or altering variable definitions. For example, Chapter

2 evaluates the results with and without additional dealer characteristics that may interfere with

the primary dealer characteristic as the main variable of interest. Chapter 3 proxies industry

centrality within the U.S. economy network with several different centrality measures from

network theory. As a robustness test, Chapter 3 furthermore considers out-of-sample machine

learning models. In Chapter 5, the out-of-time predictions also evaluate the performance of the

recovery rate models on subsets of data which have not been used for model training, allowing for

a more robust performance benchmark. Furthermore, Chapter 5 benchmarks the performances

of various traditional and machine learning techniques to obtain the most accurate recovery

rate predictions.

Deployment

While actual deployment in real-world applications will be left for practitioners and regulators,

this dissertation provides interesting and important insights and guidelines into explaining and

accurately modeling recovery rates of defaulted corporate bonds. A deployment plan should

therefore take into account the pricing implications from the endogenously adjusting OTC

market structure exposed in Chapter 2, the relationship between recovery rates and interde-

pendences between different industries within the U.S. economy network (Chapter 3), as well

as prevailing conditions in stock and bond markets (Chapter 4). Moreover, deployment will

benefit from accounting for the time-varying structure of recovery rates (Chapter 5). Constant

monitoring, reviewing, and maintenance will help to adapt to changing environments in order

to continuously obtain accurate recovery rate estimation results.
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Chapter 2

Life after Default: Dealer

Intermediation and Recovery in

Defaulted Corporate Bonds

This chapter is joint work with Ali Kakhbod, Dmitry Livdan, Abdolreza Nazemi, and Norman

Schürhoff.1 It is a working paper published in 2023 with the same title as Swiss Finance Institute

Research Paper No. 23-85 and CEPR Discussion Paper DP18482.2

2.1 Introduction

Corporate bonds are traded in decentralized over-the-counter (OTC) markets through dealers

who have special trading skills and expertise in searching and locating counterparties, assess-

ing counterparties’ willingness to pay, and taking bonds into inventory (Duffie, Garleanu, and

Pedersen, 2005; Goldstein and Hotchkiss, 2020; Glode and Opp, 2016; Glode and Opp, 2019;

Hugonnier, Lester, and Weill, 2019; Colliard, Foucault, and Hoffmann, 2021; Sambalaibat, 2022;

1 Ali Kakhbod is with the Walter A. Haas School of Business, University of California, Berkeley, USA. Dmitry
Livdan is with the Walter A. Haas School of Business, University of California, Berkeley, USA. Livdan is a
Research Fellow of the CEPR. Abdolreza Nazemi is with the School of Economics and Management, Karlsruhe
Institute of Technology, Germany. Norman Schürhoff is with the Faculty of Business and Economics and Swiss
Finance Institute, University of Lausanne, CH-1015 Lausanne, Switzerland. Schürhoff is a Research Fellow of
the CEPR.

2 Baumann, Kakhbod, Livdan, Nazemi, and Schürhoff (2023), available via
https://www.sfi.ch/en/publications/n-23-85-life-after-default-dealer-intermediation-and-recovery-in-defaulted-
corporate-bonds (Retrieved on October 25th, 2023) and https://cepr.org/publications/dp18482 (Retrieved on
October 25th, 2023).
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Chaderina and Glode, 2023). In normal times, insurers and pension funds are the largest in-

vestors in corporate bonds with a preference to buy and hold (Koijen and Yogo, 2023). However,

when corporate bonds default the natural holders of corporate bonds change due to the altered

investment characteristics and risk profile of the bonds (Ivashina, Iverson, and Smith, 2016).3

Corporate distress events therefore provide a natural setting to study which dealers accom-

modate the transition from one group of investors to another, how and why dealer expertise

matters, and how this affects the pricing of corporate debt beyond the heightened cash-flow

risk.

Primary dealers are trading firms that possess the expertise required for providing liquidity

and facilitating trading activity in a particular bond on the secondary OTC market. The

designation of primary dealer is most commonly associated with government bond markets that

are often referred to as “primary dealer markets.” Primary dealers play a crucial role in the

smooth flow of trading and liquidity for investors interested in buying or selling that bond.4 In

the defaulted corporate bond setting, we consider primary dealers as those that handle most

of the bond’s order flow prior to default and have developed expertise in that particular bond.

The primary dealer is the central dealer in the defaulted bond, so it is bond-central, and it is

not necessarily the bond’s underwriter or a central dealer in the entire corporate bond dealer

network.

We show that a primary dealer-type system has emerged in the corporate bond market

without any government intervention or regulation. Consistent with theories of dealers’ endoge-

nous trading skills and expertise (Glode and Opp, 2019; Hugonnier, Lester, and Weill, 2019;

Sambalaibat, 2022; Chaderina and Glode, 2023), corporate bonds’ primary dealers, defined as

those dealers that handle most of the order flow after issuance during normal times, play a

crucial role in the orderly trading and reallocation of defaulted bonds. Primary corporate bond

dealers maintain an orderly market after a bond’s default by locating counterparties willing to

3 When the issuing company fails to meet its contractual obligations, the default event triggers a series of
negotiations between bondholders and the issuer that requires specialized expertise and often leads to court
enforcement. In many default cases, a creditors’ committee or trustee is formed to represent the interests of
bondholders during the recovery process and negotiate on their behalf to maximize the recovery for bondholders.

4 In the government bond market, the primary dealer, or primary market maker designation signifies that this
dealer was likely involved in the original issuance of the bond in the primary market and has continued to be a
prominent participant in the secondary market for that bond. The U.S. Treasury market has a well-established
primary dealer system. Primary dealers are financial institutions authorized by the U.S. Department of the
Treasury to participate directly in the auctions of Treasury securities.
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trade and pay high prices, executing trades on behalf of other market participants, and buying

and selling the bond from their own inventory.

We start by showing that trading volume spikes during corporate default. The dealers’

intermediation network then readjusts to handle the abnormal trading activity and investors’

need to accommodate the shift in ownership. In particular, investors switch to trading with

more central dealers and dealers that have built expertise in intermediating a given bond prior

to default. Primary dealers offer a sales channel to small investors when selling pressure dries

up liquidity, being willing to take inventory risk in the bonds that they are familiar with, and

being able to locate high-valuation investors who specialize in distressed products and other

opportunistic investors — potentially faster and more directly than other dealers but through

longer intermediation chains. The endogenous reorganization of liquidity provision in the OTC

corporate bond market causes recovery prices to increase by over 3 percentage points when

routed via primary dealers, equivalent to a more than 8% premium over the mean recovery rate,

which significantly stabilizes recovery rates ex-post and lowers credit risk ex-ante. Consistent

with the hypothesis that primary dealers have superior trading and pricing skills, that is, bond-

specific expertise, we find that post-default price rebounds are significantly attenuated when

orders are routed through primary dealers.

More generally, our study highlights that corporate bond market structure evolves endoge-

nously and by taking on a special role during times of stress, primary dealers that are more

centrally located in the dealer network stabilize decentralized OTC markets. We provide this

novel evidence using a comprehensive sample of corporate bond defaults between 2004 and

2016, assessing how default affects trading, how the OTC dealer network facilitates the own-

ership transition to specialized distressed investors, and how the intermediation process affects

bond recovery. We use granular transaction data and dealer identifiers to construct the inter-

mediation chains and client-to-dealer, dealer-to-dealer, and dealer-to-client trading networks,

quantify dealers’ inventory risk-taking and search efforts for trading counterparties, and de-

termine the impact of the dealer network on the bonds’ recovery rates and post-default price

rebound.

Our paper is related to several strands of literature. We explore corporate bond default

events as an exogenous shock to a bond’s natural holders and, as such, we document event-driven
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responses of OTC markets and trading implications that were studied in other setups before,

such as rating downgrades (May (2010), Ellul, Jotikasthira, and Lundblad (2011) and Bao,

O’Hara, and Zhou (2018)), bond index exclusions (Dick-Nielsen and Rossi (2019)) and corporate

bond mutual fund redemptions (Goldstein, Jiang, and Ng (2017) and Choi, Hoseinzade, Shin,

and Tehranian (2020)). Only a few studies make use of trading data in defaulted bonds.

Ivashina, Iverson, and Smith (2016) and Feldhütter, Hotchkiss, and Karakaş (2016) examine

the link between pre-default bond trading and the concentration and value of debt claims.

Demiroglu, Franks, and Lewis (2022) investigate how transparency of defaulted bond prices

impacts wealth transfers between different classes of creditors in Chapter 11 processes. While

these studies consider the implications of price transparency, market liquidity, and trading

volumes, we highlight an important mechanism for the functioning of the bond market and

market participants’ trading behavior in defaulted bonds.

We also contribute to the literature exploring the role of dealer networks in OTC markets.

Di Maggio, Kermani, and Song (2017), Li and Schürhoff (2019) and Hendershott, Li, Livdan,

and Schürhoff (2020) create network representations of trading relations and derive network-

driven explanations for the emergence of transactions as well as transaction outcomes. Colliard,

Foucault, and Hoffmann (2021) reconcile dealer inventory management with network frictions

and the positions of dealers within the dealer network. We highlight the role of primary dealers

for defaulted bond intermediation and demonstrate the counterbalancing effects of primary

dealers on depressed prices of recently defaulted bonds.

Our study is related to the broader literature on implications of OTC search and bargaining

frictions, such as Duffie, Garleanu, and Pedersen (2005) and Feldhütter (2012), as well as

Bessembinder, Maxwell, and Venkataraman (2006), Edwards, Harris, and Piwowar (2007), and

Goldstein, Hotchkiss, and Sirri (2007). Our findings suggest that transaction outcomes differ for

investors depending on their dealer selection and dealers’ prior experience in a defaulted bond.

We also capture the implications of general bond pricing models (see, for example, Friewald

and Nagler (2019)).

We additionally complement the growing literature on OTC dealer capital commitment and

liquidity provision. Bao, O’Hara, and Zhou (2018), Bessembinder, Jacobsen, Maxwell, and

Venkataraman (2018), Dick-Nielsen and Rossi (2019), Goldstein and Hotchkiss (2020), Gold-
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berg and Nozawa (2021), and Colliard, Foucault, and Hoffmann (2021) study dealer inventory

management in OTC intermediation from various perspectives. Our study highlights the role

of dealers in liquidity provision by absorbing excess supply in defaulted bonds through their

collective inventories.

Finally, we offer new explanations for defaulted corporate bonds’ recovery rates. The recov-

ery rate is usually explained by fundamental drivers such as bond and firm characteristics, as

well as macroeconomic conditions (see, for example, Acharya, Bharath, and Srinivasan (2007),

Bruche and Gonzalez-Aguado (2010), and Nazemi and Fabozzi (2018)). Altman, Brady, Resti,

and Sironi (2005) and Jankowitsch, Nagler, and Subrahmanyam (2014) consider observable mar-

ket dynamics of defaulted debt securities, such as aggregate supply and demand indicators, as

well as liquidity proxies. Compared to their works, our study offers a tangible new contribution,

as we implement the newly exposed trading patterns, triggered by default events, in recovery

rate estimation. Thereby, we bridge the gap between OTC market mechanics and their impli-

cations on recovery rates in credit risk management. Furthermore, we implement recovery rate

estimation on the transaction level for the first time in the literature. While previous studies

consider average recovery rates per bond, neglecting the variation in recovery rates in the same

bond for different investors, we offer a new approach that captures the heterogeneity of recov-

ery prices across different transactions and thereby provides new insights into the idiosyncratic

risks in defaulted bonds for practitioners and regulators. Finally, we estimate post-default price

appreciation for investors who do not sell immediately after default, which is a novelty in the

literature.

The rest of the paper is organized as follows. Section 2.2 describes the data and approach for

defining the sample used in our empirical analysis. Section 2.3 documents dealer intermediation

in defaulted bonds, and Section 2.4 quantifies the impact of dealer intermediation on recovery

rates in defaulted bonds. Section 2.5 examines intermediation complexity in defaulted bonds,

and Section 2.6 documents the counterbalancing price effects of trading with primary dealers

during default. We conclude in Section 2.7.
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2.2 Data

This section describes the data sources used in our empirical analysis and the sample filters

used to clean the data. We first create the sample of defaulted corporate bonds by combining

several data sets, define pre- and post-default trading periods, and provide descriptions of the

explanatory variables used in our analysis. We then construct the dealer network and identify

the defaulted bonds’ primary dealers.

2.2.1 Default events

In order to create the sample of defaulted bonds, we start by identifying defaulted bonds and

their default date during the period 2004–2016 based on two approaches. First, we consider

Moody’s Default & Recovery Database (DRD), Mergent Fixed Income Securities Database

(FISD), S&P Capital IQ fixed-income data, and data from Thomson Reuters to identify and

retrieve information about U.S. corporate bond default events. These data sources yield obser-

vations associated with three types of corporate default events: reorganizations (Chapter 11),

liquidations (both Chapter 11 and Chapter 7), and distressed exchanges. Second, we follow

Jankowitsch, Nagler, and Subrahmanyam (2014) and consider rating downgrades to the two

worst possible rating categories for which we utilize comprehensive historical rating informa-

tion by the rating agencies Moody’s, S&P, and Fitch Ratings retrieved from FISD. The two

rating-based default events are: downgrades to the second worst rating class, e.g., S&P’s C

rating, representing unlikely-to-pay events or situations in which formal default is considered

inevitable but has not yet taken place, and downgrades to the worst rating class, e.g., S&P’s

D rating, representing actual formal defaults. To capture a bond’s default as a single event

in our analysis, we select the first default date for a bond and eliminate from our sample all

consecutive default events observed within one year.5

We apply a number of data filters to our sample of defaulted bonds. In order to be included in

5 Collecting default events from the various data sources can yield different default dates for some of the
bonds. For example, one data source may report a rating downgrade to S&P’s C rating which occurs weeks
before a downgrade to S&P’s D rating or a bankruptcy filing. All these observations are likely to refer to the
same default event. In order to represent a bond’s unique default event in our analysis as a single observation,
we ignore all reported consecutive default dates of a bond that occur within one year after the first default date
was observed. After the one-year time lag, a consecutive default observation will be considered a new default
event, and the procedure repeats. This approach accounts for consecutive default events of a given bond when it
was reinstated following the initial default event.
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our analysis, a defaulted bond needs to have basic firm- and bond-specific information in FISD,

such as issuer identity and bond seniority. It also needs to be in the Transaction Reporting

and Compliance Engine (TRACE) for determining a recovery rate based on transaction prices

within the 30-day period immediately after default and in order to match default events to pre-

and post-default transactions. We match the defaulted bonds to FISD and TRACE data based

on the bonds’ CUSIP identifiers. Following this procedure, we are able to identify 2,636 unique

U.S. corporate bond default events in the 2004-2016 time period. The default events reflect

defaults of 2,425 distinct bonds issued by 498 unique firms. A total of 182, or 7.5% of the bonds

defaulted more than once between 2004 and 2016.6

Our transaction data is from Academic Corporate Bond TRACE Data, provided by FINRA.

The data allows us to track trading volume, terms of trade, and the direction of flows between

dealers and investors, to whom we also refer as the dealers’ clients. We match the default events

with transaction data from TRACE in a 365-day window prior to default as the pre-default

period during normal times, and a 30-day window subsequent to default. We define the default

day as the event date and the 30 days subsequent to it as the post-default period during which

we expect investors’ and dealers’ trading decisions to be affected by the default event, given

the default’s surprise character. This definition is supported by the findings of Jankowitsch,

Nagler, and Subrahmanyam (2014) who show that trading prices during the 31st to 90th day

after default already differ significantly from the 30 days immediately after default.7 The 30-day

period for measuring default event-driven OTC trading patterns is in line with related event

studies on bond market reactions.8 The sample for comparing the pre- and post-default time

periods comprises a total of 2,271,772 transactions in 2,636 defaulted bonds. Thereof, 1,956,480

bond transactions occur within the pre-default period corresponding to an average of about

740 individual trades per defaulted bond, and a total of 315,292 bond transactions occur on

6 Although we take a very similar approach in creating the set of defaulted bonds as Jankowitsch, Nagler, and
Subrahmanyam (2014), our approach differs in that we consider only a bond’s first default date as a default event
and allow consecutive defaults only after a one-year time lag. With our methodology, we count about 1.1 default
events per bond over the 13-year period examined in this study. Jankowitsch, Nagler, and Subrahmanyam (2014)
consider several different default events for a bond even if they occur simultaneously or within a few days, and
count about 2.7 default events per bond over the 8-year period that they analyze.

7 The choice of a 30-day period is further supported by the possibility to resolve default events timely after
default. E.g, emergence from bankruptcy can be achieved in as less as 45–60 days in prepackaged Chapter 11
cases. Time to completion may be also short in distressed exchange events, as exchange offers have to be kept
open for a minimum of 20 days, according to Rule 14e-1 of the Securities Exchange Act of 1934.

8 Ellul, Jotikasthira, and Lundblad (2011) use a 5-week period and Bao, O’Hara, and Zhou (2018) use a
1-month period in their empirical studies on market reactions to corporate bond rating downgrades.
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Figure 2.1: Trading activity before and after default. Average daily bond trading volume of 2,636 bonds
that defaulted between 2004 and 2016 during 30 days before and after default. Average daily volume is shown
as the number of trades and total trading value in USDm.

the default date and within the post-default period corresponding to 130 trades per defaulted

bond.

Figure 2.1 illustrates trading patterns around default. Trading volume increases as default

approaches. During 30 to 1 days before default, the average number of daily trades rises to

an average of about 30 trades on the default day as illustrated in Figure 2.1, indicating that

default is not fully anticipated by market participants.

For the empirical analysis, we consider additional explanatory variables well-established in

the literature to control for alternative channels. We rely on data from FISD and S&P Capital

IQ for firm-, industry-, and bond-specific data. Macroeconomic data is retrieved from the

Federal Reserve Economic Database of the Federal Reserve Bank of St. Louis (FRED). We

replicate several bond liquidity measures using the defaulted bonds’ transaction data reported

to TRACE. Finally, we utilize information on the pre-default bond ownership structure from

eMaxx data to proxy a supply shock as a response to default for our instrumental variable

approaches. We provide additional details on the explanatory variables in A.1.

2.2.2 Defaulted-bond dealer network

Masked dealer identifiers in Academic Corporate Bond TRACE data allow us to identify dealers’

exposure to intermediation in individual bonds and create a network representation of the
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U.S. corporate bond inter-dealer trade relationships. We start by identifying the primary dealer

in a defaulted bond by examining client-to-dealer transactions during the year prior to default

for each bond separately. Of all dealers identified in the sample, 179 dealers served as primary

dealers in at least one or more bonds, that is, having intermediated the highest number of

client-to-dealer trades among all dealers in a given bond prior to default. While many of the

primary dealers are the primary dealers in just one or a few bonds, 34 of the 179 primary dealers

are primary dealers in at least 10 different defaulted bonds. The primary dealers in our data

handle on average 31% (median 25%) of the pre-default order flow in a given bond, dispersed

between 16% of all trades at the first quartile and 40% at the third quartile.

Following the approach in Li and Schürhoff (2019), we then create a corporate bond inter-

dealer network over the years 2004–2016 based on dealer-to-dealer transactions reported to

TRACE. We describe the TRACE data, data cleaning, and preparation of the dealer network in

more detail in A.1. Figure 2.2 shows a representation of the dealer network as a directed graph,

based upon all inter-dealer transactions covered within the period 2004-2016. The network

illustrates whether two dealers (nodes) have executed buy or sell transactions (links) with one

another and represents all 3,383 dealers that maintain trade relationships with other dealers,

based upon 44,065,910 inter-dealer transactions. In Figure 2.2, the majority of both primary

dealers and other dealers that intermediate recently defaulted bonds are located within the

periphery of the network’s core. Top primary dealers are highlighted as triangles. The remaining

defaulted-bond dealers are highlighted as cross marks.

In addition to the primary dealer feature, we characterize dealers’ centrality for defaulted

bonds as controls formally by considering eight commonly used centrality measures to reflect the

centrality of dealers within the network: degree, in-degree, out-degree, eigenvector (Bonacich

(1972)), betweenness (Freeman (1977)), closeness, as well as in-closeness and out-closeness

(Bavelas (1950)). We compute these measures both for (i) an equal-weighted dealer network

which solely indicates the existence of a transaction relationship between two dealers and for

(ii) an alternative dealer network in which links are weighted by the number of transactions

executed between dealers.

In the Appendix, Table A.1 provides summary statistics on dealer centrality. Irrespective

of which centrality measure is considered, the observed dealer centralities are consistent with
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Figure 2: Dealer network before and after default. The figure illustrates the defaulted-bond dealer network,
representing 44,065,910 inter-dealer transactions over the period 2004–2016. Nodes represent the 3,383 bond dealers
and edges indicate trade relationships between two dealers via bond transactions reported to TRACE. The visual-
ization of the network is performed by a force-directed algorithm that creates attractive forces between neighboring
nodes and repulsive forces between distant nodes. Dealers that intermediate bonds within 30 days after a bond’s
default event are shown as cross marks. Primary dealers that handle most of the pre-default order flow of a bond are
shows as triangle. Primary dealers and other efaulted-bond dealers are located around the periphere of the network’s
core.

the existence of a transaction relationship between two dealers and for (ii) an alternative dealer

network in which links are weighted by the number of transactions executed between dealers.

In the Appendix, Table A.1 provides summary statistics on dealer centrality. Irrespective of

which centrality measure is considered, the observed dealer centralities are consistent with the core-

periphery structure of dealer networks described in the literature (see, for example, Di Maggio,

Kermani, and Song (2017), Hollifield, Neklyudov, and Spatt (2017), and Li and Schürho↵ (2019)),

9

Figure 2.2: Dealer network before and after default. The figure illustrates the defaulted-bond dealer
network, representing 44,065,910 inter-dealer transactions over the period 2004–2016. Nodes represent the 3,383
bond dealers and links indicate trade relationships between two dealers via bond transactions reported to TRACE.
The visualization of the network is performed by a force-directed algorithm that creates attractive forces between
neighboring nodes and repulsive forces between distant nodes. Dealers that intermediate bonds within 30 days
after a bond’s default event are shown as cross marks. Primary dealers that handle most of the pre-default order
flow of a bond are shown as triangles. Primary dealers and other defaulted-bond dealers are located around the
periphery of the network’s core.

the core-periphery structure of dealer networks described in the literature (see, for example,

Di Maggio, Kermani, and Song (2017), Hollifield, Neklyudov, and Spatt (2017), and Li and

Schürhoff (2019)), as the majority of dealers bear low-rank centralities and are located at the

periphery, while few dealers are placed at the core and have high centralities. For the empirical

analysis, we implement monthly 1-year trailing dealer networks to capture the network structure

timely before default and to account for time variation in the dealer network.9

9 We rely on monthly 1-year trailing networks rather than the complete 2004-2016 dealer network for two
reasons. First, we avoid including network information not available at the time of default. Second, although the
time variation in the dealer network is limited, we thus account for network changes over time. E.g., one major
bond dealer ceased to exist during the financial crisis.
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2.3 Dealer Intermediation in Defaulted Bonds

This section examines bond trading before and after bond default and documents intermediation

chains and how default affects them. Bondholders faced with a bond’s default need to trade and

locate suitable specialized distressed and other opportunistic investors willing to hold defaulted

bonds. As a result of this need for bond ownership to change, investors’ and dealers’ trading

decisions adjust after default. We will show that retail investors are more likely to sell defaulted

bonds to primary dealers after default than before, that is, to dealers who are experts in handling

a given bond.

We begin by examining trading behavior in corporate bonds before and after defaults and

link it to dealers’ identities as primary dealers. When investors decide to sell bonds, they ap-

proach dealers, facing a trade-off between execution speed and transaction costs. Dealers them-

selves face the challenge of locating buyers within the opaque OTC market. Li and Schürhoff

(2019) show that central dealers in the municipal bond dealer network provide faster but costlier

trade executions. For being able to provide liquidity in defaulted bonds, a dealer must therefore

provide sales channels to specialized vulture investors. Retail investors who have less access to

prime brokers that cater to large institutions (see, for example, Glode and Opp (2016)) need

to locate specialized dealers within the dealer network that are capable of intermediating the

distressed securities.

Figure 2.3 illustrates the empirical distribution of dealer centrality among primary and non-

primary dealers. The figure shows that dealers intermediating defaulted bonds are different

from the average dealer; they are more central than the average dealer. Primary dealers in

particular, while not the most central core dealers, tend to be more central than the average

dealer in defaulted bonds. A dealer within the network’s core belongs to the group of the

19 most central dealers that cumulatively account for more than 25% of all corporate bond

inter-dealer trading volume reported to TRACE.

We next test the prediction that (retail) investors are more likely to sell their defaulted

bond positions to primary dealers compared to before default. We use the following Probit
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Figure 2.3: Empirical distributions of dealer centralities within the 2004-2016 equal-weighted
dealer network. Centrality is scaled on the interval [0,1].

specification to investigate whether clients sell bonds after they default to primary dealers:

Pr(PrimaryDealerij | TradeCD
ij ) = Φ(α0 + α1 PostDefaultij + α2 PostDefaultij × Retailij

+ α3 PostDefaultij × LargeInstitutionalij

+ α4DefaultTypej + β′Xij + ϵij),

(2.1)

with the standard errors adjusted for heteroskedasticity and clustered by bond issue and time.

The sample comprises 625,548 client-to-dealer transactions within the year before default and

30 days thereafter. In specification (2.1), PrimaryDealerij indicates whether the bond j in

the client-to-dealer (CD) trade i, labeled as TradeCD
ij , is sold to the primary dealer. The

key variable of interest is a dummy variable PostDefaultij equal to one if trade i takes place

during the post-default period and zero otherwise. To differentiate the effect of the default

event on sellers’ size, we interact PostDefaultij dummy with an indicator for a retail trade

size, Retailij , defined as positions below $100,000, and with an indicator for an institutional

trade size, LargeInstitutionalij , defined as positions above $1 million par value. We control for

unobserved heterogeneity by including dummies for different default event types, DefaultTypej ,

as well as year fixed effects and trade and bond characteristics, Xij .
10

10 These characteristics are comparable to those used by Li and Schürhoff (2019) to predict investors’ choice to
sell to central dealers in the municipal bond market. However, as we examine the corporate bond market, certain
bond characteristics that we employ differ from those available for examining the municipal bond market.
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Table 2.1: Trading with primary dealers before and after default. Specification 1 is a Probit specification
that estimates the probability of clients trading with primary dealers. A total of 625,548 (494,050 pre-default
and 131,498 post-default) client-to-dealer trades are considered. The PostDefault dummy variable indicates
whether a trade takes place after the default event. For comparison, specification 2 uses dealer centrality as the
dependent variable in an otherwise similar OLS specification. The explanatory variables further include default
event type, trade characteristics, bond characteristics, and year fixed effects. Non-binary explanatory variables
are normalized with center 0 and standard deviation 1. Standard errors are adjusted for heteroskedasticity and
clustered by issue and time. Significance is denoted *** (1%), ** (5%), and * (10%).

PrimaryDealer | TradeCD DealerCentrality | TradeCD

Specification (1) (2)

PostDefault * Retail 0.67*** 0.02
PostDefault * LargeInstitutional 0.02 0.09***

PostDefault −0.50*** −0.07***
Retail 0.25*** −0.21***
LargeInstitutional −0.04 0.18***

Distressed exchange 0.07 −0.05
Risk rating 0.19** −0.04
Chapter 11 reorganization 0.23*** −0.07**
Chapter 11 liquidation 0.22** −0.14***
Chapter 7 liquidation 0.59** 0.21*

Maturity 0.08*** 0.03***
Seasoning −0.07*** 0.01
Issue size −0.17*** 0.04**
Rating −0.01 −0.05*
Junk-rated −0.14 0.07
Unrated −0.01 −0.07
Enhanced 0.01 0.06**
Callable 0.38*** −0.01
Sinking fund 0.29** 0.02
Senior unsecured −0.01 −0.03
Senior subordinate 0.05 −0.04
Subordinate junior −0.11 −0.10
Coupon −0.05** −0.04**
CDS availability 0.07* 0.13***
Covenants −0.13** 0.01

# observations 625,548 625,548

Table 2.1 reports the results. It is clear from column 1 that primary dealers are more likely

to intermediate retail-size trades as the coefficient on Retailij , 0.25, is positive and statistically

significant at the 1%-level. By contrast, the coefficient on LargeInstitutionalij , -0.04, is neither

economically nor statistically significant. Column 1 shows that primary dealers continue to

intermediate retail-size trades after default events, as the regression coefficient on the interaction

term, PostDefaultij × Retailij , is equal to 0.67 and it is both economically and statistically, at

the 1%-level, significant. Primary dealers do not significantly increase the intermediation of

large institutional-size trades for defaulted bonds after the default event since the regression

coefficient on the interaction term, PostDefaultij × LargeInstitutionalij , is equal to 0.02 and it

is neither economically nor statistically significant.
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Defaulted bonds of firms in Chapters 7 and 11 bankruptcies are significantly more likely to

be sold to primary dealers, and in distressed exchanges, sales to primary are the least likely.

Bonds with a longer time to maturity are more likely to be sold to primary dealers, and older

bonds and bonds with smaller issue sizes are less likely to be sold to primary dealers. For

the defaulted bonds, our analysis confirms our prediction that default events trigger a change

in investors’ trading decisions. Given investors’ need to sell recently defaulted bonds, retail

investors are more likely to approach primary dealers once a bond default occurs. Results from

column 1 demonstrate that predominantly primary dealers are responsible for the intermediation

of retail-size trades for defaulted bonds.

To check whether intermediation patterns also change after the default for large institutional

trades, we use dealer centrality, DealerCentrality | TradeCD, as the dependent variable in an

OLS specification that is otherwise similar to the specification (2.1):

DealerCentralityij | TradeCD
ij = α0 + α1 PostDefaultij + α2 PostDefaultij × Retailij

+ α3 PostDefaultij × LargeInstitutionalij

+ α4DefaultTypej + β′Xij + ϵij ,

(2.2)

The idea is that larger institutions tend to have their trades intermediated by more central

dealers as shown by Li and Schürhoff (2019). Column 2 of Table 2.1 reports these results.

Indeed, the regression coefficient on the interaction term, PostDefaultij × LargeInstitutionalij ,

is equal to 0.09 and it is both economically and statistically, at the 1%-level, significant. By

contrast, the regression coefficient on the other interaction term, PostDefaultij × Retailij , is

neither economically nor statistically significant. Unlike primary dealers, central dealers are

less likely to intermediate defaulted bonds of firms in Chapter 11 bankruptcy and more likely

to intermediate bonds with large issue sizes primarily held by institutional investors.

Overall, these results highlight the changing patterns in the intermediation of defaulted

corporate bonds. Retail-size trades of bonds in good standing are mostly intermediated by

primary and periphery dealers. After the default, the periphery dealers stop intermediating

defaulted bonds potentially due to risk, inventory costs, regulatory constraints, or a combination

of all three of them. The primary dealers pick up the slack in intermediating retail-size trades

of defaulted bonds. Primary dealers have expertise in these bonds and thus know potential
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clients who specialize in distressed assets such as hedge funds and other risk-taking investors.

Large institutions trade mostly with more central dealers who are capable of placing defaulted

bonds with hedge funds or/and taking them in their inventories. Therefore, large institutions

continue to trade with the same set of central dealers.

After establishing that the client-dealer network for a bond rearranges itself after a bond

default, the next important question is how these changes in the dealer-client intermediation

affect the investors’ recovery of losses suffered in default. We investigate this question in the

next section.

2.4 Impact of Dealer Intermediation on Recovery Rates

Having identified the shift in trading patterns around corporate bonds’ default events in Section

2.3, we now examine whether these trading patterns have an effect on the amount investors can

recover on their defaulted bonds. Existing studies estimate recovery rates by predominantly

utilizing three main groups of economic drivers: firm-specific characteristics, instrument-specific

characteristics, and macroeconomic conditions.11 Only two studies consider observable market

dynamics of defaulted debt securities when estimating recovery rates. Altman, Brady, Resti,

and Sironi (2005) explain aggregate annual bond recovery rates as a function of aggregate supply

and demand for defaulted debt securities by evaluating quoted bond prices. Jankowitsch, Nagler,

and Subrahmanyam (2014) extend this market-based approach to recovery rate modeling by

implementing bond liquidity proxies derived from trading volumes and prices available from

TRACE. We will show that recovery rates are not only driven by factors established in the prior

literature which include bond and firm characteristics, and macroeconomic factors, but also by

dealers’ and investors’ endogenously adjusting trading structure in the OTC bond market. Thus,

recovery will differ not only across bonds but also across investors even in the same bond.

We define the trade-level recovery rate for transaction i in bond j, RRij , as a ration of the

transaction price priceij to the bond’s par value, parj :

RRij =
priceij
parj

. (2.3)

11 See, for example, Altman and Kishore (1996), Altman, Brady, Resti, and Sironi (2005), Acharya, Bharath,
and Srinivasan (2007), Bruche and Gonzalez-Aguado (2010), and Nazemi and Fabozzi (2018).
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Table 2.2: Summary statistics for per-bond mean recovery rates. The recovery rate is calculated as
the average trading price in cents per 100 cents in par value, of transactions on the default day and during the
30-day period thereafter.

Mean recovery rate RRj in defaulted bond j (% of par)

Mean SD Min q25 q50 q75 Max N % total

All defaulted bonds 38.8 28.8 0.0 13.8 34.2 57.2 119.8 2,636 100.0%

Distressed exchange 59.2 29.8 0.4 30.3 59.6 84.8 113.7 197 7.5%
Default risk rating 57.5 27.4 5.7 34.2 58.7 80.5 119.8 306 11.6%
Chapter 11 reorganization 37.4 27.9 0.0 12.3 37.6 53.2 119.6 1,428 54.2%
Chapter 11 liquidation 38.0 28.8 0.0 13.1 29.9 57.2 103.4 92 3.5%
Default rating 26.3 20.7 0.0 13.2 15.9 35.1 106.6 542 20.6%
Chapter 7 liquidation 26.3 34.0 0.0 0.3 11.6 42.5 99.9 71 2.7%

To compute the bond’s recovery rate, we utilize transaction prices reported to TRACE. We

consider a 30-day post-default period which is a commonly used market convention for defining

recovery rates. For bondholders who sell promptly after default or mark their investments to

market, the price at default represents actual recovery on investment (Acharya, Bharath, and

Srinivasan, 2007). The trade-specific rates in our sample are representative of the actual realized

recovery for investors. In addition, we utilize a mean recovery rate in bond j similar to the one

used in Jankowitsch, Nagler, and Subrahmanyam (2014):

RRj =
1

T + 1

t+T∑
s=t

 1

|Kjs|
∑
i∈Kjs

RRij

 , (2.4)

where t is the bond’s default date, T is the horizon, and Kjs is the number of reported bond

transactions in bond j on day s. To calculate RRj we consider transactions reported to TRACE

between the default date t and 30 days thereafter.

Table 2.2 reports summary statistics for mean recovery rates defined in (2.4) and split by the

event type. The table shows a wide variation in recovery rates. The mean recovery rate in our

sample is 38.8% with a standard deviation of 28.8% and a spike at 10-20%. The statistics are

in line with the 40% recovery rate that has historically been used as a fixed recovery estimate,

as noted by Altman and Kishore (1996). Consistent with the literature, distressed exchange

events exhibit the highest recovery rates (see, for example, Franks and Torous (1994), Varma

and Cantor (2005), and Mora (2015)). Default risk rating downgrades (e.g. S&P’s C rating)

yield the second-highest recoveries whereas actual default ratings (e.g., S&P’s D rating) and
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Chapter 7 liquidations show the worst recovery rates. Default risk rating downgrades may

occur well ahead of a formal default event and creditors may then be able to impose more

timely measures to preserve their investments, e.g., selling their bond holdings before the firm’s

situation worsens, or influencing the debtor.

The wide variation in recovery rates that we observe occurs across bonds and time. Over

time, the post-global financial crisis years 2009 and 2014 and the credit market stress year 2016

yielded the lowest recoveries. Across industries, bonds from utilities (electricity and gas) recover

the most; financial services and savings/loan providers have the worst recovery rates (see, for

example, Jankowitsch, Nagler, and Subrahmanyam (2014) and Mora (2015) for evidence).

2.4.1 Mean recovery rates and dealer intermediation

We start by exploring mean recovery rates as defined in (2.4) capturing the expected bond-

level recovery. To check the impact of the primary dealer intermediating defaulted bonds, we

document whether an intermediating dealer is the primary dealer in a client-to-dealer trade.

For a given bond, we define the percentage share of trades that are performed by the primary

dealer as:

PrimaryDealerj ≡
1

Kj

Kj∑
i=1

PrimaryDealerij , (2.5)

where Kj is the number of client-to-dealer trades in bond j.

We set up the following specification to model mean recovery rates, employing variables

established in the recovery rate literature (see, for example, Acharya, Bharath, and Srinivasan

(2007), Jankowitsch, Nagler, and Subrahmanyam (2014), Mora (2015), and Nazemi and Fabozzi

(2018)), and adding the percentage share of primary dealer intermediation as the explanatory

variable:

RRj = α0 + α1PrimaryDealerj + α2DefaultTypej + β′Xj + ϵj , (2.6)

with standard errors adjusted for heteroskedasticity and clustered by issue and time. Controls

Xj include a host of fixed effects, default event characteristics, bond characteristics, liquidity

measures, macroeconomic features, and firm-level characteristics.

A potential concern with explaining mean recovery rate by PrimaryDealerj is that common

shocks can affect both a bond’s recovery after the default and primary dealers’ incentives to
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Table 2.3: Mean recovery rates per bond. The PrimaryDealer variable represents the share of client-to-
dealer transactions where a given bond is sold to a primary dealer. The mean recovery rate RRj is the dependent
variable in specifications 1 - 4. A total of 2,060 and 1,270 defaulted bonds are considered in specifications 1/3, and
2/4, respectively. Explanatory variables, other than the PrimaryDealer, central dealer, and binary variables,
are normalized with center 0 and standard deviation 1. Standard errors are adjusted for heteroskedasticity and
clustered by firm and time. Significance is denoted *** (1%), ** (5%), and * (10%).

Mean recovery rate RRj

(1) (2) (3) (4)

Specification OLS Bartik-IV OLS Bartik-IV

PrimaryDealer 3.44** 12.64*** 3.24* 11.84***

Central dealer −3.10* −1.99
Dealer size 0.49 0.24
Dealer inventory −0.64 −2.08***

Trade size −5.18*** −5.80*** −5.10*** −5.61***

Distressed exchange 25.97*** 21.86*** 25.91*** 21.39***
Risk rating 22.37*** 16.10*** 22.18*** 15.03***
Chapter 11 reorganization 5.58 1.93 5.46 1.60
Chapter 11 liquidation 2.36 −0.47 2.51 −0.08
Chapter 7 liquidation −19.02** −18.16** −19.49** −18.05**

Bond features Yes Yes Yes Yes
Seniority FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes
Industry distress FE Yes Yes Yes Yes
Liquidity features Yes Yes Yes Yes
Macroeconomic features Yes Yes Yes Yes
Company features Yes Yes Yes Yes
R2 0.6303 0.6273 0.6312 0.6297
# observations 2,060 1,270 2,060 1,270

intermediate this bond. We utilize Bartik (1991) shift-share instrumental variables (IV) ap-

proach to address this endogeneity problem. We first present OLS estimates for α1 and then

IV estimates. In the spirit of Bartik (1991), we instrument the percentage share of primary

dealers PrimaryDealerj participating in the trades of bond j through the expected primary

dealer share by first estimating trading with the primary dealer for each transaction separately,

using a Probit model. We then aggregate the predicted trade-level primary dealer participa-

tion, P̂r(PrimaryDealerij), to an expected percentage share of primary dealer trading for each

defaulted bond. Our Bartik (1991)-type instrumental variable for the primary dealer share in

bond j is defined as follows:

̂PrimaryDealerj =
1

Kj

Kj∑
i=1

P̂r(PrimaryDealerij). (2.7)
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While the data for constructing (2.7) is on a transaction basis, the analysis is on a per-bond

basis.

Using information about bond ownership from the eMaxx database, the instrument is the

ownership concentration (Herfindahl–Hirschman index) of institutional investors including in-

surance companies, bond mutual funds, and pension funds in a given bond prior to default. It

proxies for a supply shock, given that investment restrictions may force these investors to sell

a bond once it defaults.12 Therefore, a high ownership concentration of institutional investors

in a bond is expected to dry up its market liquidity, such that retail investors who want to sell

need to find specialized dealers that still provide liquidity. Thus, the identifying assumption

here is that the concentration of ownership among institutional investors is predetermined just

before default and affects bond-level recoveries through investors’ trade-level decisions to trade

with a specialized primary dealer.

Table 2.3 reports results for the impact of primary dealers on mean recovery rates. In

specification 1, we use the share of primary dealer participation across all post-default trades,

and in specification 2 we replace it with its instrumented primary dealer indicator defined in

(2.7). Specifications 3 and 4 are identical to specifications 1 and 2, respectively, except we

control for dealer characteristics such as central dealer as a binary indicator denoting whether a

dealer is located in the network’s core, dealer size, and inventory. The number of observations

is lower in columns 2 and 4 because the eMaxx data is missing in some cases.

The coefficient estimates on PrimaryDealer are large and significant. OLS regression spec-

ifications 1/3 suggest that recovery rates for a given bond are $3.44/$3.24 per $100 invested

higher when transacting with primary dealers compared to non-primary dealers. Given that the

mean bond-level recovery rate in our sample is $38.8 per $100 invested, this implies an almost

9% premium obtained by investors who sell to primary dealers. The IV estimates are even

larger at $12.64/$11.84. Since the coefficient on the primary dealer indicator is positive and

significant in all specifications, there is a positive relationship between trading with primary

dealers and recovery rates at the bond level which is robust when controlling for mean dealer

12 Investment mandates, internal and external regulatory constraints restrict certain investors such as insurance
companies, bond mutual funds, and pension funds in the composition of investment portfolios. Furthermore, ex-
cept for the temporary spike in volume around the default date, defaulted debt securities may no longer trade in
a liquid market. Thus, the sale decisions may not be rational from an unrestricted investor’s perspective. Consis-
tently, May (2010), Ellul, Jotikasthira, and Lundblad (2011), Bao, O’Hara, and Zhou (2018), and Reichenbacher
and Schuster (2022) show that supply shocks can already be observed in rating downgrades.
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size, inventory, and centrality.

The regression coefficient on central dealer is equal to −1.99 in column 4, and it is neither

economically nor statistically significant. However, its negative sign provides additional support

to a hypothesis that central dealers play a different role than primary dealers when intermedi-

ating defaulted corporate bonds. This could be the “need for speed” by institutions willing to

trade the faster execution for inferior prices. Specification 4 also reports that the relationship

between the dealer size and the mean recovery rates is insignificant and that dealers with more

full inventories tend to offer inferior prices. The other regression coefficient estimates suggest

that recovery rates decline with the average trade size, mainly because primary dealers inter-

mediate retail-size trades. Recovery rates are higher in distressed exchanges and in risk rating

cases than in Chapters 11 and 7. Next, we shift our focus to trade-specific recovery rates.

2.4.2 Trade-specific recovery rates

We estimate recovery rates at the trade level for investors selling to primary compared to non-

primary dealers in order to better understand the marginal effect of dealer intermediation on

recoveries and the heterogeneity therein across investors.

We set up the following regression specification to model trade-level recovery rates, again

employing the explanatory variables established in the recovery rate literature and adding the

primary dealer indicator as a determinant:

RRij = α0 + α1 PrimaryDealerij + α2DefaultTypej + β′Xij + ϵij , (2.8)

where DefaultTypej includes fixed effects of the different default event types. The controls Xij

include seniority, year, industry, and industry distress fixed effects as well as bond, liquidity,

macroeconomic, and company features. We also add dealer fixed effects in a saturated spec-

ification to focus on the default-episode specific role of PrimaryDealerij . Again, we cluster

standard errors by bond issue and time. A total of 108,476 post-default client-to-dealer trades

are included in the recovery rate specification.

We estimate equation (2.8) in several ways to account for the endogeneity in dealer selec-

tion. Given that retail investors select to trade defaulted bonds with primary dealers as shown

in Section 2.3, the dealer selection may not be independent from the investors’ expected bond
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recovery. In addition, unobservables may cause endogeneity of the primary dealer. Thus, stan-

dard OLS regression potentially provides biased coefficient estimates. Our approach addresses

these issues in the following ways.

In addition to specification 1 in Table 2.4 with seniority, year, industry, and industry dis-

tress fixed effects and bond, liquidity, macroeconomic, and company features, specification 2

saturates the regression with dealer fixed effects to account for any dealer-specific explanation.

In specification 3, we add an instrumental variable to control for correlation between the pri-

mary dealer indicator PrimaryDealerij and ϵij in (2.8). As an instrumental variable, we once

again utilize the pre-default ownership concentration (Herfindahl–Hirschman index) of institu-

tional investors which proxies for a supply shock. Given the supply shock, investors are then

expected to be more likely to sell defaulted bonds to primary dealers. The exclusion restriction

here is that a defaulted bond’s transaction pricing is not directly correlated with the bond’s

post-default supply shock at default, except through the liquidity provision that depends on

the seller’s dealer selection, and thus the selected dealer’s identity as a primary or non-primary

dealer. In order to adjust for potentially biased estimates stemming from investors’ dealer se-

lection, we employ a Heckman (1979) correction approach in an alternative specification. In

specification 4, we add the Heckman correction term, the inverse Mills ratio Lambda, as an

additional explanatory variable. These approaches allow us to identify the average effect of

trading with a primary dealer on recovery prices at the trade level.

Table 2.4 presents the regression results for trade-level recovery rates. The first column

shows the coefficient on the instrument in a first-stage Probit model for dealer choice. The

instrument is significant in this specification, supporting the instrument’s validity assumption.

The positive sign suggests that when a bond’s ownership structure is concentrated among in-

surance companies, pension funds, and bond mutual funds, we observe a higher propensity of

investors to sell to primary dealers subsequent to a default event. This is expected if institu-

tional investors cause a supply shock in response to default, increasing the need for specialized

dealers that provide sales channels to potential investors.

In specifications 1–5 of Table 2.4, we focus on the effect of selling to a primary dealer,

PrimaryDealerij , on the transaction-specific recovery rate. The standard OLS specification

(specification 1) yields a recovery of $4.16 per $100 invested, both statistically at the 1% level
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Table 2.4: Trade-based recovery rates. The left column is the Probit specification that estimates the
probability of clients trading with primary dealers when selling recently defaulted bonds in order to create the
instrumental PrimaryDealer variable. The binary PrimaryDealer variable indicates whether the bond is sold to
a primary dealer. The recovery rate RecoveryRate is the dependent variable in specifications 1–5. Specification
2 controls for dealer-specific effects. Specifications 3–5 control for potential endogeneity, selection bias, and
essential heterogeneity. A total of 108,476 post-default client-to-dealer trades are considered for recovery rate
estimation. Non-binary explanatory variables are normalized with center 0 and standard deviation 1. Standard
errors are adjusted for heteroskedasticity and clustered by issue and time. Significance is denoted *** (1%), **
(5%), and * (10%).

Pr(PrimaryDealer) Trade-level recovery rate RRij

(1) (2) (3) (4) (5)

Specification 1st stage OLS Saturated IV Heckman Essent. Het.

PrimaryDealer (×p in (5)) 4.16*** 1.45*** 7.78*** 3.94*** 7.93***

Lambda −9.76
p −24.63**
p2 24.00**
Pre-default institutional HHI 0.93***

LargeInstitutional 0.16 −0.31 −1.37** −0.48 −0.52 −0.32
Retail 0.59*** −0.32 −0.23 0.29 −0.96 1.07

Distressed exchange 0.27 8.10 7.93 7.70 7.73 8.42
Risk rating 0.22 11.18** 11.73** 10.82* 10.93* 11.11*
Chapter 11 reorganization 0.09 −7.21 −6.82 −7.83 −7.39 −7.67
Chapter 11 liquidation −0.02 0.62 0.93 0.44 0.78 0.24
Chapter 7 liquidation 0.61 −2.85 −3.07 −3.08 −3.47 −2.29

Seniority FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes Yes
Industry distress FE Yes Yes Yes Yes Yes Yes
Bond features Yes Yes Yes Yes Yes Yes
Liquidity features Yes Yes Yes Yes Yes Yes
Macroeconomic features Yes Yes Yes Yes Yes Yes
Company features Yes Yes Yes Yes Yes Yes
Dealer FE No No Yes No No No
R2 0.6004 0.6223 0.5989 0.6007 0.6061
# observations 108,476 108,476 108,476 108,476 108,476 108,476

and economically significant. The estimate is also similar to the estimate of the mean recovery

rate from column 1 of Table 2.3. Specification 2 that is saturated with dealer fixed effects yields

a consistent sign and significance of trading with a primary dealer as specification 1, however, at

a smaller magnitude with $1.45 per $100 invested, indicating that some fraction of the pricing

benefit captured by the primary dealer is likely captured by other dealer-specific characteristics.

The IV specification 3 of the transaction-level recovery rate yields a $7.78 per $100 higher

recovery at primary dealers, both statistically at the 1% level and economically significant, but

somewhat lower than the Bartik (1991) estimate for the mean recovery rate from column 2

of Table 2.3. When we apply the Heckman (1979) correction in specification 4 to correct for
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selection bias, we obtain a recovery of $3.94 per $100 invested, both statistically at the 1% level

and economically significant, which is close to the estimate from column 1 of Table 2.3. Overall,

the results from specifications 1–4 imply that clients transacting with primary dealers expect

to recover between $4 and $8 more per each $100 invested on each transaction as compared

to transacting with other dealers, and about $1.45 when primary dealers’ other unobserved

characteristics are accounted for via dealer fixed effects.

To account for a heterogeneous response on recovery prices across investors to transacting

with primary dealers, we augment specification (2.8) with a model of essential heterogeneity for

treatment effects (Heckman, Urzua, and Vytlacil, 2006) derived in A.2 to yield:

RRij = α0 + α1 PrimaryDealerij × pij +K(pij) + α2DefaultTypej + β′Xij + ϵij , (2.9)

where pij is the propensity of trading with a primary dealer. Specification (2.9) includes the

interaction term between PrimaryDealerij and the propensity pij , which we derive from the

first-stage Probit model, as well as a linear-quadratic function K(pij) capturing the non-linear

dependence of observed recoveries on pij .

The right column of Table 2.4 reports results from specification (2.9). The negative and

statistically significant coefficient on pij and positive and statistically significant coefficient on

p2ij indicate a strong essential heterogeneity in the propensity to transact with primary dealers.

Moreover, we find that the regression coefficient on the interaction term PrimaryDealerij ×

pij is positive and statistically significant at the 1% level. Thus, investors decide to sell their

defaulted bonds to primary dealers while having at least partial knowledge of the idiosyncratic

recovery outcomes of such dealer selection.13

The significant positive coefficient on trading with primary dealers in all specifications sup-

ports the interpretation that PrimaryDealer positively impacts recovery rates. These results

are consistent with theoretical frameworks in which dealers have special skills in intermediating

bonds (Glode and Opp, 2019; Hugonnier, Lester, and Weill, 2019; Sambalaibat, 2022; Chaderina

and Glode, 2023).

All results reported in Table 2.4 are robust to including and excluding controls for dealer

13 If we consider third or fourth-order polynomials, signs and significance of the interaction PrimaryDealerij
× pij remains stable, and the other coefficient estimates do not change materially.
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centrality, dealer size, and dealer inventory, robust to replacing default type fixed effects with

firm-level default event fixed effects, and robust to relaxing the single primary dealer definition

to the group of the most active dealers, ranked by decreasing number of intermediated trades

within the pre-default period, that make up 5% of total trading volume.

2.5 Complexity of Trading and the Role of Primary Dealers

In this section, we explore different dimensions along which the intermediation of bonds changes

when they become distressed and how this can explain the higher recovery rates. One possibility

is that primary dealers search for higher-valuation buyers potentially longer and by taking bonds

into overnight inventory thus making intermediation chains longer and reducing the chance of

direct intraday client-to-client matches. This expertise channel can explain why switching to

trading through primary dealers causes bond recovery to be higher. More generally, this allows

us to investigate how dealers intermediating defaulted bonds match with clients and other

dealers when markets are thin. Specifically, we investigate intermediation chain lengths, dealers’

role as brokers as opposed to principal traders, whether dealers are more likely to prearrange

trades or place defaulted bonds in their inventories, and whether the extensive margins of intra-

day trading, i.e., the probabilities of matching with the counterparty within a day, are lower for

defaulted bonds than for regular bonds.

2.5.1 Intermediation chains in defaulted bonds

Here we examine whether intermediation chains change for bonds affected by default. Specif-

ically, we are interested in how dealers match sellers and buyers of recently defaulted bonds.

We analyze intra-day round-trip intermediation chain length to infer predictions on primary

and non-primary dealers’ ability to successfully and timely match the supply and demand in

defaulted bonds.

To study the length of intermediation chains, we focus our analysis on a sub-sample of

successful intra-day round trips.14 Dealers may either complete the bond intermediation chain

14 We consider intra-day round trips instead of round trips over several days for two reasons. First, only
intra-day round trips can be distinctively allocated to either the pre- or the post-default period, as they do
not overlap both periods. Second, the economics behind intra-day observations are less likely to be affected by
interfering market dynamics or news events related to the defaulted bond that may alter the bond’s trading
characteristics during the intermediation process, as only a short time frame from the start of the intermediation
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by selling to a client, or dealers may sell to another dealer, who then locates the next buyer.

Ultimately, bond intermediation is completed through a chain of trades starting with a client-to-

dealer trade and ending with a dealer-to-client trade, hence called a round-trip.15 In between,

there may occur one or several consecutive dealer-to-dealer trades. We denote a complete round-

trip with N dealers between the seller-client and the buyer-client as a C(N)DC intermediation

chain. The head dealer within the chain either sells immediately to the next client (CDC round-

trip), to the next dealer (CDD trade chain), or keeps the bond in inventory until the next buyer

is located.

We estimate the length of intra-day completed C(N)DC intermediation chains before and

after default events using the following specification:

log(Nij) | RoundTripC (N )DC
ij = α0 + α1 PostDefaultij + α2 PrimaryDealerij

+ α3 PrimaryDealerij × PostDefaultij + α4DefaultTypej + β′Xij + ϵij , (2.10)

with the standard errors adjusted for heteroskedasticity and clustered by bond issue and time.

The sample consists of a total of 143,787 (124,438 pre-default and 19,349 post-default) intra-

day C(N)DC round-trips. In specification (2.10), Nij is the number of dealers within an intra-

day completed C(N)DC intermediation chain i in bond j, denoted RoundTrip
C(N)DC
ij , and

PrimaryDealerij indicates whether the head dealer that offsets the initial client-to-dealer trade

and initiates a successful intra-day round-trip is the primary dealer in that bond. Controls

Xij are the same as used in specification (2.1), but we add dealer characteristics such as size,

centrality, inventory, and a dummy for a dealer acting as a broker. To control for unobserved

dealer-specific characteristics, we add a saturated specification with dealer fixed effects in column

(5).

Table 2.5, reports our results for specification (2.10) with, column 1, and without, columns

2–5, bond dummies. Column 1 shows that intermediation chains are 9% shorter for primary

dealers (the regression coefficient is equal to −0.09 and statistically significant at the 1%-level),

12% longer for retail-size trades (the regression coefficient is equal to 0.12 and statistically

significant at the 1%-level), and 22% shorter for large institution-size trades (the regression

to its completion is considered.
15 We allow for trade splits to offset a dealer’s position in a dealer-to-client sale.
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Table 2.5: Length of intra-day C(N)DC round-trip chains before and after default. The table
provides results of OLS regression that estimates the length of intra-day C(N)DC round-trip chains, under
the condition that the initial client-to-dealer trade results in a complete intra-day C(N)DC round-trip. The
dependent variable is the logarithm of the number of dealers within the intermediation chain between two clients.
A total of 143,787 (124,438 pre-default and 19,349 post-default) intra-day C(N)DC round-trips are considered.
The PostDefault dummy variable indicates whether a trade takes place after the default event. PrimaryDealer
indicates whether the bond is sold to the primary dealer. The explanatory variables further include default
event type, dealer characteristics, trade characteristics, bond characteristics, and year fixed effects. Non-binary
explanatory variables are normalized with center 0 and standard deviation 1. Standard errors are adjusted for
heteroskedasticity and clustered by issue and time. Significance is denoted *** (1%), ** (5%), and * (10%).

IntermediationChainLengthij

Specification (1) (2) (3) (4) (5)

PostDefault −0.02* 0.01 0.00 −0.01 −0.01
PrimaryDealer −0.09*** −0.13*** −0.13*** −0.14*** −0.07***
PrimaryDealer * PostDefault 0.12*** 0.11***

Distressed exchange −0.05** −0.06*** −0.06*** −0.02
Risk rating −0.08*** −0.08*** −0.08*** −0.04***
Chapter 11 reorganization −0.01 −0.02 −0.02 0.00
Chapter 11 liquidation −0.06** −0.09*** −0.09*** −0.04*
Chapter 7 liquidation −0.13*** −0.11** −0.11** −0.10**

Dealer size 0.11*** 0.11*** 0.07***
Dealer centrality −0.16*** −0.16*** 0.00
Broker role −0.09*** −0.09*** −0.11***
Dealer inventory 0.01*** 0.01*** 0.01***
Retail 0.12*** 0.20*** 0.16*** 0.15*** 0.04***
LargeInstitutional −0.22*** −0.28*** −0.27*** −0.27*** −0.19***

Maturity −0.03*** −0.03*** −0.03*** −0.02***
Seasoning 0.00 0.00 0.00 0.00
Issue size −0.01 −0.01 −0.01 0.00
Rating −0.05*** −0.04*** −0.04*** −0.04***
Junk rated 0.15*** 0.14*** 0.14*** 0.15***
Unrated −0.07* −0.04 −0.04 0.00
Enhanced 0.00 0.00 0.00 0.02**
Callable −0.05*** −0.05*** −0.05*** −0.03***
Sinking fund −0.06 −0.06 −0.06 −0.05
Senior unsecured 0.04** 0.03** 0.03** 0.02**
Senior subordinate 0.02 0.02 0.02 0.02
Subordinate junior 0.04 0.06* 0.06* 0.06**
Coupon 0.02*** 0.02*** 0.02*** 0.01***
CDS availability 0.03** 0.02* 0.02* 0.01
Covenants 0.01 0.00 0.00 0.02*

Bond FE Yes No No No No
Dealer FE No No No No Yes
# observations 143,787 143,787 143,787 143,787 143,787

coefficient is equal to −0.22 and statistically significant at the 1%-level). While the regression

coefficient on the post-default dummy is negative and equal to −0.02, it is not economically

significant and statistically significant only at the 10%-level.

When we use bond characteristics instead of bond dummies, column 2 of Table 2.5, and then

add dealer size, centrality, inventory, and the broker role dummy, column 3 of Table 2.5, the

regression coefficient on the post-default dummy loses its statistical and economic significance.

Columns 2/3 show that intermediation chains are 13% shorter for primary dealers, 20%/16%
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longer for retail-size trades, and 28%/27% shorter for large institution-size trades. The length

of intermediation chains increases with the dealer size and inventory, and they are longer for

coupon-paying and riskier bonds, i.e., for high-yield bonds, senior unsecured and junior sub-

ordinate bonds issues, and bonds with CDS contracts. The length of intermediation chains

declines with dealer centrality (except for specification 5), and it is shorter in dealer-brokered

trades, for bonds with a longer maturity, callable, and lower-rated bonds, and bonds traded in

risk downgrade default events. Finally, intermediation chains are shorter for bonds of firms in

Chapters 7 and 11 bankruptcy liquidations.

We add the interaction term between the primary dealer and post-default dummies to the

specification in column 3 of Table 2.5 and report the results in column 4 without, and in column

5 with dealer fixed effects. The regression coefficient on the interaction term is equal to 0.12 and

0.11, respectively, and both are statistically significant at the 1%-level. This implies that inter-

mediation chains for primary dealers are 11%/12% longer post-default than for other dealers.

Thus, primary dealers’ intra-day matching capability is more affected by default events. By con-

trast and in line with Hollifield, Neklyudov, and Spatt (2017), intermediation chains initiated by

central dealers are generally shorter than those initiated by non-central dealers, and similarly,

dealers that act as agencies without taking inventory risk initiate shorter intermediation chains.

2.5.2 Broker vs. dealer role

During normal times, dealers absorb excess supply in corporate bonds through their balance

sheets (Goldberg and Nozawa, 2021). We examine primary dealers’ tendency to take bonds

into inventory as opposed to prearranging trades in defaulted bonds in the role of a broker. We

consider trades denoted as agency trades in TRACE and principal trades that are offset within

one minute as agency trades.16

We estimate the effect of default on dealers’ role as brokers versus principals in a Probit

specification that controls for a variety of alternative factors, employing 625,548 client-to-dealer

trades during the year before a bond’s default event until 30 days thereafter. The depen-

dent variable indicates whether the dealer acts as a broker (BrokerRoleij = 1) or principal

16 Our definition of agency trades follows the standard convention in the literature and is in line with Bessem-
binder, Jacobsen, Maxwell, and Venkataraman (2018), Bao, O’Hara, and Zhou (2018), and Li and Schürhoff
(2019). In A.1, we provide more information on the prevalence of agency trades.
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Table 2.6: Broker vs. dealer role before and after default. Probit regression for the probability of
dealers to trade as brokers when buying bonds from clients. The dependent variable indicates 1 when the dealer
takes the role of a broker (agency) and 0 otherwise (principal). A total of 625,548 (494,050 pre-default and
131,498 post-default) client-to-dealer trades are considered. The PostDefault dummy variable indicates whether
a trade takes place after the default event. PrimaryDealer indicates whether the bond is sold to the primary
dealer. The explanatory variables further include dealer characteristics, default event type, trade characteristics,
bond characteristics, and year fixed effects. Non-binary explanatory variables are normalized with center 0
and standard deviation 1. Standard errors are adjusted for heteroskedasticity and clustered by issue and time.
Significance is denoted *** (1%), ** (5%), and * (10%).

Pr(BrokerRoleij )

Specification (1) (2) (3) (4) (5)

PostDefault −0.11*** −0.18*** −0.22*** −0.01 0.01
PrimaryDealer −0.31*** −0.32*** −0.26*** −0.07 0.21***
PrimaryDealer * PostDefault −1.05*** −1.07***

Distressed exchange −0.10* −0.13* −0.09 −0.09
Risk rating −0.07 −0.10 −0.08 −0.06
Chapter 11 reorganization −0.10** −0.15*** −0.11** −0.11**
Chapter 11 liquidation −0.15* −0.24*** −0.21*** −0.22***
Chapter 7 liquidation −0.19 −0.16 −0.06 −0.17

Dealer size 0.31*** 0.31*** 0.38***
Dealer centrality −0.71*** −0.71*** −0.18***
Dealer inventory −0.01* 0.00 0.00
Retail 0.56*** 0.53*** 0.39*** 0.40*** 0.25***
LargeInstitutional −0.18*** −0.22*** −0.11*** −0.10*** 0.07***

Maturity −0.04*** −0.04*** −0.03** −0.01
Seasoning −0.03** −0.03* −0.02 −0.01
Issue size −0.01 0.00 −0.01 0.02
Rating −0.01 0.00 −0.02 −0.04
Junk rated 0.00 −0.02 0.04 0.09
Unrated −0.10 −0.07 −0.11 −0.04
Enhanced 0.02 0.05 0.03 0.06
Callable −0.18*** −0.18*** −0.14*** −0.07*
Sinking fund 0.10 0.12* 0.11 0.25***
Senior unsecured 0.01 0.00 0.00 0.05
Senior subordinate −0.04 −0.05 −0.06 0.02
Subordinate junior 0.07 0.04 0.04 0.15
Coupon 0.01 −0.01 −0.01 −0.02
CDS availability −0.14*** −0.11*** −0.11*** −0.08**
Covenants 0.04 0.05 0.04 −0.02

Bond FE Yes No No No No
Dealer FE No No No No Yes
# observations 625,548 625,548 625,548 625,548 625,548

(BrokerRoleij = 0). We estimate the following relationship:

Pr(BrokerRoleij | TradeCD
ij ) = Φ(α0 + α1 PostDefaultij + α2 PrimaryDealerij

+ α3 PrimaryDealerij × PostDefaultij + α4DefaultTypej + β′Xij + ϵij), (2.11)

with standard errors adjusted for heteroskedasticity and clustered by bond issue and time. In

this specification, controls Xij include trade and bond characteristics, and year fixed effects.

Table 2.6 provides results for the Probit estimates for the dealer’s role. In specifications
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1–3, we find that dealers are significantly less likely to act as brokers once a bond defaults. This

highly significant effect suggests that dealers provide immediacy to sellers of recently defaulted

bonds who must sell defaulted bonds quickly. Dealers take recently defaulted bonds and the

associated risks on their own balance sheets rather than searching for a willing buyer first.

We further find a strong negative effect of primary dealers in specifications 1–3 where we do

not add primary dealer interactions which demonstrates that primary dealers more readily risk

their own capital for intermediating defaulted bonds for which they had handled most of the

order flow prior to default. Moreover, the negative interaction effects in specifications 4 and

5 demonstrates that primary dealers are even more likely to act as principals once a bond

defaults. As one would expect, primary dealers are more likely to take bonds into inventory,

likely because they are familiar with the bond, and the potential investor universe, and are

thereby able to better manage the risk of ownership than other dealers. Complementing the

findings of Goldstein and Hotchkiss (2020) who show that central dealers are more likely than

peripheral dealers to provide inventory capacity, we find that primary dealers are more likely to

take defaulted bonds into their inventory than other dealers. We furthermore find a significant

positive effect of dealer size on the probability of trading as a broker.

2.5.3 Complexity of matching

We estimate whether default events have an impact on the probability of dealers selling bonds on

the same day as acquired, instead of keeping them in inventory overnight. Here, we consider all

625,548 client-to-dealer and consecutive offsetting trades observed during the year before default

and until 30 days thereafter. More formally, we apply a Probit model that estimates whether a

dealer sells a bond that they recently acquired from one of their clients through a consecutive

dealer-to-client trade (CDC round-trip) or dealer-to-dealer trade (CDD trade chain) on the

same day (IntraDayMatchij = 1), or whether the dealer keeps the bond in inventory overnight

(IntraDayMatchij = 0):

Pr(IntraDayMatchij | TradeCD
ij ) = Φ(α0 + α1 PostDefaultij + α2 PrimaryDealerij

+ α3 PrimaryDealerij × PostDefaultij + α4DefaultTypej + β′Xij + ϵij). (2.12)
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Variable definitions are similar to those used in specification (2.10). Additionally, we include an

interaction term between PostDefaultij and PrimaryDealerij in the baseline specification. We

adjust standard errors for heteroskedasticity and cluster by bond issue and time.

Table 2.7 shows the regression results. We find in specifications 1–3 that dealers are sig-

nificantly less likely to sell a recently defaulted bond on the same day as acquired, compared

to bonds that have not yet defaulted. This finding demonstrates that dealers are indeed more

likely to keep bonds that recently defaulted in overnight inventory at the end of the day on

which clients offload their bonds to the dealers. Thus, dealers commit their capital by taking

these defaulted bonds in overnight inventory. The results show that primary dealers are more

likely to take bonds in overnight inventory than non-primary dealers, and the significant and

negative interaction between the primary dealer indicator and the post-default dummy variable

in specifications 4 and 5 indicates that the likelihood of primary dealers to utilize overnight

inventory increases significantly more for primary dealers once a bond defaults.

Dealers absorb client sell orders depending on the severity of the default event type, with

distressed exchanges and risk rating downgrades showing the smallest, and Chapter 7 liqui-

dations showing the largest significant effects. Thus, dealers are more likely to keep bonds of

the most severe default event type in inventory overnight. When dealers act as brokers, the

likelihood of them offsetting trades on the same day is significantly higher, which corresponds

to the broker role of dealers without utilizing their own inventory. This is reasonable, given that

dealers prearrange trades when they act as brokers. Moreover, when dealers have accumulated

bond inventories over the recent month, indicated by dealer inventory, the likelihood of putting

additional bonds into inventory is significantly lower, highlighting constraints in dealer inven-

tory that impede additional risk-taking. In general, our analysis shows that dealers, particularly

primary dealers, are more likely to keep recently defaulted bonds in inventory overnight rather

than sell them to another counterparty on the same day.

2.5.4 Inventory risk taking

We now explore dealers’ role in facilitating transactions of defaulted bonds by providing inven-

tory capacity, and potentially conducting proprietary trading in defaulted bonds. In Section

2.5.3 we have demonstrated that dealers are more likely to take a bond in overnight inventory
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Table 2.7: Intra-day matches before and after default. Probit regression for the probability of dealers
matching a client-to-dealer trade with a consecutive buyer on the same day. The dependent variable indicates
1 if the dealer sells the bond to the next buyer on the same day as acquired from the client, and 0 if the bond
remains in the dealer’s inventory at the end of the day. Buyers may be clients or other dealers. A total of
625,548 (494,050 pre-default and 131,498 post-default) client-to-dealer trades are considered, of which 331,315
(276,193 pre-default and 55,122 post-default) are matched with either dealer-to-client trades (CDC round-trip) or
dealer-to-dealer trades (CDD trade chain) on the same day. The PostDefault dummy variable indicates whether
a trade takes place after the default event. PrimaryDealer indicates whether the bond is sold to the primary
dealer. The explanatory variables further include dealer characteristics, default event type, trade characteristics,
bond characteristics, and year fixed effects. Non-binary explanatory variables are normalized with center 0
and standard deviation 1. Standard errors are adjusted for heteroskedasticity and clustered by issue and time.
Significance is denoted *** (1%), ** (5%), and * (10%).

Pr(IntraDayMatchij )

Specification (1) (2) (3) (4) (5)

PostDefault −0.21*** −0.25*** −0.24*** −0.09** −0.07*
PrimaryDealer −0.61*** −0.68*** −0.63*** −0.49*** −0.14***
PrimaryDealer * PostDefault −0.76*** −0.93***

Distressed exchange −0.19*** −0.20*** −0.17** −0.14**
Risk rating −0.17*** −0.19*** −0.18*** −0.12**
Chapter 11 reorganization −0.20*** −0.24*** −0.21*** −0.17***
Chapter 11 liquidation −0.24*** −0.29*** −0.27*** −0.22***
Chapter 7 liquidation −0.41*** −0.38** −0.31** −0.39**

Dealer size 0.12*** 0.13*** 0.16***
Dealer centrality −0.38*** −0.40*** −0.08***
Broker role 1.59*** 1.56*** 1.48***
Dealer inventory −0.02*** −0.02*** −0.01**
Retail 0.08*** 0.11*** −0.24*** −0.23*** −0.31***
LargeInstitutional 0.26*** 0.19*** 0.34*** 0.34*** 0.54***

Maturity −0.03** −0.01 0.00 0.01
Seasoning −0.01 0.01 0.01 0.01
Issue size −0.06*** −0.06*** −0.07*** −0.04**
Rating −0.04 −0.04 −0.06** −0.05*
Junk rated −0.09 −0.12* −0.07 −0.04
Unrated −0.26*** −0.26*** −0.28*** −0.21***
Enhanced −0.02 −0.02 −0.04 0.02
Callable −0.18*** −0.13*** −0.10*** −0.01
Sinking fund −0.06 −0.11 −0.11 −0.10
Senior unsecured 0.00 −0.01 0.00 0.01
Senior subordinate −0.09* −0.09** −0.10** −0.10**
Subordinate junior −0.06 −0.12** −0.12** −0.14**
Coupon 0.05*** 0.04*** 0.05*** 0.03**
CDS availability −0.16*** −0.11*** −0.11*** −0.02
Covenants −0.08** −0.13*** −0.14*** −0.08**

Bond FE Yes No No No No
Dealer FE No No No No Yes
# observations 625,548 625,548 625,548 625,548 625,548

after its default event than before. Dealers thus commit their own capital in trades, facilitating

the timely execution of bondholders’ sale orders. After committing capital for placing bonds in

overnight inventory, a dealer may sell the bond to another client or dealer on the next day, or

several days later, provided that a counterparty is found. Thereby, the dealer eliminates their

idiosyncratic exposure to the defaulted bond, but in cases when the bond is sold to another

dealer, the collective dealers’ commitment to a defaulted bond’s par value will remain constant.
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Table 2.8: Dealers’ aggregate inventory in bonds one day before their default and 30 days there-
after. The dealer inventory is denoted in the percentage of a bond’s par value that is held on dealers’ balance
sheets.

N Mean SD q5 q25 q50 q75 q95

Dealer inventory before default 2,474 1.7% 8.5% -8.1% -0.6% 0.8% 3.7% 14.8%
Dealer inventory after 30 days 2,474 2.6% 9.8% -8.4% -0.6% 1.2% 5.1% 18.2%

Difference 2,474 0.9%***

As we are interested in knowing whether, and to which degree, dealers collectively commit cap-

ital in order to compensate for a mismatch in market supply and demand triggered by a bond’s

default event and to bridge the gap between bondholders’ sale and the time high-valuation

buyers are found, we analyze dealers’ net inventory positions in defaulted bonds. That is, we

examine whether dealers collectively absorb investors’ selling pressure induced by corporate

bond default events.

As bond dealers do not disclose inventory levels or the amount of capital they put at risk

in individual bonds, we use a relative measure of inventory that tracks changes in inventory

from a fixed reference date, following the methodology of Bessembinder, Jacobsen, Maxwell,

and Venkataraman (2018). The details for determining inventories are provided in A.1.

Table 2.8 reports summary statistics of dealer inventories. Here, the reference date is one

year prior to default and the inventory is reported relative to this reference date. Compared

to the day before default, dealers additionally accumulate an average of 0.9 percentage points

of a defaulted bond’s par value during the 30-day period after default, which is significant at

the 1% level. While the table shows that dealers even reduce inventories in some cases, dealers

accumulate more than 5.1% of par value for one-quarter of all defaulted bonds during the 30-day

period after default. Hence, dealers’ collective capital commitment has an important effect on

the liquidity provision of recently defaulted bonds. As the inventory buildup prior to default

further demonstrates, dealers absorb selling pressure even when the bond has not yet defaulted.

This evidence is consistent with dealers working harder to intermediate defaulted bonds.
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2.6 Dealer Expertise and Post-Default Price Efficiency

The defaulted-bond setting is special in that dealers have to both counterbalance selling pressure

and at the same time find high-valuation buyers, e.g., specialized vulture investors that can reap

high recoveries in post-default negotiations. To check whether primary dealers counterbalance

the negative price impact from selling pressure during default and trade with higher-valuation

buyers at more information-efficient prices, we investigate how trading with primary dealers

affects price reversal subsequent to default.

We measure the bond price rebound between observed recovery prices in transactions of

investors who sell immediately after default (i.e., within the 30-day post-default period) and

subsequent prices observed when the surprise element of default has already faded. As we

intend to capture only prices that relate to investors’ recovery, we again consider only client-to-

dealer sale transactions. As such, we do not include prices paid between dealers or by investors.

Furthermore, we focus on the short-term price appreciation rather than long-term effects, as we

intend to identify the primary dealers’ stabilizing effect related to the default surprise which is

likely to vanish shortly after the initial supply shock. Because prices may still fluctuate even

after the default surprise has vanished, we consider a relatively short 10-day window at the

beginning of the second month after default for measuring the pricing of client-to-dealer trades

likely unaffected by the initial price pressure.17

We define price appreciation PriceAppreciationij as bond j’s price difference in a client-

to-dealer transaction i during the 30 days after default, and the mean daily prices paid in

client-to-dealer transactions from 31 to 40 days after default:

PriceAppreciationij =
1

T + 1

t+T∑
s=t

 1

|Kjs|
∑

k∈Kjs

RRkj

−RRij , (2.13)

where Kjs is the number of trades in bond j on day s, starting 31 days after default, day

t, until 40 days after default. PriceAppreciationij thus captures the percentage points of

a bond’s par value that an investor who sells immediately after default forgoes, rather than

17 Trading volume is still high in the second month after default, and most bankruptcies are unlikely to be
resolved by then, allowing us to employ a comparable sample size as for estimating primary dealers’ effects on
recovery rate. Furthermore, as claim holders typically enter negotiations shortly after default, prices in later time
periods may already reflect measures taken by the firm to resolve distress or new expectations about ultimate
recovery.
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holding the bond until the second month after default. We estimate how investors’ decision to

trade with a primary dealer affects the observed price differences between the two time periods.

More specifically, we employ the following specification for estimating post-default bond price

appreciation:

PriceAppreciationij = α0 + α1 PrimaryDealerij + α2DefaultTypej + β′Xij + ϵij , (2.14)

where PriceAppreciationij is the price difference as defined in (2.13). The control variables are

similar to those used in (2.8). Here, a total of 106,961 post-default client-to-dealer trades are

considered. To account for a heterogeneous response, we also consider the model in A.2, now

with PriceAppreciationij as dependent variable, and otherwise the same as specification (2.9):

PriceAppreciationij = α0 + α1 PrimaryDealerij × pij + α2K(pij)

+ α3DefaultTypej + β′Xij + ϵij . (2.15)

We expect more efficient prices and hence less price rebound due to the primary dealer’s exper-

tise. Given that bonds that are sold to primary dealers immediately following a default event

achieve higher recoveries, the subsequent price reversal should be less pronounced for these

transactions.

Table 2.9 reports our results for five variants of specifications (2.14)/(2.15). The two columns

to the left use the actual primary dealer indicator as explanatory variable, without (specifica-

tion 1) and with (specification 2) dealer fixed effects. Specification 3 considers the instrumented

primary dealer indicator, specification 4 follows the self-selection correction approach of Heck-

man (1979) and specification 5 employs the model of essential heterogeneity. The instrument is

created as in Table 2.4. As all five columns show, selling to primary dealers immediately after

default is equivalent to counterbalancing temporary price pressure, given that the following price

rebound is less pronounced for those trades routed via primary dealers. In specification 2, where

we add dealer fixed effects, the primary dealers’ effect remains negative, although at a smaller

magnitude than the other specifications. This is in line with the presence of unobserved dealer-

specific characteristics that are correlated with the primary dealer indicator. The Lambda in

column 4 is significant, indicating the presence of selection bias in specifications 1–3. Finally,
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Table 2.9: Post-default price appreciation. The binary PrimaryDealer variable indicates whether the
bond is sold to a primary dealer. The price appreciation PriceAppreciation is the dependent variable in speci-
fications 1–5. Specifications 3–5 control for potential endogeneity, selection bias, and essential heterogeneity. A
total of 106,961 post-default client-to-dealer trades are considered for price appreciation estimation. Non-binary
explanatory variables are normalized with center 0 and standard deviation 1. Standard errors are adjusted for
heteroskedasticity and clustered by issue and time. Significance is denoted *** (1%), ** (5%), and * (10%)..

PriceAppreciation

(1) (2) (3) (4) (5)

Specification OLS Saturated IV Heckman Essent. Het.

PrimaryDealer (×p in (5)) −3.48*** −0.99** −7.63*** −2.95*** −6.45***

Lambda 23.72***
p 3.79
p2 −11.34*

LargeInstitutional −0.67 0.05 −0.49 −0.21 −0.29
Retail 0.34 −0.13 0.33 1.93*** 0.64

Distressed exchange −27.45*** −27.05*** −27.01*** −26.53*** −26.92***
Risk rating −22.45*** −22.21*** −22.07*** −21.87*** −21.95***
Chapter 11 reorganization −25.99*** −25.47*** −25.38*** −25.53*** −25.35***
Chapter 11 liquidation −29.69*** −28.70*** −29.61*** −30.10*** −29.73***
Chapter 7 liquidation −22.85*** −21.24*** −21.94*** −21.40*** −21.73***

Dealer FE No Yes No No No
Seniority FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes
Industry distress FE Yes Yes Yes Yes Yes
Bond features Yes Yes Yes Yes Yes
Liquidity features Yes Yes Yes Yes Yes
Macroeconomic features Yes Yes Yes Yes Yes
Company features Yes Yes Yes Yes Yes
R2 0.4705 0.5038 0.4705 0.4747 0.4834
# observations 106,961 106,961 106,961 106,961 106,961

the specification that accounts for heterogeneity captures a similar effect of PrimaryDealer

on PriceAppreciation as the other specifications, and it includes a significant non-linear term.

Although slightly smaller, the estimated coefficients of PrimaryDealer in Table 2.9 are of a

similar magnitude as in the corresponding specifications in Table 2.4.

Overall, the primary dealer coefficients in Tables 2.4 and 2.9 indicate that trading with a

primary dealer leads to higher and more stable recovery prices immediately after default vis-à-

vis prices observed once the initial default surprise has vanished. These findings suggest that

a major share of the pricing benefits provided by primary dealers during the default-induced

times of stress results from their superior expertise, and is not due to fire sale discounts or price

pressures.
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2.7 Conclusion

While there exists an extensive literature on the intermediation of corporate bonds in good

standing, little is known about the intermediation of defaulted corporate bonds. When a bond

becomes distressed, a need arises to change bond ownership since specialized vulture investors

are better able to recoup high recovery values and avoid aggregate losses. We present a com-

prehensive body of evidence on the intermediation of defaulted corporate bonds.

Our empirical analysis reveals that trading spikes and intermediation patterns undergo sig-

nificant changes following a bond’s default, in that not all dealers transact in defaulted bonds,

intermediation chains prolong, the average centrality of transacting dealers rises, and primary

dealers intermediate much of the post-default order flow. Similar to the primary dealer system

observed in government bond markets, investors direct their order flow to the bond’s primary

dealer(s) who have developed specialized intermediation expertise in that particular bond prior

to its default. This preference stems from primary dealers’ ability to offer more direct access to

specialized, higher-valuation investors and their superior capability in managing inventory risks

associated with defaulted bonds during times of market stress.

The advantages for investors of transacting with primary dealers are both higher recovery

rates and these recovery rates are more informationally efficient in that they are closer to the

bond’s long-term value. Despite the general drop in value for bonds after default, investors who

sell to primary dealers realize recoveries that exceed 8% of the average recovery compared to

other dealers. The higher recoveries are accompanied by more stable post-recovery bond prices

and less price rebound. Primary dealers thus contribute to recouping higher recovery values

and stabilizing a bond’s market functioning which lowers credit risk ex-ante for all investors.
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Chapter 3

Inter-Industry Network and

Corporate Bond Recovery Rates

This chapter is joint work with Abdolreza Nazemi and Frank J. Fabozzi.1 At the time of

completing this dissertation, this study has received a revise and resubmit decision at Journal

of Banking and Finance.2

3.1 Introduction

Over the past decades, financial economists have identified a great number of risk drivers that

explain the probability of default. In contrast, far fewer studies are devoted to the recovery

rate as another key credit risk parameter. With the experience of the recent Global Financial

Crisis (GFC), it is critical to enhance the understanding of common risk factors that determine

recovery rates. Bankruptcies of major financial institutions caused by distress spillovers through

economic interconnections and subsequent government bailouts have shown that the financial

industry had not been prepared to cope with distress propagation through the economy’s inher-

ent interconnections. Credit risk models turned out to be inadequate, as they do not sufficiently

account for linkage-based interdependencies between agents within the economy. By creating

a network of inter-industry customer-supplier ties, we investigate the relationship between the

recovery rates of U.S. corporate bonds and network-derived characteristics. This paper shows

1 Abdolreza Nazemi is with the School of Economics and Management, Karlsruhe Institute of Technology,
Germany. Frank J. Fabozzi is with the Carey Business School, Johns Hopkins University, Baltimore, USA.

2 Nazemi, Baumann, and Fabozzi (2023)
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that network-derived characteristics indeed play a key role in determining recovery rates in the

corporate bond market.

Interdependencies of behavior, information and monetary flows within economic systems are

particularly evident today, and as both the GFC and the COVID-19 pandemic have shown, the

world scale of interconnected economies and quick interactions of market participants can lead

to adverse contagion and cascade effects if not appropriately managed. On the other hand, as

not only the globalized economy demonstrates, connectedness has the potential to serve as a

catalyst for economic success. Hence, it is essential to understand both the merits and risks of

connectedness within the economy. In this paper, we introduce the tool of financial networks for

investigating corporate bond recovery rates. We find significant evidence that the inter-industry

trade network structure of the U.S. economy and a firm’s position within the network explain

a large fraction of U.S. corporate bond recovery rates, as trade relations serve as a channel for

the inter-industry transfer of assets and distress. Our work is closely connected to a number of

recent studies in finance based on inter-industry network approaches.3

The disposal of assets is a major tool to recover economic value in a bankruptcy proceed-

ing. As Ahern and Harford (2014) illustrate, strong inter-industry trade relationships serve as

predictors of inter-industry mergers and acquisitions (M&A) activity between two industries.

Building on these findings, we examine the role of inter-industry trade linkages in facilitating

inter-industry asset disposals as a determinant of recovery rates of defaulted corporate bonds.

For studying the relationships between recovery rates and inter-industry trade ties, we collect

a set of U.S. corporate bonds which defaulted during the period 2001-2016. We construct an-

nual networks of inter-industry trade from input-output tables provided by the U.S. Bureau of

Economic Analysis (BEA). We then derive industry-specific network characteristics, which are

more informative than the commonly used industry fixed-effects. First, we consider centrality

measures (e.g., eigenvector centrality) to reflect an industry’s degree of connectedness within

the U.S. economy. Second, we develop a neighbor industry distress measure, a new measure

that captures distress propagation between adjacent industries. In order to capture the inter-

3 For example, Herskovic (2018) employs inter-industry trade network structures in order to explain stock
returns. Gofman, Segal, and Wu (2020) link a firm’s stock returns and exposure to aggregate productivity with
their vertical position within the inter-industry supply chain. Evgeniou, Peress, Vermaelen, and Yue (2021) study
the returns following share buybacks and insider trading as a function of firm centrality within the inter-industry
network of trade.
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industry asset transfer channel, we further consider firm- and industry-specific characteristics

which are expected to co-determine the ability to transfer assets between industries together

with centrality. Lastly, we observe actual inter-industry asset transfers in bankruptcy that val-

idate the stylized facts established in our empirical analysis.

This paper contributes to three strands of the literature. The first and main contribution of

the paper is investigating and depicting the importance of connections between industries and

the position of a firm within the inter-industry trade network in explaining the recovery rate as

one of the key parameters in credit risk. Unveiling the channel for asset disposals through inter-

industry trade connections, our approach provides a new network-based explanation of recovery

driven by asset transfer frictions between industries. Related to prior studies which explore the

effects of economic linkages in asset pricing (see, for example, Herskovic (2018)), we study the

effects of U.S. economy linkages in credit risk. Our results help to improve understanding the

role of financial interconnectedness.

The paper’s second contribution is that it bridges the inter-industry network and the business

cycle, as well as industry distress for explaining the variation in recovery rates. This allows us to

study, for the first time, the economic cycle’s effect on the recovery rate of corporate bonds for

central and non-central industries within the U.S. economy. Acharya, Bharath, and Srinivasan

(2007) report that industry-wide distress causes a decrease in recovery rates. Unveiling the

effect of industry distress on recovery rates in adjacent industries, this paper expands their

work.

Third, in contrast to prior studies, we analyze recovery rate drivers more broadly by employ-

ing a comprehensive set of explanatory variables that includes information about inter-industry

linkages, macroeconomic variables, as well as firm and bond-specific variables.

Through our analysis, we find that the centrality, or connectivity of a defaulted firm within

the inter-industry network, is significantly driving the recovery rates of its bond issues. We

show that the centrality’s effect on recovery is operating jointly with frictions and drivers of

inter-industry asset transfers, and that the connectedness between industries supports recovery

due to facilitating inter-industry asset sales. By observing actual inter-industry asset transfers

in bankruptcy, we validate these stylized facts. Moreover, we find that industry distress spills
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across industry borders through trade connections and has significant adverse effects on recov-

eries in closely connected neighbor industries.

We show that selected macroeconomic variables improve recovery rate prediction specifically

in central industries. Our comprehensive analysis confirms the robustness of our findings to a va-

riety of alternative explanations. Notably, we employ machine learning techniques that account

for non-linear relationships between recovery rates and the extensive set of explanatory variables,

and as our out-of-sample results show, network-derived characteristics can explain a similar or-

der of magnitude of the variation in recovery rates as the drivers that are well-established in

the literature, such as firm- and bond-specific variables and macroeconomic variables.

The remainder of this paper is organized as follows. Section 3.2 reviews related research

on determinants of recovery rates and draws from research on financial networks in order to

develop the hypotheses of this paper. In Section 3.3, we outline how we create the inter-industry

trade network and introduce the centrality and neighbor industry distress measures. Section 3.4

provides details of the data used in our analysis, specifies our regression models, describes the

main results of the network-related approach to recovery rate modeling, and conducts various

robustness tests. Section 3.5 concludes the work.

3.2 Literature Review and Hypotheses

The empirical literature on corporate bond recovery rates has mostly omitted to study inter-

industry relations, although industry fixed effects are commonly used to explain the variation

in recovery rates. We borrow from the literature on inter-industry linkages from which we infer

new hypotheses on recovery rate estimation. In this section, we review the related literature,

discuss the research questions addressed, and explain the hypotheses tested in this study.

3.2.1 Dynamics of recovery rates

Historically, corporate bonds’ recovery rates were commonly estimated at about 40% of bond

par value. In the pioneering study of Altman and Kishore (1996), the foundations for a more

differentiated approach to recovery rate estimation were set. Besides finding a positive effect

52



of bond seniority on recovery, Altman and Kishore (1996) document for the first time in the

literature corporate bond recovery rates’ heterogeneity across industries. Controlling for the

dependency on seniority, they show that recovery rates are driven by firms’ industry affiliation.

Business activities are industry-dependent, and hence determine firms’ competitive environ-

ments, compositions of assets and their liquidity, consequently influencing debt recovery.

In subsequent studies, various accompanying determinants were uncovered in the growing

breadth of research on recovery rates. Frye (2000) shows that first-generation credit models

ignore the inverse relationship between the probability of default (PD) and recovery rate. Con-

sistently, Varma and Cantor (2005) find a positive relationship between recovery rates and

economic growth, in addition to demonstrating that the seniority and security class of a de-

faulted bond are among the key recovery rate drivers. Altman, Brady, Resti, and Sironi (2005)

argue that aggregate recovery rates are a function of supply and demand for the defaulted se-

curities. Their analysis on a data set of defaulted bonds over the period 1982-2002 shows that

the supply of defaulted bonds and the size of the high-yield bond market explain a substantial

fraction of recovery rates, regardless of seniority or collateral level.

Bruche and Gonzalez-Aguado (2010) analyze the effects of seniority classes, default events,

credit cycles and GDP growth on recovery rates of corporate bonds. Their findings confirm

that recovery rates of defaulted bonds decrease during recessions. By combining the approaches

of macroeconomic and industry-specific explanations of recovery rates, Mora (2015) provides

evidence that macroeconomic downturns operate differently at the industry level. Economy-

wide distress affects certain industries’ recovery rates more than others because economy-wide

events potentially propagate to the industry level and induce fire-sales effects. Accordingly, if

the overall economy declines, recovery rates drop much more in industries where sales growth

is highly correlated to GDP. Nazemi and Fabozzi (2018) report that recovery rate models

which include macroeconomic variables selected by the least absolute shrinkage and selection

operator (LASSO) significantly outperform the models that incorporate only few macroeconomic

variables.

Including bond and industry characteristics, firm-specific, and macroeconomic variables for

modeling recovery rates, Chava, Stefanescu, and Turnbull (2011) report that industry factors

53



and regime dynamics have more influence on the PD than on the recovery rate. Jankow-

itsch, Nagler, and Subrahmanyam (2014) provide a comprehensive study on the bond trading

microstructure around default events, and additionally consider firm- and bond-specific char-

acteristics, e.g. bond covenants and information from bond issuers’ financial statements, as

explanatory variables for their recovery rate models. Their study demonstrates significant ex-

planatory power of a bond’s trading liquidity for modeling its recovery rate. Furthermore, their

findings confirm the importance of bond seniority and macroeconomic conditions, as well the

industry in which a firm operates, for recovery rate estimation. Gambetti, Gauthier, and Vrins

(2019) consider an economic uncertainty measure to explain recovery rates’ systematic time

variation.

Another group of variables for recovery rate prediction is employed by Donovan, Frankel,

and Martin (2015), who use five different accounting conservatism measures to assess defaulted

firms from Moody’s Ultimate Recovery Rate Database (DRD) of the period 1994-2011. They

discover that firms with less conservative financial accounting regimes prior to the default date

tend to have lower recovery rates.

Complemented by an increasing number of factors for explaining corporate bond recovery

rates, a firm’s industry affiliation is commonly considered one of the key determinants. For

example, Acharya, Bharath, and Srinivasan (2007) and Kim and Kung (2016) are in the spirit

of Altman and Kishore (1996) who argue that industry affiliation matters as industries with

more tangible and liquid assets will produce higher debt recoveries. Acharya, Bharath, and

Srinivasan (2007) find that industry-specific economic factors have more explanatory power

for recovery rates than the macroeconomic conditions have. In their study on defaulted loans

and bonds over the period 1982-1999, they analyze the effects of industry-wide downturns on

recovery rates. They report that recovery rates are not only depressed by poor macroeconomic

conditions or reduced economic prospects as a result from industry-wide distress. Disposals of

assets are a major tool to recover liquidity in both reorganizations (Chapter 11 bankruptcy)

and liquidations (Chapter 7 bankruptcy). A firm which is forced to sell assets recovers less

if its industry is illiquid and if its assets are industry-specific, such that those assets are not

easily deployable in other industries. This is explained by the fire-sales effect described by
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Shleifer and Vishny (1992): Industry-level distress reduces economic prospects of a company

and its peers, and a sudden rise of supply of highly industry-specific assets combined with fewer

potential would-be buyers results in low proceeds from fire-sales. Hence, industry-level distress

and fire-sales in industries that are characterized by a high asset specificity lead to significantly

lower recovery rates.

Kim and Kung (2016) measure the redeployability of assets for a broad cross-section of

industries. They find that a high asset redeployability (i.e., the extent to which assets have

alternative uses) implies higher liquidation values and thus higher recovery rates. Kermani and

Ma (2023) study industry-wide liquidation values of assets in Chapter 11 filings and show that

industry-specific asset characteristics determine the receipts in asset sales. However, they do

not apply their findings for explaining the recovery of defaulted debt securities. While those

industry-dependent variables proxy for heterogeneity of assets across industries and capture

more industry-related information than what is already included in industry fixed-effects, the

interconnections between industries are omitted. We expand the research on the asset disposal

channel as a driver of recovery rates building on the tool of inter-industry linkages.

3.2.2 Inter-industry trade network and recovery rate

In recent years, a growing number of financial networks have been applied in academic research.4

Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012) provide evidence that microeconomic

idiosyncratic shocks can aggregate into macroeconomic fluctuations through intersectoral input-

output linkages. Using input-output data of 471 industries provided by the BEA, Ahern and

Harford (2014) create a network model of the U.S. economy by linking industries through

supplier and customer relationships. With information about the intensity of trade relationships

between different industries, they study cross-industry acquisitions and discover evidence that

stronger inter-industry trade relationships with customers or suppliers increase the likelihood of

acquisitions across industries. They show that M&A activity propagates in wave-like patterns

through the customer-supplier industry network. By modeling customer-supplier relationships

between industries, Ahern (2013) finds that central industries earn higher stock returns as

4 Besides the inter-industry network, other financial networks were studied, for example, by Bajo, Chemmanur,
Simonyan, and Tehranian (2016), Di Maggio, Kermani, and Song (2017), and Rossi, Blake, Timmermann, Tonks,
and Wermers (2018).
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compensation for higher exposure to sectoral shock events.5 Aobdia, Caskey, and Ozel (2014)

provide evidence that firms’ returns in more centrally located industries are more dependent on

aggregate risk than those in peripheral industries and that not only the connections between

two industries, but also the position of an industry within the network affects the transfer of

information and economic shocks within the network. Until today, no study examines the impact

of inter-industry linkages in the context of post-default recovery, although such a relationship

seems reasonable given the evidence that inter-industry trade ties determine the transfer of

information, and assets through M&A across industry borders.

Hotchkiss and Mooradian (1998) examine asset redeployment in bankruptcy and observe

that asymmetric information prevents industry outsiders from bidding for bankrupt firms. Bid-

ders usually operate in the same industry as the defaulted firm, or in related industries and so

possess information and expertise about the best use of the disposal assets. Shleifer and Vishny

(1992) argue that when the industry peers of bankrupt firms are financially constrained, as-

sets need to be sold to industry outsiders. Correspondingly, Bernstein, Colonnelli, and Iverson

(2018) find that asset allocation efficiency in bankruptcy suffers when search frictions are high

or when only few alternative users for the assets are available. They report that assets are typi-

cally disposed to firms within the same industry after default, and that the transfer of plants to

other industries is more likely in liquidation cases than in reorganization cases. The approaches

of Hotchkiss and Mooradian (1998), Shleifer and Vishny (1992) and Bernstein, Colonnelli, and

Iverson (2018) to defining industry insiders and outsiders rely on the classifications of economic

activities, rather than accounting for existing relationships between industries.6 Relatedly,

Strömberg (2000) demonstrates that asset sales to industry outsiders yield lower valuations,

an effect which magnifies with asset specificity. Gavazza (2011) argues that capital equipment

is typically specialized by industry and so has greater value within the defaulted firm’s industry.

Whereas these studies consider industries’ similarity of economic activities, captured by

industry classifications, they neglect the imminent conjecture that also the position of a firm

within the supply chain, inferred from actual inter-industry trade relationships, may determine

5 Relatedly, Herskovic (2018) employs a production network structure in order to successfully explore asset
pricing implications in stock returns.

6 Hotchkiss and Mooradian (1998) consider the first three Standard Industrial Classification (SIC) code digits
and Bernstein, Colonnelli, and Iverson (2018) consider the first three North American Industry Classification
System (NAICS) digits for defining industry affiliation.
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the economics underlying asset redeployment. Kim and Kung (2016) show that when assets

are customized to an industry’s needs, recovery rates will be lower, as they cannot be easily

transferred to other industries. Relatedly, Acharya, Bharath, and Srinivasan (2007) document

that coincidence of asset specificity and industry-wide distress has a negative directional ef-

fect on recoveries due to the fire-sales effect within the defaulted firm’s industry. However, it

remains unanswered under which circumstances asset transfers to other industries do actually

take place. By intuition, when assets are not highly specified to a single industry’s needs, also

industry outsiders should be capable to utilize these assets.

Ahern and Harford (2014) present evidence that strong inter-industry trade connections

increase the likelihood of M&A activity between two industries. They further find that asset

complementarity between industries, another contributing factor, cannot be fully explained by

industry classifications. Because trade ties between industries were identified in the literature

to serve as channels for M&A activity, besides the transmission of information and economic

shocks, we hypothesize a yet undocumented causal role of the inter-industry network of trade in

facilitating the transfer of assets across industry borders in default events. This network-based

approach goes beyond what is already captured by established industry-specific variables for

the formation of recovery rates, as it shifts the focus from intra-industry asset redeployment

in bankruptcy based on similar economic activities to the role of inter-industry asset transfers.

Hereby, we expand the asset liquidity explanation of Altman and Kishore (1996) as one of

the main sources of heterogeneity in recovery rates across industries. Ultimately, we desire to

capture the effects of the position of a firm within the inter-industry trade network on recovery

rates.

As industries are characterized by different production technologies and perform a variety

of distinct value-generating activities, asset transfers between industries are impeded by asset

specificity and asymmetric information about these assets. Consequently, we expect that is-

suers of defaulted bonds positioned in well-connected, centrally located industries may be less

exposed to these asset transfer frictions thanks to the capability of inter-industry trade relations

to facilitate cross-industry acquisitions.7 In particular, the extent to which buyers from other

7 Instead of firm-to-firm trade relationships, we consider industry-to-industry trade relationships. Using firm-
to-firm relationships may introduce selection bias, as only realized outcomes, but not potential outcomes of a
similar likelihood, would be considered. For that reason, we use inter-industry connections analogous to Ahern

57



industries require compensating asset price discounts is therefore expected to decrease for the

more centrally located and better connected industries. Hence, central firms may be able to

draw on a greater number and more diverse universe of potential buyers for disposal assets,

implying higher recoveries. If central industries benefit from a greater ability to transfer assets

across industry borders, we further expect that such an effect would be magnified in industries

which use assets that are more standardized and may find application in a variety of industries

compared to assets that are highly specialized. To test this hypothesis, we examine the effects

of several asset characteristics, such as asset specificity and asset redeployability, on recovery

rates and their interaction with centrality. We explore the emergence of recovery rates along

with these aspects from various perspectives.

We take up the notion of industry distress which has proven the dependence of recovery

rates from industries’ business cycles. We hypothesize that if inter-industry trade ties serve as a

channel for assets and economic shocks, the closely connected industries’ business cycles should

have directional effects that spill through industry trade relationships. Therefore, defaulted

bonds of issuers whose directly connected industry neighbors experience economic distress at

the time of default are expected to recover less than those of issuers whose industry neighbors

don’t experience economic distress. We test this hypothesis by developing a new neighbor

industry distress measure and including it in our analysis.

Based upon the findings of Aobdia, Caskey, and Ozel (2014), we expect that bond’s recov-

eries of firms in central industries are more related to macroeconomic conditions due to strong

connections to the overall economy.8 Our data allows us to test whether recoveries of defaulted

bonds of central issuers depend to a greater degree on macroeconomic conditions than those of

non-central issuers. This paper is the first to analyze how the specifications of economic linkages

and firms’ positions within the inter-industry trade network determine corporate bond recovery

rates.

and Harford (2014), who argue that inter-industry relationships, besides avoiding selection bias, also account for
(higher order) inter-industry dependencies. Moreover, Hotchkiss and Mooradian (1998) note that acquirers from
outsider industries do not need to have any direct trade relationships with a target firm, as also relationships with
other firms within the target’s industry enable to obtain the knowledge required to properly utilize the acquired
assets.

8 Aobdia, Caskey, and Ozel (2014) show that the performances of firms in more centrally located industries
are more closely related to macroeconomic conditions as macroeconomic shocks are more likely to originate in
central industries and propagate to closely connected industries.
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3.3 Empirical Implementation of the Inter-Industry Network

In this section, we describe our methodologies for creating network-derived variables which

characterize the U.S. economy network. We first construct annual networks of inter-industry

U.S. dollar flows which describe trade relations between industries using data provided by the

BEA, yielding a complete network representation of the U.S. economy. To do so, we closely

follow the methodologies of Ahern (2013) and Ahern and Harford (2014). Similar to Evgeniou,

Peress, Vermaelen, and Yue (2021), we exclude sectors that are not related to the objective of

our study, such as households, government, capital, and foreign sectors.9 As the data provided

by the BEA are available with different level of granularity, we consider both networks based

on 67 and 471 unique private sector industries.10 A detailed description of how the network is

created can be found in Appendix B.1. We calculate a number of centrality measures character-

izing the previously defined network structures, and further develop a measure which captures

economic distress spillover between adjacent industries. The proposed centrality measures in-

clude eigenvector centrality, closeness centrality, degree centrality, and betweenness centrality.

A discussion of the underlying centrality concepts from network theory can be found in Ap-

pendix B.2. Due to skewness, we consider the logarithm of centrality and then we match all

the created measures of year t − 1 to the related bonds defaulted in year t to ensure that the

most recent network structure prior to default is used in the predictions.

A list of the 15 most central and 15 least central industries based on eigenvector centrality

for the year 2001 can be found in Table B.2 in the Appendix.11 In general, the centrality

ranking order of industries remains stable over time, with few exceptions. After the GFC,

industries’ centralities slightly declined in 2009 and 2010, meaning that connectivity between

9 Although excluding households, government, capital, and foreign sectors is economically meaningful, our
main findings remain significant when including these sectors.

10 While we use detailed industry definitions involving 471 unique private sector industries for robustness checks
in Section 3.4.3, we utilize 67 unique three-digit NAICS industries modified by the BEA in our main analysis,
as the chosen level of detail must be consistent with other industry-specific explanatory variables in our main
analysis, in order to evaluate the co-determination of recovery rates by these variables together with network-
derived characteristics via interaction effects. For example, the data for replicating the asset redeployability
measures of Kim and Kung (2016) and asset specificity measures of Kermani and Ma (2023) are not available at
a more detailed level.

11 We discuss the choice of eigenvector centrality as the appropriate measure of industry centrality for estimating
corporate bond recovery rates in Section 3.4.2
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industries generally decreased within the U.S. economy. This might be due to reduced business

opportunities in the U.S. inter-industry trade network as a whole, leading to fewer or weaker

trade relationships between industries. In subsequent years, as the economy stabilizes, the effect

reverses and centralities gradually return to higher levels after 2010, however at a slow pace.

Taking up the notion that asset transfers between well-connected industries are more likely

than between unrelated industries, we extend the concept of industry distress to a network-

based approach by deriving a newly developed neighbor industry distress measure from the

U.S. economy network representation, and apply it to recovery rate modeling for the first time

in the literature. Therefore, we consider each industry’s ten most important neighbor industries

by trade volume on an annual basis, taking into account both trade volumes through customer

and supplier relationships. We define the trade volume with these most important neighbor

industries that are in distress as the neighbor industry distress measure, calculated as a per-

centage of total trade volume in a given year. Here, an industry is considered in distress when

it has experienced negative sales growth in the preceding year. Thus, the newly developed

neighbor industry distress measure captures both the magnitude and the concentration of an

industry’s trade volume with distressed neighbor industries.12 It is designed to capture distress

spillover effects between adjacent industries in the economy network structure.

We also include the labor’s fraction of industries’ inputs (i.e. the degree to which an industry

relies on human labor) to account for effects of the dependency on human labor on the ability of

companies to recover from default. We derive labor’s fraction of inputs from the inter-industry

network before removing the households sector by dividing labor inputs (i.e., dollar flows from

industries to households) by the total sum of inputs that an industry consumes. In the Table

B.3 of the Appendix, we provide descriptive statistics of the network-derived variables.

For robustness checks, we introduce alternative networks that are based on inter-industry

M&A transactions instead of trade relationships. Although Ahern and Harford (2014) docu-

ment a high similarity between the inter-industry trade network and the inter-industry merger

network, considering only realized mergers and acquisitions to form the network may introduce

12 Due to skewness, we consider the logarithm of neighbor industry distress. Alternative definitions of the
neighbor industry distress measure, such as the Herfindahl index of distressed neighbor industries or the total
percentage of trade volume with distressed industries yields similar significant results.
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selection bias, whereas Ahern and Harford (2014) show that inter-industry trade connections

serve as predictors of inter-industry acquisitions. Nevertheless, we check the robustness of in-

dustry centrality in ex-post network structures created from realized acquisitions of assets and

firms across industry borders. We retrieve two M&A transaction datasets from S&P Capital IQ

containing data on U.S. M&A share and asset deals over the period 2001–2016, corresponding

to our data of defaulted bonds. The transactions in both datasets contain disposals of firms,

business units, sites, properties, and other firm assets. The first dataset contains 11,320 closed

M&A transactions with reported transaction values of at least $100 million per transaction,

reflecting a total cumulative transaction volume in excess of $12 trillion. The second dataset

contains 4,659 closed M&A transactions denoted as bankruptcy sales of any size. Transaction

values are reported for about two thirds of the bankruptcy M&A transactions, which add up to

a cumulative bankruptcy transaction volume of more than $170 billion.

With the information on inter-industry bankruptcy and non-bankruptcy M&A transactions,

we now form two alternative network representations of the U.S. economy. While we use the

same industry definitions as for the trade network, we do not calculate annual networks. Instead,

we create networks that contain the full period 2001-2016 due to sparsity of data.13 We weight

inter-industry links by the number of transactions instead of transaction values for two reasons.

First, in the case of the bankruptcy M&A network, only about two thirds of the transaction

values are reported. Second, there exist large outlier transactions in terms of transaction value.

After creating the networks, we calculate eigenvector centrality for each industry in a similar

fashion as for the industry network of trade. Descriptive statistics of centrality are reported in

Table B.3 of the Appendix.

3.4 Empirical Study of Recovery Rate Modeling

In this section, we describe our dataset of defaulted bonds and the explanatory variables such as

macroeconomic variables and firm- and bond-specific variables, as well as the control variables

for checking robustness. We then create linear recovery rate models incorporating these vari-

13 Constructing annual networks would yield sparse networks that involve merely about 700 transactions per
year in the case of the non-bankruptcy M&A network, and even less so for the bankruptcy M&A network.
Building networks that involve the whole time period allows us to meaningfully populate the networks of 67
distinct industries and yield informative network representations of inter-industry M&A transactions.
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ables together with network-derived characteristics to shed light on their economic mechanisms

from various perspectives. Subsequently, we apply various robustness tests which allow us to

generalize our findings.

3.4.1 Data and descriptive statistics

We collect a universe of bonds which defaulted over the period 2001 to 2016 from S&P Capital

IQ. After removing all bonds for which no price data are available, the dataset contains a total

of 2,127 bonds from 603 issuers that defaulted under Chapter 7 (liquidations) or Chapter 11

(both reorganizations and liquidations) bankruptcies during the period 2001-2016. We remove

four bonds from the dataset because of corrupted data. We further exclude from our sample

644 bonds of companies which had a lot of subsidiaries with different collateral, such as Lehman

Brothers. Thus, the final dataset used comprises 1,479 defaulted bonds. The bonds’ recovery

rates are measured in observed bond prices 30 days after default as percentage of par value. The

bond prices are obtained via S&P Capital IQ from the Intercontinental Exchange (ICE) and

represent dealer quotes, live trading levels and data of executed trades from the Trade Reporting

and Compliance Engine (TRACE), when available. The bond price 30 days after default has

been established as the standard measure of recovery rate in the literature, as it represents actual

recovery for bond investors who sell their bond holdings subsequent to a default event (see, for

example, Mora (2015)).14 Recovery rates in the dataset spike between 60% and 70%, and for

the vast majority of bonds only 30% or less is recovered. The average recovery rate within the

final dataset is 43.19% with a standard deviation of 32.50%. The empirical distribution of the

recovery rates can be found in Figure B.1 in the Appendix.

We consider various explanatory variables in our recovery rate models that we retrieve from

different sources. We ensure that all variables represent the last available observation before

each bond’s default date in order to only incorporate information explaining a state or con-

dition prior to the recovery rate formation. We also scale all explanatory variables on the

interval [0,1] for the regressions. The dataset includes senior secured, senior unsecured, senior

subordinated, subordinated, and junior subordinated bonds. We introduce dummy variables

14 Other recovery rate databases, such as Moody’s Default and Recovery Database (DRD), also consider 30-day
post-default bond prices as the representation of recovery rate.
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Table 3.1: Descriptive statistics of recovery rates (RR) by seniority.

Seniority Mean RR q0.25 q0.5 q0.75 σ # of bonds % of bonds

Subordinated 11.4% 2.8% 4.3% 18.0% 12.5% 15 1.0%
Senior Subordinated 24.1% 2.3% 15.5% 36.0% 28.2% 158 10.7%
Senior Unsecured 43.1% 12.0% 42.0% 68.1% 30.9% 1,112 75.2%
Senior Secured 61.5% 30.1% 70.0% 94.5% 34.8% 194 13.1%

Total 43.2% 11.5% 40.5% 68.1% 32.5% 1,479 100%

for these seniority classes, and we combine subordinated and junior subordinated bonds in the

subordinated seniority class to avoid seniority classes that are too small. As one would expect,

more senior bonds recover the most after default. The average recovery rates per seniority class

drops monotonically in decreasing seniority. Senior secured bonds have an average recovery rate

of 61.5%, followed by senior unsecured bonds with an average recovery rate of 43.1%. Bonds

within the senior subordinated class have an average recovery rate of 24.1%, and bonds in the

subordinated class have the lowest of 11.4%. Table 3.1 provides the summary statistics of re-

covery rates across seniorities in our dataset.

For relevant firm- and bond-specific variables, we follow the recent literature which has

previously included such information for recovery rate modeling, e.g., Acharya, Bharath, and

Srinivasan (2007), Chava, Stefanescu, and Turnbull (2011), Khieu, Mullineaux, and Yi (2012),

Jankowitsch, Nagler, and Subrahmanyam (2014) and Donovan, Frankel, and Martin (2015). The

data includes information from profit and loss statements, as well as balance sheet information

from financial statements which were filed prior to default. Ahern (2013) reports a positive

relationship between industry centrality and firm size. In order to control for this, we use

the value of total assets of a firm as a proxy. We collect asset values and other pre-default

information from financial statements from S&P Capital IQ. We also replicate accounting ratios

to capture structural credit risk, such as long-term debt (LTD) issuance and default barrier, in

a similar fashion as Jankowitsch, Nagler, and Subrahmanyam (2014).

We add macroeconomic variables in order to account for macroeconomic effects on recovery

rates. Therefore, we collect a comprehensive set of 179 macroeconomic variables, including vari-

ables that were used in previous research such as Varma and Cantor (2005), Acharya, Bharath,

and Srinivasan (2007), Acharya, Bharath, and Srinivasan (2007), Jankowitsch, Nagler, and Sub-

rahmanyam (2014), Mora (2015), and Nazemi and Fabozzi (2018). We obtain macroeconomic

variables from the Federal Reserve Bank of St. Louis (FRED, Federal Reserve Economic Data),
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except for the high-yield market size and high-yield default rate, which are obtained from Fitch

Ratings. As LASSO-selected macroeconomic variables can be highly unstable due to small

perturbations of the data, we use a stability selection technique in the macroeconomic variable

selection for recovery rate prediction as described in Appendix B.3. In the Appendix, we also

provide an overview (Table B.4) and descriptive statistics (Table B.5) of the macroeconomic

variables.

Finally, we match NAICS industry codes to each of the issuers of defaulted bonds. We do

this by retrieving industry classifications from S&P Capital IQ, or otherwise carefully matching

by hand those where no industry classification is available.

Furthermore, we include the number of firms for each NAICS industry in order to control

for industry size. The number of firms in an industry may affect recovery rates in two ways: (i)

an industry with a high number of firms with similar economic activities and (ii) dependence on

similar assets is expected to facilitate assets sales after the default event and also create more

competition for these assets yielding higher liquidation proceeds. However, an adverse effect

may take place if the whole industry is in distress: When several competitors try to liquidate

similar assets, the supply of disposal assets may exceed demand and disposal proceeds diminish.

As an alternative proxy of industry size, we consider industries’ total amounts of assets, which

we retrieve from the BEA’s fixed assets tables. We retrieve the number of firms for each NAICS

industry from the U.S. Census. After matching bonds to NAICS industries, we are able to also

assign centrality measures and other network-derived variables described in Section 3.3 to the

defaulted bonds.

We also include industry dummy variables and industry distress measures at the sector

level to incorporate basic industry-related characteristics as employed by Acharya, Bharath,

and Srinivasan (2007). Industry distress is measured by two dummy variables capturing (i)

negative return shocks of -30% or less to industry-specific stock indices and (ii) industry-wide

negative sales growth during the last 12 months prior to default. We rely on Bloomberg for

industry-specific sales and stock index data.

In order to check for the robustness of our empirical results to potential alternative expla-

nations, we determine which Chapter 11 bankruptcies eventually result in liquidation based on
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data from S&P Capital IQ. We further collect a variety of alternative measures that account

for asset heterogeneity across industries to control for the alternative explanation that industry

centrality just represents the different mix of assets used as collateral for defaulted debt and to

examine the co-determination effect of asset characteristics together with industry centrality.

We collect annual industry aggregate data from the Statistics of Income (SOI) provided by

the U.S. Internal Revenue Service (IRS) and fixed assets tables provided by the BEA. With the

data, we create the inverse of an industry-wide quick ratio to measure the financial illiquidity

within a given industry, and an asset specificity measure similar to Acharya, Bharath, and

Srinivasan (2007). We account for the non-redeployability of assets by taking the inverse of the

measures described by Kim and Kung (2016). We replicate their redeployability measures with

data collected from capital flow tables provided by the BEA. After inverting, these measures

are expected to have a similar directional effect on recovery rates as asset specificity.

We account for additional dimensions of industry-specific asset heterogeneity measured by

asset mobility, asset durability and asset customization as described by Kermani and Ma (2023).

For creating these measures, which are designed to explain aggregate industry asset liquidation

values, we use annual data from fixed assets tables, input-output tables, and private fixed

investment in equipment (PEQ) bridge tables provided by the BEA. Similar to the industry

definitions used for creating the inter-industry network, we translate adjusted industry defini-

tions to NAICS codes via concordance tables provided by the BEA.

3.4.2 Regression models explaining recovery rates

In this subsection, we provide the results of several regression models involving the factors in-

troduced in Section 3.4.1 for explaining corporate bond recovery rates through inter-industry

linkages within the economy. In particular, we examine the hypothesized asset transfer channel

across industry borders through trade relationships as a driver for corporate bond recovery.

Recovery rate and network centrality

To examine the effects of industry centrality and neighbor industry distress on the recovery

rates of defaulted corporate bonds, we utilize the following linear regression specification to
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estimate recovery rates over the period 2001-2016:

Recovery rate = α+ β(bond seniority and industry characteristics)

+µ(firm- and bond-specific variables) + δ(network-derived variables) + ϵ,

(3.1)

The basic specification of our linear regression includes dummy variables for bond seniority

classes, industry affiliation, industry distress, and other commonly used firm- and bond-specific

variables. As shown in Model (1) in Table 3.2, this specification can explain more than 44%

of the variation in creditor recoveries, and we consider it as the benchmark. In all of our OLS

regressions, we adjust standard errors for heteroscedasticity as proposed by White (1980) and

firm-level clustering as described by Wooldridge (2002). This allows us to avoid biased estimates

of standard errors from within-cluster correlation, which is most likely to occur when multiple

bonds of a single firm default. We find that the amount issued, days to maturity, coupon rate,

default barrier, long-term-debt (LTD) issuance and intangibility are significantly negatively,

and profitability is significantly positively related to recovery rate. While our observations are

generally in line with Jankowitsch, Nagler, and Subrahmanyam (2014), we find an adverse effect

of the coupon rate, contradicting the assumption of Jankowitsch, Nagler, and Subrahmanyam

(2014) that bonds with a higher agreed coupon may still be likely to pay out more after default.

Firm leverage has the expected and significant negative effect on recoveries, consistent to models

employed by Mora (2015). When adding centrality measures in Models (2)–(6), most effects of

the firm- and bond-specific variables remain intact. Only the amount of equity, default barrier,

and intangibility cease to be significant in several of the specifications.

Among the network-derived variables, centrality represents the position of the defaulted firm

within the network of inter-industry trade and we measure it either by eigenvector centrality,

closeness centrality, degree centrality, and betweenness centrality. We further consider the first

principal component of the significant centrality measures. Comparable to the studies of Ahern

and Harford (2014) and Evgeniou, Peress, Vermaelen, and Yue (2021), eigenvector and degree

centrality are most likely to capture the hypothesized asset transfer channel, as inter-industry

assets transfers are expected to be path-independent, similar to economic shocks. Moreover,

eigenvector and degree centrality more strongly account for the connectedness to the immediate

periphery of an industry. This corresponds intuitively to that if asset transfers to industry
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outsiders are affected by asset transfer frictions between industries as outlined by Hotchkiss and

Mooradian (1998), these frictions should rise for acquirers located in distant industries. While

degree centrality does not account for any other connections than those to direct neighbors,

eigenvector centrality further considers the importance of neighbor industries and hence has

the advantage that also close connections beyond direct neighbors are reflected. As closeness

centrality and betweenness centrality are path-dependent, based upon shortest paths between

all industries, we do not expect these measures to offer an explanation to recovery rates. The

other network-derived variables include neighbor industry distress, labor’s fraction of inputs,

and log(number of firms).

Models (2) – (6) in Table 3.2 present the results of the regression specifications, adding

the network-derived variables to the basic specification and alternating the different types of

centrality measures. The centralities of the defaulted firms’ industries in the network of inter-

industry trade are measured by eigenvector centrality in Model (2), closeness centrality in Model

(3), degree centrality in Model (4), betweenness centrality in Model (5), and the first principal

component of the significant centrality measures in Model (6).

We find that eigenvector centrality, degree centrality, and also their principal component

contribute positively to the recovery rates with significance at the 1% level. The positive

coefficients of the significant centrality measures provide interesting implications in general,

indicating that, in line with our expectation, bonds issued by firms in central industries recover

more than bonds issued by firms in non-central industries. Moreover, the R-squareds of our

recovery rate models improve by about 5 percentage points when the suggested new variables

are added to the basic model. Since eigenvector centrality also reflects close connections to

industries that are not direct neighbors in the network, we base our further analysis on this

measure.15

The newly developed neighbor industry distress measure is significant at the 1% level in all

models and it shows that industry-wide distress has a negative effect on recovery rates across

industry borders. Finding that both centrality and the neighbor industry distress measures

have sizeable coefficients strongly supports the notion that recovery is considerably dependent

15 Our empirical study yields similar results if we consider degree centrality instead of eigenvector centrality.
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Table 3.2: Recovery rate and centrality, OLS regression results. The recovery rate is the de-
pendent variable. All regressions include seniority, industry, industry distress dummy variables,
and firm- and bond-specific variables. Model (1) is the basic specification including bond- and
firm-specific information. Models (2)–(5) add network-derived variables and iterate different
centrality measures. Model (6) includes the principal component of the significant centrality
measures. Standard errors are adjusted for heteroscedasticity and clusters at the firm level.
Statistical significance at the 1%, 5%, and 10% level is indicated with ***, **, and *.

Model (1) (2) (3) (4) (5) (6)
Centrality measure None Eigenvector Closeness Degree Betweenness Principal Component

Intercept 0.3483 0.5569 ** 0.6470 ** 0.5824 ** 0.5288 ** 0.8708 ***
Amount issued -0.3250 *** -0.2921 ** -0.3098 ** -0.2811 ** -0.3176 *** -0.2859 **
Days to maturity -0.5200 *** -0.4513 *** -0.4616 *** -0.4450 *** -0.4521 *** -0.4483 ***
Coupon rate -0.3127 *** -0.2665 *** -0.2830 *** -0.2683 *** -0.2896 *** -0.2668 ***
Total equity 0.2172 ** 0.0198 0.2231 -0.0207 0.2387 -0.0056
Default barrier -0.2253 ** -0.1709 * -0.1152 -0.1717 * -0.1383 -0.1721 *
LTD issuance -0.1617 *** -0.1322 *** -0.1250 *** -0.1326 *** -0.1362 *** -0.1322 ***
Profitability 0.2364 *** 0.2895 *** 0.2648 *** 0.2894 *** 0.2284 *** 0.2909 ***
Intangibility -0.1413 ** -0.1076 -0.1100 * -0.1025 -0.1041 -0.1051
Receivables -0.1882 -0.0871 -0.1225 -0.0757 -0.1211 -0.0804
Total assets -0.0243 0.0701 0.0791 0.0540 0.0888 0.0615
Leverage -0.3838 *** -0.3203 *** -0.3833 *** -0.3162 *** -0.3918 *** -0.3166 ***
Log(number of firms) -0.4795 *** -0.2689 ** -0.5076 *** -0.2489 * -0.4994 ***
Labor’s fraction of inputs -0.1487 0.0260 -0.1880 0.0024 -0.1719
Log(neighbor industry distress) -0.2789 *** -0.2853 *** -0.2788 *** -0.2933 *** -0.2784 ***
Log(eigenvector centrality) 0.4034 ***
Log(closeness centrality) -0.2347
Log(degree centrality) 0.4437 ***
Log(betweenness centrality) 0.0775
Principal component of centralities 0.3058 ***

R2 0.4465 0.4948 0.4845 0.4976 0.4824 0.4965
Adj. R2 0.4365 0.4843 0.4738 0.4872 0.4716 0.4861
RMSE 0.2441 0.2335 0.2359 0.2329 0.2364 0.2331
Observations 1,479 1,479 1,479 1,479 1,479 1,479
Industry dummies Yes Yes Yes Yes Yes Yes
Seniority dummies Yes Yes Yes Yes Yes Yes
Basic industry distress dummies Yes Yes Yes Yes Yes Yes

on the structure of the inter-industry trade network. We further find that the number of firms

within an industry, a variable to control for industry size, is significant with a negative effect on

recovery. Labor’s fraction of inputs measures industries’ relative dependence on human labor

and controls for the case that productive assets and asset sales for recovering liquidity play no

pivotal role in labor-intensive industries. However, it is insignificant in all models.

Recovery rate, network centrality and the asset transfer channel

To rule out that the significant effects from network-derived variables and the centrality measure

can be explained with asset characteristics or proxies for industry-specific asset heterogeneity,

we further investigate such alternative explanations. Acharya, Bharath, and Srinivasan (2007)

find that the asset specificity, i.e. the inability to redeploy assets of a defaulted firm in other

industries, negatively impacts recovery during times of industry-wide distress. Following Berger,
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Ofek, and Swary (1996) and Strömberg (2000), they define asset specificity as book value of

machinery and equipment divided by the book value of total assets. This definition is distinct

from the total amount of assets as it excludes non-specific and fungible assets such as cash or

property, which can easily find application in other industries.

Kim and Kung (2016) develop two measures which account for industry-specific hetero-

geneity of assets and the redeployability of assets to other industries, reflecting the number of

industries that use specific asset types. They show that when assets can be easily redeployed

in other industries, recovery rates are higher.16

Kermani and Ma (2023) define asset mobility, asset durability, and asset customization to

infer pricing implications on assets liquidations. Their measures capture the unique physical

attributes of assets that are related to industry-specific business activities, and hence reflect

the productivity of assets for alternative users, as well as the ability to transfer these assets

to alternative users. Asset mobility is measured as one minus transportation costs to total

production costs of the typical PPE utilized within an industry. Assets with lower transportation

costs (e.g., vehicles) are easier to deploy to new physical locations. Asset durability, measured

as one minus the industry-wide average asset depreciation rate, reflects that faster depreciated

assets may be less valuable to alternative users (e.g., computers or office equipment). Asset

customization reflects the degree to which the assets that are used in a given industry are

customized to the industry’s requirements. Customized assets may have only limited use in

other industries (e.g., optical lenses for industrial production). For our analysis, we rebuild

these measures and include them in linear regression to account for asset heterogeneity that

could be captured by our network-derived measures.17

We emulate asset specificity, the two non-redeployability variations, as well as asset mobility,

asset durability, and asset customization, and investigate their main effects in our linear recovery

16 Kim and Kung (2016) provide two interchangeable asset redeployability measures, the first of which is
related to specificity of assets and the second is related to market thickness. The former variation is scaled by the
number of industries to capture asset specificity, and the other is scaled by the number of firms in each industry
to capture the liquidity dimension. See Kim and Kung (2016) for a detailed explanation of the construction of
asset redeployability measures.

17 Kermani and Ma (2023) use asset mobility, asset durability and asset customization to measure aggregate
recoveries for two-digit SIC industries. The recovery in their study represents the liquidation receipts as a
percentage of book value, from which no direct inference on the recoveries of defaulted debt instruments on the
firm- and bond-specific level are made. See Kermani and Ma (2023) for a detailed explanation of the construction
of the asset mobility, asset durability and asset customization measures.
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rate models in combination with the new network-derived variables. We further add a variable

that controls for industry-wide illiquidity, as Acharya, Bharath, and Srinivasan (2007) show

that industry-wide illiquidity negatively impacts recovery rates when asset specificity is high.

In addition, we consider the total amount of assets per industry as an alternative measure of

industry size compared to the number of firms, and a dummy variable to capture liquidation-

type defaults.

In all specifications in Table 3.3, the centrality measure and neighbor industry distress

remain significant, and most notably, the coefficients maintain similar signs and a comparable

order of magnitude as what we report in the previous section. Model (1) shows that the

specificity of assets has a significant effect on recovery with the expected negative sign, given

the limited use of highly specific assets in other industries.18 We find a significant negative

effect at the 5% level of one of the non-redeployability measures in Model (2), which is in line

with what Kim and Kung (2016) find. However, the second variant of non-redeployability is

not significant in Model (3).19 Furthermore, among the measures that account for industry-

specific physical asset attributes as described by Kermani and Ma (2023), asset customization

(Model (6)) is significantly related to recovery rates at the 5% level. Kermani and Ma (2023)

report lower liquidation values for customized assets, which corresponds to the negative effect

on recovery rates that we find. We further find in Model (7) that the average illiquidity within

an industry has a significant negative effect on recovery rates, which is compatible with the

findings of Acharya, Bharath, and Srinivasan (2007), although they do not report the main

effect of illiquidity separately. The amount of assets within an industry (Model (8)) as a proxy

for industry size has a negative coefficient, but is not significant.

We additionally examine whether forced firm liquidations may coincide with centrality and

distort our findings. An important difference between reorganization (Chapter 11 bankruptcies)

and liquidation (Chapter 7 bankruptcies) is that under Chapter 11 the liquidation of assets is

negotiated, but not mandatory as compared to Chapter 7. Nevertheless, Chapter 11 cases may

eventually be converted to Chapter 7 cases, resulting in the liquidation of all assets. Bris,

18 Consistent with Acharya, Bharath, and Srinivasan (2007), but unrelated to our research objective and hence
not reported, we find that the interaction between asset specificity and industry distress has a significant negative
effect on recovery rates.

19 If we exclude industry fixed effects, similar to Kermani and Ma (2023), both non-redeployability measure
are significant, with the expected negative effect on recovery.
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Table 3.3: Recovery rate and centrality – Alternative control variables, OLS regression results.
The recovery rate is the dependent variable. All regressions include seniority, industry, industry
distress dummy variables, and firm- and bond-specific variables. Models (1)–(9) iterate alter-
native control variables (asset-related firm- and industry-specific characteristics) together with
network-derived variables. Standard errors are adjusted for heteroscedasticity and clusters at
the firm level. Statistical significance at the 1%, 5%, and 10% level is indicated with ***, **,
and *.

Model (1) (2) (3) (4) (5) (6) (7) (8) (9)

Intercept 1.0176 *** 0.5432 ** 0.8056 *** 0.6862 ** 0.8124 *** 0.8279 *** 0.8909 *** 0.8104 *** 0.8730 ***
Log(number of firms) -0.5162 *** -0.4006 *** -0.4791 *** -0.4163 *** -0.4804 *** -0.2944 * -0.3991 ** -0.4722 *** -0.4135 ***
Labor’s fraction of inputs -0.1969 -0.1159 -0.1501 -0.1210 -0.1482 0.0575 -0.2822 -0.1438 -0.0050
Log(neighbor industry distress) -0.2527 *** -0.2655 *** -0.2791 *** -0.2793 *** -0.2787 *** -0.2662 *** -0.2762 *** -0.2771 *** -0.2892 ***
Log(eigenvector centrality) 0.3661 ** 0.3132 ** 0.4056 *** 0.3300 ** 0.4041 ** 0.2790 * 0.3267 ** 0.3984 ** 0.3638 **
Asset specificity -0.2864 *
Asset non-redeployability 1 -0.2209 **
Asset non-redeployability 2 0.0147
Asset mobility 0.2226
Asset durability -0.0042
Asset customization -0.4744 **
Industry illiquidity -0.5417 *
Total amount of industry assets -0.0207
Liquidation dummy variable -0.1900 ***

R2 0.5051 0.4997 0.4948 0.4965 0.4948 0.5055 0.5009 0.4948 0.5153
Adj. R2 0.4945 0.4889 0.4840 0.4857 0.4839 0.4949 0.4902 0.4840 0.5049
RMSE 0.2312 0.2325 0.2336 0.2332 0.2336 0.2311 0.2322 0.2336 0.2288
Observations 1,479 1,479 1,479 1,479 1,479 1,479 1,479 1,479 1,479
Industry dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes
Seniority dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes
Basic industry distress dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm- and bond-specific variables Yes Yes Yes Yes Yes Yes Yes Yes Yes

Welch, and Zhu (2006) find that recovery rates are higher in Chapter 11 cases due to better

preservation of the firm’s assets. Comparably, Bernstein, Colonnelli, and Iverson (2018) report

inefficient asset allocations for liquidation cases. We employ a liquidation dummy variable which

captures whether liquidation has eventually been implemented regardless of how the bankruptcy

case had initially been filed. Consistent with the findings reported in previous studies, we find

a significant negative effect of liquidation on recovery in Model (9) in Table 3.3. While the

liquidation measure serves well for the verification of our regression results, it is worth noting

that it cannot be included into ex-ante recovery rate prediction due to a substantial time lag

between default and conversion of reorganization cases to liquidation. In all specifications,

the centrality measure and neighbor industry distress remain stable and significant drivers of

recovery, showing that these measures provide a new explanation to recovery rates rather than

just replicating the asset heterogeneity that is captured in already known variables.

We now test the hypothesis that centrality influences corporate bond recovery rates through

the asset transfer channel. Therefore, we first explore how centrality within the inter-industry

network affects recovery rates conditional to industry-specific asset characteristics. If centrality

has a positive effect on recovery rates because it facilitates the transfer of assets across industry
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borders, this effect should magnify when assets are less specified to an industry’s needs and can

potentially be employed by users in other industries. We start by focusing on asset specificity,

the two non-redeployability measures, and asset customization, for which we have analyzed their

main effects on recovery in Table 3.3. Now we test their interaction effects with centrality on

recovery rates. We consider only these measures that capture the degree to which assets can

be employed by alternative users, which is not necessarily the case for the asset mobility and

asset durability measures that account for the transferability of assets from a cost and time

perspective.20

The results of linear regressions including interaction effects are reported in Table 3.4. In

Models (1) – (4), we find negative interaction effects of centrality with asset characteristics. In

all cases, centrality has a large positive effect on recovery rates at the 1% significance level when

assets are standardized and have more alternative uses, that is, when the asset specificity, non-

redeployability, or customization measures are fixed at zero, since the variables are scaled on the

interval [0,1]. In addition, we find highly significant interaction terms that bear negative signs

of centrality with the asset characteristics. It shows that while recoveries of defaulted bonds

benefit when assets are standardized, the positive effect of centrality shrinks with increasing

specificity, non-redeployability, or customization. The findings for all four models are consistent,

implying that the positive effect of industry centrality on recovery rates magnifies when industry

assets have a higher possibility to be employed by alternative users. As all four employed

explanatory variables, which reflect the alternative use of assets from different perspectives, form

significant interaction effects with centrality, we find evidence that supports our hypothesis that

the centrality measure operates through the asset transfer channel between industries. Although

our analysis does not rule out other additional explanations of the inter-industry network’s effect

on recovery rates, the observed effects from asset characteristics together with centrality should

be insignificant in the absence of the asset transfer channel. The analysis shows that bonds have

higher recovery rates if their industry employs assets that can be used in alternative industries

and is well connected within the inter-industry network of trade.

20 Asset mobility measures the costs of physically transporting assets from one user to another, which is not
likely to be related to an industry’s trade relationships within the inter-industry network. Likewise, any effect of
asset durability is more likely to be dependent on the duration of the legal proceedings to resolve default rather
than industry centrality. As expected, we do not observe any significant interaction effects of these variables with
centrality.
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Table 3.4: Recovery rate and centrality – Interaction effects, OLS regression results. The
recovery rate is the dependent variable. All regressions include seniority, industry, industry
distress dummy variables, and firm- and bond-specific variables. Models (1) – (4) iterate the
interactions of network centrality with asset characteristics. Model (5) shows the interaction
of network centrality with a dummy variable indicating liquidation-type default events. Model
(6) shows the interaction of network centrality with a dummy variable indicating industry-wide
illiquidity. Standard errors are adjusted for heteroscedasticity and clusters at the firm level.
Statistical significance at the 1%, 5%, and 10% level is indicated with ***, **, and *.

Model (1) (2) (3) (4) (5) (6)

Intercept 0.0161 0.2613 0.3528 -0.0990 0.6030 ** 0.4305
Log(number of firms) -0.5273 *** -0.3768 ** -0.5107 *** -0.2002 -0.3833 ** -0.3874 **
Labor’s fraction of inputs -0.1478 -0.0729 -0.0597 0.1142 0.0147 -0.2129
Log(neighbor industry distress) -0.2549 *** -0.2692 *** -0.2909 *** -0.2584 *** -0.2901 *** -0.2792 ***
Log(eigenvector centrality) 1.2842 *** 0.7880 *** 0.7135 *** 1.3289 *** 0.3980 *** 0.5087 ***
Asset specificity 0.5508
Log(eigenvector centrality) * Asset specificity -0.9907 **
Asset non-redeployability 1 0.6507 **
Log(eigenvector centrality) * Asset non-redeployability 1 -1.4915 ***
Asset non-redeployability 2 0.9016 ***
Log(eigenvector centrality) * Asset non-redeployability 2 -1.7664 ***
Asset customization 0.4479
Log(eigenvector centrality) * Asset customization -1.7846 ***
Liquidation dummy 0.0293
Log(eigenvector centrality) * Liquidation dummy -0.3427 *
Industry illiquidity -6.4258 **
Log(eigenvector centrality) * Industry illiquidity 6.7233 **

R2 0.5101 0.5172 0.5172 0.5193 0.5187 0.5064
Adj. R2 0.4992 0.5065 0.5065 0.5086 0.5080 0.4954
RMSE 0.2301 0.2284 0.2284 0.2280 0.2281 0.2310
Observations 1,479 1,479 1,479 1,479 1,479 1,479
Industry dummies Yes Yes Yes Yes Yes Yes
Seniority dummies Yes Yes Yes Yes Yes Yes
Basic industry distress dummies Yes Yes Yes Yes Yes Yes
Firm- and bond-specific variables Yes Yes Yes Yes Yes Yes

In the next step, we consider an interaction term of the liquidation dummy variable with

centrality. The interaction of the liquidation indicator and industry centrality corresponds to

the finding of Bernstein, Colonnelli, and Iverson (2018) that liquidated plants in bankruptcy

cases are more likely to be sold to another industry than reorganized plants. At the same

time, liquidation cases result in the sale of all assets, thus, the liquidation dummy variable

captures the economic effects of asset sales under stress. Hence, if the industry centrality’s

positive effect on recovery is through the asset transfer channel, the combination of centrality

and liquidation should have a significant effect on recovery rates. As shown in Model (5) in

Table 3.4, the interaction effect is negative and significant at the 10% level, whereas centrality

remains positive and significant at the 1% level. This shows that the effect of centrality has

a positive effect both in liquidation cases (when the liquidation dummy variable is fixed at

one) and reorganization cases (when the liquidation dummy variable is fixed at zero). The

negative sign of the interaction term shows that the positive effect of centrality on recovery

is larger for reorganization cases than for liquidation cases. As asset sales are not mandatory
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but also performed frequently in reorganization cases, this finding suggests that there exists

a second economic mechanism of centrality beyond the asset transfer channel, possibly due to

diversification aspects in well-connected industries. After all, however, this analysis confirms

the positive effect of centrality on recovery for liquidation-type defaults that lead to asset sales.

Finally, we consider the interaction of centrality with illiquidity within the defaulted firm’s

industry at the time of default. If defaulted firms intend to sell assets, they need to find willing

buyers. During times when potential buyers within the same industry are illiquid and thus

constrained in their ability to absorb assets, our previous findings indicate a negative impact

on recovery rates. As shown in Model (6), the interaction effect of centrality with illiquidity

is significant at the 5% level. The large negative coefficient of illiquidity shows that its effect

on recovery rate is highly negative when centrality is low. When centrality rises, however, the

positive coefficients of centrality and the interaction term offset the negative effect of illiquidity.

From an economic perspective, this means that industry-wide illiquidity is more influential on

recovery rates in non-central industries, and less influential in central industries. As we hereby

show that recoveries of firms in non-central industries are more dependent on the liquidity of

their industry peers, this finding is another supportive evidence to our hypothesis that central

industries, which are less affected when industry peers are illiquid, can more easily rely on the

transfer of assets to industry outsiders. This is consistent with Shleifer and Vishny (1992), who

argue that when industry peers are financially constrained, assets of bankrupt firms need to

be sold to industry outsiders. As central industries have more trade connections to industry

outsiders, our results provide an extension to their finding.

In summary, we collected various evidence in our analysis on the effects of centrality in

combination with variables that capture asset characteristics, liquidation-type defaults and

illiquidity. Our findings underpin the existence of an asset transfer channel through the inter-

industry network of trade. Overall, our findings highlight how industries’ positions within the

U.S. inter-industry trade network and the economy’s network structure affect the recovery rates

of defaulted U.S. corporate bonds. We find that network-derived characteristics, particularly

eigenvector centrality and neighbor industry distress, are key factors in driving recovery rates.

The more centrally a firm is located within the inter-industry network network, the higher the

bond recovery rate, despite controlling for alternative explanations such as established measures
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of industry-dependent asset heterogeneity. We additionally find that the positive effect of cen-

trality on recovery rates is more pronounced when assets can be utilized by industry outsiders,

in liquidation cases that lead to asset sales, and when the defaulted firm’s industry peers are

financially constrained. Thereby, we are able to establish stylized facts of the hypothesized

inter-industry asset transfer channel.

Recovery rate, network centrality and the macroeconomy

Aobdia, Caskey, and Ozel (2014) highlight that returns and performance of firms in central

industries within the inter-industry network of trade are more closely related to macroeconomic

conditions than of those in non-central industries. They argue that central industries’s better

connectivity to other industries provide diversification of idiosyncratic shocks. At the same time,

central industries are more prone to macroeconomic conditions than non-central industries, since

macroeconomic shocks are more likely to originate in central industries and then propagate their

closely connected trading partner industries. We test whether macroeconomic conditions also

operate differently in central and non-central industries as drivers of recovery rates.

Only few macroeconomic variables were used in most prior studies seeking to predict recovery

rates for corporate debt. In a recent study, Nazemi and Fabozzi (2018) report that recovery

rate models with macroeconomic variables selected by LASSO outperform models with just a

few macroeconomic variables. The main advantage of selection models compared to alternative

data reduction models such as principal components is that they are much easier to interpret

and link to the economic literature. The LASSO-selected variables are not robust to a small

perturbation of the data (see, for example, Chinco, Clark-Joseph, and Ye (2019)). Feng, Giglio,

and Xiu (2020) argue that using LASSO to select from a large number of risk factors is not a

reliable way to find the best risk factors in asset pricing. We identify macroeconomic variables

from a large set of U.S. macroeconomic variables that are related to recovery rates by using

a stability selection technique. The stability selection generates many bootstrapped samples

and counts how often each variable is selected. Lastly, the stability selection chooses the set of

variables that are selected more often than a specific threshold. Therefore, the stability selection

robustly identifies macroeconomic variables that are economically meaningful but not easy to

realize otherwise.
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Descriptive statistics for the nine stability selection technique selected macroeconomic vari-

ables can be found in Table B.5 of the Appendix. The following regression model adds the

selected macroeconomic variables to the basic specification:

Recovery rate = α+ β(bond seniority and industry characteristics)

+µ(firm- and bond-specific variables) + δ(network-derived variables)

+γ(selected macroeconomic variables) + ϵ,

(3.2)

Model (A2) in Table 3.5 shows the results of linear regression incorporating the selected

macroeconomic variables (unemployment of less than five weeks, the spread of Aaa rated bonds

to the U.S. federal funds rate, the high yield default rate, inventories of U.S. firms, inflation ex-

pectations, personal saving rate, new housing starts, the USD/GBP exchange rate, and volatil-

ity of the S&P 500) in addition to the basic variables employed in Model (A1). When we add

network-derived variables in Model (A3), centrality and neighbor industry distress keep their

individual directional relationships and order of magnitude with centrality that we observed pre-

viously. We observe significant negative effects on recovery from increasing inventories of U.S.

firms, new housing starts, unemployment of less than five weeks, and the spread of Aaa rated

bonds to the U.S. federal funds rate, and we find a significant positive effect of the USD/GBP

exchange rate. The negative relationship of recovery with unemployment suggests that unem-

ployment serves as an indicator of macroeconomic distress, consistent with Nazemi and Fabozzi

(2018).

Our observation of a significant negative relationship between bond recovery and the spread

of Aaa rated bonds to the U.S. federal funds rate supports the findings of Mora (2015) who

shows that spreads negatively affect recovery rates in debt-dependent industries. While PD is

generally positively associated with credit spreads, the negative relationship between spreads

and recovery rate is consistent with Chava, Stefanescu, and Turnbull (2011) and the findings

of Frye (2000) that PD and recovery rate are inversely correlated. In contrast to other studies

such as Altman, Brady, Resti, and Sironi (2005), who find a negative relationship of recovery

rates with market-wide default rates, we find evidence that the high yield default rate is posi-

tively related to corporate bond recovery rates. This observation suggests that the relationship
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Table 3.5: Recovery rate and centrality – Macroeconomic effects, OLS regression results. The
recovery rate is the dependent variable. All regressions include seniority, industry, industry
distress dummy variables, and firm- and bond-specific variables. Panel A employs the full
sample, whereas Panel B and C employ samples containing only the 50% most central, and the
50% least central observations. In each panel, the first column represents the basic specification.
In the second column, macroeconomic variables are added. In the third column, network-derived
variables are added. Standard errors are adjusted for heteroscedasticity and clusters at the firm
level. Statistical significance at the 1%, 5%, and 10% level is indicated with ***, **, and *.

Panel A: All data Panel B: Central (50% most central) Panel C: Non-central (50% least central)
Model (A1) (A2) (A3) (B1) (B2) (B3) (C1) (C2) (C3)
Intercept 0.3117 0.0432 0.0837 0.6826 *** 0.2559 0.1929 0.3726 0.4965 ** 0.3409
Log(number of firms) -0.3400 ** 0.3688 ** -0.0843
Labor’s fraction of inputs 0.0640 0.4381 ** 0.1599
Log(neighbor industry distress) -0.2755 *** -0.3059 * -0.2348 ***
Log(eigenvector centrality) 0.3064 **
Invent change -0.0005 ** -0.0006 *** -0.0001 0.0003 -0.0004 -0.0005 *
Inflation expect -0.0579 * -0.0278 -0.1621 ** -0.1688 *** 0.0241 0.0435
Saving rate -0.0223 -0.0366 *** -0.0210 -0.0222 -0.0495 *** -0.0548 ***
S&P 500 vol -0.0013 -0.0017 -0.0032 -0.0015 -0.0010 -0.0022
Ex rate: UK 0.4921 *** 0.4091 *** 0.3916 * 0.4196 ** 0.3051 ** 0.2615 **
Starts: NE -0.0016 *** -0.0016 *** -0.0014 * -0.0015 * -0.0012 *** -0.0012 ***
U <5 wks -0.0002 * -0.0002 ** 0.0000 0.0000 -0.0001 -0.0001
Aaa-FF spread -0.0575 *** -0.0303 * -0.1055 *** -0.0731 ** -0.0107 0.0138
High yield DR 0.0065 * 0.0117 *** 0.0035 0.0138 0.0035 0.0088 **
R2 0.4456 0.5316 0.5562 0.5390 0.6835 0.7007 0.3101 0.3818 0.4053
Adj. R2 0.4360 0.5202 0.5442 0.5255 0.6701 0.6867 0.2918 0.3574 0.3792
RMSE 0.2442 0.2252 0.2195 0.2163 0.1804 0.1758 0.2472 0.2355 0.2315
Observations 1,479 1,479 1,479 739 739 739 739 739 739
Industry dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes
Seniority dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes
Basic industry distress dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm- and bond-specific variables Yes Yes Yes Yes Yes Yes Yes Yes Yes

between the default rate (or PD) and recovery rate may not be linear across bond yields and

credit ratings.

Next, we evaluate whether the findings of Aobdia, Caskey, and Ozel (2014), that the eco-

nomic performance of firms in central industries is more related to macroeconomic conditions

than in peripheral industries, also hold for recovery rates. We divide the defaulted corporate

bonds into two subsets involving the 50% most and the 50% least central observations. We

then apply separate linear regressions on these distinct bond subsets. We are interested in de-

termining the additional portion of variation in recovery rates that can be explained by adding

macroeconomic variables. As the R-squared measures the extent to which the overall variation

in recovery rates is accounted for by the explanatory variables employed, the difference in R-

squareds between the central and the non-central samples allows to draw implications on the

relative degree to which the recovery rate is explained by the macroeconomic conditions.21

21 Note that the comparison of R-squareds only allows for a relative assessment of the dependency on the
explanatory variables employed. Our approach is somewhat related to that of Aobdia, Caskey, and Ozel (2014)
but differs in that they compare predicted R-squareds to measure the effect of macroeconomic conditions on
rolling windows of daily and monthly stock returns in central and non-central industries. Due to the sparsity of
default observations compared to stock return data, such approach is not applicable in the context of recovery
rate estimation.
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Panel B (central industries) and Panel C (non-central industries) in Table 3.5 present the

results of adding macroeconomic variables to linear regression for explaining recovery rates of

bonds in central and in non-central industries. As we use network centrality to rank and separate

the data sample into two subsamples, we remove it from the universe of explanatory variables.

In general, we observe that the variables employed have better explanatory power for defaults in

central industries since all models in Panel B have considerably higher R-squareds relative to the

corresponding models in Panel C. For the central subsample, as shown in Model (B2), adding

macroeconomic variables adds more than 14 percentage points to the R-squared compared to

the baseline specification. In the non-central industries, the corresponding specification with

macroeconomic variables in Model (C2) adds around 7 percentage points. Furthermore, using

network-derived variables in Models (B3) and (C3) shows that the neighbor industry distress

measure remains significantly negatively related to recovery in both specifications, although the

significance is less strong in central industries than in non-central industries.

Interestingly, the significance of macroeconomic variables differs for central and non-central

industries. However, the significant macroeconomic variables keep the same signs as when con-

sidering the whole dataset in Panel A. The varying significance of macroeconomic variables by

centrality is possibly due to the heterogeneity of economic activities and thus dependence on

different macroeconomic environments across industries. Overall, and in line with our expecta-

tion, we find that adding macroeconomic variables to linear regression leads to a much greater

amount of explained variation in the recovery rate in central industries than in non-central

industries. That allows us to draw the conclusion that recovery rates in central industries

are indeed relatively more related to macroeconomic conditions than in non-central industries.

This interesting insight also enhances the findings of Mora (2015). While she reports that the

macroeconomic variables used in modeling recovery rates do not have the same effects on each

industry, we show that macroeconomic effects in fact operate differently in central and non-

central industries.
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3.4.3 Robustness checks

In this section, we examine the robustness of our findings in various settings. We first consider

alternative data subsamples, and start by testing whether our linear regression results still hold

for a subsample that excludes all bonds of financial firms. We also account for periods of reces-

sions and non-recession times, in order to assess whether our findings hold across the economic

cycle. To further test the plausibility of our findings, we then substitute the inter-industry

trade network for creating the industry centrality measure with alternative networks derived

from actual inter-industry asset acquisitions. Finally, we evaluate the out-of-sample validity

and real-world applicability of our models through advanced machine learning methods.

Robustness to alternative data subsamples and alternative networks

We examine the robustness of our findings to symptoms that are linked to the financial indus-

try, or to different regimes of the economic cycle. In times of economic distress, established

economic mechanisms may shift or cease to operate in the way they do during periods of eco-

nomic stability. As an example, the GFC had caused particular difficulties for the financial

industry, leading to bankruptcies of large financial institutions. In order to rule out that the

results of our analysis are driven by defaults and recoveries within the financial industry, we

consider a subsample of our data excluding all bonds of issuers from the financial industry.

The regression involving all 1,050 bonds from non-financial firms verifies the significance of

the newly introduced centrality and neighbor industry distress measures, as shown in Model

(A2) in Table 3.6, where we add them to the basic specification (Model (A1)). The regression

also produces the same directional effects for all network-derived variables as the overall sample.

Having demonstrated the robustness of our findings to excluding financial firms, we now

test the robustness of the recovery rate models to the economic cycle. We do so by performing

linear regressions for two distinct subsets of the bonds that represent non-recession (Panel B)

and recession (Panel C) periods. We choose the U.S. recession periods as March 2001 until

November 2001 and December 2007 until June 2009 according to the definitions of U.S. reces-

sions of the National Bureau of Economic Research (NBER). The results show that the basic

specification, which employs bond seniority and industry characteristics, as well as other firm-

and bond-specific variables, has considerably higher explanatory power during the non-recession
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Table 3.6: Recovery rate and centrality – Robustness check, OLS regression results. The recov-
ery rate is the dependent variable. All regressions include seniority, industry, industry distress
dummy variables, and firm- and bond-specific variables. In each Panels A – C, the first column
represents the basic specification including bond- and firm-specific information. In the second
column, the network-derived variables are added. Panel A considers only default events of
non-financial firms. Panels B and C only consider default during non-recession and recession
periods. The recession periods are March 2001 until November 2001, and December 2007 until
June 2009 following the definitions of the National Bureau of Economic Research (NBER). Panel
D employs alternative networks to derive the centrality measure. Model (D1) employs central-
ity derived from the detailed inter-industry trade network involving 471 distinct industries.
In Model (D2), the network for deriving centrality is based on inter-industry non-bankruptcy
mergers and acquisitions (M&A), and in Model (D3) on bankruptcy M&A. Standard errors are
adjusted for heteroscedasticity and clusters at the firm level. Statistical significance at the 1%,
5%, and 10% level is indicated with ***, **, and *.

Panel A:
Non-financial subsample

Panel B:
Non-recession subsample

Panel C:
Recession subsample

Panel D:
Alternative networks

Model (A1) (A2) (B1) (B2) (C1) (C2) (D1) (D2) (D3)
Intercept 0.3430 0.5289 0.2400 -0.0191 0.5107 ** 0.9095 * 0.4166 * 0.3303 -0.1586
Log(number of firms) -0.1494 -0.0713 -0.2533 -0.1151 0.5250 *** 0.6529 ***
Labor’s fraction of inputs -0.1572 -0.0595 -0.6428 -0.2840 *** -0.1238 -0.1221
Log(neighbor industry distress) -0.1624 ** -0.3081 *** -0.0795 -0.2249 -0.2903 *** -0.2584 ***
Log(eigenvector centrality) 0.2263 ** 0.3217 ** 0.5835 **
Log(eigenvector centrality) Detailed 0.2053 ***
Log(eigenvector centrality) M&A 0.5250 ***
Log(eigenvector centrality) Bankruptcy M&A 0.6529 ***
R2 0.3450 0.3710 0.4783 0.5382 0.3413 0.4019 0.4986 0.4839 0.4946
Adj. R2 0.3303 0.3544 0.4677 0.5272 0.2900 0.3464 0.4882 0.4736 0.4845
RMSE 0.2560 0.2513 0.2292 0.2160 0.2779 0.2666 0.2326 0.2359 0.2335
Observations 1,050 1,050 1,160 1,160 319 319 1,479 1,479 1,479
Industry dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes
Seniority dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes
Basic industry distress dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm- and bond-specific variables Yes Yes Yes Yes Yes Yes Yes Yes Yes

period than during the recession. When adding network-derived characteristics, centrality has

a positive coefficient and is statistically significant. Neighbor industry distress, however, has

a significant negative relationship with recovery when applying the non-recession sample, but

ceases to be significant during the recession, although keeping a negative sign. Not surprisingly,

due to the nature of recessions, we observe that only three defaulted bonds don’t experience

any distress in neighbor industries during the recession, and hence are underrepresented in the

cross-variation. Thus, one cannot meaningfully interpret the insignificant coefficient of neigh-

bor industry distress. After all, the centrality measure keeps its relationship with recovery even

during the recession, and our analysis shows that centrality plays a significant role in reliably

determining recovery rates as it is robust to the economic cycle.

Finally, we consider alternative networks for deriving centrality. Panel D in Table 3.6 first

applies the detailed 1997 inter-industry network of trade involving 471 distinct private sector

industries (Model (D1)). This model confirms the significance of centrality for increasing the

granularity of the network representation compared to our main analysis. Although this spec-
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ification yields a highly statistically significant positive coefficient of centrality, the magnitude

of the coefficient is smaller than for the less detailed network. We then apply centrality derived

from the non-bankruptcy M&A network (Model (D2)) and then from the bankruptcy M&A

network (Model (D3)). By doing so, we test whether the inter-industry network of trade’s capa-

bility to infer predictions on the recovery rate due to facilitating inter-industry asset transfers is

robust to replacing it with the inter-industry networks of realized asset transfers. Although the

M&A networks only reflect realized outcomes and hence are likely to suffer from selection bias,

we do find that industry centrality in the inter-industry networks of realized M&A transactions

as well as realized bankruptcy M&A transactions have a positive and highly significant effect,

comparable to when we use the inter-industry trade network. Other network-derived variables

that are significant in our main analysis remain stable. As the employed M&A networks cover

the full period 2001–2016 and potentially contain selection bias, they are not suited for ex-ante

estimation of recovery rates, but the analysis demonstrates the validity of the hypothesized

inter-industry asset transfer channel for the formation of recovery rates.

Out-of-sample prediction using machine-learning methods

Most prior studies consider that corporate bond recovery rates linearly depend on the explana-

tory variables (see, for example, Varma and Cantor (2005), Acharya, Bharath, and Srinivasan

(2007), and Jankowitsch, Nagler, and Subrahmanyam (2014)). Qi and Zhao (2011), Altman and

Kalotay (2014), Yao, Crook, and Andreeva (2015), Nazemi and Fabozzi (2018), Sopitpongstorn,

Silvapulle, Gao, and Fenech (2021), and Kellner, Nagl, and Rösch (2022) demonstrate that

non-linear methods outperform linear methods to predict recovery rates. We apply our recov-

ery rate estimation models in predictions via machine learning techniques in order to reflect

the non-linear dependency between the recovery rate and explanatory variables, and assess

the out-of-sample prediction performance in order to benchmark the real-world applicability

of the different groups of variables. We estimate the recovery rate by employing least squares

support vector regression, least squares support vector regression with different intercepts for

seniorities, and semi-parametric least squares support vector regression, which we describe in

Appendix B.4.
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Table 3.7 shows the results from the out-of-sample prediction, using 10-fold cross-validation.22

Model (1) in Table 3.7 employs only bond seniority, industry dummy variables and basic in-

dustry distress variables. To this basic specification, we alternately add the following variables:

firm- and bond specific variables (Model (2)), measures derived from the inter-industry network

of trade (Model (3)), and the selected macroeconomic variables (Model (4)). In the final specifi-

cation (Model (5)), we combine all groups of variables. In all models, support vector regression

techniques outperform the linear regressions by a large margin, a finding that is consistent with

Nazemi and Fabozzi (2018) who compare the accuracy of support vector regression techniques

with statistical methods. This high improvement in the determination of recovery rates by

machine learning models for all individual groups of explanatory variables indicates that the re-

lationship between recovery rates and the explanatory variables, including the network-derived

variables, is not just linear, analogue to what is documented for established recovery rate drivers

in earlier research. When comparing the out-of-sample fit of the different models, we observe

that Model (5), that includes all variables altogether, has the best predictive power among

the models. Notably, however, adding the variables derived from the inter-industry network

improves model accuracy by a comparable order of magnitude as the bond- and firm-specific

variables or macroeconomic variables that are established drivers of recovery rates in the liter-

ature. Our analysis demonstrates that the network-derived variables offer a robust explanation

of corporate bond recovery rates even in out-of-sample settings.

In summary, we provide various tests to explore the robustness of the variables derived from

the inter-industry network of trade to alternative explanations and settings. Showing that the

main findings of our study remain intact under these settings makes a compelling case for the

role of the inter-industry network of trade in explaining recovery rates through enabling inter-

industry asset transfers.
22 For performing a 10-fold cross-validation, we randomly split the dataset into 10 subsets while stratifying

for seniority. The reported performance is obtained by averaging the 10 performances measured in the cross-
validation. We run a grid search during the cross-validation process for choosing the appropriate hyper-parameters
for the support vector regression specifications. The model specification for reporting is chosen based on the lowest
average mean squared error (MSE).
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Table 3.7: Recovery rate and centrality – Out-of-sample prediction, OLS and support vector
regression results. The recovery rate is the dependent variable. All regressions include seniority,
industry, and industry distress dummy variables. Model (1) represents the basic specification
(seniority, industry, and industry distress dummy variables). Model (2) adds bond- and firm-
specific information to the basic specification. Model (3) adds network-derived variables to the
basic specification. Model (4) adds selected macroeconomic variables to the basic specifica-
tion. Model (5) combines all variables employed in Models (1)–(4). The regression techniques
include linear regression (Lin. Reg.), least squares support vector regression (LS–SVR), least
squares support vector regression with different intercepts for seniorities (LS–SVR DB), and
semi-parametric least squares support sector regression (LS–SVR SP). Out-of-sample predic-
tion performance is based on 10-fold cross-validation. The best value for each performance
measure for the respective model is highlighted in bold.

Model (1) R2 σ
R2 Adj. R2 σ

Adj. R2 RMSE σRMSE MAE σMAE

Lin. Reg. 0.3710 0.0561 0.3643 0.0567 0.2579 0.0194 0.1905 0.0147

LS – SVR 0.4223 0.0518 0.4162 0.0524 0.2471 0.0189 0.1845 0.0132

LS – SVR SP 0.3932 0.0607 0.3867 0.0613 0.2533 0.0200 0.1900 0.0135

LS – SVR DB 0.4226 0.0516 0.4165 0.0522 0.2471 0.0188 0.1846 0.0134

Model (2) R2 σ
R2 Adj. R2 σ

Adj. R2 RMSE σRMSE MAE σMAE

Lin. Reg. 0.4312 0.0536 0.4203 0.0546 0.2451 0.0182 0.1761 0.0121

LS – SVR 0.5936 0.0936 0.5859 0.0954 0.2067 0.0239 0.1162 0.0137

LS – SVR SP 0.5899 0.0902 0.5821 0.0919 0.2076 0.0224 0.1245 0.0127

LS – SVR DB 0.5725 0.0671 0.5643 0.0684 0.2122 0.0184 0.1375 0.0085

Model (3) R2 σ
R2 Adj. R2 σ

Adj. R2 RMSE σRMSE MAE σMAE

Lin. Reg. 0.4412 0.0497 0.4336 0.0504 0.2429 0.0173 0.1780 0.0103

LS – SVR 0.5814 0.0920 0.5757 0.0932 0.2097 0.0229 0.1354 0.0129

LS – SVR SP 0.5898 0.0856 0.5842 0.0868 0.2076 0.0220 0.1308 0.0117

LS – SVR DB 0.5768 0.0903 0.5710 0.0915 0.2108 0.0223 0.1367 0.0127

Model (4) R2 σ
R2 Adj. R2 σ

Adj. R2 RMSE σRMSE MAE σMAE

Lin. Reg. 0.4660 0.0562 0.4566 0.0571 0.2374 0.0175 0.1725 0.0113

LS – SVR 0.5977 0.1279 0.5906 0.1302 0.2053 0.0299 0.1122 0.0165

LS – SVR SP 0.5849 0.1276 0.5776 0.1298 0.2087 0.0298 0.1205 0.0158

LS – SVR DB 0.5878 0.1222 0.5806 0.1244 0.2080 0.0286 0.1279 0.0144

Model (5) R2 σ
R2 Adj. R2 σ

Adj. R2 RMSE σRMSE MAE σMAE

Lin. Reg. 0.5273 0.0733 0.5134 0.0754 0.2233 0.0204 0.1543 0.0129

LS – SVR 0.6200 0.1243 0.6088 0.1280 0.1994 0.0300 0.1016 0.0161

LS – SVR SP 0.6139 0.1249 0.6026 0.1286 0.2011 0.0300 0.1031 0.0161

LS – SVR DB 0.6000 0.1226 0.5882 0.1263 0.2049 0.0291 0.1244 0.0142

3.5 Conclusions

The large number of default events during the 2007-2008 Global Financial Crisis has spotlighted

the dynamics of corporate bond recovery rates. It also became apparent that interconnections

between industries and the fragile structure of the financial institutions’ network were signifi-

cant factors driving systemic risk and the propagation of shocks in the economy. By employing

an empirical representation of the U.S. inter-industry trade network and comprehensive data

on defaulted bonds in the United States over the period 2001–2016, we examine the link be-

tween the recovery rates of defaulted U.S. corporate bonds and observable inter-industry trade
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relationships.

This empirical study shows that corporate bond recovery rates are driven by an economic

mechanism which operates beyond industry borders and which is dependent on the network

structure of the economy. Although it is known that defaulted bond recovery rates vary across

industries, recent studies neglect that industries do not exist in isolation from each other.

Inter-industry trade relationships allow the transmission of assets, information and systematic

shocks between industries. We find that industries which are more central in the network

of inter-industry trade have higher recovery rates than industries that are less central. We

provide evidence that the connectivity to other industries through trade relations facilitates

asset disposals across industry borders in default, which is reflected in higher recoveries in

central industries. By considering industry-specific asset characteristics that account for the

ability to deploy assets for alternative uses, we find that the positive effect of network centrality

magnifies in industries with assets that are less specialized to a specific industry’s needs.

By defining a neighbor industry distress measure, we also find that bond recoveries suffer

from distress in directly connected industries which propagates through trade relationships,

an economic mechanism which we observe for the first time in the literature. Our robust

findings are independent from the business cylce or disruptions from the financial industry

during the GFC. Moreover, our findings are independent from variations in the granularity

of industry definitions to create the inter-industry network for trade and further backed by

actual inter-industry asset disposal data from a database of M&A transactions in bankruptcy.

Our study furthermore reveals how macroeconomic drivers of recovery rate operate in central

and non-central industries. Macroeconomic conditions explain a greater fraction of recovery

rates’ variations in central than in non-central industries. Finally, applying the network-derived

characteristics in machine learning models can explain recovery rates comparably well as the

established recovery rate drivers in out-of-sample prediction.

To conclude, our results provide novel evidence that an industry’s position in the network

of inter-industry trade is an important driver of corporate bond recovery rates, as it determines

a firm’s ability to dispose assets to other industries, especially when assets are not specialized

to a specific industry’s needs. Thus, our findings highlight a yet undiscovered channel in the

formation of recovery rates.
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Chapter 4

Corporate Bond Recovery Rate and

Financial Markets

This chapter is joint working paper with Abdolreza Nazemi.12

4.1 Introduction

Traditional asset pricing models offer insights into the pricing of portfolios of stocks and bonds.

Using factor models, researchers and practitioners identify a relationship of individual asset

returns with the prevailing market-wide conditions. For stocks, such factor models have become

standard tools for constructing portfolios and assessing risks. Moreover, factor models explain

asset specific risk-return characteristics, allowing to identify the common return drivers and

eventually infer predictions on future return performance of an asset.

Many equity factors have been identified and studied in the recent decades (see, for example,

Jensen, Kelly, and Pedersen (2023)), however, the factor structure in corporate bond returns was

established only lately. Bai, Bali, and Wen (2019) introduce factors for corporate bond returns,

building a portfolio approach in a similar fashion as the seminal study on equity returns of

Fama and French (1993). However, as Dickerson, Mueller, and Robotti (2023) show in a more

recent study, these factors are erroneous and do not offer any incremental explanatory power.

1 Abdolreza Nazemi is with the School of Economics and Management, Karlsruhe Institute of Technology,
Germany.

2 We would like to thank Prof. Marliese Uhrig-Homburg, Prof. Philipp Schuster, Dr. Marcel Müller, and Dr.
Michael Reichenbacher for providing size-adapted bond liquidity data and expected liquidity measures.
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Dickerson, Julliard, and Mueller (2023) revisit a multitude of potential bond return factors from

the literature and find that the majority of factors are no sources of priced risk. Kelly, Palhares,

and Pruitt (2023) expand the bond factor approach to including latent factors derived from an

instrumented principal component approach, and show that this approach improves modeling

accuracy for corporate bond returns.

As stock and bond risk factors explain the pricing of a firm’s capital structure, the question

of integration of bond and equity markets arises naturally. That is, do stock and bond returns

depend on the same risk factors? While Choi and Kim (2018) find that risk premia in bond

markets differ from those in equity markets, Kelly, Palhares, and Pruitt (2023), find evidence

of a closer integration of both markets.

Once a bond defaults, its investment characteristics change significantly. Therefore, studies

on recovery pricing neglect the general conditions in equity and bond markets that are captured

by factor models, focusing on the unique recovery drivers, such as bond- and firm-specific

variables, trading-specific information, and macroeconomic conditions.3

In this paper, we establish novel evidence on the relationships between corporate bond

recovery rates and prevailing conditions in stock and bond markets. While bond factor models

explain returns of corporate bonds in good standing, the nature of a bond changes materially in

case of default from normal bond to a more equity-like asset. Whereas bonds in good standing

typically offer a low-risk, low-return investment profile, defaulted bonds alter the risk-return

profile more close to that of equities, with high risk, but also potentially high returns, or total

loss. Examining the sensitivity of defaulted bonds to traditional asset pricing characteristics,

such as equity risk factors, bond risk factors, and others, we document a close relationship

between the pricing of defaulted bonds and the prevailing conditions in financial markets. The

key idea of our study is to capture the dependence of defaulted bonds, which share asset

characteristics of both stocks and bonds, on the pricing conditions of the markets in which

stocks and bonds are traded.

Our empirical analysis uncovers a pronounced relationship of defaulted bond recovery and

financial markets. As defaulted bonds trade in OTC bond markets, we investigate how bond

3 See, for example, Acharya, Bharath, and Srinivasan (2007), Altman, Brady, Resti, and Sironi (2005), Jankow-
itsch, Nagler, and Subrahmanyam (2014), Mora (2015), Nazemi and Fabozzi (2018), or Baumann, Kakhbod,
Livdan, Nazemi, and Schürhoff (2023)
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market liquidity affects the pricing in defaulted bonds. We construct measures of market-wide

liquidity relying on OTC trading data, and draw on alternative liquidity measures from the

literature. While the idiosyncratic liquidity provision in defaulted bonds has been researched

before (see Jankowitsch, Nagler, and Subrahmanyam (2014)), we show that when bond markets

experience a liquidity crisis, the pricing of defaulted bonds will be impaired. Thus, the liquidity

provision in the overall bond market affects the expected recovery in defaulted bonds. As such,

the functioning of the overall bond market has a significant effect on recovery outcomes.

Comparing recovery outcomes with risk factors established in the literature for bond pricing,

we find a link between defaulted bond recovery and the time-varying bond risk factors. Positive

bond market returns correlate with higher bond recovery, and during times when returns of risky

bonds outperform low-risk bonds, recoveries are even higher. Thus, we can draw conclusions

from investors’ pricing of normal bonds on the pricing of defaulted bonds. Complementary,

we further augment bond market conditions with a corporate bond market distress index and

a financial markets index, and find that distress in the overall bond market and tightening of

financial conditions have detrimental effects on bond recoveries. These results show that even

if a bond’s risk-return profile changes with default, the recovery pricing will still be subject to

conditions in the bond market, as well as to general financial conditions.

To assess whether the change of a bond’s risk-return profile after default to a more equity-

like asset is reflected in a dependence of bond recovery on prevailing pricing conditions in equity

markets, we further consider a range of equity risk factors. Indeed, we find a relationship of de-

faulted bonds with equity risk factors. E.g., when equity markets price high-risk equities higher,

the recoveries of defaulted bonds appreciate. Alternatively, when equity markets price equity

portfolios with high profitability higher than those with low profitability, defaulted bonds’ recov-

eries decline. Finally, we consider prevailing equity valuations, and further find that defaulted

bonds recover more when the market values equities higher relative to industry-wide financial

performance metrics such as net income, or sales. Thus, we find that defaulted bond pricing is

closely related to the pricing and valuation conditions in equity markets.

With our empirical analysis utilizing a variable importance ranking methodology, we fur-

ther find that many of the market-derived characteristics are more important in explaining

corporate bond recovery rates than established recovery rate variables such as, for example,
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macroeconomic conditions, bond seniority, default type, or industry affiliation. Overall, the

cumulative importance of market-derived variables is approximately 60% relative to that of the

established recovery rate drivers, indicating the important role of considering market conditions

for estimating defaulted bond recovery rates.

The main contribution of our paper is to expose the link between defaulted bond recov-

ery and conditions in U.S. financial markets. Jankowitsch, Nagler, and Subrahmanyam (2014)

show that the liquidity of defaulted bonds within the OTC market is related to their respective

recovery. Altman, Brady, Resti, and Sironi (2005) explain recovery rate as the intersection of

supply and demand in defaulted bonds. Baumann, Kakhbod, Livdan, Nazemi, and Schürhoff

(2023) establish a link between the OTC market structure, defaulted bond trading, and in-

vestors’ recovery rates in defaulted bonds. While these studies acknowledge the importance

of defaulted bonds trading in the bond market, they neglect whether a change in the bond

market’s conditions may affect recovery. Controlling for a range of alternative factors, including

those that might be considered related to financial markets, such as macroeconomic conditions,

industry-specific distress, and time fixed effects, we consider a variety of market-derived char-

acteristics that explain pricing in both equity and bond markets. Finding a significant effect of

these variables for bond pricing, we establish a novel understanding of the market-based drivers

of recovery rates. Thus, we expand the growing research on recovery drivers such as Acharya,

Bharath, and Srinivasan (2007), Mora (2015), and Nazemi and Fabozzi (2018).

With our study, we also contribute to the literature of bond and equity pricing. Kelly,

Palhares, and Pruitt (2023), Dickerson, Mueller, and Robotti (2023) and Dickerson, Julliard,

and Mueller (2023) investigate the effects of bond factors on bond pricing. We utilize their

factors in bond pricing, however, for those bonds that recently defaulted. By doing so we

capture how normal bond investors’ prevailing risk-return preferences are reflected in the pricing

of defaulted bonds. In a similar fashion, we capture the equity pricing implications on bond

recoveries from factors such as in Fama and French (2015) and Jensen, Kelly, and Pedersen

(2023), showing that not only bond investors’ risk-return preferences, but also those of equity

investors, are reflected in the pricing of defaulted bonds.

Finally, we contribute to shaping a better understanding of the hybrid nature of defaulted

bonds, which share characteristics of both bonds and equity-like investments. Choi and Kim

88



(2018) assess the integration of bond and equity markets, finding limited integration between

the two markets. In a related study, however, Kelly, Palhares, and Pruitt (2023) find that equity

risk factors explain a large fraction of bond returns when utilizing risk factors created by an

instrumented principal components approach. By exposing the dependence of recovery rates on

various bond and equity risk factors, bond market liquidity, bond market distress and financial

conditions, as well as equity valuation levels, we add to the understanding of the integration of

equity and debt markets.

The paper is organized as follows. Section 4.2 describes the data and defines the sample used

in our empirical analysis, including market-derived variables. Section 4.3 contains our empirical

study of recovery rates subject to conditions in financial markets. Finally, we conclude our work

in Section 4.4.

4.2 Data

In the following, we present the data sources and methodologies for building the dataset of

defaulted bonds and for creating the explanatory variables. We further provide definitions of

the variables used in our recovery rate predictions.

4.2.1 Defaulted bond data and explanatory variables

We collect data from various sources. The defaulted bond and recovery data sample is con-

structed with data from Moody’s Default & Recovery Database (DRD), the Mergent Fixed

Income Securities Database (FISD), S&P Capital IQ, Thomson Reuters, and FINRA’s Trans-

action Reporting and Compliance Engine (TRACE). Bond and firm characteristics are from

S&P Capital IQ and FISD, and macroeconomic variables are from the Federal Reserve Bank of

St. Louis (FRED). We create proxies for bond liquidity and bond market liquidity with transac-

tion data from TRACE, and obtain additional bond market liquidity measures and both bond

and equity risk factors from the literature. Equity market valuations are from the Wharton

Research Data Services (WRDS). Bond market distress data is from the Federal Reserve Bank

of New York, and National Financial Conditions Index data is from the Federal Reserve Bank

of Chicago. In the following, we describe the dataset and data sources in more detail.
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Default Events We build a large dataset of defaulted bonds over the period 2004-2016, con-

sidering a variety of default events. We retrieve default-day combinations of corporate bonds

for reorganizations (Chapter 11), liquidations (Chapter 11 and Chapter 7) and distressed ex-

changes from Moody’s DRD, Mergent FISD, S&P Capital IQ and Thomson Reuters. Consistent

with Jankowitsch, Nagler, and Subrahmanyam (2014), we additionally consider bonds that were

downgraded to one of the two lowest rating classes. Therefore, we utilize historical rating data

of Moody’s, S&P, and Fitch Ratings available via FISD. We identify bond downgrades to the

second lowest rating class (unlikely-to-pay events and situations close to formal default, e.g.,

S&P’s C rating) and downgrades to the lowest rating class (formal defaults, e.g., S&P’s D rat-

ing). Due to the multitude of data sources and event definitions used for identifying default

events, we yield several different default-day combinations for individual bonds that relate to

the same default event. For example, rating downgrades may occur even before a bond formally

defaults, and we may identify both as separate default-day combinations. Hence, in order to

avoid multiple default-day representations of the same default event of a bond, we only con-

sider the first default-day combination of a bond and thereafter only consider any consecutive

default-day observation of the same bond after a time delay of at least one year.4 For our anal-

ysis, we only consider bonds for which trading information around the default date is available

in TRACE for calculating the recovery rate, and for which there is bond-specific information

available in FISD. Based on this procedure, we identify 2,636 corporate bond default events.

The data covers 2,425 distinct bonds of 498 distinct US-based issuer firms, and represents 679

unique default events.5

Recovery Rate Similar to Jankowitsch, Nagler, and Subrahmanyam (2014), we define the

recovery rate of bond j as its average trading price as a percentage of par value on the default

day and the 30-day period thereafter:

4 In fact, bonds may be reinstated after default and, in some cases, default again thereafter.
5 To the best of our knowledge, our dataset of defaulted bonds is one of the most recent and most comprehensive

datasets utilized in recent recovery rate research. For comparison, Jankowitsch, Nagler, and Subrahmanyam
(2014) identify 2,235 default events of 818 corporate bonds during the period 2002 to 2010, and thus consider
a multitude of default-day combinations per bond that may be related to the same default event. Altman and
Kalotay (2014) and Kalotay and Altman (2017) analyze 2,828 corporate bonds, among other debt instruments,
over the period 1987-2011. Qi and Zhao (2011) consider 2,367 corporate bonds between 1985 and 2008, as well
as other credit instruments. Mora (2015) uses data of 3,659 defaulted corporate bonds in addition to loans and
preferred stock over the period 1970-2008.
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RRi =
1

T + 1

t+T∑
s=t

 1

Ki,s

∑
ki,s

prices,ki,s
pari

 . (4.1)

where t is the bonds’ default date, K is the number of reported bond trades on day s, price is

the transaction price, and par is a bond’s par value. We consider TRACE data to observe prices

paid on the default day t and during the 30 days after default. For bondholders that liquidate

their bond holdings immediately after default, this definition of the recovery rate represents

actual recovery. A further advantage of this definition is its availability close to the default

event, whereas ultimate recovery may be only observed after a time period that is unknown

ex ante.6 The mean recovery rate is 38.83% with a standard deviation of 28.82%. About two

thirds of the defaults occurred during the global financial crisis. In 2008, the recovery rates are

the lowest, with a mean recovery rate of only 22.61%, and further show also the lowest standard

deviation in the low 20s as percentage of par value. In contrast, the two years before exhibit the

highest average recovery rates (66.96% in 2006 and 63.21% in 2007). The majority of default

events are Chapter 11 default events (reorganizations and liquidations), which recover about

37–38% of par value on average. Distressed exchanges recover about 60% of par value and are

the highest recoveries in our sample, which is consistent with the literature (see, for example,

Mora (2015)), followed by default risk rating events which recover about 59%. Default ratings

and Chapter 7 liquidations are the most severe default events, with each recovering about 26%

of par value. Figure 4.1 shows the histogram of the recovery rate distribution over the whole

sample and the yearly time-variation, and the variation by default event type of the recovery

rate can be found in Table 4.1.

Bond Characteristics In order to account for cross-sectional characteristics of the defaulted

bonds, we include a range of bond-specific variables. We collect each bond’s industry affiliation

and seniority ranking from FISD. Consistent with the literature, the most senior bonds show

the highest recovery, at about 65% of par value. The recovery rate drops for more junior bonds,

with subordinate and junior bonds recovering the least (about 27.8%). The recovery rates vary

6 Metz and Sorensen (2012) show that 30-day post-default bond trading prices are powerful predictors of
ultimate recovery.
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Figure 4.1: Distribution of the recovery rates of the defaulted U.S. corporate bonds from 2004
to 2016.

by industry. Bonds from the utilities sector recover the most, a finding that is consistent with

early studies such as Altman and Kishore (1996). The lowest recovery rates are observed in

the financials sector. Table 4.2 shows recovery rate summary statistics by bond seniority and

industry.

As the TRACE data contains comprehensive bond trading information for all defaulted

bonds, we are able to observe bond price changes over time. In Figure 4.2, we show the time

variation in trading prices around the default date for all bonds, and by industry affiliation

during the 180 days before to 180 days after default. Whereas the average trading prices drop

around the default event and follow a V-shaped curve, the price trajectories differ substantially

for different industries. The communication services and utilities industries show the least severe

price drops of less than 25% of par value, whereas bonds from financials, information technology,

and energy industries show a steep price decline, each dropping by more than 50% in par value.

Following Acharya, Bharath, and Srinivasan (2007), we consider two industry distress dummy

variables which indicate whether an industry has suffered declines in sales, and whether an index

of stocks of firms within the same industry has dropped recently before default. We create these
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Table 4.1: Summary statistics of recovery rate distribution by time and default event type
2004–2016. The recovery rate is calculated as the average daily trading price of transactions on
the default day and during the 30-day period thereafter as a percentage of par value.

Bond defaults Firm defaults Median Mean SD
Panel A: Overall recovery rate
All bonds 2,636 679 34.22 38.83 28.82
Panel B: Recovery rate by year
2004 124 71 59.80 58.60 29.56
2005 125 51 60.95 58.10 29.15
2006 49 36 74.07 66.96 26.46
2007 41 27 66.83 63.21 33.98
2008 1,010 96 14.60 22.61 20.21
2009 657 151 43.57 43.58 23.20
2010 67 43 65.51 59.92 33.75
2011 93 45 41.49 46.52 30.10
2012 75 48 47.50 51.03 30.71
2013 48 31 43.13 49.21 36.12
2014 86 45 59.82 62.21 33.13
2015 109 54 30.10 36.69 24.32
2016 152 100 39.50 43.52 30.88
Panel C: Recovery rate by default event type
Distressed exchange 197 95 59.60 59.23 29.75
Default risk rating 306 129 58.74 57.51 27.34
Chapter 11 reorganization 1,428 453 37.59 37.44 27.91
Chapter 11 liquidation 92 61 29.93 38.03 28.66
Default rating 542 35 15.86 26.32 20.64
Chapter 7 liquidation 71 37 11.61 26.31 33.73

measures utilizing industry-specific sales and stock indices growth information from S&P Cap-

ital IQ. In addition, we obtain the following information from FISD: a bond’s offering amount,

the days until maturity, the coupon rate, and a dummy variable that indicates whether the

bond contains covenants. Information about the availability of CDS contracts of a given bond

is added as a dummy variable, and is retrieved from S&P Capital IQ. Finally, we consider the

rating one year prior to default with detailed ratings information that we collect from FISD.

Therefore, we encode each rating class as an integer, where the best rating has the lowest

ranking value (i.e., AAA = 1, AA+ = 2, etc.).

Firm Fundamentals We consider a range of firm fundamentals as explanatory variables

which we retrieve from S&P Capital IQ. We use data from bond issuers’ annual reports that

were most recently available prior to default. Therefore, we consider profitability (net income

as percentage of revenue), total assets and the number of employees. Following Jankowitsch,

Nagler, and Subrahmanyam (2014), we furthermore add proxies of structural credit risk, such
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Table 4.2: Summary statistics of recovery rates 2004–2016 by seniority and by industry. The
recovery rate is calculated as the average trading price of transactions on the default day and
during the 30-day period thereafter. Panel A shows recovery rate summary statistics by bond
seniority. Panel B shows recovery rates by industry classification.

SD Min q25 Median Mean q75 Max N
Panel A: Recovery rate by seniority
Senior Secured 31.5 0.0 40.2 66.5 64.9 92.6 119.6 276
Senior Subordinate 31.3 0.0 13.9 38.6 42.5 67.2 105.4 200
Senior Unsecured 26.2 0.0 13.4 29.2 35.3 49.5 119.8 2,113
Subordinate & Junior 31.5 0.0 1.8 15.9 27.8 54.8 91.7 47
Panel B: Recovery rate by industry
Materials 29.53 0.05 17.07 40.13 42.97 63.53 109.97 149
Communication Services 34.63 0.00 14.27 49.93 49.39 83.25 108.13 233
Consumer Discretionary 30.73 0.00 19.69 39.91 45.55 71.92 119.80 332
Industrials 28.76 0.01 26.77 44.82 49.62 72.30 106.59 162
Consumer Staples 33.96 3.66 23.81 58.55 57.37 89.77 105.41 44
Financials 22.47 0.01 12.81 18.08 29.79 43.67 101.12 1,265
Energy 25.35 0.00 17.03 30.55 37.61 55.11 103.44 232
Health Care 30.05 2.75 12.01 36.22 42.74 74.65 99.57 31
Utilities 31.64 8.03 45.22 78.72 71.51 100.63 119.62 102
Information Technology 31.20 0.45 10.93 38.98 41.07 65.93 101.68 58
Real Estate 22.83 15.37 35.52 41.78 48.54 57.56 99.85 28

as equity value and default barrier, that measures a firm’s debt relative to its assets.

Macroeconomic Variables The macroeconomic conditions at default have been proven to

be a key determinant of corporate bond recovery (see, for example, Mora (2015) or Nazemi

and Fabozzi (2018)). We follow Jankowitsch, Nagler, and Subrahmanyam (2014) and add the

federal funds rate, the slope of the interest rate curve, the default rate, and the industry default

rate as macroeconomic predictors of recovery rates. From FRED, we retrieve the federal funds

rate and the 10-year minus the 3-month U.S treasury notes yield as the slope. We calculate

the default rate as the percentage of default events that we observe in a 90-day rolling window

relative to the total number of bonds for which we observe trades in TRACE during that time,

and the industry default rate is collected from Moody’s.

Liquidity of Defaulted Bonds Jankowitsch, Nagler, and Subrahmanyam (2014) show that

a defaulted corporate bond’s trading liquidity is correlated with its recovery rates. They find

that the higher the liquidity of a defaulted bond is during the 30 days after its default day,

the higher is its recovery rate. We replicate their measures by relying on trading data from
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TRACE. The average daily trading volume (V olume) vi,t of bond i is defined as

vi,t =
1

T + 1

t+T∑
s=t

 1

Ki,s

∑
ki,s

vs,ki,s

 , (4.2)

and is measured as the average over the period starting with the default day t to T = 30 days

thereafter.

The number of trades (Trades) ni,t measures the total number of trades executed for bond

i during the period starting with the default day t to T = 30 days thereafter, with Ki,s as the

number of reported bond trades on day s:

ni,t =
1

T + 1

t+T∑
s=t

Ki,s. (4.3)

The average Amihud (2002) measure Amihud of bond i over the period starting with the

default day t to T = 30 days thereafter is defined as

Amihudi,t =
1

T + 1

t+T∑
s=t

 1

Ni,s

∑
ki,s

|rki,s |
vki,s

 , (4.4)

with Ni,s as the number of observed returns r on a given day s.

Finally, we implement the price dispersion measure di,s on day s defined as

di,s =

√√√√ 1∑
ki,s

vki,s
·
∑
ki,s

(
pki,s
mi,s

− 1

)2

· vki,s , (4.5)

with mi,s as the mean of the transaction prices reported to TRACE as an estimate of bond i’s

fair value and pi,s as the bond’s individual trading prices. We use the average price dispersion

measure PriceDispersion over the period starting with the default day t to T = 30 days

thereafter.
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4.2.2 Financial markets data

In the following, we describe the data and the construction of the key variables that represent

conditions in financial markets, which we employ in our empirical analysis for the first time in

recovery rate literature. We not only consider market data related to debt instruments, but

also conditions in equity markets.

Bond Market Liquidity In addition to a defaulted bond’s liquidity implications on its

recovery rate, we consider the liquidity conditions in the overall secondary bond market. We

utilize a variety of measures that capture different dimensions of bond market liquidity. To do

so, we calculate bond market liquidity ourselves by utilizing the trading information in TRACE,

but also complement our data by collecting bond market liquidity information available through

the literature.

In order to observe the bond market’s liquidity at the time of a bond’s default event, we

consider the most recent available market liquidity observation on the default date. For liquidity

that we calculate using TRACE data, this represents the average daily one-month trailing

market liquidity, that is, the average of the daily liquidity of all individual bonds traded during

the month before a default event. In order to be included for calculating market-wide liquidity

using TRACE data, a bond has to be actively traded (see, for example, Reichenbacher and

Schuster (2022) or Müller, Reichenbacher, Schuster, and Uhrig-Homburg (2023)), hence, we

only include bonds that are traded at least on ten days in a given month. Because we are only

interested in the liquidity available to investors, rather than the liquidity of the inter-dealer

market, we also remove all inter-dealer trades before we derive daily bond liquidity. In addition,

we filter and adjust the data in order to yield a coherent dataset that allows the construction of

meaningful measures of market-wide liquidity.7 By doing so, our final TRACE sample contains

45,777,649 bond transactions of 28,255 corporate bonds over the period 2004-2016.

We then calculate the bond market liquidity measures for all bonds separately, and consider

7 We remove all bonds that are not available in FISD, and we match data from TRACE with bond characteris-
tics in FISD based on unique CUSIP identifiers. We include only USD denominated bonds, and remove all bonds
with a variable coupon rate, and with an issue size below USD 100m. We furthermore remove transactions when
a bond’s time to maturity is less than one year, and transactions that are related to the initial bond issuance,
i.e., the primary market. Finally, we remove all bonds in default. Because TRACE data contains realized prices
that include accrued interest, we finally adjust prices based on information of the coupon frequency, coupon rate,
and coupon cash and payment in kind components from FISD. This allows us to correctly identify price returns
within the data.
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their average liquidity as the market liquidity. We consider the V olume, Trades, Amihud,

and PriceDispersion defined in Section 4.2.1, using transaction data of the bond market over

the month before the default observation. We furthermore replicate the liquidity measures

of Corwin and Schultz (2012) (CorwinSchultz) and Roll (1984) (Roll) that were shown by

Schestag, Schuster, and Uhrig-Homburg (2016) to be robust estimators of transaction costs in

the corporate bond market. We define CorwinSchultzi,s of bond i on day s as:

CorwinSchultzi,s = 2 · e
αi,s − 1

1 + eαi,s
, (4.6)

where

αi,s =

√
2 · βi,s −

√
βi,s

3− 2 ·
√
2

−
√

γi,s

3− 2 ·
√
2
, (4.7)

βi,s =

1∑
j=0

(
log

(
Hi,s+j

Li,s+j

))2

, (4.8)

and

γi,s =

(
log

(
Hi,s,s+1

Li,s,s+1

))2

. (4.9)

Here, Hi,s and Li,s are the highest and the lowest trade prices of bond i on day s, respectively,

and Hi,s,s+1 and Li,s,s+1 are the highest and the lowest trade prices of bond i on two consecutive

days.

We furthermore define Rolli,s of bond i on day s as:

Rolli,s =


2 ·

√
−Cov (ri,s, ri,s−1), if Cov (ri,s, ri,s−1) < 0

0, otherwise,

(4.10)

with return rs on day s. Figure 4.3 illustrates the time variation of bond market liquidity

measures derived from transaction data in TRACE.
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Figure 4.3: Time series of bond market liquidity measures derived from transaction data in
TRACE.
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In addition, we utilize liquidity data provided in the literature. We obtain the liquid-

ity price and liquidity quantity measures of Goldberg and Nozawa (2021). Liquidity price

LiquidityPrice represents the ”noise” in corporate bonds, that is, deviations from fitted issuer-

level yield curves, whereas liquidity quantity LiquidityQuantity proxies the liquidity provision

by dealers through use of their balance sheets, measuring their gross inventory positions. Re-

ichenbacher and Schuster (2022) examine bond transaction costs subject to trade size. Because

time-varying changes in trade size may influence the time variation in liquidity proxies of tradi-

tional approaches, they provide size-adapted estimates of the transaction cost measure described

by Schultz (2001) (SizeAdaptedCost), along with size-adapted estimates of the average bid-ask

spread SizeAdaptedSpread (see, for example, Hong and Warga (2000)). We obtain these mea-

sures from them and employ them in our recovery rate analysis.

Müller, Reichenbacher, Schuster, and Uhrig-Homburg (2023) predict liquidity distributions

one month ahead of the majority of individual bonds available in TRACE via machine learning.

We obtain the predicted liquidity measures from them, which are the predicted bid-ask spread

PredictedSpread (see, for example, Hong and Warga (2000)), and the predicted size adapted

bid-ask spread of Reichenbacher and Schuster (2022) (PredictedSizeAdaptedSpread). Here,

we consider the average of the predicted liquidities of individual bonds as the market-wide

aggregate liquidity. In total, we utilize twelve corporate bond market liquidity measures, six

of which we create using transaction data from TRACE, and six of which we obtain from the

existing literature.

Table 4.3: Summary statistics of bond market liquidity measures. Volume is in $ million, Trades
is in # trades per day, and others are % spread

Mean
Standard
deviation

10th
percentile

Lower
quartile

Median
Upper
quartile

90th
percentile

Volume 1.94 0.36 1.27 1.83 1.90 2.24 2.34
Trades 3.30 0.79 2.38 2.55 3.40 3.96 4.02
Amihud 2.10 1.52 0.48 0.73 1.64 3.93 3.93
PriceDispersion 0.75 0.38 0.29 0.39 0.68 1.25 1.25
Roll 3.24 1.59 1.28 1.69 2.91 5.35 5.35
CorwinSultz 1.62 0.88 0.62 0.85 1.34 2.70 2.87
LiquidityPrice 25.36 14.23 12.65 14.72 24.85 35.02 44.77
LiquidityQuantity 16.69 0.20 16.46 16.55 16.63 16.89 16.99
SizeAdaptedSpread 0.49 0.24 0.19 0.27 0.48 0.69 0.83
SizeAdaptedCost 0.35 0.17 0.13 0.18 0.33 0.58 0.58
PredictedSpread 1.77 0.66 0.85 1.10 1.83 2.56 2.61
PredictedSizeAdaptedSpread 0.50 0.27 0.17 0.25 0.46 0.72 0.92

Corporate Bond Market Distress Index Boyarchenko, Crump, Kovner, and Shachar

(2022) create an index that quantifies corporate bond market distress. Their Corporate Bond
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Market Distress Index (CMDI) estimates the conditions in the primary and secondary U.S.

corporate bond markets, that is, not only capturing bond trading conditions. They aggregate

measures of primary bond market issuances, measures of primary market spreads, and measures

of volume, liquidity, duration-matched spreads, default-adjusted spreads, and conditions of non-

traded bonds for the secondary market. Their index identifies deteriorating market conditions

when several of the individual measures indicate distress. We obtain the weekly market-wide

CMDI, as well as its subindices for investment-grade and high-yield corporate bond markets,

from the Federal Reserve Bank of New York.8

National Financial Conditions Index Brave and Butters (2011) use a dynamic factor

model with dimension reduction applied on a large number of financial indicators to gauge

conditions in U.S. financial markets. Their measure, the National Financial Conditions Index

(NFCI), accounts for conditions in money markets, debt and equity markets, and the banking

system, and is classified into risk, credit and leverage subcategories. In addition, Brave and

Kelley (2017) create an adjusted National Financial Conditions Index (ANFCI) that captures

only the financial conditions that are uncorrelated with the prevailing economic conditions. We

obtain weekly NFCI, ANFCI and data for the subcategories from the Federal Reserve Bank of

Chicago.9

Bond Market Risk Factors We consider bond factor models that explain the variation in

the cross-section of corporate bond returns:

1. Traded bond factors: We collect time series data of U.S. corporate bond risk factors from

Dickerson, Julliard, and Mueller (2023) who provide 14 tradable factors from the corporate

bond literature.10 These factors include:

i. CRF, a credit risk factor that measures the return difference between portfolios of

low- and high-rated bonds

8 The CMDI data is available via https://www.newyorkfed.org/research/policy/cmdi (Retrieved on October
25th, 2023).

9 The NFCI data is available via https://www.chicagofed.org/research/data/nfci/current-data (Retrieved on
October 25th, 2023).

10 The traded bond factors are available via https://openbondassetpricing.com (Retrieved on October 25th,
2023).
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ii. CRY, a bond carry factor that measures the average return difference of bond port-

folios that are double sorted by ratings and credit spreads

iii. DEF, a bond default risk factor as the return difference of a long-term corporate

bond portfolio and long-term government bonds

iv. DRF, a downside risk factor that is defined as the return difference between a high

value-at-risk (VaR) and a low VaR portfolio across ratings

v. DUR, a duration factor that captures the return difference between high and low

duration portfolios across ratings

vi. HMLB, a book-to-market factor that captures return differences of bond portfolios

double sorted by bond size and book-to-market ratio

vii. LTREVB and STREVB which are factors that capture long- and short-term reversals

that are dependent sorted by return reversals, ratings, and maturities (LTREVB)

and double sorted by return reversals and ratings (STREVB)

viii. MKTB (and MKTBD) which captures the (duration adjusted) corporate bond mar-

ket excess return

ix. MOMB, a bond momentum factor that captures the return difference across cumu-

lative historic bond returns and ratings

x. PEADB, a bond earnings announcement drift factor that captures return differences

across high and low earnings surprises, as well as ratings

xi. TERM, a bond term structure factor that captures the difference between long-term

government bond returns and the one-month treasury bill returns

xii. VAL, a bond value factor that captures return differences of ’fair’ and actual credit

spreads, double sorted by bond value and bond size

2. IPCA factors: Kelly, Palhares, and Pruitt (2023) create five bond risk factors using a

latent factor approach with time-varying factor loadings to model corporate bond returns.

Their approach employs instrumented principal components analysis (IPCA) following

Kelly, Pruitt, and Su (2021) that aggregates 29 established corporate bond risk factors in
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five instrumented principal components. We obtain these factors for estimating recovery

rates.11

For applying the bond risk factors in recovery rate estimation, we transform monthly obser-

vations to trailing quarterly observations in order to not only capturing short term-fluctuations.

Equity Market Risk Factors We also consider equity risk factors that explain stock returns

for estimating corporate bond recovery rates. We employ the following equity market risk factor

models from the literature:

1. Fama French: Fama and French (2015) and consecutive studies such as Feng, Giglio,

and Xiu (2020) provide five risk factors in equity markets. Their factors capture the

return difference between small and big firms (SMB), firms with high and low book-to-

market ratios (HML), firms with robust and weak profitability (RMW ), and firms with

conservative and aggressive investment practice (CMA).12

2. Factor themes: Jensen, Kelly, and Pedersen (2023) examine a large set of 153 global risk

factors that previous research has shown to explain returns in equities. By clustering and

weighting individual factors across themes and countries, they provide 13 unique equity

risk factors for the U.S. stock market. These factors represent returns of the top minus

the bottom terciles in each of the themes low risk, momentum, profit growth, profitability,

quality, seasonality, and value, and returns of the bottom minus the top terciles in each

of the themes accruals, debt issuance, investment, leverage, size, skewness.13

As for bond risk factors, we transform monthly observations of equity risk factors to trailing

quarterly observations.

Equity Market Valuations Furthermore, we consider industry-specific equity valuation ra-

tios, which are intended to capture the effect of prevailing valuation levels of comparable com-

panies (i.e., companies that operate within the same industry) at the time of a bond’s default

11 The IPCA data is available via https://sethpruitt.net/2022/03/29/reconciling-trace-bond-returns (Retrieved
on October 25th, 2023).

12 The Fama French factors are available via https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data
library.html (Retrieved on October 25th, 2023).

13 The factor theme data is available via https://jkpfactors.com (Retrieved on October 25th, 2023).
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on its recovery. We collect time series data of the stock valuations in the U.S. for 48 different

industries from WRDS. Specifically, we consider price / cash flow, price / earnings, price /

operating earnings, price / sales, and price / book ratios.

4.3 Empirical Analysis of Recovery Rates

In this section, we first examine how financial market conditions shape corporate bond recovery

rates. We start by analyzing the influence of conditions in the corporate bond market, followed

by conditions in equity markets. Finally, we examine how different market conditions jointly

affect corporate bond recovery rates, and we determine which of the new variables that capture

market conditions contribute the most to reliably determining the market conditions’ effect on

recovery rates.

4.3.1 Does the bond market affect bond recovery rates?

The conditions in the corporate bond market reflect bond pricing and market functioning.

For example, the bid-ask spread as a bond market liquidity measure represents the portion

of a transaction that is consumed by the execution of the trade (see, for example, Schestag,

Schuster, and Uhrig-Homburg (2016)). Time-varying bond risk factors indicate the current

pricing conditions in bond market portfolios. We aim to expose how these bond market-wide

conditions furthermore drive the pricing of defaulted corporate bonds, that is, the recovery rate.

Bond market liquidity and bond recovery rates

Jankowitsch, Nagler, and Subrahmanyam (2014) show that the liquidity in a defaulted bond

influences its recovery. In contrast, we consider the market-wide liquidity to capture not only

the idiosyncratic liquidity effects, but also liquidity in the overall bond market, and thus, the

prevailing conditions of market efficiency or transaction costs. To begin with, we examine

the recovery rate implications of the idiosyncratic defaulted bond liquidity together with bond

market liquidity, relying on the four liquidity measures employed by Jankowitsch, Nagler, and

Subrahmanyam (2014): trading volume (Volume), number of trades (Trades), the liquidity de-

fined in Amihud (2002) to which we refer as Amihud, and the price dispersion (PriceDispersion).

Therefore, we employ the following OLS regression:
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RecoveryRate =α+ β(Defaulted bond liquidity)

+γ(Bond market liquidity)

+δ(Seniority)

+ζ(Default type)

+η(Bond characteristics)

+κ(Firm characteristics)

+λ(Macroeconomic conditions)

+µ(Industry distress dummies)

+ν(Year dummies) + ϵ,

(4.11)

and we cluster standard errors at the firm-default event level. Table 4.4 presents the regres-

sion results. In specification (1), we employ a standard recovery rate estimation model based

upon widely established recovery rate predictors, such as characteristics of the bond and the

issuer firm, and macroeconomic conditions. These variables include seniority, default type, bond

characteristics, firm characteristics, macroeconomic conditions, industry distress variables, and

year dummy variables. We also add the liquidity measures of defaulted bonds, to replicate the

model of Jankowitsch, Nagler, and Subrahmanyam (2014). Similar to their study, we find that

one liquidity measure is significant. The trading volume Volume in a defaulted bond is signifi-

cantly positively related to its recovery rate, and it is in line with the findings of Jankowitsch,

Nagler, and Subrahmanyam (2014) that a defaulted bond recovers more when its bond issue

experiences more liquid trading immediately after default.

We now benchmark each of the defaulted bonds’ liquidity measures with the corresponding

liquidity in the corporate bond market. Therefore, we alternate Volume, Trades, Amihud, and

PriceDispersion in specifications (2)–(5) in Table 4.4. In each of the specifications, we compare

the effect of liquidity in the bond market with the effect of the defaulted bond’s liquidity.

In specifications (2) and (3), we find a positive significant effect of Volume and Trades in a

defaulted bond on its recovery rate. These two measures proxy for the trading intensity. A one

standard deviation change in the trading volume or number of trades of the defaulted bonds

implies a six percentage point higher, or a one percentage point higher recovery rate of the
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corresponding defaulted bonds, respectively. The bond market’s trading volume or number of

trades, however, is insignificant.

In specifications (4) and (5), we consider Amihud and PriceDispersion, which harness dif-

ferences in the observed pricing of a bond to gauge its liquidity. While we do not find any

significant effect of Amihud and PriceDispersion of defaulted bonds on recovery rates, we find

that the bond market’s liquidity proxied by either of these two measures has indeed an eco-

nomically and statistically significant effect on recovery. A one standard deviation increase in

Amihud and PriceDispersion corresponds to an 11 and 12 percentage point lower recovery rate,

respectively. As both measures capture the illiquidity dimension within the bond market, our

results show that when the overall bond market illiquidity increases, defaulted bonds recover

less. Interestingly, the variation in market liquidity has a more pronounced effect on recovery

than the defaulted bond’s liquidity, given the larger coefficients that capture the effect of a one

standard deviation change of market liquidity on recovery rates.

Finally, in specification (6), we employ all liquidity measures that represent liquidity of the

defaulted bonds and of the overall bond market altogether. While the defaulted bond Volume

remains a significant positive driver of bond recovery, we now find only PriceDispersion in the

bond market to be significantly correlated with recovery. The signs of the significant measures

are as expected, as higher liquidity in the defaulted bond or within the bond market is correlated

with higher recovery. Our analysis confirms the relevance of defaulted bond-level liquidity for

recovery rates, described by Jankowitsch, Nagler, and Subrahmanyam (2014). Still, it shows

that bond-market liquidity also has a determining effect on corporate bond recovery rates.

Having found above that bond market liquidity is a significant determinant of recovery rates,

we now examine a wide range of different bond market liquidity measures. The liquidity in bond

markets is difficult to quantify (see, for example, Schestag, Schuster, and Uhrig-Homburg (2016)

and Hendershott, Li, Livdan, and Schürhoff (2022)). Thus, numerous studies attempt to accu-

rately capture the liquidity from different perspectives. Thus, these different liquidity measures

may capture different liquidity dimensions and henceforth provide alternative explanations of

the relationship between bond market liquidity and recovery rates. To test this, we utilize a

specification that is similar to that defined in Equation 4.11. In particular, we consider specifi-

cation (1) in Table 4.4 as the basic specification, adding all four bond-level liquidity measures,
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Table 4.4: Results of OLS regression that estimates the recovery of defaulted corporate bonds.
The table benchmarks liquidity of the defaulted bonds with liquidity of the bond market, uti-
lizing four liquidity measures employed by Jankowitsch, Nagler, and Subrahmanyam (2014).
Non-binary explanatory variables are normalized with center 0 and standard deviation 1. Stan-
dard errors are adjusted for heteroskedasticity and clustered by firm-default event. Significance
is denoted *** (1%), ** (5%), and * (10%).

Model (1) (2) (3) (4) (5) (6)

Intercept 0.42*** 0.41*** 0.41*** 0.36** 0.36** 0.35**

Defaulted bonds liquidity

Volume 0.06*** 0.06*** 0.07***
Trades −0.01 0.01* −0.01
Amihud 0.00 −0.01 0.00
PriceDispersion −0.01 −0.01 −0.01

Bond market liquidity

Volume 0.00 −0.02
Trades −0.04 0.05
Amihud −0.11*** 0.04
PriceDispersion −0.12*** −0.21**

# observations 2.211 2.211 2.211 2.211 2.211 2.211
R-squared 0.563 0.562 0.535 0.539 0.541 0.573
Seniority Yes Yes Yes Yes Yes Yes
Default type Yes Yes Yes Yes Yes Yes
Bond characteristics Yes Yes Yes Yes Yes Yes
Firm characteristics Yes Yes Yes Yes Yes Yes
Macroeconomic conditions Yes Yes Yes Yes Yes Yes
Industry distress dummies Yes Yes Yes Yes Yes Yes
Year dummies Yes Yes Yes Yes Yes Yes

as in Jankowitsch, Nagler, and Subrahmanyam (2014), as controls and then examine the effects

of a variety of bond market-based liquidity measures. As many of the liquidity measures are

highly correlated with each other, and to avoid multicollinearity, we add all bond market liq-

uidity measures recursively in separate specifications. By doing so, we check for the robustness

of our findings to the choice of the liquidity measure.

In Table 4.5, the specifications (1)–(4) iterate the bond market liquidity measures intro-

duced in Table 4.4. Here, we do not benchmark the bond market liquidity measures with

their respective defaulted bond liquidity measures. We yield consistent results for all mea-

sures, and find a negative significant influence of Amihud and PriceDispersion derived from the

bond market on recovery rates, but we find no significant influence of Volume or Trades. We

further add bond market liquidity measures Roll following Roll (1984) and CorwinSchultz as

in Corwin and Schultz (2012), LiquidityPrice and LiquidityQuantity as provided by Goldberg

and Nozawa (2021), and two normalized size-adapted liquidity proxies SizeAdaptedSpread and

SizeAdaptedCost provided by Reichenbacher and Schuster (2022) in specifications (5)–(10). We
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find similar significant directional effects for all of these alternative liquidity measures, except

for LiquidityQuantity for which we find a positive significant effect. The findings are consistent,

as all measures except for LiquidityQuantity reflect the illiquidity in the market. Roll and Cor-

winSchultz correspond with lower recoveries, similar as a higher LiquidityPrice measure does.

However, when LiquidityQuantity rises, i.e., dealer liquidity provision through their invento-

ries rises in the bond market, recovery rates benefit. Relatedly, if the size-adapted liquidity in

the bond market declines (specifications (9) and (10)), so do the recovery rates of defaulted

corporate bonds.

We then consider expected bond market liquidity PredictedSpread and PredictedSizeAdapt-

edSpread based upon one-month ahead liquidity predictions performed by Müller, Reichen-

bacher, Schuster, and Uhrig-Homburg (2023) via machine learning in specifications (11) and

(12). Interestingly, we find that even the predicted bond market liquidities have a consistent

and significant effect on corporate bond recovery. Finally, in specification (13) we consider the

first principal component of all liquidity measures employed in specifications (1)–(12). A one

standard deviation increase in the first principal component corresponds to a 14 percentage

point lower recovery of defaulted bonds, a relationship that is consistent with the previous

findings. Overall, we find that an increase in bond market liquidity is correlated with higher

recovery of defaulted bonds, and we find that the variation in bond market liquidity has a more

pronounced effect on recovery than the liquidity of the defaulted bonds themselves. All tested

bond market liquidity measures, except for the trading volume and the number of trades, are

highly significant for explaining recovery rates in our OLS regression specifications.
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Do bond market risk factors explain bond recovery rates?

Having shown that recovery rates are dependent on bond market liquidity, we now consider bond

risk factors from corporate bond pricing models in the literature. Although these risk factors

are commonly used in estimating portfolio returns in the corporate bond market, we aim to

derive information about the prevailing conditions in the corporate bond market to explain

recovery rates. In the following, we consider bond risk factors employed by Dickerson, Julliard,

and Mueller (2023), and by Kelly, Palhares, and Pruitt (2023). We employ the following OLS

regression:

RecoveryRate =α+ β(Bond risk factor)

+γ(Defaulted bond liquidity)

+δ(Seniority)

+ζ(Default type)

+η(Bond characteristics)

+κ(Firm characteristics)

+λ(Macroeconomic conditions)

+µ(Industry distress dummies)

+ν(Year dummies) + ϵ,

(4.12)

in which we cluster standard errors at the firm-default event level. The results are shown

in Table 4.6. We iterate 14 bond risk factors of Dickerson, Julliard, and Mueller (2023) in

specifications (1)–(14), and consider their first principal component in specification (15). In

the final specification (16), we further add the bond risk factors created via IPCA by Kelly,

Palhares, and Pruitt (2023). We find that the credit risk factor CRF, the bond carry factor

CRY, the bond default risk factor DEF, and the bond downside risk factor DRF in specifications

(1)–(4) are significant and positively related to the recovery rate. These factors measure the

excess returns of more risky bonds over less risky bonds during the last quarter from different

perspectives. Their positive relation with recovery rates is reasonable. When market conditions

were beneficial for risky bonds in the preceding quarter, these beneficial conditions appear to

be also reflected in higher pricing of defaulted bonds, which are themselves risky investments.
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As such, these bond risk factors seem to capture the market’s increased risk tolerance.

The duration factor DUR in the specification (5) is also significant and negatively related

to recovery. That is, during times when bonds with high sensitivity to interest rate changes

outperform bonds with low sensitivity, the recovery rate will be impaired. Although the rela-

tionship seems questionable, as bonds with high sensitivity to interest rate changes typically

perform well during times of decreasing interest rates, the negative coefficient may capture co-

inciding deteriorating economic conditions. The HMLB factor is found significant and positive

in specification (6), and it bears the largest coefficient of 0.12 among the bond risk factors.

Because HMLB captures the excess returns of bonds of small firms, which are typically more

risky, over those of large, less risky firms, it captures the market’s increased risk appetite, which

is likely to also benefit defaulted bonds. While the long-term reversal factor LTREVB (spec-

ification (7)) is positive and significant, the short-term reversal factor STREVB (specification

(8)) is rendered insignificant. The positive relationship between the recovery rate and LTREVB

suggests that when the return difference between the worst and the best performing bond port-

folio has widened, recovery rates benefit. Thus, bonds which have performed poorly over a

prolonged historic time period increasingly outperform bonds that have already performed well

historically. Relatedly, if the prospects of poorly performing assets improve, this apparently

also support the pricing of bonds that recently defaulted.

Next, in specifications (9) and (10), we consider the bond market excess returns over the risk-

free rateMKTB and a variantMKTBD that is adjusted for duration. While both bear a positive

sign, only the duration adjusted MKTBD is significant. Plausibly, defaulted bonds achieve

higher prices during times when the overall bond market experienced positive returns in the

preceding quarter. Among the remaining bond risk factors, the bond momentum factor MOMB

(specification (11)), the bond earnings announcement drift factor PEADB (specification (12))

and the bond term structure factor TERM (specification (13)) are significant and negatively

related to the recovery rate, and the bond value factor VAL (specification (14)) is significant and

positively related with recovery. The negative effect of MOMB is comparable to the long-term

reversal factor LTREVB, as MOMB captures the excess returns of recent outperformers over

underperformers, whereas LTREVB captures the excess returns of historic underperformers

over historic outperformers. Thus, the negative sign of MOMB is expected. While for PEADB
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and TERM the observed negative relationships with recovery are not immediately conceivable,

the positive sign of VAL seems reasonable. It captures the excess returns of bonds that have a

credit spread that is above a model-implied ’fair’ credit spread, thus, it captures that recovery

rates rise during times when more risky bonds (i.e., bonds with a higher than ’fair’ credit

spread) achieve higher returns than less risky bonds. In specification (15), the economically

and statistically significant coefficient of the first principal component that combines the risk

factors examined in specifications (1)–(14) confirms the relevance of the bond risk factors for

defaulted bond recovery.

In the final specification (16), we further add instrumented principal components of Kelly,

Palhares, and Pruitt (2023). These factors estimate latent factors and bond’s exposure to these

factors, potentially better capturing bonds’ risk-return characteristics. We find that two of these

IPCA factors are significant, in addition to the significant principal component of the previously

analyzed bond risk factors. However, the sign and composition of the IPCA factors cannot be

reliably interpreted due to their latent characteristics and varying weights of the underlying

factors that are transformed when aggregated via instrumented principal component analysis.

Nevertheless, our results show that bond market conditions are still captured with these factors

and affect corporate bond recovery rates.

Corporate bond market distress and bond recovery rates

In the next step, we investigate the influence of corporate bond market distress, captured by

three factors developed by Boyarchenko, Crump, Kovner, and Shachar (2022), which measure

overall bond market distress (CMDI ), and distress in the investment grade (IG CMDI ), and

non-investment grade bond markets (NIG CMDI ). We employ the following OLS regression:
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RecoveryRate =α+ β(Corporate bond market distress)

+γ(Defaulted bond liquidity)

+δ(Seniority)

+ζ(Default type)

+η(Bond characteristics)

+κ(Firm characteristics)

+λ(Macroeconomic conditions)

+µ(Industry distress dummies)

+ν(Year dummies) + ϵ,

(4.13)

and again we cluster standard errors at the firm-default event level. Plausibly, the results in

specifications (1)–(3) in Table 4.7 demonstrate lower recovery rates when any of the corporate

bond distress indices rises, and consistent results when employing their principal component

in specification (4). Moreover, the coefficients are statistically significant at the 1%-level and

magnitudes are comparable, i.e., we do not observe any considerably higher exposure of recovery

rates to one of these measures. The results show that bonds recover less when the corporate

bond market experiences distress. Importantly, because we consider year fixed effects, industry

distress dummies, and macroeconomic factors that capture the economic cycle, the coefficients of

the bond market distress measures do not simply capture the time varying economic conditions

or the impact of the financial crisis.

Financial conditions in US financial markets and bond recovery rates

The National Financial Conditions Index (NFCI ) captures conditions in debt markets such as

the corporate bond market, but also considers money markets, equity markets, and the banking

system through combining various financial market factors (Brave and Butters (2011)). For

recovery rate estimation, we consider the NFCI, as well as the subcategories related to risk,

credit, and leverage conditions, and the adjusted NFCI (ANFCI ) that adjusts the NFCI for

potential interference from economic conditions in financial conditions. Finally, we also consider

the first principal component of these measures as an aggregate measure. We employ the
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Table 4.7: Results of OLS regression that estimates the recovery of defaulted corporate bonds.
The table benchmarks bond market distress estimated by Boyarchenko, Crump, Kovner, and
Shachar (2022). Non-binary explanatory variables are normalized with center 0 and standard
deviation 1. Standard errors are adjusted for heteroskedasticity and clustered by firm-default
event. Significance is denoted *** (1%), ** (5%), and * (10%).

Model (1) (2) (3) (4)

Intercept 0.34** 0.33** 0.38*** 0.33**
CMDI −0.11***
IG CMDI −0.09***
NIG CMDI −0.09***
First principal component −0.12***

# observations 2.211 2.211 2.211 2.211
R-squared 0.571 0.570 0.570 0.572
Seniority Yes Yes Yes Yes
Default type Yes Yes Yes Yes
Bond characteristics Yes Yes Yes Yes
Firm characteristics Yes Yes Yes Yes
Bond liquidity Yes Yes Yes Yes
Macroeconomic conditions Yes Yes Yes Yes
Industry distress dummies Yes Yes Yes Yes
Year dummies Yes Yes Yes Yes

following OLS regression in which we cluster standard errors at the firm-default event level:

RecoveryRate =α+ β(Financial conditions)

+γ(Defaulted bond liquidity)

+δ(Seniority)

+ζ(Default type)

+η(Bond characteristics)

+κ(Firm characteristics)

+λ(Macroeconomic conditions)

+µ(Industry distress dummies)

+ν(Year dummies) + ϵ.

(4.14)

Table 4.8 presents the results. As a rise in each of these measures represents a tightening

in the financial conditions in U.S. financial markets as measured by the respective underly-

ing factors, we find that in each specification a tightening in the financial conditions is both

statistically and economically significant, and correlated with lower recovery rates of defaulted

corporate bonds. This is reasonable and comparable with previous findings. When financial

markets are under pressure, investors recover less on their defaulted bonds, which is in line with
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the previous finding on the negative impact of bond market distress on recovery rates. Again,

considering year fixed-effects, industry distress dummies and macroeconomic conditions allow

us to disentangle the impact of financial market conditions from the impact of the general busi-

ness cycle. Thus, our results demonstrate that financial conditions in bond and other financial

markets matter for recovery rates.

Table 4.8: Results of OLS regression that estimates the recovery of defaulted corporate bonds.
The table benchmarks financial conditions captured by indices developed by Brave and Butters
(2011) and Brave and Kelley (2017). Non-binary explanatory variables are normalized with
center 0 and standard deviation 1. Standard errors are adjusted for heteroskedasticity and
clustered by firm-default event. Significance is denoted *** (1%), ** (5%), and * (10%).

Model (1) (2) (3) (4) (5) (6)

Intercept 0.22 0.26* 0.23 0.22 0.07 0.17
NFCI −0.16***
ANFCI −0.14***
Risk −0.15***
Credit −0.15***
Leverage −0.17***
First principal component −0.17***

# observations 2.211 2.211 2.211 2.211 2.211 2.211
R-squared 0.572 0.571 0.572 0.572 0.576 0.574
Seniority Yes Yes Yes Yes Yes Yes
Default type Yes Yes Yes Yes Yes Yes
Bond characteristics Yes Yes Yes Yes Yes Yes
Firm characteristics Yes Yes Yes Yes Yes Yes
Bond liquidity Yes Yes Yes Yes Yes Yes
Macroeconomic conditions Yes Yes Yes Yes Yes Yes
Industry distress dummies Yes Yes Yes Yes Yes Yes
Year dummies Yes Yes Yes Yes Yes Yes

Overall, our analysis shows that various characteristics which represent bond market con-

ditions are significant factors for explaining recovery rates. Bond market liquidity, bond risk

factors, but also bond market distress and a financial conditions index demonstrate the impact

of time-varying bond market conditions on corporate bond recovery rates. In the next step, we

investigate whether equity market conditions are also relevant for the determination of recovery

rates.

4.3.2 Does the stock market affect bond recovery rates?

When a bond defaults, the bond’s risk-return profile changes materially. As long as not in

default, corporate bonds typically have a predictable cash flow in the form of stable recurring

coupon payments and a fixed principal payment at maturity. Moreover, bond prices are less

volatile than equity prices, and difficult to observe due to the decentralized OTC nature of
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bond markets. Despite a price sensitivity to interest rate changes, the downside risk is, if not

due to default, limited, given the higher claim ranking of debt within a firm’s capital structure.

Nevertheless, bonds are limited on the upside as no payments beyond interest and the principal

are expected. Stocks, however, offer both significant up- and downside risk, and while high

cash generating businesses or mature companies may offer steady cash flows to investors via

dividends, stock valuations are much more volatile and often observable real-time on centralized

exchanges.

A default event, however, alters a bond’s expected cash flow and risk profile. While bonds do

often cease paying coupons when entering default, the default event exposes additional downside

risk up to total loss. In addition, defaulted bonds offer a valuation upside in case that the firm

can successfully reorganize or if residual claims are higher than initially expected and priced in

the market. After all, defaulted debt is often exchanged with equity during the resolution process

in many default events. Thus, the risk-return profile of defaulted bonds diverges from that of

non-defaulted bonds and at least converges towards the profile of stocks. This motivates us to

scrutinize whether prevailing conditions in the stock market are correlated with the recovery of

defaulted bonds. More precisely, we are interested in understanding whether drivers of stock

pricing are also relevant for defaulted bond pricing.

Do stock market risk factors explain bond recovery rates?

Fama and French (2015) build a five-factor pricing model to estimate stock returns. Jensen,

Kelly, and Pedersen (2023) investigate a multitude of equity risk factors that were deployed in

academic research on the drivers of equity returns. Through clustering, they extract 13 themes

of factors, condensing 153 individual factors from the literature. We employ these factors for our

recovery rate analysis. Thus, we utilize the following OLS regression and we cluster standard

errors at the firm-default event level:
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RecoveryRate =α+ β(Equity risk factor)

+γ(Defaulted bond liquidity)

+δ(Seniority)

+ζ(Default type)

+η(Bond characteristics)

+κ(Firm characteristics)

+λ(Macroeconomic conditions)

+µ(Industry distress dummies)

+ν(Year dummies) + ϵ.

(4.15)

We provide regression results in Table 4.9. We find that eight out of the thirteen themes

of Jensen, Kelly, and Pedersen (2023) in specifications (1)–(13) are significantly related to

corporate bond recovery. The Accruals factor in specification (1), which measures the excess

equity returns of companies with small accruals over those with large accruals, captures whether

the stock market environment in the preceding quarter offered excess returns for companies that

bear lower accruals. That is, companies which collect cash from earnings earlier achieved higher

excess returns. While the positive significant relationship with corporate bond recovery is not

immediately intuitive, defaulted firms must enforce more strict cash management and timely

cash collection, and thus may benefit from the prevailing elevated equity market pricing of firms

that do not defer the collection of cash.

While the factors Debt issuance, Investment, and Low leverage in specifications (2)–(4) are

not significant, although they are related to investors’ views on the debt capital structure of

firms, we find that the Low risk factor in specification (5) is economically and statistically

significant and negatively related to recovery rates. When excess returns of low risk equities

increased in the preceding quarter, the recovery rates of defaulted bonds decrease. The relation

is plausible, as it implies that when we observe high excess returns of more risky equities, we

would also observe higher recovery rates of defaulted bonds. Thus, the equity market’s com-

pensation for owning risky assets translates into similar directional pricing effects of defaulted

bonds. In fact, the Low risk factor bears the largest coefficient among the equity risk factors,
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and thus a variation in the equity market’s excess returns has the largest effect on defaulted

bond pricing among the examined equity risk factors.

In specifications (6)–(9), we find that the Momentum, Profit growth, Profitability, and Qual-

ity factors are all significant and negatively related with recovery. Whenever the equity market’s

excess returns increased over the last quarter for portfolios of firms that showed valuation in-

creases, superior profit growth, relatively high profitability, or high quality, the recoveries of

defaulted bonds are lower. This pattern appears plausible, as distressed companies typically

perform poorly in these metrics, thus, when the market places more value on them, distressed

firms’ defaulted bond prices decline. Vice versa, if the excess returns of such portfolios de-

crease, indicating a growing indifference of the market with regards to these factors, recoveries

are higher.

Among the remaining factors, the Skewness (specification (11)) and Size (specification (12))

factors are significant, but Seasonality (specification (10)) and Value factors (specification (13))

are not significant. When equities with low Skewness experienced excess returns during the last

quarter, bonds recover less. Under these circumstances, assets with asymmetric returns could

be perceived as more risky, similar to defaulted bonds. Thus, the negative coefficient appears

plausible. The Size factor is positively related to recovery rate, and it represents that if returns

of smaller firms outperform those of large firms, defaulted bonds will recover more. As smaller

firms are often attributed with higher risk, it may represent that more risky assets experience

more demand, which would also benefit defaulted bond pricing.

We now investigate the five factors of Fama and French (2015). In specifications (14), we find

that recovery rates are higher when the stock market’s excess returns grew over the last quarter,

given the significant and positive coefficient of MktEquity. The HML factor in specifications (15)

rises when value stocks outperform growth stocks. We find that this factor is significant and

positively related with recovery rates. Contradicting with the positive coefficient, a rise in the

HML factor could be related to the increasing preference of investors for lower risk investments.

Alternatively, and in line with the positive coefficient, prices of bonds of firms in distress are

often pushed downwards below fair value due to temporary selling pressure. Thus, when a

distressed firm is able to perform a successful turn-around, this situation offers opportunities

for investors that prefer value over growth, and demand for these defaulted bonds is plausibly
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higher under these market conditions. The significant SMB factor of Fama and French (2015)

in specification (16) represents a similar market characteristic as the size factor of Jensen, Kelly,

and Pedersen (2023) discussed above, and the sign of both factors is consistent.

The RMW factor tracks excess returns of firms with robust profitability over firms with

weak profitability. Similar to the other factors related to firm profitability, we find that the

RMW factor in specification (17) is significant and negatively related to recovery rates. That

is, defaulted bonds recover less when equity markets placed more value on firms with stable

profitability within the most recent quarter, and thus, we see lower bond recoveries when markets

are more risk averse with regards to firms’ profitability profile. In specification (18), we find

the CMA factor tracking return differences in firms with high and low investment activity

insignificant, similar to the closely related investment factor of Jensen, Kelly, and Pedersen

(2023) in specification (3).

Finally, the principal component of all factors capturing prevailing pricing conditions in eq-

uity markets is significant in specification (19). Overall, our results show that the recovery rates

of defaulted bonds are in fact related to equity risk factors, and that the observed relationships

are reasonable to the degree that equity market conditions are also reflected in the pricing of

defaulted bonds, which are themselves assets with equity-like risk-return profiles.

Equity industry valuations and bond recovery rates

Finding equity risk factors significant for estimating defaulted bond recovery in the previous

section, it comes natural to also examine equity market valuations in estimating recovery rates.

While the previous section considers stock returns, we now investigate whether prevailing market

valuations of stocks are significant in our recovery rate regression models. We consider Price /

cash flow, Price / earnings, Price / operating earnings, Price / sales, and Price / book ratios

in equity markets. More precisely, we obtain these valuation metrics for stocks of firms that

operate within the same industry as a defaulted firm. By doing so, we capture the average

equity valuations of companies that perform comparable business activities to the respective

issuer firm of a defaulted bond. The following OLS regression is utilized:
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RecoveryRate =α+ β(Equity industry valuation)

+γ(Defaulted bond liquidity)

+δ(Seniority)

+ζ(Default type)

+η(Bond characteristics)

+κ(Firm characteristics)

+λ(Macroeconomic conditions)

+µ(Industry distress dummies)

+ν(Year dummies) + ϵ,

(4.16)

and we cluster standard errors at the firm-default event level. As presented in Table 4.10, the

defaulted bonds recover more when comparable companies listed on U.S. stock exchanges are

priced higher with respect to the valuation metrics employed in specifications (1)–(5), or their

principal component in specification (6). While each measure relates the prevailing industry-

wide stock valuation to different financial performance characteristics, such as cash flow or

earnings, they all exhibit a positive and significant relationship with defaulted bond recovery.

Thus, we find that the recovery rates of defaulted bonds are indeed depending on the prevailing

stock valuation levels of companies that operate within the same industry.

Our analysis across different dimensions of the conditions of U.S. bond and equity markets

shows that the recovery of defaulted bonds is indeed related to the prevailing market conditions.

Not only the bond market, but also the stock market has an influence on investors’ recoveries.

We show that bond market liquidity, bond risk factors, bond market distress indices, financial

market conditions indices, equity risk factors, and equity valuations play an important role in

explaining corporate bond recovery rates.

4.3.3 Which variables matter?

Having established the relevance of bond- and equity-market variables, we now examine the

importance ranking of these variables for explaining recovery rates. We apply permutation

importance ranking described by Altmann, Toloşi, O.Sander, and Lengauer (2010) in order to

122



Table 4.10: Results of OLS regression that estimates the recovery of defaulted corporate bonds.
The table benchmarks industry-wide equity valuation metrics. Non-binary explanatory vari-
ables are normalized with center 0 and standard deviation 1. Standard errors are adjusted for
heteroskedasticity and clustered by firm-default event. Significance is denoted *** (1%), **
(5%), and * (10%).

Model (1) (2) (3) (4) (5) (6)

Intercept 0.44*** 0.46*** 0.44*** 0.45*** 0.34** 0.45***
Price / cash flow 0.03*
Price / earnings ratio 0.03**
Price / operating earnings ratio 0.03**
Price / sales 0.04***
Price / book 0.06***
First principal component 0.05***

# observations 2.211 2.211 2.211 2.211 2.211 2.211
R-squared 0.565 0.566 0.566 0.568 0.573 0.570
Seniority Yes Yes Yes Yes Yes Yes
Default type Yes Yes Yes Yes Yes Yes
Bond characteristics Yes Yes Yes Yes Yes Yes
Firm characteristics Yes Yes Yes Yes Yes Yes
Bond liquidity Yes Yes Yes Yes Yes Yes
Macroeconomic conditions Yes Yes Yes Yes Yes Yes
Industry distress dummies Yes Yes Yes Yes Yes Yes
Year dummies Yes Yes Yes Yes Yes Yes

understand the importance of each group of the newly introduced variables. By permuting

the response vector, this algorithm allows to obtain robust importance estimates for different

variables or subgroups of variables.

We evaluate groups of variables for the following bond and equity market characteristics:

corporate bond market liquidity, corporate bond market distress, national financial conditions,

bond market risk factors, equity market risk factors, and equity market valuations. In addition,

we consider the commonly used recovery rate explanatory variables in groups for bond seniority,

industry and industry distress, default event type, bond characteristics, firm fundamentals,

macroeconomic variables, defaulted bond liquidity, and year.

For examining permutation importance, we first randomly split the data into a training

set that contains 70% of the observations, and a test set that contains the remaining 30%. In

the training set, we train a random forest via grid search across 5-folds in cross validation for

hyperparameter tuning. The trained random forest is then applied for permutation importance

estimation on the test set. We scale the importance results so that the importance of the most

important variable group equals to one. In Table 4.11, we present the results.

We find that bond characteristics and bond liquidity are the two most influential variables
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Table 4.11: Permutation importance ranking for groups of recovery rate explanatory variables.
Variables derived from financial markets are highlighted in bold.

Rank Variable group Permutation importance

1 Bond characteristics 1.000
2 Bond liquidity 0.919
3 National financial conditions 0.511
4 Firm fundamentals 0.483
5 Equity market risk factors 0.390
6 Bond market risk factors 0.273
7 Equity market valuations 0.174
8 Bond market liquidity 0.123
9 Macroeconomic conditions 0.051
10 Default type 0.044
11 Seniority 0.043
12 Bond market distress 0.015
13 Industry affiliation and industry distress 0.012
14 Year 0.003

for explaining recovery rates. The national financial conditions in debt markets, money markets,

equity markets, and the banking system rank third, higher than the defaulted firms’ fundamen-

tals, showing that in our dataset of defaulted bonds, market conditions matter even more than

firm fundamentals for determining recovery outcomes. Interestingly, equity market risk factors

are ranked fifth, and their importance score indicates they are even more important than bond

market risk factors that follow ranked sixth. Equity market valuations are ranked seventh, and

are more important than bond market liquidity, that are ranked eighth. Since the equity mar-

ket risk factors, bond market risk factors, equity market valuations, and bond market liquidity

measures are ranked considerably higher than most of the remaining commonly used recovery

rate drivers, we find that financial market conditions, captured from different dimensions in

bond and equity markets, are indeed important determinants for explaining recovery rates.

The other used variables, such as macroeconomic conditions, default type, bond seniority, in-

dustry affiliation and industry distress, and default year, bear much lower importance rankings.

Bond market distress measures are ranked as the third lowest group of variables. Comparing the

cumulative importance of variables derived from financial markets (1.49) and the established

recovery rate explanatory variables (2.55), we find that the cumulative importance ranking of

market-derived variables is approximately 60% relative to that of the established recovery rate

drivers. Our results show that corporate bond recovery rates depend to a large degree on pre-

vailing conditions in stock and bond markets rather than just on firm and bond characteristics,

and macroeconomic conditions. Thus, deteriorating financial markets impair investors’ recovery
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on investment, highlighting the importance of considering market conditions for understanding

the formation of corporate bond recovery rates.

4.4 Conclusions

To improve the understanding of recovery rates as one of the key parameters in credit risk,

we investigate the hybrid nature of defaulted bonds which share characteristics of both stocks

and bonds. Therefore, we consider both conditions in bond and equity markets for estimating

defaulted bond recovery rates, which is a novelty in the literature. Capturing the relationships

between bond and equity investors’ risk-return preferences and corporate bond recovery rates

gives interesting new insights for both regulators and practitioners.

While controlling for a variety of alternative explanations, we show that recovery rates of

defaulted bonds are driven by prevailing conditions in both stock and bond markets. Equity

and bond risk factors, which are established in the pricing of stocks and non-defaulted bonds,

are significant drivers of recoveries in defaulted bonds. Our analysis shows that the traditional

asset pricing factors capture pricing implications in defaulted bonds, given that defaulted bonds

are assets that share characteristics of both stocks and bonds.

The importance of defaulted bond liquidity on recovery outcomes has been demonstrated

previously (see, for example, Jankowitsch, Nagler, and Subrahmanyam (2014)). In contrast, our

study shows that liquidity in the overall bond market affects recovery rates of defaulted bonds.

Our finding demonstrates that not only the liquidity provision in the defaulted bond itself is a

relevant recovery determinant, but that the overall functioning of the bond market, captured by

bond market liquidity proxies, affects recovery outcomes significantly. In addition, bond market

distress, general conditions in U.S. financial markets, and prevailing valuation levels of stocks

affect recovery rates.

We further draw conclusions from applying an importance ranking methodology. As we find

that market-derived variables represent about 60% of the importance of traditional recovery

rate drivers, our analysis highlights the necessity to consider the prevailing conditions in equity

and bond markets to obtain adequate recovery estimates.

Overall, we renovate the approach to recovery rate estimation in credit risk by including de-

terminants derived from financial markets, capturing the market conditions’ effects on recovery
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rates. Our study sheds new light on the integration of debt and equity markets by exposing the

pricing implications of equity-like and bond-like characteristics of the defaulted bond securities.

As such, our study provides interesting insights into distressed debt pricing subject to overall

financial market conditions.
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Chapter 5

Intertemporal Defaulted Bond

Recoveries Prediction via Machine

Learning

This chapter is joint work with Abdolreza Nazemi and Frank J. Fabozzi.1 It was published in

2022 as: Intertemporal defaulted bond recoveries prediction via machine learning in European

Journal of Operational Research (EJOR), Volume 297, Issue 3, Pages 1,162-1,177.2 Preliminary

explorations of some sections of this paper were published in Heidenreich (2019).

5.1 Introduction

The determinants of recovery rates play an important role in the valuation of default risk

insurance. Moreover, the advanced internal ratings-based approach under the Basel Accord

II and III allows financial institutions to use their own estimates for credit risk parameters.

Consequently, accurate and reliable estimates for recovery rates are needed. Although studies by

practitioners and academics have investigated recovery rate determinants of defaulted corporate

bonds and loans, as well as alternative prediction methods for estimating recovery rates, these

1Abdolreza Nazemi is with the School of Economics and Management, Karlsruhe Institute of Technology,
Germany. Frank J. Fabozzi is with the Carey Business School, Johns Hopkins University, Baltimore, USA. We
gratefully thank Dr. Konstantin Heidenreich whose support and inputs were very valuable for completing this
study.

2 Nazemi, Baumann, and Fabozzi (2022), available via https://doi.org/10.1016/j.ejor.2021.06.047

127

https://doi.org/10.1016/j.ejor.2021.06.047


studies seldomly fully account for the time variation of recovery rates.

Recent studies have examined out-of-sample or in-sample settings to analyze the deter-

minants of recovery rates.3 According to Kalotay and Altman (2017), the applicability of

conventional out-of-sample estimation to the field of recovery rate prediction is questionable.

In particular, the k -fold cross-validation method, the commonly used performance measure for

evaluating the predictive accuracy for the recovery rate, has shortcomings. For the k -fold cross

validation method the dataset is randomly divided into k subsamples. Each subsample is used

for out-of-sample prediction once, while the remaining k -1 subsamples are used for training.

The performance measurement is the average of the predictions for the k -th subsample.

Even though conventional out-of-sample estimation has been established as the standard

procedure in academia, only out-of-time prediction is feasible in real-world applications of cor-

porate debt recovery rate prediction. While it is acknowledged that out-of-sample estimation

makes a distinction between training and testing data for recovery rate prediction, it suffers

from two main shortcomings. First, as the dataset is randomly partitioned for out-of-sample

estimation, it is virtually inevitable that defaults of bonds used for training the model have

occurred after defaults of bonds used for testing the model. Consequently, out-of-sample pre-

diction assumes the data-generating process to be time-invariant, leading to a look-ahead bias

in the predictions. The second shortcoming is that out-of-sample prediction implicitly makes

the questionable assumption that recovery rates of two defaulted bonds issued by the same

company are independent of each other. For instance, when two bonds from the same issuer

have defaulted at the same time, only for out-of-time estimation it is ensured that these two

bonds are either both in the training set or both in the test set, such that the recoveries in the

test set are independent from the training set.4

In this paper, we address these shortcomings by comparing a wide range of statistics and ma-

chine learning methods – inverse Gaussian regression, random forest, sparse power expectation

propagation, and support vector regression – not only for out-of-sample but also for out-of-time

3 See, for example, Qi and Zhao (2011), Yao, Crook, and Andreeva (2015) and Nazemi, Heidenreich, and
Fabozzi (2018).

4 In this respect, recovery rates of corporate bonds and loans are different to recovery rates of consumer credit
as these have a less time-varying distribution and the interdependence of multiple defaults is a minor aspect.
Betz, Kellner, and Rösch (2021) investigate how default resolution times impact final loss rates of loans.
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prediction of recovery rates on defaulted corporate bonds. We predict out-of-time by ensuring

that only sample points observed before the default event were used during the training process

(see Section 5.5.3 for more details).

The literature on recovery rates has identified both cross-sectional factors that are time-

invariant and systematic factors with a time-varying dependency as determinants of recovery

rates. In order to create better models of recovery rates, new insights into the drivers of the

time variation of recovery rates are needed.5 We extend the sparse existing research devoted to

modeling recovery rates’ time variation. Therefore, we include text-based measures extracted

from front-page articles published in The Wall Street Journal as independent variables. By

including these text-based measures, we consider aggregate uncertainty about future economic

conditions prevalent at the time of default. As bond prices shortly after default represent

expected recovery, these are driven by investors’ expectations about future cash flows. These,

in turn, are subject to uncertainty, hence the time-variant distribution of recovery rates is

ultimately connected to economic uncertainty. Furthermore, we compare selection techniques

such as stability selection, MC+ algorithm, and SparseStep algorithm for selecting a subset of

macroeconomic variables from a large set of macroeconomic measures in order to identify those

which are most closely related to the recovery rate. This study is the first to compare these

econometric and machine learning methods in empirical finance.

Our primary contribution to the recovery rate literature is threefold. First, in addition to

presenting a machine learning framework for out-of-sample recovery rate prediction, we evalu-

ate the intertemporal prediction performance of a wide range of parametric and non-parametric

techniques across various out-of-time prediction setups. Surprisingly, these have attracted less

attention in the literature than out-of-sample prediction techniques. Our findings demonstrate

that machine learning techniques deliver superior predictive performance compared to tradi-

tional techniques not only out-of-sample but also out-of-time. Second, this study is the first to

apply sparse power expectation propagation for modeling the recovery rate. The best out-of-

time prediction accuracy is achieved using a sparse power expectation propagation approach,

outperforming support vector regression-based approaches by Yao, Crook, and Andreeva (2015)

and Nazemi, Heidenreich, and Fabozzi (2018) published in this journal. Third, our study in-

5 See, for example, Doshi, Elkamhi, and Ornthanalai (2018) and Kalotay and Altman (2017).
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cludes news-based measures that have been extracted and categorized with machine learning

techniques as an alternative group of independent variables to account for the time variation in

recovery rate estimation. By incorporating news-based variables, we show that these variables

are significant drivers of recovery rates.

Besides these main contributions, this study is the first to benchmark several selection tech-

niques from the machine learning and econometrics literature for out-of-sample identification

and selection of the most informative macroeconomic variables for recovery rate prediction

from high-dimensional data. To the best of our knowledge, this study is the first to investigate

a ranking of the groups of all independent variables including bond characteristics, seniority,

news-based, industry, and seven groups of macroeconomic variables. This ranking, from most

informative to least informative, is based on the groups’ permutation importance for predict-

ing recovery rates of U.S. corporate bonds with the random forest method. It provides the

interesting insight that some of the most informative variables for recovery rate prediction have

attracted less attention from previous research than their importance suggests.

We organize the remainder of the paper as follows. A review of the literature is presented

in Section 5.2. In Section 5.3 we describe the modeling techniques and selection algorithms

we applied. We describe the data we used in Section 5.4 and present our empirical results in

Section 5.5. Our conclusions are provided in Section 5.6.

5.2 Literature Review

Altman and Kishore (1996) show that the defaulted debt from public utilities (70%) and chem-

ical, petroleum, and related products (63%) exhibits the highest average recovery rates. More-

over, they find that after controlling for seniority, the original rating of a defaulted bond has no

impact on the recovery rate. Altman, Brady, Resti, and Sironi (2005) find that default rates,

seniority, and collateral levels are important determinants of recovery rates of corporate bonds.

Focusing on the macroeconomic determinants of recovery rates, they find that while there is a

significant negative relationship between realized default rates and recovery rates, other macroe-

conomic variables such as the growth rate of the gross domestic product and the return of the

stock market have only a weak correlation with the average recovery rate. Acharya, Bharath,
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and Srinivasan (2007) document that creditors recover less if the industry of the defaulted firm

is in distress. In particular, they show using a dataset for the years 1982 to 1999 that defaulted

corporate bonds in distressed industries exhibit 10% to 15% lower average recovery rates.

Altman and Kalotay (2014) introduce a modeling approach based on mixtures of Gaussian

distributions conditioned on borrower characteristics, instrument characteristics, and credit

market conditions. They show that the forecasts generated by this method are more accurate

than parametric regression-based forecasts during out-of-time estimation. In an in-sample study,

Jankowitsch, Nagler, and Subrahmanyam (2014) examine the recovery rates of defaulted bonds

while paying special attention to the trading microstructure around various types of default

events. They find in an in-sample analysis that (1) trading volume in the 30 days after the

default is high while trading activity decreases after this time period and (2) bond characteristics

(e.g., coupon and covenants) and CDS availability have a significant impact on market-based

recovery rates.

Jansen, Das, and Fabozzi (2018) and Schläfer and Uhrig-Homburg (2014) use the term struc-

ture model for the recovery rate of credit default swaps. Calabrese and Zenga (2010) suggest a

beta regression model for the estimation of bank loan recovery rates. Hartmann-Wendels, Miller,

and Töws (2014) forecast recovery rates on a dataset of defaulted leasing contracts provided

by three German leasing companies. In their study, model trees outperform regression-based

approaches out-of-sample. They emphasize the importance of out-of-sample estimation for ap-

propriate risk management. Yao, Crook, and Andreeva (2017) suggest incorporating a two-stage

modeling framework to predict recovery rates of credit cards. Krüger and Rösch (2017) study

the downturn loss-given-default employing the quantile regression technique for both in-sample

and out-of-sample estimation. Hurlin, Leymarie, and Patin (2018) apply six models for model-

ing LGD of almost 10,000 defaulted Brazilian credit and leasing contracts. Cheng and Cirillo

(2018) investigate a nonparametric survival approach to estimate the recovery rate and recovery

time of private loans.

Mora (2015) argues that macroeconomic conditions do matter for recovery rate prediction.

She shows how recovery rates in different industries are impacted by macroeconomic conditions

in different ways. Studies such as Varma and Cantor (2005), Acharya, Bharath, and Srini-
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vasan (2007), Qi and Zhao (2011), Jankowitsch, Nagler, and Subrahmanyam (2014), and Yao,

Crook, and Andreeva (2015) use only a few macroeconomic variables. Nazemi, Heidenreich,

and Fabozzi (2018) report that models for estimating recovery rates significantly outperform by

adding principal components derived from 104 macroeconomic variables. Nazemi and Fabozzi

(2018) investigate the relationship between recovery rates of corporate bonds and macroeco-

nomic variables out-of-sample. They implemented the least absolute shrinkage and selection

operator (LASSO) for determining the most relevant macroeconomic variables from a compre-

hensive macroeconomic dataset applied to recovery rates. The models including the macroe-

conomic variables selected by LASSO outperform the models including a few macroeconomic

variables which are typically used in the literature on recovery rates. In our study, we expand

their work by comparing the empirical performance of several selection techniques.

The literature documents time variation of corporate bond recovery rates and demonstrates

that the factors which explain recovery rates depend on both cross-sectional features, e.g. bond-

specific characteristics, as well as on systematic features, e.g. macroeconomic time series data.6

Doshi, Elkamhi, and Ornthanalai (2018) note that there is a general agreement among aca-

demics that corporate debt recovery rates are time-varying, but the empirical work on this

characteristic is limited. Chen (2010), highlighting the dependence of recovery rates’ time vari-

ation on the effects of systematic variables such as the economic cycle, states that the average

values of recovery rates during recessions (1982, 1990, 2001, and 2008) are smaller than during

economic upswings. Bruche and Gonzalez-Aguado (2010) argue that in recessions more firms

default while the average recovery rate decreases. They propose an econometric model incor-

porating the credit cycle as an unobserved Markov chain to account for time variation in the

probability of default and the recovery rate. Baumann and Nazemi (2023) demonstrate the re-

lation of corporate bond recovery rates to time-varying stock- and bond risk factors. Gambetti,

Gauthier, and Vrins (2019) employ the concept of economic uncertainty in recovery rate pre-

diction and find it to explain a larger fraction of the systematic variation of recovery rates than

6 Several studies emphasize the time-varying characteristic of corporate debt recovery rates. Varma and
Cantor (2005) mention considerable time-variation for recovery rates of defaulted bonds and loans. Acharya,
Bharath, and Srinivasan (2007) describe the time-series behavior of recovery rates of defaulted loans and bonds
over the period 1982–1999. Jankowitsch, Nagler, and Subrahmanyam (2014) mention that recovery rates exhibit
substantial variation over time. Mora (2015) evaluates recovery rates of bonds, loans and preferred stock within
the time-dependent cyclicality of economic conditions.
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other time-variant proxies for the business cycle. The authors explain the relationship between

uncertainty and recovery by arguing that recovery, measured by the bond price shortly after

default, represents investors’ expectations about future cash flow, which in turn depends on eco-

nomic conditions and is therefore subject to uncertainty. In their study, they employ different

uncertainty measures and find that increasing economic uncertainty is significantly connected to

decreasing recovery rates even when controlling for the business cycle. One of their explanatory

variables, an economic policy uncertainty measure (EPU) constructed by Baker et al. (2016),

considers news-based uncertainty that captures the monthly number of newspaper articles con-

taining specific expressions related to economic policy uncertainty. Baker, Bloom, and Davis

(2016) create this measure through human audit, analyzing over 12,000 newspaper articles by

hand and manually selecting policy-related expressions.

We incorporate five text-based news measures created by Manela and Moreira (2017), who

emphasize the possibility of explaining asset price fluctuations with time-varying levels of un-

certainty that are contained within news articles. They create their measures by extracting

information from front-page articles published in The Wall Street Journal using machine learn-

ing techniques. Their approach is based on the co-movement of word frequencies with option-

implied volatility. UsingWordNet andWordNet::Similarity for classification, they construct five

interpretable word categories. Whereas Baker, Bloom, and Davis (2016) exclusively consider

news which specifically contain the words “uncertainty” or “uncertain” and therefore create a

measure that, by intuition, has a negative connotation, the methodology of Manela and Mor-

eira (2017) doesn’t capture any predefined sentiment. Because the news categories which they

identify are not unique to uncertainty from economic policy concerns, their measures account

for more diverse sources of time-varying uncertainty. They further argue that their approach

does not depend on human interaction or judgment in the expression selection process, and is

therefore more objective than the EPU measure. While the text-based news measures are able

to capture uncertainty that is priced by the stock market, EPU does not.7

Compelled by the sparse literature on out-of-time estimation of recovery rates, Kalotay and

Altman (2017) investigate the time variation of recovery rates.8 They report that paramet-

7 Cortes and Weidenmier (2019) also find no significant association of EPU with stock volatility.
8 Besides this paper, Doshi, Elkamhi, and Ornthanalai (2018) estimate a time-varying recovery rate of credit

default swaps.
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ric methods outperform the non-parametric methods for intertemporal prediction of recovery

rates. Comparing cross-sectional and intertemporal predictive performance they conclude that

machine learning techniques such as the regression tree fail to outperform traditional techniques

such as inverse Gaussian regression in an intertemporal setting. Further, applying conditional

mixture models, they improve estimates of expected credit losses by taking the time variation

of the recovery rate distribution into account. A fast maximum-likelihood approach for the

estimation of conditional mixtures of distributions is employed in their analysis.

Bastos (2014) illustrates how ensembles of models derived from the same regression method

yield more accurate forecasts of recovery rates than a single model. In particular, using boot-

strap aggregation (bagging) to build an ensemble of regression trees, he shows that his results

are valid for both corporate bonds and loans both during out-of-sample estimation and cross-

validation. Qi and Zhao (2011), Yao, Crook, and Andreeva (2015), Nazemi, Fatemi Pour,

Heidenreich, and Fabozzi (2017) and Nazemi, Heidenreich, and Fabozzi (2018) report that

non-parametric techniques such as regression trees and support vector regressions outperform

parametric methods for predicting recovery rates of corporate bonds in an out-of-sample study.

Table 5.1 provides an overview of the prevalence of recovery rate model validation techniques

in recent studies for U.S. corporate bonds. The k-fold cross-validation is the most frequently

used method for out-of-sample evaluation and has been established as standard procedure in

recovery rate estimation. The k-fold cross-validation has two mains drawbacks described in

Section 1. None of these studies make comparisons between machine learning techniques and

statistical models with attention to intertemporal forecasting performance, and with the excep-

tion of Kalotay and Altman (2017) who compared statistical models with just regression trees.

Our principal contribution relative to the literature applies yet unrecognized machine learning

techniques for intertemporal analysis of U.S. corporate bonds’ recovery rates.

Our study is closest to the study by Kalotay and Altman (2017) and Nazemi and Fabozzi

(2018). We provide five main contributions as compared to previous studies. First, our paper

investigates the ability of parametric and non-parametric models to predict recovery rates for

corporate bonds in several out-of-time prediction setups, as well as out-of-sample. In contrast

to Kalotay and Altman (2017), we find that machine learning techniques also outperform in in-
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Table 5.1: Overview of recovery rate models for U.S. corporate bonds in the literature

Author(s) Data Model(s) In-sample Out-of-sample Out-of-time

Frye (2000) Corporate bonds (1983-1997) Conditional model yes no no

Altman, Brady, Resti, and Sironi (2005) Corporate bonds (1982-2002)
Univariate and multivariate, logistic,
logarithmic and linear regression

yes no no

Varma and Cantor (2005)
Bonds and loans from c. 1,100
corporate issuers (1983-2003)

Univariate and multivariate regression yes no no

Acharya, Bharath, and Srinivasan (2007) 1,511 loans and bonds of over 300 firms (1982-1999) Multivariate regression yes no no

Bruche and Gonzalez-Aguado (2010) 2,000 bonds (1974-2005) Markov chain yes yes no

Chava, Stefanescu, and Turnbull (2011) Corporate bonds (1980-2008) Linear, logit and probit yes yes no

Jacobs and Karagozoglu (2011) Corporate loans and bonds (1985-2008) Beta-link generalized linear model yes yes no

Qi and Zhao (2011) 3,751 defaulted bonds and loans (1985-2008)
Regression, fractional response
regression, transformation regressions,
tree, neural network

yes yes no

Altman and Kalotay (2014)
4720 debt instruments, of which 60%
are bonds (1987-2011)

Parametric regressions, regression trees
Bayesian conditional mixture

yes yes yes

Jankowitsch, Nagler, and Subrahmanyam (2014)
Corporate bonds, 1,270 default
events of 534 firms (2002-2010)

Multivariate regression yes no no

Donovan, Frankel, and Martin (2015) Several instruments of 347 firms (1994-2011) Univariate and multivariate regression yes no no

Mora (2015) 4,422 bonds, loans and preferred stock (1970-2008) Univariate and multivariate regression yes no no

Yao, Crook, and Andreeva (2015) 1,413 corporate bonds (1985-2012)
Linear regression, fractional response
regression, SVRs, two-stage model

yes yes no

Kim and Kung (2016) Secured corporate loans and bonds (1989-2009) Multivariate linear regressions yes no no

Kalotay and Altman (2017) 2,828 non-financial corporate bonds (1987-2011)
Inverse Gaussian regressions,
mixture models, regression trees

yes yes yes

Nazemi and Fabozzi (2018) 794 corporate bonds (2002-2012)
Linear regression, SVRs, bagging, boosting,
LASSO, ridge regression

yes yes no

Gambetti, Gauthier, and Vrins (2019) 1,831 corporate bonds (1990-2013)
Beta regression, mixture models,
regression trees

yes no no

tertemporal prediction. Second, we introduce the sparse power expectation propagation method

to the credit risk literature and find that it yields the most compelling results for out-of-time

recovery rate prediction, thereby outperforming support vector regression methods which are

the most accurate methods applied in Yao, Crook, and Andreeva (2015), Nazemi, Heidenreich,

and Fabozzi (2018) and Nazemi and Fabozzi (2018). Third, our paper includes several text-

based variables of time-varying uncertainty constructed via machine learning techniques for

explaining the recovery rates of U.S. corporate bonds. We rely on five different news categories

and extend the uncertainty concept in recovery rate prediction compared to previous work.

Fourth, whereas Nazemi and Fabozzi (2018) extensively investigate macroeconomic variables in

recovery rate prediction and apply the LASSO for identifying and selecting the most informa-

tive macroeconomic predictors, we benchmark the performances of several advanced selection

techniques for selecting macroeconomic variables from a large set of macroeconomic variables.

Lastly, we investigate the permutation importance of groups of explanatory variables in order

to rank the major determinants of recovery rates.

5.3 Corporate Bond Recovery Rate Modeling

For recovery rate modeling, we apply linear regression, inverse Gaussian regression, regression

tree, random forest, semiparametric least-squares support vector regression, and power expec-

tation propagation techniques. Our benchmark model is linear regression. In the following, we
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describe the power expectation propagation technique which we apply in recovery rate model-

ing for first time in the literature. We provide a description of the other modeling techniques,

the macroeconomic variables selection techniques utilized (LASSO, SparseStep, and MC+ al-

gorithm), as well as a variable ranking method in Appendix C. In our recovery rate models, we

control for recovery rates determinants with dummy variables for industry, seniority, coupon

type, and instrument type. We further use industry distress dummy variables and the news-

based measures that can capture uncertainty about the future.

5.3.1 Power expectation propagation

According to Bui, Yan, and Turner (2017), Gaussian processes are flexible distributions over

functions that are used for a wide range of applications such as regression, representation learn-

ing and state space modeling. They introduce a unifying framework for sparse Gaussian pro-

cess pseudo-point approximation using power expectation propagation.9 Their novel approach

to sparse Gaussian process regression, a power expectation propagation framework, subsumes

expectation propagation and the sparse variational free energy method into a unified framework

for pseudo-point approximation.

In particular, if power expectation converges, its updates are equivalent to the original expec-

tation propagation procedure while substituting the Kullback-Leibler divergence minimization

with an alpha-divergence minimization. As alpha approaches zero, the power expectation prop-

agation solution becomes the minimum of a variational free energy approach. In contrast, when

alpha is equal to one, the solution from the original expectation propagation approach is recov-

ered. Bui, Yan, and Turner (2017) show that their innovative algorithm for Gaussian process

regression outperforms both expectation propagation and variational free energy approaches.

To the best of our knowledge, our paper is the first to apply sparse power expectation propa-

gation in credit risk.

9 We use the MATLAB implementation from Bui, Yan, and Turner (2017) of the algorithm for power expec-
tation propagation.
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5.4 Data

We merge several data sources such as S&P Capital IQ, Bloomberg, Federal Reserve Bank

of St. Louis, and news from front-page articles of The Wall Street Journal for analyzing the

recovery rate of U.S. corporate bonds in this study. Our initial dataset which consists of 2,080

bonds that defaulted between 2001 and 2016 is retrieved from the S&P Capital IQ database

(Capital IQ). Bond data are retrieved from S&P Capital IQ. We consider market-based recovery

rates based on bond pricing data 30 days after default which we retrieve from Capital IQ. The

bond prices available through Capital IQ are obtained from the Intercontinental Exchange

(ICE) and are, depending on availability of respective data sources, based upon evaluations

of dealer quotes, live trading levels and trade execution data from the Trade Reporting and

Compliance Engine (TRACE).10 In our sample, there is only one default event observation for

each bond. All bonds are denominated in US dollar. Industry variables are retrieved from

Bloomberg (BBG). A default event occurs when a company files for a Chapter 11 bankruptcy

petition or is assigned a rating of ‘D’ (meaning that the debtor is in default) or ‘SD’ (selective

default) by Standard & Poor’s. The issuers of the bonds in our study were assigned to the

following industries: industrial, consumer discretionary, consumer staples, telecommunications,

raw materials, utilities, energy, financial services, and information technology.

We exclude one bond from our analysis because the data was corrupt. The remaining 2,079

bonds exhibit an average recovery rate of 45.57% and a sample standard deviation of 35.04%

as reported in Table 5.2. We combine the seniority classes junior subordinate and subordinate

to one class because these two classes contain the fewest bonds. In general, the expectation

(senior creditors have the highest recovery rate) regarding the average recovery rates within the

seniority classes is met. Subordinated bonds exhibit the lowest average recovery rate of 8.15%,

while senior subordinated bonds have the second lowest average recovery rate. Accordingly,

senior secured bonds have the highest average recovery rate of 61.91%. Defaulted bonds from

the utility sector have the highest average recovery rate whereas defaulted bonds from the

10 While Khieu, Mullineaux, and Yi (2012) argue that the recovery rate based on 30-day-prices is biased, Metz
and Sorensen (2012) find that the bond price 30 days after default serves as a powerful predictor of the mean
and variability of ultimate recovery. Moreover, the 30-day market convention represents the actual recovery for
investors who sell timely after default, and it provides the advantage to be observable early after default while
ultimate recovery can only be observed after the issuer’s emergence from default (see, for example, Mora (2015)).
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Figure 5.1: Relative frequency of the recovery rates for the defaulted U.S. corporate bonds from
2001 to 2016.

telecommunications sector have the lowest average recovery rate (71.61% vs. 18.54%).

Table 5.2: Descriptive statistics of the recovery rates for all bonds (Panel A) and across seniority
classes (Panel B). We report the mean, standard deviation (Std), 10th percentile (p10), first
quartile (p25), median, third quartile (p75), 90th percentile (p90), and number of bonds (#).

Mean Std p10 p25 Median p75 p90 #
Panel A
All bonds 45.57 35.04 5.00 10.00 43.50 71.96 95.57 2079
Panel B: Recovery rates across seniority
Senior Unsecured 46.25 34.51 7.50 10.00 48.00 71.00 95.41 1715
Senior Subordinated 24.10 28.34 0.50 2.25 15.50 36.00 72.33 158
Subordinated 8.15 11.98 0.13 0.13 3.00 12.50 18.00 21
Senior Secured 61.91 35.28 5.00 30.00 70.25 94.75 101.15 185

The histogram of the relative frequency of the observed recovery rates in our sample exhibits

two peaks and is presented in Figure 5.1. The class between 0% and 10% contains around 640

defaulted bonds. There is another peak of the distribution at the class of values between 60%

and 70%. However, the observed distribution does not look like a bimodal distribution.

Evidence for the importance of macroeconomic variables in credit risk management can be

found in Bruche and Gonzalez-Aguado (2010), Varma and Cantor (2005), Chava, Stefanescu,

and Turnbull (2011), Jankowitsch, Nagler, and Subrahmanyam (2014), Mora (2015), Nazemi,

Fatemi Pour, Heidenreich, and Fabozzi (2017), and Nazemi and Fabozzi (2018). We use the

database from the Federal Reserve Bank of St. Louis (FRED, Federal Reserve Economic Data)

complemented by aggregate default data from Fitch Ratings to retrieve 182 macroeconomic

variables used in the credit risk literature such as Acharya, Bharath, and Srinivasan (2007),
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Varma and Cantor (2005), Jankowitsch, Nagler, and Subrahmanyam (2014), Mora (2015), and

Nazemi and Fabozzi (2018). The macroeconomic data covers the time period from 2000 (one

year before the start of the recovery rate observation period) until 2016. We list the macroeco-

nomic variables in Appendix C.

A novel data source for recovery rate estimation is news from front-page news articles of

The Wall Street Journal. To the best of our knowledge, our study is the first study to use

any kind of text-based variable constructed via machine learning techniques in recovery rate

estimation. News ideally fit intertemporal prediction setups since the data needed can be easily

collected immediately by keeping track of the media, whereas the most recent macroeconomic

data may not be available at the desired prediction date as it is often published only with a time

lag. We choose the text-based news measures that were shown to reflect investors’ concerns

about the future in a study by Manela and Moreira (2017). They incorporate a measure of

the investors’ mood that goes beyond commonly used hard data. The relationship between

investors’ uncertainty and implied volatility is also robust after controlling for realized stock

market volatility. Their work is based on the premise that news reflect the interest of readers

and that words used by the business press express the concerns of the average investor.

Manela and Moreira (2017) create their text-based measures by first collecting headlines and

abstracts of The Wall Street Journal articles, then decomposing them into one- and two-word

n-grams, and eventually using out-of-sample support vector regression to regress the commonly

used implied volatility indices, the CBOE Volatility Index (VIX) and the CBOE OEX Implied

Volatility Index (VXO), on monthly normalized n-grams. By doing so, they yield a forward-

looking news-implied volatility measure that is capable of serving as a proxy for investor uncer-

tainty. The authors demonstrate this capability by tracing back news headlines and abstracts

starting in 1889, then creating a long history of news-implied volatility and showing that their

measure peaks in a number of market turmoils and economic crises. In the next step, Manela

and Moreira (2017) classify words in the front-page articles to determine the different sources

of uncertainty inherent in the news articles. Therefore, they apply commonly used text ana-

lytics methods WordNet and WordNet::Similarity, by which the words are classified according

to semantic similarity and relatedness. This step yields five distinct measures from different

139



news categories: government, intermediation, securities markets, war, and unclassified news.

The news categories can represent various sources of uncertainty. Manela and Moreira (2017)

provide possible explanations, e.g. they associate news from the war category with uncertainty

about the destruction of human and physical capital, whereas they relate government news to

uncertainty about policy changes. Intermediation news are connected to banking crises and

bank failure, and securities markets news to stock price movements.

We further obtain the EPU measure which captures economic policy uncertainty derived

from manually screened news articles provided by Baker, Bloom, and Davis (2016) in order to

control for the effects from EPU on recovery rates in our analysis. Baker, Bloom, and Davis

(2016) rely on ten of the largest U.S. newspapers and therein count the number of occurrences of

three policy-related term categories: “uncertainty” or “uncertain”, “economic” or “economy”,

and policy-related terms “Congress”, “deficit”, “Federal Reserve”, “legislation”, “regulation”,

or “White House”. The selection of these policy terms is the result of an extensive supervised

human audit of over 12,000 news articles, in which the auditors manually code EPU = 1 or EPU

= 0, depending on the perceived economic uncertainty. The authors then identify policy terms

that appear frequently in the articles coded as contributing to economic policy uncertainty and

select the above conceptual term sets.

We merge our dataset with news-based measures that are reported by Baker, Bloom, and

Davis (2016) as well as by Manela and Moreira (2017). We use the monthly time series data as

a gauge for the investors’ uncertainty. In Figure 5.2, we plot the EPU as well as the text-based

news measures. The correlation matrix in Table 5.3 demonstrates that there is only limited

correlation between EPU and the text-based news variables in our data, suggesting that the

latter contain information that is distinct from the information conveyed via the EPU measure.

Table 5.3: Correlation matrix of text-based news variables and the economic policy uncertainty
(EPU) measure from 2001 to 2012.

Government Intermediation
Securities
Markets

War Unclassified EPU

Government 1.00
Intermediation 0.44 1.00
Securities Markets 0.58 0.43 1.00
War -0.11 -0.17 -0.07 1.00
Unclassified 0.41 0.61 0.57 0.17 1.00
EPU 0.38 0.19 0.40 0.27 0.68 1.00
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Figure 5.2: Economic policy uncertainty (EPU) and categorized news-based implied volatility
during the period 2001–2016. Shaded areas represent U.S. recession periods as defined by the
National Bureau of Economic Research (NBER)

5.5 Empirical Analysis of Recovery Rates’ Prediction

We first examine the relation between news and the recovery rate. Second, we select macroe-

conomic variables for recovery rate prediction and benchmark advanced selection techniques.

Third, we investigate the recovery rate estimation in out-of-sample and out-of-time (intertem-

poral) settings. Finally, we rank the groups of explanatory variables by their permutation

importance for recovery rate prediction.

5.5.1 Analyzing the news’ impact on recovery rates

In Table 5.4 we present an overview of the linear regression specifications based on the entire

dataset of 2,079 corporate bonds. The recovery rate of the defaulted U.S. corporate bond is the
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dependent variable. In model (1), we consider a basic specification including seniority dummies,

industry variables, and bond characteristics as independent variables. In model (2), we add the

EPU measure from Baker et al. (2016) to the basic specification. In contrast, in model (3) we

consider the five news-related measures from Manela and Moreira (2017). In model (4), we

use the seven macroeconomic variables selected by stability selection in addition to seniority,

industry, and bond variables. Finally, we combine the independent variables from models (3)

and (4) in model (5).

Table 5.4: This table presents the results of the linear regression specifications. The recovery
rate of the respective bond is the independent variable. In (1) we use seniority dummies, industry
variables, and bond characteristics as independent variables. In (2) we add add the economic
policy uncertainty (EPU) measure from Baker, Bloom, and Davis (2016). In (3), we replace the
EPU with news-based measures. In contrast, in (4) we consider the macroeconomic variables
selected by stability selection in addition to the seniority dummies, industry variables, and
bond characteristics. In (5) we add the combination of news-based measures and the selection
of macroeconomic variables to the base model. The respective t-statistics for each variable
are presented in parentheses. Statistical significance at the 99% level is indicated with ***,
significance on the 95% level is indicated with ** and significance on the 90% level is marked
with *.

Variable (1) (2) (3) (4) (5)
Intercept 44.5654*** 47.1636*** 38.1582*** 46.0907*** 33.1257***

(22.4612) (18.5472) (11.8707) (18.5324) (8.0126)
EPU -0.0301*

(-1.6564)
Government 31.7482*** 39.6178***

(10.9206) (11.7446)
Intermediation -3.579*** -6.1713***

(-3.2054) (-3.9478)
Securities Markets -0.646 -0.822

(-0.3849) (-0.4804)
War 4.4547 -11.011

(0.5826) (-1.2071)
Unclassified -1.392*** -0.547**

(-6.3147) (-2.2647)
Manufacturers: Inventories to Sales Ratio 61.4796*** 50.183**

(2.9021) (2.3043)
Number of Civilians Unemployed for Less Than 5 Weeks -0.0167*** -0.0148***

(-3.6623) (-3.1979)
30-Year Conventional Mortgage Rate 8.2292*** 10.0959***

(5.8475) (7.0106)
3-Month Commercial Paper Minus Federal Funds Rate -5.7185** 4.2306

(-1.9842) (1.3994)
Light Weight Vehicle Sales: Autos & Light Trucks -0.1929 1.294*

(-0.3101) (1.9188)
Nonfarm Business Sector: Unit Labor Cost -1.4842*** -1.3715***

(-3.8899) (-3.5514)
Trade Weighted U.S. Dollar Index: Major Currencies -1.1194*** -1.2015***

(-6.6632) (-7.1092)

Adj. R2 0.4179 0.4184 0.4536 0.4462 0.4826
RMSE 26.6211 26.6034 25.7603 25.9202 25.0247
MAE 20.7074 20.6564 19.9213 20.1421 19.2381
AIC 1.96E+04 1.96E+04 1.95E+04 1.95E+04 1.93E+04
BIC 1.97E+04 1.97E+04 1.96E+04 1.96E+04 1.95E+04
Number of bonds 2079 2079 2079 2079 2079
Seniority Yes Yes Yes Yes Yes
Industry Yes Yes Yes Yes Yes
Bond Characteristics Yes Yes Yes Yes Yes

Combining news-related and macroeconomic variables in model (5) generates a further im-

provement of in-sample fit to an adjusted R-squared of 48.26%. We show the significance of
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three out of five text-based measures of news even when controlling for the effects of macroe-

conomic variables in model (5). Similar to Acharya, Bharath, and Srinivasan (2007), industry

distress variables have a significant negative impact on recovery rates. In line with the results

from Varma and Cantor (2005), bonds with a higher payment rank in the seniority structure

recover on average significantly more than bonds with a lower rank. Finally, we confirm the sig-

nificance of bond characteristics reported by Jankowitsch, Nagler, and Subrahmanyam (2014).

The intuition behind applying news-based variables to recovery rate prediction is that news-

based variables, which were shown to reflect investors’ time-varying concerns in previous asset

pricing research, are likely to also drive the prices of defaulted debt securities. Given that the

30-day bond prices as the recovery rate represent expected future cash flows, we anticipate it

to depend on the news that proxy investors’ expectations about the future.

Following Gambetti, Gauthier, and Vrins (2019), we add the EPU measure to the basic

specification in model (2). Gambetti, Gauthier, and Vrins (2019) argue that the bond price after

default as a representation of recovery reflects expectations about future cash flows, and as such

is influenced by uncertainty. Furthermore, they emphasize a cause-effect between uncertainty

and economic downturns, an economically coherent notion that surfaces in their observations

of a significant negative impact of uncertainty on recovery. Similar to their study, we observe

a significant and negative impact of the EPU on recovery rates. However, we find only a very

marginal improvement of recovery estimation accuracy.

We then replace the EPU with text-based variables as measures for investors’ expectations

about the future in model (3). By doing so, we include a more diverse universe of uncertainty

for recovery rate estimation that relies not only on uncertainty related to economic policy. The

estimation accuracy improves by about 3.5 percentage points, showing that news-based variables

outperform the EPU in recovery rate prediction.11 Moreover, we also yield a better prediction

power than when using selected macroeconomic variables instead in model (4). A substantial

advantage of text-based news variables over macroeconomic variables is not only due to their

superior predictive power, but also that news are available immediately whereas macroeconomic

11 In a linear regression analysis not reported here, but whose results are available from the authors, we combine
models (2) and (3) of Table 5.4, controlling for the EPU in the presence of the five news-related measures. In
this setting, the EPU becomes insignificant while the variables from government, intermediation and unclassified
categories keep their significant relationships with recovery.
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data may be published with a time lag, making news-based variables particularly useful in out-of-

time predictions. This reveals the substantial importance of news-based variables for predicting

U.S. corporate bond recovery rates.

Five categories of text can be identified as distinct origins of uncertainty which we include

in our analysis: government, intermediation, stock markets, war, and unclassified. We observe

uncertainty related intermediation having a strongly significant negative impact in models (3)

and (5). The most frequent word counts in the intermediation category are the following: “fi-

nancial”, “business”, “bank”, “credit”, and “loan”. Intermediation-related news spikes mostly

during financial crises and periods of bank failures. Thus, the significantly negative impact on

recovery rates observed is in accordance with the intuitive expectation of lower recovery rates

during times of financial distress.

The news-related variable of the unclassified category has a significantly negative coefficient

in the model specifications (3) and (5). The most frequently occurring words of the unclassified

category are “U.S.”, “Washington”, “gold”, “special”, and “treasury”. The occurrence of the

terms “gold” and “treasury” points to macroeconomic uncertainty as these assets are often re-

garded as safe havens. Assuming that recovery rates are lower in an environment with increased

macroeconomic uncertainty, this interpretation of the unclassified category would explain the

significantly negative coefficient of this source of uncertainty.

News-related to the government category is the only news source that has a significantly

positive coefficient in our analysis. The most frequently occurring words of this category are

“tax”, “money”, “rates”, “government”, and “plan”. These terms do not necessarily bear a

negative connotation. For instance, the prospects of tax cuts or a more expansive fiscal policy

might be reflected in news from the government category. So, the expectation of government

policies which are perceived as positive is one possible explanation for the significantly positive

impact on recovery rates in our analysis.

Stock market related uncertainty is represented most frequently through the following words:

“stock”, “market”, “stocks”, “industry”, and “markets”. With uncertainty about financial crises

already reflected through the highly significant intermediation-related uncertainty, we observe

the stock market-related news with a negative but insignificant coefficient in models (3) and
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(5). Further, war-related news has very little variance over our observation period and is not a

significant determinant in the linear regression analysis.

Similar to Nazemi and Fabozzi (2018), we select a small number of macroeconomic vari-

ables from a large collection of macroeconomic variables, but further compare several different

selection techniques for this step as described in Section 5.5.2. By selecting a small subset of

the macroeconomic variables and eliminating the rest of the variables, the outcome model be-

comes more interpretable compared to using principal component analysis of the macroeconomic

variables in Nazemi, Heidenreich, and Fabozzi (2018). Adding seven selected macroeconomic

variables within model (4) presented in Table 5.4, we achieve a prediction improvement over

the basic model specification. Nevertheless, the improvement in prediction accuracy is smaller

than achieved by Nazemi and Fabozzi (2018). With regards to macroeconomic variables’ sig-

nificance, we observe the following drivers of recovery rates in our analysis. An increase in

the inventories-to-sales ratio in the manufacturing industry by 10% coincides with an increase

in the recovery rate of 5.0% in model (4). This is contrary to the notion that a lower sales

turnover indicates macroeconomic weakness and might lead to a lower recovery rate. Further,

in accordance with macroeconomic intuition, the average recovery rate decreases by 1.48% at a

time when the number of unemployed civilians rises by 100,000.

Additionally, when inflation of the unit labor cost in the business sector increases by 1%,

the average recovery rate decreases by 1.37%. An increase in the 30-year mortgage rate by 1%

coincides with a 10%-increase of the recovery rate in model (4). Moreover, when the U.S. dollar

strengthens by 1% against a trade-weighted basket of foreign currencies, we observe a decrease

of 1.2% in the recovery rate.

We provide more evidence on the effects of text-based news variables by examining how

they interact with a recession indicator. In Table 5.5 we present additional regression results

including terms for the interaction effects between news-based variables and a recession indi-

cator. Simultaneously, we allow for the respective direct effects of both the recession indicator

and the news-based variables. In model (1), we add the recession indicator to a basic specifi-

cation including seniority dummies, industry variables, and bond characteristics. The recession

indicator is a dummy variable indicating recession in the U.S. economy for the periods that are
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defined as recessions by the National Bureau of Economic Research (NBER). Our dataset covers

two recessions according to the NBER definition: March 2001 – November 2001 and December

2007 – June 2009. During these recessions, about 900 of the defaults in our dataset occurred

(i.e. 44% of the defaulted corporate bonds). It is worthwhile to mention that while our analysis

involving the recession indicator allows us to better understand the economic effects of text-

based news variables on recovery rates of defaulted U.S. corporate bonds, it cannot be included

into out-of-time predictions because it is only fully determined in retrospect to a recession. We

observe a significant negative relationship between the recession indicator and recovery. This is

in line with the economic intuition that recovery rates are lower during times of distress. We

point out that the industry distress dummy variables are still significant and maintain negative

coefficients in this specification, hence we conclude that an economy-wide recession operates as

a superordinate factor in addition to industry-specific distress factors.

As we have demonstrated the significance of news-based variables in the first part of this

section, we now expand our analysis on the effects from text-based news variables on recovery

rates of defaulted bonds by iterating interaction terms between text-based news variables and

the recession indicator in models (2)–(6) in Table 5.5. In general, we find that the interaction

effects are all positive. Yet, consistent with our previous analysis, news variables and interaction

terms related to securities markets and war are insignificant, with the small exception that the

interaction between news related to securities markets and recession is significant at the 10%

confidence level in model (4). More importantly, we find that the interaction terms in models

(2), (3) and (6) are significant with 1% confidence level, i.e. the interactions between recession

and those text-based news variables that we found to be significantly related to recovery rate

earlier in this section (news from the government, intermediation and unclassified categories).

At the same time, the direct effects of news related to government, intermediation and industry

distress remain intact in all models. Interestingly, the magnitude of the positive effect from

news related to the government in model (2) almost doubles during the recession period as

compared to times of economic growth. Apparently, as recovery is expressed by bond prices

in our analysis, news related to the government are perceived even more positive by investors

during a recession. This is plausible, as substantial actions have been taken by U.S. authorities

during the recent global financial crisis in order to mitigate distress, support the economy and
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provide stability to the financial system. News about these actions will likely lead to increasing

investors’ confidence.

We also perceive that the positive coefficient of the interaction term of intermediation news

and recession (models (3)) has a similar magnitude as the negative coefficient of the direct

effect from intermediation news, but is slightly smaller. This shows that during the crisis,

intermediation news still negatively affect recovery rates of defaulted U.S. corporate bonds, but

to a much smaller extent than during non-recession periods. While the text-based news variable

of the unclassified category is significant when including its own interaction term in model (6),

it becomes insignificant in most of the other models. Moreover, when comparing the coefficient

of the interaction effect of unclassified news with the unclassified news’ direct effect, we find

that the directional effect of unclassified news on recovery rates turns from negative in times of

economic growth to positive during a recession. Although the reasoning behind this is somewhat

opaque, it is not implausible given that unclassified news cover the bulk of all news collected,

and therefore should include both news that increase concerns but also news that increase the

confidence of investors. In summary, the analysis of interaction between news and the recession

indicator is an interesting piece of empirical evidence that shows how news can reflect investors’

concerns, but are also positively perceived by investors if the news are related to government

actions during economic recessions.

We further elaborate whether our observations are rooted in the large fraction of defaulted

bonds issued by firms from the financial industry. About 51% of defaulted bonds in our data

sample are attributable to the financial industry, hence we remove these bonds and conduct

linear regression analysis on the remaining sample, involving 1,020 defaulted bonds that were

issued by non-financial firms. In model (1) of Table 5.6, we consider the basic specification

that includes seniority dummies, industry variables, and bond characteristics as independent

variables. Model (2) adds the EPU measure and confirms its significant negative relationship to

recovery rates that has been previously identified for the whole sample. In model (3), we replace

the EPU with text-based news variables and observe significant positive effects of news from

the government category, and significant negative effects of news from the intermediation and

unclassified categories, which is similar to our findings when involving the whole sample. We

find, however, that the coefficients of these variables are substantially smaller as compared to
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Table 5.5: This table presents the results of the linear regression involving interaction terms
between a recession indicator and news-based variables. The recovery rate of the respective
bond is the independent variable. In (1) we use seniority dummies, industry variables, and bond
characteristics as independent variables, and further add a dummy variable indicating recession
in the U.S. economy for periods as defined by the National Bureau of Economic Research
(NBER). In (2) we add add the news-based variables and account for the interaction between
the recession indicator and the news-based variable from the government category. In models
(3), (4), (5) and (6) we iterate the interaction terms of the recession indicator and news from
intermediation category, securities market category, war category and the unclassfied category,
respectively. The interaction terms and their respective singular compontents are highlighted
in bold. The respective t-statistics for each variable are presented in parentheses. Statistical
significance at the 99% level is indicated with ***, significance on the 95% level is indicated
with ** and significance on the 90% level is marked with *.

Variable (1) (2) (3) (4) (5) (6)
Intercept 50.8709*** 42.3065*** 40.0089*** 40.9739*** 35.7024*** 40.1866***

(19.7543) (9.5466) (9.0664) (8.0498) (8.5479) (9.1934)
Government 26.7863*** 34.9647*** 35.8834*** 37.5727*** 34.8412***

(6.3399) (10.0266) (10.2786) (11.0248) (10.0359)
Intermediation -8.6486*** -9.6021*** -7.3071*** -6.2321*** -7.4705***

(-5.2494) (-4.9892) (-4.4309) (-3.9725) (-4.6907)
Securities Market 1.3763 0.6433 -2.0550 -0.7461 0.5046

(0.7789) (0.3651) (-1.1095) (-0.4372) (0.2902)
War -11.6967 -12.2428 -13.7096 -12.9651 -14.9453

(-1.2937) (-1.3512) (-1.5046) (-1.3721) (-1.6430)
Unclassified -0.2945 -0.4609* -0.3090 -0.2576 -0.7210**

(-1.1815) (-1.7580) (-1.2176) (-0.9500) (-2.4718)
Recession -17.0835*** -26.8014*** -19.8319*** -25.9045*** -13.4593*** -23.7072***

(-6.3700) (-6.2730) (-5.5059) (-3.4451) (-4.4292) (-5.5678)
Government*Recession 22.2482***

(4.1927)
Intermediation*Recession 5.2463***

(2.9068)
Securities Market*Recession 6.5848*

(1.8361)
War*Recession 7.4322

(0.3138)
Unclassified*Recession 0.9869***

(3.2719)

Adj. R2 0.4567 0.4921 0.4898 0.4885 0.4877 0.4904
RMSE 25.6678 24.7820 24.8370 24.8677 24.8876 24.8234
MAE 19.7555 18.8180 18.8880 18.9178 18.9596 18.8674
AIC 1.94E+04 1.93E+04 1.93E+04 1.93E+04 1.93E+04 1.93E+04
BIC 1.96E+04 1.95E+04 1.95E+04 1.95E+04 1.95E+04 1.95E+04
Number of bonds 2079 2079 2079 2079 2079 2079
Seniority Yes Yes Yes Yes Yes Yes
Industry Yes Yes Yes Yes Yes Yes
Bond Characteristics Yes Yes Yes Yes Yes Yes

using the whole dataset, indicating that the news variables have a smaller effect on non-financial

bonds. As The Wall Street Journal is predominantly focused on business and financial news,

we are not surprised of this finding. Opposite to involving the whole sample, however, securities

markets news become significant, having also a negative effect on recovery rates. In summary,

the analysis highlights that government related news keep their unique characteristics, having

a significant positive effect on recovery rates of defaulted bonds for both samples including

or excluding defaulted bonds issued by financial firms. Although the other text-based news

variables consistently have negative coefficients, they appear to be more interchangeable with

each other, depending on alternations in the data sample.
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Table 5.6: This table presents the results of the linear regression considering only defaulted
bonds issued by non-financial firms. The recovery rate of the respective bond is the independent
variable. In (1) we use seniority dummies, industry variables, and bond characteristics as
independent variables. In (2) we add the economic policy uncertainty (EPU) measure from
Baker, Bloom, and Davis (2016). In (3), we replace the EPU with news-based measures. The
respective t-statistics for each variable are presented in parentheses. Statistical significance
at the 99% level is indicated with ***, significance on the 95% level is indicated with ** and
significance on the 90% level is marked with *.

Variable (1) (2) (3)
Intercept 37.3171*** 45.3711*** 45.9041***

(17.8758) (14.9568) (13.5024)
EPU -0.0693***

(-3.6397)
Government 11.9157***

(3.2147)
Intermediation -2.4522**

(-2.1189)
Securities Markets -3.6010**

(2.0810)
War -2.3412

(-0.3011)
Unclassified -0.8354***

(–3.7856)

Adj. R2 0.3571 0.3649 0.3885
RMSE 25.3207 25.1551 24.6324
MAE 19.3735 19.1727 18.9089
AIC 0.95E+04 0.95E+04 0.95E+04
BIC 0.96E+04 0.96E+04 0.96E+04
Number of bonds 1020 1020 1020
Seniority Yes Yes Yes
Industry Yes Yes Yes
Bond Characteristics Yes Yes Yes

Overall, taking into account the significance of three out of the five text-based measures even

when controlling for macroeconomic effects points to a time-varying influence of investors’ mood

on recovery rates. The further increase of prediction performance when combining news-related

measures with macroeconomic variables demonstrates that the news-based variables contain

additional predictive information compared to macroeconomic variables. This is in line with the

finding of Gambetti, Gauthier, and Vrins (2019) when controlling for the business cycle in their

analysis of uncertainty measures. Hence, we can conclude that the effect measured by the text-

based measures has additional predictive power for recovery rates and is not simply mirroring the

already known significance of macroeconomic variables for recovery rate prediction. We further

find that news related to the government generally has a unique positive effect on recovery rates

of defaulted corporate bonds. The effect magnifies during recession periods, a characteristic

that possibly accounts for an increasing confidence among investors, conveyed through the

news and reflected in 30-day bond prices. While effects from other news categories tend to be

negative, their magnitude decreases during recessions. For unclassified news, the effects even

become positive, allowing us to conclude that news does not only have a unidirectional effect

on recovery rates of defaulted corporate bonds. We also find that financial news has a smaller
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effect on recovery rates of defaulted bonds from non-financial issuers.

5.5.2 Benchmark of variable selection techniques

In this study, we employ machine learning techniques using two different prediction settings.

First, we predict out-of-sample. We sort the dataset randomly stratified for the seniority classes.

After using 10 folds cross-validation to select the hyperparameters based on the root mean-

squared errors (RMSEs) on the training set (70% of the data), we predict out-of-sample on the

test set (30% of the data). By following this procedure, we determine the optimal number of

trees and minimum leaf size for the random forest as well as the cost C and the kernel width

γ for the SP LS-SVR. We follow the recommendation of Bui et al. (2017) by using α=0.5 for a

MSE loss when applying their power expectation propagation approach.

In Table 5.7, we demonstrate that the machine learning techniques outperform traditional

statistical techniques during out-of-sample prediction. Using a random partition of 70% of the

dataset as the training set, we mitigate the risk of overfitting. In addition to evaluating a wide

range of prediction methods, we compare the performance using stability selection, the Spars-

eStep algorithm, and the MC+ algorithm for selecting the most important macroeconomic

variables. Without regard to the selection technique used for selecting the macroeconomic

variables, all four machine learning techniques (i.e., regression tree, a power expectation prop-

agation approach, SP LS-SVR, and random forest) outperform the two traditional techniques

in both performance evaluation metrics, RMSE, and mean absolute error (MAE). Independent

of which selection technique is applied, random forest shows the best predictive out-of-sample

performance.

Nazemi and Fabozzi (2018) demonstrate that recovery rate models incorporating LASSO-

selected macroeconomic variables outperform those from previous research which include only

few macroeconomic variables or principal components. We apply and benchmark three different

selection techniques, SparseStep, MC+ and stability selection, for identifying the most relevant

macroeconomic variables. For all six prediction techniques, macroeconomic variables selected

by SparseStep appear to provide the best predictive accuracy. Thus, finding that selecting the

macroeconomic variables with SparseStep instead of LASSO increases predictive accuracy, we
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yield an improvement on the study from Nazemi and Fabozzi (2018). However, the difference

between SparseStep and the two remaining selection techniques, MC+ and stability selection is

modest.

Table 5.7: This table shows the performance measures from out-of-sample prediction on the
testing set which is a random partition of the dataset (30%) while the remaining 70% of the
dataset were used for training and determining the hyperparameters during cross-validation.
(SP LS-SVR: Semi-Parametric Least-Squares Support Vector Regression; Lin. Reg.: Linear
Regression; Reg. Tree: Regression Tree; PEP: Sparse Gaussian Process Approximation with
Power Expectation Propagation; RF: Random Forest; IG Reg.: Inverse Gaussian Regression)

SparseStep MC+ Stability Selection

Model RMSE MAE RMSE MAE RMSE MAE

SP LS-SVR 20.9890 13.2027 20.9971 13.5843 21.4105 13.5146
Lin. Reg. 24.8969 18.9199 25.1544 19.2876 25.2331 19.3116
Reg. Tree 22.4956 14.0037 22.5373 14.4637 23.3830 14.8230
PEP 21.2664 14.0712 21.3650 13.8618 21.2667 13.8177
RF 20.6838 13.2145 20.7231 13.2625 21.0394 13.5151
IG Reg. 24.0352 17.9865 24.2890 18.1841 24.4879 18.2376

The lowest RMSE (20.6838) is observed when selecting the macroeconomic variables with

SparseStep and using random forest for prediction. Using SP LS-SVR (20.9890) and the power

expectation propagation approach (21.2664), the predictive accuracy decreases slightly. The

regression tree (best RMSE of 22.4956) has the lowest predictive power of the machine learning

techniques. Among the traditional approaches, the inverse Gaussian regression has a minor ad-

vantage in predictive capacity compared with linear regression for all three selection techniques.

Applying SparseStep for the macroeconomic variables’ selection yields the lowest RMSE for

the linear regression and inverse Gaussian regression techniques. For this reason, we will use

SparseStep during out-of-time prediction.

Even though comparability of performance measures across datasets is limited, our results

for out-of-sample estimation are on par with the best results in the literature. The lowest RMSE

reported by Yao, Crook, and Andreeva (2015) is 0.2136 for SP LS-SVR during an out-of-sample

prediction study. Nazemi, Heidenreich, and Fabozzi (2018) report the lowest RMSE of 0.1750

for LS-SVR with different intercepts for each seniority class during 10 folds cross-validation.

The lowest RMSE during 10 folds cross-validation in the study by Kalotay and Altman (2017)

is 0.27 for the regression tree.
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In summary, during out-of-sample estimation all four machine learning techniques outper-

form the two traditional approaches (linear regression and inverse Gaussian regression), irrespec-

tive of which selection technique is utilized. While this relationship has been documented by Qi

and Zhao (2011), Yao, Crook, and Andreeva (2015), Kalotay and Altman (2017), and Nazemi

and Fabozzi (2018), the literature on corporate bonds’ recovery rate prediction out-of-time is

sparse. In the following, we address this gap in the literature.

5.5.3 Intertemporal prediction of the recovery rate

Having predicted out-of-sample in the previous section, we now predict out-of-time. We first

evaluate the machine learning methods in out-of-time prediction of recovery of portfolios of

defaulted bonds in accordance with Kalotay and Altman (2017), and thereafter predict recov-

ery rates on the instrument-level by applying five out-of-time prediction setups inspired by

approaches suggested in asset pricing literature.

Intertemporal prediction of defaulted bond portfolio recovery As cogently outlined

by Kalotay and Altman (2017), prediction out-of-time instead of out-of-sample addresses several

issues. Taking into consideration the likelihood of time variation in recovery rates, they point

out that reporting forecast performance on a random partition of the dataset is less appropri-

ate. Kalotay and Altman (2017) emphasize the importance of accounting for time variation in

recovery rates. In particular, testing performance out-of-time ensures that only sample points

observed before the default event were used for training. Further, only investigating perfor-

mance out-of-time prevents data points from the same issuer and the same exposure to be part

of both the training and test set, therefore satisfying the condition that observations in the test

set are independent from observations in the training set. We train our models by including

data from 2001 until 2011 and use data from the remainder of the sample period (2012 to 2016)

as the test set. Following Kalotay and Altman (2017) for ease of comparison, we predict mean

recovery rates of portfolios of defaulted bonds. Therefore, we draw a sample of 100 bonds from

the test set and calculate the average recovery rate on this sample, weighting the bonds equally.

This procedure is repeated 10,000 times. We also repeat this analysis moving through time.

Starting with the training set from 2002 to 2011, we add another year of data to the training
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set until we have reached the end of the dataset using training data up to 2014. The bonds

from the two years following the training period are used as the test set whereby we sample

nine bonds from the respective two-year period and repeat this step 2,000 times.

The out-of-time performance of our models is presented in Table 5.8.12 The bonds from 2001

to 2011 are used as the training set while the bonds from 2012 to 2016 are used as the test set

for sampling. Again, machine learning techniques outperform the traditional approaches for all

prediction techniques. In particular, the predictive accuracy of inverse Gaussian regression and

linear regression decreases significantly. In contrast to out-of-sample prediction, random forest

is the worst performing machine learning technique for out-of-time prediction with an RMSE of

13.5294. Interestingly, in the out-of-time prediction setup, the power expectation propagation

approach yields the lowest RMSE of 2.6887 while SP LS-SVR (4.2736) and the regression tree

(5.1717) exhibit a slightly lower predictive capacity.

Table 5.8: This table shows the performance measures from out-of-time prediction sampling
from the testing set (from 2012 to 2016) while the data from 2001 to 2011 are used for train-
ing and determining the hyperparameters during cross-validation. The SparseStep algorithm is
used to select the most informative macroeconomic variables. The best performance measures
are highlighted in bold. (IG Reg.: Inverse Gaussian Regression; Lin. Reg.: Linear Regression;
Reg. Tree: Regression Tree; SP LS-SVR: Semi-Parametric Least-Squares Support Vector Re-
gression; PEP: Sparse Gaussian Process Approximation with Power Expectation Propagation;
RF: Random Forest)

SparseStep
Actual IG Reg. Lin. Reg. Reg. Tree SP LS-SVR PEP RF

Mean 32.4095 76.7641 78.2838 37.1176 36.2062 34.1537 45.7951
Std 2.1677 1.3181 1.5030 1.6219 0.7990 0.9622 0.8272

1% 27.4195 73.7258 74.8435 33.3696 34.3637 31.9405 43.9059
168.88% 172.96% 21.70% 25.33% 16.49% 60.13%

5% 28.8675 74.6184 75.8140 34.4713 34.9157 32.5985 44.4500
158.49% 162.63% 19.41% 20.95% 12.92% 53.98%

10% 29.6229 75.0592 76.3542 35.0428 35.1853 32.9160 44.7320
153.38% 157.75% 18.30% 18.78% 11.12% 51.01%

25% 30.9674 75.8629 77.2716 36.0258 35.6595 33.4930 45.2336
144.98% 149.53% 16.33% 15.15% 8.16% 46.07%

50% 32.4085 76.7598 78.2634 37.1102 36.2066 34.1568 45.7914
136.85% 141.49% 14.51% 11.72% 5.39% 41.29%

75% 33.8399 77.6559 79.2965 38.2048 36.7370 34.8010 46.3507
129.48% 134.33% 12.90% 8.56% 2.84% 36.97%

90% 35.2057 78.4484 80.2251 39.1859 37.2386 35.3864 46.8660
122.83% 127.88% 11.31% 5.77% 0.51% 33.12%

RMSE 44.4119 45.9333 5.1717 4.2736 2.6887 13.5294
MAE 44.3545 45.8743 4.7300 3.8397 2.1923 13.3856

12 As we yield the most accurate predictions with SparseStep during out-of-sample prediction, we report only
the results applying SparseStep for macroeconomic variable selection during out-of-time prediction. The results
using MC+ and stability selection are consistent with the results reported for SparseStep. These results are not
reported here but are available from the authors.
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In Table 5.9 we show the out-of-time performance of our models when retraining the models

each year. Starting with a training set including bonds until 2011, we extend the training

set with new bonds each year and use the bonds from the following two years as test set for

sampling. For instance, in the first step we use the bonds from 2001 to 2011 as the training

set and sample from the bonds from 2012 and 2013 for prediction. In the next iteration, we

extend our training set to include the bonds from 2012 and use the bonds from 2013 and 2014

for sampling.

Table 5.9: This table shows the performance measures from out-of-time prediction when all
models are retrained every year. Starting with a training set including bonds until 2011 we
extend the training set with new bonds each year and use the bonds from the following two
years as the test set. So, in the first step we use the bonds from 2001 to 2011 as the training set
and sample from the bonds from 2012 and 2013. In the next iteration, we extend our training
set to include the bonds from 2012 and use the bonds from 2013 and 2014 as the test set. The
SparseStep algorithm is used to select the most informative macroeconomic variables. The best
performance measures are highlighted in bold. (IG Reg.: Inverse Gaussian Regression; Lin.
Reg.: Linear Regression; Reg. Tree: Regression Tree; SP LS-SVR: Semi-Parametric Least-
Squares Support Vector Regression; PEP: Sparse Gaussian Process Approximation with Power
Expectation Propagation; RF: Random Forest)

SparseStep
Actual IG Reg. Lin. Reg. Reg. Tree SP LS-SVR PEP RF

Mean 35.4642 65.1487 64.5576 42.6204 37.5660 40.493 46.4706
Std 13.2443 6.5806 6.8764 11.2331 4.1321 8.16991 4.1480
1% 8.7095 49.2976 48.9102 19.8052 28.2487 17.6113 37.4106

466.02% 461.57% 127.40% 224.34% 102.21% 329.54%
5% 13.8126 53.8581 53.2014 25.3224 30.9192 24.9364 40.0503

289.92% 285.17% 83.33% 123.85% 80.53% 189.96%
10% 17.3750 56.3814 55.5540 28.7439 32.4446 29.5408 41.3762

224.50% 219.74% 65.43% 86.73% 70.02% 138.14%
25% 25.7049 60.8349 59.8974 34.5368 34.9132 36.1703 43.6340

136.67% 133.02% 34.36% 35.82% 40.71% 69.75%
50% 35.8299 65.3895 64.6008 41.6541 37.6385 41.4314 46.3077

82.50% 80.30% 16.26% 5.05% 15.63% 29.24%
75% 44.5556 69.8571 69.2250 50.2680 40.3493 45.8537 49.1103

56.79% 55.37% 12.82% -9.44% 2.91% 10.22%
90% 52.6980 73.5200 73.5126 57.9349 43.0418 49.7292 51.8733

39.51% 39.50% 9.94% -18.32% -5.63% -1.56%
RMSE 33.0883 32.6534 13.7023 13.1569 11.7634 17.2256
MAE 29.7743 29.2172 11.0205 10.6562 9.41088 13.9478

Based on the root mean square error (RMSE) and mean absolute error (MAE), the best

performing method in Table 5.9 is again the power expectation propagation approach with an

RMSE of 11.7634, followed by SP LS-SVR (13.1569) and regression tree (13.7023). However, the

prediction performance on the quantiles of the recovery rate distribution offers further insight.

While the power expectation propagation approach is the best performing model in terms of

RMSE and MAE, it has the lowest percentage deviation among all techniques only for the 1st-

percentile, 5th-percentile, and 75th-percentile. In contrast, the regression tree has the lowest
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percentage deviation for the 10th- (deviating 127.4%) and 25th- (deviating 34.36%) percentiles,

while SP LS-SVR has the lowest percentage deviation for the median (5.05%) and the random

forest has the lowest percentage deviation for the 90th-percentile (deviating -1.56%).

While Kalotay and Altman (2017) report their lowest RMSE of 6.8 for out-of-time estimation

without retraining for a mixture model with bagging, we report lower RMSEs of 2.7 for the

power expectation propagation approach and 4.3 for the SP LS-SVR. The result is similar for

out-of-time prediction when yearly retraining the models. Each of our three best-performing

machine learning techniques – the power expectation propagation approach (RMSE = 11.8),

the SP LS-SVR (RMSE = 13.2), and the regression tree (RMSE = 13.7) – outperforms their

best-performing technique, a mixture model with bagging (RMSE = 15.5). Performing the

comparison on a percentile-level, our best techniques outperform the best techniques reported

by Kalotay and Altman (2017) for the median and the higher percentiles (75% and 90%) while

for the lower percentiles (1%, 5%, 10%, and 25%) the techniques from Kalotay and Altman

(2017) are more accurate.

More traditional approaches such as linear regression and inverse Gaussian regression ex-

perience significant deterioration during the out-of-time prediction compared with their out-of-

sample performance. In contrast, the predictive accuracy of the machine learning techniques

such as the newly proposed power expectation propagation approach and SP LS-SVR does not

decline when switching from out-of-sample estimation to out-of-time estimation. From these

results we conclude that the non-linear relationships between the recovery rate and the ex-

planatory variables are more stable during our observation period than the linear dependencies

between the recovery rate and the explanatory variables. In general, we find that the power

expectation propagation approach provides the most compelling out-of-time prediction results.

Although we report the average performance measures across all time steps in Table 5.10,

we show the predictive performance for each of the four two-year ahead sub-periods following

the respective period used for training each model. Hence, we are able to demonstrate the

consistency of our modeling approaches.
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Table 5.10: This table shows the performance measures for each two-year ahead subperiod from
out-of-time prediction when all models are retrained every year. The first column shows the
last year that is included in the training set. # of bonds denotes the number of bonds in
each two-year ahead period which is used as test set for sampling. Starting with a training set
including bonds until 2011 we extend the training set with new bonds each year and use the
bonds from the following two years as the test set. So, in the first step we use the bonds from
2001 to 2011 as training set and the bonds from 2012 and 2013 as the test set. In the next
iteration, we extend our training set to include the bonds from 2012 and use the bonds from
2013 and 2014 as test set. The SparseStep algorithm is used to select the most informative
macroeconomic variables. The best performance measures are highlighted in bold. (IG Reg.:
Inverse Gaussian Regression; Lin. Reg.: Linear Regression; Reg. Tree: Regression Tree; SP
LS-SVR: Semi-Parametric Least-Squares Support Vector Regression; PEP: Sparse Gaussian
Process Approximation with Power Expectation Propagation; RF: Random Forest)

SparseStep
# of bonds IG Reg. Lin. Reg. Reg. Tree SP LS-SVR PEP RF

2011 75 RMSE 28.4971 29.8182 9.2928 7.8582 8.4563 9.3318
MAE 27.6984 28.9866 7.3983 6.3000 6.8337 7.6770

2012 62 RMSE 17.8793 16.8617 12.3584 12.1457 9.5560 9.6305
MAE 15.6871 14.6412 9.9761 9.7989 7.6453 7.7579

2013 91 RMSE 30.3518 28.3460 16.6306 9.5900 11.4688 15.9382
MAE 28.1792 26.1179 13.5029 7.6879 9.2671 13.6061

2014 104 RMSE 48.2324 47.8334 15.3412 19.7783 16.0980 27.4414
MAE 47.5327 47.1232 13.2046 18.8379 13.8974 26.7500

Mean RMSE 31.2402 30.7148 13.4058 12.3431 11.3948 15.5855
MAE 29.7744 29.2172 11.0205 10.6562 9.4109 13.9478

Intertemporal prediction of instrument-level recovery rate In the following, we fo-

cus on intertemporal recovery rate prediction of individual bonds rather than defaulted bond

portfolios. We compare the performance of the machine learning methods for individual bonds’

recovery rate prediction across five intertemporal prediction setups. We employ intertemporal

prediction setups that have been previously used in the asset pricing literature. The standard

approach is to divide the data into a subsample for model training, a validation subsample for

hyperparameter selection, and a test subsample for prediction performance evaluation. Bali,

Goyal, Huang, Jiang, and Wen (2022) use fixed consecutive time windows for training, validation

and prediction testing. Bianchi, Büchner, and Tamoni (2020) use an annual rolling prediction

window of fixed size that is preceded by a training sample which increases as they move in time,

performing cross-validation on the training set for hyperparameter selection. Gu, Kelly, and

Xiu (2020) combine both approaches by using a rolling prediction window of fixed size with an

increasing training set, however selecting hyperparameters on a fixed-sized validation set which

is located between the training and test sets and which they roll forward as they move in time.

First, we train the models on the data 2002 to 2011 while relying on 10-fold cross-validation
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for tuning hyperparameters, and then predict on the test set 2012 to 2016. This setup is

comparable to that used in Table 5.8 for the portfolio approach. For the subsequent setups, we

replace the cross-validation for tuning the hyperparameters with a validation set that is located

between the training and the test set. Hence, for the second setup, we split the data into the

training set ranging from 2002 to 2010, the year 2011 as the validation set, and the years 2012

to 2016 remain as the test set. Third, we suggest a setup in which we move through time. We

start with the years 2002 to 2010 as the training set, 2011 as the validation set and the two

subsequent years 2012 and 2013 as the test set. We then move one year in time, increasing the

training data by one year but keeping the lengths of the validation and test sets as one year and

two years, respectively. The fourth setup is similar to the previous setup except that we also

keep the length of the training data fixed and drop older training data , instead of increasing it

as we move through time. In the final setup, we apply a daily rolling prediction window that

consecutively predicts recovery rates of default-day combinations, i.e. we predict all recovery

rates of bonds that defaulted on a given day, and thereafter move on to the next default date in

our data on which one or more bonds defaulted. We then retrain the model and predict recovery

rates of all bonds which defaulted on that day. For this setup, the validation set considers the

120 most recently defaulted bonds, of which the oldest defaults are added successively to the

training set as we move through time, while the last predicted defaulted bonds feed into the

validation set.

We denote the training set τ1, the validation subsample for hyperparameter selection τ2,

and the test set for prediction performance evaluation τ3. We measure performance on the test

sets with RMSE and MAE:

RMSE =

√√√√∑
i∈τ3

(
RRi − R̂Ri

)2

n
(5.1)

MAE =
∑

i∈τ3

∣∣∣RRi − R̂Ri

∣∣∣
n

(5.2)

where R̂Ri is the out-of-time predicted recovery rate and RRi the actual recovery rate of bond

i, and n is the total number of bonds in the test set τ3.

157



The results are shown in Table 5.11. Again, the machine learning methods outperform

linear regression and inverse Gaussian regression techniques. Furthermore, consistent with the

previous analysis, the power expectation propagation approach performs best and delivers the

lowest forecast errors in four of five setups. It yields the best result (RMSE = 23.8) when

applied in the setup with a daily rolling prediction window and increasing test set length (Setup

(5)). Only in Setup (2), where we apply a fixed prediction window and select hyperparameters

during a fixed validation year, SP LS-SVR is performing better than the power expectation

propagation approach.

Moreover, we find that for fixed prediction windows, parameter tuning via 10-fold cross-

validation across the full historic data (Setup (1)) yields better recovery rate forecasts than

using only the last year before the test set as a validation set (Setup (2)). Likewise, the rolling

window approach performs better when increasing the training size, considering all historic

recovery rate observations (Setup (3)), instead of keeping the length of the training set fixed

by adding new training data and dropping old training data while moving through time (Setup

(4)). Both of these observations indicate that incorporating the full historic information in

calibrating the models is more valuable than calibrating with more recent data. Overall, our

analysis demonstrates the benefits of applying the power expectation propagation approach for

out-of-time recovery rate prediction.

5.5.4 Permutation importance of groups of explanatory variables

Here we rank groups of variables to elaborate on the degree of feature importance for recov-

ery rate prediction. We investigate the permutation importance according to Altmann, Toloşi,

O.Sander, and Lengauer (2010) of each group of variables for the performance of the random

forest technique in recovery rate prediction. Therefore, we build 11 groups of independent

variables as detailed in Appendix C: industry, bond characteristics, seniority, news, and the

macroeconomic variables which are separated into groups (financial conditions, micro-level fac-

tors, business cycle, monetary measures, corporate profitability (on a macro level), international

competitiveness, and stock market). We scale the permutation importance of each group such

that the importance of the most important group of variables equals 100. We examine the im-
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Table 5.11: This table shows the performance measures of machine learning methods for five
different out-of-time prediction setups. In setup (1), we train the models on the data 2002 to
2011 while relying on 10-fold cross-validation for tuning hyperparameters, and then predict on
the test set 2012 to 2016. In (2) we use the year 2011 as the validation set and the years. In
(3), we use a rolling prediction window, with 2011 as the validation set and the two subsequent
years test set, consecutively moving one year in time, increasing the training data by one year
in each step. Setup (4) is similar to setup (3) with the exception of fixed training set length. In
setup (5), we apply a daily rolling prediction window that consecutively predicts recovery rates
of default-day combinations. For this setup, the validation set considers the 120 most recently
defaulted bonds, of which the oldest defaults are added successively to the training set as we
move through time. The best performance measures per prediction setup are highlighted in bold.
The SparseStep algorithm is used to select the most informative macroeconomic variables. (IG
Reg.: Inverse Gaussian Regression; Lin. Reg.: Linear Regression; Reg. Tree: Regression Tree;
SP LS-SVR: Semi-Parametric Least-Squares Support Vector Regression; PEP: Sparse Gaussian
Process Approximation with Power Expectation Propagation; RF: Random Forest)

Out-of-time prediction setup IG Reg. Lin. Reg. Reg. Tree SP LS-SVR PEP RF
(1) Fixed window;

fixed training length;
cross-validation

RMSE 54.3040 56.1158 29.9666 27.6113 27.2993 30.2622
MAE 47.0216 48.2788 23.3972 23.4763 22.0009 26.2950

(2) Fixed window;
fixed training length;
one year validation

RMSE 55.4472 59.2014 34.3494 27.9730 29.0718 31.2301
MAE 48.7604 52.2000 26.1498 24.4059 20.7947 26.8246

(3) Annual rolling window;
increasing training length;
one year validation

RMSE 47.5039 47.4405 29.8983 30.7911 26.2828 30.7124
MAE 41.0943 41.2887 22.5964 26.0794 19.9878 26.1667

(4) Annual rolling window;
fixed training length;
one year validation

RMSE 48.2685 49.6850 32.8556 32.9354 27.6137 32.8795
MAE 41.6908 43.0925 25.7331 28.0902 22.4910 28.2036

(5) Daily rolling window;
increasing training length;
120 defaults for validation

RMSE 51.1180 52.5641 28.0918 26.7455 23.7689 31.0743
MAE 44.8800 46.6117 21.6381 21.9732 18.1355 26.6197

portance ranking of groups of variables for the U.S. corporate bonds that defaulted from 2001

to 2016.

As illustrated in Table 5.12, bond characteristics are the most important group of variables

for recovery rate prediction in our analysis. So, the significance of bond characteristics reported

by Jankowitsch, Nagler, and Subrahmanyam (2014) is confirmed by our study. The importance

of the seniority of the defaulted bond (ranked second, 30.7945) is in accordance with the sig-

nificance of the seniority reported in, for example, Varma and Cantor (2005) and Jankowitsch,

Nagler, and Subrahmanyam (2014). The importance of stock market indicators (ranked third,

14.3448) confirms the significance of the return on the market index reported by Varma and

Cantor (2005).

Interestingly, the group of text-based news variables is ranked higher than the widely used

industry variables (9.5908 compared with 6.1447), which confirms our findings in Section 5.5.1
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Table 5.12: Ranking groups of variables by permutation importance for all defaulted bonds
from 2001 to 2016

Rank Entire dataset Importance
1 Bond Characteristics 100.0000
2 Seniorities 30.7945
3 Stock Market Indicators 14.3448
4 International Competitiveness 13.2206
5 News 9.5908
6 Industry 6.1447
7 Micro-Level Factors 4.5070
8 Corporate Profitability (Macro) 4.3065
9 Financial Conditions 3.4836

10 Business Cycle 2.9321
11 Monetary Measures 2.3154

that this group of variables is an important driver of recovery rates. Similarly, the literature has

paid little attention to variables indicating international competitiveness which ranked fourth

in our analysis with an importance of 13.2206. Having an importance of 2.9321, business cycle

variables which include commonly used variables such as GDP growth and the unemployment

rate (see, for example, Altman, Brady, Resti, and Sironi (2005) and Yao, Crook, and Andreeva

(2015)) ranked only second to last in our analysis.

Micro-level factors such as the federal funds rate and the term structure reported to be

significant by Jankowitsch, Nagler, and Subrahmanyam (2014), Nazemi and Fabozzi (2018),

and considered by Qi and Zhao (2011) are ranked seventh with an importance of 4.5070 in

our analysis. However, among the macroeconomic variables, micro-level factors constitute the

group with the third-highest rank. Financial conditions and monetary measures have not been

investigated in the literature but are also not important in our ranking for the entire dataset

(3.4836 respectively 2.2154).

The industry of the defaulted bond is reported to be an important determinant of recovery

rates by Altman and Kishore (1996). Further, Acharya, Bharath, and Srinivasan (2007) intro-

duce two industry distress dummy variables indicating a negative sales growth of the respective

industry and a performance of the industry index worse than -30% in the preceding year. These

industry distress dummy variables are part of the industry group in our analysis. In our analysis

however, industry variables have an importance of 6.1447 and rank only sixth.
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The ranking groups of variables provides insights into which groups of covariates have more

information for predicting recovery rates for corporate bonds. Interestingly, groups of variables

involving text-based news or international competitiveness, which have been neglected by pre-

vious research, have higher importance ranks than industry-factors or macroeconomic variables

that have previously been extensively studied by researchers. The finding suggests that these

unexplored higher ranking groups of variables provide potentially promising fields of research

on the economic mechanisms in recovery rate determination.

5.6 Conclusions

The recovery rate is a key risk parameter in credit risk. Though there is substantial literature

on out-of-sample recovery rate estimation for corporate bonds, most approaches employed suffer

from two main shortcomings. The assumption of a time-invariant recovery rate distribution is

unrealistic. Moreover, assuming the independence of samples when multiple defaulted bonds

from the same issuer are part of both training and test set results in unrealistically accurate

predictions. Therefore, it is essential to examine the estimation of this risk factor for defaulted

U.S. corporate bonds in an intertemporal setting.

In this study, we investigate the prediction of recovery rates for defaulted U.S. corporate

bonds over the period 2001-2016 in several intertemporal setups to address these issues. We find

that machine learning techniques outperform traditional approaches such as inverse Gaussian

regression and linear regression during out-of-time prediction. Employing semiparametric least-

squares support vector regression, a power expectation propagation approach, regression tree,

and random forest yields significantly higher predictive out-of-time accuracy than the tradi-

tional statistical techniques. In particular, the newly proposed power expectation propagation

approach achieves the most compelling prediction results under several different out-of-time

prediction setups. Interestingly, we also find that out-of-time prediction accuracy benefits from

considering a longer history of data for model generation, rather than merely using more recent

data and dropping older data points.

We test whether news-implied measures and its five components can predict the recovery

rates of corporate bonds. These measures relied on machine learning techniques to uncover
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information from the front-page coverage of The Wall Street Journal. Interestingly, we find that

investors’ uncertainty about the government, intermediation, and the economy are significant

drivers of recovery rates. Government-related news are associated with higher recovery rates,

especially during recessions. News that are generally negatively associated with recovery rates

tend to be less harmful or even turn out to be supportive for recovery rates in times of economic

downturns. We further discover that recoveries of bonds issued by non-financial firms are less

impacted by financial news.

We benchmark three techniques for selecting the most informative macroeconomic factors

from a broad range of macroeconomic variables. Among the selection techniques examined,

the SparseStep algorithm selects those macroeconomic variables which contribute the most to

recovery rate prediction accuracy. Lastly, studying the permutation importance of the groups

of variables, we find that bond characteristics, seniority dummy variables, and stock market

indicators are the most important groups of variables for corporate bonds’ recovery rate predic-

tion. However, groups of variables involving text-based news or international competitiveness,

which have drawn little or no attention in previous research, appear to be more important in

explaining recovery rates than previous studies would suggest.
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Chapter 6

Conclusions and Research Outlook

Since the introduction of the Basel II and III accords, Banks in the G20 countries have been

encouraged to employ their own IRB approaches for determining regulatory capital and for

stress testing. Moreover, buy-and-hold investors in corporate bonds need adequate tools to

assess and understand the credit risk associated with their investments. For these reasons,

reliable estimates of recovery rates are needed. In this dissertation, the main focus is to improve

our understanding and assessment of credit risk in corporate bonds.

While the probability of default (PD) has been researched extensively in the past, and ex-

posure at default (EAD) is investor-specific, the third parameter to estimate credit risk, the

recovery rate (RR), is the subject of this research. As the 2007-2008 Global Financial Cri-

sis and the recent COVID-19 pandemic have shown, contagion and cascade effects can induce

stress within financial markets and the real economy due to interconnectedness among financial

institutions or within globalized value chains. Thus, for adequate risk assessment, practition-

ers, regulators, and academics need to consider the connectivity within financial markets and

economic activities. Moreover, defaulted bonds trade in OTC markets, however, traditional

recovery rate models do not account for implications from the bond trading microstructure.

In addition, recovery rate estimation models suggested in the literature do not reflect that

defaulted bonds share characteristics of both stocks and bonds, and prediction models insuf-

ficiently account for the time-varying structure of recovery rates. Using data-science based

approaches, Chapters 2–5 address these shortcomings and investigate the formation of recovery

rates of defaulted corporate bonds from various perspectives.
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Chapter 2 analyzes the intermediation of recently defaulted bonds in the opaque OTC

corporate bond market. Because bond default events have a surprise character and initiate

the need for an ownership change from buy-and-hold investors to specialized vulture investors,

bond dealers play an important role in timely matching supply and demand in the defaulted

securities. Chapter 2 utilizes detailed bond transaction data from TRACE to identify dealers

and track the flow of defaulted bonds from sellers, through the dealer network, and to buyers.

As demonstrated within the chapter, the OTC trading microstructure adjusts endogenously

once a bond defaults. The causal impact of trading with primary dealers on the recovery rate is

identified and quantified. That is, dealers who are familiar with a given bond excel in locating

higher-valuation counterparties, providing trade immediacy and liquidity, and committing their

own inventory for facilitating a trade. When investors switch to these primary dealers, they can

raise recovery rates by 8% vis-à-vis trading with non-primary dealers. This shows a stabilizing

market function of primary dealers in OTC markets, and that access to primary dealers lowers

investors’ credit risk ex-ante.

In Chapter 3, recovery rates are explained from an inter-industry trade network-based per-

spective. Because trade relationships between industries within the U.S. economy facilitate the

transfer of assets across industry borders, corporate bond recovery rates of firms operating in

better connected industries benefit from facilitated asset disposal channels. This benefit mag-

nifies when assets are less specialized and can be utilized by potential owners who perform

different economic activities than the defaulted firm. Moreover, the chapter demonstrates that

economic shocks propagate through value chains and impair recovery rates in closely connected

industries. Finally, macroeconomic conditions have a greater effect on the recoveries in central

industries than in peripheral industries. Thus, this chapter highlights the importance of the

economy network for the emergence of corporate bond recovery rates.

Chapter 4 acknowledges the hybrid nature of defaulted bonds, which share characteristics of

both stocks and bonds. As the default event alters a bond’s risk-return profile from normal bond-

type to equity-like, this chapter introduces new explanatory variables from stock- and bond-

markets for explaining recovery rates. Traditional equity and bond pricing factors are employed,

and the provided evidence reveals they are significant drivers of corporate bond recovery rates.

Furthermore, bond market liquidity, bond market distress and bond market conditions indices,
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and prevailing equity market valuation levels have a reasonable and significant relationship with

recovery rates. Overall, Chapter 4 demonstrates the importance of prevailing financial markets

conditions on recovery rates, capturing the pricing implications of both stock and bond markets

on defaulted corporate bonds. Thereby, it also provides new explanations for the integration of

stock and bond markets.

Finally, Chapter 5 provides an intertemporal setting for predicting the recovery rate. While

most previous studies do not account for the time-varying structure of recovery rates and con-

sider information not available at the time of default for estimating the recovery rate, only such

modeling approaches that exclusively rely on historical data can be applied in real-world appli-

cations. This chapter benchmarks various machine learning methods in out-of-time prediction

settings. Within this setting, the newly proposed sparse power expectation propagation ap-

proach performs best. Moreover, models that are trained on data from a longer historical time

window perform better than models trained on a shorter, rolling time window. The chapter

further introduces text-based news measures that reflect investors’ expectations about the fu-

ture which translate into market-based recovery rates. In summary, it provides interesting and

important insights into modeling recovery rates when accounting for its time variation, offering

accurate prediction models for real-world applications.

Overall, this dissertation provides new and important explanations on the formation of cor-

porate bond recovery rates, and offers new and more accurate recovery rate prediction models

for real-world applications. Nevertheless, additional research beyond the scope of this disser-

tation remains a task for the future. For example, while the importance of primary dealers

in the OTC dealer network for the intermediation of defaulted bonds is presented in Chapter

2, an important question remains: How do these primary dealers obtain their knowledge to

provide competitive intermediation services to their customers? Bao, O’Hara, and Zhou (2018)

show that the post-crisis introduction of the Volcker Rule, which prohibits proprietary trading

of banks, led to a decrease in liquidity provision by dealers for downgraded bonds. A better

understanding of OTC markets under stress will enable regulators to introduce more adequate

and directed policies for preserving market stability, without unintended side effects.

Furthermore, the datasets employed in this dissertation span over a full economic cycle,

including the 2007-2008 GFC. However, as more data becomes available, it is worthwhile to
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investigate how the shocks to various value chains during the COVID-19 pandemic due to

regional lockdowns affected recovery rates. While continuous research allows us to improve

our understanding of the formation of recovery rates and to provide more accurate estimations

for future real-world applications, the peculiarities of different economic regimes may affect

recovery rates in still unknown ways. Hence, future research may assess how the explanations

and estimation models proposed in this dissertation perform on yet untested data, such as data

that includes the COVID-19 pandemic and subsequent events.

While applying machine learning models for determining the recovery rate improves estima-

tion accuracy vis-à-vis traditional models such as OLS regressions, the state-of-the-art machine

learning models are often considered black boxes. For many of these types of models, it remains

unknown what the model has actually learned. However, regulatory bodies demand model

transparency from banks in order to understand how they determine the credit risk parame-

ters. Kellner, Nagl, and Rösch (2022) improve recovery rate model interpretability via linear

quantile regression with a neural network structure. Nevertheless, their approach is based on

determining feature importance of a black box model rather than directly interpreting the model

itself. Thus, more research on directly interpretable machine learning models for recovery rate

estimation is desired. A summary of the research background, research steps and contribution

of this dissertation, and the outlook on future research, is presented in Table 6.1.
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Table 6.1: Summary of key research items.

Background Research steps and contribution Outlook on future research

Chapter 2: Life after Default: Dealer Intermediation and Recovery in Defaulted Corporate Bonds

Bond default events initiate
the need for an ownership
change from buy-and-hold in-
vestors to specialized vul-
ture investors, whereas deal-
ers within the opaque OTC
bond market serve as interme-
diaries.
However, the role of dealers
for bond intermediation under
stress was insufficiently un-
derstood.

This chapter exposes an endogenous adjustment of the mi-
crostructure of the OTC bond market in response to bond
default events, and identifies the causal role of primary deal-
ers and associated pricing effects in defaulted bond interme-
diation through the OTC dealer network.
As such, it contributes to the literature on the role of deal-
ers in OTC markets, dealers’ endogenous trading skills and
expertise, OTC search and bargaining frictions, and OTC
capital commitment and liquidity provision, and on explain-
ing recovery rates.

For developing targeted regulations,
and in order to preserve market sta-
bility, yet a better understanding of
the microstructure of OTC markets is
needed. E.g., how do primary dealers
obtain their expertise as a competitive
advantage?

Chapter 3: Inter-Industry Network and Corporate Bond Recovery Rates

Prior to writing this study,
inter-industry contagion
effects and dependencies
were insufficiently considered
within the recovery rate
literature.
Although recovery rates
differ by industry, this het-
erogeneity of recovery rates
across industries had received
limited attention from re-
searchers.

This chapter highlights the importance of inter-industry
trade relationships in explaining corporate bond recovery
rates, and shows that bonds of firms in better connected
industries recover more, given broader access to potential
asset disposal channels across industry borders.
Moreover, it demonstrates that industry-wide distress prop-
agates through industry borders and henceforth affects re-
coveries in adjacent industries. Recoveries of firms in central
industries are more closely connected to macroeconomic con-
ditions.
The study contributes to the literature of economic linkages
in asset pricing and financial connectedness, as well as re-
covery rates.

The COVID-19 pandemic has demon-
strated the vulnerability of the glob-
alized economy due to interconnected-
ness, however, different value chains
were affected differently by regional
lockdowns.
Future research may employ a com-
parable network-based approach on a
more recent dataset, focusing the re-
sponse of recovery rates to impaired
value chains due to the COVID-19 pan-
demic.
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Table 6.1 (Continued)

Background Research steps and contribution Outlook on future research

Chapter 4: Corporate Bond Recovery Rate and Financial Markets

Prior to conducting this
study, research on recovery
rates neglected the hybrid na-
ture of defaulted bonds, that
entail both equity-type and
bond-type characteristics.
Thus, conditions in equity
and bond markets were in-
sufficiently considered for
recovery rate estimation.

This study explains corporate bond recovery rates with the
prevailing conditions in financial markets. It shows that tra-
ditional asset pricing factors from the stock and bond liter-
ature are significantly related to recovery outcomes. More-
over, bond market liquidity, bond market distress and con-
ditions indices, and prevailing equity market valuation levels
affect recovery rates.
By exposing these relationships as important determinants
of recovery rates, the study contributes to the market-based
recover rate literature, equity and bond pricing literature,
and to the research on the integration of stock and bond
markets.

Kelly, Palhares, and Pruitt (2023)
show that stock and bond markets are
more closely integrated than prior re-
search suggested, however, more re-
search is needed to understand the in-
tegration of stock and bond markets.
For example, common drivers of stock
and bond returns may be investigated
more closely. The hybrid nature of de-
faulted bonds exposed in this chapter
may therefore serve as a basis.

Chapter 5: Intertemporal Defaulted Bond Recoveries Prediction via Machine Learning

The majority of research fo-
cusing on predicting recov-
ery rates neglects the time-
varying nature of recovery
rates. While out-of-sample
predictions are often per-
formed, it is impossible to em-
ploy these in real-world appli-
cations, as they rely on in-
formation not available at the
time of default.

This chapter employs out-of-time recovery rate prediction
and evaluates prediction performance of a wide range of pre-
diction techniques.
The study shows that machine learning models outperform
traditional recovery rate estimation models not only out-of-
sample, but also out-of-time. Moreover, the newly applied
sparse power expectation propagation approach performs
best among the evaluated techniques. The study further
employs text-based news measures for recovery rate predic-
tion to derive implications on recovery rates. It contributes
to the recovery rate literature and offers more accurate re-
covery models that can be used in real-world applications.

While machine learning models ele-
vate prediction accuracy, they are of-
ten black boxes that cannot be in-
terpreted. As regulatory bodies de-
mand transparency on how banks de-
termine credit risk parameters, new
studies that investigate approaches to
interpreting machine learning models
for recovery rates are desired.
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Kellner, R., M. Nagl, and D. Rösch (2022). “Opening the black box – Quantile neural networks

for loss given default prediction”. Journal of Banking & Finance 134, p. 106334.

Kelly, B., D. Palhares, and S. Pruitt (2023). “Modeling corporate bond returns”. Journal of

Finance 78(4), pp. 1967–2008.

Kelly, B., S. Pruitt, and Y. Su (2021). “Instrumented principal components analysis”. Technical

report, Arizona State University, Johns Hopkins University, and Yale University.

Kermani, A. and Y. Ma (2023). “Asset specificity of nonfinancial firms”. Quarterly Journal of

Economics 138(1), pp. 205–264.

Khieu, H. D., D. J. Mullineaux, and H. C. Yi (2012). “The determinants of bank loan recovery

rates”. Journal of Banking & Finance 36, pp. 923–933.

Kim, H. and H. Kung (2016). “The asset redeployability channel: How uncertainty affects cor-

porate investment”. Review of Financial Studies 30(1), pp. 245–280.

Koijen, R. S. J. and M. Yogo (2023). “Understanding the ownership structure of corporate

bonds”. American Economic Review: Insights 5(1), pp. 73–92.

Krüger, S. and D. Rösch (2017). “Downturn LGD modeling using quantile regression”. Journal

of Banking & Finance 79, pp. 42–56.

176

https://doi.org/10.1016/j.jfineco.2015.09.002
https://doi.org/10.3905/jfi.2011.21.1.006
https://doi.org/10.1016/j.jfineco.2014.06.001
https://doi.org/10.1016/j.jedc.2018.04.002
https://doi.org/10.1111/jofi.13249
https://doi.org/10.1093/rof/rfw028
https://doi.org/10.1016/j.jbankfin.2021.106334
https://doi.org/10.1111/jofi.13233
https://doi.org/10.1111/jofi.13233
http://dx.doi.org/10.2139/ssrn.2983919
http://dx.doi.org/10.2139/ssrn.2983919
https://doi.org/10.1093/qje/qjac030
https://doi.org/10.1093/qje/qjac030
https://doi.org/10.1016/j.jbankfin.2011.10.005
https://doi.org/10.1093/rfs/hhv076
https://www.aeaweb.org/articles?id=10.1257/aeri.20210550
https://doi.org/10.1016/j.jbankfin.2017.03.001
https://doi.org/10.1016/j.jbankfin.2017.03.001


Kutzias, D., C. Dukino, F. Kötter, and H. Kett (2023). “Comparative analysis of process models

for data science projects”. Proceedings of the 15th International Conference on Agents and

Artificial Intelligence (ICAART 2023) 3, pp. 1052–1062.
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Appendix A

Appendix to Chapter 2

A.1 Sample Construction and Methodology

Explanatory variables. The empirical studies on dealer intermediation in defaulted bonds

and recovery rates incorporate various explanatory variables. We add information from FISD

that is directly associated with the bond issue, such as offering amount, days to maturity at

default, coupon rate, covenant information, and bond ratings one year prior to default. We

encode ratings as integers, starting with AAA=1, AA+ =2, and so forth. The availability of

CDS contracts is retrieved from S&P Capital IQ. From S&P Capital IQ, we also collect point-

in-time firm information that represents issuers’ characteristics and financials most recently

available prior to default. This includes equity value, the number of employees, and both short

and long-term debt in order to replicate the default barrier as employed by Jankowitsch, Nagler,

and Subrahmanyam (2014) as a proxy for structural credit risk.1

We furthermore collect information on pre-default bond ownership from eMaxx data. We

retrieve GDP and the slope of the interest yield curve from the Federal Reserve Economic

Database of the Federal Reserve Bank of St. Louis (FRED), and we construct the 90-day

corporate bond default rate derived from our defaulted bond data and the Transaction Reporting

and Compliance Engine (TRACE). We collect industry-specific data about stock indices growth

and industry-wide sales growth from S&P Capital IQ for creating industry distress measures

similar to those employed by Acharya, Bharath, and Srinivasan (2007). Post-default bond

1 We consider a firm’s market value of equity when available, and book value of equity reported in the most
recent company filings prior to default in cases where the market value of equity is not available.
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liquidity, similar to that used by Jankowitsch, Nagler, and Subrahmanyam (2014), is calculated

with bond transaction data from TRACE.

Dealer network and transaction data. The academic version of TRACE data that we

utilize covers actual bond transactions that were executed during the years 2004 through 2016.2

This data includes comprehensive transaction information, including time stamps, the trans-

actions’ par amounts, executed prices, unique CUSIP identifiers for each bond, and, most no-

tably, unique masked identifiers for all dealers involved in the transactions. The dealers’ clients

are uniformly labeled ’C’ without further information about their (masked) identities. The

aforementioned characteristics of the data allow us to precisely trace individual bonds as they

circulate from clients to dealers, between dealers, and from dealers to clients. Before incor-

porating data from TRACE into the sample construction, we preprocess the data in order to

eliminate known flaws in the data by implementing the standard data cleaning methodologies

described by Dick-Nielsen and Poulsen (2019). We first apply a basic transaction filter which

removes transactions from TRACE data where a trading sequence of multiple transactions with

identical execution prices was reported and which represents an introducing dealer interacting

with the executing dealer as an agent on behalf of a client. Note that we also apply a filter to

remove erroneous transaction reports from TRACE as suggested by Dick-Nielsen and Poulsen

(2019), and further follow Jankowitsch, Nagler, and Subrahmanyam (2014) in applying a price

filter to remove potentially falsely reported prices for recovery rate calculation. The cleaned

data set contains 114,584,837 reported transactions, involving 107,088 distinct instruments in

transactions between 2004 and 2016. We match the cleaned TRACE data to FISD based on

the instruments’ unique CUSIP identifiers and drop all transactions which involve instruments

that are not covered by FISD.3

After this step, our data includes 108,895,440 reported transactions of 88,156 distinct debt

instruments. Given the masked dealer identifiers linked to the transactions recorded in TRACE,

we are able to identify unique dealers and track inter-dealer trade relationships within the data.

In total, 3,407 unique dealers intermediate bonds during the period 2004 to 2016. 40.5% of the

2 The TRACE data contain a few thousand observations of transactions executed prior to 2004, which may
be the result of lagged transaction reports to TRACE. We drop all of these transactions which were not executed
within the 2004-2016 time period.

3 Cross-checking with S&P Capital IQ reveals that the majority of the dropped data refers to instruments
issued by foreign entities.
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Table A.1: Summary statistics of dealer centralities in the corporate bond dealer network 2004–
2016. The network is constructed with transaction information reported to the Transaction
Reporting and Compliance Engine (TRACE) and represents 44,065,910 inter-dealer transactions
that occurred between 2004 and 2016. In the network, 3,383 bond dealers that have transaction
relationships with other dealers are represented as nodes. Panel A shows summary statistics
of dealer centrality measures derived from an equal-weighted variant of the network in which
links have binary weights that indicate if two dealers traded with each other. Panel B shows
summary statistics of centrality measures derived from a trades-weighted variant of the network
in which links are weighted by the number of transactions between two dealers. Both Panel
A and Panel B formally describe a core-periphery network structure in which few dealers are
located centrally in the network, while most dealers are located in the network’s periphery.

SD q25 q50 Mean q75 q95 Max

Panel A: Equal-weighted network

Degree 0.04 0.00 0.00 0.02 0.01 0.09 0.40
In-degree 0.04 0.00 0.00 0.01 0.01 0.08 0.36
Out-degree 0.04 0.00 0.00 0.01 0.01 0.08 0.37
Eigenvector 0.17 0.01 0.02 0.10 0.10 0.50 1.00
Betweenness 0.00 0.00 0.00 0.00 0.00 0.00 0.09
Closeness 0.05 0.37 0.40 0.41 0.45 0.51 0.62
In-closeness 0.13 0.35 0.38 0.36 0.43 0.49 0.60
Out-closeness 0.07 0.34 0.36 0.36 0.40 0.46 0.57

Panel B: Trades-weighted network

Degree 55.11 0.01 0.05 7.70 0.50 14.09 1,446.46
In-degree 29.88 0.00 0.02 3.85 0.25 7.01 1,008.83
Out-degree 26.59 0.00 0.03 3.85 0.23 7.50 544.56
Eigenvector 0.02 0.00 0.00 0.00 0.00 0.00 1.00
Betweenness 0.00 0.00 0.00 0.00 0.00 0.00 0.05
Closeness 0.00 0.02 0.03 0.02 0.03 0.03 0.03
In-closeness 0.01 0.03 0.03 0.02 0.03 0.03 0.03
Out-closeness 0.02 0.07 0.07 0.07 0.08 0.08 0.08

transactions represent inter-dealer transactions whereas 25.3% of the transactions are client-to-

dealer transactions and 34.2% are dealer-to-client transactions. Of the 3,407 dealers, 80% are

directly interacting with clients, and 20% are solely intermediating bonds between other dealers.

3,383 of the dealers interact with other dealers, whereas 24 dealers only interact with clients

but not with other dealers. We remove these dealers for creating the dealer network as they are

not connected to it and they represent only a negligibly small number of transactions. We then

follow the methodology outlined by Li and Schürhoff (2019) in creating two alternative dealer

network representations. The equal-weighted dealer network solely indicates the existence of a

transaction relationship between two dealers and the trades-weighted variant weighs links by

the number of transactions executed between dealers.

From the dealer network representations, we compute dealer centrality measures. The de-

scriptive statistics for degree, in-degree, out-degree, eigenvector (Bonacich (1972)), betweenness

(Freeman (1977)), closeness, as well as in-closeness and out-closeness (Bavelas (1950)) central-
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Figure A.1: The figure illustrates the inverse in- and out-degree centrality distribution of the
3,383 bond dealers that form the dealer network 2004–2016. Out-degree centrality is represented
by circles and in-degree centrality by cross-marks. The figure is log-scaled and shows that the
centrality distribution is right-skewed, with a large number of dealers that maintain only few
trade relationships, and a small number of dealers that maintain many trade relationships.

ity are shown in Table A.1. Di Maggio, Kermani, and Song (2017) report a core-periphery

structure of the corporate bond dealer network, which we confirm and refer to Figure A.1

for an illustration of the non-randomness in dealer connectedness based on in- and out-degree

centrality.

For the purpose of our empirical analysis, we use 1-year monthly trailing dealer networks to

determine dealers’ centralities. As the data covers the period 2004–2016, we drop all 124 bonds

that defaulted before 2005 for which we don’t have a complete year of trading data to create the

dealer network prior to default. Furthermore, for comparing bond-level characteristics between

pre- and post-default trading periods, we only consider bonds for which we have trading data in

both periods. We also only consider those transactions in which dealers act as buyers, yielding

a data set that comprises 2,446 bonds for comparing dealer centralities. During the year prior

to default, each of these bonds is bought by an average (median) of 53 (39) unique dealers, and

during the 30-day period after default by an average (median) of only about 20 (11) dealers,

indicating a concentration of trading activity in recently defaulted bonds on fewer dealers. This

observation suggests that recently defaulted bonds are intermediated by a smaller group of

dealers than before the default event, likely because investors switch to more expert dealers,

such as primary dealers, after default.
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Determining agency trades. For each bond transaction reported in TRACE data, an in-

dicator denotes agency trades in which dealers prearrange the trades in a broker role without

taking inventory risk. These agency trades represent about 8% of all transactions reported

to TRACE over the years 2004–2016. However, as a standard convention in the literature,

principal trades that are offset within one minute after the dealer purchased the bond are also

considered prearranged riskless trades, as it is likely that these client-to-dealer trades are only

executed after a dealer searched and found a trade counterparty to immediately offset the po-

sition. Hence, we follow this convention and denote all client-to-dealer trades that are offset by

consecutive dealer-to-dealer or dealer-to-client trades of the same par amount within one minute

as prearranged agency trades, in line with Bessembinder, Jacobsen, Maxwell, and Venkatara-

man (2018), Bao, O’Hara, and Zhou (2018), and Li and Schürhoff (2019). It may occur that a

dealer splits the trade after the purchase, selling the bonds to several buyers. We account for

splits of up to three separate offsetting trades. Using this broader definition to identify deal-

ers’ riskless trades, 36% of the trades in 2004–2016 TRACE data are trades in which dealers

act as brokers, and 64% of the trades are principal trades. This differs from Bessembinder,

Jacobsen, Maxwell, and Venkataraman (2018), who report about 90% of trades in TRACE

between 2006 and 2016 are principal trades. However, they only consider the top 10–12 deal-

ers that correspond to about 70% of total trading volume in TRACE, whereas we include all

dealers in our analysis. When we only consider trades performed by the top 12 dealers, we find

that these account for about 67% of the total USD trading volume, for which only 11% of the

client-to-dealer trades are agency trades, comparable to the characteristics of the transaction

data sample employed by Bessembinder, Jacobsen, Maxwell, and Venkataraman (2018). In our

empirical analysis, we consider this definition of agency trades in order to distinguish the role

of dealers in intermediating defaulted bonds.

Determining dealer inventory. We create inventory measures that reflect dealers’ collective

inventory additions and subtractions in defaulted bonds from a normalized reference point. We

offset all client-to-dealer trades with all dealer-to-client trades on each day for a given bond.

Alternatively, we consider the date when the bond’s outstanding amount in FISD is set to zero

as the date that the bond ceases to exist. This happens in only a few cases shortly after the

default event, and we offset the whole inventory for a given bond to zero in these cases. We
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(A) Collective dealer inventory, indexed at zero
one year before the default event.
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(B) Collective dealer inventory, indexed at zero
on the day of the default event.

Figure A.2: Collective average dealer inventory in defaulted firms’ bonds, distinguished by
default event type. The dealer inventory is calculated as the average par value of all bonds of a
firm that dealers hold on their balance sheet and is fixed at 0 one year before default in Panel
A and after default including the default day itself in Panel B. After removing default events
of the years 2004 and 2016, and 7 outlier firms, 629 firm-default observations involving 2,338
bonds that defaulted between January 2005 and December 2015 are considered.

define the residual as the dealers’ collective net inventory change in a given bond. In order

to not distort variations in inventory due to price fluctuations, we consider trade volume in

par amount for accumulating and offsetting positions. In dealer-to-dealer trades, the inventory

of the buyer-dealer will increase by the same amount that the inventory of the seller-dealer

decreases, hence, a net effect of zero on the dealers’ collective inventory will be recorded in

dealer-to-dealer trades. We compute dealer inventory on a daily basis over the pre- and post-

default periods for each bond, that is the year before default until 30 days after default. As

no starting inventory is known, we may index the collective dealers’ inventory for each bond at

0 on a reference date. The daily inventory measure thus reflects deviations from this starting

inventory. Figure A.2 illustrates the collective dealer inventory in defaulted bonds by default

event type with reference dates one year prior to default (Panel A) and on the default day

(Panel B), respectively.
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A.2 Empirical Model for Bond Recovery

Let RR0 (RR1) be the recovery rate at a non-primary (primary) dealer, and let PrimaryDealer

indicate the investor’s choice of dealer with PrimaryDealer = 1 for a primary dealer and

PrimaryDealer = 0 for a non-primary dealer. The difference in potential recovery rates RRj

between primary and non-primary dealers equals

RR1 = RR0 + δ PrimaryDealer . (A.1)

An important empirical question is whether the causal effect of the primary dealer δ ≡ RR1 −

RR0 is positive or negative. We specify the potential recoveries as RRj = µj(x) + ϵj , j = 0, 1,

and, for simplicity, we assume linearity:

RRj = Xβ + δ PrimaryDealer + ϵj , j = 0, 1. (A.2)

To account for the endogenous investor-dealer matching during the bond default, we make

the following assumption: The investor’s net benefit I of trading with a primary dealer depends

on observed determinants Z = (X,W ) including the dealer’s experience and expertise, con-

nections, expected trade delays, and other intermediation services provided by the dealer and

an unobserved component U : I = µ(Z) − U , where µ(·) is an unspecified function and U is a

continuous random variable with a strictly increasing distribution function. W is an instrument

affecting the investors’ choice satisfying the standard exclusion restriction.

The investor’s dealer choice can be expressed as PrimaryDealer = 1 ⇔ µ(Z) > V ⇔

FV (µ(Z)) > FV (V ) ⇔ P (Z) > U . Written in this way, P (Z) denotes the propensity score

that captures the selection probability of a primary dealer while u is a uniformly distributed

random variable between 0 and 1 representing the propensity to trade with a non-primary

dealer. Assuming linearity, the propensity to trade with a primary dealer can be estimated

using:

Pr(PrimaryDealer = 1|Z) = P (Xγ +Wθ). (A.3)

Table 2.1 reports the results of different specifications for (A.3). Let Kj(p) be the selection

corrections for the expected recovery surprises for primary and non-primary dealers, respectively,
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K1(p) = E[ϵ1|U ≤ p], K0(p) = − p
1−pE[ϵ0|U ≤ p], and define

K(p) = pK1(p) + (1− p)K0(p). (A.4)

We can estimate the determinants of recovery rates and δ in the sample of trades with

primary and non-primary dealers by jointly estimating the regressions

RRj = Xβ + δ PrimaryDealer +Kj(p) + εj , (A.5)

with mean-zero errors εj , j = 0, 1, and Kj(p) is an unspecified function of the propensity score

with limp→0K1(p) = 0, limp→1K0(p) = 0 (Brinch, Mogstad, and Wiswall, 2017).4 Observed

recoveries in the pooled sample can be decomposed as

RR = Xβ + δ PrimaryDealer × p+K(p) + ε, (A.6)

with mean-zero error ε and K(p) is the Mills term defined in (A.4) and/or treated as an

unspecified function of the propensity of trading with a primary dealer during a bond default.

K(p) ≤ 0 satisfies limp→0K(p) = limp→1K(p) = 0 and can be semi-parametrically estimated

by polynomials.

4 Under normality assumptions, Kj(p) is proportional to the respective inverse Mills ratio.
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Appendix B

Appendix to Chapter 3

B.1 Network Representation of the U.S. Economy

Since 1947 the U.S. BEA has provided detailed tables, depicting input-output (IO) accounts,

which track dollar payments between all producers and purchasers of industrial goods and

services within the U.S. economy. In these accounts, producers summarize companies within

industrial and service sectors, including government enterprises. Producers may also purchase

goods or services from adjacent industries as input factors. Hence, producers also appear as

purchasers in the accounts. However, not all purchaser industries are also producers themselves,

as they include households, the government, and the foreign sector as further economic agents.

The BEA provides IO tables for different levels of industry detail. Detailed IO tables are

available only for every five years since 1947 and are published with a five-year delay. Summary

IO tables provide yearly data. With regard to our dataset of defaulted bonds covering the

period 2001-2016, we consider 1997 detailed IO tables, and annual summary IO tables for the

years 2000–2015, so that we only consider the network structure prior to default.

For grouping firms into producer and purchaser industries, the BEA utilizes adjusted NAICS

industry definitions. In 1997, the BEA switched from using the 1937 Standard Industrial Clas-

sification (SIC) codes to using the North American Industry Classification System (NAICS)

codes. While SIC codes were originally designed to classify mainly manufacturing industries,

NAICS codes further include a variety of defined service industries, and therefore represent

today’s economy better than the SIC codes. For the IO tables, the BEA adjusts the NAICS
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codes and provides concordance tables for translating NAICS codes into adjusted NAICS codes.

We use summary IO tables in our main analysis to maintain consistency with the level of

industry detail of the available control variables used for interaction analysis, and detailed IO

tables for robustness checks. The summary IO tables are used in order to create yearly network

representations of the U.S. economy which track bilateral transactions between all industrial

sectors on an annual basis. In addition to industry sectors, we further include a foreign agent

for imports and exports, the government as a redistributive agent and households as purchasers

of goods and services and providers of labor. This complete network model of an economy is

known as a social accounting matrix (SAM). To create it, we closely follow the methodology of

Ahern (2013) and Ahern and Harford (2014).

The IO reports track all inputs and outputs of the industries in the U.S. economy. Commodi-

ties serve as inputs and outputs and are traded between industries in exchange for monetary

compensation. Values of commodity volumes in these transactions are denoted in producer

prices. Hence, it is possible to allocate the volumes of produced and purchased commodities to

producers and purchasers. Therefore, the IO reports provide two tables: MAKE tables (num-

ber of industries × number of commodities) which exhibit production outputs, and USE tables

(number of commodities × number of industries) which exhibit purchases of inputs. Both com-

modities and industries of producers or purchasers are defined by NAICS codes. The IO reports

distinguish between two government agents: a redistributive agent and government enterprises.

Furthermore, we introduce artificial producer industries in order to account for outputs that are

not covered by MAKE tables but need to be included in a complete social accounting matrix

(e.g., compensation of employees, taxes, and gross operating surplus).

For each year we create a matrix that records dollar flows between all industries by multi-

plying a modified version of the MAKE table, representing the market share of each producer

per output commodity with the USE table. This yields an IO matrix (number of industries ×

number of industries) that shows the dollar flows between all industries. Rows represent the

industries’ receipts and columns represent purchases. This approach relies on the assumption

that purchasers do not choose from which producer they receive their input commodities, but

that receipts are equally distributed among all producers of a commodity in relation to their
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market shares in the production of the according commodity.

Next, we aggregate different industries (e.g., households and labor are combined to a single

household sector and imports and exports are combined to a single foreign sector). To fully

include the government as a redistributive agent that collects taxes and triggers consumption

and investments expenditures, we use data from the BEA’s National Income and Product

Accounts (NIPA) tables that are also provided on a yearly basis.

We introduce several tax components that are not covered by the IO tables. Assuming

that each industry contributes tax in proportion to its total value added, we proportionally

assign the total value of tax collections from the NIPA tables to each industry. Further, these

adjustments cover tax payments from households and the capital sector. Finally, differences

between total amounts of receipts and purchases of each industry are recognized in the capital

sector so each industry’s inputs and outputs equate. This yields a SAM where all the rows and

columns are balanced such that an industry’s purchases neither exceed nor fall below receipts.

In this network representation, nodes define industries, and links between nodes represent dollar

flows of inter-industry trade. A condensed representation of the SAM can be found in Table

B.1.

Comparable to Evgeniou, Peress, Vermaelen, and Yue (2021), we remove specific sectors

such as households, government, capital, and foreign sectors, and only consider important trade

relationships, that is, if the trade volume of a supplier industry with a customer industry rep-

resents at least 1% of its total trade volume. An illustration of the inter-industry network after

these adjustments can be found for the year 2001 in Figure B.2. Based on this network, we

create the centrality measures for our empirical analysis.

B.2 Concepts from Network Theory

We use concepts from social and network theory to evaluate interrelationships within the net-

work representation of the U.S. economy, basing our analysis upon the inter-industry networks

that capture interconnections between all private-sector industries within the U.S. economy.

The centrality of a node quantifies the importance of a node for the network. Several different
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centrality measures exist and capture various properties of single nodes and the network struc-

ture. This section introduces those measures which we apply in our analysis.

Degree centrality: The most intuitive and simple measure for the centrality of a node is

degree centrality. Degree centrality DCi of node i is calculated by dividing the degree degi of

a node by the number of all possible links that it could potentially have to other nodes in the

network. Hence, it follows

DCi =
degi
n− 1

(B.1)

where n is the number of nodes which are part of the network. Degree centrality considers a

node that has links to all other nodes in the network as the most central. Degree centrality

depends on the size of the network (i.e. an increasing network size leads to potentially larger

degrees of centrality for the nodes).

Closeness centrality: Degree centrality and variations of it do not include more information

on the structure of a network other than the directly connected neighbors of a node and the

total number of nodes within the network. It is intuitive that a node which serves as the only

connection between two parts of a network is important, independent of its degree centrality.

The network might be separated and change its structure substantially, if that node, which is

called a bridge, is removed from the network (Easley and Kleinberg (2010)). Closeness centrality

takes up this issue by measuring the lengths of the shortest paths from a node to all other nodes

in the network and taking its inverse.

CCi =
1∑n
j dij

(B.2)

is the closeness centrality of node i while dij is the length of the shortest path from node i to

node j and n represents the total number of nodes in the network. If the links are weighted, one

has to consider whether the weights represent cost (e.g., distance) or tie strength, which has

the opposite character of cost. If the weights represent tie strength, one would have to inverse
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the weights before calculating shortest paths. Hence,

CCw
i =

1∑n
j d

w
ij

(B.3)

while

dwij = min

(
1

gih
+ ...+

1

ghj

)
(B.4)

with adjacency matrix g takes weights into account. However, both methods factor in either

the number of intermediary nodes or the links’ weights.

Betweenness centrality: Betweenness centrality, as in Freeman (1977), proposes the idea

that bridges in networks are central. To measure the importance of a node in this sense, be-

tweenness centrality of a node in the network considers all the shortest paths between all nodes

of the network passing through that node. For node i, Pi(kj) is the number of shortest paths

between nodes k and j on which node i lays. With P (kj) being the total number of shortest

paths between nodes k and j, Pi(kj)
P (kj) then illustrates the importance of node i for connecting

nodes k and j. When this fraction equals 1, i is part of all of the shortest paths between nodes

k and j, and as it approaches 0, i becomes less relevant for the connection of nodes k and j.

The betweenness centrality of node i is then defined by calculating the previously introduced

ratio for all pairs of nodes and then averaging it:

BCi =
∑

k ̸=j:i/∈ {k,j}

Pi(kj)/P (kj)

(n− 1)(n− 2)/2
(B.5)

For weighted networks, the same equation applies. However, Pi(kj) and P (kj) depend on either

dij , d
w
ij or dwα

ij .

Eigenvector centrality: A node that has a large degree centrality but is mostly connected to

other nodes that themselves have small degree centralities is overestimated compared to a node

that is connected to other highly connected nodes. Bonacich (1972) introduces eigenvector

centrality, which captures this property. Eigenvector centrality is a centrality measure that

193



considers node importance within the economy network by determining the importance of each

of its neighbors. A node is considered central if it is connected with other nodes that are central

themselves. Thus, eigenvector centrality ECi of node i is defined as the sum of the centralities

of its neighbors:

ECi =
1

λ

n∑
j

gijECj (B.6)

or

λ EC = EC × g (B.7)

where λ ̸= 0 is a constant, n is the number of all nodes within the economy, and g is the

adjacency matrix of the given network. We choose λ as the largest eigenvalue in the absolute

value of matrix g, following the Perron-Frobenius theorem, as this guarantees a unique and

positive eigenvector solution.

B.3 Stability Selection Technique

Variable selection has become an increasingly important issue in finance as a result of the in-

creasing availability of high-dimensional financial data. The model interpretability, prediction

accuracy and computational efficiency are desirable characteristics of financial models which

could be achieved if we utilize variable selection techniques in the analysis of high-dimensional

data. Rapach, Strauss, and Zhou (2013) state that the least absolute shrinkage and selection

operator (LASSO) and adaptive LASSO are more robust than the traditional statistical ap-

proach, such as stepwise regression for variable selection. Motivated by these advantages of a

model containing selected explanatory variables, we use variable selection technique for select-

ing variables from an extensive set of macroeconomic variables.

LASSO is the most common method used in selecting variables in the finance literature.

194



LASSO has a l1 penalty defined by
∑k

j=1|βj | = ∥β∥1. The LASSO coefficient is estimated by

N∑
i=1

(yi − α−
k∑

j=1

βjxij)
2 + λ1

k∑
j=1

|βj | (B.8)

Some of the estimated LASSO coefficients of variables are exactly equal to zero. This is an

advantage provided by LASSO compared to a ridge regression, as the ridge coefficients will

never equal zero. Therefore, LASSO can be used for variable selection and shrinkage. Nazemi

and Fabozzi (2018) apply LASSO as variable selection techniques to select explanatory variables

from many macroeconomic predictors.

The LASSO-selected macroeconomic variables can be highly unstable as a result of a small

perturbation to the dataset. Meinshausen and Bühlmann (2010) suggest a stability selection

technique for improving the stability of the variable selection process. The stability selection

technique for selecting variables involves generating numerous bootstrapped samples of the

entire dataset and counting the proportion of times that each variable is selected. Finally, the

stability selection selects the set of variables that are selected more often than a particular

threshold. The main advantage of this algorithm compared to LASSO or adaptive LASSO are

stability of results and less risk of incorrectly selected variables. Meinshausen and Bühlmann

(2010) mention that a stability selection algorithm significantly improves variable selection

and structure estimation compared to selection models such as LASSO or adaptive LASSO.

Moreover, a stability selection model has less dependency on the first regularization value. In

recent years, stability selection models have been widely used in bioinformatics where these

studies report that this method improves the selection accuracy.

B.4 Support Vector Regression

We use three different support vector regression techniques. Yao, Crook, and Andreeva (2015)

find that support vector regression techniques outperform linear regression for recovery rate

prediction, considering both in-sample and out-of-sample predictions. We rely on least squares

support vector regression (LS–SVR) as proposed by Suykens and Vandewalle (1999) and two

improved support vector regressions that are based on LS–SVR.
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Aizerman, Braverman, and Rozoner (1964) show that Mercer’s theorem allows for compu-

tationally efficient calculation of kernelized problems, so that an appropriate kernel must be

selected. We use radial basis function (RBF) kernels for all three support vector regression

techniques. The RBF kernels are defined by

K(xi, xj) = exp

(
−∥ xi − xj∥2

2σ2

)
(B.9)

which only satisfies the requirements that a kernel be positive semi-definite and represent a

similarity measure between pairs of input samples.

Least squares support vector regression: We define the LS–SVR with quadratic loss

function as:

min J(Ω;ui) =
1

2
∥Ω∥2 + C

2

N∑
i=1

u2i

s.t. yi = ΩTϕ(Xi) + b+ ui, i = 1, ..., N

(B.10)

with independent variables vector w and intercept b for N observations. The error terms u2i are

scaled by a regularized parameter C and ϕ(xi) represents the kernel function, which projects

the original data to a higher dimensional space.

It is possible to solve the problem by solving its dual form problem. Therefore, we obtain

the Lagrangian function:

L(Ω, b, ui, αi) = J(Ω, ui)−
N∑
i=1

αi(Ω
Tϕ(Xi) + b+ ui − yi), (B.11)

with αi as the Lagrangian multiplier. Based on the Karush-Kuhn-Tucker condition, solving the

dual-form problem is equivalent to solving the following linear equations system:

0 eT

e K


b

α

 =

0

y

 (B.12)

with e = (1, ...1)T as an 1×N unit vector, y = (y1, ..., yN )T as the dependent variables vector,

α = (α1, ..., αN )T as the vector of Lagrangian multipliers and K = K + 1
C I, where K is the
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kernel matrix as defined in Equation B.9 and I is the identity matrix.

The final estimated regression model is represented by

g(X) =
∑
i

α∗
i K(Xi, X) + b∗ (B.13)

Least squares support vector regression with different intercepts for seniorities:

We also utilize this technique in order to account for unobserved homogeneity within seniority

classes that can represent different intercepts. The LS–SVR with different intercepts is defined

by:

min J(Ω, bk;ukj) =
1

2
∥Ω∥2 + 1

2

M∑
k=1

b2k +
C

2

M∑
k=1

pk∑
j=1

u2kj

s.t. ykj = ΩTϕ(Xkj) + bk + ukj , k = 1, ...,M, j = 1, ..., pk

(B.14)

forM as the number of seniorities and pk as the number of defaulted bonds within each seniority,

so that p1 + p2 + ... + pM = N equals the total number of defaulted bonds. The Lagrangian

function is then:

L(Ω, bk, ukj ;αkj) = J(Ω, bk;ukj)−
M∑
k=1

pk∑
j=1

αkj(w
Tϕ(xkj) + bk + ukj − ykj) (B.15)

and the dual-form problem is:

min
1

2
αTKα+

1

2
αTWα+

1

2C
αTα− yTα, (B.16)

with W as a block diagonal matrix.

Semi-parametric least squares support vector regression: Semi-parametric LS-SVR

as described by Yao et al. (2015) incorporates dummy variables to indicate the unobservable

heterogeneity of bond seniorities. It is assumed that dummy variables representing seniority
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Figure B.1: Histogram of all observed U.S. corporate bond recovery rates from our dataset,
covering the years 2001-2016. Recovery rates on the horizontal axis is shown as a percentage of
par value.

influence the dependent variable linearly. The model is defined by:

min J(Ω, b;ukj) =
1

2
∥ Ω∥2 + 1

2
βTβ +

1

2
b2 +

C

2

M∑
k=1

pk∑
j=1

u2kj

s.t. ykj = ΩTϕ(Xkj) + βT zkjb+ ukj , k = 1, ...,M, j = 1, ..., pk

(B.17)

with zkj , which contains the dummy variables for seniority, and β as a fixed effects the vector of

the corresponding parameters with respect to the seniority-class specific variables. We obtain

the Lagrangian function as follows:

L(Ω, b, ukj;αkj) = J(Ω, bk;ukj)−
M∑
k=1

pk∑
j=1

αkj(w
Tϕ(xkj) + βT zkj + b+ ukj − ykj) (B.18)

and yield the dual form problem

min
1

2
αTKα+

1

2
αTZα+

1

2
αTV α+

1

2C
αTα− yTα (B.19)

with Zij = zTkizkj and V as an N×N matrix with all elements equal to 1.
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Figure B.2: Illustration of the network representation of the U.S. economy for the year 2001. Nodes represent 67 distinct industries. Links
represent the existence of important trade relationships between industries, that is, if a customer industry represents at least 1% of its
supplier’s total trade volume. The illustration is created by simulating repelling forces between unconnected nodes, and attractive forces
between connected nodes.
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Table B.1: 2001 Social Accounting Matrix (aggregated to 19 industries for illustrative purpose).
Rows represent suppliers, columns represent customers, figures represent payments from cus-
tomers to suppliers in millions of U.S. dollars. Suppliers and customers include households, the
capital sector, the foreign sector, and the government as a redistributive agent. Other codes
are according to the definition of the BEA (adjusted NAICS codes): 11: Agriculture, forestry,
fishing, and hunting; 21: Mining; 22: Utilities; 23: Construction; 31G: Manufacturing; 42:
Wholesale trade; 44RT: Retail trade; 48TW: Transportation and warehousing; 51: Information;
FIRE: Finance, insurance, real estate, rental, and leasing, PROF: Professional and business
services; 6: Educational services, health care, and social assistance; 7: Arts, entertainment,
recreation, accommodation, and food services; 81&F030: Other services, except government
& Change in private inventories; Gov. Ent.: Government enterprises; Househ: Households;
Capital: Capital sector; Foreign: Foreign sector; Gov.: Government as a redistributive agent.

Customer/
Supplier 11 21 22 23 31G 42 44RT 48TW 51 FIRE PROF 6 7 81&F030 Gov. Ent. Househ. Capital Foreign Gov.
11 54,055 56 16 1,029 140,247 1,566 1,686 39 33 71 723 317 3,906 1,051 1,109 48,335 267 20,451 14,606
21 1,257 21,077 62,668 9,683 153,100 202 219 2,081 678 2,602 944 699 847 2,670 9,152 6,100 41,562 7,473 1,579
22 8,444 8,175 3,899 5,386 81,049 6,248 16,902 4,023 8,904 56,507 10,742 23,887 18,406 4,602 23,992 148,744 1,312 2,071 1,216
23 1,330 2,789 4,667 583 12,259 726 2,177 2,763 4,321 43,804 3,912 1,855 2,332 2,654 32,760 51 643,690 97 192,417
31G 41,284 21,379 27,209 248,330 1,397,367 37,581 38,642 59,394 68,089 49,969 89,595 119,617 91,527 0 204,793 1,272,947 605,752 533,273 86,008
42 14,132 3,615 9,256 31,949 182,499 22,809 11,243 12,834 13,229 13,779 14,478 21,651 12,718 4,398 26,680 279,754 93,413 84,266 9,939
44RT 511 482 2,405 54,512 17,674 2,129 4,844 4,095 3,203 11,669 7,259 3,893 6,366 5,864 6,382 821,637 36,590 1,852 880
48TW 7,041 4,078 21,502 14,297 84,740 28,633 23,445 55,409 15,432 15,922 29,872 12,001 7,028 4,598 35,667 158,304 19,216 54,211 2,020
51 556 1,858 8,103 12,363 42,969 14,962 15,125 10,106 202,500 53,036 71,912 24,580 10,814 8,398 72,030 301,960 128,976 40,573 15,618
FIRE 16,115 19,892 47,778 29,237 100,836 41,542 74,741 47,897 56,909 571,067 143,869 127,481 48,498 57,861 66,379 1,680,509 87,223 59,414 5,324
PROF 2,486 12,004 42,665 38,670 229,149 62,923 57,581 35,639 103,820 193,180 223,359 86,243 48,614 22,703 127,782 143,022 309,517 41,803 92,090
6 166 149 969 939 2,844 1,177 5,114 623 1,639 2,989 3,775 18,517 1,188 1,095 13,107 1,152,892 4,810 1,866 1,304
7 179 181 7,914 2,886 10,308 3,409 3,841 9,483 16,944 27,045 39,904 10,531 19,235 2,981 12,036 506,377 3,770 2,621 552
81&F030 647 292 2,232 11,233 18,146 5,625 5,707 2,343 9,312 19,234 18,288 10,193 5,316 13,688 22,521 296,479 1,043 199 274
Gov. Ent. 3,003 3,054 6,740 6,073 49,930 15,187 14,623 28,015 21,702 48,805 29,105 17,934 13,843 3,980 34,374 285,994 0 98,657 1,562,038
Househ. 31,373 38,611 53,904 325,403 881,901 330,201 416,679 207,964 247,207 526,842 851,402 604,494 241,079 177,285 1,119,403 0 1,752,500 0 1,145,800
Capital 69,003 59,132 83,632 130,472 455,852 125,925 134,082 72,458 177,903 1,211,814 232,385 91,354 85,022 102,006 251,989 188,293 0 388,683 0
Foreign 23,801 100,355 2,512 10 991,155 0 2,841 10,910 8,513 16,207 24,052 2,135 308 1,487 133,224 0 0 0 27,700
Gov. 14,178 27,419 46,438 32,133 140,730 161,797 162,752 27,343 76,102 418,032 77,673 37,781 63,150 25,448 49,675 1,660,650 130,366 7,700 0

Total 289,563 324,596 434,507 955,187 4,992,755 862,641 992,245 593,418 1,036,440 3,282,574 1,873,247 1,215,163 680,196 442,771 2,243,053 8,952,048 3,860,005 1,345,211 3,159,366

Table B.2: List of the most and least central industries. Most central and least central industries
of the 2001 inter-industry network. Centrality is defined as log(eigenvector centrality) for the
67 nodes in the network of inter-industry trade.

Most central industries Least central industries

Government-owned businesses (most central) Food and beverage stores
Wholesale trade Farms
Miscellaneous professional, scientific, and technical services Performing arts, spectator sports, museums, and related activities
Other services, except government Support activities for mining
Utilities General merchandise stores
Administrative and support services Warehousing and storage
Chemical products Nursing and residential care facilities
Management of companies and enterprises Motion picture and sound recording industries
Other real estate Apparel and leather and allied products
Credit intermediation, and related activities Oil and gas extraction
Broadcasting and telecommunications Water transportation
Construction Pipeline transportation
Rental and leasing services and lessors of intangible assets Forestry, fishing, and related activities
Fabricated metal products Housing
Plastics and rubber products Funds, trusts, and other financial vehicles (least central)
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Table B.3: Descriptive statistics of centrality and other network-derived variables. Centrality
and network-derived variables are based on involving the trade network of 67 unique industries
in columns (1)–(3), the detailed network of trade involving 471 unique industries in column (4),
and networks based on inter-industry non-bankruptcy mergers and acquisitions (M&A) (column
(5)) and bankruptcy mergers M&A (column (6)).

Trade network Trade network - Detail M&A network Bankruptcy M&A network
Log(eigenvector

centrality)
Log(neighbor industry

distress)
Labor’s fraction
of inputs (in %)

Log(eigenvector
centrality)

Log(eigenvector
centrality)

Log(eigenvector
centrality)

Mean -2.2680 -1.2768 0.2696 -3.7168 -7.0883 -7.1559
Std. Dev. 0.5886 0.6327 0.1459 0.5681 2.1025 2.5850
Skewness 0.5189 0.1059 0.1830 1.4926 0.0954 -1.6203
Kurtosis 0.8685 -1.1709 -0.9142 3.7492 2.0812 7.0026
Min -3.7006 -2.3513 0.0042 -4.8944 -13.8521 -19.4138
5th Percentile -3.2241 -2.1489 0.0463 -4.4526 -10.6998 -11.6315
25th -2.7005 -1.9019 0.1595 -4.0472 -8.4822 -8.0427
Median -2.2987 -1.3192 0.2629 -3.7958 -7.0883 -6.8106
75th -1.8908 -0.7501 0.3846 -3.5363 -5.8621 -5.8785
95th Percentile -1.3536 -0.2281 0.5185 -2.6093 -3.6934 -4.6348
Maximum -0.2055 -0.0195 0.5801 -0.8993 -0.0025 -0.0022
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Table B.4: List of 179 macroeconomic variables from which the bold variables were selected for
recovery rate modeling by applying a stability selection technique.

Series ID Short name Description

1 Loans & leases Loans and Leases in Bank Credit, All Commercial Banks

2 RE loans Real Estate Loans, All Commercial Banks

3 Federal debt Federal Debt: Total Public Debt

4 Cons credit Total Consumer Credit Owned and Securitized, Outstanding

5 Reserves Excess Reserves of Depository Institutions

6 C&I loans Commercial and Industrial Loans, All Commercial Banks

7 Borrowings Total Borrowings of Depository Institutions from the Federal Reserve

8 Bank credit Bank Credit of All Commercial Banks

9 Hh debt servs
Household Debt Service Payments as a Percent of Disposable

Personal Income

10 Hh fin obl
Household Financial Obligations as a percent of Disposable

Personal Income

11 Loans & leases 2 Loans and Leases in Bank Credit, All Commercial Banks

12 Nonp. Loans Nonperforming Loans (past due 90+ days) to Total Loans

13 Nonp. loans: 100 - 300m
Nonperforming Loans (past due 90+ days, for banks with USD

100M-300M average asset size)

14 Loan losses Net Loan Losses to Average Total Loans for all U.S. Banks

15 Loan charge-offs Total Net Loan Charge-offs to Total Loans for Banks

16 Equity return Return on Average Equity for all U.S. Banks

17 Loan loss reserve Loan Loss Reserve to Total Loans for all U.S. Banks

18 Nonp com loans
Nonperforming Commercial Loans (past due 90+ days plus nonaccrual)

to Commercial Loans

19 GDP Real Gross Domestic Product

20 ISM PMI ISM Manufacturing: PMI Composite Index

21 IP: total Industrial Production Index

22 Cons sent University of Michigan: Consumer Sentiment

23 Fixed inv Private Nonresidential Fixed Investment

24 Disp income Real Disposable Personal Income

25 NI National income

26 PI Personal Income

27 Output: mfg Manufacturing Sector: Real Output

28 Consumption Real Personal Consumption Expenditures

29 IP: mfg (NAICS) Industrial Production: Manufacturing (NAICS)

30 PCE dble Personal Consumption Expenditures: Durable Goods

31 GCE Government Consumption Expenditures & Gross Investment

32 Gross inv Gross Private Domestic Investment

33 U: all Civilian Unemployment Rate

34 Cont claims Continued Claims (Insured Unemployment)

35 Avg hrs: mfg
Average Weekly Hours of Production and Nonsupervisory Employees:

Manufacturing

36 Emp Civilian Employment

37 Emp rate Civilian Employment-Population Ratio

38 U 15+ wks rate
Persons unemployed 15 weeks or longer, as a percent of the civilian

labor force

39 Orders: dble gds Manufacturers’ New Orders: Durable Goods

40 Final sales Real Final Sales of Domestic Product

41 Orders: cap gds Manufacturers’ New Orders: Nondefense Capital Goods Excluding Aircraft

42 Invent/sales Total Business Inventories to Sales Ratio

43 Cap util: mfg Capacity Utilization: Manufacturing

44 Invent change Change in Private Inventories

45 Cap util: total Capacity Utilization: Total Industry

46 Inventories Total Business Inventories

47 Vehicle sales Light Weight Vehicle Sales: Autos & Light Trucks

48 Starts Housing Starts: Total: New Privately Owned Housing Units Started
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Table B.4 (Continued)

Series ID Short name Description

49 Starts adj
Housing Starts: Total: New Privately Owned Housing Units Started

(Seasonally adjusted)

50 Houses sold New One Family Houses Sold: United States

51 BP: total New Private Housing Units Authorized by Building Permits

52 Sales / dom purch Final Sales to Domestic Purchasers

53 M2 M2 Money Stock

54 CPI-U: ex food Consumer Price Index for All Urban Consumers: All Items Less Food

55 Inflation expect University of Michigan Inflation Expectation

56 CPI-U: energy Consumer Price Index for All Urban Consumers: Energy

57 Saving Personal Saving

58 Saving rate Personal Saving Rate

59 Gross saving Gross Saving

60 GDP defl Gross Domestic Product: Implicit Price Deflator

61 CP Corporate Profits After Tax (without IVA and CCAdj)

62 CP: adj
Corporate Profits After Tax with Inventory Valuation and Capital

Consumption Adjustments

63 CP: adj div Corporate Profits after tax with IVA and CCAdj: Net Dividends

64 CNCF Corporate Net Cash Flow with IVA

65 TWI: US broad Real Trade Weighted U.S. Dollar Index: Broad

66 TWI: US major Trade Weighted U.S. Dollar Index: Major Currencies

67 Acc balance Balance on Current Accounts for the United States

68 Exports Real Exports of Goods & Services

69 Merch trade balance Merchandise Trade as percentage of GDP

70 Imports Real imports of goods and services

71 Labor cost: mfg Manufacturing Sector: Unit Labor Cost

72 Labor cost: bus Nonfarm Business Sector: Unit Labor Cost

73 Compensation: wages Compensation of employees: Wages and salaries

74 Compensation: mfg nondble
Compensation of employees: Domestic private industries: Manufacturing:

Nondurable goods: Food and beverage and tobacco products

75 ECI: mgmt Full time employment: Wage and salary workers, 16 years and over

76 Compensation: mfg dble Manufacturing Durable Goods Sector: Compensation

77 ECI: benefits Employment Cost Index: Benefits: Private Industry Workers

78 ECI: total comp
Employment Cost Index: Total compensation for All Civilian workers in

all industries and occupations

79 ECI: wages&salaries Employment Cost Index: Wages & Salaries: Private Industry Workers

80 1 mo CP 1-Month AA Nonfinancial Commercial Paper Rate

81 10 yr T-bond 10-Year Treasury Constant Maturity Rate

82 3 mo CP 3-Month AA Nonfinancial Commercial Paper Rate

83 Term Structure TermStructure

84 Fed Funds Effective Federal Funds Rate

85 Baa -10 yr T-bond spread
Moody’s Seasoned Baa Corporate Bond Yield Relative to Yield on 10-Year

Treasury Constant Maturity

86 Aaa yield Moody’s Seasoned Aaa Corporate Bond Yield

87 Mortg 30 yr 30-Year Fixed Rate Mortgage Average

88 Baa yield Moody’s Seasoned Baa Corporate Bond Yield

89 Loan rate Bank Prime Loan Rate

90 PPI: all Producer Price Index for All Commodities

91 PPI: industrial Producer Price Index by Commodity Industrial Commodities

92 PPI: int energy Producer Price Index by Commodity Intermediate Energy Goods

93 Crude oil price: WTI West Texas Intermediate Price per Barrel

94 PPI: cons gds Producer Price Index by Commodity for Finished Consumer Goods

95 PPI: int matls
Producer Price Index by Commodity Intermediate Materials: Supplies &

Components

96 S&P 500 S&P 500 Index

97 S&P 500 vol S&P 500 Volatility
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Table B.4 (Continued)

Series ID Short name Description

98 DowJones vol CBOE DJIA Volatility Index

99 Nasdaq NASDAQ 100 Index

100 Nasdaq vol NASDAQ 100 Volatility

101 Russel2000 Russell 2000 Price Index

102 Russel2000 vol Russell 2000 Volalitlity 1m

103 Wilshire Wilshire US Small-Cap Price Index

104 Wilshire vol Wilshire Small Cap Vol

105 Orders: cons gds Value of Manufacturers’ New Orders for Consumer Goods Industries

106 Unf orders: dble Value of Manufacturers’ Unfilled Orders for Durable Goods Industries

107 Overtime: mfg
Average Weekly Overtime Hours of Production and Nonsupervisory

Employees: Manufacturing

108 MB Monetary Base

109 AHE: goods
Average Hourly Earnings of Production and Nonsupervisory Employees:

Goods-Producing, Dollars per Hour

110 AHE: const
Average Hourly Earnings of Production and Nonsupervisory Employees:

Construction, Dollars per Hour

111 AHE: mfg
Average Hourly Earnings of Production and Nonsupervisory Employees:

Manufacturing, Dollars per Hour

112 M&T Sales Real Manufacturing and Trade Industries SalesAdjusted

113 CPI-U: apparel Consumer Price Index for All Urban Consumers: Apparel

114 CPI-U: all Consumer Price Index for All Urban Consumers: All Items

115 CPI-U: medical Consumer Price Index for All Urban Consumers: Medical Care

116 CPI-U: transp Consumer Price Index for All Urban Consumers: Transportation

117 CPI-U: ex shelter Consumer Price Index for All Urban Consumers: All items less shelter

118 CPI-U: ex med Consumer Price Index for All Urban Consumers: All items less medical care

119 CPI-U: dbles Consumer Price Index for All Urban Consumers: Durables

120 CPI-U: services Consumer Price Index for All Urban Consumers: Services

121 CPI-U: comm. Consumer Price Index for All Urban Consumers: Commodities

122 PCE defl: dlbes Personal consumption expenditures: Durable goods (implicit price deflator)

123 Ex rate: Canada Canada / U.S. Foreign Exchange Rate, Canadian Dollars to One U.S. Dollar

124 Ex rate: Japan Japan / U.S. Foreign Exchange Rate, Japanese Yen to One U.S. Dollar

125 Ex rate: Switz Switzerland / U.S. Foreign Exchange Rate, Swiss Francs to One U.S. Dollar

126 Ex rate: UK U.S. / U.K. Foreign Exchange Rate, U.S. Dollars to One British Pound

127 1 yr T-bond 1-Year Treasury Constant Maturity Rate

128 5 yr T-bond 5-Year Treasury Constant Maturity Rate

129 PCE defl: nondble Personal consumption expenditures: Nondurable goods (implicit price deflator)

130 PCE defl Personal consumption expenditures (implicit price deflator)

131 6 mo T-bill 6-Month Treasury Bill: Secondary Market Rate

132 Starts: MW Housing Starts in Midwest Census Region

133 Starts: NE Housing Starts in Northeast Census Region

134 Starts: South Housing Starts in South Census Region

135 Starts: West Housing Starts in West Census Region

136 UI claims Initial Unemployment Claims

137 M&T invent Real Manufacturing and Trade Inventories

138 IP: buseqpt Industrial Production: Business Equipment

139 IP: cons gds Industrial Production: Consumer Goods

140 IP: cons dble Industrial Production: Durable Consumer Goods

141 IP: dble matls Industrial Production: Durable Materials

142 IP: final prod Industrial Production: Final Products (Market Group)

143 IP: fuels Industrial Production: Fuels

144 IP: mfg Industrial Production: Manufacturing (SIC)

145 IP: matls Industrial Production: Materials

146 IP: cons nondble Industrial Production: Nondurable Consumer Goods

147 IP: nondble matls Industrial Production: Nondurable Materials

148 M1 M1 Money Stock
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Table B.4 (Continued)

Series ID Short name Description

149 M3 M3 for the United States

150 M&T invent/sales Manufacturers: Inventories to Sales Ratio

151 Emp: const Nonfarm Private Construction Payroll Employment

152 Emp: FIRE Nonfarm Private Financial Activities Payroll Employment

153 Emp: gds prod Nonfarm Private Goods - Producing Payroll Employment

154 Emp: mfg Nonfarm Private Manufacturing Payroll Employment

155 Emp: services Nonfarm Private Service - Providing Payroll Employment

156 Emp: total Total Nonfarm Private Payroll Employment

157 Emp: TTU
Nonfarm Private Trade, Transportation, and Utilities Payroll

Employment

158 BP: MW
New Private Housing Units Authorized by Building Permits in the

Midwest Census Region

159 BP: NE
New Private Housing Units Authorized by Building Permits in the

Northeast Census Region

160 BP: South
New Private Housing Units Authorized by Building Permits in the

South Census Region

161 BP: West
New Private Housing Units Authorized by Building Permits in the

West Census Region

162 Ex broad: US Real Broad Effective Exchange Rate for United States

163 3 mo T-bill 3-Month Treasury Bill: Secondary Market Rate

164 U 5-14 wks Number of Civilians Unemployed for 5 to 14 Weeks

165 U 15+ wks Number of Civilians Unemployed for 15 Weeks and Over

166 U 15-26 wks Number of Civilians Unemployed for 15 to 26 Weeks

167 U 27+ wks Number of Civilians Unemployed for 27 Weeks and Over

168 U <5 wks Number of Civilians Unemployed for Less Than 5 Weeks

169 U: mean duration Average (Mean) Duration of Unemployment

170 PPI: fin gds Producer Price Index by Commodity for Final Demand: Finished Goods

171 Aaa-FF spread Moody’s Seasoned Aaa Corporate Bond Minus Federal Funds Rate

172 Baa-FF spread Moody’s Seasoned Baa Corporate Bond Minus Federal Funds Rate

173 3 mo CP-FF spread 3-Month Commercial Paper Minus Federal Funds Rate

174 Consumer opinion
Consumer Opinion Surveys: Confidence Indicators: Composite Indicators:

OECD Indicator for the United States

175 HPI All-Transactions House Price Index for the United States

176 Aaa-Baa spread Moody’s Seasoned Aaa Bbb Spread

177 High yield market Size of High Yield Market in U.S. Dollars

178 High yield DR High Yield Default Rate, Trailing 12-month

179 Industry Default Rate Bond defaults within the industry (in percent)
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Table B.5: Descriptive statistics of 179 macroeconomic variables from which the bold variables
were selected for recovery rate modeling by applying a stability selection technique.

Series ID Short name Maximum Minimum Average Median

1 Loans & leases (USD bn) 9,146.1 3,860.0 6,308.8 6,754.4

2 RE loans (USD bn) 4,104.8 1,638.6 3,148.6 3,527.4

3 Federal debt (USD mn) 19,573,445.0 5,726,815.0 11,727,877.1 10,699,805.0

4 Cons credit (USD bn) 3,754.4 1,729.9 2,602.8 2,572.1

5 Reserves (USD mn) 2,699,968.0 888.0 883,723.5 642,072.0

6 C&I loans (USD bn) 2,101.7 863.0 1,317.7 1,244.5

7 Borrowings (USD bn) 437.5 0.0 14.2 0.1

8 Bank credit (USD bn) 12,464.7 5,048.4 8,512.9 9,013.4

9 Hh debt servs (%) 13.2 9.9 11.6 12.2

10 Hh fin obl (%) 18.1 15.0 16.6 16.9

11 Loans & leases 2 (USD bn) 9,122.6 3,869.5 6,296.1 6,752.3

12 Nonp. Loans (%) 5.6 0.7 2.3 1.6

13 Nonp. loans: 100 - 300m (%) 3.3 0.7 1.6 1.2

14 Loan losses (%) 3.1 0.4 1.0 0.8

15 Loan charge-offs (%) 3.1 0.4 1.0 0.8

16 Equity return (%) 15.5 -1.0 10.1 9.4

17 Loan loss reserve (%) 3.7 1.2 1.9 1.8

18 Nonp com loans (%) 3.6 0.5 1.5 1.2

19 GDP (USD bn, chained 2009) 16,778.1 12,643.3 14,689.9 14,745.9

20 ISM PMI (Index) 61.4 33.1 52.0 52.4

21 IP: total (Index 2007=100) 106.6 87.1 98.7 99.7

22 Cons sent (Index Q1 1966=100) 107.6 55.3 82.4 84.5

23 Fixed inv (USD bn) 2,336.2 1,348.9 1,779.8 1,776.3

24 Disp income (USD bn, chained 2009) 12,663.5 9,054.5 10,893.4 10,916.0

25 NI (USD bn) 15,739.6 9,184.6 12,308.6 12,321.4

26 PI (USD bn) 16,043.4 8,923.2 12,250.4 12,221.4

27 Output: mfg (Index 2009=100) 129.0 97.6 116.0 118.1

28 Consumption (USD bn, chained 2009) 11,698.0 8,314.4 9,946.3 10,001.3

29 IP: mfg (NAICS) (NAICS) 108.2 86.6 98.7 100.0

30 PCE dble (USD bn) 1,420.2 919.5 1,140.4 1,139.8

31 GCE (USD bn) 3,274.6 1,911.9 2,800.1 3,049.7

32 Gross inv (USD bn) 3,115.7 1,786.4 2,422.7 2,469.5

33 U: all (%) 10.0 4.2 6.4 5.7

34 Cont claims (Number) 6,635,000 2,010,000 3,213,932 2,990,000

35 Avg hrs: mfg (Hours) 42.2 39.3 41.1 41.1

36 Emp (Thousands of persons) 152,048.0 135,701.0 142,436.8 142,206.0

37 Emp rate (%) 64.4 58.2 60.8 61.0

38 U 15+ wks rate (%) 6.3 1.0 2.9 2.2

39 Orders: dble gds (USD mn) 290,709.0 143,769.0 203,276.1 210,229.0

40 Final sales (USD bn, chained 2009) 16,741.1 12,681.9 14,655.4 14,703.3

41 Orders: cap gds (USD mn) 70,343.0 46,355.0 60,043.2 61,262.0

42 Invent/sales (%) 1.5 1.2 1.3 1.3

43 Cap util: mfg (%) 79.2 64.0 74.6 74.9

44 Invent change (∆USD bn) 148.6 -205.9 -40.0 -11.6

45 Cap util: total (%) 81.0 66.7 76.8 77.0

46 Inventories (USD mn) 1,836,476.0 1,106,874.0 1,444,889.0 1,424,619.0

47 Vehicle sales (Units in mn) 21.7 9.0 15.4 16.2

48 Starts (Units in thousands) 197.9 31.9 104.2 95.0

49 Starts 2 (Units in thousands) 2,273.0 478.0 1,249.3 1,138.0

50 Houses sold (Units in thousands) 1,389.0 270.0 691.8 536.0

51 BP: total (Units in thousands) 2,263.0 513.0 1,293.1 1,178.0

52 Sales / dom purch (USD bn) 19,205.5 10,930.4 15,049.3 15,217.5

53 M2 (USD bn) 13,187.7 4,938.4 8,397.6 8,206.7

54 CPI-U: ex food (Index 1982-84=100) 241.4 176.6 211.2 214.3
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Table B.5 (Continued)

Series ID Short name Maximum Minimum Average Median

55 Inflation expect (%) 5.2 0.4 3.0 3.0

56 CPI-U: energy (Index 1982-84=100) 271.1 113.5 195.7 201.0

57 Saving (USD bn) 1,425.7 182.3 548.3 577.2

58 Saving rate (%) 11.0 1.9 5.1 5.4

59 Gross saving (%) 3,539.9 1,941.7 2,540.8 2,353.8

60 GDP defl (Index 2009=100) 111.6 83.1 98.2 99.8

61 CP (USD bn) 1,801.8 458.9 1,261.1 1,350.2

62 CP: adj (USD bn) 1,741.4 519.1 1,196.0 1,166.7

63 CP: adj div (USD bn) 1,062.0 367.1 704.6 718.3

64 CNCF (USD bn) 2,209.6 1,022.5 1,717.5 1,607.8

65 TWI: US broad (Index March 1973=100) 112.8 80.3 94.0 94.3

66 TWI: US major (Index March 1973=100) 112.6 68.1 84.1 81.7

67 Acc balance (USD bn) -320.7 -858.7 -525.2 -474.6

68 Exports (USD bn, chained 2009) 2,150.8 1,118.0 1,663.7 1,682.9

69 Merch trade (% of GDP) 24.2 17.2 21.0 21.2

70 Imports (USD bn, chained 2009) 2,702.6 1,639.8 2,227.3 2,310.7

71 Labor cost: mfg (Index 2009=100) 102.1 86.6 93.5 93.1

72 Labor cost: bus (Index 2009=100) 109.0 91.4 99.3 99.9

73 Compensation: wages (USD bn) 8,188.8 4,928.5 6,360.8 6,385.9

74 Compensation: mfg nondble (USD mn) 103,076.0 69,389.0 84,021.0 84,276.0

75 FTE >16y (Thousands of persons) 106.0 80.0 94.6 95.0

76 Compensation: mfg dble (Index 2009=100) 124.1 97.4 109.9 111.1

77 ECI: benefits (Index Dec. 2005=100) 127.0 78.8 106.4 107.9

78 ECI: total comp (Index Dec. 2005=100) 127.4 84.7 107.5 109.6

79 ECI: wages&salaries (Index Dec. 2005=100) 126.6 87.6 107.7 109.5

80 1 mo CP (%) 6.5 0.0 1.5 0.5

81 10 yr T-bond (%) 5.5 1.4 3.5 3.6

82 3 mo CP (%) 6.2 0.1 1.6 0.7

83 Term Structure (%) 5.9 0.0 1.4 0.4

84 Fed Funds (%) 6.0 0.1 1.5 0.4

85 Baa -10 yr T-bond spread (%) 6.0 1.6 2.7 2.8

86 Aaa yield (%) 7.4 3.2 5.1 5.3

87 Mortg 30 yr (%) 7.2 3.3 5.2 5.3

88 Baa yield (%) 9.5 4.2 6.2 6.2

89 Loan rate (%) 9.5 3.3 4.6 3.6

90 PPI: all (Index 1982=100) 208.3 128.1 173.7 178.1

91 PPI: industrial (Index 1982=100) 209.5 129.1 174.8 180.1

92 PPI: int energy (Index 1982=100) 203.4 82.9 149.8 151.9

93 Crude oil price: WTI (USD per bbl) 145.3 17.5 64.5 62.0

94 PPI: cons gds (Index 1982=100) 216.7 137.6 179.5 181.7

95 PPI: int matls (Index 1982=100) 196.4 134.6 170.5 174.6

96 S&P 500 (Index) 2,271.7 676.5 1,372.9 1,275.5

97 S&P 500 vol (Index) 80.9 9.9 20.2 17.8

98 DowJones vol (Index) 74.6 9.3 18.8 16.4

99 Nasdaq (Index) 4,965.8 804.6 2,296.2 1,855.4

100 Nasdaq vol (Index) 82.5 11.4 26.4 21.0

101 Russel2000 (Index) 3,449.7 812.9 1,876.8 1,777.1

102 Russel2000 vol (Index) 1,038.8 12.9 315.7 316.6

103 Wilshire (Index) 8,954.0 1,878.9 4,790.2 4,400.5

104 Wilshire vol (Index) 2,488.6 30.6 810.4 789.5

105 Orders: cons gds (USD mn) 214,933.0 120,537.0 170,037.4 169,850.0

106 Unf orders: dble (USD mn) 1,175,861.0 478,363.0 832,177.9 879,577.0

107 Overtime: mfg (Hours) 4.6 2.6 4.1 4.2

108 MB (USD mn) 4,075,039.0 595,873.0 1,868,195.0 1,561,699.0

109 AHE: goods (USD per hour) 22.8 15.5 19.3 19.7
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Table B.5 (Continued)

Series ID Short name Maximum Minimum Average Median

110 AHE: const (USD per hour) 26.3 17.8 21.9 22.4

111 AHE: mfg (USD per hour) 20.6 14.5 17.8 18.0

112 M&T Sales (USD mn, chained 2009) 1,239,361.0 953,116.0 1,086,640.8 1,094,829.0

113 CPI-U: apparel (Index 1982-84=100) 129.6 117.8 122.8 121.1

114 CPI-U: all (Index 1982-84=100) 242.2 175.6 211.3 214.7

115 CPI-U: medical (Index 1982-84=100) 470.2 267.2 367.6 368.7

116 CPI-U: transp (Index 1982-84=100) 223.5 148.7 186.9 190.2

117 CPI-U: ex shelter (Index 1982-84=100) 227.0 168.8 201.2 203.7

118 CPI-U: ex med (Index 1982-84=100) 231.3 170.6 203.5 206.7

119 CPI-U: dbles (Index 1982-84=100) 125.7 106.3 113.6 112.4

120 CPI-U: services (Index 1982-84=100) 303.3 200.6 252.0 258.0

121 CPI-U: comm. (Index 1982-84=100) 190.5 147.8 170.3 171.6

122 PCE defl: dlbes (Index 2009=100) 119.2 88.1 102.1 100.8

123 Ex rate: Canada (CAD/USD) 1.6 0.9 1.2 1.2

124 Ex rate: Japan (JPY/USD) 134.8 75.7 105.8 108.1

125 Ex rate: Switz (CHF/USD) 1.8 0.7 1.1 1.1

126 Ex rate: UK (USD/GBP) 2.0 1.2 1.6 1.6

127 1 yr T-bond (%) 5.3 0.1 1.6 0.8

128 5 yr T-bond (%) 5.2 0.6 2.7 2.5

129 PCE defl: nondble (Index 2009=100) 113.1 82.5 99.3 101.2

130 PCE defl (Index 2009=100) 111.0 84.4 98.6 99.7

131 6 mo T-bill (%) 5.4 0.0 1.5 0.6

132 Starts: MW (Units in thousands) 446 59 216 173

133 Starts: NE (Units in thousands) 236 36 126 130

134 Starts: South (Units in thousands) 1,146 230 606 580

135 Starts: West (Units in thousands) 583 79 302 269

136 UI claims (Number) 665,000 239,000 371,416 358,000

137 M&T invent (USD, chained 2009) 1,792,850.0 1,344,697.0 1,519,683.5 1,504,742.0

138 IP: buseqpt ( Index 2012=100) 103.8 75.5 90.6 90.6

139 IP: cons gds ( Index 2012=100) 114.3 97.2 105.5 104.8

140 IP: cons dble ( Index 2012=100) 125.9 79.4 110.4 113.5

141 IP: dble matls ( Index 2012=100) 108.2 72.2 93.2 95.8

142 IP: final prod (Index 2012=100) 109.0 90.6 99.9 99.9

143 IP: fuels (Index 2012=100) 108.0 79.0 95.1 97.4

144 IP: mfg (Index 2012=100) 110.0 87.2 99.9 100.2

145 IP: matls (Index 2012=100) 110.4 82.6 95.5 94.8

146 IP: cons nondble (Index 2012=100) 112.3 98.2 104.0 103.4

147 IP: nondble matls (Index 2012=100) 115.7 92.2 103.8 102.0

148 M1 (USD bn) 3,373.4 1,094.2 1,864.7 1,569.3

149 M3 (USD bn) 13,144.8 4,948.8 8,373.2 8,156.8

150 M&T invent/sales (%) 1.5 1.1 1.3 1.3

151 Emp: const (Thousands) 7,726.0 5,427.0 6,558.3 6,701.0

152 Emp: FIRE (Thousands) 8,394.0 7,676.0 8,025.5 8,032.0

153 Emp: gds prod (Thousands) 24,533.0 17,627.0 20,534.1 20,322.0

154 Emp: mfg (Thousands) 17,104.0 11,453.0 13,261.2 12,850.0

155 Emp: services (Thousands) 20,380.0 15,877.0 17,543.4 17,380.0

156 Emp: total (Thousands) 145,170.0 129,733.0 134,933.0 134,053.0

157 Emp: TTU (Thousands) 27,346.0 24,473.0 25,861.3 25,802.0

158 BP: MW (Units in thousands) 402 83 220 181

159 BP: NE (Units in thousands) 306 58 135 132

160 BP: South (Units in thousands) 1,104 257 623 581

161 BP: West (Units in thousands) 619 97 315 280

162 Ex broad: US (Index 2010=100) 129.0 93.0 108.1 108.2

163 3 mo T-bill (%) 5.2 0.0 1.4 0.3

164 U 5-14 wks (Thousands of persons) 4,458 1,764 2,614 2,509
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Table B.5 (Continued)

Series ID Short name Maximum Minimum Average Median

165 U 15+ wks (Thousands of persons) 9,130 1,372 4,395 3,344

166 U 15-26 wks (Thousands of persons) 3,488 696 1,533 1,388

167 U 27+ wks (Thousands of persons) 6,800 624 2,862 2,006

168 U <5 wks (Thousands of persons) 3,524 2,087 2,690 2,668

169 U: mean duration (Weeks) 40.7 12.1 25.1 20.1

170 PPI: fin gds (Index 1982=100) 201.7 137.7 171.8 173.9

171 Aaa-FF spread (%) 6.3 0.0 4.1 4.7

172 Baa-FF spread (%) 9.3 0.8 4.7 5.0

173 3 mo CP-FF spread (%) 2.9 -0.9 0.1 0.1

174 Consumer opinion (Normal=100) 101.3 96.7 99.5 99.7

175 HPI (Index Q1 1980=100) 382.4 246.3 326.9 328.2

176 Aaa-Baa spread (%) 6.3 -0.2 3.6 3.9

177 High yield market (USD bn) 1,254.6 468.7 833.6 765.8

178 High yield DR (%) 16.4 0.5 4.9 3.1

179 Industry Default Rate (%) 17.3 0.0 2.6 1.8
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Appendix C

Appendix to Chapter 5

C.1 Linear Regression as Benchmark

For comparing the out-of-time and out-of-sample performance of our machine learning tech-

niques with more statistical methods, we include a traditional linear regression model as the

benchmark model. Thus, we estimate the following linear regression model for the recovery

rate RRijt of bond i in industry j that defaulted at the time t to serve as benchmark for our

machine learning models:

RRijt =α+ βc(instrument-specific variables)i

+ν(industry distress variables)jt

+η(news-based variables)t

+ζ(selected macroeconomic variables)t

+ϵijt ϵijt ∼ N(0, σ2)

(C.1)

We control for the instrument-specific variables with dummy variables for the industry, senior-

ity, coupon type, and instrument type. The industry distress variables indicate whether the

performance of the industry index was worse than -30% and the sales growth was negative in

the year preceding the default. The news-based measures can capture uncertainty and disaster

risk. The various methodologies benchmarked for selecting the macroeconomic variables are

presented in Section C.6.
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C.2 Inverse Gaussian Regression

Due to its popularity in recovery rate modeling in studies such as Qi and Zhao (2011) and

Kalotay and Altman (2017), we also consider the inverse Gaussian regression. In doing so, the

recovery rates are transformed from the interval (0,1) to (-∞,∞) using the inverse Gaussian

cumulative distribution function. These transformed recovery rates are then regressed on the

independent variables as described for the case of the ordinary linear regression. Finally, the

estimated values are transformed back from (-∞,∞) to (0,1) using the Gaussian distribution

function.

C.3 Regression Tree

One class of machine learning methods that has been found to deliver very good predictive

performance as well as an easy-to-understand model is the regression tree. Qi and Zhao (2011),

Kalotay and Altman (2017), and Nazemi and Fabozzi (2018) used regression trees successfully

for loss-given-default modeling. Two other advantages of the regression tree are that it can be

used to model non-linearity and it exhibits a relatively robust behavior against outliers. For

these reasons, we apply the classification and regression technique (CART) algorithm as defined

by Breiman, Friedman, Stone, and Olshen (1984) for the creation of the regression tree model.

C.4 Random Forest

Breiman (2001) introduces random forest as a model that is more robust and has a better

predictive capacity out-of-sample than the regression tree. Random forest is an improvement of

bagging which trains a large number of regression trees and then predicts the average of the trees’

predictions. Better performance and reduced variance of the predictions are the advantages of

bagging compared with regression trees. In a random forest, a random subset of explanatory

variables is selected for each regression tree. The random forest has three tuning parameters:

The minimum leaf size of the trees, the number of trees and the number of explanatory variables

used for each tree. We use one third of all explanatory variables for each tree in accordance

with the default value from Breiman (2001). The number of trees and the minimum leaf size
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are determined by 10-fold cross-validation on the training set.

C.5 Semiparametric Least-squares Support Vector Regression

Suykens and Vandewalle (1999) introduce a least-squares version of the support vector machine

classifier. Enticed by the promising results from a study by Nazemi and Fabozzi (2018), we

make use of a semiparametric least-squares support vector regression (SP LS-SVR) model which

assumes the impact from the S different seniority classes to be linear. The parameter C regu-

larizes the quadratic errors u2sj while N denotes the number of defaulted bonds and W denotes

the weight vector of the independent variables. The kernel function for the feature mapping

into the higher-dimensional space is defined as ϕ(Xi) while the kernel matrix K is defined as

K(Xi, Xj) = ϕ(Xi) ·ϕ(Xj). β is a vector of fixed effects for the seniority of the respective group

and the dummy variables for the seniority classes are denoted by zsj .

min J(W, b, ui) =
1

2
||W ||2 + 1

2
βTβ +

1

2
b2 +

C

2

S∑
s=1

ns∑
j=1

u2sj

s.t. RRi = WTϕ(Xi) + b+ βT zsj + usj , j = 1, ..., ns; s = 1, ..., S

(C.2)

The Lagrangian function of this optimization problem evaluates to

L(W, b, usj , αsj) = J(W, b, usj)−
S∑

s=1

ns∑
j=1

αsj(W
Tϕ(Xsj) + b+ βT zsj + usj −RRsj) (C.3)

Therefore, with V denoting a N ×N -matrix of ones and Zij = zTsjzsj , the dual formulation

is
min

1

2
αTKα+

1

2
αTZα+

1

2
αTVα+

1

2C
αTα−RRTα (C.4)

C.6 Selection of Macroeconomic Variables

In our analysis we include 182 macroeconomic variables to account for time variation in the

recovery rates due to macroeconomic changes. A broad range of variables from categories such

as international competitiveness, stock market conditions, credit market conditions, micro-level
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conditions, and business cycle conditions are taken into consideration. We compare three meth-

ods to select the most informative macroeconomic variables: The stability selection, the Spars-

eStep algorithm, and the MC+ algorithm.

C.6.1 Least absolute shrinkage and selection operator

Tibshirani (1996) introduced LASSO, a regularized least squares method imposing a penalty

on the L1 norm of the regression coefficients. LASSO estimates the regularized coefficients B̂

as follows:

{B̂} = argmin
B

∥RR−XB∥22 + λ∥B∥1 (C.5)

where λ denotes the non-negative LASSO regularization coefficient, B denotes the LASSO

regularization loadings and Xn denotes the N × 1 vector Xn = (x1, ..., xN )′ of macroeconomic

variables. By selecting a subset of the macroeconomic variables and eliminating the rest of

the variables, the resulting model becomes more interpretable and has a higher out-of-sample

predictive accuracy than the complete model. In particular, Nazemi and Fabozzi (2018) show

that recovery models with macroeconomic variables selected by LASSO outperform models with

a few macroeconomic variables.

As shown by Meinshausen and Bühlmann (2010) the variables selected from a LASSO

regression can change with a small perturbation of the data. To address this issue, they introduce

stability selection which is based on subsampling and evaluating the selection probability of each

variable. Using stability selection, variable selection is conducted repeatedly on random samples

of the dataset and the number of times each variable is selected during this process is counted.

Only the variables that have been selected with a higher relative frequency than the specified

counting proportion are ultimately selected by the stability selection method.1 The main goal of

this approach is to model high-dimensional data by a stable selection of macroeconomic variables

that capture the most information for recovery rate estimation. We check the robustness of the

variables’ selection from LASSO by applying stability selection with a counting proportion equal

to 0.6.

1 We make use of the scikit-learn package in Python for the stability selection algorithm.
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C.6.2 SparseStep

Burg, Groenen, and Alfons (2017) present the SparseStep algorithm. While LASSO penalizes

the L1 norm, the SparseStep algorithm imposes a penalty on the counting norm L0. Burg,

Groenen, and Alfons (2017) apply the following approximation to the counting norm L0:

∥βl∥0 ≈
β2
l

β2
l + γ2

(C.6)

where γ denotes a positive constant, βl denotes the l -th coefficient, and p is the number of

independent variables. To arrive at a sparse solution, the approximation to the exact counting

norm L0 is added for regularization:

{β̂} = argmin
β

∥RR−Xβ∥22 + λ

p∑
l=1

β2
l

β2
l + γ2

(C.7)

While LASSO is a biased estimator, the SparseStep algorithm yields unbiased estimates of

the parameter vector. Further, Burg, Groenen, and Alfons (2017) argue that SparseStep often

outperforms approaches used in earlier studies such as ridge regression or LASSO in both model

fit and prediction accuracy.2

C.6.3 MC+ algorithm

Zhang (2010) introduced MC+ for penalized variable selection in high-dimensional linear re-

gression.3 This method is based on two elements: a minimax concave penalty and a penalized

linear unbiased selection algorithm. While LASSO estimates are biased, MC+ provides nearly

unbiased estimates. Zhang (2010) outlines the theoretical and empirical advantages of MC+

compared to LASSO. In particular, he illustrates the increased selection accuracy of MC+ in a

simulation setting.

2 For the SparseStep algorithm we make use of package ‘sparsestep’ in R.
3 We use the package ‘plus’ in R for the MC+ algorithm.
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C.7 Ranking Variables by Permutation Importance

Altmann, Toloşi, O.Sander, and Lengauer (2010) outline how feature importance derived from

random forests is biased towards categorical predictors with a large number of categories. In

particular, they show that permutation importance is an importance measure that does not

suffer from this bias.4 Permutation importance is based on the mean decrease of prediction ac-

curacy and is computed as the difference between the baseline R-squared of the model and the

R-squared of the model when one variable’s or group of variables’ values are permuted randomly.

In our analysis the permutation importance of each group is scaled such that the importance

of the most important group of variables equals 100. Strobl, Boulesteix, Kneib, Augustin, and

Zeileis (2008) show that permutation importance suffers from a bias towards correlated vari-

ables. Building groups of variables instead of investigating the importance of each variable on

its own enables us to generate a ranking that will suffer less from the multicollinearity inherent

to our high-dimensional data. Following Gregorutti, Michel, and Saint-Pierre (2015), we adjust

the importance of each group by dividing it by the number of variables in the respective group.

4 We use the implementation of permutation importance from the Python package ‘pimp’.
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Table C.1: Groups of independent variables

Seniority
Senior unsecured Senior secured
Senior subordinated Subordinated
Industry
Utility Financials
Communication Consumer-cylical
Industrial IndustryDistress1
IndustryDistress2
Bond Characteristics
Zero Coupon Variable Coupon
Step-up Convertible
Insured Retail Note
Corporate medium-term note
News
NewsVIX Government
Intermediation Natural Disaster
Securities War
Other
Financial Conditions
Loans and Leases in Bank Credit, All Commercial Banks Real Estate Loans, All Commercial Banks
Federal Debt: Total Public Debt Total Consumer Credit Owned and Securitized, Outstanding
Excess Reserves of Depository Institutions Commercial and Industrial Loans, All Commercial Banks
Total Borrowings of Depository Institutions from the Federal Reserve Bank Credit of All Commercial Banks
Household Debt Service Payments as a Percent of Disposable Personal Income Household Financial Obligations as a percent of Disposable Personal Income
Loans and Leases in Bank Credit, All Commercial Banks Nonperforming Total Loans (past due 90+ days plus nonaccrual) to Total Loans
Nonperforming Loans to Total Loans (avg assets betw. USD 100M and 300M) Net Loan Losses to Average Total Loans for all U.S. Banks
Total Net Loan Charge-offs to Total Loans for Banks Return on Average Equity for all U.S. Banks
Loan Loss Reserve to Total Loans for all U.S. Banks Nonperforming Commercial Loans (past due 90+ days plus nonaccrual) to Commercial Loans
Monetary Measures
M2 Money Stock Consumer Price Index for All Urban Consumers: All Items Less Food
University of Michigan Inflation Expectation Consumer Price Index for All Urban Consumers: Energy
Personal Saving Personal Saving Rate
Gross Saving Gross Domestic Product: Implicit Price Deflator
Consumer Price Index for All Urban Consumers: Apparel Consumer Price Index for All Urban Consumers: All Items
Consumer Price Index for All Urban Consumers: Medical Care Consumer Price Index for All Urban Consumers: Transportation
Consumer Price Index for All Urban Consumers: All items less shelter Consumer Price Index for All Urban Consumers: All items less medical care
Consumer Price Index for All Urban Consumers: Durables Consumer Price Index for All Urban Consumers: Services
Consumer Price Index for All Urban Consumers: Commodities Board of Governors Monetary Base, Adjusted for Changes in Reserve Requirements
M1 Money Stock M3 for the United States
All-Transactions House Price Index for the United States
Corporate Measures
Corporate Profits After Tax (without IVA and CCAdj) Corporate Profits After Tax with Inventory Valuation and Capital Consumption Adjustments
Corporate Profits after tax with IVA and CCAdj: Net Dividends Corporate Net Cash Flow with IVA

217



Table C.1 (Continued)

Business Cycle
Real Gross Domestic Product ISM Manufacturing: PMI Composite Index
Industrial Production Index University of Michigan: Consumer Sentiment
Private Nonresidential Fixed Investment Real Disposable Personal Income
National income Personal Income
Manufacturing Sector: Real Output Real Personal Consumption Expenditures
Industrial Production: Manufacturing (NAICS) Personal Consumption Expenditures: Durable Goods
Government Consumption Expenditures & Gross Investment Gross Private Domestic Investment
Civilian Unemployment Rate Continued Claims (Insured Unemployment)
Average Weekly Hours of Production and Nonsupervisory Employees: Mfg Civilian Employment
Civilian Employment-Population Ratio Persons unemployed 15 weeks or longer, as a percent of the civilian labor force
Manufacturers’ New Orders: Durable Goods Real Final Sales of Domestic Product
Manufacturers’ New Orders: Nondefense Capital Goods Excluding Aircraft Total Business: Inventories to Sales Ratio
Capacity Utilization: Manufacturing Change in Private Inventories
Capacity Utilization: Total Industry Total Business Inventories
Light Weight Vehicle Sales: Autos & Light Trucks Housing Starts: Total: New Privately Owned Housing Units Started
Housing Starts: Total: New Privately Owned Housing Units Started New One Family Houses Sold: United States
New Private Housing Units Authorized by Building Permits Final Sales to Domestic Purchasers
Value of Manufacturers’ New Orders for Consumer Goods Industries Value of Manufacturers’ Unfilled Orders for Durable Goods Industries
Avg Weekly Overtime Hours of Production and Nonsupervisory Employees: Mfg Avg Hourly Earnings of Production and Nonsupervisory Employees: Goods-Producing
Avg Hourly Earnings of Production and Nonsupervisory Employees: Construction Avg Hourly Earnings of Production and Nonsupervisory Employees: Manufacturing
Real Manufacturing and Trade Industries SalesAdjusted Personal consumption expenditures: Durable goods (implicit price deflator)
Personal consumption expenditures: Nondurable goods (implicit price deflator) Personal consumption expenditures (implicit price deflator)
Housing Starts in Midwest Census Region Housing Starts in Northeast Census Region
Housing Starts in South Census Region Housing Starts in West Census Region
Initial Unemployment Claims Real Manufacturing and Trade Inventories
Industrial Production: Business Equipment Industrial Production: Consumer Goods
Industrial Production: Durable Consumer Goods Industrial Production: Durable Materials
Industrial Production: Final Products (Market Group) Industrial Production: Fuels
Industrial Production: Manufacturing (SIC) Industrial Production: Materials
Industrial Production: Nondurable Consumer Goods Industrial Production: Nondurable Materials
Manufacturers: Inventories to Sales Ratio Nonfarm Private Construction Payroll Employment
Nonfarm Private Financial Activities Payroll Employment Nonfarm Private Goods - Producing Payroll Employment
Nonfarm Private Manufacturing Payroll Employment Nonfarm Private Service - Providing Payroll Employment
Total Nonfarm Private Payroll Employment Nonfarm Private Trade, Transportation, and Utilities Payroll Employment
New Private Housing Units Authorized by Building Permits in the Midwest New Private Housing Units Authorized by Building Permits in the Northeast
New Private Housing Units Authorized by Building Permits in the South New Private Housing Units Authorized by Building Permits in the West
Number of Civilians Unemployed for 5 to 14 Weeks Number of Civilians Unemployed for 15 Weeks and Over
Number of Civilians Unemployed for 15 to 26 Weeks Number of Civilians Unemployed for 27 Weeks and Over
Number of Civilians Unemployed for Less Than 5 Weeks Average (Mean) Duration of Unemployment
Consumer Opinion Surveys: Confidence Indicators: OECD Indicator for the US Growth rate of nominal GDP
Growth rate of Nominal Dispoable Income
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Table C.1 (Continued)

Stock Market
S&P 500 Index return S&P 500 Volatility 1m
CBOE DJIA Volatility Index NASDAQ 100 Index return
CBOE NASDAQ 100 Volatility Index Russell 2000 Price Index return
Russell 2000 Vol 1m Wilshire US Small-Cap Price Index return
Wilshire Small Cap Vol
International Competitiveness
Real Trade Weighted U.S. Dollar Index: Broad Trade Weighted U.S. Dollar Index: Major Currencies
Total Current Account Balance for the United States Real Exports of Goods & Services
Balance on Merchandise Trade Real imports of goods and services
Canada / U.S. Foreign Exchange Rate, Canadian Dollars to One U.S. Dollar Japan / U.S. Foreign Exchange Rate, Japanese Yen to One U.S. Dollar
Switzerland / U.S. Foreign Exchange Rate, Swiss Francs to One U.S. Dollar U.S. / U.K. Foreign Exchange Rate, U.S. Dollars to One British Pound
Real Broad Effective Exchange Rate for United States
Micro-level
Manufacturing Sector: Unit Labor Cost Nonfarm Business Sector: Unit Labor Cost
Compensation of employees: Wages and salaries Compensation of employees: Mfg: Nondurables: Food, beverage and tobacco
Employment Cost Index: Total comp in Management, professional, and related Manufacturing Durable Goods Sector: Compensation
Employment Cost Index: Benefits: Private Industry Workers Employment Cost Index: Total comp for civilian workers in all industries and occupations
Employment Cost Index: Wages & Salaries: Private Industry Workers 1-Month AA Nonfinancial Commercial Paper Rate
10-Year Treasury Constant Maturity Rate 3-Month AA Nonfinancial Commercial Paper Rate
TermStructure Effective Federal Funds Rate
Moody’s Seasoned Baa Corporate Yield Relative to Yield on 10-Year Treasury Moody’s Seasoned Aaa Corporate Bond Yield
30-Year Conventional Mortgage Rate Moody’s Seasoned Baa Corporate Bond Yield
Bank Prime Loan Rate Producer Price Index for All Commodities
Producer Price Index by Commodity Industrial Commodities Producer Price Index by Commodity Intermediate Energy Goods
Producer Price Index by Commodity for Crude Energy Materials Producer Price Index by Commodity for Finished Consumer Goods
Producer Price Index by Commodity Intermediate Materials 6-Month Treasury Bill: Secondary Market Rate
1-Year Treasury Constant Maturity Rate 5-Year Treasury Constant Maturity Rate
3-Month Treasury Bill: Secondary Market Rate 3-month Treasury Constant Maturity Rate
Producer Price Index by Commodity for Final Demand: Finished Goods Moody’s Seasoned Aaa Corporate Bond Minus Federal Funds Rate
Moody’s Seasoned Baa Corporate Bond Minus Federal Funds Rate 3-Month Commercial Paper Minus Federal Funds Rate
Moody’s Seasoned Aaa Bbb Spread Size of High Yield Market in U.S. Dollars
High Yield Default Rate, Trailing 12-month Bond defaults within the industry (in percent)
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