

SMART analysis with multi-scale multi-physics coupled codes involving TRACE SCF and PARCS

Kanglong Zhang

Institute for Neutron Physics and Reactor Technology (INR)

Outlines

<u>SMART</u> analysis with multi-scale multi-physics coupled <u>codes involving TRACE SCF and PARCS</u>

- SMART introduction to the overall system
- Analysis 1 accident: Loss Of FeedWater (LOFW)
- Code 1: TRACE/SCF
- Analysis 2 accident: Steam Line Break (SLB)
- Code 2: TRACE/SCF/PARCS
- Conclusion and Outlook

- Codes coupling methodology
- Modeling
- Transient sequences
- Results

SMART Reactor

System-Integrated Modular Advanced Reactor (KAERI, South Korea)

Outlines

<u>SMART analysis</u> with multi-scale multi-physics coupled <u>codes involving TRACE SCF and PARCS</u>

- SMART introduction to the overall system
- Analysis 1 accident: Loss Of FeedWater (LOFW)
- Code 1: TRACE/SCF
- Analysis 2 accident: Steam Line Break (SLB)
- Code 2: TRACE/SCF/PARCS
- Conclusion and Outlook

- Codes coupling methodology
- Modeling
- Transient sequences
- Results

Codes coupling methodology – via ICoCo

1 Interface between TRACE and SCF

The field mapping between codes are by MEDCoupling

Modeling: TRACE – <u>**RPV TH</u>**, SCF – <u>**Core TH**</u>, SCF – <u>**Core NK**</u> (point kinetic)</u>

LOFW sequence: from Steady State (SS)

LOFW sequence: transient (TS)

2. All PHRSIV open, no SCRAM, main PUMPs keep running.

Solid shapes – close Empty shapes – open

Results: Steady State (SS)

Parameter	Reference	TRACE (error %)	TRACE-SCF (error %)
Primary pressure (MPa)	15.0	14.92 (0.5)	14.88 (0.8)
Core Power (MW)	330.0	330.0 (0.0)	330.0 (0.0)
Core inlet T (K)	568.85	568.56 (0.05)	568.28 (0.1)
Core outlet T (K)	596.15	594.07 (0.35)	592.37 (0.66)
Total mass flow rate (kg/s)	2090	2335 (11)	2337 (11)
Core pressure drop (kPa)	Between 5-45	25.7	26.3

Results: transient (TS)

Results: transient (TS)

The core power

Outlines

<u>SMART analysis</u> with multi-scale multi-physics coupled <u>codes involving TRACE SCF and PARCS</u>

- SMART introduction to the overall system
- Analysis 1 accident: Loss Of FeedWater (LOFW)
- Code 1: TRACE/SCF
- Analysis 2 accident: Steam Line Break (SLB)
- Code 2: TRACE/SCF/PARCS
- Conclusion and Outlook

- Codes coupling methodology
- Modeling
- Transient sequences
- Results

Codes coupling methodology – via <u>ICoCo</u>

Modeling: TRACE – <u>**RPV TH**</u>, SCF – <u>**Core TH**</u>, PARCS – <u>**Core NK**</u>

Modeling: TRACE – <u>**RPV TH</u>**, SCF – <u>**Core TH**</u>, PARCS – <u>**Core NK**</u></u>

PRHRS: Passive Residual Heat Remove System

PRHRSIV: Passive Residual Heat Remove System Isolation Valve

- ECT: Emergency Cooldown Tank
- HX: Heat Exchanger

PARCS/SCF model - Core

- 1. SG1 double end break happen, Loss of offsite power, at the same time;
- 2. Pumps coasting down, SG1 pressure decrease under 2.0 MPa;

Solid shapes – close Empty shapes – open

3. SCRAM, SIV / FWIV / TSV close, PHRSIV open.

The total transient is 500s and the SLB happens at 100s.

Results: Steady State (SS) compared with TRACE/PANTHER by TBL

Parameter	Reference	TBL (diff. %)	KIT (diff. %)
Primary pressure (MPa)	15.0	15.0 (0.0)	15.0 (0.0)
Core Power (MW)	330.0	330.0 (0.0)	330.0 (0.0)
Core inlet T (K)	568.85	567.9 (0.2)	563.3 (1.0)
Core outlet T (K)	596.15	596.15 (0.0)	591.0 (1.0)
Total RPV flow (kg/s)	2090.0	2090.0 (0.0)	2088.3 (0.1)
Core mass flow rate (kg/s)	2043	2058 (0.7)	2088.3 (2.2)
Core pressure drop (kPa)	Between 5-45	24.3	27.9

Results: transient (TS) compared with TRACE/PANTHER by TBL

Pressure in the SG tubes

Integral mass flowrate through SLB ends

Results: transient (TS) compared with TRACE/PANTHER by TBL

Results: transient (TS) compared with TRACE/PANTHER by TBL

Coolant temperatures at the core inlet and outlet

Outlines

<u>SMART analysis</u> with multi-scale multi-physics coupled <u>codes involving TRACE SCF and PARCS</u>

- SMART introduction to the overall system
- Analysis 1 accident: Loss Of FeedWater (LOFW)
- Code 1: TRACE/SCF
- Analysis 2 accident: Steam Line Break (SLB)
- Code 2: TRACE/SCF/PARCS
- Conclusion and Outlook

- Codes coupling methodology
- Modeling
- Transient sequences
- Results

Conclusion and Outlook

Conclusions from the LOFW (ATWS) accident with TRACE/SCF-ICoCo:

- During the LOFW:
 - The coolant temperature increase due to lost of heat remove, in the primary loop;
 - Core power decrease to very low level thanks to strong negative TH feedback;
 - The coolant temperature decrease in sequence, in the primary loop.
- The reactor **stay safe** in and after the LOFW accident.

Conclusions from the SLB accident with TRACE/SCF/PARCS-ICoCo:

- During the SLB:
 - SCRAM and stopping of main pumps due to SLB in the secondary side;
 - Core power suddenly decrease to low level and pump speed gradually go to 0;
 - Stable natural circulation established, residual heat sufficiently removed from the core.
- The reactor stay safe in and after the SLB accident.

Future work:

• Improve the running stability of the coupled code TRACE/SCF/PARCS-ICoCo.

Acknowledgements

McSAFER project has received funding from the **Euratom research and training program** 2019-2020 under the grant agreement No 945063.

> The content of this presentation reflects only the authors' views and the European Commission is not responsible for any use that may be made of the information it contains.

Thanks for your attention.