

EGU23-3721, updated on 09 Apr 2024 https://doi.org/10.5194/egusphere-egu23-3721 EGU General Assembly 2023 © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

What are coarse dust aerosols, and how do they impact the Earth's climate system?

Adeyemi Adebiyi¹, Jasper Kok², Benjamin Murray³, Claire Ryder⁴, Jan-Berend Stuut⁵, Ralph Kahn⁶, Peter Knippertz⁷, Paola Formenti⁸, Natalie Mahowald⁹, Carlos Perez Garcı́a-Pando¹⁰, Martina Klose¹¹, Albert Ansmann¹², Bjørn Samset¹³, Akinori Ito¹⁴, Yves Balkanski¹⁵, Claudia Di Biagio¹⁶, Manolis Romanias¹⁷, Yue Huang¹⁸, and Jun Meng¹⁹

Mineral dust is an important aerosol specie in the atmosphere that impacts the Earth's climate system through its interactions with radiation, clouds, hydrology, atmospheric chemistry, and biogeochemistry. Because dust sizes span more than three orders of magnitude in diameter and dust properties are size-dependent, most previous studies separate dust particles into different classes – broadly defined as fine and coarse dust – which could produce distinct impacts on the Earth system. However, there are general inconsistencies in the terminology, the diameter boundaries, and diameter ranges currently attributed to dust size classes across the literature. As part of a comprehensive review of coarse dust recently completed, we propose, with justification, a new uniform classification that defines coarse and super-coarse dust as particles between 2.5 -

¹University of California Merced, Departmemt of Life and Environmental Sciences, Merced, United States of America

²Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA, USA

³School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom

⁴Department of Meteorology, University of Reading, Reading RG6 6BB, United Kingdom

⁵VU – Vrije Universiteit Amsterdam, Faculty of Science, Department of Earth Sciences, The Netherlands

⁶Earth Sciences Division, NASA Goddard Space Flight Center, Greenbelt, MD, USA

⁷Karlsruher Institut fu□r Technologie, Institut fu□r Meteorologie und Klimaforschung, Karlsruhe, Germany

⁸Universite Paris Cite and Univ Paris Est Creteil, CNRS, LISA, F-75013 Paris, France

⁹Earth and Atmospheric Sciences Department, Cornell University, Ithaca, NY, USA

¹⁰•Barcelona Supercomputing Center, Barcelona, Spain •ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Spain

¹¹Karlsruher Institut fu□r Technologie, Institut fu□r Meteorologie und Klimaforschung, Karlsruhe, Germany

¹²Leibniz Institute for Tropospheric Research, Leipzig, Germany

¹³CICERO Center for International Climate Research, Oslo, Norway

¹⁴Yokohama Institute for Earth Sciences, JAMSTEC, Yokohama, Kanagawa 236-0001, Japan

¹⁵Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, IPSL, Gif-sur-Yvette, France

¹⁶Universiť e Paris Ciť e and Univ Paris Est Creteil, CNRS, LISA, F-75013 Paris, France

¹⁷Institut Mines-Telecom Nord Europe, Univ. Lille, Center for Energy and Environment, F-59000 Lille, France

¹⁸Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA, USA; California Air Resources

¹⁹•Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, •Dalhousie University, Dept Physics & Atmospheric Sci, Halifax, NS, Canada

 μ m and 10 - 62.5 μ m in diameter, respectively. In addition, we will show several lines of observational evidence that indicate coarse and super-coarse dust particles are transported much farther than previously expected and that the abundance of these particles is substantially underestimated in current global models. Despite the limitations of representing coarse and supercoarse dust aerosols in models, we will highlight their unique impacts on several aspects of the Earth's climate system.