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Abstract

Attribute-based person retrieval is a crucial component in various real-
world applications, including surveillance, retail, and smart cities. Contrary
to image-based person identification or re-identification, individuals are
searched for based on descriptions of their soft biometric attributes, such
as gender, age, and clothing colors. For instance, attribute-based person
retrieval enables law enforcement agencies to efficiently search enormous
amounts of surveillance footage gathered from multi-camera networks to
locate suspects or missing persons.

This thesis presents a novel deep learning framework for attribute-based per-
son retrieval. The primary objective is to research a holistic approach that is
suitable for real-world applications. Therefore, all necessary processing steps
are covered. Pedestrian attribute recognition serves as the base framework to
address attribute-based person retrieval in this thesis. Various design char-
acteristics of pedestrian attribute recognition approaches are systematically
examined toward their suitability for attribute-based person retrieval. Fol-
lowing this analysis, novel techniques are proposed and discussed to further
improve the performance. The PARNorm module is introduced to normalize
the model’s output logits across both the batch and attribute dimensions to
compensate for imbalanced attributes in the training data and improve person
retrieval performance simultaneously. Strategies for video-based pedestrian
attribute recognition are explored, given that videos are typically available
instead of still images. Temporal pooling of the backbone features over time
proves to be effective for the task. Additionally, this approach exhibits faster
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Abstract

inference than alternative techniques. To enhance the reliability of attribute-
based person retrieval rankings and address common challenges such as oc-
clusions, an independent hardness predictor is proposed that predicts the dif-
ficulty of recognizing attributes in an image. This information is utilized to
remarkably improve retrieval results by down-weighting soft biometrics with
an increased chance of classification failure. Additionally, three further en-
hancements to the retrieval process are investigated, including model calibra-
tion based on existing literature, a novel attribute-wise error weighting mech-
anism to balance the attributes’ influence on retrieval results, and a new dis-
tance measure that relies on the output distributions of the attribute classifier.

Meaningful generalization experiments on pedestrian attribute recognition
and attribute-based person retrieval are enabled for the first time. For this
purpose, the UPAR dataset is proposed, which contributes 3.3 million binary
annotations to harmonize semantic attributes across four existing datasets and
introduces two evaluation protocols. Moreover, a new evaluation metric is
suggested that is tailored to the task of attribute-based person retrieval. This
metric evaluates the overlap between query attributes and the attributes of
the retrieved samples to obtain scores that are consistent with the human
perception of a person retrieval ranking.

Combining the proposed approaches yields substantial improvements in both
pedestrian attribute recognition and attribute-based person retrieval. State-
of-the-art performance is achieved concerning both tasks and existing meth-
ods from the literature are surpassed. The findings are consistent across both
specialization and generalization settings and across the well-established re-
search datasets. Finally, the entire processing pipeline, from video feeds to the
resulting retrieval rankings, is outlined. This encompasses a brief discussion
on the topic of multi-target multi-camera tracking.
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Kurzfassung

Die attributbasierte Personensuche ist eine entscheidende Komponente in
verschiedenen realen Anwendungen. Dazu gehören die Videoüberwachung,
der Einzelhandel und intelligente Städte. Im Gegensatz zu bildbasierten
Ansätzen zur Identifizierung oder Wiedererkennung von Personen zielt sie
darauf ab Personen anhand von Beschreibungen ihrer weichen biometri-
schen Merkmale wie Geschlecht, Alter und Kleidungsfarbe zu suchen. Die
attributbasierte Personensuche ermöglicht es beispielsweise Strafverfol-
gungsbehörden, enorme Mengen an Bildmaterial, das von einem Netzwerk
aus Kameras gesammelt wurde, effizient zu durchsuchen, um verdächtige
oder vermisste Personen zu finden.

In dieser Dissertation wird ein neuartiger Deep Learning Ansatz für die attri-
butbasierte Personensuche vorgestellt. Das primäre Ziel ist die Erforschung
eines ganzheitlichen Ansatzes, der für reale Anwendungen geeignet ist. Da-
her werden alle hierfür notwendigen Verarbeitungsschritte betrachtet. Die Er-
kennung von Personenattributen dient in dieser Dissertation als Grundgerüst
für die attributbasierte Personensuche. Es werden verschiedene Designmerk-
male von Ansätzen für die Personenattributerkennung systematisch auf ihre
Eignung für die attributbasierte Personensuche untersucht. Darüber hinaus
wird das PARNorm-Modul eingeführt, das die Ausgaben des Attributerken-
nungsmodells sowohl über die Batch- als auch über die Attributdimensionen
normalisiert, um den Einfluss unausgewogener Attribute in den Trainings-
daten zu kompensieren und gleichzeitig die Leistung der Personensuche zu
verbessern. Da in der Regel Videos anstelle von Einzelbildern zur Verfügung
stehen, werden Strategien zur videobasierten Erkennung von Personenattri-
buten untersucht. Die zeitliche Zusammenführung von abstraktenMerkmals-
vektoren, die vom Basismodell generiert werden, erweist sich als effektiv für
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diese Aufgabe. Darüber hinaus ermöglicht dieser Ansatz eine schnellere In-
ferenz im Vergleich zu alternativen Ansätzen. Um die Zuverlässigkeit der at-
tributbasierten Personenerkennung zu verbessern und häufige Probleme wie
Verdeckungen zu lösen, wird ein unabhängiger Schwierigkeitsermittler vor-
geschlagen, der die Schwierigkeit der Bestimmung von Personenattributen in
einem Bild erkennt. Die Schwierigkeitsinformationen werden genutzt, um die
Suchergebnisse deutlich zu verbessern, indem schwierige Attribute niedriger
gewichtet werden. Zusätzlich werden drei weitere Verbesserungen des Such-
prozesses untersucht: eineModellkalibrierung auf der Grundlage bestehender
Literatur, ein neuartiger Mechanismus zur attributweisen Fehlergewichtung,
um den Einfluss der Attribute auf die Suchergebnisse auszugleichen, und ein
neues Distanzmaß, das auf den Ausgabeverteilungen des Attributklassifika-
tors beruht.

Es werden erstmals aussagekräftige Generalisierungsexperimente zur Er-
kennung von Personenattributen und zur attributbasierten Personensuche
ermöglicht. Zu diesem Zweck wird der UPAR-Datensatz vorgeschlagen,
der 3,3 Millionen neue binäre Annotationen verfügbar macht, um die se-
mantischen Attribute von vier bestehenden Datensätzen zu harmonisieren.
Zusätzlich werden zwei Auswertungsprotokolle eingeführt. Darüber hinaus
wird eine neue Evaluationsmetrik vorgeschlagen, die auf die attributbasierte
Personensuche zugeschnitten ist. Diese Metrik wertet die Übereinstimmung
zwischen den Attributen der Abfrage und den Attributen der abgerufenen
Beispiele aus.

Die Kombination der vorgeschlagenen Ansätze führt zu erheblichen Ver-
besserungen sowohl bei der Erkennung von Personenattributen als auch
bei der attributbasierten Personensuche. Bezüglich beiden Aufgaben wird
der aktuelle Stand der Technik übertroffen. Diese Erkenntnisse gelten
sowohl für die etablierten Spezialisierungsdatensätze als auch für den
UPAR-Generalisierungsdatensatz. Abschließend wird die gesamte Verarbei-
tungspipeline von den Videodaten der Kameras bis zu den resultierenden
Suchergebnissen skizziert. Dies beinhaltet eine kurze Diskussion von Verfah-
ren zum kameraübergreifenden Verfolgen von Personen.
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1 Introduction

The main objective of this thesis is to examine algorithms for retrieving im-
ages or tracks of persons that match a specific semantic description of their
visual appearance from a large gallery database collected from amulti-camera
network. The focus is on a holistic consideration of the task for real-world ap-
plications. This work encompasses all steps required, including the creation of
a suitable research dataset and evaluation metric, optimization of Pedestrian
Attribute Recognition (PAR) as the feature extraction approach, refinement
of the retrieval process, and a brief introduction to the entire system pipeline
as well as its implementation.

The following section first provides the motivation for the research in
Section 1.1. Subsequently, the most significant challenges hindering robust
attribute-based person retrieval are presented in Section 1.2. Finally, the main
contributions of the thesis are summarized in Section 1.3 and its structure
is presented in Section 1.4.

1.1 Motivation

Rapid advancements in camera technology, combinedwith a growing demand
for security, led to a significant rise of surveillance cameras in both public
and private spaces. Nowadays, surveillance cameras are found in various
settings, including malls, city centers, airports, and railway stations. Fur-
thermore, such cameras play a crucial role in enhancing the safety of mass
events [Sto19]. This trend opened up a multitude of new possibilities, paving
the way for smart city applications and enhancing the capabilities of law en-
forcement agencies. Analyzing the video streams from these cameras enables
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1 Introduction

intelligent mobility and effective surveillance, all crucial for ensuring public
safety during large gatherings or in areas prone to criminal activities [Fen17].
For instance, possible mobility solutions include intelligent routing of crowds
or vehicles and traffic light planning [Cor01, Nap22]. Additionally, surveil-
lance camera footage helps in locating missing individuals, keeping track
of offenders, and aiding criminal investigations. It empowers authorities to
quickly intervene after a security incident and conduct thorough retrograde
investigations [Gol23].

Regarding surveillance systems, two primary types of use cases prevail: on-
line and offline evaluation of collected data. Online surveillance systems have
been deployed in numerous locations globally, including London [Sat20] in
England and Mannheim [dpa20] in Germany. In this context, human opera-
tors typically monitor multiple live feeds from areas prone to criminal activ-
ities simultaneously, actively seeking anomalies, as illustrated in Figure 1.1a.
In the event of a safety-critical incident, online evaluation enables prompt in-
tervention [Akt23]. Moreover, video surveillance systems have played a deci-
sive role in retrograde crime investigations, exemplified by the identification
of the Boston bombers in 2013 [BBC13]. In the retrograde use case, law en-
forcement agencies analyze image and video data collected following an event
involving serious criminal offenses. Besides the aforementioned terror attack
on the BostonMarathon in 2013, notable incidents include the G20 conference
in Hamburg in 2017. The protests during the G20 conference, depicted in Fig-
ure 1.1b, escalated into violence and caused extensive crime investigations
based on vast amounts of video data [WEL17, Spi18].

However, the amount of datamade available grows at impressive rates. There-
fore, manual data processing becomes increasingly slow and tedious, demand-
ing a high level of attention. This applies to both use cases. Furthermore,
it is challenging to monitor a large number of camera views simultaneously
without potentially missing relevant incidents. Automation is essential due
to these challenges. When a new suspect is identified, reviewing the video
data to assess the suspect’s movements and actions becomes a repetitive task.
Additionally, ensuring data protection is vital for societal acceptance [Gol22].
Automation alleviates the need for human operators to review entire videos.

2



1.1 Motivation

Instead, specialized algorithms perform the task efficiently without focusing
on specific individuals. Furthermore, automation enables easy enforcement of
privacy regulations and accurate logging of data access by human personnel,
enhancing overall operational integrity.

(a) Online use case¹ (b) Retrograde use case²

Figure 1.1: Surveillance use cases – Surveillance systems typically serve two distinct use cases.
On the one hand, video feeds undergo online evaluation, where data is processed
in real-time with the objective of rapid intervention after an incident. As depicted
in Figure 1.1a, system operators typically engage in manual efforts to identify rele-
vant activities or persons from numerous concurrently monitored camera streams.
In contrast, retrograde evaluation involves the examination of stored data after an
incident has occurred. For instance, Figure 1.1b shows scenes from mass protests
during the G20 conference in Hamburg in 2017, during which many crimes hap-
pened. Although real-time evaluation is no requirement in such scenarios, manual
evaluation in the aftermath is a tedious task for human personnel.

Searching for persons of interest in vast amounts of image and video data is
among the most critical tasks for law enforcement agencies [Fer14]. Person
search allows exploring the occurrences of suspects in the data, tracking their
movements, including escape routes, and identifying further crimes associ-
ated with the person of interest. Several research fields and definitions exist
concerning the use of deep learning techniques for person search, which share
commonalities but necessitate distinction due to essential differences [Gal21].
These are person identification, re-identification, and retrieval. Person iden-
tification aims at identifying a previously registered individual. This involves

¹ https://www.mannheimer-morgen.de/fotos_fotostrecke,-fotostrecke-modellprojekt-in-
mannheim-_mediagalid,32349.html; Christoph Blüthner

² https://pixabay.com/de/photos/demonstration-g20-protest-2482170/
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1 Introduction

acquiring biometric information and comparing it to an identity database. On
the other hand, person re-identification focuses on discovering additional oc-
currences of a human being within the data. Re-identification approaches are
applied after an individual of interest is initially observed in the footage, aim-
ing at gathering further information about the suspect’s activities. Unlike per-
son identification, there is no direct comparisonwith an identity database con-
taining biometric data and personal information such as name and address.
Furthermore, both hard and soft biometrics may be employed. In contrast to
hard biometrics, soft biometrics are semantic features [Sam08, Rei11] that do
not allow unambiguous distinction of individuals [Jai04a, Dan16]. Last, per-
son retrieval is a broader task involving finding individuals matching specific
characteristics from an image or video database. Contrary to identification,
this task does not involve matching to a specific identity, andmultiple individ-
uals may be considered correct retrieval results. For this task, soft biometric
features are primarily leveraged [Gal21]. For a deeper understanding, the dif-
ferences between hard and soft biometrics are detailed in Section 2.1.1.

While image-based person re-identification [Ye22] and person identifica-
tion [Wan22d] are extensively explored research fields, soft biometric person
retrieval received comparatively less attention, despite its significance in sur-
veillance applications. In scenarios where no biometric information or clear
image of the person of interest are available due to occlusions, low resolution,
or camera blind spots, relying on soft biometric descriptions of a person’s
semantic attributes becomes the only viable option. These descriptions serve
as valuable cues for the use as a search query. Typically, these descriptions
are obtained from witness testimonies or acquired from the description of
relatives, when a missing person is searched.

Semantic person attributes refer to interpretable features with an inherent
semantic meaning, for instance, the approximate age and specific clothing
types and colors [Dan16]. In the context of this thesis, attributes are treated
as discrete entities. This means that search queries contain a list of attributes
describing the person who should be found and not, e.g., a description in nat-
ural language. The task of finding the occurrences of people based on such
information is referred to as attribute-based person retrieval.
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1.1 Motivation

Figure 1.2 provides an example of attribute-based person retrieval. The blue
box contains the soft biometric query. In this specific case, the list of seman-
tic attributes describes a male senior wearing black trousers and short, white
upper-body clothing. Furthermore, the retrieved images should depict indi-
viduals wearing a hat. Based on this search query, attribute-based person
retrieval generates a ranked list of gallery images. The gallery is composed
of person images that should be searched through. Images showing persons
who closely match the specified attributes should appear in early positions
in the ranking. In contrast, people with vastly different sets of semantic at-
tributes should be relegated to the lower positions of the list. In the exam-
ple, the top-5 ranking positions in the list are visualized, each identified by
a number above the images. The green boxes highlight person images that
align with the query description. In contrast, the red boxes denote images de-
picting individuals whose semantic attributes differ from the query in at least
one discrete soft biometric characteristic.

• Senior

• Male

• Upper-body clothing 

length short

• Upper-body clothing 

color white

• Trousers

• Lower-body clothing 

length long

• Lower-body clothing 

color black

• Hat

1                              2                              3                               4                     5              Query

Figure 1.2: Attribute-based person retrieval ranking – The query consists of a list of se-
mantic attributes and is given in the blue box on the left. For instance, a male senior
wearing black trousers, short, white upper-body garment, and headwear is searched.
The search result is a sorted list of images from a gallery. The numbers above the sin-
gle images denote the position in the ranking. Red and green boxes illustrate whether
the image matches the query (green) or not (red). Source of the images: [Zhe15].

This thesis focuses on developing a deep learning-based framework de-
signed for attribute-based person retrieval in low-resolution, real-world
video footage from extensive multi-camera networks. As the base approach,
PAR is utilized to extract soft biometric characteristics from image or video
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1 Introduction

data. The primary objective is to research methodologies that allow seamless
integration into smart city or surveillance applications.

1.2 Challenges

While research on related topics such as person re-identification is extensive,
performing attribute-based person retrieval in surveillance camera footage
remains challenging due to several factors. The challenges stem from dif-
ferences in camera characteristics, uncontrollable environments, as well as
task-specific difficulties. These challenges can be broadly categorized into
three groups: challenges related to image acquisition, challenges specific to
semantic person attributes, and challenges associated with real-world scenar-
ios. These categories of challenges are discussed in the following sections.

1.2.1 Challenges Emerging from Image Acquisition

First, challenges emerging from the image acquisition process are introduced.
This category includes challenging factors originating from the camera sen-
sors, the positions where surveillance cameras are typically installed, and ex-
ternal influences such as lighting conditions. Since this thesis aims at conduct-
ing attribute-based person retrieval in data from largemulti-camera networks,
the approach must be robust against such challenges.

Low spatial resolution: Surveillance cameras are typically strategically
positioned to cover the maximum possible area while ensuring protection
against tampering. Consequently, the distance to relevant objects is sig-
nificant, resulting in a spatial resolution of persons being only a few pixels
in both height and width. This limited resolution translates to minimal
visual information about the appearance of people, especially regarding
fine-grained local soft biometrics. Figure 1.3 highlights the complications
that low-resolution person crops pose for accurate recognition of semantic
attributes by blurring important details.

6
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Figure 1.3: Low-resolution imagery – Large distances between surveillance cameras and per-
sons in the background result in low spatial resolution of person images. Only few
information about the visual appearance is included so that the recognition of at-
tributes is greatly impeded. Image sources: [Den14, Liu17].

Viewpoints: Environments in realistic scenarios are typically uncontrollable,
resulting in images or videos being recorded from various cameras with dif-
fering viewpoints and viewing angles. Cameras in video surveillance net-
works are mounted at different heights and with different steepness in depen-
dence on the area they oversee. For instance, high-mounted overview cameras
monitor public squares, while low-mounted cameras are applied indoors or
in narrow streets. Furthermore, additional data recorded by witnesses with
their smartphones or by private surveillance cameras might be considered.
As a results, persons appear in different poses, and small-scale attributes, e.g.,
glasses, may not be determinable depending on the pose. Moreover, attributes
such as the appearance of a backpack vary strongly depending on the viewing
angle. For instance, the entire backpack is visible from the back, whereas only
the straps are visible in a frontal view of a person. This challenge is demon-
strated in Figure 1.4, where the first four images starting from the left depict
the same person from different viewing angles. The subsequent images illus-
trate the varying appearance of a backpack depending on whether the person
wearing it is seen from the front or back.

Figure 1.4: Different viewpoints – This figure shows samples for two persons captured from
different point of views. The first four images depict the person from a steep perspec-
tive and viewed from the right, front, or left side. Especially, recognizing attributes
such as backpack suffers from varying viewpoints due to different appearance when
seen from the front or back. Image sources: [Den14, Zhe15].
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Illumination: Illumination greatly impacts image or video quality. Inade-
quate illumination, such as during the night or in shaded regions, results in
low contrast, blurring, and raised image noise. Additionally, it leads to poor
color perception if the illumination is too low. In contrast, excessive illumi-
nation for the camera sensor causes details to be lost in overexposed images.
Moreover, varying lighting conditions may coexist in the same scene. For in-
stance, the visual appearance changeswhen a personwalks into a shaded area.
Figure 1.5 presents a comparison of images from two individuals captured un-
der different lighting conditions. Dependent on the illumination, especially
colors appear different, and details are hardly visible. Note that the person on
the right wears the same clothes in all images.

Figure 1.5: Illumination – Two persons with three images each that show the difficulty with
illumination changes. For instance, colors appear strongly different depending on
the current lighting conditions. Image sources: [Den14, Zhe15].

Image noise: Image noise refers to the degradation of captured pixel values
in an image caused by random disturbances or inconsistencies. Noise mainly
originates from the sensor, loss of information during quantization, and sta-
tistical photon effects [Bov05].

Blurring: Blurring in images or specific image regions results in decreased
sharpness and weak contrast. It occurs due to moving objects, camera motion,
or image regions that are out of focus. Blurred images are challenging as
fine-grained information remains vague.

Indoor and outdoor scenes: Surveillance cameras are deployed both
indoors as well as outdoors, resulting in varying lighting conditions. For
instance, outdoor imagery is influenced by changing weather conditions,
whereas malls, airports, and other public spaces typically have uniform
artificial lighting indoors. This contrast can be observed in Figure 1.6, where
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the first three images from the left were recorded indoors and the subsequent
ones were collected outdoors.

Figure 1.6: Indoor and outdoor scenes – The first three images from the left display images
captured indoors, while the following images were taken outdoors. The differences
in illumination are clearly noticeable. Indoor scenes benefit from consistent artificial
lighting, resulting inwell-illuminated and comparable conditions. On the other hand,
outdoor illumination is greatly affected by various factors and frequently undergoes
changes. Image sources: [Den14, Li19a].

Camera types: Various types of cameras possess distinct characteristics, in-
cluding differences in internal calibration and sensor type. Consequently, im-
ages may exhibit distortions or variations in colors across different camera
models.

In summary, several significant challenges are related to the image acquisi-
tion process. These challenges are not specific to a particular task but rather
present difficulties for most computer vision tasks applied to real-world im-
agery.

1.2.2 Soft Biometric-Specific Challenges

Contrary to the challenges discussed before, the challenges presented in
this section stem from the recognition of soft biometrics or similar im-
balanced, fine-grained classification tasks. Soft biometrics are semantic
features of individuals describing an individual in a humanly understandable
manner [Dan16].

Occlusions: Occlusions pose a substantial challenge since relevant character-
istics may not be visible in the person image. For instance, if a person’s lower-
body is occluded, reliable recognition of related soft biometrics becomes im-
possible. This challenge is visualized in Figure 1.7. Occlusions can result from
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various sources, including objects, other persons, or even the depicted per-
son’s own body parts. When it comes to attribute-based person retrieval,
occlusions pose a significant challenge that must be effectively addressed to
achieve accurate retrieval results.

Figure 1.7: Occlusions – Occlusions caused by objects, person, or obstacles are a severe chal-
lenge in PAR and attribute-based person retrieval. Relevant characteristics might not
be visible and, therefore, attributes not determinable. Image sources: [Zhe15, Liu17].

Intra-class variance: Semantic attributes exhibit a wide range of variance
in their appearance. Colors, for instance, can hardly be assigned to distinct
classes due to the fluid transitions between them. Furthermore, attributes like
attachments occur in various colors and shapes, requiring a deep learning
model to abstract and focus on relevant characteristics in order to be able
to recognize these attributes robustly. This challenge exacerbates in cases of
generalization, when a deep learning model is transferred to a new domain
with different characteristics. Examples illustrating this variance are provided
in Figure 1.8. Hats and handbags, for instance, occur in awide range of shapes.
Similarly, colors appear in different shades.

Figure 1.8: Intra-class variance – The selected images showcase large intra-class variance.
Hats and handbags appear in different shapes, colors, and sizes. Similarly, distinct
colors such as blue occur in a large variety of shades. Image sources: [Liu17].

Imbalanced data distributions: As shown in Figure 1.9, imbalanced at-
tribute distributions present a further challenge.
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Figure 1.9: Attribute distributions – Positive ratios of selected attributes are reported for dif-
ferent datasets. This refers to the ratio of samples that exhibit a particular attribute.
One can observe that attributes such as gender are almost equally distributed on each
of the datasets. However, for attributes such as upper-body clothing length that are
highly dependent on the season, severe distribution shifts across the datasets are
visible. Also, there are rarely occurring attributes (e.g., lower-body clothing color
yellow) that are therefore difficult to learn from only a few samples.

While attributes such as gender are almost equally distributed, there are only
a few samples for certain attributes, like specific colors. These imbalances
arise from both real-world attribute distributions and dataset biases. Machine
learning models trained on imbalanced attribute distributions tend to prefer
recognizing either the presence or absence of the attributes, depending on
their distribution in the training set. Consequently, these models generalize
poorly to unseen data with deviating attribute distributions. Notably, differ-
ences regarding attribute distributions are observable across several datasets,
particularly apparent for attributes such as upper-body clothing length.
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Biased and limited datasets: The last soft biometric-specific challenge
stems from the unavailability of appropriate datasets. Available surveillance
datasets [Zhe15, Den14, Li19a, Liu17] are comparatively small and include
huge biases. For instance, the Market-1501 dataset was captured outdoors on
a campus during summer, featuring predominantly young people wearing
short clothes. Furthermore, appearance of persons but also clothing and
accessories may be specific to the culture and country in which the data
was collected. Consequently, it becomes challenging to avoid deep learning
models from overfitting training data, which is essential for achieving strong
generalization capabilities across domains. Moreover, each dataset comes
with its own set of attribute annotations, making it difficult to conduct
cross-domain experiments to compare the generalization ability of deep
learning models.

In conclusion, recognizing soft biometric attributes in images, as the basis for
attribute-based person retrieval, introduces task-specific challenges. Among
these challenges, occlusions and imbalanced attribute distributions within
datasets stand out as the most significant. Additionally, there is a notable
lack of suitable datasets for adequately assessing and comparing the general-
ization capabilities of deep learning methods in this context.

1.2.3 Real-World Challenges

The final category of challenges to consider are real-world challenges that
arise from the deployment of deep learning methods in practical applications.

Generalization ability: Machine learning models are trained on small ex-
cerpts of reality, which are often biased in terms of data distribution and di-
versity. However, robustness against variations in data is essential to ensure
optimal performance on previously unseen domains. For instance, deep learn-
ing models should capture general concepts behind semantic attributes rather
than focusing solely on the exact samples from the training data.

12



1.2 Challenges

Video processing: While most research datasets are image-based, i.e., at-
tribute recognition and person retrieval are carried out on single images, pri-
marily videos are processed in a surveillance scenario. Hence, it is crucial to
research methods that recognize soft biometrics based on whole tracklets of
people and not individual images.

Processing pipeline: In real-world scenarios, persons need to be detected
and tracked in videos before attribute-based person retrieval is performed.
Therefore, an entire pipeline consisting of grabbing the camera feeds, detect-
ing persons in each video frame, and tracking the people over time is nec-
essary. Errors in pipeline components, such as misaligned bounding boxes
generated by the person detector or incorrect tracks, present additional chal-
lenges for attribute-based person retrieval.

Real-time computation: Meeting real-time processing requirements is es-
sential for covering both the offline and online use case. Rapid intervention
after an incident necessitates searching for persons in current video frames
without delay. Thus, applied deep learning models need to be computation-
ally efficient.

Hardware: Given the typically high number of cameras, substantial comput-
ing resources, especially Graphics Processing Units (GPUs), are necessary.
Hence, an attribute-based person retrieval system in its entirety is required
to run on affordable hardware, considering that financial resources are of-
ten limited.

In summary, the real-world application of attribute-based person retrieval ap-
proaches necessitates additional processing steps as well as video processing.
These steps must adhere to real-time requirements to ensure applicability in
the online use cases, where incoming videos from the cameras are processed
in real-time, enabling quick intervention after security-relevant incidents.
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1.3 Contributions

This thesis aims at designing a deep learning-based framework for attribute-
based person retrieval in multi-camera networks under realistic, real-world
settings. The main contributions are summarized as follows:

• The utilization of PAR as the basis for attribute-based person retrieval
is extensively analyzed. Prior studies primarily concentrated on
optimizing the PAR task, disregarding the specific challenges and
requirements originating from the retrieval task. In this thesis, the
impact of design choices in the development of PAR methods are
thoroughly examined, focusing on crucial decisions to improve both
PAR and attribute-based person retrieval accuracy
simultaneously [Sch18, Spe20b, Cor23, Spe23b]. Additionally, a
normalization module is proposed to specifically address the
retrieval-relevant issue of imbalanced PAR model outputs, enhancing
attribute recognition and attribute-based person retrieval [Spe23a].

• This thesis evaluates recent strategies for video-based PAR, with the
aim of aggregating information across tracks to enhance the
robustness of attribute-based person retrieval [Spe20c]. The findings
demonstrate that the proposed lightweight temporal pooling model is
superior to more complex approaches in PAR and attribute-based
person retrieval.

• Explicit difficulty prediction for multi-label classification is introduced
to identify indeterminable semantic attributes, e.g., due to occlusions
or similar challenges [Spe20a]. The proposed Hardness Predictor (HP)
provides important complementary information, surpassing
uncertainty estimation methods when utilized as a weighting
mechanism during person retrieval [Flo21].

• The outputs of a PAR model need further processing to enable
effective attribute-based person retrieval. Specifically, this involves
computing distances between queries and gallery samples to
determine the similarity. This thesis delves into this aspect and
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proposes several measures to enhance the reliability and quality of the
resulting attribute-based person retrieval rank lists [Spe21a].
Reliability calibration is applied to compensate for over- or
underconfidence of the attribute classifier. Additionally, a weighting
technique is introduced to balance the impact of the attributes on the
retrieval distance, alongside a novel distance metric that takes into
account the output distributions of the classification model.

• This thesis introduces the Unified Pedestrian Attribute Recognition
(UPAR) dataset, a pioneering dataset enabling large-scale
generalization experiments concerning PAR and attribute-based
person retrieval [Spe23b]. The dataset unites image data from
well-known PAR datasets and harmonizes annotations for 40 attributes
by contributing 3.3 million new binary annotations. Comprehensive
studies focused on generalization are conducted, with the findings
integrated to develop more robust models [Cor23, Spe23b].

• Existing person retrieval metrics fall short in adequately measuring
the usefulness and meaningfulness of rank lists to the system operator
for attribute-based person retrieval. This is due to the practice of
making binary relevance decisions, even though certain attributes
might be occluded, and the image might indeed depict the person of
interest. To address this limitation, a novel measure is contributed that
considers the degree of match between the query attributes and the
soft biometrics annotated for the gallery samples [Spe23a].

• An extensive evaluation conducted on both publicly available
benchmarks and the proposed UPAR dataset demonstrates the
superior performance of the proposed framework compared to
existing literature. The results establish a new state-of-the-art for both
PAR and attribute-based person retrieval tasks in various settings,
including specialization and generalization. This achievement proves
the transferability and practical utility of the proposed methodology
in real-world applications.

• A brief overview of further works by the author is provided,
demonstrating the integration of the proposed attribute-based person
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retrieval approach into a surveillance system that covers the entire
processing pipeline, including person tracking, and achieves real-time
computation [Köh20, Spe22a, Spe22c].

1.4 Thesis Outline

This thesis is structured as follows. First, related literature is reviewed in
Chapter 2. This includes background information on soft biometrics, the gen-
eral presentation of works existing in attribute-based person retrieval and
PAR, and closely related works w.r.t. the proposed methodologies. Subse-
quently, Chapter 3 introduces the overall concept that is followed in this the-
sis. In Chapter 4, the datasets and evaluation protocols are presented, includ-
ing the UPAR dataset and the novel evaluation measure. Chapter 5 contains
the description of the baseline method. The following Chapter 6 deals with
improvements in terms of the PAR model that serves as the feature extrac-
tion approach for attribute-based person retrieval. Methods regarding opti-
mal design choices, normalization, and video-based processing are presented
and evaluated in detail. In Chapter 7, approaches concerning the retrieval
process are focused. Specifically, the impact of considering indeterminable
attributes, calibrating the PAR model’s outputs, and weighted distance com-
putation are investigated. The combination of the proposed methods in this
thesis is evaluated in Chapter 8. Furthermore, results are compared to the
current state-of-the-art to prove the effectiveness. Next, an entire surveil-
lance system is introduced in Chapter 9 in which the attribute-based person
retrieval is embedded to enable the search for persons in multi-camera net-
works. This includes Multi-Target Multi-Camera Tracking (MTMCT) as well
as an efficient implementation in order to allow real-time processing of video
feeds. Finally, Chapter 10 sums up this thesis and provides possible research
directions for future works.
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This thesis aims at researching attribute-based retrieval of persons using deep
learning techniques. This chapter presents relevant literature related to this
topic and the proposed framework.

First, Section 2.1 provides background information on soft biometrics and
their use in crime investigations. Next, the literature on attribute-based per-
son retrieval is presented in Section 2.2, where possible approaches to the
task are delimited. Last, additional research fields relevant to specific opti-
mizations proposed in this thesis are concisely introduced in Section 2.3.

2.1 Background on Soft Biometrics

In this thesis, soft biometric features, often referred to as semantic attributes,
serve as queries for conducting person retrieval. To provide a comprehensive
understanding and background on soft biometrics, this section first delves
into defining soft biometrics and distinguishing them from hard biometrics.
Subsequently, characteristics of soft biometric information are introduced in
Section 2.1.1, followed by a brief excursus on the use and significance of such
features in crime investigations in Section 2.1.2.

According to Jain et al. [Jai08], biometrics are physical, behavioral, or phys-
iological attributes unique to a specific individual, such as fingerprint, face,
iris, gait, or voice. These attributes, often termed hard biometrics, allow the
unequivocal identification of human beings. In contrast, soft biometric fea-
tures cannot be assigned to a specific individual unambiguously. Multiple in-
dividuals may share the same set of soft biometric attributes, making unique
identification impossible.
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The utilization of soft biometric features for person identification in law en-
forcement applications dates back to Alphonse Bertillon [HTF56] in 1956.
Bertillon proposed leveraging anatomical, morphological, and anthropomet-
rical characteristics, in addition to profile and full-face images, to identify
criminals. In related literature, there are several definitions of the term soft
biometrics [Jai04a, Sam08, Rei11, Dan16], which are summarized as follows:
Soft biometrics comprise characteristics that humans typically use to describe
each other [Sam08, Rei11]. These features aid in recognizing individuals with-
out allowing for clear-cut distinctions between people [Jai04a, Dan16].

Examples of soft biometric person attributes are given in Figure 2.1. The figure
shows attributes and their classification according to the taxonomy proposed
by Dantcheva et al. [Dan16]. The taxonomy distinguishes four categories: de-
mographic, anthropometric, medical, and material and behavioral attributes.
Demographic attributes are related to a person’s inherent characteristics, in-
cluding age, gender, ethnicity, and physical traits such as the color of eyes,
hair, and skin. These attributes play a significant role in person identifica-
tion and retrieval since they can be disguised but not completely altered. An-
thropometric soft biometric features comprise body measurements like body
height and proportions of facial features. Although being frequently reported
by eyewitnesses, this information is often subject to uncertainty and, thus, is
challenging to use for person retrieval in real-world scenarios [Spo92, Fli86].
More details concerning the utilization of soft biometrics in crime investi-
gations are provided in Section 2.1.2. The third category relates to medical
properties. Attributes within this category are difficult to capture at a glance
by eyewitnesses and, thus, are of minor importance in the context of person
retrieval. Attributes concerning objects and accessories a human may carry
belong to the material and behavioral soft biometrics category. For identifica-
tion tasks, these characteristics are not reliable, given that they can be easily
changed. However, in the context of person retrieval within a surveillance
scenario, they represent crucial information for finding a person of interest
during a limited time frame [Jai08, Dan11, Dan16].
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Figure 2.1: Taxonomy of soft biometrics – Following Dantcheva et al. [Dan16], soft biomet-
rics are categorized into four groups: demographic, anthropometric, medical, and
material and behavioral attributes. Example characteristics for each category are
given. Changed representation after [Dan16].

2.1.1 Characteristics of Soft Biometrics

After providing a definition of soft biometrics in the preceding section, the
important characteristics of this feature type are detailed. Hard biometric fea-
tures come with serious drawbacks in comparison to soft biometrics. They are
primarily used to identify individuals, which poses a direct threat to privacy
and may lead to severe consequences for incorrectly identified individuals.
For instance, the city of London implemented a face recognition system into
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its existing surveillance camera network. However, despite achieving high ac-
curacy scores for this task on benchmark datasets, human operators observed
poor outcomes in the real-world scenario [Sat20]. Independent studies found
that the identification accuracy was below 20% during the time period un-
der consideration. Challenges such as unfavorable viewing conditions in un-
controllable environments made it exceedingly difficult to acquire sufficiently
accurate information from the video data. This section draws a comparison
between hard and soft biometrics, elaborating on the essential characteristics
of soft biometrics.

Privacy-preserving: Soft biometric attributes are not unique to a specific
individual, making them considerably more privacy-friendly than hard bio-
metric features [Jai04a, Jai04b, Dan16]. Multiple persons may share the same
attributes and fit the same attribute description. In addition, certain attributes,
particularly those related to material soft biometrics, change regularly, allow-
ing only short-term re-identification. For instance, persons of interest can
only be re-identified if their clothing remains unchanged. However, this char-
acteristic also presents a disadvantage as criminals may exploit this. More-
over, the absence of a requirement for registration of individuals and an iden-
tity database is a notable advantage. This not only prevents the capture and
theft of sensitive data, e.g., by hackers, but also upholds privacy and data se-
curity.

Lowhardware requirements: Soft biometrics are non-invasivemethods, al-
lowing for easy extraction of such characteristics. No dedicated sensor hard-
ware such as fingerprint or iris scanners is required. Inexpensive cameras
are sufficient to acquire data to recognize semantic attributes from a dis-
tance [Jai04b].

No cooperation required: Another advantage is that no subject cooperation
is required [Jai04b], and attributes are determinable after an incident. Even
criminals attempting to prevent being captured by biometric systems are cap-
tured since it is difficult to escape or avoid cameras entirely, e.g., during mass
events or in public transportation [Fen17].

20



2.1 Background on Soft Biometrics

Recognizable at distance: Due to the acquisition of data through simple
cameras, semantic attributes are extractable from a distance without requir-
ing interaction with the subject [Jai04b]. Furthermore, semantic features such
as colors can be determined even in low-resolution imagery and are not signif-
icantly affected by the viewing angle. In contrast, camera-based hard biomet-
rics, like face identification, necessitate frontal views of the face with high
resolution to enable accurate identification. However, in an uncontrollable
real-world scenario, fulfilling this requirement is often challenging [Sat20].

Semantic meaning: An increasingly important factor is the semantic mean-
ing of soft biometric person attributes. According to the definitions [Jai04b,
Sam08, Rei11, Dan16], soft biometric characteristics align with the attributes
people naturally use to describe one another. The semantic meaning con-
tributes to understanding how the retrieval result was obtained. Providing the
recognized semantic attributes for each gallery image, along with the degree
of fit to the query for each attribute, provides meaningful additional infor-
mation to the system operator. This information assists in identifying latent
biases or data-specific issues. Consequently, it allows for adapting the query
accordingly to improve the search results or providing feedback to the system
developer for enhancement. In contrast, typical image-based identification or
re-identification approaches generate abstract global or local feature vectors
that lack semantic meaning and human comprehensibility [Wan22d, Ye22].

2.1.2 Soft Biometrics in Crime Investigations

Soft biometric features in crime investigations mostly appear as person de-
scriptions obtained by eyewitnesses’ testimonies, which in turn are essential
for investigators in many crimes. Such descriptions may be used for locat-
ing a person of interest after a security-relevant incident but also serve as
the basis for identifying suspects from mug shots, creating phantom images,
or choosing filler persons to arrange lineups [Mei07]. The first application
corresponds to the attribute-based person retrieval task investigated in this
thesis. Person descriptions constitute attribute-based person retrieval queries
to locate suspects within image or video data. Hence, this section sheds light
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on person descriptions in the context of law enforcement and discusses the
implications for the development of algorithms for attribute-based person re-
trieval. In general, related research distinguishes studies based on real crimes
and fictional studies conducted in laboratories. However, results vary signif-
icantly between both categories [Mei07], therefore, this section focuses on
real-world studies.

Number of features: The number of features mentioned by eyewitnesses is
of great importance for narrowing down the search space of matching indi-
viduals. Sporer [Spo92] found that person descriptions are often vague and
not specific. Witnesses in their study reported 9.71 ± 7.03 different char-
acteristics in their descriptions. The high standard deviation is particularly
striking. Many people described the suspects with only a few soft biometrics.
Generally, the number ranged from 1 to 48 different details. These findings
are consistent with those of Kuehn [Kue74] and Lindsay et al. [Lin94]. Kuehn
[Kue74] found that a majority of eyewitnesses declare either 8 or 9 semantic
attributes. Lindsay et al. [Lin94] observed that with 3.94 features on average,
even fewer features were reported. In comparison, according to the work of
Lindsay et al. [Lin94], person descriptions obtained during laboratory exper-
iments contained 7.35 characteristics on average. Explanations for this find-
ing might include the weapon-focus effect [Ste92] or increased stress levels
in real crime situations. Such influential factors are discussed in more detail
later in this section. In terms of attribute-based person retrieval, these find-
ings indicate that it is essential to have multiple witnesses and, thus, person
descriptions to obtain a complete description of the person of interest. As a
result, the methodology should be able to process merged testimonies.

Most frequent descriptors: When considering the descriptors most fre-
quently mentioned by witnesses, it is noticeable that mainly general infor-
mation [Kue74, Lin94] and statements concerning clothing are made [Spo92,
Lin94]. For instance, Kuehn [Kue74] examined eyewitness testimonies col-
lected immediately after an incident, and particularly general descriptions
of the offenders were given. The most frequently mentioned attributes in-
clude gender, age, and height. In this study, only a tiny fraction of witnesses
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recalled fine-grained information such as eye or hair color. Slightly differ-
ent observations were made by Sporer [Spo92]. In the archival analysis of
real crime testimonies, most frequently named descriptors referred to cloth-
ing followed by information about the head or face. Facial features in this
case mainly contain the hair color of people. Descriptive details about the
general impression of a perpetrator were provided only third most often but
still accounted for 25% of the descriptors. Lindsay et al. [Lin94] compared the
most likely stated attributes by witnesses of staged crimes with those reported
by real crime witnesses. Interestingly, participants in the laboratory studies
often mentioned more specific information like clothing or hair color but for-
got general information such as gender (less than 50% of the participants).
Contrary to this, especially gender (96%) was mentioned in the vast majority
of real-world cases. The second most frequently reported were characteris-
tics related to clothing, followed by hair color. Similar to the studies above,
fine-granular facial features (10%) were mentioned by only a tiny proportion
of witnesses, possibly because these features are difficult to perceive during a
crime. In conclusion, eyewitnesses of real crimes often report general impres-
sions and clothing information which are, therefore, essential characteristics
to consider during attribute-based retrieval. Highly-localized attributes, par-
ticularly facial features, are seldom included in person descriptions due to the
difficulty of perception in stressful situations or from a distance.

Accuracy of descriptions: In general, the accuracy of person descriptions
acquired from witness statements is mostly good according to relevant stud-
ies [Yui86, van97]. Both works observed person descriptors more likely to
be correct than faulty. Yuille et al. [Yui86] specified the accuracy across all
kinds of descriptors with 76% for the investigated shooting incident. Even af-
ter four to five months, witnesses could provide highly accurate descriptions
when they were interviewed a second time. However, it was found that per-
son descriptions are less precise than object or action descriptions in the same
shooting case. The reliability of descriptors varies greatly depending on their
type. For instance, estimates of age, height, and weight are prone to errors
(23% error rate according to [Yui86]) due to various factors. First, height and
weight estimates are primarily specified as average by witnesses, which leads
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to an effect called regression to the mean [Spo92, Fli86]. For instance, eye-
witnesses tend to underestimate the size of tall people and overestimate the
height of short people, respectively. Besides inaccuracies, this finding nega-
tively impacts the usefulness of such features for person search since these at-
tributes are not distinctive. Second, the own-anchor effect refers to witnesses
comparing the perpetrators to themselves [Fli86]. Thus, the descriptions of
persons concerning characteristics such as body size or weight cannot be as-
sumed to be objective. Details about color and style of clothes and hair were
erroneous to 18% in the study of Yuille et al. [Yui86]. Issues regarding the
memory of colors of human beings may explain these errors [Mün15]. The
work of van Koppen et al. [van97] indicates huge error rates related to facial
features, such as eye color, mouth, or nose. More than 60% of the witness
statements concerning these characteristics were erroneous. Local features
are rarely mentioned and are also subject to a high degree of uncertainty.
Besides, the study indicates a negative correlation between the accuracy of
a person description and its completeness, i.e., the more extensive a descrip-
tion, the less accurate.

2.2 Attribute-Based Person Retrieval

In general, person retrieval can be divided into two research fields based on
the type of the query: image-based or text-based. This thesis addresses per-
son retrieval based on textual queries describing soft biometric attributes. In
this case, no probe images of a person of interest are required to find match-
ing individuals in image or video databases. Instead, semantic person de-
scriptions serve as input to the retrieval system. These soft biometric re-
trieval techniques are further partitionable based on the form of the textual
queries [Gal21]. Figure 2.2 highlights the differences between natural lan-
guage queries, which describe a person’s visual appearance using whole sen-
tences, and discrete attribute queries that only include a list of certain seman-
tic attributes. In the context of surveillance applications, there are multiple
reasonswhy discrete attribute queries represent themore important form. For
instance, testimonies are subject to uncertainty, as discussed in Section 2.1.2.
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Hence, system operatorsmay start searcheswith only parts of the information
witnesses provide or combine statements of several witnesses, which is easier
in the discrete form. Furthermore, additional complexity and error sources by
natural language processing are avoided. Although this thesis focuses on the
discrete form, Section 2.2.1 offers a concise summary of works related to nat-
ural language-based person retrieval in order to provide a complete picture.
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(a) Natural language
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(b) Discrete attributes

Figure 2.2: Types of textual queries – Attribute-based person retrieval systems are dividable
according to the accepted input. Textual queries can either be in the form of sen-
tences expressed in natural language or in a discrete manner.

Whereas natural-language-based approaches are typically restricted to learn-
ing a shared cross-modal feature space between image and text embeddings,
discrete attribute-based person retrieval allows for a wider range of ap-
proaches. Methods can be categorized into three distinct types based on the
feature level at which the alignment between discrete textual descriptions
and images takes place, as illustrated in Figure 2.3.

The first approach involves employing a PAR model to determine the seman-
tic attributes of people for the images in the gallery. Once identified, these
attributes are compared to the attribute query to evaluate the similarity. This
method preserves semantic information and, therefore, allows to understand
and interpret the retrieval results by analyzing the attributes predicted for the
images. In addition, the semantic information extracted is beneficial to other
applications, for instance, as complementary data to improve image-based
person re-identification or tracking [Zhu15, Lin19, Spe20b]. For these reasons,
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the PAR approach is preferred in this thesis to tackle the task of attribute-
based person retrieval. The related literature regarding PAR is presented in
Section 2.2.2.
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Figure 2.3: Approaches for person retrieval using discrete attribute queries – There are
three approaches to address this task, which differ based on where the comparison
between text and image modalities is performed. The first approach uses PAR to
determine the semantic attributes of the gallery images, which are then compared
to the query attributes. The second approach involves learning a joint feature space
between both modalities, where the inputs from both text and image modalities are
embedded. Finally, attribute queries can be used to generate an image of the de-
scribed person, which is then compared with gallery samples in the image space.

The second approach aligns discrete attribute queries and images in a shared
feature space. This necessitates the implementation of feature extractors for
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both modalities, similar to natural language-based techniques. Typically, bi-
nary vectors are utilized to encode discrete textual queries, where each el-
ement represents a semantic attribute, and its value indicates whether it is
present or absent. These vectors serve as the input for the text encoder. The
rankings for retrieval are generated by calculating the distance within the
shared feature space between the attribute embeddings and image embed-
dings, which are created by the image encoder. Research on learning a joint
feature space between images and discrete attribute queries is outlined in Sec-
tion 2.2.3.

Last, it is possible to compare textual queries and images at the image level.
For this purpose, images of persons must be created on the basis of the at-
tribute description provided in the query. Either pixel-based comparison or
a retrieval based on image-to-image person re-identification models may be
performed to assess the similarity and build the ranking. However, due to
the high complexity and number of degrees of freedom involved in genera-
tive models, this method is not commonly used in the related literature. Thus,
option three is not covered in the following literature review.

2.2.1 Person Retrieval with Natural Language Queries

Only a few publicly available datasets provide surveillance imagery and de-
scriptions in natural language of the depicted individuals. Researchers focus
predominantly on the CUHK-PEDES [Li17b] dataset, which comprises 40,206
images illustrating 13,003 unique identities. This dataset features an impres-
sive set of 80,412 textual descriptions at the identity level. In comparison, the
ICFG-PEDES dataset [Din21] includes solely 54,522 image-level annotations
of natural language descriptions.

Natural language-based person retrieval approaches aim at aligning text
and image features in a joint feature space, using two encoders that gen-
erate representations for the image and text input, respectively. Early
works [Li17a, Li17b, Che18] leverage VGG [Sim14] and Long Short-Term
Memory (LSTM) [Hoc97] for extracting image embeddings and textual
features, respectively, and apply matching losses for alignment. With the
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progressive development of enhanced feature extractors, encoder backbones
for both image and text embeddings were replaced with modern variants.
Primarily ResNet [He16] derivatives are applied by later works to extract
image features [Sar19, Niu20, Zhe20, Che21] but also Convolutional Neural
Networks (CNNs) optimized for the use on mobile devices [Zha18a, Wan19b,
Agg20], such as MobileNet [How17]. Concerning the extraction of textual
features, the focus of literature [Sar19, Wu21, Zhu21, Che22a, Li22, Sha22,
Wan22e, Wan22f, Shu23] shifted to BERT [Dev19], i.e., transformer-based
architectures since they established themselves as state-of-the-art techniques
in the natural language processing domain.

Developing novel loss functions to improve cross-modal alignment of image
and text features is a vital area of research [Li17a, Zha18a, Sar19, Wan19b,
Zhe20, Che21]. Further research directions are similar to methods employed
in related topics such as image-based person re-identification or PAR. For in-
stance, approaches exploit additional branches that encode local information
about person segmentation [Wan20], human body parts [Che22a], or col-
ors [Wu21, Wan22e]. Moreover, further works [Din21, Sha22] rely on im-
plicit attention mechanisms to improve the localization of relevant features.
The primary disadvantage of such approaches is the increased complexity due
to additional branches and, thus, worse inference times.

All previously mentioned methods utilize data from only one modality for
their backbone model pre-training. However, the emergence of CLIP [Rad21]
has enabled several works [Han21, Yan22, Jia23] to pre-train their models with
image-text pairs in order to improve retrieval accuracy.

2.2.2 Pedestrian Attribute Recognition

Recognizing semantic attributes of individuals, commonly referred to as
PAR, is a challenging task in computer vision. This section provides an
overview of the related research in this area. Note that traditional methods
using handcrafted features are not covered, as deep learning models offer
improved performance by automatically learning complex representations
from image data [Li15].
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The methods are categorized into global image-based models, part-based ap-
proaches, attention mechanisms, novel loss functions, and transformer-based
methods. This categorization orients itself on the survey of [Wan22c]. Further
directions of research concerning PAR include sequential predictions of at-
tributes [Liu18a, Zha19b], curriculum learning approaches [Sar18a, Wan19a],
graphs [Li19b, Tan20, Lu23], and reinforcement learning [Ji22]. However,
since these methods are of minor importance to this work, they are not cov-
ered in the following analysis. More details are given in the comprehensive
survey by Wang et al. [Wan22c]. Finally, methods concerning video-based
PAR are presented.

Global image-based methods: Global image-based models process the en-
tire input image as a whole, rather than dividing the image into several sub-
regions. Consequently, these models are typically computationally efficient,
which makes them suitable for real-world deployment. The ACN model by
Sudowe et al. [Sud15] utilizes a pre-trained AlexNet as the backbone and em-
ploys distinct loss function for each attribute. The loss functions rely on the
Kullback-Leibler divergence between the model’s attribute predictions and
ground truth labels. TheDeepSAR andDeepMARmodels [Li15]mark a signif-
icant milestone in deep learning-based PAR. Besides showcasing substantial
improvement compared to traditional methods, the authors demonstrate that
jointly learning multiple attributes within the same neural network (Deep-
MAR) is superior to attribute-specific models (DeepSAR). This is attributed to
the implicit learning of attribute correlations, such as co-occurrences. Deep-
SAR utilizes the softmax cross-entropy loss function and two output neu-
rons, with one for each attribute’s presence or absence. In contrast, Deep-
MAR relies on the sigmoid cross-entropy loss function for multi-label clas-
sification. Furthermore, the issue of imbalanced label distributions, which is
commonly encountered in real-world scenarios, is addressed through the in-
troduction of a loss weighting function. This function assigns a weight to
the attribute-specific loss value based on the ratio of its occurrence in the
training set, also known as the positive ratio of attributes. Training sam-
ples depicting a rare attribute receive a greater weight than samples lack-
ing this attribute, effectively guiding the model’s focus toward those samples
to enhance the recognition of attributes with limited instances. Contrary to
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DeepMAR, which implicitly learns the correlations between attributes, Han
et al. [Han19] explicitly exploit priors about the co-occurrence of semantic at-
tributes. Their CoCNN model features a multi-branch architecture that gen-
erates separate attribute predictions in each branch. The predictions are ad-
justed based on the co-occurrence priors and fused with the original predic-
tions with an attribute-aware pooling method. However, according to Zhou
et al. [Zho23], the generalization capability may be negatively impacted by co-
occurrence biases as inter-attribute dependencies are specific to the dataset.
Additionally, limited datasets may result in learning unwanted correlations
between attributes, leading to recognition errors when inferring attribute pre-
dictions based on unrelated attributes. The decoupling of attributes is ac-
complished in this study by reducing the mutual information in the features
among attributes. Jia et al. [Jia21b] revisit the task of PAR and present two
variations of the Pedestrian Attribute (PETA) [Den14] and Richly Annotated
Pedestrian v1 (RAPv1) [Li16a] datasets, both following the zero-shot setting
on pedestrian identity. Specifically, new training, validation, and test splits
are introduced that prevent individuals from appearing inmultiple splits. Fur-
thermore, the authors implement a strong baseline for PAR, demonstrating
that achieving state-of-the-art performance is possible with a simple, global
approach. Consequently, the model proves appropriate for real-world appli-
cation and, thus, is utilized as the baseline in this thesis. Further information
is presented in Chapter 5. The MSCC [Zho21] method is more complex than
the strong baseline by Jia et al. [Jia21b], as it uses a multi-scale model with two
sub-modules to enhance performance. The spatial calibrated module captures
features across various receptive fields, facilitating the inclusion of contextual
information for the attributes and enabling the interaction of context infor-
mation across spatial scales. On the other hand, multi-scale feature fusion
based on non-local blocks [Wan18b] is employed. Final attribute predictions
are derived from the predictions at each scale and the global predictions by
maximum pooling.

Part-based methods: Part-based models simultaneously incorporate local
and global information by dividing the input into multiple regions. Manual
partitions or external components are necessary to locate relevant part re-
gions. Fine-grained local information may improve recognition performance,
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especially for highly localized attributes such as glasses. However, it is cru-
cial to consider several drawbacks. Accurately localizing parts is necessary
but may be an additional source of error. Furthermore, the increased com-
plexity leads to longer training and inference times. Part-based methods are
distinguished based on the approach used to locate the parts. The straight-
forward approach of dividing an input image is to manually define multiple
regions of interest. Zhu et al. [Zhu15] leverage a predetermined grid to par-
tition the image into 15 overlapping patches. Deep features are extracted
from each local part. These parts are assigned to particular attributes ac-
cording to their relevance to classification determined in advance. For in-
stance, global attributes such as gender are determined by gathering infor-
mation from all patches, while local attributes such as hairstyle rely only
on information from local parts in the uppermost region of the input im-
age. However, misaligned bounding boxes may cause serious issues as the
manually defined local patches may not properly display the corresponding
attributes and may include background clutter. Automatic approaches that
specifically localize relevant parts in the images are expected to be more pre-
cise. One direction followed in related research is the application of object
detection methods to identify relevant body parts. Early research focuses on
poselets [Bou11] to decompose the human body into multiple parts. For in-
stance, the PANDA [Zha14a] model extracts separate feature representations
for each poselet in addition to a global feature of the entire image using a
CNN. The fused global and local representations serve as input for an Sup-
port Vector Machine (SVM) in order to perform the attribute classification. In
contrast to PANDA, Gkioxari et al. [Gki15] employ a deep version of poselets
that replaces the commonly used low-level gradient orientation features with
deep features extracted through a CNN. Analogous to PANDA, the approach
then generates part-level features for the head, torso, and legs, and a holistic
feature for the entire person. Classification is performed using a linear SVM.
Li et al. [Li16b] omit conventional methods such as SVM and instead rely on
a fully neural network-based approach. Fast R-CNN [Gir15] is employed to
detect the entire persons as well as five specific body parts within full frame
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images. Two additional branches are introduced, which consider the human-
centric and scene context, in addition to the model branches that predict se-
mantic attributes for the body parts and the overall appearance of the person.
The human-centric context takes into account the nearest neighbors of body
parts within the scene and the scene context the entire frame to rectify visual
ambiguities. Furthermore, the scene context is utilized to classify actions. The
LGNet [Liu18b] applies a proposal generator instead of detecting a predefined
set of local regions. This produces a large number of proposals from which
local features are extracted. These local features are then weighted separately
for each attribute based on whether the proposal areas include high activa-
tion regions from a global attribute recognition branch. An alternative to the
use of object detection to localize relevant local parts is the utilization of pose
estimation methods. Yang et al. [Yan16] propose an end-to-end framework
that is capable of learning PAR and part localization jointly. For part localiza-
tion, the model first locates the key points of the human body to derive head,
torso, and leg regions. The resulting part bounding boxes are refined by esti-
mating adjustment parameters. Classification is performed by fusing the part
features and feeding the resulting representation into a Fully-Connected (FC)
network. The PGDM [Li18] approach addresses the problem that pose an-
notations are rarely available for surveillance datasets. Therefore, the model
aims to distill the information from a pre-trained pose estimator and adap-
tively localize relevant parts of the image with only image-level supervision.
In this case, separate attribute predictions are produced for the local parts
and the entire person images and finally fused. In contrast to the aforemen-
tioned approaches, DeepCAMP [Dib16] uses pattern mining to identify and
refine relevant image parts based on mid-level features. After extracting ini-
tial discriminative patches for each attribute, they are iteratively optimized
by updating the patch clusters and retraining the classification network.

Attention: In addition to coarse human body parts, research explores at-
tention modules for automatically discovering discriminative regions within
images. The HydraPlus-Net [Liu17] exploits attention at various semantic
feature levels in addition to a global feature branch. The authors’ main con-
tribution is the use of multi-directional attention, which applies attention not
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only at the current feature stage but also at adjacent feature levels. In a sim-
ilar approach, Sarafianos et al. [Sar18b] utilize attribute-agnostic attention at
multiple scales. Attribute predictions are separately calculated for each fea-
ture level and the global branch. While the HydraPlus-Net combines the fea-
tures and forwards them through a FC classification layer, Sarafianos et al.
[Sar18b] fuse the predictions. The ALM [Tan19c] method also utilizes atten-
tion at multiple stages of the model, but in contrast to the previous methods,
attribute-specific attention is used to locate relevant regions and make sep-
arate predictions at each scale. Analogous to Sarafianos et al. [Sar18b], the
predictions from each scale are combined with global predictions to obtain
the final attribute predictions. Guo et al. [Guo17b] employ an attention heat
map refinement module with an additional loss function to refine the model’s
attention. Theweights of the FC classification layer of the global attribute pre-
diction branch are used to linearly combine the last feature maps generated by
the backbone model, creating attention heat maps. An exponential loss func-
tion is implemented to concentrate the attention heat maps on smaller, more
focused regions, as the authors claim that such heat maps are more appro-
priate for recognizing semantic attributes. Guo et al. [Guo19] discovered that
attention maps generated by CNNs are inconsistent when the input image un-
dergoes spatial transformations, such as horizontal flipping. This contradicts
human perception and lacks intuition. As a solution, the authors introduce
the VAC method, which enforces consistency in attribute predictions and at-
tention heat maps across different spatially transformed variants of the input
image by applying the Mean Squared Error (MSE) loss. The SSC approach, as
proposed by Jia et al. [Jia21a], also addresses inconsistent attention heat maps,
but in this case across different images. The authors argue that regions asso-
ciated with attributes generally appear in similar parts of images. A spatial
memory aggregates reliable class activation maps across images and serves
as ground truth to enforce the spatial consistency of attention maps for the
attributes. Similarly, semantic consistency of features is ensured by extract-
ing attribute-related features using the class activation maps and applying a
regularization loss to the resulting features with supervision from a seman-
tic memory. Contrary to the previous approaches, the VeSPA [Sar17] model
learns attention regarding the viewpoint of the person rather than spatially
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localizing attributes. This is motivated by the fact that attributes, such as hair
or backpack, appear differently from the front, side or back. To address this,
the model incorporates separate classification heads for different viewpoints.
The final attribute predictions are calculated by weighting and combining the
resulting predictions of the heads based on the outputs of a view prediction
module. Tan et al. [Tan19b] employ three separate branches, each incorpo-
rating a unique attention mechanism. Label attention is responsible for local-
izing discriminative, attribute-specific features. Spatial attentions attempts to
globally identify relevant image regions for all attributes. Last, parsing atten-
tion leverages a human parsing network to achieve pixel-wise assignment of
human body regions. The attention module divides the features of different
body regions and subsequently combines them with convolutions in order to
learn the location of discriminative parts and the optimal aggregation of the
features simultaneously.

Loss functions: Further research investigates the influence of adjustments
to the loss function on the PAR task. Zhou et al. [Zho17] propose a new
weighted cross-entropy loss function to address the problem of imbalanced
attribute distributions, based on the positive ratio of attributes in the training
set, similar to the approach of Li et al. [Li15]. Moreover, Yang et al. [Yan20]
introduce a hierarchical feature embedding approach that utilizes attribute as
well as person identity information. The HFE loss enforces proximity of fea-
tures for images showing the same attribute as well as for images depicting
the same individual. This improves the embedding of challenging samples,
such as those with barely visible backpacks, thereby enhancing the robust-
ness against adverse conditions. In addition to the MTA-Net, a sequential
attention approach to PAR, Ji et al. [Ji20] suggest combining the focal loss
function with a weighting mechanism to address imbalanced attribute distri-
butions. This method increases the focus not only on rare attributes but also
on attributes that are difficult to recognize despite sufficient training samples.
Zheng et al. [Zhe21] also utilize the focal loss function alongside a multi-label
contrastive loss to obtain discriminative features. The contrastive loss aims to
minimize the gap in predictions between samples that share the same attribute
or lack a particular attribute, while simultaneously enlarging the difference
for attributes with opposing labels among the samples.
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Transformer-based methods: A recently emerging field of research is the
use of transformers for PAR. The VTB [Che22b] method utilizes transformers
to encode the set of predictable attributes into textual features before training.
This approach captures the semantic correlations between attributes. More-
over, a cross-modal feature fusion technique combines these textual features
with visual features extracted from the input image by employing a trans-
former encoder. The resulting visual-textual features serve as input to inde-
pendent classification networks for each attribute. The authors claim that the
VTBmodel more effectively captures both intra- and cross-modal correlations
compared to alternative methods. The DRFormer [Tan22] adopts the same
idea in a pure transformer-based approach. Initially, a transformer encoder is
utilized to process the input image and generate global attribute predictions
and spatial token features. Attribute-specific spatial embeddings are gener-
ated by applying attention to the token features. Subsequently, these embed-
dings are fused with semantic embeddings, acquired through BERT [Dev19]
for the set of attributes, in a second transformer encoder to capture spatial and
semantic relations. Fan et al. [Fan23] propose the PARFormer, which does not
process semantic embeddings and is designed as a transformer-based baseline
for PAR. The use of transformer is motivated by the fact that multi-head self-
attention modules can capture long-range dependencies from a global per-
spective. This ability is restricted in CNNs due to the limited receptive fields
of the convolutions. Besides, the authors propose a data augmentation strat-
egy to improve the learning of attentive features, adapt the center loss for
the multi-attribute task, and introduce an additional loss function to leverage
viewpoint information.

Video-based PAR: In contrast to image-based PAR, video-based PAR aims
to generate track-level attribute predictions. Video-based approaches pro-
cess multiple images of a person over time, enabling rich capturing of visual
appearance information compared to individual images. The lack of appro-
priate datasets has prompted research to extend the Motion Analysis and
Re-identification Set (MARS) [Zhe16] dataset with semantic attribute anno-
tations, as done by Chen et al. [Che19]. This dataset is utilized for the video-
based experiments in this thesis. Details about the dataset are provided in
Section 4.1.6. In addition to the annotations, Chen et al. [Che19] present a
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convolutional temporal attention method for video-based PAR. The backbone
model initially generates frame-level features. Subsequently, the model is di-
vided into two parts: one part recognizes the person-dependent semantic at-
tributes and the other classifies identity-irrelevant information regarding the
pose and motion of the depicted individual. Temporal attention is learned
separately for each attribute as well as for pose and motion to determine the
significance of frames. Zhu et al. [Zhu23b] consider the task as a visual-textual
feature fusion task and leverage pre-trained CLIP models to extract visual fea-
tures from input frames and textual features for the set of relevant attributes.
Themodel performs the final fusion of visual and textual features for attribute
recognition using a transformer. Apart from these few task-specific methods,
several types of general video-processing approaches are applicable. For in-
stance, recurrent models, such as the CNN-RNN [McL16], can be employed.
Separate features are extracted for each frame that function as input to a re-
current layer that captures the temporal context. The final track-level feature
is acquired by temporally pooling the features from each time step. Another
commonly used methodology in this field is the 3D neural network, which ex-
tracts spatial and temporal information in a single forward pass without any
recurrent components. Various configurations have been explored in the lit-
erature, such as complete 3Dmodels that solely contain 3D convolutional lay-
ers [Tra15, Har18], MCx [Tra18] models that comprise 3D convolutions in the
initial stages and 2D convolutions in the latter stages, aswell as (2+1)D [Tra18]
networks that use 2D convolutions followed by temporal 1D convolutions to
reduce computational complexity. A further approach to video processing are
non-local blocks [Wan18b], which are convolutional components that learn
filter offsets for across space and time. Thus, this approach captures long-
range dependencies and contextual information effectively. Non-local blocks
are initialized in the same manner as normal convolutions, allowing for seam-
less integration into existing CNNs. In recent times, transformer-based mod-
els have proven to be effective in processing sequential data. A represen-
tative and universally applicable model within this category is the popular
VTN [Nei21] method. Initially, spatial features are extracted by a 2D model
separately for each input frame, analogous to the CNN-RNN [McL16] and

36



2.2 Attribute-Based Person Retrieval

temporal attention approach by Chen et al. [Che19]. Subsequently, a trans-
former encoder is implemented for temporal attention and feature fusion.

2.2.3 Learning a Joint Feature Space

Recent works [Jeo21] argue that attribute-based person retrieval using PAR
methods is unreliable due to the challenging nature of PAR itself. Variations of
the attributes’ appearances or images with poor quality might impair recog-
nition accuracy which results in imperfect retrieval rank lists. The alterna-
tive is to learn a cross-modal feature space between attribute categories, i.e.,
different combinations of attributes, and images in which corresponding em-
beddings are close to each other while category-image pairs not belonging
together are further apart. The AIHM [Don19] model learns joint hierarchi-
cal embeddings. Global category-level textual-visual embeddings as well as
local embeddings on attribute-level are aligned and fused by a matching net-
work that outputs the similarity score. Similarly, the TAVD [Iod20] frame-
work also aligns global textual and visual representations as well as embed-
dings on the attribute level. For the latter, global visual features are decom-
posed into attribute-specific representations. Yin et al. [Yin18] and Cao et al.
[Cao20] bridge the modality gap in the textual-visual feature space by ad-
versarial optimization. In contrast to Yin et al. [Yin18], which consists of a
single Generative Adversarial Network (GAN) for modality alignment, the
SAL [Cao20] approach uses a second GAN to synthesize features of attribute
combinations not included in the training set. The limited number of differ-
ent sets of attributes in training data and, therefore, many unseen combina-
tions is one of the primary issues with learning a joint textual-visual feature
space. Enough variations are required to train the attribute encoder suffi-
ciently to produce meaningful embeddings in the higher dimensional joint
feature space, especially for those unseen combinations. Methods from the
literature tackle the problem by mining new person categories and including
them in the training set as negative examples [Don19], applying additional
regularization techniques to enhance semantic consistency [Yin18, Jeo21], or
using GANs for generating synthetic features [Cao20]. In contrast, PAR-based
approaches treat the attributes independently and, thus, are able to correctly
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recognize new attribute sets without the need of addressing this issue in par-
ticular. Adversarial training as applied in [Yin18, Cao20] tends to be unstable
w.r.t. convergence due to the min-max optimization procedure. Thus, Jeong et
al. [Jeo21] introduce novel loss functions with a conventional training scheme
that outperform adversarial methods. The first loss function builds on the
ArcFace [Den19] loss and pulls corresponding image and attribute embed-
dings closer together, while simultaneously increasing the distance between
image embeddings and the embeddings of irrelevant attribute combinations.
Additionally, the authors propose the ASMR regularization technique which
assures that distances between embeddings follow their semantic relations
in the binary attribute space. Therefore, the margin of semantically similar
samples should be closer than those of samples with fewer attributes in com-
mon. Zhu et al. [Zhu23a] also propose a new loss function that considers both
inter-modal as well as intra-modal matching. Specifically, embeddings are
aligned across the textual and visual modalities, and within each modality us-
ing triplet losses with hard sample mining to obtain more robust cross-modal
feature representations. Additionally, a regularization technique is employed
to ensure consistent differences between features and matching behavior, re-
gardless of the modal configuration.

2.2.4 Summary and Discussion

This thesis focuses on the use of discrete attribute queries for person retrieval
instead of natural language requests, due to their better suitability for the
surveillance task. Specifically, it is decided to rely on PAR methods to com-
pare queries and gallery samples in the semantic domain. Within the PAR
research field, researches explore several directions, including global image-
based models, part-based models, attention methods, and transformers. Many
architectures extend global models and leverage additional features [Sar17,
Sar18b, Tan19b], e.g., local or attentive features, to improve the accuracy. This
implies that global representations are vital to achieve strong PAR and thereby
attribute-based person retrieval performance. Additionally, global models are
more efficient in computation, which is important for deploying models in
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real-world scenarios. Therefore, this thesis aims at enhancing global image-
based methods in order to maintain the benefit of fast inference. Furthermore,
the literature indicates that these models are easily extendable if necessary.
Moreover, publications from the literature support the hypothesis that sim-
ple global models are capable of achieving state-of-the-art performance with
results comparable to more complex approaches [Gki15, Jia21b, Fan23].

Concerning video-based PAR, multiple suitable approaches are identified, in-
cluding temporal attention [Che19], 3D CNNs [Tra15, Tra18], and transform-
ers [Nei21]. These methods effectively capture the temporal context. How-
ever, the argument presented here is that the temporal context is less sig-
nificant in PAR, since semantic attributes typically remain static and their
recognition is usually independent of movements.

2.3 Further Related Literature

This section introduces further research from the literature that is not directly
connected to attribute-based person retrieval but is relevant to certain opti-
mizations proposed in this thesis. Concretely, a normalization module for
PAR (see Section 6.2) is developed as well as a HP approach (see Section 7.1)
that aims at determining the difficulty of recognizing semantic attributes in an
input image. Background on literature concerning these topics is presented
in Sections 2.3.1 and 2.3.2, respectively.

2.3.1 Normalization Techniques

Multiple normalization techniques have been developed in the field of deep
learning. The primary purpose of each method is to standardize the consid-
ered features to have a mean of 0 and a variance of 1. Typically, additional
shift and scale parameters are learned to enable adaptation to specific fea-
ture distributions and tasks. The approaches differ in terms of the dimensions
taken into account, as illustrated in Figure 2.4. While 𝐹 denotes the number
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of feature channels, 𝐻f and 𝑊f stand for the height and width of a feature
map, respectively. 𝐵 signifies the number of images within a batch.
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(d) Group normalization [Wu18]

Figure 2.4: Comparison of normalization layers –The figures shows different normalization
layers that are frequently applied in deep learning models. F, H f, and W f represent
the number of feature channels, featuremap height, andwidth, respectively. B stands
for the batch size. Changed representation after [Qia19].

Batch normalization [Iof15] standardizes the features separately per chan-
nel across the batch dimension to restrict changes in feature distributions
during training, thus accelerating the training process. However, the ma-
jor drawback is its dependence on the batches. To compute representative
batch statistics during training, sufficiently large batches are required. Fur-
thermore, during deployment, the learned statistics remain fixed, i.e., batch
normalization operates differently during training and testing phases. Layer
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normalization [Ba16] eliminates the reliance on batches by normalizing ac-
tivations along the feature dimension. In other words, the features of single
training samples are normalized, allowing identical computation during train-
ing and test time. Instance normalization [Uly16], proposed as replacement
for batch normalization in image stylization tasks, focuses on individual in-
stances rather than entire batches or features. As a result, it removes contrast
information from the feature maps. Last, group normalization [Wu18] resem-
bles layer normalization, as it is employed along the feature dimension. Mul-
tiple groups of features are formed and normalized separately. The number
of groups represents a hyperparameter of this technique.

In the context of PAR, Zhao et al. [Zha18b] suggest applying batch normal-
ization to the model’s output logits for enhanced recognition of imbalanced
attributes in the training data. Batch normalization standardizes the output
distributions for each attribute to avoid output distribution shifts that pre-
dominantly favor the most frequent attribute manifestation in the training
data. However, normalizing solely in an attribute-wise manner may prove
inadequate in the context of attribute-based person retrieval since it focuses
on individual attributes, disregarding the entire person’s attribute description.
Thus, an improved normalization module for PAR and attribute-based person
retrieval is developed in Section 6.2.

2.3.2 Hardness and Failure Prediction

Hardness or failure prediction is a rarely studied topic in the literature. Nev-
ertheless, there are some similar works in motivation and methodology to the
HP approach proposed in Section 7.1.

Zhang et al. [Zha14b] utilize a SVM with multiple kernels for 14 different
conventional image features to predict failure independently of the classifier.
Similarly, Daftry et al. [Daf16] also employ an SVM for failure prediction but
apply it to deep features extracted by CNNs. The input image and optical flow
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are encoded to base the failure prediction on spatio-temporal feature repre-
sentations. Ramanagopal et al. [Ram18] also leverage spatial and temporal in-
formation to identify potential failure of object detectors in autonomous driv-
ing. Inconsistencies in detection results across stereo images and over time
are evaluated. Another approach, proposed by Wang et al. [Wan17], involves
a cascade of classifiers that are sorted by their accuracy and computational
complexity. When a classifier is uncertain about an image’s classification, the
sample is passed to the subsequent stage, which contains a more precise but
more complex classifier. Heavy models are only applied to the most chal-
lenging examples, thereby speeding up the classification process of easy sam-
ples. Further research adheres to the principle of learning to defer [Mad18,
Moz20], incorporating deferral to more complex models through a cost term
within the learning process. Sun et al. [Sun19] propose a lightweight method
for detecting when a computer vision system is applied outside of its specified
conditions, meaning conditions that deviate from the data distributions it was
trained on. The HP approach presented in this thesis is based on the realistic
predictor concept introduced byWang et al. [Wan18a]. The realistic predictor
includes a separate CNN utilized for difficulty prediction, thereby identifying
classification failure. To ensure a certain level of classification accuracy, the
authors suggest disregarding samples with hardness estimates above a desig-
nated threshold. Recently, researchers have expanded the concept of realistic
predictors to further research fields such as regression and semantic segmen-
tation [Gad23]. The FSNet introduced by Rahman et al. [Rah22] leverages
mid-level features in addition to the input image to predict the difficulty of
semantic segmentation at the pixel level. Contrary to previous methods, some
publications do not utilize separate difficulty prediction models or branches.
Instead, the methods rely on the variance of gradients [Aga22] or the inves-
tigation of loss values [Arr23].

Besides, additional research areas may be adopted to the objective of hardness
prediction, encompassing uncertainty estimation methods [Gal16, Mad19,
Gaw21], model calibration techniques [Guo17a, Wan23a], and approaches
related to open set classification [Gen21, Mah21].
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2.3 Further Related Literature

In this thesis, the widely-used approach of applying a separate module for
difficulty prediction is pursued, since the related literature shows promising
results and applicability to a variety of applications.
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3 Concept

This thesis focuses on the development of a deep learning-based framework
specifically designed for attribute-based person retrieval in real-world video
footage captured by large-scale multi-camera networks. The objective is to
create a robust system that can be seamlessly integrated into smart city or
surveillance applications. The methodology proposed in this thesis serves as
a vital search component, enabling efficient retrieval of individuals based on
a description of their semantic attributes.

In general, several approaches are suitable for discrete attribute-based person
retrieval, as introduced in Chapter 2. In this work, the concept of leveraging
PAR to extract the semantic attributes of individuals included in the gallery
and determine the similarity to the query in the attribute space is followed
due to multiple reasons:

• Explainability and interpretability: PAR methods directly extract
semantic attributes of depicted individuals, providing information in a
human understandable and interpretable manner.

• Flexibility: Extracting semantic attributes offers flexibility in making
requests for attribute subsets. Querying specific combinations of
attributes is straightforward, allowing for tailored and customized
retrieval requests.

• Deployment: Soft biometric attributes are independent of the deep
learning model. Thus, model updates are smoothly applicable without
the need to re-compute existing feature databases.

• Training data requirements: PAR methods have less requirements
concerning training data compared to learning a joint visual-textual
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feature space, as the lack of diverse attribute combinations in existing
datasets has a minor impact.

• Faster search: PAR-based approaches eliminate the need for
extracting query features during the search, as the matching occurs in
the semantic attribute space. Additionally, pre-computed attribute
vectors generally have lower dimensions compared to abstract
appearance feature vectors usually learned in a common visual-textual
feature space [Cao20, Jeo21, Zhu23a], accelerating distance
computations.

• Complementary information: Soft biometric attributes are
complementary information to related tasks such as person
re-identification and may improve the performance of such
tasks [Lin19, Spe20b].

Figure 3.1 illustrates the complete processing framework involved in the sys-
tem. It outlines the various stages from camera streams or videos to the gen-
eration of search results to offer insights into the context of the methods ex-
plored throughout this thesis.

First, movements of persons within the entire multi-camera network are
tracked, which serves multiple purposes. Aggregating the occurrences of
the same individual reduces the size of the gallery database and simplifies
the resulting rankings, since tracking avoids receiving a multitude of search
results for the same individual at different times and locations. Furthermore,
access to context information about the movements of persons or observed
interactions is directly provided and richer information through multiple
view of a person may increase the robustness of PAR. Afterward, a PAR
model is applied to extract the soft biometric characteristics of the depicted
individuals. Alongside the recognized attributes, hardness scores extracted
by a HP branch are stored in the gallery database, providing complementary
information about the reliability of the outputs generated by the PAR model.
Within the framework, the gallery is queried using discrete attribute requests.
Distances between queries represented as binary vectors and database entries
are calculated and sorted to generate similarity rankings. Additionally, the
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concept takes into account the evaluation part to assess the framework’s
suitability for real-world application.
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Figure 3.1: Concept overview – This thesis explores a holistic framework for attribute-based
person retrieval. The tracking component processes input videos to aggregate data
for individuals. Subsequently, semantic attributes of the persons are extracted us-
ing PAR methods, serving as the basis for retrieval. Additionally, a separate HP
branch provides complementary information about the difficulty of classifying the
attributes. Extracted data are stored in a database that can be queried using per-
son descriptions to obtain a sorted ranking of gallery samples. Furthermore, a novel
dataset and evaluation metric are introduced to facilitate meaningful evaluation of
the task.

The primary focus of this thesis is on the PAR and retrieval stages, as they
represent the core components of the framework. Nevertheless, research in
terms of MTMCT is briefly discussed in Chapter 9 to provide necessary con-
text for the application in real-world scenarios. The remainder of this chapter
elaborates on the fundamental concepts and principles behind the contribu-
tions made to each specific stage in the order of appearance in this thesis.
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Evaluation: To develop and evaluate data-driven methods for a specific use
case, it is crucial to identify meaningful data and evaluation metrics for the
task. If aiming at applying models in a real-world scenario it is important to
learn features that are not overfitted to specific sceneries, person appearances,
or dataset biases. Measuring the generalization performance is only possible
if training and test domains originate from different sources. Nevertheless,
none of the existing research datasets offer such a scenario [Den14, Zhe15,
Li16a, Liu17, Li19a]. Most of the datasets lack diversity regarding, e.g., de-
mography, lighting conditions, and variance in clothing, which leads to mod-
els with poor generalization abilities. Some datasets even contain images of
the same individuals in both the training and test sets [Jia21b]. Cross-dataset
evaluation is impossible due to minimal intersections of attribute annotations
in the datasets. To close this research gap, the UPAR dataset [Cor23, Spe23b] is
proposed that harmonizes existing datasets. Thus, this allows for the first time
to investigate the generalization performance of PAR and attribute-based per-
son retrieval methods. Besides, typically used evaluation metrics for retrieval
tasks in general only consider search results as relevant or irrelevant. How-
ever, this procedure ignores that search results can match a query to different
extents in the attribute-based person retrieval case. Specifically, it disregards
the ratio of matching attributes between the query and a gallery sample. To
address this limitation, the Mean Average Degree of Match (mADM) measure
is proposed as an additional evaluation metric to provide an evaluation score
that is consistent with the visual quality of retrieval rankings as perceived by
a system operator [Spe23a].

Pedestrian attribute recognition: The PAR model serves as the feature ex-
tractor in the proposed system, responsible for recognizing soft biometric fea-
tures that are compared to discrete attribute queries in the retrieval stage.
Thus, its role in achieving good person retrieval performance is crucial. This
thesis relies on a global image-based approach due to the favorable tradeoff
between accuracy and inference time. Additionally, research from the related
literature suggests that it is possible to achieve state-of-the-art results with
such models despite the lightweight architecture [Gki15, Jia21b]. While pre-
vious works have mainly focused on the PAR task itself, the importance of
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its usefulness for downstream tasks such as retrieval has been mostly over-
looked. Therefore, this thesis systematically examines and evaluates design
choices for creating a robust attribute classifier, considering their impact on
attribute-based person retrieval for the first time [Cor23, Spe23b]. Further-
more, this investigation aims to identify weaknesses and to propose solutions
to reduce their influence. One such weakness are the imbalanced training
distributions of attributes, which lead to biased predictions favoring the most
common attribute manifestation during deployment. The most common mea-
sure against this issue is to increase the focus on training samples with rarely
occurring attributes. However, this may result in an overestimation of rec-
ognized attributes per instance and an overconfident model, which likewise
deteriorates the retrieval results. To mitigate these issues and to find the op-
timal tradeoff, a proposed normalization module calibrates the attributes log-
its both attribute- and instance-wise, simultaneously improving PAR and re-
trieval performance [Spe23a]. In real-world applications, video-based recog-
nition of soft biometrics is required. While there are various approaches for
video data processing in the literature, this work argues that a temporal pool-
ing approach is sufficient for PAR since relevant attributes are not dependent
on movements [Spe20c]. In addition, this approach offers greater flexibil-
ity and lower computational complexity compared to techniques such as 3D
CNNs. Detailed comparisons are conducted to validate the hypothesis.

Hardness prediction: Despite the advancements in attribute recognition de-
scribed above, non-determinable attributes, for instance, due to occlusions
of body parts or misaligned bounding boxes pose a significant challenge for
attribute-based person retrieval. Figure 3.2 visualizes exemplar images for
which not all attributes are decidable. These attributes are still classified by
the PAR model and utilized during retrieval, even though they cannot be ac-
curately determined. Consequently, the lack of crucial information leads to
errors in the retrieval process, where individuals matching the query descrip-
tion are mistakenly considered irrelevant. To tackle this issue, an indepen-
dent HP is proposed. This predictor provides a separate difficulty score for
each attribute, indicating the likelihood of uninformed decision of the clas-
sifier [Spe20a]. By incorporating these hardness scores as weights during
the retrieval, attributes with high certainty are prioritized over undecidable
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attributes [Flo21]. This effectively minimizes the negative impact of invisi-
ble and indeterminable attributes on the retrieval performance, ensuring the
real-world search results are more accurate and reliable.

(a) (b) (c) (d) (e)

Figure 3.2: Examples for indeterminable attributes – Certain attributes in the images are in-
determinable due to view points (Figure 3.2a and Figure 3.2d), misaligned bounding
boxes (Figure 3.2b), occlusions (Figure 3.2c), and low illumination and image resolu-
tion (Figure 3.2e). Image source: [Zhe15].

Person retrieval: To build the search ranking, the distance between recog-
nized attributes and query attributes is determined. Typically, the Euclidean
distance is calculated between binary query attributes and attribute confi-
dences obtained through the PAR model for the gallery samples stored in the
database. However, opportunities for enhancement exist due to often poorly
calibrated PAR models, unbalanced output distributions of the classifier, and
variations in recognition accuracies for the attributes. For instance, if a soft
biometric characteristic is seldom present in the training set, the classifier is
highly certain with low deviation if such an attribute is not present but pro-
duces scattered outputs for samples showing the attribute. The domain gap
between training and test data aggravates the issue. These factors cause de-
teriorated search performance, but are not addressed in related research con-
cerning person retrieval with PAR methods. In this thesis, first, methods for
reliability calibration [Pla99, Zad01, Luc18] of the PARmodel’s outputs are in-
vestigated to align the attribute confidences with the empirical probabilities
for the attribute presence. Furthermore, a classifier is typicallymore uncertain
for hard-to-recognize attributes and, thus, produces larger distances for such
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attributes. Since this focus on challenging attributes during distance computa-
tion is unintended, the Euclidean distance computation is weighted by the av-
erage recognition errors of attributes to achieve equal contribution [Spe21a].
Last, it is proposed to directly leverage the output distributions of the classifier
to compute a Distribution-Based Distance (DBD) in addition to the Euclidean
distance [Spe21a]. This helps to further compensate for still remaining shifts
of confidence scores for present and absent attributes.

Tracking: Finally, the integration of attribute-based person retrieval into an
overall system for real-world applications is briefly presented. As there are
no suitable large multi-camera person tracking datasets due to difficulties
in creation, such as annotation effort and privacy regulations, the synthetic
Multi-camera Track Auto (MTA) dataset is generated offering a diverse
scenery and highly accurate annotations [Köh20]. Furthermore, methods for
tracking people within a network of cameras are briefly introduced, focusing
on the support of both use cases presented in Section 1.1: offline [Köh20]
and online [Spe22a] investigations. The two MTMCT approaches utilize
scene information to enhance the tracking accuracy. In addition, an ex-
emplary implementation of the proposed framework is outlined to bridge
the gap to real-world application and demonstrate its functionality and
effectiveness [Spe22c].
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In this chapter, the experimental setup is presented, which is used to evaluate
the proposed methods in the context of this thesis for PAR and attribute-based
person retrieval. First, an overview of the utilized PAR datasets is provided
in Section 4.1. Then, evaluation metrics are discussed in Section 4.2, followed
by the introduction of the evaluation protocols in Section 4.3.

4.1 Datasets

Anoverview of publicly available datasets in the surveillance domainwith soft
biometric annotations is offered in Table 4.1. In general, these datasets are cat-
egorized into two types: image and video datasets. Image-based datasets pro-
vide single images of individuals, whereas video-based datasets supply either
full-frame videos with track annotations or person tracks containing cropped
bounding boxes from subsequent frames for each person.

A few image datasets depict large-scale scenarios, however, several datasets
do not contain sufficient person images to be suitable for evaluating the meth-
ods discussed in this thesis. For instance, APiS [Zhu13], VIPeR [Gra07, Lay12,
Lay14], GRID [Loy10, Lay14], and SoBiR [Mar16] datasets have fewer than
4,000 images, which is hardly adequate for training and evaluating deep learn-
ing models. Similarly, further datasets such as PRID [Hir11, Lay14] lack di-
versity in terms of viewing angles and scenery since the dataset was collected
using only two different cameras. Based on these consideration, Market-
1501 [Zhe15, Lin19], PETA [Den14], PA-100K [Liu17], and RAPv2 [Li19a]
datasets are chosen as benchmarks for the experiments in this thesis. Each of
these datasets is introduced in detail in the following sections. Additionally,
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the UPAR dataset is proposed to harmonize these existing datasets, increasing
diversity and enabling comprehensive generalization experiments concerning
PAR and attribute-based person retrieval.

Table 4.1: Overview of PAR datasets –The table shows publicly available research datasets for
PAR, which are also suitable for attribute-based person retrieval. Only a few datasets
offer sufficient diversity and size to train modern deep learning models and to reflect
realistic scenarios. †The datasets consist of the entire videos or frames. Resolution
refers to the resolution of the video frames.
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APiS [Zhu13] – 3,661 48×128 35 –
VIPeR [Gra07, Lay12, Lay14] 632 1,264 48×128 21 2
PRID [Hir11, Lay14] 934 24,541 64×128 21 2
GRID [Loy10, Lay14] 1,025 1,275 29×67 to 169×365 21 8
PETA [Den14] 8,705 19,000 17×39 to 169×365 105 –
Market-1501 [Zhe15, Lin19] 1,501 32,217 64×128 30 6
SoBiR [Mar16] 100 1,600 60×150 to 191×297 12 8
PA-100K [Liu17] – 100,000 50×100 to 758×454 26 598
RAPv2 [Li19a] 2,589 84,928 33×81 to 415×583 72 25

Vi
de

o MARS [Zhe16, Che19] 1,251 1,191,003 128×256 52 6
SAIVT† [Hal18] 151 – 704×576 16 6
P-DESTRE† [Kum21] 269 – 3840×2160 16 –

Furthermore, this work studies approaches for video-based PAR, as video pro-
cessing is a requirement in real-world systems. For conducting the experi-
ments, the MARS [Zhe16, Che19] dataset is chosen due to the inclusion of an
substantial higher number of individuals. In contrast to the SAIVT [Hal18]
and P-DESTRE [Kum21] datasets, MARS consists of cropped person bounding
boxes and does not contain the entire videos or frames.

4.1.1 PETA

In their work, Deng et al. [Den14] address the limitations of small-scale
datasets by introducing the first large-scale PAR dataset called PETA. This
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dataset is a composite of ten smaller datasets, therefore, offering diversity in
terms of scenarios, persons, and camera models. Example images from the
PETA dataset are illustrated in Figure 4.1.

Figure 4.1: Example images from the PETA dataset – The PETA contains images from ten
sub-datasets. Thus, the images depict diverse lighting conditions, indoor and outdoor
scenes, and closely as well as widely aligned person crops.

The PETA dataset includes both indoor as well as outdoor imagery captured
by static surveillance cameras. In total, it contains 19,000 images with anno-
tations for 61 binary and four multi-class attribute annotations, which equals
105 binary soft biometrics. The dataset is partitioned into 9,500 images for
training, 1,900 for validation, and 7,600 for testing, respectively. The resolu-
tion of the person crops ranges from 17×39 to 169×365 pixels. It encompasses
a vast number of different individuals, totaling 8,705 identities.

However, a drawback of the dataset is that attributes were not annotated in
an image-wise manner. Instead, attribute annotations were determined based
on a randomly selected image for each individual. Consequently, the anno-
tations might differ from the actual visual perception. Some attributes might
not be visible but are annotated, while others that are visible might be ignored.
Furthermore, the official evaluation protocol by the authors only utilizes 35
selected attributes for the experiments and disregards soft biometric features
like sunglasses, which have few occurrences. The evaluated soft biometric
characteristics include 15 of the essential attributes in video surveillance ac-
cording to human experts [Lay12], along with 20 additional attributes that
aroused interest of the authors. In this work, the same subset of 35 attributes
is leveraged.
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4.1.2 Market-1501

The Market-1501 [Zhe15] dataset was initially introduced as a person re-
identification dataset and was captured on a university campus in China. It
includes 1,501 different individuals, with a total of 32,668 person crops. Each
of the images was resized to a standardized size of 64×128 pixels.

The individuals included in the dataset are divided almost evenly, with 751
identities assigned to the training set and 750 to the test set. This results in
12,936 training and 19,732 test images, respectively.

Soft biometric annotations for the Market-1501 dataset were contributed by
Lin et al. [Lin19]. The annotations include 26 binary attributes and one multi-
class attribute. The multi-class attribute, age, classifies individuals into four
categories. Similar to PETA, soft biometric characteristics are annotated at
the identity level with the identical limitations.

Furthermore, it is important to note that the dataset primarily represents a
single limited scenario: summer on a Chinese campus. Consequently, an in-
herent bias toward young Asian people wearing summer clothing is present,
as illustrated in Figure 4.2 showing sample images from the dataset.

Figure 4.2: Example images from the Market-1501 dataset –The dataset was collected near
to a supermarket on a Chinese campus. Therefore, primarily young Asian people are
displayed.

4.1.3 PA-100K

The most extensive PAR dataset to date, consisting of a total of 100,000 per-
son images, is the Pedestrian Attribute 100K (PA-100K) dataset introduced by
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Liu et al. [Liu17]. This dataset offers tremendous diversity concerning image
resolution, lighting conditions, and environments since it was captured from
598 different outdoor surveillance cameras. For instance, the spatial resolu-
tions of person images span a range of 50×100 to 758×454 pixels. The broad
range of image resolutions, lighting conditions, and scenes is evident in the
example images presented in Figure 4.3.

Figure 4.3: Example images from the PA-100K dataset – The PA-100K dataset is the largest
PAR dataset to data. The samples illustrate the broad range of lighting conditions
and image resolutions included in the dataset.

Thedataset is structuredwith 80,000 images designated for training and 10,000
images for each validation and testing. Concerning semantic attributes, an-
notations cover 26 binary soft biometrics. However, the dataset lacks anno-
tations for crucial characteristics such as the clothing colors.

4.1.4 RAPv2

Similar to the PA-100K dataset, Li et al. [Li19a] acquired the data for their
Richly Annotated Pedestrian v2 (RAPv2) dataset using a real-world surveil-
lance camera network, consisting of 25 different cameras. However, this data-
set captures an indoor scenario within a shopping mall.

The dataset is an expanded version of the RAPv1 [Li16a] dataset. The resolu-
tion of the 84,928 person images spans from 33×81 to 415×583 pixels. Anno-
tations are provided for a total of 72 attributes for each image, with 69 being
binary and three multi-class attributes. Similar to the PETA dataset, the au-
thors use a subset of semantic attributes for PAR, specifically evaluating 54
binary attributes. Due to the comparatively large number of annotated soft
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biometrics and fine-grained distinction between, for instance, shoe and cloth-
ing types, a substantial amount of strongly imbalanced attributes is included.
Hence, the dataset is particularly challenging. In addition to soft biometrics,
the dataset includes annotations for environmental and contextual informa-
tion, such as viewpoint, occlusions, and body part bounding boxes.

The dataset is divided into training, validation, and test sets, containing 50,957,
16,986, and 16,985 images, respectively. Regarding distinct person identities,
2,589 individuals are included.

The images included in the dataset, as visualized in Figure 4.4, predominantly
exhibit well-illuminated scenes due to the artificial lighting. However, notable
challenges arise from low resolution images, where highly localized attributes
are hard to recognize.

Figure 4.4: Example images from the RAPv2 dataset – The dataset was recorded inside a
shopping mall. As a result, most images are well illuminated. However, challenges
include low image resolution and strongly imbalanced attributes.

4.1.5 UPAR

The lack of adequate datasets for PAR and attribute-based person retrieval
presents a severe task-specific challenge due to several reasons, as highlighted
in Section 1.2.2.

On the one hand, publicly available surveillance datasets represent only a
small excerpt of the real world, resulting in substantial biases related to var-
ious characteristics, such as age, ethnicity, lighting conditions, and seasonal
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clothing. Biases in the training data are captured by deep learningmodels dur-
ing training and, thus, pose a serious concern as they could lead to discrimina-
tion against certain cultural groups in practical application. For instance, the
Market-1501 dataset exhibits bias toward outdoor imagery of young Asian
people during the summer. Furthermore, except for PETA, data collection
was primarily conducted either indoors or outdoors, which limits the ability
to train models that perform well under diverse lighting conditions.

As a consequence, experimental findings based on these datasets might not
be universally applicable to various real-world scenarios but rather transfer
to applications with similar conditions and characteristics. During training,
the models might overfit the specific training data distributions, resulting in
poor generalization to novel domains with divergent properties. This prob-
lem is exacerbated by the comparatively small number of training images,
particularly in datasets such as Market-1501.

Besides, each dataset possesses its own unique set of soft biometric anno-
tations, preventing multi-domain training and cross-domain generalization
experiments. Utilizing multiple datasets in training proves beneficial in en-
hancing diversity and mitigating the biases mentioned earlier. Moreover, it
remains a challenge to accurately assess the genuine generalization capabili-
ties of methods due to divergent semantic attributes across datasets. Models
cannot be trained on one dataset and evaluated on another with the excep-
tion of a few shared attributes such as gender. Consequently, quantifying
the domain gap between different domains and evaluating the true impact of
biases is elusive.

To close this research gap and enable research under realistic evaluation set-
tings, the author of this thesis proposes the UPAR dataset. Two publications
by the author are related to this dataset [Spe23b, Cor23]. The UPAR data-
set shares its fundamental concept of combining multiple existing datasets
with the PETA dataset but is substantially larger in scale and its primary fo-
cus lies in evaluating the generalization capabilities of deep learning methods
concerning PAR and attribute-based person retrieval. The UPAR dataset com-
bines various existing data sources. Multiple considerations were crucial for
this decision. On the one hand, this procedure reduces the annotation effort
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since some of the original annotations from the sub-datasets are reused. On
the other hand, it is argued that the conjunction of existing dataset already
provides sufficient diversity. Consequently, there is no need to collect ad-
ditional data, complying with the principle of data minimization. Capturing
realistic image and video data of people in a surveillance context poses enor-
mous challenges regarding privacy, particularly concerning the collection of
the consent of appearing persons. Several researchers did not collect consent
in an appropriate manner, which lead to the withdrawal of the popular and
widely utilized DukeMTMC [Ris16] and Celeb1M [Guo16] datasets. Syntheti-
cally creating data using video games such as GTAV¹ iswidely usedwithin the
research community [Fab18, Köh20] but may lack diversity in terms of cloth-
ing and human models in the context of PAR. Concretely, the UPAR dataset is
composed of the Market-1501 [Zhe15], PA-100K [Liu17], PETA [Den14], and
RAPv2 [Li19a] datasets. Thus, it includes diverse image data spanning over a
variety of scenes and persons with various sets of soft biometric characteris-
tics. When considering the entire UPAR dataset, biases present in the individ-
ual sub-datasets become less pronounced and lose their significance. In total,
the four sub-datasets contribute a sum of 224,737 images to the UPAR dataset.

The UPAR dataset offers annotations for 40 different semantic attributes.
These attributes were selected based on relevant literature discussing the use
of soft biometrics in crime investigations, which is reviewed in Section 2.1.2.
Soft biometrics are categorized into four categories according to the taxonomy
of Dantcheva et al. [Dan16] (see Figure 2.1): demographic, anthropometric,
medical, and material and behavioral attributes. It was decided to exclude
two classes in the annotations. Anthropometric and medical soft biometrics,
including body geometry, facial geometry, and body weight, are of limited
relevance for attribute-based person retrieval. These characteristics are rarely
reported by witnesses and are subject to uncertainty due to the own-anchor
effect and regression to the mean effect [Spo92, Fli86]. Therefore, the focus
is on demographic and material soft biometrics. Related literature [Lin94]
indicates that testimonies primarily contain general and clothing-related
information. Consequently, demographic characteristics such as age and

¹ https://www.rockstargames.com/de/gta-v
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gender are included as semantic attributes in the UPAR dataset. Age is
categorized into three distinct manifestation, whereas gender is considered
binary. It is noteworthy that the gender attribute refers to the perceived
gender by a witness based on visual appearance, rather than biological sex.
Moreover, various soft biometrics related to clothing are annotated. This
includes lengths and colors of both upper- and lower-body garments, as
well as the type of the lower-body clothing, categorized into trousers and
shorts or skirt and dress. Clothing length is encoded binary as either short
or long, and eleven different colors are distinguished for both upper- and
lower-body clothes, along with an additional class for colors not included in
the predefined list. Additionally, accessories such as different types of bags
and the presence of headwear represent important material soft biometrics,
and are, thus, included in the UPAR annotations. Local semantic attributes
such as glasses and hair length are also considered, despite being subject to
uncertainty when reported by witnesses. The objective is to increase the
dataset’s difficulty and enable comparisons of PAR methods concerning their
ability to recognize small and imbalanced characteristics. Three hair lengths
are specified: short, long, and bald, and annotations for two types of glasses,
normal and sun, are given. Table 4.2 provides an overview of the attribute
annotations contained in the UPAR dataset.

Table 4.2: UPAR attribute annotations – Overview of the attribute annotations provided for
the UPAR dataset. Annotations include demographic and material soft biometrics.
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The annotation process was conducted using the Antonn¹ tool with an ad-
ditional validation phase to ensure that multiple annotators assessed the at-
tributes for each image, improving consistency and minimizing annotation
errors. Furthermore, the annotators were provided with clear instructions
and sample images showing the attributes and edge cases. These were itera-
tively refined based on feedback during the labeling process. Additionally, un-
known labels were implemented for the attributes to identify indeterminable
or highly challenging images. These samples were evaluated separately fol-
lowing the annotation process. In this stage, any images that were found to be
inappropriate for the task were excluded from the UPAR dataset. Otherwise,
missing labels were assigned. In total, the UPAR includes 3.3 million novel
binary attribute annotations.

In Figure 4.5, the number of samples per attribute within the UPAR dataset is
presented. The dataset covers a wide spectrum of attribute distributions, cov-
ering both rare attributes, such as certain colors, and attributes present in the
majority of the 224,737 images. As is typical, rarely occurring soft biometrics
are prevalent in the dataset. However, even for the most imbalanced attribute,
which is the lower-body clothing color purple, a notable count of 451 images
are included. This substantially increases diversity concerning intra-class ap-
pearances, especially when compared to just 29 images showing this particu-
lar attribute in the Market-1501 dataset. Furthermore, biases within attribute
distributions have been mitigated. For instance, the Market-1501 dataset dis-
plays short upper-body clothing in more than 94% of the images. In contrast,
the positive ratio of this attribute is reduced to 42% through the combination
with the further datasets in UPAR, aligning more accurately with the actual
distribution of this soft biometric in real-world scenarios.

¹ https://www.iosb.fraunhofer.de/de/kompetenzen/bildauswertung/video-exploitation-
systems/antonn.html
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Figure 4.5: Number of samples per attribute in the UPAR dataset – The dataset covers a
broad range of distributions of attributes. Notably, even the most imbalanced at-
tribute with the fewest positive samples is depicted in 451 images.

In addition to providing annotations, the UPAR dataset proposes two evalu-
ation protocols designed to assess the generalization capabilities of PAR and
attribute-based person retrieval approaches. These protocols mimic realistic
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deployment scenarios. The protocols are detailed in Section 4.3, where the
evaluation procedures utilized in this thesis are introduced.

4.1.6 MARS

The MARS [Zhe16] dataset is a video-based dataset, which provides tracks of
individuals, comprising a varying number of cropped bounding boxes.

Originally, the datasetwas introduced for video-based person re-identification
and is build upon the same data source as the Market-1501 dataset. Semantic
attribute annotations were later contributed by Chen et al. [Che19].

Diverging from theMarket-1501 dataset, theMARS dataset includes images of
only 1,251 identities. These are split into 625 for training and validation, and
626 for evaluation. This corresponds to a total of 7,074 tracks for training and
validation, and 6,848 tracks for testing, respectively. Each track comprises 15
to 920 cropped bounding boxes of individuals. On average, a track consists
of 71.3 images. Similar to the Market-1501 dataset, images are scaled to an
uniform size of 128×256 pixels.

In addition to annotations for common soft biometrics, such as clothing in-
formation, age, gender, and accessories, the annotations in the MARS dataset
include motion and viewpoint details.

While the image-based datasets are employed throughout the entire thesis, the
MARS dataset is specifically utilized in Section 6.3 to evaluate experiments
concerning video-based PAR.

4.2 Evaluation Measures

In this section, the common measures typically used for evaluating the per-
formance of PAR and person retrieval methods are presented. Additionally,
the novel mADM [Spe23a] metric specifically tailored to the evaluation of
attribute-based person retrieval is introduced. In this thesis, all evaluation
results are presented as percentages, unless indicated otherwise.
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4.2.1 Pedestrian Attribute Recognition

In general, two types of metrics are considered to evaluate PAR approaches:
label- and instance-based criteria. Label-based metrics treat attributes inde-
pendently. First, the scores are calculated for each attribute separately, and
afterward, the average across the attributes is computed to obtain the final
results. In contrast, instance-based, also referred to as example-based, met-
rics focus on inter-attribute correlations. Semantic attributes are not inde-
pendent since some attributes greatly influence the prior probability of other
attributes, e.g., skirt and female or short lower-body clothing and short upper-
body clothing. Thus, instance-based metrics are calculated concerning the
attributes recognized in one image and averaged across the samples. Con-
sistency of attributes recognized in a pedestrian image is measured, which is
more meaningful for the attribute-based retrieval task. It is essential to get
the best description of the person shown in the image instead of capturing
single attributes independently. In this thesis, representatives of both types
of metrics are applied.

Label-based Mean Accuracy (mA): The mA metric is a label-based evalua-
tion criterion, which was originally adopted to the task of PAR by Deng et al.
[Den14]. Contrary to the raw accuracy metric, mA considers the accuracy
of positive and negative samples separately to deal with imbalanced attribute
distributions. Otherwise, the trivial solution of always predicting the absence
of attributes would lead to high accuracy scores since the majority of seman-
tic attributes occurs rarely. Concretely, the mean value between the recall of
positive and negative samples is calculated and subsequently averaged over
the attributes as follows:

mA = 1
2𝐿

𝐿
∑
𝑗=1

(
TP𝑗
P𝑗

+
TN𝑗
N𝑗

). (4.1)

𝐿 represents the number of attributes, while TP𝑗 , P𝑗 , TN𝑗 , and N𝑗 stand for
the numbers of true positives, positive samples, true negatives, and negative
samples for the 𝑗-th attribute, respectively.
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Instance-based F1: The instance-based F1 score for PAR [Li16a] is based
on the instance-based precision PrecPAR and recall rate RecPAR. In contrast
to label-based metrics, the metrics are computed separately per image I𝑖 and
then averaged across the𝑀 images. The calculation of the precision based on
the positive ground truth labels and recognized attributes is formulated as

PrecPAR =
1
𝑀

𝑀
∑
𝑖=1

|𝑌𝑖 ∩ 𝑓(I𝑖)|
|𝑓(I𝑖)|

. (4.2)

𝑌𝑖 are the ground truth positive labels of the i-th example, 𝑓(I𝑖) returns the
predicted positive labels for the i-th image, and | ⋅ | denotes the set cardinality.

Recall measures the fraction of attributes that are present in an image and are
correctly recognized by the PAR approach. The definition of recall is provided
in the following equation:

RecPAR =
1
𝑀

𝑀
∑
𝑖=1

|𝑌𝑖 ∩ 𝑓(I𝑖)|
|𝑌𝑖|

. (4.3)

The calculation is similar to precision, but the number of correctly recognized
attributes is divided by the number of attributes that are present according to
the ground truth annotations.

Finally, the instance-based F1 score F1PAR is formulated as the harmonic mean
between the precision and recall measures:

F1PAR =
2 ⋅ PrecPAR ⋅ RecPAR
PrecPAR + RecPAR

. (4.4)

4.2.2 Person Retrieval

To evaluate the performance of information retrieval systems, a test set is
required that contains a set of so-called documents, a set of queries express-
ing the information needs, and ground truth relevance labels [Man09]. Rele-
vance is usually considered binary, i.e., relevant or non-relevant. In the case of
attribute-based person retrieval, documents are equivalent to gallery images,
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queries correspond to specific sets of binary attributes, and a person image is
considered relevant if the depicted person’s soft biometric traits exactly match
the query description. In general, unranked and ranked retrieval results are
distinguished. Since the objective in attribute-based person retrieval is to rank
gallery images according to their distance to the query, only the ranked case
is relevant for this thesis.

In this thesis, three evaluation metrics are employed for person retrieval, each
with a different focus: Mean Average Precision (mAP), Cumulative Match-
ing Characteristics (CMC), and mADM.The first two are well-established and
widely used, while mADM is a novel metric introduced by the author of this
thesis.

mAP: mAP is defined as the mean value of Average Precision (AP) scores
across a set of queries. AP is an approximation of the area under the precision-
recall curve and is defined as follows:

AP = 1
GTP

|𝒢|
∑
𝑘=1

PrecIR@𝑘 ⋅ Rel@𝑘. (4.5)

GTP refers to the number of ground truth positive samples in the gallery 𝒢
for the respective query. PrecIR@𝑘 denotes the precision at a specific ranking
position 𝑘, i.e., the precision computed for the first 𝑘 ranks. Together with
the relevance indicator Rel@𝑘, which is 1 if the document at position 𝑘 is
relevant and 0 otherwise, AP is defined as the average of precision scores at
ranking positions with relevant documents.

CMC: In contrast to mAP, CMC is no single figure metric. Instead, it focuses
on the position of the first positive sample in the retrieval ranking, i.e., it
does not measure the quality of the entire ranking. The CMC top-𝑘 accuracy
Acc@𝑘 denotes the frequency of positive matches in the first 𝑘 ranks across
all queries. The idea is that a retrieval system should provide positive matches
in early ranks to improve its usefulness and reduce manual interventions and
effort by the system operator. For a single query, the accuracy at rank 𝑘 is

67



4 Experimental Setup

calculated as a shifted step function:

Acc@𝑘 = {1, if a match is included in top-𝑘 ranked gallery samples
0, otherwise.

(4.6)

Finally, this accuracy score is averaged over the information needs, i.e., the
queries. This metric can be computed separately for each position in the rank-
ing. In this thesis, it is focused on the accuracy at the first position of the rank
lists. In the following, Acc@𝑘 is referred to as Rank-1 accuracy (R-1), since
this is the commonly used term in the context of person retrieval.

However, there are some disadvantages to consider when using this metric.
First, the measure is less stable than, for instance, mAP, since deviations con-
cerning the first positive samples cause substantial differences in the resulting
score. Furthermore, only the easiest match is considered if the gallery set con-
tains multiple positive samples. Especially in attribute-based person retrieval
that does not perform person identification and, thus, may havemultiple iden-
tities matching a query, this has to be considered.

mADM:The aforementioned metrics assume binary relevance labels to com-
pute the precision. This is appropriate in contexts such as person identifica-
tion or re-identification, where it is unambiguously determinable if two im-
ages depict the same individual or not. However, in attribute-based person
retrieval scenarios, attribute queries and attributes depicted in person images
from the gallery may match to varying degrees. However, this fact is not
addressed by current metrics. Considering the degree of similarity between
gallery images and the query during evaluation is beneficial due to the fol-
lowing factors:

• Contrary to binary relevance labels, the degree of agreement provides
complementary and more detailed information about the quality of
the rank list.

• The degree of match is much more robust against annotation errors
and negative influences by the use of instance-wise annotations,
which are common problems when dealing with soft biometrics.
While a wrong annotation concerning a single attribute leads to a
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swap regarding the binary relevance, the degree of match is only
slightly reduced. This also applies to cases where local attributes like
glasses are invisible.

• Witness descriptions are prone to uncertainties. Therefore, individuals
slightly deviating from the query description might nevertheless be
relevant as search results.

To benefit from these advantages, a new evaluation metric is proposed that
resembles mAP but incorporates the degree of agreement with the query. The
measure is build on top ofmAP and not CMC since person retrieval commonly
addresses multiple identities and, thus, considering all matches in the rank list
is important. For this, the PrecIR@𝑘 for a single query is modified to

PrecDoM@𝑘 =
1
𝑘

𝑘
∑
𝑙=1

DoMNorm@𝑙, (4.7)

with DoMNorm@𝑘 being the normalized Degree of Match (DoM) between the
query and the gallery sample at position 𝑘 in the ranking. Given the number
of attributes 𝐿 and the Hamming distance 𝑑Ham

𝑘 between the query and the
ground truth annotations of the sample at rank 𝑘, the DoM, which is the basis
for calculating the normalized DoM, for the single gallery sample at rank 𝑘
is computed as

DoM@𝑘 = 𝐿 − 𝑑Ham
𝑘

𝐿 . (4.8)

DoM@𝑘 quantifies the ratio of matching attributes between the query and a
gallery sample. If all attributes between the query and the sample at position
𝑘 agree, 𝑑Ham

𝑘 becomes 0 and, therefore, DoM@𝑘 = 1 applies. In contrast, if
all attributes disagree, 𝑑Ham

𝑘 equals the number of attributes 𝐿 and results in
a DoM@𝑘 of 0. However, using this definition may result in overestimation
of a retrieval system’s performance since, particularly for queries with com-
monly occurring soft biometric characteristics, high DoM scores for many
gallery samples might be observed. To eliminate this weakness, DoM scores
are normalized w.r.t. the specific query by computing the average degree of
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agreement DoM across all samples included in the gallery 𝒢 as

DoM = 1
|𝒢|

|𝒢|
∑
𝑘=1

DoM@𝑘. (4.9)

Then, the normalized DoM is calculated similar to min-max normalization,
but with DoM instead of the minimum value:

DoMNorm@𝑘 = max{0,DoM@𝑘 − DoM
1 − DoM

}. (4.10)

As it is assumed that each query has at least one match in the gallery (see
Section 4.3), the maximum value of DoM@𝑘 is always 1. To avoid negative
values, the maximum of 0 and the resulting score is computed. The normal-
ization procedure ensures that gallery samples matching the query with the
average number of attributes across all gallery samples or less result in zero
precision. Afterward, the final score is calculated analogous to AP and mAP
but with the new definition of precision PrecDoM@𝑘.

In addition to the avoidance of inconclusively high scores, normalizing the
values concerning the query has another advantage. The comparability of re-
sulting scores across different queries and also entire datasets is enhanced.
Typically, the absolute values achieved for mAP but also R-1 strongly depend
on the gallery set and corresponding queries. For instance, simple queries
with many positive samples in the gallery set typically receive higher scores
than queries searching for rarely occurring combinations of attributes. The
proposed normalization procedure alleviates this by adapting the DoM com-
putation to the respective query. As a result, achieving high DoM scores get
more difficult for queries with common attributes. This reflects the fact that in
a real-world scenario it is most crucial to distinguish relevant and irrelevant
results. If many persons are similar to the query, small divergences concern-
ing semantic attributes might be decisive. Conversely, if most of the people in
the gallery clearly do not match the query attributes, persons with different
characteristics might be interesting even if they do not match the query in its
entirety. As a result, the mADM metric is a better indicator of the usefulness
and quality of results in real-world application than mAP or R-1.
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4.3 Evaluation Protocols

In this section, the evaluation protocols for both the PAR and attribute-based
person retrieval tasks are detailed. This thesis categorizes evaluations into
two distinct cases: specialization and generalization.

The specialization case involves conducting experiments on individual
datasets, where training and test data originate from the same dataset. On
the other hand, UPAR enables assessing the generalization capability of
PAR and attribute-based person retrieval methods. The proposed evalua-
tion protocols use different datasets for training and testing, employing a
cross-validation scheme to ensure comprehensive assessment.

4.3.1 Specialization

For the PAR task, evaluation measures are computed for all test images. In
the case of person retrieval, the procedure is as followed. One attribute query
is created for each unique set of binary soft biometric attributes present in the
test sets of the datasets. Consequently, each test image matches exactly one
query. The other way round, multiple test images may match the same query
if they depict persons with identical attributes. Additionally, all attributes
are treated as binary, utilizing the attributes that were also evaluated in the
original works.

A summary of the gallery statistics, including the number of binary attributes,
the size of the gallery, and the number of attribute queries is provided in Ta-
ble 4.3. The table demonstrates that a larger gallery does not necessarily lead
to an increased number of distinct sets of semantic attributes. For instance,
the Market-1501 dataset contains the largest gallery but the fewest number of
attribute queries. The reason is the comparatively low number of attribute an-
notations. The PETA dataset includes the smallest gallery, but the secondmost
queries. Due to the large number of annotated soft biometrics, the gallery set
of the RAPv2 encompasses the clearly highest number of distinct attribute
sets.
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Table 4.3: Evaluation statistics –The table illustrates the properties of the retrieval galleries of
the four specialization datasets. †The number of gallery images refers to the number
of tracks.

Dataset Bin. attributes Gallery images Queries
PETA 35 7,600 2,242
Market-1501 30 19,732 484
PA-100K 26 10,000 849
RAPv2 54 16,985 9,350
MARS† 52 6,848 1,949

4.3.2 Generalization

The individual datasets do not include significant domain shifts as present
in real-world applications. The UPAR dataset was proposed to close this gap
and, thus, offers the possibility to pursue different evaluation protocols. These
protocols follow the concept of domain generalization [Bla11]. Two different
protocols are proposed to assess the generalization ability of models which
discriminate themselves concerning the amount of data that is available for
training. Both protocols are based on cross-validation since there are four
different sub-domains. The first one, referred to as 4-Fold Cross-Validation
(4FCV), is the more complicated challenge since only data from a single data-
set may be used during the training phase. The second evaluation scheme is
Leave-One-Out Cross-Validation (LOOCV). It assumes that diverse training
data from multiple sources is available. Only one sub-domain is left out for
evaluation in each of the four folds and the other three are used for training.
The breakdown of the datasets among the splits is shown in Table 4.4.

Table 4.4: UPAR splits – Split definitions for the two UPAR generalization evaluation schemes.
The 4FCV protocol is more challenging since only data from a single sub-dataset is
used for training. In contrast, the LOOCV protocols allows using data from multiple
domains for training. In both cases, evaluation is performed on unseen domains.

Split
LOOCV 4FCV

Training Evaluation Training Evaluation
1 PA-100K, PETA, RAPv2 Market-1501 Market-1501 PA-100K, PETA, RAPv2
2 Market-1501, PETA, RAPv2 PA-100K PA-100K Market-1501, PETA, RAPv2
3 Market-1501, PA-100K, RAPv2 PETA PETA Market-1501, PA-100K, RAPv2
4 Market-1501, PA-100K, PETA RAPv2 RAPv2 Market-1501, PA-100K, PETA
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Moreover, details on the number of training, validation, and test images, as
well as the number of attribute queries per split are provided in Table 4.5.
These splits adhere to the original splits of the single datasets to enable com-
parability of results.

Table 4.5: UPAR split statistics – Statistics of the four splits for each of the two evaluation
protocols. Attributes without a positive sample in the training set are excluded which
is why split 1 and 3 of the 4FCV scheme evaluate less than 40 attributes.

Split
LOOCV

Bin. attributes Train. images Val. images Test images Queries
1 40 135,124 27,465 13,093 821
2 40 69,047 20,908 9,986 1,479
3 40 139,380 29,096 6,963 1,763
4 40 100,593 15,021 15,817 3,167

Split
4FCV

Bin. attributes Train. images Val. images Test images Queries
1 35 12,924 3,365 32,766 4,855
2 40 79,001 9,922 35,873 5,081
3 39 8,668 1,734 38,896 4,834
4 40 47,455 15,809 30,042 3,356

It is important to note that the number of images does not exactly match the
counts in the sub-datasets. During the creation of UPAR, images with incon-
sistent annotations or those lacking the depiction of humans were removed.
Furthermore, attributes without a positive example in the training set are ex-
cluded from evaluation, as learning to recognize these soft biometric char-
acteristics becomes impossible. This exclusion affects two folds of the 4FCV
scheme, specifically split 1 and 3.

The final evaluation scores for both protocols are computed in the following
manner. Metrics are first calculated for each test domain independently. For
the 4FCV protocol, then, the average across test domains is computed to ob-
tain per split results. The mean over the splits yields the final result for both
protocols. This procedure ensures that each evaluation subset has an equal
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influence on the final result, preventing sub-domains with large test sets and
a high number of attribute queries from prevailing the others.
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This chapter introduces the fundamental principle of PAR as the feature ex-
traction approach for attribute-based person retrieval. The chapter begins
with a formal problem description, outlining the inputs, outputs, and goals
of PAR and attribute-based person retrieval in Section 5.1. Furthermore, a
multi-label classification method inspired by Jia et al. [Jia21b] is described to
establish a baseline for this thesis. Details are presented in Section 5.2.

5.1 Problem Formulation

Consider a dataset 𝒟 = {(I𝑖,y𝑖) | 𝑖 = 1, 2, … ,𝑀} consisting of 𝑀 person im-
ages with corresponding labels for 𝐿 soft biometric attributes. I𝑖 represents
the 𝑖-th image in the dataset and y𝑖 ∈ {0, 1}𝐿 denotes the binary label vector.
Each element 𝑦𝑖𝑗 in this vector either indicates the presence or absence of the
specific attribute. So, 𝑦𝑖𝑗 stands for the annotation of the 𝑗-th attribute for the
𝑖-th image. If 𝑦𝑖𝑗 = 1 applies, I𝑖 is annotated to show a person with the 𝑗-th
attribute and 𝑦𝑖𝑗 = 0 if not. PAR aims at correctly recognizing these semantic
attributes for unseen test images. Typically, deep neural networks are applied
for this task nowadays. With x𝑖 being the network’s output vector for I𝑖 , 𝑥𝑖𝑗
represents the specific output for the 𝑗-th attribute accordingly. Then, model
outputs are transformed into so-called confidence scores through the appli-
cation of an activation function. The resulting prediction vector p𝑖 contains
a score for each attribute that is interpreted as probability of the presence of
the attribute in the input image. Usually, the sigmoid function is applied to
compute p𝑖 based on x𝑖 . Finally, output probabilities are converted to binary
attribute predictions by using a threshold vector t ∈ [0,1]𝐿. Typically, the
thresholds for all attributes are set to 0.5.
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The goal of attribute-based person retrieval is to sort 𝐺 images I𝑖 included in
a huge gallery database 𝒢 = {I𝑖|𝑖 = 1,2, … , 𝐺} according to their distance to
a person description. In this work, such descriptions are encoded as binary
query vectors q ∈ {0,1}𝑁 , similar to the attribute labels. 𝑁 denotes the num-
ber of query attributes. Each element in q represents whether a personwith or
without a specific soft-biometric characteristic is searched. Retrieval queries
may include either entire person descriptions using all predictable attributes
by the classifier (𝑁 = 𝐿) or only a certain subset (𝑁 < 𝐿). Due to simpler
notation, the first case is assumed in the following that the query contains
information for all attributes in each case. Typically, the Euclidean distance
function between the binary query vector q and attribute prediction vectors
p𝑖 is calculated to determine the similarity between queries and gallery sam-
ples. By sorting the gallery samples in ascending order according to their
distance from the query, the final retrieval ranking is constructed.

5.2 Strong Baseline for Pedestrian Attribute
Recognition

The base framework for all the experiments conducted in this thesis is the
work of Jia et al. [Jia21b]. The authors carried out a detailed study on sev-
eral important aspects of PAR models and achieve results comparable to the
current state-of-the-art in terms of this task. Since PAR is a multi-label classi-
fication task, the baseline model builds on a normal classification architecture,
which is depicted in Figure 5.1. It consists of a CNN as the backbone, depicted
in orange, which is used to extract feature maps, given input images I𝑖 . Subse-
quently, the spatial dimensions are reduced by a pooling operation to obtain a
feature vector for the input image. This vector is then passed to a classification
head, highlighted in blue, which computes the attribute predictions. First, a
FC layer is employed to reduce the global feature size to the number of soft
biometrics that should be recognized. The resulting attribute logits included
in x𝑖 are then projected into confidence scores p𝑖 for the presence of the at-
tributes using the sigmoid function. In the following, the feature extraction
function is referred to as ℱ(⋅; 𝜃f) and the classifier function as 𝒞(⋅; 𝜃c) with
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𝜃f and 𝜃c being the learnable parameters of the backbone and the classifier,
respectively.

I𝑖 GA
P

Backbone

FC
Si
gm

oi
d

Classifier

p𝑖

Figure 5.1: Baseline architecture – The backbone extracts feature maps for input images I𝑖.
Subsequently, a pooling operation, Global Average Pooling (GAP) in this case, re-
duces the spatial dimensions to obtain feature vectors. The FC layer serves as classi-
fication layer and consists of as many outputs as there are binary attributes to recog-
nize. Finally, the sigmoid activation function is applied to transform the logits into
values that are interpreted as probabilities for the presence of the attributes.

5.2.1 Backbone

The task of the backbone model is to extract feature maps, e.g., using con-
volutions. It typically contains multiple stages to reduce the spatial resolu-
tion and to increase the number of feature channels. With increasing depth
in the network, the task-specific semantics of features increase while low-
level information gets less important. Residual Net (ResNet) [He16] architec-
tures and several derivatives, such as ResNeXt [Xie17], Res2Net [Gao21], or
ResNeSt [Zha22], established themselves the standard choice for many years
as they offer state-of-the-art performance in a variety of different tasks at rea-
sonable computational costs [Jeo21, Ji22, Ye22]. In contrast to previous CNN
architectures such as VGG [Sim14], ResNet models allow deeper networks
since He et al. [He16] solved the so-called degradation problem [Sri15, He15].
The degradation issue describes the phenomenon where, despite the increase
in model capacity with deeper architectures, the model’s accuracy saturates
or even decreases at a certain point instead of improving as expected. The
problem was solved by introducing residual skip connections which allow the
model to only learn complementary information to the input in each block.
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Typically, the parameters of the backbone model are initialized with pre-
trained weights obtained by training the model on the ImageNet dataset with
either 1,000 [Rus15] or 21,000 [Kol20] different classes. Thereby, the back-
bone is already able to produce meaningful features and less data is required
for fine-tuning the model on the downstream task, i.e., PAR in this case.

To reduce the feature maps into a feature vector for each image, spatial pool-
ing is applied. The most prominent examples are Global Average Pooling
(GAP) and Global Maximum Pooling (GMP) which compute the average or
maximum value for each spatial feature map. The dimension of the output
vector then equals the number of channels, i.e., the number of filter kernels
from the preceding convolution layer. For their strong baseline, Jia et al.
[Jia21b] apply GAP. Since a detailed analysis [Spe20b] showed only negli-
gible impact of the pooling function on the model’s performance, the same
procedure is followed.

5.2.2 Classifier

The classifier module maps the feature vectors to the output dimension,
i.e., the number of binary semantic attributes. Jia et al. [Jia21b] rely on the
straightforward approach to use a single FC layer. Each input neuron is
connected to each output neuron so that all of the attribute predictions learn
independent weights for the importance of different input dimensions.

Thereafter, output logits 𝑥𝑖𝑗 are activated by the sigmoid function as follows:

𝑝𝑖𝑗 =
1

1 + 𝑒𝑥𝑖𝑗 . (5.1)

As a result, values for 𝑝𝑖𝑗 are normalized to fall into the interval [0,1] and,
therefore, are interpreted as probabilities for the presence of attributes.
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5.2.3 Loss Function

The task is dealt with as a multi-label classification task. Consequently, the
overall objective is to learn the parameters 𝜃f and 𝜃c of the feature extractor
and classifier by minimizing the empirical risk loss:

𝐿𝑜𝑠𝑠 = 1
𝑀

𝑀
∑
𝑖=1

ℒPAR(y𝑖, 𝒞(ℱ(I𝑖; 𝜃f); 𝜃c)). (5.2)

Commonly, the weighted binary cross-entropy loss is chosen as the loss func-
tion ℒPAR in PAR [Sch18, Jia21b, Spe23b], which is formulated as

ℒCE = −
𝐿
∑
𝑗=1

𝑤𝑗[𝑦𝑖𝑗 log𝑝𝑖𝑗 + (1 − 𝑦𝑖𝑗) log(1 − 𝑝𝑖𝑗)]. (5.3)

Attributeweights𝑤𝑗 are vital tomitigate the influence of imbalanced attribute
distributions, which pose amajor challenge in classifying rarely occurring soft
biometrics. The attribute-specificweights ensure that training samples depict-
ing such attributes receive enhanced focus by increased loss values. However,
the diversity of appearances of the attributes with few positive samples stays
limited. Consequently, this technique carries the risk of overfitting, particu-
larly when applied excessively. Multiple functions were proposed in literature
to compute these weights, all of which utilize the positive ratio of attributes in
the training set [Li15, Tan20, Zha21b]. This ratio 𝑟pos𝑗 represents the propor-
tion of training images showing the 𝑗-th attribute. However, Jia et al. [Jia21b]
show that the influence between different weighting functions is negligible
and that it is only important to use such weights to handle imbalanced dis-
tributions. The higher the weights the better the recall of positive samples
and, therefore, the label-based mA score. Concerning the instance-based F1
(F1), the recall increases to the detriment of the precision. Based on these
findings, the weight function proposed by Li et al. [Li15] was chosen for the
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experiments in this thesis. It is defined as

𝑤𝑗 = {𝑒
1−𝑟pos𝑗 if 𝑦𝑖𝑗 = 1
𝑒𝑟

pos
𝑗 if 𝑦𝑖𝑗 = 0

. (5.4)

5.2.4 Implementation Details

The methodology introduced in this thesis is implemented using the PyTorch¹
deep learning framework. In terms of hyperparameters, the values chosen for
training the baseline closely follow those proposed by Jia et al. [Jia21b].

For model selection, evaluation is done on the validation sets of the datasets.
The number of epochs for which models are trained varies depending on the
specific dataset, considering the diverse characteristics and sizes of the re-
search datasets. PAR models tend to quickly overfit due to limited diversity
in training datasets. Therefore, training on the datasets with a fixed number
of epochs is avoided to prevent overfitting as well as underfitting.

An initial learning rate of 1𝑒−4 is chosen with Adam as the optimizer. The
learning rate is reduced by a factor of 0.1 when the results measured by the
validation loss do not improve for 4 subsequent epochs. The weight decay
parameter is set to 5𝑒−4 for all experiments.

Regarding initialization, the learnable parameters of the backbone model are
initialized using pretrained weights from the ImageNet dataset [Rus15]. The
classifier and additionally added layers are initialized randomly.

Furthermore, Jia et al. [Jia21b] explored the influence of different input image
sizes on PAR results. Following their findings, input person images are scaled
to be 192 pixels in width and 256 pixels in height. Batches consist of 64 person
images. Random horizontal flipping and random cropping are applied as data
augmentation techniques to increase the diversity in the training datasets.

¹ https://pytorch.org/
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During evaluation, recognition thresholds for all attribute are set to 0.5. For
generating the retrieval rank lists, the default distance measure employed is
the Euclidean distance.
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The concept of this thesis is based on PAR models as semantic feature extrac-
tors to enable attribute-based person retrieval. The focus is on global image-
based approaches since these models are computationally efficient, making
them advantageous for real-world applications. Fast inference of of individ-
ual components is crucial, particularly if PAR represents just one part of a
comprehensive framework. Furthermore, Gkioxari et al. [Gki15] discovered
that with the emergence of deeper networks, the difference in accuracy to
more complex models, such as part-based models, diminishes. This suggests
that the observed improvements are mainly due to the increased capacity of
models and employing current backbone architectures in global models may
accomplish comparable performance. Furthermore, Jia et al. [Jia21b] demon-
strate thatmodern globalmodels are capable of achieving strong performance.

Due to the specific challenges raised by real-world surveillance systems (see
Section 1.2), several adaptations are made to the baseline which are elabo-
rated on in this chapter. First, an in-depth examination of PAR model de-
sign choices and their impact on attribute-based person retrieval is carried
out in Section 6.1. Additionally, in Section 6.2, the use of normalization mod-
ules is thoroughly studied to balance PAR results and simultaneously enhance
attribute-based person retrieval. Finally, several strategies are explored in
Section 6.3 to recognize soft biometrics based on tracks of individuals rather
than single images, allowing for video-based processing.
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6.1 Evaluation of Design Choices

This section explores various design choices concerning PAR and evaluates
their impact on accuracy and generalization capability. The main idea is to
optimize the baseline architecture and the training process presented in Sec-
tion 5.2. Two primary reasons motivate this approach. First, simple architec-
tures provide faster inference, which is vital for real-world deployment. Sec-
ond, research suggests that complex models with many learnable parameters
often underperform simpler models regarding generalization due to overfit-
ting to the training data [Cor23, Spe23b].

This thesis differs from existing studies, especially Jia et al. [Jia21b], by focus-
ing on the task of attribute-based person retrieval. Instead of solely optimiz-
ing the intermediary task of PAR, the influence of design choices on attribute-
based person retrieval is considered for the first time. The author of this thesis
published several papers [Spe20c, Cor23, Spe23b], highlighting that PAR met-
rics may not be dependable indicators for the quality of attribute-based person
retrieval. This is because thresholds are applied in PAR to obtain binary pre-
dictions, which are then employed for calculating the metrics, diminishing
the importance of actual confidence scores. In contrast, biased output prob-
abilities caused by over- or underconfident models affect the computation of
the Euclidean distances used to create the retrieval rankings.

The research outlined in this section is primarily based on three publications
by the author [Sch18, Spe20b, Spe23b].

6.1.1 Binary vs. Multi-Class Attributes

In this thesis, all attributes are treated as binary and, thus, the sigmoid acti-
vation function is applied to transform the model’s output logits into values
that are understood as prediction probabilities for the presence of attributes.
Nonetheless, binary attributes and multi-class attributes could conceivably be
differentiated and, therefore, an argument could be made for such as distinc-
tion. Unlike binary attributes that only differentiate between the presence and
absence of soft biometric characteristics, multi-class attributes havemore than
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two manifestations. These attributes are labeled using the one-hot encoding
technique, where only one manifestation is possible per image. An example
of a multi-class attribute is age. Since estimating a person’s actual age from
surveillance imagery is challenging, age is commonly categorized into distinct
classes, such as child, teenager, adult, or elderly. Using the softmax activation
function for these attributes forces the model to acknowledge correlations
between manifestations and learn that only one attribute can be correct for
each image. The softmax function generates a probability distribution for the
manifestations, rather than producing independent confidence scores.

Comparative experiments were conducted to examine the decision to use the
pure binary approach. The outcomes of these experiments are exhibited in
Table 6.1.

Table 6.1: Binary vs. multi-class attributes – Treating all attributes as binary outperforms
the combined approach concerning instance-based F1 and person retrieval metrics. In
contrast, using the softmax activation for multi-class attributes improves the recogni-
tion of individual attributes, as stronger results for label-based mA are achieved.

Attributes
Market-1501

mA F1 mADM mAP R-1
Binary 76.4 85.2 60.4 25.5 37.8
Binary & multi-class 78.7 80.6 58.4 22.1 32.6

It is advantageous to consider all attributes as binary and independent, as
observable from the results. Only the mA benefits from utilizing multi-class
attributes. In the multi-class case, the softmax activation function increases
the recall of positive samples, particularly for uncommon attribute manifes-
tations. For instance, the positive recall of yellow lower-body clothing is en-
hanced from 8.3% to 50.0%. As the model is compelled to produce a high
probability value for the most probable manifestation and zero for the rest,
predictions for rare attributes surpass the attribute threshold more frequently.
However, calibration of the outputs deteriorates, and there is an elevated risk
of the model becoming overconfident in its predictions [Mül19]. This leads
to a loss of correlation between the model’s actual certainty and the gener-
ated confidence scores. As a result, treating all attributes as binary is clearly
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preferable, given this negative impact. The independence of all attributes al-
lows for more information to be encoded in the attribute prediction vectors,
leading to improved discrimination between individuals during distance com-
putation for creating the retrieval result.

As a result of these findings, this thesis adopts the all binary approach, includ-
ing different exclusive categories such as age. The models appear capable of
implicitly considering and learning the correlations among binary attributes
sufficiently.

6.1.2 Backbone

Many research methods in the PAR domain continue to rely on ResNet [He16]
in the variant ResNet-50 as the backbone model due to its competitive per-
formance and low computational costs on various tasks. Nevertheless, there
are several recently proposed network architectures that surpass this model
in various tasks [Gao21, Liu21, Wan21, Liu22, Wan22b]. On the one hand,
transformer-based models gain increasing importance. Popular transformer
backbones for vision tasks include the Vision Transformer (ViT) [Dos21],
Swin [Liu21], and Pyramid Vision Transformer v2 (PVTv2) [Wan22b]. On
the other hand, novel CNNs architectures with improved performance have
been developed, such as ConvNeXt [Liu22]. Since, besides the retrieval accu-
racy, inference time is a crucial measurement to assess the suitability for ap-
plication in the real world, Figure 6.1 provides a comparison of various back-
bone architectures’ mADM and corresponding inference times. The results
were obtained on the PETA dataset using the baseline approach described
in Section 5.2. Inference times are averaged over the test split for process-
ing a single image in each step. As GPU, an NVIDIA GeForce RTX 3090 was
employed. The plot points out the advantages of the ConvNeXt and Swin
architectures compared to their CNN and transformer counterparts ResNet
and PVTv2, respectively. Without regard to the model variant, both achieve
decisively stronger outcomes. When comparing those two top-performing
architectures, it is discernible that the largest version of the Swin transformer
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achieves the best overall results, however, with a considerably slower infer-
ence speed than the CNN ConvNeXt. In general, transformer-based models
exhibit longer inference times than those observed for CNNs, which achieve
similar scores for mADM.

Tiny

Small

Base

Large

18

34
50

101

B0

B1

B2

B3Tiny

SmallBase

Large

10 20 30 40

50

55

60

65

Inference time / ms

m
A
D
M

/%

ConvNeXt [Liu22]
ResNet [He16]
PVTv2 [Wan22b]
Swin [Liu21]

Figure 6.1: Comparison of backbones architectures – The plot visualizes the influence of
various backbone architectures on attribute-based person retrieval results and infer-
ence times. The ConvNeXt and Swin architectures clearly outperform ResNet and
PVTv2.

Another interesting finding is the slight increase in inference time between
the Base and Large variants of the ConvNeXt and Swin architectures. The
curves for both model architectures are similar since ConvNeXt was devel-
oped by transforming network design elements and structure from the Swin
transformer into the CNN world. Larger variants mainly expand in width,
which can be efficiently computed in parallel by modern GPUs. However,
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the number of parameters and, thus, the memory footprint significantly in-
crease, requiring more expensive GPUs with larger memory. For instance,
the ConvNeXt-Large model has more than twice as many parameters than
ConvNeXt-Base [Liu22]. Furthermore, the plot clearly indicates that the pop-
ular ResNet architecture no longer achieves state-of-the-art results. More re-
cent CNNs as well as transformer backbones outperform ResNet with a simi-
lar or reasonable increase in inference time.

These findings are valid for further specialization datasets and metrics as well,
as shown in Table 6.2.

Table 6.2: Specialization results for different backbones – Using Swin-Large as the back-
bone model consistently leads to the best results on the datasets. Concerning CNN
architectures, ConvNeXt variants clearly outperform the ResNet-50 model.

Backbone
PETA PA-100K

mA F1 mADM mAP R-1 mA F1 mADM mAP R-1
ResNet-50 84.2 86.4 56.4 20.5 20.7 82.1 88.3 67.3 24.3 33.5
ConvNeXt-Base 86.1 88.1 61.8 24.4 24.4 82.2 88.5 68.8 26.2 34.5
ConvNeXt-Large 86.6 88.5 62.8 25.6 25.6 83.2 89.4 71.6 28.7 35.7
PVTv2-B2 84.4 87.1 57.6 21.6 22.0 81.9 88.9 68.9 26.6 35.7
Swin-Base 86.5 87.6 59.9 22.8 22.3 83.5 88.1 67.9 24.9 31.3
Swin-Large 88.0 89.2 64.9 28.2 28.3 84.5 89.5 72.3 29.8 37.6

Backbone
RAPv2 Market-1501

mA F1 mADM mAP R-1 mA F1 mADM mAP R-1
ResNet-50 77.5 78.6 54.6 17.5 12.0 76.4 85.2 60.4 25.5 37.8
ConvNeXt-Base 79.3 80.0 58.5 20.5 14.5 80.7 85.7 65.9 31.6 47.7
ConvNeXt-Large 79.0 80.1 58.2 20.3 14.3 79.8 84.7 65.3 30.3 45.7
PVTv2-B2 78.1 79.5 56.4 19.0 13.4 77.4 83.7 60.8 24.5 36.6
Swin-Base 79.5 79.8 57.0 19.2 13.4 77.3 84.4 62.4 26.7 39.9
Swin-Large 80.4 80.2 58.6 21.0 15.2 80.7 85.9 69.0 34.3 47.1

The highest performance across all datasets for the specialization scenario is
achieved by Swin-Large, followed by ConvNeXt-Large on the PETA and PA-
100K dataset, and ConvNeXt-Base on the RAPv2 and Market-1501 dataset,
respectively.

However, a different picture emerges when examining the outcomes for the
cross-domain generalization settings on the UPAR dataset. According to the
experimental evaluations in Table 6.3, ConvNeXt-Large is prone to overfitting
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and, thus, yields inferior results than the more compact Base variant. Further-
more, the advance of Swin-Large is less substantial in the generalization case.
In the attribute-based retrieval task, using ConvNeXt-Base as backbone even
outperforms the utilization of the Swin transformer, as per the LOOCV eval-
uation protocol which uses multiple data sources for training. Therefore, the
resulting difference in performance does not justify the increased memory
requirements and inference time for the Swin-Large backbone.

Table 6.3: Generalization results for different backbones – Contrary to the specialization
scenario, using the ConvNeXt-Base model as backbone is superior to the utilization of
the larger variant. Moreover, the advantage of the Swin-Large backbone vanishes. In
terms of the LOOCV evaluation protocol, leveraging ConvNeXt-Base as the backbone
even outperforms the performance achieved with Swin-Large.

Backbone
UPAR LOOCV

mA F1 mADM mAP R-1
ResNet-50 71.1±2.0 78.7±3.0 49.0±7.1 13.3±4.6 16.4±10.0
ConvNeXt-Base 73.2±1.9 82.1±2.7 56.1±5.1 17.6±4.3 19.2±8.3
ConvNeXt-Large 74.3±2.1 81.4±2.6 55.2±5.1 16.8±4.4 18.7±9.4
PVTv2-B2 72.4±1.4 80.8±2.8 52.5±6.0 15.2±4.6 16.9±8.6
Swin-Base 72.7±2.7 80.2±2.6 50.8±5.3 13.9±4.1 16.3±9.1
Swin-Large 73.7±1.7 82.2±2.2 55.3±4.8 16.9±4.6 18.8±9.2

Backbone
UPAR 4FCV

mA F1 mADM mAP R-1
ResNet-50 65.4±2.4 71.1±5.9 36.4±6.5 6.5±3.3 8.2±4.6
ConvNeXt-Base 70.1±1.5 77.2±4.2 46.4±5.8 11.0±3.6 12.8±4.6
ConvNeXt-Large 68.8±1.8 76.0±5.1 44.8±6.6 10.1±4.1 11.4±4.8
PVTv2-B2 68.2±1.7 74.7±4.4 41.7±6.0 8.4±3.3 10.0±4.2
Swin-Base 68.7±1.9 73.4±6.0 40.4±6.6 8.2±3.7 10.1±4.8
Swin-Large 70.0±1.7 77.8±3.5 46.9±5.1 11.4±3.2 12.9±4.5

In conclusion, this thesis focuses on using ConvNeXt-Base as the backbone
model due to its favorable generalization performance and tradeoff between
accuracy, inference time, and memory footprint.
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6.1.3 Stochastic Weight Averaging

Averaging a model’s weights over multiple iterations during the training pro-
cess is a technique known as Stochastic Weight Averaging (SWA). Izmailov
et al. [Izm18] demonstrate that SWA leads to flatter minima in the training
loss, enhancing performance especially concerning generalization. Besides,
in the context of PAR, trainings are prone to instability, resulting in signifi-
cant variations in results between epochs, thereby aggravating the problem
of selecting appropriate model snapshots for deployment.

This phenomenon is visualized in Figure 6.2. The achieved mAP values for
each training epoch of the baseline model, with ConvNeXt-Base as its back-
bone, are presented in two ways: first, without SWA and second, with Simple
Moving Average (SMA) [Arp22], as an example of SWA techniques. The train-
ing was conducted using the PETA dataset.
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Figure 6.2: Impact of SWA on the training process –The achieved mAP values in each train-
ing epoch are illustrated. On the one hand, for the baseline approach and, on the
other hand, with the use SMA [Arp22] as a SWA technique. Using SMA eliminates
fluctuations and simultaneously improves the mAP.
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While training without SWA leads to fluctuating mAP scores from epoch to
epoch, and random peaks of performance, for instance in epoch 10, the SWA
training smoothly converges toward its maximum result. In addition, the av-
eraged model outperforms the baseline approach without SWA. As a result,
choosing suitable model snapshots for deployment is made easier due to the
similarity of results in neighboring epochs.

To mitigate the aforementioned issues and improve performance, particularly
in terms of generalization, various variants of SWA are compared to identify
the best suitable SWA technique for PAR and attribute-based person retrieval.

Arpit et al. [Arp22] propose the SMA protocol, which averages weights start-
ing from iteration 𝑡0 with a specified sampling frequency. With 𝜃𝑡 being the
model’s parameters at iteration 𝑡, the averaged model parameters ̂𝜃𝑡 are cal-
culated according to

̂𝜃𝑡 = {
𝜃𝑡, if 𝑡 ≤ 𝑡0
𝑡−𝑡0

𝑡−𝑡0+1
⋅ ̂𝜃𝑡−1 +

1
𝑡−𝑡0+1

⋅ 𝜃𝑡, otherwise . (6.1)

Empirical analysis conducted by Arpit et al. [Arp22] indicates that setting
the hyperparameters 𝑡0 and the averaging frequency close to 0 and 1, respec-
tively, yields satisfactory results. This finding holds true in the experiments
in this thesis for the PAR and attribute-based person retrieval domains. Con-
sequently, this method is considered parameter-free.

The SMA averages the model parameters at each iteration 𝑡 so that equal con-
tribution of each set of model parameters 𝜃𝑡 to the final averaged model is
ensured. However, since the model is successively improving over the course
of training, assigning higher weights to later iterations could be beneficial.
This is achieved by using the Exponential Moving Average (EMA) update rule
for averaging the weights. This approach is commonly employed in various
works from the literature [Tan19a, Gle22]. The averaged model at iteration
𝑡 is computed as

̂𝜃𝑡 = {𝜃𝑡, if 𝑡 ≤ 𝑡0
𝛼EMA ⋅ ̂𝜃𝑡−1 + (1 − 𝛼EMA) ⋅ 𝜃𝑡, otherwise

, (6.2)
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where 𝛼EMA is a hyperparameter that controls the decay. A higher value of
𝛼EMA increases the influence of early iterations on the averaged model. In the
experiments, 𝛼EMA = 0.9998 proved to be suitable for the tasks addressed in
this thesis.

The last approach considered in the study is Stochastic Weight Averaging
Densely (SWAD) [Cha21]. Similar to the SMA method, model parameters 𝜃𝑡
from sampled iterations contribute equally to the averaged model. However,
unlike SMA, SWAD aims at automatically determining the start and end itera-
tions 𝑡0 and 𝑡𝑒 for the averaging process by detecting the validation loss valley.

The differences between these SWA methods are illustrated in Figure 6.3,
which demonstrates the impact of iterations on the final averaged model pa-
rameters. It is important to note that the hyperparameters were selected ar-
bitrarily.
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Figure 6.3: Comparison of SWA methods – The plot visualizes the impact of the model
weights in each iteration on the final weights obtained through weight averaging.
The EMA update rule exponentially increases the impact of iterations on the result-
ing model. The impact of averaged iterations is greater for SWAD than for SMA due
to the smaller number of iterations included in the average model. Note that the
hyperparameters to create the curves were chosen arbitrarily.
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While the SMAmethod assigns equal impact to all iterations after the starting
iteration, SWAD samples model parameters within a specific window. This
means only a subset of iterations contributes to the averaged model. In con-
trast to both, the EMA technique increases the influence of weights for pro-
gressing training in an exponential manner.

Experimental findings indicate that automatically detecting a specific window
to average the model’s parameter is not favorable compared to the simple and
parameter-free SMA approach. The best configuration is to start averaging
from the beginning and stopping when the validation results no longer im-
prove. In this case, SWAD delivers equivalent results to SMA, which is why
SWAD is not considered further.

Table 6.4 compares the results achieved with the SWA techniques SMA and
EMA on the four specialization datasets.

Table 6.4: Specialization results for SWA techniques –The use of SMA during training leads
to consistent improvements on each of the datasets and regarding both PAR as well as
attribute-based person retrieval. In contrast, employing EMA only achieves superior
performance than the baseline on the large PA-100K and RAPv2 datasets.

SWA
PETA PA-100K

mA F1 mADM mAP R-1 mA F1 mADM mAP R-1
– 86.1 88.1 61.8 24.4 24.4 82.2 88.5 68.8 26.2 34.5
SMA 86.5 88.4 63.4 25.5 25.1 84.3 90.0 72.3 30.4 38.8
EMA 82.4 86.0 60.9 22.1 22.0 83.7 89.6 71.7 29.5 36.4

SWA
RAPv2 Market-1501

mA F1 mADM mAP R-1 mA F1 mADM mAP R-1
– 79.3 80.0 58.5 20.5 14.5 80.7 85.7 65.9 31.6 47.7
SMA 79.4 81.1 60.6 22.6 16.3 79.7 86.6 67.9 34.0 50.6
EMA 78.5 80.9 60.2 22.2 16.0 77.5 86.2 64.5 29.9 45.0

The results demonstrate that SMA clearly outperforms both the baseline as
well as averaging themodel’s learnable parameters with the EMA update rule.
Moreover, it is found that the use of EMA on small datasets, such as the PETA
and Market-1501 datasets, leads to deterioration in the results of both tasks.
This is due to overfitting occurring in later iterations as a result of the lack
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of sufficient data. Therefore, focusing on the model parameters in these it-
erations is not advantageous. On the larger two datasets, an improvement is
evident when compared to the baseline approach without SWA. However, the
performance still lags behind the results achieved with the SMA technique.
In addition, EMA models require more time to converge due to their focus on
later epochs. Besides, this approach necessitates selecting adequate values for
the hyperparameter 𝛼EMA, which are significant disadvantages.

An important reason for the use of SWA is to improve the ability to generalize
to new domains. The results so far indicate that SWA is beneficial even when
the training and test data originate from the same dataset. Subsequently, the
generalization performance is evaluated in Table 6.5 using the UPAR dataset.

Table 6.5: Generalization results for SWA techniques – Analogous to the specialization re-
sults, the best approach is to use the SMA method. Moreover, while the use of the
EMA rule results in comparable retrieval performance when the LOOCV protocol is
applied, performance on the 4FCV protocol clearly lacks behind both the SMA tech-
nique and the baseline.

SWA
UPAR LOOCV

mA F1 mADM mAP R-1
– 73.2±1.9 82.1±2.7 56.1±5.1 17.6±4.3 19.2±8.3
SMA 74.0±2.4 83.4±2.0 58.5±5.4 19.5±5.4 21.4±9.3
EMA 72.1±1.7 83.2±2.0 58.5±5.4 19.4±5.5 20.9±9.3

SWA
UPAR 4FCV

mA F1 mADM mAP R-1
– 70.1±1.5 77.2±4.2 46.4±5.8 11.0±3.6 12.8±4.6
SMA 69.5±1.9 78.4±3.8 47.8±6.4 11.8±4.3 13.2±5.3
EMA 63.3±6.3 67.2±12.8 35.9±17.3 8.1±7.5 9.3±8.7

The results obtained in this study are comparable to those found for the spe-
cialization scenario. With the exception of the mA in the 4FCV protocol,
which employs a single sub-dataset for training, the use of SMA exhibits the
best performance. Experiments using EMA and the 4FCV evaluation protocol
demonstrated inadequate progress and insufficient results within a reason-
able timeframe. Convergence in cross-domain settings typically occurs in the
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early training epochs for the tasks considered in this thesis. Therefore, con-
centrating on later epochs does not result in improvement but rather falls
short of achieving strong scores. The impact of earlier epochs with stronger
performance vanishes as training progresses.

In summary, the utilization of SWA effectively reduces the oscillation of eval-
uation results between epochs and clearly improves PAR and attribute-based
person retrieval. When comparing different approaches, SMA turned out to
be the most versatile approach. Additionally, it is considered parameter-free
and, therefore, is easily applicable without further tuning.

6.1.4 Loss Function

The strong baseline by Jia et al. [Jia21b] utilizes the cross-entropy loss func-
tion alongwith aweighting function to deal with the class imbalance problem.
However, an alternative approach is to use the focal loss function [Lin17],
which is a weighted form of the cross-entropy loss originally introduced for
object detection tasks. As pointed out in the discussion of the related litera-
ture in Section 2.2, several works rely on variants of this loss function [Sar18b,
Ji20, Zhe21]. The focal loss function introduces a multiplication factor that in-
creases the importance of misclassified hard samples while ensuring that low
loss values are propagated for easy samples. As a result, the model learns
to recognize semantic attributes under difficult conditions or based on few,
small cues. In addition, the same loss weighting mechanism described in Sec-
tion 5.2.3 can be applied to further address class imbalances. Let𝑤𝑗 represent
this positive ratio-based loss weight for the 𝑗-th attribute. The weighted focal
loss function ℒFL is then defined as

ℒFL = −
𝐿
∑
𝑗=1

𝑤𝑗[(1−𝑝𝑖𝑗)𝛼FL𝑦𝑖𝑗 log𝑝𝑖𝑗 +𝑝𝛼FL
𝑖𝑗 (1−𝑦𝑖𝑗) log(1−𝑝𝑖𝑗)]. (6.3)

For positive and negative samples of the 𝑗-th attribute, the focal loss weight
is (1−𝑝)𝛼FL and 𝑝𝛼FL

𝑖𝑗 , respectively, i.e., the difference between prediction and
ground truth values controlled by a relaxation parameter 𝛼FL. The higher 𝛼FL
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themore importance is rewarded tomisclassified training examples compared
to simpler ones. The remainder of the equation follows the definition of the
cross-entropy loss function provided in Section 5.2.3.

First, the influence of the hyperparameter 𝛼FL is examined. The study of Lin et
al. [Lin17] revealed that 2 is generally a suitable choice for the detection task.
However, due to notable differences from the tasks addressed in this work,
Figure 6.4 provides the mADM results for different values of 𝛼FL obtained
using the Market-1501 and RAPv2 datasets. The results were generated using
ConvNeXt-Base as the backbone model and SMA.
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Figure 6.4: Influence of 𝛼FL on the retrieval performance – While the mADM is nearly
constant for increasing values of 𝛼FL for the Market-1501 dataset, the mADM values
decrease for the RAPv2 dataset. Therefore, 𝛼FL is conservatively set to 1 for the
experiments. Note that the x- and y-axis in the figure do not start at zero.

The maximum scores for mADM are reached for 𝛼FL values of 1.3 and 1.1
for the Market-1501 dataset and the RAPv2 dataset, respectively. While the
mADM is nearly constant for increasing values of 𝛼FL when evaluated with
the Market-1501 dataset, the curve drops for the RAPv2 dataset. A possible
explanation is that RAPv2, due to its size, provides enough diversity to train a
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robust model. Focusing too much on few challenging images, which may also
be difficult to classify due to annotation errors, avoids exploiting this diver-
sity, which in turn leads to overfitting and poor generalization performance
on unseen images with different characteristics. To avoid exacerbating this
negative effect, 𝛼FL is cautiously set to 1 for all datasets and experiments.

Analogous to the figure, the results below are generated with ConvNeXt-
Base and SMA. As can be seen in Table 6.6, the use of the focal loss function
improves attribute-based person retrieval on each of the datasets except the
RAPv2 dataset. In contrast, the influence of the choice of the loss function
on PAR is negligible.

Table 6.6: Comparison of loss functions for specialization – Except for the RAPv2 dataset,
the use of the focal loss function outperforms the cross-entropy loss concerning all
retrieval metrics. The PAR results are only slightly affected by the choice of the loss
function.

Loss
PETA PA-100K

mA F1 mADM mAP R-1 mA F1 mADM mAP R-1
Cross-entropy 86.5 88.4 63.4 25.5 25.1 84.3 90.0 72.3 30.4 38.8
Focal 86.4 88.4 65.1 27.0 26.3 84.3 89.9 73.4 30.4 38.9

Loss
RAPv2 Market-1501

mA F1 mADM mAP R-1 mA F1 mADM mAP R-1
Cross-entropy 79.4 81.1 60.6 22.6 16.3 79.7 86.6 67.9 34.0 50.6
Focal 79.2 80.9 61.1 22.3 15.9 80.1 86.4 69.7 35.5 50.2

For the RAPv2 dataset, the increased focus on a few samples leads to biased
learning of information from the training data. This is beneficial for recogniz-
ing difficult or infrequent attributes, but degrades performance on other soft
biometric features that are comparatively easy to recognize. For instance, the
use of the focal loss improves the recognition of difficult and rare attributes
such as body thin, but at the same time deteriorates the mA of common at-
tributes such as long hair. However, concerning retrieval, the mADM im-
proves nevertheless.

For the other datasets, notable improvements concerning the retrieval task are
achieved by the focal loss. Smaller datasets benefit more than larger datasets,
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since they contain less diversity and, therefore, it is more important to focus
on challenging samples.

The effect of substituting the cross-entropy loss with the focal loss on gener-
alization is examined in Table 6.7.

Table 6.7: Comparison of loss functions for specialization – The results regarding the gen-
eralization evaluation protocols of the UPAR dataset confirm the observationsmade in
the specialization experiments. The differences in the PAR results are minimal, while
the person retrieval task benefits from the use of the focal loss function.

Loss
UPAR LOOCV

mA F1 mADM mAP R-1
Cross-entropy 74.0±2.4 83.4±2.0 58.5±5.4 19.5±5.4 21.4±9.3
Focal 74.2±2.4 83.2±2.1 60.1±5.1 20.0±5.3 22.0±9.1

Loss
UPAR 4FCV

mA F1 mADM mAP R-1
Cross-entropy 69.5±1.9 78.4±3.8 47.8±6.4 11.8±4.3 13.2±5.3
Focal 69.5±2.0 78.3±3.7 49.3±6.6 12.4±4.4 13.7±5.1

Similar to the specialization results, the focal loss mainly improves retrieval
performance. The impact on the PAR evaluation metrics is negligible. This
finding indicates that the expanded focus on challenging samples introduced
by the focal loss weighting induces a better calibration of the resulting confi-
dence scores, which thereby correlate more closely with the empirical prob-
abilities. Thus, more reliable estimates are available for the calculation of the
retrieval distances.

In summary, the focal loss proves superior to the cross-entropy loss for the
attribute-based person retrieval task. Across all datasets, the strongest re-
sults in mADM are achieved with this loss function. The increased focus on
challenging training examples based on the predicted confidence scores also
performs well in generalization settings.
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6.1.5 Batch Size

Choosing an adequate batch size is an important hyperparameter choice in
deep learning. It defines the number of training samples that are used in
each forward and backward pass during training. A large batch size typically
results in increased computational efficiency and, thus, shorter training times
but also may lead to reduced accuracy and overfitting. The smaller the batch
size the greater the impact of each individual training image and, therefore,
the ability of the model to capture fine-grained nuances in the data. Of course,
if the batch size gets too small, training behavior might be unstable and strong
fluctuations of performance might be observed.

Smith et al. [Smi17] found that there is direct connection between batch
size and learning rate. The experiments indicate that similar effects can be
achieved by adapting the learning rate or the batch size by the same factor.
For instance, this would allow to achieve similar performance with larger
batch sizes and, hence, faster training through adjusting the learning rate,
thereby omitting the biggest disadvantage of smaller batch sizes without
negative effects on accuracy. However, further works [Kes16, Hof17] show
that small batch sizes are superior to larger ones in generalization tasks.
According to Keskar et al. [Kes16], using large batch sizes in methods may
cause them to get stuck in local minima. On the other hand, smaller batches
with more diversity in batch updates tend to push out of local minima and
have a bigger chance of finding the global minimum.

Since this thesis focuses on achieving strong generalization capability, it is
decided to rely on adapting the batch size instead of varying the learning rate
following Smith et al. [Smi17]. As an alternative, it would be possible to adjust
the training scheme, since findings of Hoffer et al. [Hof17] indicate that not a
reduced batch size as such leads to improved generalization but the increased
number of model updates.

The current literature on PAR mostly overlooks the impact of different batch
sizes on the training and the resulting model. However, especially when deal-
ing with unbalanced attribute classification, choosing an appropriate batch
size for training can play a major role due to the explanations above. If the
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batch size is too large, person images depicting semantic attributes that are
rarely present will have minor influence on the batch updates and, thus, on
the model parameters, since they will be outweighed by samples without the
attribute.

The results in Table 6.8 are consistentwith the above assumptions and findings
from the related literature. The results were obtained using the ConvNeXt-
Base backbone with SMA and the focal loss function. 𝐵 represents the batch
size. To train the baseline, 64 training images form a batch.

Table 6.8: Specialization results for varying batch sizes – Datasets with fewer images, such
as the PETA or Market-1501 datasets, benefit from batch sizes smaller than 64, while
the results deteriorate for the larger PA-100K and RAPv2 datasets with decreasing
batch sizes.

𝐵 PETA PA-100K
mA F1 mADM mAP R-1 mA F1 mADM mAP R-1

128 85.7 87.8 64.0 25.3 24.6 83.9 89.8 73.0 29.9 37.2
64 86.4 88.4 65.1 27.0 26.3 84.3 89.9 73.4 30.4 38.9
32 86.8 88.6 66.0 27.3 25.4 83.8 89.6 72.6 29.0 36.0
16 86.8 88.5 66.3 26.9 26.1 83.1 89.0 71.1 26.6 34.0
8 85.5 87.4 63.4 23.5 22.8 80.8 88.2 69.1 24.3 31.7

𝐵 RAPv2 Market-1501
mA F1 mADM mAP R-1 mA F1 mADM mAP R-1

128 79.4 80.8 60.5 21.5 15.1 79.7 86.3 68.8 34.7 49.8
64 79.2 80.9 61.1 22.3 15.9 80.1 86.4 69.7 35.5 50.2
32 77.8 80.4 59.1 20.3 14.3 80.5 86.7 70.3 36.5 51.9
16 76.0 79.5 56.1 17.6 12.1 80.9 86.6 70.9 37.0 50.0
8 73.4 78.3 51.9 13.8 8.8 81.1 86.7 70.9 37.2 50.2

For small datasets, such as the PETA and Market-1501 datasets, the results
of PAR and attribute-based person retrieval improve when the batch size is
reduced to, e.g., 32 or 16. Due to the limited diversity provided by the small
number of training images, larger batch sizes lead to overfitting and prevent
fine details from being captured by themodel. In particular, models trained on
Market-1501 benefit from reduced batch sizes. For this dataset, optimal results
are obtained for mini-batches consisting of only 8 person images. This is due
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to strong attribute imbalances and a small number of different individuals
and, thus, outfits included in the dataset. Since the dataset was originally
designed as a person re-identification dataset, only 750 persons appear in the
training data, but with multiple images each. As a result, the variance in
attribute combinations is limited, and some attributes are only present in one
form. Furthermore, if the batch size is too small, for instance, 8 for the PETA
dataset, the performance deteriorates. In this case, the models struggle to
capture the overall concepts behind the attributes due to the strong influence
of individual images.

However, when looking at the larger datasets, there is a deterioration in the
results for batch sizes smaller than 64. The reason is that due to the size of the
datasets, enough and diverse samples are available for the attributes. Thus,
exploiting the regularization capabilities of larger batch sizes improves the
capture of the concepts behind the attributes. For instance, since the PAR
model sees many different bags during training, it is beneficial for the gen-
eralization ability to novel types of bags not to focus too much on the ap-
pearance of a particular bag. Instead, it should capture relevant features that
make up a bag and that are common to the bags in the training data. Increas-
ing the batch size to 128 leads to symptoms of overfitting for PA-100K, while
negligible improvements are observed in mA for the RAPv2 dataset.

The results so far indicate that reducing the batch size and thereby increasing
the number of model updates improves the accuracy for small datasets with
less than 20,000 training images for both tasks considered in this thesis. In
particular, datasets such as Market-1501 with low intra-class variance benefit.
Larger datasets with more samples per attribute should be trained with larger
batches to achieve optimal performance. General takeaways from the analysis
are that training on large PAR datasets should be performed with 64 images
within a batch, while a lower batch size of, e.g., 16 is superior when dealing
with less training data and, hence, typically limited diversity. Best results for
the mADM metric are achieved with these batch size configurations.

The following Table 6.9 illustrates the findings by means of positive recall of
different attributes. The positive recall describes the proportion of samples
with a certain semantic attribute that are correctly classified.
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Table 6.9: Impact of different batch sizes on certain attributes – The positive recall for
selected attributes and varying batch sizes are presented. The reduction of the training
batch size is beneficial for rare attributes with low intra-class diversity in training data,
such as LowerStripe. However, the recognition of attributes with large variations in
appearance like Hat and equally balanced attributes such as the gender deteriorates
for small batches.

𝐵 Market-1501 PA-100K
downblue downgray gender LowerStripe Hat Femal

64 56.1 58.0 91.3 60.0 49.5 91.0
32 56.2 58.9 91.6 60.0 46.7 91.1
16 60.1 59.8 91.1 64.0 42.9 89.7

On the small Market-1501 dataset, reducing the batch size improves the recog-
nition of positive samples of soft biometrics such as the lower-body colors blue
(downblue) and gray (downgray) with limited intra-class diversity and fuzzy
transitions to other colors. For instance, using batches of size 16 instead of 64
improves the positive recall of the attribute downblue by 4 percentage points.
In contrast, equally balanced attributes such as gender suffer from the reduced
batch size as themodel overfits on nuances instead of learning the overall con-
cept behind that attribute. However, on average, more attributes benefit and
the overall results improve.

Concerning PA-100K, there are also very unbalanced attributes with few ex-
amples, e.g., LowerStripes, which refers to a person wearing striped lower-
body clothing. This attribute appears in only 0.5% of training and 0.2% of
test images, respectively. As a result, the positive recall increases for smaller
batch sizes, since otherwise the few positive samples are outweighed by neg-
ative ones. However, analogous to the results on the Market-1501 dataset,
the recognition of the gender attribute Femal deteriorates. In addition, soft
biometric characteristics that appear in a wide variety of types and appear-
ances, such as Hat, which covers all kinds of headwear, suffer and positive
recall drops sharply. The model fails to learn the overall concept behind the
attribute due to the strong influence on batch updates from single instances
of headwear. The loss for the attribute fluctuates during training and hardly
converges.
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Next, the influence of batch size on generalization is investigated using the
UPAR dataset. In general, the literature shows stronger generalization of
models trained with smaller batches [Kes16, Hof17]. The results of the ex-
periments are given in Table 6.10.

Table 6.10: Generalization results for varying batch sizes – Analogous to the specializa-
tion results, training with large amounts of training data (LOOCV protocol) benefits
from larger batch sizes than training with less data (4FCV protocol). While the best
performance concerning the LOOCV evaluation protocol is achieved by training the
PAR model with batches of size 64, applying different batch sizes for the smaller and
larger splits is optimal for the 4FCV protocol. This is referred to as 64/16.

𝐵 UPAR LOOCV
mA F1 mADM mAP R-1

64 74.2±2.4 83.2±2.1 60.1±5.1 20.0±5.3 22.0±9.1
32 73.7±2.6 83.0±2.1 59.2±5.0 18.9±4.9 20.3±8.9
16 73.0±2.5 82.1±2.3 56.8±5.0 17.1±4.5 18.3±8.4
8 71.1±2.7 81.1±2.6 53.4±5.1 14.4±3.7 16.1±8.2

𝐵 UPAR 4FCV
mA F1 mADM mAP R-1

64 69.5±2.0 78.3±3.7 49.3±6.6 12.4±4.4 13.7±5.1
32 69.3±1.7 78.2±3.8 49.3±6.4 12.2±4.1 13.4±4.8
16 69.1±1.3 78.0±3.8 49.0±5.8 11.7±3.6 13.4±4.8
8 68.2±1.4 77.3±4.1 47.2±5.1 10.5±2.9 11.8±3.7

64/16 69.9±1.6 78.4±3.8 50.1±6.1 12.7±4.3 14.1±5.0

Theobservations are consistent with those obtained for the specialization case
on the individual datasets. When enough training data and, hence, diversity
is available, which is the case for the LOOCV evaluation protocol, choosing
a batch size of 64 is most appropriate to achieve the best outcomes for the
PAR and attribute-based retrieval tasks. Indeed, this batch size leads to the
strongest performance on each of the cross-validation splits without excep-
tion.

When only a single dataset is leveraged for training in the 4FCV protocol, i.e.,
less training data is available, the decrease in accuracy due to reduced batch
sizes is smaller. However, the best results are obtained when the findings from
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the specialization datasets are transferred and different batch sizes of 64 and
16 are chosen for the two large and small splits, respectively.

The results on the optimal batch size are consistent across the specialization
and generalization cases. Thus, the hypothesis that an increased number of
batch updates through a decreased batch size is beneficial for generalization
is supported [Hof17].

6.1.6 Dropout

Training deep neural networks on datasets of limited size and diversity car-
ries the risk of also learning the statistical noise contained in the training
dataset and, thus, overfitting on that data, rather than learning deep features
that generalize well to novel data. This problem becomes more severe with
increasing model size and decreasing number of training images. Srivastava
et al. [Sri14] propose dropout as a regularization technique since they found
that neurons can co-adapt to correct and compensate for the failures of other
nodes. Since these complex co-adaptations are data specific, generalization
capability suffers.

Dropout randomly ignores a specified ratio of connections 𝑟drop between two
layers, simulating different architectures during training. This makes the
training process noisy and avoids co-adaptation due to different connections
between the layers in each forward pass. Instead, network nodes must take
on more or less responsibility for the output depending on the connections
that are dropped. This reduces the risk of overfitting the training images and
increases the robustness of the predictions, as the model learns to produce
meaningful outputs even if some information is missing or unreliable.

For the experiments, a dropout layer is positioned between the GAP and
the FC classification layer, i.e., inputs from the backbone to the classifier are
dropped probabilistically. Different dropout rates 𝑟drop are explored based on
the best approach from the previous section.

Experimental results for the specialization datasets are provided in Table 6.11.
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Table 6.11: Impact of dropout on the specialization results – The use of dropout improves
PAR as well as attribute-based person retrieval. The optimal dropout rate 𝑟drop de-
pends on the dataset.

𝑟drop
PETA PA-100K

mA F1 mADM mAP R-1 mA F1 mADM mAP R-1
0.0 86.8 88.5 66.3 26.9 26.1 84.3 89.9 73.4 30.4 38.9
0.1 86.9 88.6 66.2 27.4 26.5 84.4 89.9 73.4 30.5 38.4
0.2 86.6 88.4 65.5 26.9 26.2 84.7 89.9 73.5 30.6 38.4
0.3 86.7 88.5 65.4 27.2 26.7 84.8 90.0 73.6 30.6 37.3
0.4 86.4 88.2 65.0 26.5 26.2 84.7 89.9 73.6 30.7 38.3
0.5 86.6 88.2 64.5 26.0 25.6 84.6 89.9 73.4 30.6 38.3

𝑟drop
RAPv2 Market-1501

mA F1 mADM mAP R-1 mA F1 mADM mAP R-1
0.0 79.2 80.9 61.6 22.3 15.9 80.9 86.6 70.9 37.0 50.0
0.1 79.2 81.0 61.3 22.6 16.3 81.0 86.7 71.2 37.6 50.8
0.2 79.0 81.0 61.2 22.5 16.1 81.1 86.8 71.6 38.0 51.9
0.3 78.6 81.0 61.1 22.5 16.3 81.4 87.0 71.9 38.8 52.9
0.4 78.5 81.0 61.1 22.3 15.8 81.4 87.0 72.2 39.3 53.7
0.5 77.9 80.9 60.9 22.3 15.9 80.9 87.1 72.4 39.5 52.3

In general, introducing dropout as regularization technique improves the re-
sults. The experiments suggest that the optimal choice of the dropout rate
depends on the data. While 𝑟drop = 0.1 gives the best results for the PETA
and the RAPv2 dataset, higher values are beneficial for PA-100K and Market-
1501. The latter two seem to contain more statistical noise and, therefore, an
increased tendency of models to overfit on these datasets.

Based on these observations, the datasets are divided into two classes with dif-
ferent dropout rates. For models trained with the PETA and RAPv2 datasets,
0.1 is set as the optimal dropout configuration, while the other two datasets
use a value of 0.4, as they seem to have an increased risk of overfitting and
co-adaptation of nodes.

Moreover, reducing overfitting to the training data is expected to improve the
generalization capabilities on another domain. Looking at the UPAR results in
Table 6.12, the findings support this. All metrics exhibit small improvements
through the use of dropout.
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Table 6.12: Impact of dropout on the generalization results – Utilizing dropout is beneficial
to avoid overfitting and improve the PAR and attribute-based person retrieval results
in terms of generalization. The 4FCV evaluation protocol that uses fewer data for
training profits from higher dropout rates 𝑟drop than the LOOCV protocol.

𝑟drop
UPAR LOOCV

mA F1 mADM mAP R-1
0.0 74.2±2.4 83.2±2.1 60.1±5.1 20.0±5.3 22.0±9.1
0.1 74.3±2.3 83.2±2.0 60.2±5.2 20.2±5.2 22.0±9.2
0.2 74.4±2.3 83.4±2.0 60.4±5.1 20.3±5.2 22.2±9.0
0.3 74.3±2.2 83.3±2.0 60.3±5.0 20.3±5.3 22.0±9.1
0.4 74.1±2.3 83.3±2.0 60.2±5.0 20.2±5.3 22.1±9.0
0.5 74.0±2.3 83.3±2.0 60.1±5.1 20.0±5.3 21.9±9.2

𝑟drop
UPAR 4FCV

mA F1 mADM mAP R-1
0.0 69.9±1.6 78.4±3.8 50.1±6.1 12.7±4.3 14.1±5.0
0.1 70.1±1.6 78.7±3.7 50.4±6.2 12.9±4.3 14.3±4.8
0.2 70.0±1.7 78.7±3.7 50.5±6.1 12.9±4.3 14.3±5.1
0.3 70.1±1.7 78.7±3.7 50.5±6.1 12.9±4.3 14.3±5.1
0.4 70.1±1.8 78.7±3.8 50.6±6.0 12.9±4.3 14.3±5.1
0.5 70.0±1.7 78.8±3.7 50.5±6.1 12.8±4.2 14.2±5.0

Regarding the optimal dropout rate, the 4FCV evaluation protocol, which has
only one data source for training and, thus, a higher risk of overfitting, bene-
fits from higher dropout rates compared to the LOOCV scheme, which lever-
ages data from multiple sources during training. Therefore, dropout rates of
0.2 and 0.4 are chosen for the LOOCV and the 4FCV procedure, respectively.

6.1.7 Optimizer

Numerous research utilizes adaptive optimizers such as Adam [Kin14] for
training CNNs due to their reduced need for costly hyperparameter tuning.
Moreover, such optimizers typically result in faster convergence and, thus,
shorter training time than, e.g., stochastic gradient descent. However, it has
been found that models trained with Adam tend to have suboptimal gener-
alization capabilities.
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Loshchilov et al. [Los17] highlight one potential explanation for this phe-
nomenon, attributing it to the reduced effectiveness of L2 weight regulariza-
tion in implementations of Adam. To address this issue, they introduced the
AdamW optimizer, which is specifically designed to rectify this drawback by
fixing the weight regularization. Despite this advancement, prevailing PAR
methods [Jia21b] continue to rely on the standard version of Adam and con-
sequently suffer from poor generalization.

To close this gap, the use of AdamW in the context of PAR is inves-
tigated, particularly in the case of generalization. Further algorithms, e.g.,
RAdam [Liu19], were also examined but achieved worse results than AdamW.
Therefore, only results for AdamW are reported. The results were obtained
by building on the best approaches from the previous Section 6.1.6.

The results obtained for the specialization datasets in Table 6.13 demonstrate
clear improvements when utilizing the AdamW optimizer rather than the
standard Adam optimizer. This improvement is consistent across both tasks
and is reflected in all metrics evaluated, with a few isolated exceptions. How-
ever, it is noteworthy that using AdamW only produces positive effects when
combined with SWA and adjusted batch size for small datasets. Otherwise, it
fails to generate consistent improvement in comparison with Adam. This may
imply that the enhanced weight regularization in AdamW alone is unable to
entirely compensate for overfitting of weights to the training data. In con-
trast, AdamW appears to further improve performance of a well-regularized
and configured model.

Table 6.13: Comparison of optimizers for the case of specialization – The results clearly
indicate the superiority of the AdamWoptimizer over the Adam optimizer. In partic-
ular, the attribute-based person retrieval task benefit from the use of this optimizer.

Optimizer
PETA PA-100K

mA F1 mADM mAP R-1 mA F1 mADM mAP R-1
Adam 86.9 88.6 66.2 27.4 26.5 84.7 89.9 73.6 30.7 38.3
AdamW 87.3 89.0 66.2 28.1 26.4 84.8 90.1 74.1 31.5 40.1

Optimizer
RAPv2 Market-1501

mA F1 mADM mAP R-1 mA F1 mADM mAP R-1
Adam 79.2 81.0 61.3 22.6 16.3 81.4 87.0 72.2 39.3 53.7
AdamW 80.9 81.1 61.7 23.3 16.9 81.0 87.0 72.6 39.6 54.6
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The observations made regarding the effectiveness of the AdamW optimizer
remain identical when applied to the UPAR dataset. The specific results show-
ing the impact of the optimizer can be found in Table 6.14.

Table 6.14: Comparison of optimizers for the case of generalization – The use of the
AdamW optimizer is advantageous for both generalization protocols and tasks.

Optimizer
UPAR LOOCV

mA F1 mADM mAP R-1
Adam 74.4±2.3 83.4±2.0 60.4±5.1 20.3±5.2 22.2±9.0
AdamW 75.0±2.0 83.8±2.0 61.3±5.4 21.3±5.8 23.0±9.7

Optimizer
UPAR 4FCV

mA F1 mADM mAP R-1
Adam 70.1±1.8 78.7±3.8 50.6±6.0 12.9±4.3 14.3±5.1
AdamW 70.5±1.9 79.2±3.7 51.2±6.3 13.5±4.5 15.0±5.2

The use of AdamW consistently improves the results for both cross-domain
generalization protocols. Thus, it can be concluded that the substitution of
Adam with AdamW has an apparent positive impact, underscoring its poten-
tial to significantly improve model performance and generalization capabili-
ties, especially in cross-domain scenarios.

6.1.8 Label Smoothing

Label smoothing, as proposed by Szegedy et al. [Sze16], is a regularization
technique which is designed to improve generalization, increase the robust-
ness, andmitigate overconfidence of neural networks. Its application involves
the modification of training labels during the training process.

In its original form, label smoothing is applied to multi-class classification
tasks where training labels are typically one-hot encoded. This means that a
single element of the label vector is 1 to indicate the correct class, while the
rest are 0. The basic concept of label smoothing is to introduce a controlled
amount of uniform noise into these labels. Instead of using 1 as the target label
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of the true class and 0 for the others, label smoothing distributes a fraction of
noise among all classes.

However, PAR is a multi-label classification problem, i.e., multiple classes per
image can be true simultaneously. Therefore, an adaptation of the concept
is required. The adapted version of label smoothing for multi-label attribute
recognition works on a per-attribute basis, adjusting the confidence of each
attribute’s target value as follows:

𝑦LS
𝑖𝑗 = (1 − 𝛼LS)𝑦𝑖𝑗 + 𝛼LS(1 − 𝑦𝑖𝑗). (6.4)

The smoothed target value 𝑦LS
𝑖𝑗 for the 𝑗-th attribute in the 𝑖-th image is calcu-

lated using the parameter 𝛼LS. This parameter introduces a controlled degree
of uncertainty into the annotated target values 𝑦𝑖𝑗 , effectively tempering the
certainty of the model. For instance, if the parameter 𝛼LS is set to 0.1, the tar-
get values for positive samples are adopted to 0.9 and for negative samples
to 0.1.

By adopting label smoothing, the model is discouraged from becoming over-
confident and overly reliant on the training labels. Instead, it is encouraged to
capture a more generalized and smoother decision boundary, thus minimizing
the risk of overfitting. Given the inherent noise and occasional incorrect labels
present in PAR training data due to the strenuous and often subjective annota-
tion processes, the use of label smoothing is considered a potentially beneficial
strategy. Furthermore, mitigating overconfidence is expected to have a pos-
itive impact on attribute-based person retrieval, since the classifier’s output
scores play a crucial role in the ranking process and should, therefore, provide
reliable estimates of the true presence probabilities of attributes in images.

Table 6.15 explores the effect of different values of the smoothing parameter
𝛼LS. The analysis provides insight into the behavior of PAR models under dif-
ferent degrees of label smoothing. The results were obtained using the models
trained with AdamW as basis, as described in the preceding section.
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Table 6.15: Impact of label smoothing on the specialization results – Using label smooth-
ing improves the results on each of the datasets. However, differing values for the
degree of label smoothing 𝛼LS lead to optimal performance concerning the PAR and
retrieval task, respectively. Datasets such as PETA and Market-1501, which con-
tain instance-wise annotations and, thus, increased noise in the labels, benefit from
stronger label smoothing.

𝛼LS
PETA PA-100K

mA F1 mADM mAP R-1 mA F1 mADM mAP R-1
0.00 87.3 89.0 66.2 28.1 26.4 84.8 90.1 74.1 31.5 40.1
0.05 87.4 89.1 66.6 28.3 26.3 84.6 90.1 74.0 31.6 40.6
0.10 87.2 89.2 67.4 29.1 27.4 84.8 90.1 73.6 31.7 41.3
0.15 87.3 89.4 68.1 29.4 27.7 84.8 90.2 74.1 31.4 40.2
0.20 87.6 89.5 68.4 29.3 28.3 85.0 90.3 74.2 31.1 39.5
0.25 88.0 89.6 68.1 28.3 27.1 85.2 90.2 73.8 30.0 37.7

𝛼LS
RAPv2 Market-1501

mA F1 mADM mAP R-1 mA F1 mADM mAP R-1
0.00 80.9 81.1 61.7 23.3 16.9 81.0 87.0 72.6 39.6 54.6
0.05 80.8 81.1 61.9 23.6 17.0 81.1 87.1 72.6 39.6 53.5
0.10 80.7 81.1 61.8 23.3 16.9 81.6 87.4 72.7 40.1 54.3
0.15 80.5 81.2 61.6 23.0 16.7 81.7 87.4 73.2 40.8 56.0
0.20 80.0 81.3 61.2 22.2 16.0 81.9 87.6 73.1 40.5 54.1
0.25 80.0 81.3 60.5 21.2 15.2 82.0 87.8 72.9 39.9 52.9

The evaluation confirms that the application of label smoothing generally im-
proves the results. However, the extent of this improvement varies from data-
set to dataset, highlighting a dependency on the intrinsic properties of the
specific dataset. Furthermore, the results indicate a discrepancy between op-
timal parameter choices for PAR and person retrieval. Observations show
that a higher degree of smoothing improves PAR results. Both label-based
mA and instance-based F1 improve for increasing values of 𝛼LS, except for
the mA on the RAPv2 dataset. This indicates a substantial amount of anno-
tation errors in the datasets and a strong tendency of the models to overfit
the training data. In contrast, retrieval metrics begin to drop again for high
degrees of uncertainty added to the target labels during training. Excessive
uncertainty beyond the degree actually present in the training data seems to
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result in underconfident models. As a result, the classifier’s output probabili-
ties are skewed, computed retrieval distances are less reliable, and, therefore,
retrieval accuracy decreases.

In addition, the application of label smoothing yields notable and consistent
improvements in the context of R-1 accuracy. Typically, the R-1 metric ex-
hibits fluctuations and, sometimes behaves inconsistently with the other re-
trieval metrics due to its emphasis on only the top-ranked matching gallery
image. Observations demonstrate that label smoothing has a stabilizing effect
on this metric, consistently improving its performance. Overconfidence poses
a significant problem for this metric, as even subtle variations in a model’s
prediction scores can lead to swapped positions in the final retrieval ranking.
This phenomenon underscores the importance of mitigating overconfidence
through techniques such as label smoothing or calibration (see Section 7.2.1),
to ensure the robustness and reliability of attribute-based person retrieval.

The experiments show that models trained on the PETA and Market-1501
datasets require a higher degree of label smoothing than the other datasets
to achieve optimal performance. This is due to the instance-wise annotations.
There is no guarantee that the individual image actually matches with the at-
tribute labels provided. As a result, the certainty of the labels is lower than for
datasets where each images is annotated individually. Based on these obser-
vations, it was decided to set 𝛼LS to 0.15 for the datasets with instance-wise
annotations and 0.05 for those containing image-wise labels.

Similar observations are made for the UPAR dataset, as shown in Table 6.16.
In the context of the LOOCV evaluation protocol, a lower value of 0.15 for the
smoothing parameter appears to be optimal for achieving peak performance.
On the other hand, when using the 4FCV protocol, which involves training
with less data, a slightly higher level of regularization is required, and 0.2
proves to be the optimal choice. Increasing the level of smoothing beyond
the reported values in the table does not provide added advantages in terms
of retrieval.
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Table 6.16: Impact of label smoothing on the generalization results – The use of label
smoothing improves the generalization performance concerning attribute recogni-
tion as well as retrieval. Besides an increase in performance, reduced standard devi-
ation across the splits is observed, especially for the 4FCV evaluation protocol.

𝛼LS
UPAR LOOCV

mA F1 mADM mAP R-1
0.00 75.0±2.0 83.8±2.0 61.3±5.4 21.3±5.8 23.0±9.7
0.05 74.9±2.0 83.9±2.0 61.3±5.3 21.3±5.9 23.1±9.8
0.10 74.9±2.2 83.9±1.9 61.3±5.3 21.5±5.8 23.1±9.3
0.15 75.1±2.0 83.9±1.9 61.2±5.3 21.6±5.8 23.4±9.4
0.20 75.2±2.0 83.9±1.9 61.0±5.3 21.2±5.7 23.2±9.5

𝛼LS
UPAR 4FCV

mA F1 mADM mAP R-1
0.00 70.1±2.3 79.2±3.7 50.7±6.5 13.5±4.5 15.2±5.3
0.05 70.3±1.9 79.3±3.6 50.9±6.3 13.6±4.4 15.3±5.1
0.10 70.6±1.6 79.5±3.5 51.2±6.2 13.8±4.3 15.5±4.9
0.15 70.7±1.6 79.6±3.4 51.7±6.0 13.8±4.3 15.3±5.0
0.20 70.9±1.6 79.7±3.4 51.7±5.8 13.8±4.1 15.4±4.9

Moreover, utilizing this regularization technique reduces fluctuation across
the splits, particularly evident in the more demanding 4FCV protocol. Com-
paring the results achievedwith andwithout label smoothing, it is clear that in
addition to increasing metrics, standard deviations observed among the splits
are reduced. Challenging splits with lower evaluation scores benefit greatly
by label smoothing, resulting in improved performance that catches up to that
of the easier splits. Therefore, it is concluded that incorporating label smooth-
ing is crucial in challenging scenarios where only limited training data with
significant label noise is available.

6.1.9 Summary

Several optimization concerning the PAR baseline were investigated for
their impact on attribute-based person retrieval. Initially, treating semantic
attributes as binary is justified by showcasing superior attribute-based person

112



6.1 Evaluation of Design Choices

retrieval performance, compared to considering multi-class attributes explic-
itly. Various backbones were compared afterward. The results indicate that
contemporary CNNs, specifically ConvNeXt-Base [Liu22], offer a suitable
balance between retrieval accuracy and inference time. While the Swin-
Large [Liu21] transformer outperforms the ConvNeXt architecture for the
specialization case, ConvNeXt-Base is faster and achieves comparable or even
better accuracy in generalization. Thus, ConvNeXt-Base is selected as the
default backbone for the further experiments in this thesis. The examination
of SWA techniques suggests more robust and smoother training behavior and
notable improvements in both specialization and generalization performance.
Particularly, the parameter-free SMA [Arp22] proved to be advantageous for
both PAR and retrieval. A comparison between the cross-entropy and the
focal loss [Lin17] functions reveals minimal influence in PAR, but the focal
loss function clearly enhances the attribute-based person retrieval quality.
This suggests better model calibration, indicating the advantages of the focal
loss function. Reducing the batch size for small datasets increases the number
of batch updates for the models, which leads to less overfitting and improved
recognition of rare attributes, since the impact of such attributes’ samples
is enlarged. Applying dropout [Sri14] also leads to slight improvements by
avoiding the co-adaption of model weights and, consequently, overfitting.
The analysis of the Adam [Kin14] and AdamW [Los17] optimizers demon-
strates that both tasks benefit from AdamW. Notably, this applies only if
AdamW is utilized after regularizing the model, i.e., it is used in conjunction
with SMA, optimal batch sizes, and dropout. This finding suggests that an
appropriately regularized model training is necessary for AdamW to fully
demonstrate its strengths. Additionally, the study explores the use of label
smoothing [Sze16] to prevent over- and underconfidence of PAR models,
resulting in improved outcomes for both tasks and evaluation cases. Datasets
with instance-level annotations experience benefits from introducing greater
uncertainty to the training labels for loss calculation, as this reflects the
enlarged uncertainty inherent to annotations for the individual images.
Moreover, increasing the hyperparameter 𝛼FL leads to further enhancement
in PAR. However, the performance of attribute-based person retrieval de-
clines when it comes to high values. This is due to models switching between
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over- and underconfident states, when the level of introduced uncertainty by
label smoothing surpasses the true uncertainty of ground truth annotations.
As a result, the calibration of the attributes’ confidence scores is impaired
and, consequently, retrieval is adversely affected.

Table 6.17 summarizes the results achieved through the optimizations for the
specialization datasets. In terms of mADM, particularly SMA and the use of
the focal loss function lead to consistent improvements across the datasets.
Furthermore, reducing the batch size and implementing label smoothing
proved to be significant for small datasets with instance-wise annotations
such as the PETA and Market-1501 datasets.

Table 6.17: Summary of PAR model optimization – Results for the specialization case are
provided. The baseline refers to the approach described in Chapter 5with ConvNeXt-
Base as the backbone model. Especially, SMA and the use of the focal loss function
yield consistent improvements. Furthermore, small datasets with instance-level an-
notations benefit notably from adjusting the batch size and employing label smooth-
ing.

Approach
PETA PA-100K

mA F1 mADM mAP R-1 mA F1 mADM mAP R-1
Baseline 86.1 88.1 61.8 24.4 24.4 82.2 88.5 68.8 26.2 34.5
+ SMA 86.4 88.4 63.4 25.5 25.1 84.3 90.0 72.3 30.4 38.8
+ Focal loss 86.4 88.4 65.1 27.0 26.3 84.3 89.9 73.4 30.4 38.9
+ Batch size 86.8 88.5 66.3 26.9 26.1 84.3 89.9 73.4 30.4 38.9
+ Dropout 86.9 88.6 66.2 27.4 26.5 84.7 89.9 73.6 30.7 38.3
+ AdamW 87.3 89.0 66.2 28.1 26.4 84.8 90.1 74.1 31.5 40.1
+ Label smooth. 87.3 89.4 68.1 29.4 27.7 84.6 90.1 74.0 31.6 40.6

Approach
RAPv2 Market-1501

mA F1 mADM mAP R-1 mA F1 mADM mAP R-1
Baseline 79.3 80.0 58.5 20.5 14.5 80.7 85.7 65.9 31.6 47.7
+ SMA 79.4 81.1 60.6 22.6 16.3 79.7 86.6 67.9 34.0 50.6
+ Focal loss 79.2 80.9 61.1 22.3 15.9 80.1 86.4 69.7 35.5 50.2
+ Batch size 79.1 80.9 61.1 22.3 15.9 80.9 86.6 70.9 37.0 50.0
+ Dropout 79.2 81.0 61.3 22.6 16.3 81.4 87.0 72.2 39.3 53.7
+ AdamW 80.9 81.1 61.7 23.3 16.9 81.0 87.0 72.6 39.6 54.6
+ Label smooth. 80.8 81.1 61.9 23.6 17.0 81.7 87.4 73.2 40.8 56.0

Similar outcomes are noted for both evaluation protocols of the UPAR dataset,
as presented in Table 6.18.
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Table 6.18: Summary of PAR model optimization for the UPAR dataset – Results for the
generalization case are provided. The baseline refers to the approach described in
Chapter 5 with ConvNeXt-Base as the backbone model. Similar to Table 6.17, SMA,
the focal loss function, and AdamW lead to the most prominent improvements.

Approach
UPAR LOOCV

mA F1 mADM mAP R-1
Baseline 73.2±1.9 82.1±2.7 56.1±5.1 17.6±4.3 19.2±8.3
+ SMA 74.0±2.4 83.4±2.0 58.5±5.4 19.5±5.4 21.4±9.3
+ Focal loss 74.2±2.4 83.2±2.1 60.1±5.1 20.0±5.3 22.0±9.1
+ Batch size 74.2±2.4 83.2±2.1 60.1±5.1 20.0±5.3 22.0±9.1
+ Dropout 74.4±2.3 83.4±2.0 60.4±5.1 20.3±5.2 22.2±9.0
+ AdamW 75.0±2.0 83.8±2.0 61.3±5.4 21.3±5.8 23.0±9.7
+ Label smoothing 75.1±2.0 83.9±1.9 61.2±5.3 21.6±5.8 23.4±9.4

Approach
UPAR 4FCV

mA F1 mADM mAP R-1
Baseline 70.1±1.5 77.2±4.2 46.4±5.8 11.0±3.6 12.8±4.6
+ SMA 69.5±1.9 78.4±3.8 47.8±6.4 11.8±4.3 13.2±5.3
+ Focal loss 69.5±2.0 78.3±3.7 49.3±6.6 12.4±4.4 13.7±5.1
+ Batch size 69.9±1.6 78.4±3.8 50.1±6.1 12.7±4.3 14.1±5.0
+ Dropout 70.1±1.8 78.7±3.8 50.6±6.0 12.9±4.3 14.3±5.1
+ AdamW 70.5±1.9 79.2±3.7 51.2±6.3 13.5±4.5 15.0±5.2
+ Label smoothing 70.9±1.6 79.7±3.4 51.7±5.8 13.8±4.1 15.4±4.9

In conclusion, the findings demonstrate that global image-based PARmethods
possess tremendous potential. Additionally, the systematic investigation of
design choices that includes recent advancements in deep learning exhibits
remarkable improvement compared to the baseline approach. Consequently,
a new strong baseline is obtained, which is suitable for specialization as well
as generalization.

6.2 Normalization

Underrepresented attributes in training data present a considerable challenge,
which is commonly tackled through weighted loss functions. Nonetheless,
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the effectiveness of this approach depends on the proper parameterization.
Usually, a model that is trained without a positive ratio-based loss function
underestimates the number of attributes present in an image. This is due to
the uncertainty associated with attributes that have only a few training sam-
ples. Limited diversity hinders the model from learning the abstract concepts
underlying these attributes. Consequently, the decision threshold is often not
surpassed for positive samples in the test set. This issue particularly arises in
generalization tasks, where large differences exist between the training and
test data, and varying underlying distributions of the attributes are present in
these sets. Although emphasizing a few positive samples during training en-
hances the recall of positive samples, it incurs additional false positives. The
model’s overconfidence leads to an overestimation of the number of attributes
present in the input image. Consequently, while the mA improves with cor-
rect recognition of more positive samples, the instance-based precision is neg-
atively impacted due to a rise in false positive predictions, causing a decrease
in instance-based F1. Furthermore, overconfident models underperform on
the retrieval task since their outputs, used to calculate retrieval distances, do
not align with empirical probabilities for the presence of the attributes.

Research in the field indicates that algorithms typically optimize either label-
based metrics or instance-based metrics. Different network structures and
added components, such as attention mechanisms, can impact these metrics
differently. These findings align with research by the author [Cor23] and are
consistent with the results reported in this thesis, which demonstrate a similar
discrepancy in performance metrics. For example, when using ConvNeXt-
Base as the backbone, significantly stronger results concerning the instance-
based F1 are achieved than for the label-basedmA on theMarket-1501 dataset.
In general, instance-based measures are better predictors of attribute-based
person retrieval performance, and models with strong performance in this
type of PAR metric outperform those optimizing label-based scores [Cor23].
However, achieving promising results regarding both types of metrics and
retrieval is optimal. This study assumes that balancing label- and instance-
based metrics in PAR has great potential in enhancing the quality of retrieval.
To achieve this, a novel normalization strategy for PAR models is proposed
by the author of this thesis [Spe23a].
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6.2.1 Methodology

To alleviate the problems caused by imbalanced attribute distributions with-
out harming attribute-based person retrieval performance and to obtain bal-
anced PAR results, the PARNorm module is proposed. The core idea is to se-
quentially normalize the classifier’s output logits x𝑖 concerning the attributes
and afterward regarding the entire person description. The PARNormmodule
expands the work of Zhao et al. [Zha18b], which only applies attribute-wise
normalization.

Both types of normalization operations are visualized in Figure 6.5 and re-
semble batch [Iof15] and layer normalization [Ba16], respectively. Each sub-
figure visualizes a training batch consisting of 𝐵 logit vectors x𝑖 of dimension
𝐿, which corresponds to the number of attributes to recognize. The elements
highlighted in green depict the elements that are considered for normaliza-
tion.

𝐵

𝐿
(a) Attribute-wise

𝐵

𝐿
(b) Instance-wise

Figure 6.5: PARNorm – Each figure displays a batch of attribute logit vectors. Initially,
attribute-wise normalization is conducted to enhance the recognition of imbalanced
attributes, as illustrated in Figure 6.5a. Moreover, it is suggested to subsequently
normalize the output logits along the attribute dimension, as shown in Figure 6.5b.
This aims at improving instance-based metrics by avoiding the over- or underesti-
mation of the number of a person’s semantic attributes.

First, logits are normalized in an attribute-wise manner, as shown in Fig-
ure 6.5a. In practice, the classifier is often not confident about positive sam-
ples of attributes that appear in only a few training images. As a consequence,
the predicted output probabilities p𝑖 for positive samples on unseen data tend
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to be low and may not surpass the decision threshold. In addition, the out-
put distributions for both positive and negative samples tend to be close to-
gether, leading to difficulties in discrimination between the manifestations
of the attribute. Normalizing the logits per attribute across the batch samples
enhances the discrimination between negative and positive samples. This pro-
cess widens the range of logit values and, therefore, improves the recognition
of the attribute. It involves calculating the mean 𝜇𝐵𝑗 and corresponding vari-
ance 𝜎2,𝐵𝑗 of logits values per attribute within a batch as follows:

𝜇𝐵𝑗 = 1
𝐵

𝐵
∑
𝑖=1

𝑥𝑖𝑗 (6.5)

and

𝜎2,𝐵𝑗 = 1
𝐵

𝐵
∑
𝑖=1
(𝑥𝑖𝑗 − 𝜇𝐵𝑗 )2. (6.6)

Here, 𝐵 represents the mini-batch size. Based on these statistics, the batch-
normalized logits ̂𝑥𝐵𝑖,𝑗 for the 𝑗-th attribute of the 𝑖-th sample in the batch are
then computed as

̂𝑥𝐵𝑖𝑗 = 𝛾𝐵𝑗 (
𝑥𝑖𝑗 − 𝜇𝐵𝑗

√𝜎2,𝐵𝑗 + 𝜖
) + 𝛽𝐵𝑗 , (6.7)

where 𝜖 is a small constant introduced for numerical stability, and 𝛾𝐵𝑗 and
𝛽𝐵𝑗 are learnable scale and shift parameters, respectively. These parameters
control the magnitude of the outputs.

However, attribute-wise normalization calibrates the logits in such a way that
the positive recall of rarely present attributes increases with the risk of also
introducing false positive predictions. Thus, particularly the label-based mA
benefits from this kind of normalization. On the other hand, an overestima-
tion of the number of attributes for a person instance may impair instance-
based metrics and lead to incorrect retrieval results. Therefore, instance-wise
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normalization is applied afterward to compensate for this effect. As can be
seen in Figure 6.5b, instance-wise normalization is performed along the at-
tribute dimension, i.e., separately for each instance included in the batch. The
formulation is similar to the first normalization technique, but the activations
are normalized across the attributes in a per instance manner as

̂𝑥𝐿𝑖𝑗 = 𝛾𝐿𝑖 (
𝑥𝑖𝑗 − 𝜇𝐿𝑖

√𝜎2,𝐿𝑖 + 𝜖
) + 𝛽𝐿𝑖 (6.8)

with

𝜇𝐿𝑖 =
1
𝐿

𝐿
∑
𝑗=1

𝑥𝑖𝑗 (6.9)

and

𝜎2,𝐿𝑖 = 1
𝐿

𝐿
∑
𝑗=1

(𝑥𝑖𝑗 − 𝜇𝐿𝑖 )2 (6.10)

being the mean and variance across the attribute logits for the 𝑖-th individual
in the batch.

6.2.2 Evaluation

The proposed PARNorm module is evaluated using ConvNeXt-Base as back-
bone. The baseline approach without modification is leveraged for compar-
ison.

First, an ablation study is conducted to examine the influence of the two nor-
malization techniques on PAR and retrieval results. Quantitative results for
the PETA dataset are provided in Table 6.19. As expected, solely applying
attribute-wise normalization mainly leads to an increase in mA. The reason
for this is that the presence of attributes is identified correctly by the model
to a much higher portion. The positive recall across all attributes is only
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77.6% for the baseline approach without normalization, whereas including
attribute-wise normalization improves this score to 82.2%. However, at the
same time, additional false positive recognitions are produced, which dete-
riorate the instance-based precision by 1.5 points. Thus, the instance-based
F1 score is slightly worse compared to the baseline. Regarding the retrieval
task, only the mADM measure improves through attribute-wise normaliza-
tion, while the other evaluation metrics show worse performance. This find-
ing mostly transfer to the remaining datasets. Deteriorated mAP and R-1
scores are also observed for those datasets. For mADM, however, findings
are not consistent across the datasets. On the PETA and PA-100K datasets,
the mADM improves, while attribute-wise normalization leads to degraded
performance for the Market-1501 and RAPv2 datasets. Since a more severe
drop in instance-based F1 is observed, this indicates that the number of ad-
ditional false positives is much larger for the latter datasets. As a result, this
also negatively impacts the retrieval performance measured by mADM. The
mADMmeasure considers the ratio of matching attributes between the query
and gallery images, which is why the increased positive recall may improve
this metric even if there are some additional false positives. Images depict-
ing challenging attributes receive lower distances for those attributes due to
better recognition and, therefore, are ranked in earlier positions. However, if
the presence of attributes is overestimated to a larger extent, as on RAPv2 and
Market-1501, this also applies to incorrect gallery samples showing different
sets of attributes.

Table 6.19: PARNorm ablation study – Baseline results, results for the single normalization
techniques, and for the combination of both are presented for the PETA dataset.
Performing attribute-wise normalization followed by instance-wise normalization,
as proposed in this thesis, leads to the best performance concerning each of the met-
rics.

Normalization PETA
Attribute-wise Instance-wise mA F1 mADM mAP R-1

86.1 88.1 61.8 24.4 24.4
3 88.3 87.8 62.8 23.7 23.8

3 87.8 88.6 64.1 26.1 26.3
3 3 88.6 88.7 65.3 26.8 26.5
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The application of instance-wise normalization improves all metrics and is es-
pecially beneficial for retrieval. Normalizing the scores per instance balances
the confidence scores of the classifier across the attributes, which improves
the computation of the retrieval distances. The impact of single attributes on
the resulting distance is much more balanced as without this normalization.

Combining both normalization components sequentially, melds the benefits
and achieves the best results. Label-based mA and instance-based F1 are bal-
anced and, particularly, the mA is enhanced. As assumed, the improved bal-
ance also leads to enhanced retrieval performance. Measured by mADM, the
quantitative improvement is 3.5 points for the PETA dataset.

These findings transfer to the other datasets, as is shown in Table 6.20.
Attribute-based person retrieval showcases improvements ranging from 1.2
to 3.5 points in mADM for the datasets. Moreover, the normalization module
provides benefits to both types of PAR metrics.

Table 6.20: Specialization results for the PARNorm module – The use of the PARNorm
module consistently improves the PAR and person retrieval results for all datasets.
Furthermore, the results indicate that the normalization module is able to enhance
the mA metric greatly without negative effects concerning instance-based F1.

Normalization
PETA PA-100K

mA F1 mADM mAP R-1 mA F1 mADM mAP R-1
Baseline 86.1 88.1 61.8 24.4 24.4 82.2 88.5 68.8 26.2 34.5
PARNorm 88.6 88.7 65.3 26.8 26.5 85.6 89.1 71.3 28.9 34.2

Normalization
RAPv2 Market-1501

mA F1 mADM mAP R-1 mA F1 mADM mAP R-1
Baseline 79.3 80.0 58.5 20.5 14.5 80.7 85.7 65.9 31.6 47.7
PARNorm 81.2 80.3 59.7 22.0 16.0 84.7 86.1 68.3 34.7 47.5

As reported in Table 6.21, the results for the UPAR dataset indicate that us-
ing the PARNorm module leads to a decline in instance-based F1 score in the
generalization case. Nevertheless, remarkable improvements are observed in
terms of mA. Moreover, the retrieval metrics increase for both evaluation pro-
tocols, highlighting the benefits of the PARNorm module for this task.
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Table 6.21: Generalization results for the PARNorm module – Similar to the specializa-
tion results, utilizing the PARNorm module leads to an improvement in mA. How-
ever, this is accompanied by a decrease in the instance-based F1. Nevertheless, the
attribute-based retrieval performance is enhanced.

Normalization
UPAR LOOCV

mA F1 mADM mAP R-1
Baseline 73.2±1.9 82.1±2.7 56.1±5.1 17.6±4.3 19.2±8.3
PARNorm 76.8±1.8 81.6±2.4 57.4±4.8 18.6±4.7 20.2±8.8

Normalization
UPAR 4FCV

mA F1 mADM mAP R-1
Baseline 70.1±1.5 77.2±4.2 46.4±5.8 11.0±3.6 12.8±4.6
PARNorm 73.0±1.6 76.0±4.4 47.6±6.1 11.8±3.8 13.7±4.4

Finally, a qualitative example demonstrating the functionality of the
PARNorm approach is presented in Figure 6.6.

(a) Image

• Senior
• Male
• Upper-body clothing 

length short
• Upper-body clothing 

color gray
• Trousers
• Lower-body clothing 

length short
• Lower-body clothing 

color gray

(b) Baseline

• Adult
• Male
• Upper-body clothing 

length short
• Upper-body clothing 

color black
• Upper-body clothing 

color gray
• Trousers
• Lower-body clothing 

length short
• Lower-body clothing 

color black

(c) Attribute-wise

• Adult
• Male
• Upper-body clothing 

length short
• Upper-body clothing 

color black
• Trousers
• Lower-body clothing 

length short
• Lower-body clothing 

color black

(d) PARNorm

Figure 6.6: Qualitative evaluation of the PARNormmodule – An image from the test set of
the Market-1501 dataset is displayed along with the predicted attributes by the base-
line, with attribute-wise normalization, and finally with the PARNorm module. The
utilization of only attribute-wise normalization leads to an overestimation of the rec-
ognized attributes, as two colors for the upper-body clothing are recognized. How-
ever, the application of instance-wise normalization afterward resolves that problem
and yields predictions that are identical to the ground truth annotations.

The figure depicts an image from the test set of the Market-1501 dataset and
the attributes recognized by the baseline approach. Additionally, the changes
in recognized attributes resulting from the integration of attribute-wise
and instance-wise normalization are illustrated. The predictions produced
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through the employment of the PARNorm component are identical to the
ground truth annotations, i.e., this approach achieves perfect PAR results
for this exemplary image. The baseline approach fails at recognizing the
correct age and clothing colors. The age senior is wrongly predicted and
the colors of both upper and lower-body garments, which are annotated as
black, are erroneously determined as gray. Associated confidence scores
are provided in Table 6.22.

Table 6.22: Comparison of normalization techniques – The table highlights the changes
concerning the confidence scores achieved through the application of different types
of normalization techniques. The confidence scores belong to the qualitative example
in Figure 6.6.

Normalization
Age Lower-body clothing color Upper-body clothing color

Adult Senior Black Gray Black Gray
Baseline 28.7 60.4 24.7 87.5 22.7 96.7
Attribute-wise 70.8 29.0 72.2 43.5 54.8 51.8
PARNorm 93.1 28.6 82.8 40.2 86.0 32.9

Attribute-wise normalization adjusts the output logits for each attribute and
is able to correct the determination of the age and the color of the lower-body
clothing. As for the color of the clothing on the torso, the use of attribute-
wise normalization predicts an additional attribute, namely, predicting both
the colors black and gray simultaneously. However, as mentioned in the mo-
tivation, applying instance-wise normalization afterward, fixes this overes-
timation issue and leads to the correct prediction of the color black instead
of gray. The overestimated number of present attributes is repressed by nor-
malizing the attribute logits for the instance. Additionally, it can be observed
that instance-wise normalization enhances the classifier’s certainty in its pre-
diction when contrasted with relying solely on attribute-wise normalization.
Retrieval benefits from having lower difference to binary queries obtained for
these attributes. Solely using attribute-wise normalization results in confi-
dence scores close to the decision threshold of 50% for, e.g., lower-body cloth-
ing colors, which indicates limited certainty of the classifier, thus, providing
less discriminating information in the attribute prediction vector used for cal-
culating the retrieval distance.
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In conclusion, the experimental validation has demonstrated the effective-
ness of the PARNorm module in achieving its desired outcomes. By using
this component, more balanced PAR results are obtained along with a notable
improvement in retrieval performance. This applies to both cases, specializing
on a single dataset, as well as generalizing to other new data sources.

6.3 Video-Based Pedestrian Attribute
Recognition

In real-world scenarios, surveillance systems typically provide videos instead
of single person images, providing a more extensive view of individuals over
multiple time steps. As a result, entire tracks comprising multiple person
crops over time become available, offering a rich source of information. One
such track is shown in Figure 6.7.

Figure 6.7: Example of a person track – In contrast to single images, person tracks com-
prise multiple views of a person over time. The tracks are obtained by detecting and
tracking individuals within videos. Tracks provide richer information about the de-
picted person. For instance, the handbag is only visible in certain images. Image
source: [Zhe16]

Themajor advantage of using video-based processing is the increased amount
of information available to extract the semantic attributes of a person. For
instance, in the given track, the handbag is only visible in certain frames. In
other frames, the handbag is occluded by the woman herself, other people, or
left out of the bounding box due to inaccurate person detection. However, by
aggregating information across the track, it is possible to accurately recognize
the soft biometrics. In contrast, if attributes are solely recognized based on
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6.3 Video-Based Pedestrian Attribute Recognition

single images, the occurrence of the person of interest might be missed during
attribute-based person retrieval, as some attributes may be overlooked.

Several methods for video-based classification have emerged recently. Re-
current networks have conventionally been used for processing temporal in-
formation [Wan16]. However, incorporating specialized components such as
3D convolutions [Tra18], temporal attention [Che19], or multi-head atten-
tion [Vas17] in feed-forward networks results in even higher levels of accu-
racy.

However, this thesis argues that straightforward temporal pooling through
average or maximum pooling is sufficient for the PAR task. Soft biometrics,
which are relevant to finding individuals matching particular personal de-
scriptions, are independent of the movements of the person and attached ob-
jects. Despite disregarding the temporal context by ignoring the frame order,
comparable accuracy is anticipated. While traits such as gait are important
for identifying a specific individual in an identification or re-identification
task, recognizing attributes related to clothing or an individual’s age does not
require such data. In addition, the temporal pooling approach offers great
flexibility since the number of frames processed by the model in one for-
ward pass can be easily adjusted. Furthermore, this approach exhibits lower
computational complexity compared to the other methods considered in the
evaluation. This is crucial when integrated into a complete framework with
additional components such as person detection and tracking.

This section introduces temporal pooling approaches in Section 6.3.1 and thor-
oughly evaluates and compares them to alternative methods in Section 6.3.2.
The work discussed in this section builds upon the author’s study on video-
based PAR [Spe20c].

6.3.1 Temporal Pooling

In this context, temporal pooling involves combining feature representations
extracted from individual person bounding boxes over a specific time period.

125



6 Pedestrian Attribute Recognition

The pooling operation can be carried out using several methods, such as aver-
age ormaximum pooling. The approaches followed in this work are visualized
in Figure 6.8. Two different variants are studied which differ by the position
of the temporal pooling operation. Both variants are based on a 2D CNN as
the backbone model to generate global features for each bounding box of the
person included in the track. With 𝑇 being the number of sampled person im-
ages from the input track and 𝐶, 𝐻, and𝑊 being the image channels, height,
and width, respectively, 𝑇 feature vectors of size 𝐹 are produced by the back-
bone. A short subset of length 𝑇 from a track is referred to as tracklet in the
following.
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(b) Temporal Prediction Pooling

Figure 6.8: Temporal pooling approaches –Two variants of temporal pooling, highlighted in
red, are considered. Both approaches build on the feature representations generated
by a 2D CNN backbone model. While the Temporal Feature Pooling (TFP) variant
shown in Figure 6.8a directly pools the obtained feature vectors along the temporal
dimension, Temporal Prediction Pooling (TPP) creates separate predictions for each
time step and applies temporal pooling as the last step. This option is depicted in
Figure 6.8b. Both approaches produce one tracklet-level attribute vector p.
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The first variant explored involves the temporal pooling of feature represen-
tations that are produced by the backbone model. Thus, it is called Temporal
Feature Pooling (TFP). As illustrated in Figure 6.8a, TFP is integrated between
the spatial pooling operation of the backbone and the attribute classifier. As
a consequence, the classifier generates attribute predictions based on a single
track-level feature representation.

The second option creates separate attribute predictions for each of the 𝑇 time
steps. As a final step, Temporal Prediction Pooling (TPP) is implemented to
obtain predictions for the entire track, as illustrated in Figure 6.8b.

While the second concept is the straightforward procedure, attribute predic-
tions may be sensitive to slight disturbances in the input images and, thus,
fluctuate from frame to frame. Additionally, in cases as visualized in Fig-
ure 6.7, where attribute are occluded entirely in some frames, different pre-
dictions for the same attribute are obtained. Contrary to that, global feature
vectors capture the appearance of the whole body in more granularity with
less semantics and may, therefore, be more robust.

Both architectures do not add any extra parameters, resulting in a lightweight
model that supports fast inference. Additionally, since themodels do not learn
the temporal context, input tracks can be flexibly down-sampled according to
the application’s needs. In contrast, certain methods such as 3D CNNs and
temporal attention approaches require selecting a fixed sequence length prior
to training.

6.3.2 Evaluation

In this section, the temporal pooling approaches are evaluated and compared
to a temporal attention approach [Che19], the 3D ResNet-50 [Har18] as a rep-
resentative of a 3D convolutional model, and the VTN model [Nei21].

The evaluation is carried out on the MARS dataset [Zhe16, Che19]. For
fair comparison with the 3D ResNet architecture, ResNet-50 is used as the
backbone model in all experiments. During training, tracklets of length 15
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are sampled from the tracks. For the temporal pooling approaches, sam-
pling is conducted randomly to benefit from increased diversity of sampled
sequences. For the other methods, consecutive frames beginning at ran-
domly determined time steps are sampled. Furthermore, the 3D ResNet is
initialized with weights pre-trained on three datasets: Kinetics-700 [Car19],
MiT [Abu16], and STAIR [Yos18]. Apart from that, the training setup,
schedule, and parameterization introduced for the baseline in Section 5.2.4
is utilized.

First, the impact of different temporal pooling operations is investigated.
Specifically, average and maximum pooling are considered and compared
in Table 6.23.

Table 6.23: Comparison of temporal pooling operations – The results achieved for average
and maximum temporal pooling of backbone features and predictions are compared.
The results indicate that the use of average pooling is beneficial.

Approach Operation
MARS

mA F1 mADM mAP R-1

TFP
Average 77.5 88.2 70.7 34.8 35.1
Maximum 69.9 84.6 60.1 22.6 24.1

TPP
Average 75.7 87.5 69.3 33.1 32.0
Maximum 76.7 84.2 64.2 25.8 27.3

The results demonstrate that average pooling yields superior outcomes, par-
ticularly for the TFP methodology. Maximum pooling, which concentrates
on the most salient features, may be misleading when analyzing tracks. The
most prominent features are often those that deviate from the rest. As a re-
sult, anomalies in individual frames of the tracklet or brief occlusions may
be considered and result in inaccurate predictions. In contrast, average pool-
ing functions as a weighted voting mechanism to ensure dominant features
or predictions prevail. If occlusions or similar disturbances are temporary,
average pooling mitigates the impact of those disturbances. However, for
the mA used in the TPP approach, maximum pooling outperforms average
pooling. The use of maximum pooling increases the positive recall of imbal-
anced attributes. However, it causes overconfidence in the model for these
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attributes, skewing the model’s output probabilities and ultimately harming
attribute-based person retrieval performance. Therefore, temporal average
pooling is utilized.

Next, this study compares both temporal pooling approaches to alternative
video processing methods. The experimental results are presented in Table
6.24. The TFP model achieves the most favorable outcomes for both tasks
and all metrics. This finding affirms the hypothesis that temporal pooling
is adequate for identifying semantic person attributes, implying that explicit
capture of temporal context is not necessary.

Table 6.24: Comparison of video processing methods – The results demonstrate that com-
plex model architectures are not required for strong video-based PAR and retrieval
performance, as TFP outperforms methods such as 3D CNNs [Har18], temporal at-
tention models [Che19], and the VTN [Nei21].

Approach
MARS

mA F1 mADM mAP R-1
3D ResNet-50 [Har18] 74.0 85.2 60.6 24.0 26.4
Temporal attention [Che19] 77.1 87.6 68.9 32.7 32.9
VTN [Nei21] 75.1 85.5 61.5 25.1 25.5
TFP 77.5 88.2 70.7 34.8 35.1
TPP 75.7 87.5 69.3 33.1 32.0

When comparing the two temporal poolingmethods, TFP clearly outperforms
TPP in both attribute-based person retrieval and PAR. In terms of PAR, espe-
cially mA differs, suggesting that pooling the probabilities for the presence of
attributes often leads to predicting the absence of attributes with few training
samples. Since attributes are often recognized with low certainty, averag-
ing prediction probabilities across an entire tracklet may fail to surpass the
attribute decision threshold. It is advantageous to combine global backbone
features along the temporal dimension as they offer more refined information
about the portrayed person. The averaged track-level feature vector appears
to capture a strong representation of the person depicted in the tracklet, with-
out omitting information that is only visible in a few frames.
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In terms of the PAR results, the temporal attention model exhibits the second-
best performance, with the mA showing particularly strong performance
compared to the TPP approach. The attention mechanism of this model ap-
pears to concentrate effectively on the frames within the tracklets, where the
attributes are clearly visible, while ignoring those frames with obstructions.
Notably, the TPP approach slightly outperforms the temporal attention model
in terms of retrieval mADM and mAP, which assess the entire retrieval rank
lists’ quality. This finding suggests that the temporal attention’s enhanced
focus on specific frames could negatively impact the model’s calibration,
leading to overconfidence, similar to the maximum pooling TPP approach.

The 3D model produces the poorest results. Such models require a significant
amount of training data, especially concerning diversity for each classification
category [Kat20], which is not the case for many attributes. Furthermore, the
basis for fine-tuning is less adequate than for 2D CNNs, as the tasks included
in pre-training datasets do not fit the PAR task seamlessly. It is assumed that
the tracklets included in the MARS dataset do not provide enough data and
diversity to learn robust feature representations.

Furthermore, the VTNmodel utilizing a transformer-based classification head
also shows poor performance. This issue may stem from either insufficient
training data to fine-tune the model or from the fact that the model has many
design parameters that are not optimally tuned. However, experimenting
with different training schedules and parameter variations did not result in
significant improvement in the outcome.

The TFP approach achieves the best PAR and retrieval results across the meth-
ods. However, temporal pooling does not take into account the order of
frames, unlike the other methods. As a consequence, straightforward tem-
poral pooling is less appropriate for recognizing persons’ motions or actions.
This effect is demonstrated in Table 6.25, which reports the mA across the
motions annotated for the MARS dataset. As anticipated, it is evident that the
temporal attention approach, incorporating a designated branch for motion
recognition, and the 3D model, surpass the temporal pooling approaches for
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identifying individuals’ movements. However, regarding attribute-based per-
son retrieval, motion is not significant as it does not offer any substantial data
for locating individuals with matching visual descriptions.

Table 6.25: Motion classification results – The mA scores for recognizing the motion in the
MARS dataset are presented. Contrary to the recognition of static attributes, tempo-
ral pooling struggles to recognize people’s motions and yields poor results compared
to the other methods.

Approach Motion mA
3D ResNet-50 [Har18] 68.8
Temporal attention [Che19] 70.4
VTN [Nei21] 67.5
TFP 68.0
TPP 64.7

Despite the fact that TFP is lightweight as it does not add any additional pa-
rameters to the baseline approach, the experimental results demonstrate the
superiority of TFP for the video-based PAR and attribute-based person re-
trieval tasks. In order to illustrate the advantageous balance between infer-
ence time and retrieval accuracy, Figure 6.9 shows the correlation between the
number of tracklets processed per second and themADMobtained by the con-
sidered video processing methods. The average number of tracklets processed
per second refers to the average over the entire test set of the MARS dataset.
Processing occurs for only one tracklet at a time and frames are densely sam-
pled. This process divides each track into sub-sequences with a length of 𝑇.
Consequently, every frame within the track is processed and no sub-sampling
takes place. Inference time is measured using an NVIDIA RTX A6000 GPU
with 48 GB of graphics memory. The closer the approach to the upper-right
area of the plot, the better the tradeoff. The temporal pooling approaches pro-
vide the best tradeoff between computation time and retrieval performance.
Especially TFP surpasses the alternative methods in both aspects. The tem-
poral attention technique proves to be slower in the inference process than
the VTN approach. However, it achieves superior outcomes in mADM. The
weakest model concerning retrieval quality is the 3D ResNet model, which is
the slowest as well.
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Figure 6.9: Tradeoff between inference time and retrieval accuracy –The figure illustrates
the relationship between the processing speed and the mADM score achieved by
several video processing methods. The closer one is to the upper-right region of the
plot, the better the tradeoff. Regarding both speed and accuracy, TFP outperforms
the other methods.

In conclusion, the hypothesis that simple temporal pooling is adequate for
PARwith video input is valid. Moreover, pooling the feature vectors produced
by the backbone model to create an overall track-level feature representation
is superior to pooling the final predictions. This technique significantly out-
performs all other methods in the comparison. Furthermore, temporal pool-
ing proved to be the fastest method during inference due to its lightweight
model architecture. Consequently, this approach is best suited for the use
in the attribute-based person retrieval framework developed in this thesis.
Nevertheless, the research highlighted that temporal pooling has weaknesses
concerning the recognition of movements or actions, since the temporal con-
text of the frames is ignored.
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The previous chapter centered on optimizing the PAR model that functions as
a feature extractor for the attribute-based person retrieval task. The soft bio-
metric information extracted by the PAR model from person images is sub-
sequently compared to the search query in the person retrieval stage. This
chapter deals with enhancing the retrieval process itself.

For this, leveraging complementary information about the chance of failure
of the PAR model is investigated in Section 7.1. Depending on the data and
task-specific challenges introduced in Section 1.2, reliable recognition of all
relevant attributes is not possible. For instance, some characteristics might be
occluded or invisible due to poor lighting conditions. The core idea is to es-
timate the difficulty of attribute classification and introduce this information
as a weighting mechanism during the computation of the retrieval distance.

Furthermore, three measures to ease the negative impact of skewed output
distributions of the PAR model and to achieve more balanced and reliable
retrieval rankings are introduced in Section 7.2. First, the application of re-
liability calibration is examined to align the predicted attribute probabilities
with the empirical probabilities for the presence of the attributes. Differences
appear due to imbalanced training distributions, overfitting, and domain gaps.
Additionally, the impact of the individual attributes on the resulting ranking
distance is balanced through an error-based weighting approach. Finally, an
additional distance metric is proposed that takes into account the concrete
output distributions of the classifier and is able to adapt to novel domains in
an unsupervised manner.
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7.1 Hardness Prediction

Automatic PAR encounters several challenges that are detrimental to image
quality and subsequent analysis. These challenges include blurring, unfavor-
able lighting conditions, occlusions caused by static obstacles or other people,
and potential errors in the processing pipeline, such as mislocated person de-
tections. In the most adverse scenario, these factors make the recognition of
certain attributes difficult or even impossible. Examples for this worst case
are illustrated in Figure 7.1. Blurriness or poor lighting obstructs the per-
ception of crucial details of a person’s appearance resulting in uncertain or
random attribute predictions generated by the PAR model. The given samples
for these challenges highlight scenarios where adequate information about
certain body regions cannot be gathered to reliably recognize the attributes.
Similar problems arise from low-resolution images frequently encountered
when processing real-world data. Additionally, images where portions of the
human body are invisible prevent a PARmodel from providing profound clas-
sification results for affected attributes. This problem usually stems from in-
accurately aligned bounding boxes received from the person detector or oc-
clusions. The example images depict scenarios where either the head or the
lower-body regions are concealed, resulting in soft biometrics related to these
areas remaining indeterminable.

Blur Lighting Low resolution Misaligned
bounding box

Occlusion

Figure 7.1: Example images depicting challenging factors – The example images from the
RAPv2 [Li19a] dataset illustrate challenging factors that increase the likelihood of
false predictions made by the PAR model.
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The inability to correctly recognize attributes in such cases also causes errors
in subsequent downstream tasks, such as attribute-based person retrieval. For
instance, if relevant areas are obscured, the classifier may randomly select
manifestations of related attributes, such as the most frequent manifestation
in the training dataset, or simply assume that the attributes are absent. How-
ever, this causes serious problems in the real world. For instance, suppose
the operator is searching for a person wearing gray pants. If the lower-body
of the target individual is occluded, the PAR system may mistake the color of
the obstructing object as the clothing color. Therefore, despite other attributes
matching the query, the individual will not be considered a match and will ap-
pear low on the retrieval ranking. As a result, a relevant occurrence is missed.
From the perspective of the application, it is desirable to restrict the impact
of unreliable attributes to mitigate the aforementioned issue.

Existing approaches from the literature typically ignore this issue and provide
classification results for all attributes regardless of the input and also consider
the entirety of attributes during retrieval. Most PAR classifiers predict the
presence or absence of an attribute without determining the difficulty and
reliability of this prediction. The straightforward approach of assessing the
difficulty of the classification task based on the classifier’s confidence scores
does not constitute a solid basis since very confident scores may occur even
in error cases, which is shown later in this section.

Thus, an independent HP [Spe20a, Flo21] is proposed by the author of this
thesis that utilizes a separate network branch to detect challenging factors
and assess the difficulty of the classification task. The literature review in
Section 2.3.2 demonstrates that such methods achieve promising results in a
variety of applications, including object detection [Ram18], multi-class clas-
sification [Wan18a], and semantic segmentation [Rah22, Gad23]. As methods
for comparison, self-referential approaches are considered. Thesemethods es-
timate the certainty of attribute decisions based on the classifier’s confidence
scores. Sections 7.1.1 and 7.1.2 elaborate on the methodology of the indepen-
dent HP and the self-referential approaches, respectively. Subsequently, gath-
ering weights and the inclusion into the distance computation for retrieval is
described in Section 7.1.3, followed by a detailed evaluation in Section 7.1.4.
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7.1.1 Independent Hardness Prediction

The hardness prediction approach builds upon the foundation laid by Wang
et al. [Wan18a] with their realistic predictor model for multi-class classifica-
tion. Analogous to the realistic predictor, the concept of an independent HP
is followed that is trained using the confidence scores of the classifier for su-
pervision. However, to address the multi-label, i.e., the multi-attribute, clas-
sification scenario and to fit the model to the specific needs arising from the
application, several adaptations are employed. The most significant ones are
that mid-level features are utilized for difficulty prediction to keep the model
small and efficient, the abandonment of hardness feedback, and the adjusted
loss function. The proposed architecture is presented in Figure 7.2, demon-
strating the integration of the HP into the PAR framework.
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Figure 7.2: Architecture of the HP model – An additional HP branch is integrated into the
PAR architecture introduced in Section 5.2. In addition to the attribute predictions
p𝑖, the model generates hardness scores s𝑖 referring to the difficulty of classification.
The HP branch is trained using a separate loss function ℒHP.

The upper part visualizes the attribute classifier, while the bottom branch
shows the HP. The input image I𝑖 is passed through the classification back-
bone to produce global feature representations. It is followed by the PAR head,
which produces the attribute predictions p𝑖 using a FC classification and sig-
moid activation layer. In addition, extracted mid-level feature maps are also
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processed by the hardness prediction head. To increase the number of param-
eters available for hardness prediction and decouple the task from PAR, the
last stage of the backbone model is duplicated. The semantics of learned fea-
tures increases the farther back in the CNN. Whereas PAR needs features that
allow distinguishing between the absence and presence of attributes, hardness
prediction aims at identifying challenging factors that are shared across the
manifestations. To facilitate learning these different semantics, separating the
last stage of the backbone model is beneficial. Since features like the localiza-
tion of attributes is identical for both tasks, earlier splitting of the backbone
is assumed to not increase performance further. After the duplicated back-
bone stage, a single FC layer followed by the sigmoid activation function is
utilized to obtain the difficulty estimates s𝑖 for the 𝑖-th image. Separate hard-
ness scores are generated for each of the attributes, resulting in a vector s𝑖
that includes one element per attribute.

The PAR branch is trained with a weighted loss functionℒPAR, as explained in
Section 5.2.3. The outputs of the classifier p𝑖 serve as the basis for calculating
the hardness prediction loss ℒHP. The individual elements within p𝑖 are in-
terpreted as independent probabilities for the presence of the 𝑗-th attribute in
the 𝑖-th image. Since the aim of the HP is to identify common obstacles that
impede accurate attribute recognition, regardless of whether the attribute is
present or absent in the input image, the predicted probability for the ground
truth label 𝑦𝑖𝑗 is formulated as

𝑝𝑦𝑖𝑗 = {𝑝𝑖𝑗 , if 𝑦𝑖𝑗 = 1
1 − 𝑝𝑖𝑗 , if 𝑦𝑖𝑗 = 0 . (7.1)

Based on this, the classification error is defined as 1 − 𝑝𝑦𝑖𝑗 . As the HP aims
at predicting the difficulty of classification, this classification error is selected
as the learning target. This guarantees that high hardness scores are assigned
to images for which the attribute classifier is far off the ground truth. Con-
versely, images that are classified correctly by the classifier with a high degree
of certainty receive lower scores. Then, the loss function ℒHP for training the
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HP is formulated as

ℒHP = −
𝐿
∑
𝑗=1

(1 − 𝑝𝑦𝑖𝑗) log(𝑠𝑖𝑗) + 𝑝𝑦𝑖𝑗 log(1 − 𝑠𝑖𝑗), (7.2)

which resembles the cross-entropy loss. If the classifier is certain about its
prediction for the 𝑗-th attribute, meaning that 𝑝𝑦𝑖𝑗 = 1, then the correspond-
ing loss component for this attribute is− log(1−𝑠𝑖𝑗). This loss will be minimal
if 1 − 𝑠𝑖𝑗 = 1 applies, which requires a predicted difficulty of 𝑠𝑖𝑗 = 0. The
higher the hardness score 𝑠𝑖𝑗 in this case, the higher the loss that is received.
The loss is also minimized for incorrect predictions when the HP produces
hardness scores close to 1.

Wang et al. [Wan18a] propose a hardness feedbackmechanism to enhance the
performance of the classifier by prioritizing difficult samples once easy sam-
ples are classified correctly. This is achieved by weighting the classification
loss with the hardness scores. However, this concept carries risks, especially
in the context of PAR. Certain attributes might be exceptionally challenging
or even impossible to recognize, as shown in Figure 7.1. A classifier focus-
ing excessively on such samples might achieve sub-optimal performance, as
it cannot base its decision on meaningful traits. Given these concerns, the
feedback from the HP to the classifier is omitted. Furthermore, no gradients
fromℒHP are computed for the model parameters included in the PAR branch.
The reason is that the HP solves a side task and only provides additional infor-
mation. This process avoids any interference with the main task and allows
flexible as well as modular incorporation in any PAR model. Moreover, the
entire model is trained in an end-to-end manner.

7.1.2 Self-Referential Hardness Prediction

An alternative to utilizing an independent HP is the concept of self-referential
hardness prediction, where the difficulty is derived from the classifier’s confi-
dence scores. To facilitate a comparison with the suggested independent HP,
three different variants of self-referential approaches are investigated.

138



7.1 Hardness Prediction

Confidence scores: The most straightforward approach employs the pre-
dicted confidence scores directly. The classifier’s certainty for its attribute
predictions is determined by evaluating the proximity of the confidence scores
to the decision threshold. Confidence scores close to the decision threshold
indicate a high level of uncertainty about the recognition of the attributes.
Assuming the default decision boundary of 0.5 for the presence of the 𝑗-th at-
tribute, the confidence score-based failure estimate 𝑠c𝑖𝑗 can be mathematically
expressed as

𝑠c𝑖𝑗 = 1 − 2 ⋅ |𝑝𝑖𝑗 − 0.5|, (7.3)

where |⋅| indicates the absolute value. The absolute distance from the decision
threshold is computed and then scaled to produce hardness scores within the
interval [0,1]. Given that greater distance from the decision threshold corre-
sponds with easier classification, the scores are inverted to measure the level
of difficulty instead.

Test time dropout: Another viable approach is the injection of noise into the
classifier and subsequently the quantification of the variance in attribute pre-
dictions acrossmultiple runs of classifying the same input image. This concept
enables the assessment of the robustness of classification: lower variance cor-
responds to less uncertainty. Dropout randomly deactivates a certain fraction
𝑟drop of nodes, reducing the available information for the classification layer.
It is assumed that when dropout is applied and the model is uncertain about
the classification of a particular attribute, the classifier’s confidence values
will exhibit greater fluctuations than if the model is sure about its prediction.
Given𝐷 as the number of runs and 𝑑 ∈ {1, … , 𝐷} as the dropout configuration
index, the difficulty of recognition is estimated by calculating the variance of
classifier outputs. Mathematically, this is represented by

𝑠d𝑖𝑗 =
1
𝐷

𝐷
∑
𝑑=1

(𝑝𝑑𝑖𝑗 − 𝑝𝑖𝑗)2. (7.4)

Here, 𝑠d𝑖𝑗 represents the dropout-based hardness score for the 𝑗-th attribute
in the 𝑖-th image, 𝑝𝑑𝑖𝑗 is the classifier’s output for the dropout configuration
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𝑑, and 𝑝𝑖𝑗 stands for the average output of the classifier across all dropout
configurations for the given sample 𝑖.

Image preprocessing: Similar to test time dropout, multiple outputs are pro-
duced for a single image to measure the robustness of attribute predictions. In
this case, the ten-crop technique is employed for image preprocessing. First,
images are padded with zero pixels on each side. Then, the middle as well as
the four corner crops are extracted for the original and horizontally flipped
image. Analogous to test time dropout, the variance across the outputs of the
classifier for the ten crops are utilized as hardness estimates.

7.1.3 Weight Computation

Commonly, in attribute-based person retrieval, the similarity between a bi-
nary query attribute vector q and the attribute probabilities p𝑖 is determined
by calculating the Euclidean distance. However, this approach overlooks the
reliability of classification. To address this limitation, the weighted Euclidean
distance with weights obtained from hardness scores s𝑖 is employed. The
weighting scheme is applicable regardless of the chosen hardness estimation
method, either independent or self-referential.

The weights𝑤HP
𝑖𝑗 are obtained through the application of the softmax function

to the inverted hardness scores as follows:

𝑤HP
𝑖𝑗 =

exp((1 − 𝑠𝑖𝑗)𝛿HP)
𝐿
∑
𝑙=1

exp((1 − 𝑠𝑖𝑙)𝛿HP)
. (7.5)

The hardness scores are inverted, as attributes that are simple to recognize
should have a greater impact on retrieval and, thus, receive a greater weight.
Furthermore, the softmax functions ensures that the resulting weights sum
up to 1 for each image, which is crucial to retain comparability of distances
across the gallery samples. 𝛿HP represents a temperature hyperparameter that
allows the control of weight differentiation. Higher values amplify weight dis-
crepancies among the attributes, heightening the influence of the weighting
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on distance computation and, hence, the resulting retrieval ranking. On the
other hand, lower values for 𝛿HP flatten the weight distribution, resulting in
reduced impact of the weighting.

Finally, the weighted Euclidean distance is computed using the attribute- and
sample-specific weights 𝑤HP

𝑖𝑗 .

7.1.4 Evaluation

In the following, the proposed HP model is evaluated. The model’s training
setup mirrors the baseline, using equivalent parameters, training schemes,
and optimizers.

First, the proper functioning of the independent HP is validated by evaluating
the hardness scores that are generated. This is achieved through analyzing
images that are determined to be either particularly easy or difficult to classify.
For instance, Figure 7.3 illustrates images that are considered either easy or
difficult regarding the recognition of the gender.

(a) Easy (b) Difficult

Figure 7.3: Easy and difficult samples for gender – Images from the RAPv2 [Li19a] dataset
are displayed, categorized by the independent HP as being either simple or challeng-
ing with regards to the recognition of the gender.

Easy images in this context are those where men and women are clearly iden-
tifiable due to characteristic hair length or clothing. These images have high
resolution, decent lighting conditions, and well-aligned cutouts representing
the whole person, which support recognition with great certainty. On the
other hand, difficult samples show no clear indications for distinguishing be-
tween male and female appearance. The images exhibit low resolution, poor
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contrast, multiple persons within the cutout, or no obvious gender-specific
clues. Further examples for the attribute jacket are given in Figure 7.4. In this
case, images of persons wearing clothes with short sleeves, where the skin
color of the arms is clearly visible, are identified as particularly easy regard-
ing the classification of the attribute jacket. Difficult images include partially
visible subjects, and garments that are on the edge of being classified as other
types of clothing, such as hoodies with a zipper.

(a) Easy (b) Difficult

Figure 7.4: Easy and difficult samples for jacket – Images from the RAPv2 [Li19a] dataset are
displayed, categorized by the independent HP as being either simple or challenging
with regards to the recognition of the attribute jacket.

In conclusion, the qualitative analysis suggests that the independent HP is
capable of detecting challenging factors in images that increase the chance
of faulty or uninformed classification decisions. These challenging factors
include issues regarding the image quality as well as attributes with subjective
interpretations.

However, a classifier’s confidence scores can serve as a direct estimation of
its uncertainty. Thus, it is crucial to examine potential differences to deter-
mine whether the independent HP is able to provide complementary infor-
mation. For the analysis, confidence scores are transformed to hardness mea-
surements, as detailed in Section 7.1.2. Afterward, instances are selected for
various attributes, where the hardness scores produced by the two approaches
exhibit the most substantial discrepancies. More specifically, the classifier is
highly confident about its classification for the provided sample images, while
the independent HP anticipates potential failure of the classifier. In essence,
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the investigation exploreswhether the independent solution can identify chal-
lenging factors that do not result in uncertain confidence scores. The images
are provided in Figure 7.5.

(a) Gender (b) Shoes (c) Hat

Figure 7.5: Misclassified samples with contradictory statements – Samples from the
RAPv2 [Li19a] dataset are illustrated that are misclassified concerning the stated at-
tribute with high confidence. However, contradictory statements about the difficulty
of classification are made by the HP.

The images of individuals displayed for the gender attribute are erroneously
classified as male. This misclassification is attributed to low resolution and
the absence of crucial features such as hair and facial characteristics. Never-
theless, the attribute classifier exhibits a high level of confidence in its false
predictions. In contrast, the independent HP predicts a high difficulty. It con-
siders challenging aspects such as low image resolution and invisible body
parts that aggravate the classification.

Regarding the recognition of the shoe type, the classifier predicts the absence
of each possible type or the most frequent one in the training data. The rel-
evant part lies completely outside the cropped images and, therefore, no fea-
tures indicate a specific kind of shoe. Nevertheless, the confidence scores in-
dicate high certainty of the PARmodel. However, it is incorrect to assume the
absence of shoes. For instance, although shoes are not visible in the cutout,
the portrayed individual may still be wearing them. In attribute-based per-
son retrieval, such samples might not be considered relevant search results,
albeit depicting the individual of interest. Contrary to the confidence-based
hardness estimates, the HP considers the classification of the depicted sam-
ples difficult.
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Finally, two images are presented in which the attribute classifier incorrectly
identifies a hat with high confidence. In contrast, the independent HP antici-
pates the classifier’s failure accurately. A plausible explanation is that the left
image has low resolution and low contrast, causing the head and hair region
to blend with the background. The HP module recognizes these challenging
conditions in contrast to the classifier. In the image on the right, the bun
may be mistakenly identified as a bobble hat. The independent HP module
appears to be aware of that risk.

The analysis shows that attribute confidences are not always dependable es-
timators of the likelihood of failure. This is because the model was trained to
recognize attributes in all circumstances, and even when conditions permit
only random guessing or reliance on prior distributions of attributes. In con-
trast, the independent HP is able to capture high-level factors that make the
recognition task more difficult, such as poor image quality or invisible body
parts. This is due to the fact that the HP is trained to recognize challenging
factors through all the presence and absence of an attribute. Therefore, it can
be concluded that an independent HP actually provides complementary in-
formation compared to calculating hardness scores based on the classifier’s
confidences.

After demonstrating the advantages of an independent HP, an ablation study
is conducted to validate the design choices and proposed architecture. The
findings are presented in Table 7.1. Two datasets with differing characteris-
tics were chosen. The RAPv2 dataset includes image-level annotations and
is much larger than the Market-1501 dataset, which contains attribute labels
on the instance level. This is to guarantee that the design decisions are ap-
propriate for both cases. ConvNeXt-Base served as the backbone to produce
the results. First, the size of the HP branch is modified to investigate whether
duplicating more or less than the last backbone stage is advantageous. The
descriptions in the table denote the position of the split, i.e., stage 4 indicates
that themodel is divided after the fourth stage of the backbone. Thus, no back-
bone stage is duplicated in this case. Similarly, stage 2 means that the third
and fourth block of the backbone are duplicated to form the HP branch. The
results provide proof that duplicating the last stage of the backbone leads to
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the best results. This is especially evident for the smaller Market-1501 dataset.
The difference in performance between splitting the model into two branches
after stage 3 and only adding a FC layer as HP head clearly highlights the
necessity of additional network capacity for the HP to produce meaningful
hardness scores. For instance, the duplication of the last backbone stage in-
creases the mADM by 1.3 points and the mAP by 1.8 points, respectively. The
same tendency is observed for the RAPv2 dataset but to amuch smaller extent.
Enlarging the HP branch further, does not result in enhanced performance.

Table 7.1: HP ablation study – The first group evaluates varying stages for the splitting of the
backbone. Splitting after stage 3 is not reported since it corresponds to the proposed
approach. Furthermore, applying a positive ratio-based loss weighting function to
the HP loss is examined, but results are not improved. Similarly, replacing the cross-
entropy loss function with the focal or MSE loss function to train the HP does not
provide any benefits. Last, providing hardness feedback to the classifier, as proposed
by Wang et al. [Wan18a], is investigated but does not yield improvements.

Method
RAPv2 Market-1501

mADM mAP R-1 mADM mAP R-1
Proposed approach 60.9 25.7 18.0 69.1 35.8 49.6
Stage 4 60.9 25.3 17.9 67.8 34.0 48.8
Stage 2 61.1 25.5 18.0 68.7 35.0 49.2
Stage 1 61.0 25.4 17.9 68.7 34.9 49.4
Loss weighting [Li15] 60.8 25.4 17.9 68.8 35.2 49.2
Focal loss 60.9 25.2 17.7 68.4 34.7 48.8
MSE loss 60.8 25.3 17.7 68.5 34.8 49.0
Hardness feedback 60.8 25.0 17.1 68.7 35.4 50.2

Next, the implementation of a loss weighting mechanism [Li15], analogous
to that used in the PAR task, is evaluated. The loss is weighted to prioritize
rarely occurring attribute manifestations over more common ones. However,
there is a decrease in the obtained results. One possible explanation is that
increased attention to infrequently occurring attribute manifestations leads to
the HP only learning that the sole occurrence of these attributes is particularly
difficult instead of identifying general challenging factors for the absences as
well as presence of the attributes. Due to the low frequency in the training
data, the classifier is typically less certain for such attributes and, thus, the
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classification error used to train the HP is already higher, which neglects the
need for additionally increasing the importance of such samples. As a result,
it is proposed to build on the classical cross-entropy loss function to optimize
the HP part of the model.

Two alternatives for the loss function are explored as well, namely focal
loss [Lin17] and MSE loss. The findings demonstrate that, in principle, all of
these losses are suitable for the task. However, regardless of the dataset, us-
ing the cross-entropy loss function achieves the strongest results concerning
each of the three retrieval metrics. Last, hardness feedback to the PAR loss is
investigated. The idea is to enhance the focus on difficult samples according
to the HP in order to improve the recognition quality of the attribute classifier.
As mentioned earlier, making use of hardness feedback is not beneficial in
the context of multi-label classification with potentially fine-grained classes,
since relevant clues might be invisible and, hence, focusing on such images
might impede performance due to overfitting on irrelevant features.

Furthermore, it is important to understand the influence of the hyperparame-
ter 𝛿HP, which controls the influence of the hardness-basedweighting bymod-
ulating the weight differences between attributes. First, it was found that the
baseline results are always outperformed by the hardness-weighted retrieval,
regardless of the choice of 𝛿HP within the range of 1 to 100. This finding
holds for each of the datasets. In addition, the datasets can be divided into
two groups regarding the optimal choice of parameters: those with image-
level annotations and those with instance-level annotations. The RAPv2 and
PA-100K datasets from the first group require modest values as temperature
parameters, while the PETA andMarket-1501 datasets benefit from larger val-
ues and, thus, larger weight differences. This finding is attributed to the fact
that the problem of invisible attributes is more severe for the datasets with
instance-wise annotations, since semantic attributes that are occluded or out-
side the cropped bounding box are still annotated. As a result, it is difficult
to choose an appropriate setting of 𝛿HP that fits all cases. However, further
analysis of the hardness scores revealed that choosing the temperature pa-
rameter separately for each individual image in such a way that the resulting
weights have twice the variance of the hardness scores works well across all
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datasets. Since this procedure is fully automatic, there is no need to manually
determine and set the hyperparameter 𝛿HP.

Table 7.2 provides the specialization retrieval results on the single datasets,
i.e., training and test data originate from the same data source.

Table 7.2: HP specialization results – The results demonstrate remarkable improvements
through the use of the proposed independent HP.

HP
PETA PA-100K

mADM mAP R-1 mADM mAP R-1
61.8 24.4 24.4 68.8 26.2 34.5

3 63.7 28.0 27.0 72.4 32.2 37.2

HP
RAPv2 Market-1501

mADM mAP R-1 mADM mAP R-1
58.5 20.5 14.5 65.9 31.6 47.7

3 60.9 25.7 18.0 69.1 35.8 49.6

The results clearly express the benefit of using the proposed independent HP
to improve attribute-based person retrieval. Performance is significantly im-
proved for all metrics and datasets. For example, the mADM, mAP, and R-1
metrics increase by 2.4, 5.2, and 3.5 percentage points, respectively, for the
RAPv2 dataset. In terms of mAP, this is a relative improvement of more than
25%.

As can be seen in Table 7.3, identical observations are made for the two gen-
eralization protocols on the UPAR dataset.

Table 7.3: HP generalization results – Analogous to the specialization results, the use of the
hardness scores generated by the independent HP during the computation of retrieval
distances leads to a significant increase in retrieval quality.

HP
UPAR LOOCV UPAR 4FCV

mADM mAP R-1 mADM mAP R-1
56.1±5.1 17.6±4.3 19.2±8.3 46.4±5.8 11.0±3.6 12.8±4.6

3 58.0±5.2 20.7±4.7 21.3±8.8 48.1±6.1 13.0±4.3 14.2±5.2
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The results show that the independent HP is able to generalize the learned
challenging factors to unseen person images from different domains. The rel-
ative improvements over the baseline reach about 17% for mAP in the gen-
eralization case.

The experimental results demonstrate great improvement by the proposed in-
dependent HP concerning attribute-based person retrieval. To further prove
the advantages, a comparison with the self-referential alternatives introduced
in Section 7.1.2 is performed. The results are presented in Table 7.4.

Table 7.4: Comparisonwith self-referential approaches – Leveraging different kinds of self-
referential hardness scores also leads to improvements in terms of attribute-based
person retrieval. However, the introduced HP model outperforms the alternatives for
each of the metrics and datasets.

Difficulty
PETA PA-100K

mADM mAP R-1 mADM mAP R-1
Baseline 61.8 24.4 24.4 68.8 26.2 34.5
Confidence 62.5 25.4 25.2 71.9 30.4 36.4
Dropout 61.7 24.2 24.0 68.8 26.2 34.4
Ten-crop 62.1 24.6 24.2 69.3 27.2 35.3
HP 63.7 28.0 27.0 72.4 32.2 37.2

Difficulty
RAPv2 Market-1501

mADM mAP R-1 mADM mAP R-1
Baseline 58.5 20.5 14.5 65.9 31.6 47.7
Confidence 59.7 24.3 17.3 66.7 33.5 48.8
Dropout 58.3 20.5 14.8 65.8 31.5 48.1
Ten-crop 59.4 21.4 15.5 66.4 32.3 46.5
HP 60.9 25.7 18.0 69.1 35.8 49.6

In general, the results in the table indicate that the independent HP is supe-
rior to all of the comparison methods. The self-referential approach of us-
ing the confidence scores to estimate the difficulty of classification achieves
the second best results and also improves the retrieval performance on each
of the datasets. Although this does not introduce any new information, in-
creasing the focus on reliably recognized attributes and reducing the impact
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of attributes with predicted confidence scores close to the decision threshold
on the distance computation seems to be a promising approach to improve
attribute-based person retrieval. Since this information is readily available
with any PAR model, it should always be utilized to enhance retrieval per-
formance. Measuring the fluctuations of the confidence scores over different
augmentations of the input image to obtain hardness estimates also improves
the retrieval quality. However, similar to using the raw confidence scores, the
results are below those of the independent HP. In contrast to the other ap-
proaches compared, using dropout to produce multiple outputs for the same
image does not show any improvement over the baseline. The magnitude of
variation between attributes is similar and, thus, no clear discrimination is ob-
tained in the resulting weights. As a result, the evaluation scores are similar
to the baseline approach without hardness-based weighting. In summary, the
results indicate the superiority of an independent and learned HP approach.
The weights calculated on the basis of this approach show the best suitability
for weighted Euclidean distance computation to improve attribute-based per-
son retrieval rankings by a notable margin over the self-referential approach.

Finally, Figure 7.6 provides a qualitative comparison of the baseline and hard-
ness score-weighted results. In each example, the first row visualizes the
ranking for the baseline approach and the second row shows the improved
ranking by the hardness scores of the independent HP. Blue boxes indicate
the attribute query. Green and red borders denote matches and images that
differ from the query by at least one attribute, respectively, according to the
annotation. In each case, the top five gallery images are shown.
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Figure 7.6: Qualitative comparison of baseline and HP results – In both examples, the first
row shows the ranking produced by the baseline, while the second row shows the
improved ranking by the use of the HP. The attribute query is represented by blue
boxes. Green and red borders indicate matches and images that differ from the query
by at least one attribute. The top five gallery images are displayed in each case.
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Both examples display no match in the top-5 images for the baseline, but the
application of the proposed hardness weighting leads to a correct image at
the first rank. The first example in Figure 7.6a searches for a woman wear-
ing a short skirt and tight pants underneath. The issue with the particular
match, which is only correctly retrieved through the hardness-based weight-
ing mechanism, is that the low resolution and contrast of the lower-body re-
gions hardens the recognition of the lower-body clothing. Thus, the attribute
classifier does not recognize the skirt, which leads to a late position in the
ranking. However, the HP classifies the skirt attribute as difficult and, there-
fore, assigns a low weight to it when calculating the retrieval distance. As
a result, the image is correctly ranked first, since all other soft biometrics
match the query. Similar observations are made for the second example in
Figure 7.6b. In this case, the person of interest’s head is invisible due to a
misaligned bounding box. Since the head region provides crucial information
about the person’s age, the classifier randomly predicts the most common
age category. The HP is able to anticipate the failure of the PAR model under
these circumstances. Down-weighting the age attribute results in finding the
matching person image in the first position.

In summary, both quantitative as well as qualitative investigations demon-
strate the effectiveness of the proposed independent HP. In contrast to self-
referential difficulty estimates, the HP identifies high-level challenging fac-
tors, which ultimately yields superior attribute-based person retrieval results.

7.2 Improvement of the Retrieval Process

Achieving robust attribute-based person retrieval based on attribute predic-
tions extracted by a PAR model requires that the confidence values closely
reflect the actual probability of attribute presence based on the visual infor-
mation contained in the input image. However, challenges such as subopti-
mal image quality, unbalanced attribute distributions, and overfitting during
training often distort the outputs generated by the PAR model, causing a mis-
match with the classifier’s true confidence.
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This discrepancy has a significant impact on the retrieval results, especially in
cross-domain scenarios and real-world applications where data distributions
might be significantly different. Due to a lack of appropriate training data, the
classifier may struggle to confidently determine the presence of infrequent or
challenging attributes on unseen data from new sources.

In Figure 7.7, output distributions of the baseline classifier trained on the
RAPv2 dataset for different soft biometrics are depicted to emphasize the
problem. In each plot, histograms for negative and positive samples included
in the test set of the dataset are given. The histograms visualize the proportion
of images for which confidence scores in a specific interval are produced.

The first example in Figure 7.7a shows the classifier’s output distributions for
the gender of persons. Confidence scores close to 1 indicate the presence of
a woman in the input image and low output values represent males. Green
and blue color stands for the distribution of confidence scores for negative
and positive samples, respectively. One can observe that the model is able to
reliably recognize this attribute with only few failures. Assuming the default
classification threshold of 0.5, most samples are classified correctly. Addition-
ally, the predicted scores for negative and positive samples are close to 0 and
1, which indicates great certainty by the classifier about its prediction results.
The reason for the unambiguous separation between negative and positive
samples is that the gender of a person can be recognized on several differ-
ent visual cues. For instance, hair, clothing, or body shape provide indication
about this characteristic. As a result, the classifier is able to fall back to dif-
ferent features, if some body parts are occluded or details are hardly visible
due to poor image quality. Furthermore, both manifestations of the seman-
tic attribute are nearly equally distributed in the training data. Thus, no bias
concerning one manifestation is learned. Last, there is no significant distri-
bution shift between training set, test set, and real-world distribution of the
attribute, which also eases recognition.
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Figure 7.7: Distribution of attribute classifier outputs – The classifier’s output distributions
for three selected attributes are illustrated. Blue color visualizes the distribution for
the presence of an attribute and green color denotes the absence, respectively. While
the classifier reliably recognizes the gender of persons with great certainty, output
distributions for normal and thin body shapes are distorted.

In contrast to this attribute, output distributions for body shapes are clearly
distorted. Distinguishing body shapes based on low-resolution images is of-
ten subjective and, as a result, training data might be noisy since multiple an-
notators might come to different assessments for the same image. It is even
possible that the labels of a single annotator might not be consistent across
the entire dataset due to the tedious fine-grained annotation task and high
requirements for concentration. Furthermore, the perceived body shape is
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highly dependent on the clothes an individual is wearing, distance from the
camera, and the body pose. Small variations may induce misleading clues
and result in faulty annotations. Another important factor is an effect called
regression to the mean [Spo92, Fli86], which is described in Section 2.1.2. Ac-
cording to it, humans tend to determine discretized attributes with fluent tran-
sitions between the manifestations as average or normal. In the concrete case,
obese and thin people are disproportionately often classified to have normal
body shape. Therefore, body shape attributes are imbalanced in the dataset.
Almost 80% of pictures are labeled to depict a person with a normal body
shape, whereas only 7% of annotations indicate thin persons. The effects on
the output distributions of a classification model when trained with such im-
balanced data are visualized in Figures 7.7b and 7.7c. Due to the large amount
of training samples for normal body shape, the classifier is clearly superior
in recognizing the presence of this attribute. Conversely, the distribution of
output values for negative samples is incorrectly shifted toward predicting the
presence nevertheless. The classifier is clearly biased toward predicting nor-
mal body shape for most of the images due to the dominance of such samples
in the training images. Furthermore, the increased noise in the annotations
additionally leads to more widespread predictions compared to the gender.
Thin body shape, with few positive training samples, depicts opposite output
distributions, i.e., the classifier’s outputs are skewed toward assuming that the
person in the input image is not thin. In other words, attributes that occur sel-
dom in training data are shifted toward lower output values and a frequently
appearing one toward larger values, respectively. Discriminating between
the absence and presence of the attributes is thus difficult due to overlapping
distributions.

In summary, the investigation of the classifier’s output distributions indicates
that, although existing PAR methods [Li15, Spe23a] aim to tackle imbalanced
attribute distributions during training, the challenge persists during inference
and, therefore, negatively impacts attribute-based person retrieval.
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In the typical attribute-based person retrieval process, the Euclidean distance
is calculated between the binary query vector and the predicted probabili-
ties for the presence of the attributes in the gallery images. The gallery im-
ages are then sorted based on these distances to form a ranked list. However,
this approach overlooks the variations in the classifier’s output distributions
across attributes, relying solely on distances to binary values rarely produced
by attribute classifiers. Consequently, some attributes exert disproportion-
ate influence on the resulting Euclidean distances, leading to imbalanced re-
trieval outcomes. Moreover, variations in prediction accuracy and error rates
among different attributes affect retrieval performance. Well-balanced soft
biometric characteristics such as the gender are generally easier to recognize
than fine-grained local attributes like glasses or imbalanced attributes, such
as body shapes. Consequently, the average distance between binary query
values and prediction probabilities fluctuates depending on the attribute and
its manifestation.

To rectify this discrepancy and emphasize more reliably attribute-based per-
son retrieval, three measures are proposed which address different issues,
thereby promising huge potential to enhance retrieval accuracy when used in
combination. Concretely, calibration, weighting, and an additional distance
computation are leveraged. The methodology is based on a publication of the
author of this thesis [Spe21a].

7.2.1 Reliability Calibration

Reliability calibration refers to adjusting the outputs of a model in such a
way that the predicted probabilities align with the empirical probabilities ob-
served in the data. For instance, if a well-calibrated PAR model produces pre-
diction scores of 0.4 for a set of ten images, four images would in fact show
the related attribute. The objective is to compensate for systematic biases or
miscalibrations in the model’s predictions. In the context of attribute-based
person retrieval this is desirable, since the output scores of a calibrated model
provide more reliable information for distance computation to build the re-
trieval rank lists.
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However, due to the challenges mentioned in Section 1.2 and biased training
datasets, PAR models are typically not well-calibrated, but over- or under-
confident. Figure 7.8 shows the calibration curves for the baseline approach
and the same attributes as given in Figure 7.7. Reliability curves are a useful
visual tool for assessing the calibration of a binary classifier. These curves
are created by partitioning the predicted probabilities into bins ranging from
0 to 1. Concretely, ten equally sized bins are applied in this case. On the x-
axis, the average prediction score for all samples in each bin is given with the
corresponding empirical probabilities on the y-axis. These probabilities are
computed as the fraction of data points within the bin with a ground truth
value equal to 1.
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Figure 7.8: Calibration curves for selected attributes – Calibration curves for the baseline
approach and three attributes from the RAPv2 dataset are shown. A well-calibrated
model would produce the dotted line. If the curves are below this line, the model is
overpredicting the presence of the attribute, while curves above perfect calibration
indicate underconfidence.

Aperfectly calibrated classifier would produce the dotted line. In this case, the
predicted scores exactly match the true probabilities for an image depicting a
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specific attribute. Curves above this line indicate underconfidence and curves
below suggest an overconfident model. The figure shows that the baseline
model is underpredicting the empirical probabilities for the gender and thin
body attributes, while the model is overconfident concerning normal body
shape. This finding conforms with the imbalanced distributions of the body
shape attributes in the training set. Since mostly normal persons are included,
this attribute is overpredicted contrary to thin people, which are rarely seen
during training. Obviously, calibrating the prediction scores to align with the
empirical probabilities would lead to more reliable attribute estimates and,
hence, would be helpful to obtain meaningful ranking distances. If calibrated
model outputs are used, the distance to the binary query in fact represents
the certainty of the classifier about the presence of the attribute. As a result,
the retrieved distance would be in accordance with the true probability of
the image showing exactly the attributes included in the query. In the related
literature, there are plenty of established approaches for reliability calibration.
Thus, three different techniques from the literature are investigated in this
thesis: Platt scaling [Pla99], isotonic regression [Zad01], and the spline-based
approach proposed by Lucena [Luc18].

Platt scaling [Pla99] employs logistic regression. However, it assumes that
the relationship between predictions and observed attribute frequencies is lo-
gistic, which is often untrue. Isotonic regression [Zad01] provides a more
powerful technique that is capable of correcting monotonic distortions. The
spline-based approach introduced by Lucena [Luc18] involves fitting a smooth
cubic polynomial to themodel’s predictions and is therefore themost complex
approach. The fitting of the regression models is performed on the validation
splits of the datasets, which means that sufficient and diverse validation data
is crucial for obtaining strong results. Without appropriate data, calibration
may overfit and the calibrated model may not generalize well.

7.2.2 Error Weighting

Another issue impacting the reliability of retrieval concerns variations in
average classification errors across different attributes. For instance, when
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searching for a thin woman in the RAPv2 dataset, the average distances in
positive matches to the binary query will be larger for the thin body attribute
than for the gender, as observable in Figure 7.7. The same applies to further
imbalanced or difficult-to-recognize attributes. The classifier is typically less
certain in identifying these attributes, resulting in some attributes having a
greater impact on the distance and, thus, the retrieval results than others.

The current retrieval approach treats each attribute equally, disregarding the
differing accuracy of attribute predictions. To address this, the introduction
of a weight vector werr is proposed, which is computed as

werr = softmax(−m). (7.6)

m = (𝑚1, 𝑚2, … ,𝑚𝐿)𝑇 represents a vector of MSEs 𝑚𝑗 for the attributes
determined across the validation set and softmax is the softmax activation
function. This allows for computing the weighted Euclidean distance and as-
signing weights to attributes based on their average error on the validation
set. Note that identical weights are applied for each sample in the gallery.

7.2.3 Distribution-Based Distance

Even the proposed calibration and weighting mechanism are expected to not
perfectly compensate for the imbalances and distorted probabilities. So, an
additional and last measure is introduced, which involves fitting distribution
functions to the classifier’s outputs to generate additional distance values.

An ideal attribute classifier is expected to generate binary attribute predic-
tions for person images directly. This implies that the classifier is always
perfectly certain about the provided classification result. In such an ideal
scenario, the Euclidean distance metric would suffice for performing robust
attribute-based person retrieval. However, in practice, PAR models exhibit
varying levels of confidence for images depicting a person with or without
specific attributes. This variability stems from a multitude of factors, includ-
ing image quality, domain gap, and the distribution and diversity of attributes
within the training dataset. The influence of this factors cannot be completely
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eliminated by the aforementioned mechanisms, such as calibration. Conse-
quently, the classifier outputs a value distribution per attribute manifestation
that does not necessarily peak at the extremes of 0 and 1, as was shown and
discussed based on Figure 7.7.

The interplay between binary target values in the query vector q and the clas-
sifier’s output distributions significantly affects the Euclidean distance-based
rank lists. It also causes attributes to contribute to varying extents to the fi-
nal distance value, depending on the attributes’ manifestations. For instance,
when considering Figure 7.7c, the average distance obtained for matching
samples when searching for not thin people is much less than when the query
includes the thin body shape attribute as a search condition. Furthermore, the
distinction between matching and incorrect gallery images is hardly possible
due to the overlap of distributions.

The proposed approach involves two main steps to address this challenge.
First, logistic probability density functions are fitted to the classifier’s out-
put distributions for each attribute and binary value. This entails utilizing
maximum likelihood estimation to obtain shifting and scale parameters for
each logistic distribution. Logistic distributions are leveraged due to empiri-
cal analysis indicating their enhanced appropriateness for the task compared
to other alternatives. Estimating these parameters can rely on either anno-
tated validation data or unlabeled test data. The latter is particularly ben-
eficial when meaningful validation data is not available or when the target
domain differs greatly from the validation data in terms of attribute distribu-
tions. Since separate distributions are estimated for both the presence and
absence of binary attributes, ground truth labels are required. Assuming that
the attribute classifier generalizes well on the test data, the generation and use
of pseudo labels, obtained by applying the default threshold of 0.5 to attribute
predictions p𝑖 , suffice.
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Based on the estimated logistic distributions, the distance component 𝑧𝑖𝑗 for
the 𝑗-th attribute and the 𝑖-th image is formulated as

𝑧𝑖𝑗 = {sf
−
𝑗 (𝑝𝑖𝑗) + 1 − cdf+𝑗 (𝑝𝑖𝑗), if 𝑞 = 1

cdf+𝑗 (𝑝𝑖𝑗) + 1 − sf−𝑗 (𝑝𝑖𝑗), if 𝑞 = 0 . (7.7)

In the equation, cdf+𝑗 (⋅) represents the cumulative density function of the lo-
gistic distribution estimated for the presence of the 𝑗-th attribute. Similarly,
the survival function of the logistic distribution determined for the absence
of the 𝑗-th attribute is denoted by sf−𝑗 (⋅). These functions’ outputs represent
the probabilities that the attribute is present or absent, based on the predicted
confidence score 𝑝𝑖𝑗 and the actual output distributions of the PAR model.
The distance 𝑧𝑖𝑗 between the query attribute value 𝑞 and the 𝑖-th sample in the
gallery consists of two parts. Each part evaluates the likelihood of the opposite
manifestation towhat the query specifies. One part is computed using the out-
put distribution for the opposite manifestation (sf−𝑗 (𝑝𝑖𝑗) and cdf+𝑗 (𝑝𝑖𝑗)) and,
on the other hand, utilizing the respective distribution based on whether the
presence or absence is specified in the query (1− cdf+𝑗 (𝑝𝑖𝑗) and 1− sf−𝑗 (𝑝𝑖𝑗)).

Finally, the total DBD 𝑑𝐷𝐵𝐷𝑖 between the query and the 𝑖-th gallery sample
is calculated according to

𝑑DBD
𝑖 =

√√√
√

𝐿
∑
𝑗=1

𝑧𝑖𝑗2. (7.8)

This distance is always utilized in conjunction with the Euclidean distance
to assure strong performance even when inadequate data for estimating the
logistic distribution parameters is available. For instance, in cases where the
peaks of the distributions for the absence and presence of an attribute are
switched, the DBD falls back to the Euclidean distance. Note that this partic-
ular issue only applies when validation data is utilized.
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7.2.4 Evaluation

This section thoroughly evaluates the retrieval optimizations detailed in the
preceding sections. First, ablation studies are conducted, for instance, to iden-
tify the most suitable reliability calibration technique.

Reliability calibration: Reliability calibration methods are compared in Ta-
bles 7.5 and 7.6 for the specialization and generalization case, respectively.
Regarding specialization in Table 7.5, isotonic reliability calibration of the
model’s outputs clearly leads to the best results. This observation is valid
consistently for each of the datasets. Furthermore, improvements are also ob-
served for the application of spline-based calibration, while Platt calibration
achieves the worst performance and is even unable to improve the retrieval
rankings at all in comparison with the baseline.

Table 7.5: Specialization results for reliability calibrationmethods –Consistently, isotonic
regression performs better than the baseline and other methods. On the other hand,
Platt scaling does not improve the results compared to the baseline, but the use of
spline-based calibration shows an improvement.

Approach
PETA PA-100K

mADM mAP R-1 mADM mAP R-1
Baseline 61.8 24.4 24.4 68.8 26.2 34.5
Platt [Pla99] 61.0 23.3 23.5 66.7 24.3 33.3
Isotonic [Zad01] 64.8 26.9 26.1 69.2 26.4 34.0
Spline [Luc18] 64.1 26.3 26.0 69.0 26.0 33.3

Approach
RAPv2 Market-1501

mADM mAP R-1 mADM mAP R-1
Baseline 58.5 20.5 14.5 65.9 31.6 47.7
Platt [Pla99] 56.7 19.2 13.7 65.3 30.7 45.3
Isotonic [Zad01] 59.7 22.1 15.6 68.2 34.1 49.6
Spline [Luc18] 59.0 21.3 14.9 67.8 33.7 47.1

Remarkably, generalization experiments with the UPAR dataset in Table 7.6
exhibit different behavior. In this case, spline-based calibration outperforms
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isotonic calibration. Furthermore, Platt’s calibration technique improves the
results in contrast to specialization.

Table 7.6: Generalization results for reliability calibrationmethods – Contrary to the spe-
cialization results, spline-based calibration outperforms isotonic calibration in gener-
alization. Moreover, all calibration methods lead to an increase in person retrieval
performance in this scenario.

Approach
UPAR LOOCV UPAR 4FCV

mADM mAP R-1 mADM mAP R-1
Baseline 56.1±5.1 17.6±4.3 19.2±8.3 46.4±5.8 11.0±3.6 12.8±4.6
Platt [Pla99] 56.4±5.1 18.3±4.6 21.3±9.9 48.2±5.3 12.1±3.8 14.1±5.1
Isotonic [Zad01] 59.0±5.2 20.3±5.0 22.5±10.3 50.6±5.7 13.6±4.2 15.4±5.5
Spline [Luc18] 59.3±5.3 20.6±5.1 23.0±10.6 50.8±5.8 13.7±4.3 15.7±5.5

To delve deeper into the observation that different reliability calibration
approaches are optimal for specialization and generalization scenarios, Fig-
ure 7.9 compares the calibration curves of the examined approaches for
gender. The left side displays the calibration curves for the specialization
scenario utilizing the Market-1501 dataset, while the right side illustrates
the generalization scenario. Specifically, the fourth split of the UPAR 4FCV
evaluation protocol is used for this comparison, corresponding to training
the model with the RAPv2 dataset and assessing its performance with the
remaining three UPAR sub-datasets. In general, the gender predictions of the
uncalibrated models are underconfident in both cases. Platt scaling is able to
calibrate low prediction scores but is incapable of accurately calibrating larger
ones. This is particularly notable in the specialization scenario. Calibration
for predictions between 0.5 and 0.7 is observed to be even worse than the
uncalibrated baseline. Similar observations hold for the generalization case.
However, in this case, the calibration curve is closer to the optimum, resulting
in improved outcomes by using Platt’s approach. A comparison of isotonic
and spline-based calibrations indicates that the curves exhibit swapped
progression in both instances. Specifically, isotonic calibration leads to a
smoother calibration curve that is closer to the optimum in specialization.
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(b) Generalization

Figure 7.9: Comparison of reliability calibration methods – Comparison of calibration
curves for gender produced with various reliability calibration methods. The up-
per figure illustrates the specialization scenario using the Market-1501 dataset, while
the lower figure compares the approaches for generalization using the UPAR dataset.
One can observe that the isotonic approach achieves better calibration for specializa-
tion, whereas the use of spline-based calibration produces a smoother curve closer
to perfect calibration concerning generalization.
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On the other hand, the curve of this calibration method shows greater fluc-
tuations for generalization. This discovery indicates that isotonic calibration
is more susceptible to overfitting validation data compared to spline-based
calibration. Although this feature has some advantages when the training,
validation, and test data come from the same or similar source, it results in re-
duced performance in more complex generalization situations. In conclusion,
isotonic calibrationworkswell for specialization cases, while spline-based cal-
ibration is superior in generalization scenarios. Additionally, the analysis sug-
gests that obtaining meaningful validation data is crucial to achieve a strong
and robust performance of calibration methods. Without such data, calibra-
tion may become overadapted to the available data and perform poorly when
applied in new domains.

Distribution-based distance: The proposed DBD is calculated by fitting lo-
gistic distributions to the classifier’s outputs first. The estimated parameters
may be obtained using either annotated validation data or test data from the
target domain with pseudo labels. Both of these options offer distinct ad-
vantages and disadvantages. For instance, utilizing available ground truth
labels in validation data may enable more precise fits of the actual distribu-
tions. Nonetheless, this procedure considers outliers and faulty labels when
determining the distribution parameters. Furthermore, the collection and an-
notation of extensive and adequate validation data incurs significant costs.
However, it remains imperative to prevent overfitting and ensure robust gen-
eralization capabilities, as demonstrated by prior investigations. Conversely,
generating pseudo-labels is straightforward and cost-effective as data can be
effortlessly gathered by capturing images of individuals. Additionally, the re-
quired data for the target domain can be automatically collected without any
manual efforts. However, the creation of pseudo-label by simply applying
the default threshold of 0.5 to attribute predictions may result in inaccurate
distribution estimations that do not correlate well with the underlying dis-
tributions.

Table 7.7 presents a comparison of the supervised and unsupervised approach
concerning the proposed distance measure for the single research datasets.
The final results are presented, meaning calibration and error weighting
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are employed as well. The only distinguishing factor is that the supervised
method utilizes annotated validation data to estimate distribution parameters,
while the unsupervised approach relies on pseudo-labeled test data.

Table 7.7: Supervised vs. unsupervised specialization results –The unsupervised approach
that estimates the classifier’s output distributions based on pseudo-labels outperforms
the supervised technique that relies on validation data with ground truth labels.

Approach
PETA PA-100K

mADM mAP R-1 mADM mAP R-1
Supervised 65.0 29.7 27.7 69.9 27.5 34.8
Unsupervised 64.6 30.3 28.0 70.2 28.6 35.3

Approach
RAPv2 Market-1501

mADM mAP R-1 mADM mAP R-1
Supervised 60.7 25.2 18.0 69.4 36.5 51.2
Unsupervised 61.6 26.7 19.0 70.8 37.6 51.9

Unexpectedly, the unsupervised approach outperforms the supervised strat-
egy except for the mADM metric for the PETA dataset. Using validation data
with ground truth labels seems to result in overadaption. The estimated dis-
tribution parameters are too specific for the validation data and, thus, gen-
eralize poorly to the target data. Especially when only a few samples with
an attribute manifestation are included in the validation set, no meaningful
distribution fits are obtained. In addition, if these rare validation examples
are border cases and not representative in terms of the target domain, the
determined logistic distributions are less appropriate than the unsupervised
ones. Unsupervised determination benefits from an increased number of sam-
ples for imbalanced attributes due to the application of a threshold of 0.5 to
generate the pseudo labels. Furthermore, the samples directly originate from
the target domain and, therefore, are representative. These positive effects
outweigh potential disadvantages by faulty pseudo labels.

Identical observations are made for the generalization protocols on the UPAR
dataset, as detailed in Table 7.8. The unsupervised approach outperforms the
supervised procedure concerning both protocols and each of the evaluation
metrics.
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Table 7.8: Supervised vs. unsupervised generalization results – Analogous to the special-
ization results, the unsupervised approach proves itself superior to the use of anno-
tated validation data.

Approach
UPAR LOOCV UPAR 4FCV

mADM mAP R-1 mADM mAP R-1
Supervised 59.8±5.1 21.8±5.1 23.8±10.5 51.1±6.0 14.4±4.8 16.1±6.0
Unsupervised 60.1±5.5 22.6±5.2 24.5±10.5 51.5±5.0 15.1±4.8 16.7±6.0

Combination of approaches: Next, the impact of combining reliability cal-
ibration, error weighting, and the DBD is investigated in Table 7.9. Starting
from the baseline, the approaches are added sequentially. Since weighting and
computation of the DBD might benefit from calibration, calibration is applied
at first, followed by attribute-wise weighting and the DBD computation.

Table 7.9: Retrieval improvements specialization results – This table evaluates the impact
of the proposed enhancements concerning attribute-based person retrieval. Each of
themethods demonstrates notable improvements. Combining all of them achieves the
overall best results with remarkable increase in performance compared to the baseline
approach.

Approach
PETA PA-100K

mADM mAP R-1 mADM mAP R-1
Baseline 61.8 24.4 24.4 68.8 26.2 34.5
+ Calibration 64.8 27.0 26.1 69.2 26.5 34.0
+ Error weighting 65.4 28.1 27.3 69.2 26.5 33.9
+ DBD 66.8 29.1 27.3 70.2 28.6 35.3

Approach
RAPv2 Market-1501

mADM mAP R-1 mADM mAP R-1
Baseline 58.5 20.5 14.5 65.9 31.6 47.7
+ Calibration 59.8 22.1 15.6 68.2 34.2 49.4
+ Error weighting 60.2 23.6 16.8 69.2 35.6 49.6
+ DBD 61.6 26.7 19.0 70.8 37.6 51.9

A noteworthy finding is the dataset-dependent impact of specific enhance-
ments on the retrieval metrics. Across datasets such as PETA, RAPv2, and
Market-1501, all implemented approaches exhibit improvements when se-
quentially combined. However, the influence of calibration and weighting
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is notably marginal on the PA-100K dataset. This is attributed to the dataset
characteristics, specifically the diverse training set and the limited number
of soft characteristics that are annotated, including the absence of color at-
tributes. Such attributes are typically imbalanced and, thus, pose severe chal-
lenges in recognition. Additionally, the large and diverse training set may
already lead to a well-calibrated model. The models trained on PA-100K seem
to learn universal features that generalize well to unseen data. Consequently,
the model demonstrates a high degree of calibration as well as similar and
low attribute-specific errors, which are the basis for the proposed weighting
mechanism. As a result, the computed weighting does not influence distance
computation much. In contrast, employing the DBD yields clear enhance-
ments across all metrics considered.

An overarching observation is that substantial and consistent improvements
are achieved by integrating all methods for enhancement, regardless of the
dataset. The greatest impact is observed in the mAP metric, indicating an
optimization of the entire rank lists. By focusing on enhancing reliability of
predictions and balancing distance computations among attributes, differen-
tiation between true matches and close false positives is effectively improved.
The experiments showcase improvements concerning mAP ranging from 2.4
percentage points on PA-100K to a remarkable increase of 6.2 percentage
points on RAPv2. This enhancements highlight the effectiveness of the in-
troduced optimizations in refining the accuracy and reliability of person re-
trieval systems across diverse datasets.

These observations transfer to the UPAR dataset for which the results are pro-
vided in Table 7.10.

Table 7.10: Retrieval improvements generalization results – The proposed measures to en-
hance the quality and reliability of attribute-based person retrieval exhibit great im-
provements regarding all metrics and both evaluation protocols.

Approach
UPAR LOOCV UPAR 4FCV

mADM mAP R-1 mADM mAP R-1
Baseline 56.1±5.1 17.6±4.3 19.2±8.3 46.4±5.8 11.0±3.6 12.8±4.6
+ Calibration 59.3±5.3 20.6±5.0 23.2±10.6 50.9±5.8 13.8±4.3 15.6±5.5
+ Error weighting 59.5±5.3 21.0±4.9 23.4±10.4 50.9±5.9 13.9±4.4 15.6±5.7
+ DBD 60.1±5.5 22.6±5.2 24.5±10.5 51.5±5.0 15.1±4.8 16.7±6.0
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Comparing the impact of the enhancement methods, calibration and employ-
ing the DBD lead to greater improvement than the proposed weighting mech-
anism. Analogous to the single datasets, the combination of all methods
achieves the best performance. In the generalization evaluations the mAP
increases by 5 percentage points for the LOOCV and 4.1 percentage points
concerning the 4FCV evaluation protocol, respectively.

In summary, the proposed techniques greatly enhance the reliability and accu-
racy of attribute-based person retrieval utilizing PARmodels as feature extrac-
tors. The degree of improvement achieved by the single approaches thereby
varies depending on the dataset-specific characteristics. Overall, combining
all techniques consistently leads to superior results, on single datasets as well
as in terms of the generalization experiments.
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In this chapter, a comprehensive evaluation of the methods proposed within
the scope of this thesis is conducted. Note that the tracking component is con-
sidered separately in Chapter 9. The chapter starts with Section 8.1, in which
the integration of all methods into the unified framework, presented in Chap-
ter 3, is examined. This evaluation encompasses the optimization of the PAR
feature extractor, as introduced in Chapter 6, along with the enhancements
proposed to refine the retrieval process, outlined in Chapter 7. Subsequently,
Section 8.2 presents and discusses qualitative retrieval results regarding the
strengths and weaknesses of the proposed framework. Following this, the
combined approach is compared with current representative state-of-the-art
methods from related literature in Section 8.3. The comparison includes both
tasks considered in this thesis, i.e., PAR and attribute-based person retrieval.
Finally, Section 8.4 provides a comprehensive summary of the contents and
key findings. Note that this chapter concentrates on image-based datasets due
to the limited availability of representative methods for the MARS [Zhe16,
Che19] dataset. The findings for MARS match those reported in this chapter.

8.1 Combination of Approaches

In the previous chapters, the proposed approaches to enhance PAR and re-
fine attribute-based person retrieval were evaluated and discussed separately.
However, in pursuing optimal accuracy, a promising strategy involves com-
bining all the proposed methods. By doing so, one could potentially take ad-
vantage of the collective improvements brought by each individual approach,
thereby further enhancing performance. The baseline approach introduced in
Chapter 5 serves as basis for the investigation. Unless otherwise stated, the
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hyperparameters and training scheme of the baseline approach and the indi-
vidual enhancements, respectively, are leveraged. Furthermore, based on the
findings in Section 6.1.2, ConvNeXt-Base is chosen as the backbone CNN for
the PAR model to conduct the experiments.

8.1.1 Specialization

First, the PARNormmodule is combined with the optimal design choices con-
cerning PAR identified in Section 6.1. In the following, this best configuration
of design choices is referred to as PAR optimizations. Table 8.1 reports the
baseline outcomes, the performance achieved through the PAR optimizations,
and the results after additionally integrating the PARNorm module.

Table 8.1: PARNorm results – The results indicate that combining the PAR optimizations with
the PARNorm module improves the PAR accuracy but deteriorates attribute-based
person retrieval performance. The only exception is the RAPv2 dataset.

Approach
PETA PA-100K

mA F1 mADM mAP R-1 mA F1 mADM mAP R-1
Baseline 86.1 88.1 61.8 24.4 24.4 82.2 88.5 68.8 26.2 34.5
+ PAR optim. 87.3 89.4 68.1 29.4 27.7 84.6 90.1 74.0 31.6 40.6
+ PARNorm 88.2 89.5 67.4 28.9 27.3 84.9 90.2 72.7 30.8 39.2

Approach
RAPv2 Market-1501

mA F1 mADM mAP R-1 mA F1 mADM mAP R-1
Baseline 79.3 80.0 58.5 20.5 14.5 80.7 85.7 65.9 31.6 47.7
+ PAR optim. 80.8 81.1 61.9 23.6 17.0 81.7 87.4 73.2 40.8 56.0
+ PARNorm 80.5 80.7 59.4 21.4 15.4 84.3 87.5 70.3 37.7 50.2

The findings reveal a significant enhancement in attribute recognition
through the improved design characteristics of the PAR model. Combin-
ing the PARNorm component with the proposed optimizations enhances
attribute recognition, except for the experiments with the RAPv2 dataset.
Particularly, mA benefits while only small improvements are found for
instance-based F1. These findings align with the overall objective of the
PARNorm module, which aims to better balance label-based metrics, such as
mA, and instance-based measures, such as F1 score. However, attribute-based
person retrieval metrics deteriorate. The results suggest that the proposed
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adaptations to the PAR model and training procedure interfere with learning
the parameters of the PARNorm component. The primary factor is the strong
regularization achieved through techniques such as SWA or dropout. Fur-
ther investigations indicate that by freezing the learnable parameters in the
backbone during the initial epochs, negative effects are compensated, and
similar retrieval outcomes are attained when the optimizations are combined
with the PARNorm module. For instance, freezing the backbone parameters
for the first two epochs for the Market-1501 dataset leads to a mAP of 40.6%
with nearly identical accuracy concerning PAR. Nevertheless, PARNorm is
excluded from the subsequent analysis, since no further benefits in terms of
attribute-based person retrieval are achieved.

Next, the impact of combining the proposed methods in terms of specializa-
tion results is evaluated. Table 8.2 provides results for sequentially adding the
PAR optimizations, the independent HP, and enhancements to the retrieval
process, namely calibration, error weighting, and the DBD. Since, except for
the PAR optimizations, the approaches solely affect retrieval performance,
only attribute-based person retrieval measures are reported in the following.
Results for optimized PAR are given in Table 8.1 and in the comparison with
the state-of-the-art in Section 8.3. Overall, combining the methods proposed
in this thesis yields positive effects on attribute-based person retrieval for
each of the datasets. Except for the mADM measure on the RAPv2 dataset
and the R-1 for the Market-1501 dataset, the combination of all approaches
consistently achieves the best results. The addition of each component fur-
ther enhances the quality of the resulting retrieval rankings. However, the
more approaches are combined, the smaller the improvements, as the pro-
posed methods address similar goals, such as compensating for unbalanced
attribute distributions. This is particularly evident in terms of mADM, which
displays clear indications of saturation. This finding implies that the gen-
eral appearance of the retrieval rankings to the system operator reaches the
highest attainable quality through the suggested PAR method. Since mADM
measures the level of agreement between annotations of retrieved images and
the query, the agreement of query attributes and retrieved images at specific
rank list positions remains nearly identical. The only changes that occur are
images with similar agreement that switch places. This is observable from
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the steadily increasing mAP and R-1 scores, which evaluate the quality of the
rank lists using binary relevance labels for the gallery samples.

Table 8.2: Specialization results – The combination of the approaches proposed in this thesis
results in remarkable improvements concerning attribute-based person retrieval for
each of the datasets.

Approach
PETA PA-100K

mADM mAP R-1 mADM mAP R-1
Baseline 61.8 24.4 24.4 68.8 26.2 34.5
+ PAR optim. 68.1 29.4 27.7 74.0 31.6 40.6
+ HP 68.4 30.9 28.6 74.3 34.4 41.3
+ Calibration 69.0 32.4 29.4 74.7 35.3 43.0
+ Error weighting 69.4 33.3 30.5 74.7 35.3 43.2
+ DBD 69.4 34.0 31.0 74.9 35.7 43.7

Approach
RAPv2 Market-1501

mADM mAP R-1 mADM mAP R-1
Baseline 58.5 20.5 14.5 65.9 31.6 47.7
+ PAR optim. 61.9 23.6 17.0 73.2 40.8 56.0
+ HP 63.7 28.0 19.8 74.5 43.2 55.4
+ Calibration 64.4 29.6 21.2 75.5 44.6 55.2
+ Error weighting 64.2 30.0 21.6 75.6 44.9 55.4
+ DBD 64.2 30.4 21.9 75.7 45.5 55.8

In conclusion, significant enhancements resulting from the developed ap-
proaches are evident. The absolute increases in mAP vary from 9.5 points
observed for the PA-100K dataset to 13.9 points when using the Market-1501
dataset. With regard to the mADM metric, there are improvements of up to
9.8 points, observed for the Market-1501 dataset. Furthermore, the R-1 score
could also be substantially boosted, albeit being subject to fluctuations due to
its focus on the initial gallery sample fitting the query.

8.1.2 Generalization

Similar to the previous paragraph, the combination of the introduced ap-
proaches is examined, but in this case regarding the generalization evaluation
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protocols and the UPAR dataset. Quantitative results for both protocols are re-
ported in Table 8.3. The findings are in strong agreement with those obtained
for the individual datasets. The optimum results are achieved by combining
all of the suggested approaches for both evaluation protocols. Furthermore,
there is also a convergence of the mADM score.

Table 8.3: Generalization results – Stacking the proposed approaches leads to notable im-
provement of attribute-based person retrieval. For instance, the mAP increases by 9.6
points and 8 points for the LOOCV and 4FCV evaluation protocol, respectively.

Approach
UPAR LOOCV

mADM mAP R-1
Baseline 56.1±5.1 17.6±4.3 19.2±8.3
+ PAR optim. 61.2±5.3 21.6±5.8 23.4±9.4
+ HP 62.4±5.4 24.2±6.0 24.9±9.6
+ Calibration 64.2±5.2 26.6±6.0 27.3±10.5
+ Error weighting 64.0±5.4 26.7±6.0 27.4±10.4
+ DBD 64.3±5.4 27.2±6.0 28.0±10.7

Approach
UPAR 4FCV

mADM mAP R-1
Baseline 46.4±5.8 11.0±3.6 12.8±4.6
+ PAR optim. 51.7±5.8 13.8±4.1 15.4±4.9
+ HP 52.8±6.2 15.4±4.9 16.4±5.6
+ Calibration 55.6±5.8 18.3±5.3 19.3±6.3
+ Error weighting 55.6±5.8 18.4±5.2 19.3±6.1
+ DBD 55.6±5.9 19.0±5.3 19.9±6.4

An additional noteworthy observation is that the standard deviation for
mADM is almost identical for both the baseline and the optimized final result.
This is especially apparent for the more demanding 4FCV protocol, which
utilizes a lone data source for training in each split and the remaining UPAR
subsets for evaluation. The results indicate that mADM increases uniformly
across all splits, maintaining a constant performance difference between the
easiest and most challenging split. In contrast, the standard deviations for
mAP and R-1 accuracy significantly increase across splits as the results show
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varied benefits for each split. These scores heavily rely on gallery charac-
teristics, since these metrics are significantly affected by factors such as the
number of diverse attribute sets in the gallery and the quantity of samples
that agree with the queries completely. The mADM metric delivers a more
comprehensive assessment of the ranking quality by accounting for partially
matching gallery samples in its computation. Additionally, it incorporates
normalization that accounts for biases related to the gallery and the specific
query. Consequently, improvements in mADM observed while developing
an attribute-based person retrieval method are expected to transfer to other
domains. This is a significant advantage of the mADM in comparison to other
retrieval metrics, as it simplifies the process of selecting the most appropriate
model for real-world deployment.

Overall, the attribute-based person retrieval system proposed in this thesis
achieves relative performance increases of 14.6% and 19.8% for the mADM
using the LOOCV and 4FCV protocols, respectively. Regarding mAP, the pro-
posed methods result in even higher relative improvement with a remarkable
increase of 54.5% for the LOOCV scheme and 72.7% for the 4FCV protocol.
Absolute generalization results of the LOOCV protocol which allows for more
data to be used for training, reach scores comparable to the results obtained by
specializing on the most challenging dataset, RAPv2. Note that this compari-
son is solely meaningful for the mADMmetric due to increased independence
from the specific queries and galleries.

To gather deeper insights regarding the influence of certain optimizations on
generalization, Tables 8.4 and 8.5 provide the detailed results for each split of
the LOOCV as well as the 4FCV evaluation protocol. Concerning the LOOCV
scheme, the quantitative results on the four splits presented in Table 8.4 con-
firm the observations made using the individual datasets. Interestingly, the
same decrease inmADMwhen adding theweightingmechanism and the DBD
is observed for the split 4 as for the RAPv2 dataset. This split utilizes the
RAPv2 dataset as evaluation subset, i.e., this behavior is consistently observed
regardless of the training data and, thus, seems to be a data-specific anomaly.
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Table 8.4: UPAR LOOCV split results – The table presents the results for the individual splits
of the LOOCV evaluation protocol. Information about the splits can be found in Ta-
ble 4.3. Strong increase in performance is observed concerning all splits and metrics.

Approach
Split 1 Split 2

mADM mAP R-1 mADM mAP R-1
Baseline 64.8 23.6 32.8 52.7 15.2 16.0
+ PAR optim. 69.4 28.5 38.0 58.3 18.0 18.9
+ HP 71.0 31.3 39.8 59.4 20.1 20.0
+ Calibration 72.7 34.4 44.2 60.9 22.0 21.5
+ Weighting 72.8 34.4 43.9 61.1 22.3 21.9
+ DBD 72.9 35.2 45.3 61.2 22.6 22.3

Approach
Split 3 Split 4

mADM mAP R-1 mADM mAP R-1
Baseline 54.5 19.4 17.4 51.2 12.1 10.5
+ PAR optim. 62.0 25.6 24.1 55.1 14.1 12.5
+ HP 62.6 28.5 25.8 56.7 16.7 13.8
+ Calibration 63.8 30.3 27.4 59.3 19.5 16.2
+ Weighting 63.7 30.6 27.8 58.5 19.6 15.9
+ DBD 64.3 30.7 27.9 58.7 20.2 16.6

Moreover, the results presented in this table allow investigating and quanti-
fying the domain gap between training using data from the same source with
similar characteristics and training with diverse data from multiple sources
but with divergent characteristics and underlying distributions. Note that
meaningful comparison is again only supported by the mADM metric. The
domain gap, measured as the relative deviation between the specialization
and generalization results, narrows down when comparing the baseline re-
sults with those achieved by the framework developed in this thesis. Specifi-
cally, while the baseline approach trained and evaluated on the PETA dataset
outperforms the results achieved by training the same model using the other
three datasets (split 3) by 13.4% in mADM, the superiority is only 7.9% when
comparing the optimized approaches. This refers to a reduction of the ab-
solute difference in mADM from 7.3 to 5.4 points. Analogous, the relative
deviation decreases from 30.6% to 22.4% when evaluating on the PA-100K
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dataset (split 2) and from 14.3% to 9.4% for the RAPv2 dataset (split 4), re-
spectively. The only exception is the Market-1501 dataset (split 1). In this
case, the superiority increases when the optimized approaches are compared.
The reason is that this dataset includes limited diversity and severe biases.
Therefore, overfitting to the training data with similar characteristics is re-
warded. In conclusion, the proposed framework for attribute-based person
retrieval not only significantly improves the retrieval results, but also miti-
gates the impact of the domain gap between the training and test data on the
retrieval performance.

Contrary to the LOOCV evaluation protocol, the 4FCV protocol is more dif-
ficult as it uses only one dataset for training in each split and then assesses
the performance with the remaining three UPAR sub-datasets. The results for
the individual splits are outlined in Table 8.5. Note that in this case, the stan-
dard deviation reflects the deviation of metrics across the three evaluation
datasets. In general, the observations are consistent with the specialization
case and those observed for the LOOCV protocol.

Table 8.5: UPAR 4FCV split results – The table presents the results for the individual splits of
the 4FCV evaluation protocol. Information about the splits can be found in Table 4.3.
Strong increase in performance is observed concerning all datasets and metrics.

Approach
Split 1 Split 2

mADM mAP R-1 mADM mAP R-1
Baseline 38.3±2.2 6.4±1.9 5.9±1.9 54.6±5.7 16.4±4.8 18.5±9.3
+ PAR optim. 43.8±2.4 8.7±2.2 8.3±2.7 60.1±5.8 20.2±5.8 22.0±9.9
+ HP 44.0±2.5 9.3±2.2 8.4±2.3 61.4±5.7 22.8±5.8 23.8±10.1
+ Calibration 47.3±2.2 11.5±2.3 10.1±2.2 63.6±5.6 25.8±5.8 26.9±10.8
+ Weighting 47.2±2.3 11.6±2.4 10.3±2.3 63.5±5.6 25.8±5.6 26.6±10.3
+ DBD 47.2±2.2 12.0±2.5 10.5±2.3 63.8±5.5 26.4±5.5 27.6±10.9

Approach
Split 3 Split 4

mADM mAP R-1 mADM mAP R-1
Baseline 46.8±3.8 9.7±2.2 12.1±5.9 45.7±2.9 11.3±0.6 14.7±4.8
+ PAR optim. 52.4±3.9 12.7±2.5 14.8±6.4 50.4±2.2 13.5±1.5 16.6±5.4
+ HP 52.9±4.1 13.6±2.6 15.0±6.7 53.0±2.4 16.0±1.7 18.5±5.9
+ Calibration 55.0±4.5 15.9±3.3 17.4±7.5 56.6±2.7 19.9±2.7 22.7±7.2
+ Weighting 55.0±4.5 16.0±3.2 17.4±7.2 56.6±2.7 20.2±2.6 22.7±7.0
+ DBD 54.8±4.5 16.8±3.3 18.2±7.8 56.5±2.7 20.9±2.1 23.3±6.9

176



8.1 Combination of Approaches

Using the Market-1501 dataset for training (split 1) leads to the worst results.
This strengthens the finding that this dataset is notably biased and lacks di-
versity, resulting in inadequate suitability for training a generalizable model.
Additionally, the results indicate that increased training data is beneficial for
generalization, since this typically correlates with heightened diversity. The
most optimal generalization results are achieved through the utilization of the
PA-100K dataset for training, which is the largest of the sub-datasets included
in the UPAR dataset, followed by the second largest dataset RAPv2 (split 4).
However, it is striking that the difference in mADM between training with
the small PETA dataset (split 3) and the much larger RAPv2 dataset (split 4) is
small for the optimized approach, or even swapped when the baseline results
are compared. This is due to the increased diversity of scenes and individ-
uals within the PETA dataset, which compensates for its significantly lower
number of training images when compared to the RAPv2 dataset. The PETA
dataset comprises ten sub-datasets with diverse characteristics, whereas the
RAPv2 dataset only contains indoor scenes, tightly aligned bounding boxes,
and mainly good illumination from artificial lighting. This highlights that
having diverse training data is equally crucial in achieving strong generaliza-
tion outcomes for attribute-based person retrieval as having a large amount
of data available for training.

8.1.3 Inference Time

Figure 8.1 illustrates the time taken per person image by the proposed ap-
proach for extracting the semantic attributes for the Market-1501 test set.
The inference time measurement includes data loading, model forwarding,
and storing of the respective outputs to obtain meaningful insights for real-
world applications. The processing framework utilized in this experiment is
PyTorch¹. As the GPU, an NVIDIA GeForce RTX 3090 is employed. It is in-
stalled in a server with 256GB of RAM and an Intel Xeon Silver 4210R CPU @
2.40GHz. The achieved inference times and corresponding mADM scores are
provided for multiple batch sizes 𝐵.

¹ https://pytorch.org/
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The results indicate no increase in inference time by the optimization of the
PAR model, as no additional parameters are added. In contrast, the inference
time rises by about 2.5 ms when integrating the HP and considering batches
of size 1. Notably, the observed increase in processing duration vanishes for
larger batch sizes of 16 or 64. Additionally, the figure shows that the differ-
ences in inference time between larger batch sizes are minimal. Thus, the
results of further experiments, which are not reported, do not prove benefits
from continuing to increase the batch size.
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Figure 8.1: Inference times for the proposed model – The inference times per person image
for the combination of the proposed model adaptations and respective mADM scores
for the Market-1501 dataset are visualized. One can observe that the PAR optimiza-
tions do not lengthen the inference times. The increased inference time caused by
the incorporation of the HP branch vanishes for larger batch sizes B. The model is
based on ConvNeXt-Base as the backbone and measurements are conducted with a
NVIDIA GeForce RTX 3090 GPU.
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In conclusion, the experiments demonstrate that the proposed feature extrac-
tor for attribute-based person retrieval is able to efficiently process a large
amount of person images in a reasonable time frame. For batch sizes of 16
or larger, only a negligible rise of inference time compared to the baseline is
found. Specifically, the processing duration per image is 2.5 ms for batches
of size 64. This corresponds to extracting soft biometric characteristics for
more than 400 individuals per second, which is assumed to be adequate for
real-world applications.

8.2 Qualitative Evaluation

After presenting the quantitative improvements accomplished by the pro-
posed framework in the previous section, this section conducts qualitative
evaluations and comparisons of attribute-based person retrieval results. Ini-
tially, the investigation focuses on the specialization scenario before extend-
ing to the generalization case. In each example, the blue box denotes the
query attributes, i.e., the description of the visual appearance of the individ-
ual that is searched. Right of the query, the top-5 retrieved gallery images
are shown. Thereby, a green border denotes a perfect match with the query
description based on the ground truth annotations, whereas a red border in-
dicates a gallery sample showing a person with a deviating set of attributes.

8.2.1 Specialization

The following figures present examples from the Market-1501 [Zhe15, Lin19]
dataset, as it offer a wide range of challenges. In the initial example, depicted
in Figure 8.2, the query describes an adult womanwearing green pants, a short
and black upper-body garment, and carrying a handbag. Upon examining the
baseline result in Figure 8.2a, it is observable that the approach encounters
difficulties regarding several attributes. Although the first-ranked image ap-
pears to be a match, there are discrepancies in lower-body clothing color,
gender, and upper-body clothing for the other samples.
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(b) Proposed framework

Figure 8.2: First qualitative specialization result – In contrast to the baseline approach, the
proposed framework retrieves five matching images. The figure shows an example
for the Market-1501 [Zhe15, Lin19] dataset. The blue boxes include the query at-
tributes and green and red borders stand for correctly retrieved images and images
deviating from the query, respectively.

In contrast, the proposed framework retrieves matching samples for all of the
top-5 ranks. Multiple findings are of interest. First, the baseline approach is
not able to retrieve very similar input images at adjacent positions. Specif-
ically, under the proposed framework, images ranked three to five exhibit
similar appearances with only minor differences in lighting and background.
Despite this, the baseline method only ranks one of these images in first posi-
tion and disregards the rest. This finding reveals that the attribute predictions
generated by the baseline model are highly sensitive to even slight variations
in input images. The proposed framework fixes this issue through the PAR
optimizations and robustly assigns comparable predictions to similar images.
As a result, these samples are closely ranked, greatly enhancing the reliability
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of the rankings. Furthermore, differences in color perception due to differ-
ent cameras and lighting conditions are apparent in Figure 8.2b. Whereas
the trousers of the first two ranked images appear to be green as specified
in the query, the color seems to be more of a blue tone in the further sam-
ples, albeit all samples showing the identical person and trousers. This poses
a significant challenge to the approaches but also to manual investigations.
The proposed approach can deal with this challenge and retrieves the cor-
rect person regardless of the camera and corresponding appearance of colors.
The reasons are two-fold. First, contrary to baseline, the measures to com-
pensate for imbalanced attributes such as colors increases the positive recall
and, thus, the optimized model is more certain about its predictions of green
lower-body clothing color. Second, the introduced enhancements in terms of
attribute-based person retrieval, particularly calibration and the DBD, further
reduce the impact of the underconfidence regarding such attributes. In ad-
dition, the proposed framework ranks the images in which the pants appear
more green in earlier positions than those with bluer perception. It is able
to capture those fine deviations and reflect them in the predicted confidence
scores. So, the resulting rankings are reliable and the sorting of the gallery
samples aligns with human expectations and perception.

Another example is provided in Figure 8.3. In this case, the baseline approach
retrieves images in early ranks that agree with the query except for the hat.
This is due to the few samples of persons wearing a hat in the training data.
The positive ratio of this attributes is only 2.9%. Consequently, the baseline
model only recognizes 8.2% of the hats in the test set. This results in attribute
predictions that do not differentiate between gallery samples, as the confi-
dence scores of the images are similar whether or not a hat is present. Consid-
ering the methodology introduced in this work, it is able to correctly identify
73.1% of the hats, therefore allowing to distinguish persons with and without
hats during retrieval. As Figure 8.3b demonstrates, each of the images ranked
at the top-5 positions depict an individual matching the query description.
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(b) Proposed framework

Figure 8.3: Second qualitative specialization result – The proposed framework is able to re-
trieve five matches for the query, whereas the baseline approach provides images
of persons without hats. The figure shows an example for the Market-1501 [Zhe15,
Lin19] dataset. The blue boxes include the query attributes and green and red bor-
ders stand for correctly retrieved images and images deviating from the query, re-
spectively.

However, there are a few queries for which the proposed framework achieves
worse retrieval results in mADM than the baseline approach. All of them
show similar issues. A representative example is visualized in Figure 8.4. In
this example, the baseline achieves good results with four matches within the
first five samples of the ranking. In contrast, the optimized framework only
includes a single match. One can observe that the difference between the
query and the incorrectly retrieved individuals in the early ranks is the bag.
Apart from that, the semantic attributes agree with each other. Delving into
the reasons for this deterioration, it is found that the issue stems from the
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HP approach. The attribute classifier is uncertain about bags, especially con-
cerning differentiation between the categories handbag and bag. As a result,
the independent HP considers the classification of these attributes difficult for
the given samples since only the strap is visible. This, in turn, leads to minor
impact on the retrieval distance and, hence, to a low distance to the query.
However, since this only affects very few cases negatively but is beneficial in
much more queries, this does not represent a severe issue.
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(b) Proposed framework

Figure 8.4: Third qualitative specialization result – In this example, the proposed frame-
work erroneously retrieves images of persons with a bag in early positions, albeit
a bag is not specified in the query. The figure shows an example for the Market-
1501 [Zhe15, Lin19] dataset. The blue boxes include the query attributes and green
and red borders stand for correctly retrieved images and images deviating from the
query, respectively.
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8.2.2 Generalization

Similar to the specialization scenario, the proposed framework’s generaliza-
tion performance is evaluated by comparing it with the baseline results. To
accomplish this, split 2 of the UPAR LOOCV evaluation protocol is employed.
Specifically, the model is trained using the PETA [Den14], RAPv2 [Li19a], and
Market-1501 [Zhe15, Lin19] datasets, and the evaluation is conducted using
the image data from the PA-100K [Liu17] dataset. The first example is illus-
trated in Figure 8.5. Adult males with short hair, short and red upper-body
clothing, and green trousers are searched.

• Adult

• Male

• Short hair

• Upper-body clothing 

length short

• Upper-body clothing 

color red

• Trousers

• Lower-body clothing 

color green

1                            2                            3                            4                           5           Query

(a) Baseline

• Adult

• Male

• Short hair

• Upper-body clothing 

length short

• Upper-body clothing 

color red

• Trousers

• Lower-body clothing 

color green

1                            2                            3                            4                           5           Query

(b) Proposed framework

Figure 8.5: First qualitative generalization result – The figure shows a generalization ex-
ample for the UPAR dataset. The blue boxes include the query attributes and green
and red borders stand for correctly retrieved images and images deviating from the
query, respectively. In contrast to the baseline, the proposed framework correctly
recognizes the green trousers of the person of interest. Source of the images: [Liu17].
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Analyzing the ranking list generated by the baseline, it is apparent that the
retrieved images correspond with the person description with the exception
of the color of the pants. In the first five ranks, this method does not find
any matches. On the contrary, the proposed framework achieves perfect re-
sults as it provides the sole match included in the gallery for this query at the
first position. This improvement is credited to improved PAR under demand-
ing scenarios and imbalanced attribute distributions. The matching sample
suffers from low spatial resolution and few samples with green trousers in
the training set, resulting in uncertain predictions produced by the baseline
approach. The optimized model robustly extracts semantic attributes despite
these difficulties. In addition, the refined attribute-based person retrieval dis-
tance handles varying output distributions across attributes, particularly re-
lated to imbalanced attributes. As a result, the correct image showing the
rare green lower-body clothing is ranked earlier than those with other lower-
body clothing colors.

A further example is shown in Figure 8.6. In this case, the images retrieved
from the gallery by the baseline method do not match the query based on dif-
ferent attributes, including the color of the torso, gender, or backpack. Con-
sequently, the ranking seems to be unreliable. The baseline method struggles
with transferring its learned features to new data sources. In contrast, the
proposed framework retrieves images of the correct person from the gallery
database. The employment of regularization techniques, such as SMA, proves
to be effective in preventing overfitting. Hence, the proposed method is able
to learn universal features that generalize to data originating from various sce-
narios. Moreover, it is remarkable that the person of interest is retrieved even
when the backpack is not or scarcely visible (ranks 3 and 4). This highlights
the power of the proposed HP and underscores its capability to generalize.
Besides, it is worth noting that the fifth retrieved image displays the indi-
vidual of interest but does not qualify as a match due to the invisible head.
The image-wise annotations for this image lack information about the hair,
i.e., no hair length is specified. Consequently, the annotations differ from
the query concerning the short hair attribute. Nonetheless, the HP detects
this and reduces the impact of related attributes during the retrieval process,
resulting in the image being retrieved at an early position. However, this
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samples is still ranked lower than the others. The ranking generated is plau-
sible and reliable as images clearly showing all query attributes appear first
in the ranking, followed by those where some attributes are barely visible or
completely invisible. It can be concluded that the distances produced by the
proposed framework measure the similarity to the query in accordance with
human expectations.

• Adult

• Male

• Short hair

• Upper-body clothing 

length short

• Upper-body clothing 

color purple

• Trousers

• Lower-body clothing 

color black

• Backpack

1                            2                            3                            4                           5           Query

(a) Baseline

• Adult

• Male

• Short hair

• Upper-body clothing 

length short

• Upper-body clothing 

color purple

• Trousers

• Lower-body clothing 

color black

• Backpack

1                            2                            3                            4                           5           Query

(b) Proposed framework

Figure 8.6: Second qualitative generalization result – The figure shows a generalization ex-
ample from the UPAR dataset. The blue boxes include the query attributes and green
and red borders stand for correctly retrieved images and images deviating from the
query, respectively. The proposed framework is able to retrieve gallery samples at
early ranking positions even when relevant attributes, such as the backpack, are in-
visible. Source of the images: [Liu17].
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Last, exemplary cases for poor retrieval returns by the proposed framework
are presented in Figure 8.7. The example in the uppermost row implies dif-
ficulties concerning openly defined semantic attributes. The other category
of clothing colors includes various clothing patterns lacking a distinct pri-
mary color and colors that are non-listed as separate category. Consequently,
the model experiences difficulties in learning resilient features necessary for
recognizing these attributes. Additionally, the intra-class variation of these
attributes found across different datasets is immense and impairs the model’s
generalization capability. Such issues lead to the ranking without a match
among the top-5 positions. Patterns on clothing are only recognized for ei-
ther the upper- or lower-body, but not both as specified in the query.

The example in the second row illustrates a scenario where most of the se-
mantic attributes of the gallery samples retrieved match those of the query.
However, minimal variations concerning single attributes are exhibited. For
instance, the images at ranks 1 and 5 do not display a bag. Similarly, in the
second and fourth image, the person wears wide trousers instead of a skirt
which creates confusion. These findings suggest potential for improvement
in further optimizing the accuracy of PAR, specifically mA. The retrieved im-
ages are comparable to the query in terms of overall appearance (reflected by
the instance-wise F1 score). However, issues concerning details are noticeable
in this example (related to mA). This finding hints that it may be beneficial to
conduct further research to improve mA without adversely affecting retrieval
performance or F1. This corresponds to the aim of the PARNorm module pro-
posed in Section 6.2.

The last illustration in the third row indicates that external factors such as
lighting or noise still impact the generalization outcomes achieved by the pro-
posed framework. The images retrieved at positions two to four exhibit a gray
haze, which leads to clothing colors being classified as gray even if they are
not the true colors according to the ground truth annotations. This finding
indicates that to effectively address the problem of strong generalization un-
der all conditions, it is necessary to utilize large and diverse datasets, such
as the UPAR dataset. However, gathering ground truth annotations in this
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case is challenging, as it is also difficult for human annotators to accurately
determine the true clothing color in such images.
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• Long hair

• Upper-body clothing 

color other
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• Lower-body clothing 

color other
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Figure 8.7: Analysis of error cases – Three representative generalization examples from the
UPAR dataset are provided for which the proposed framework has difficulties in re-
trieving a match within the early ranks. In the top row, the problem is related to the
openly defined color category other. The second row depicts images that are similar
to the query but not match entirely. In the last row, poor image quality results in
faulty color predictions. Source of the images: [Liu17].

188



8.3 Comparison with the State-of-the-Art

In summary, the qualitative analysis of attribute-based person retrieval re-
sults highlights the remarkable improvements observed in the quantitative
analysis. The proposed methodology is effective in generating strong and re-
liable retrieval outcomes. Moreover, investigations reveal that the approach
generalizes well to unseen data sources. This applies to both the PAR model
and the HP, as well as the retrieval optimizations proposed. The examina-
tion evidenced that widely defined attributes, imbalanced and fine attributes,
and noisy images still pose challenges, ultimately impacting the quality of
retrieval rankings.

8.3 Comparison with the State-of-the-Art

In this section, the results obtained by the proposed method are compared to
the state-of-the-art approaches from the related literature. First, it is focused
on the specialization scenario on the individual datasets. The comparison is
conducted for PAR as well as the attribute-based person retrieval task. After-
ward, the same analysis is performed for generalization on the UPAR dataset.

Note that there are gaps in the results as approaches from the literature often
only evaluate on a limited number of datasets or apply inconsistent evaluation
protocols. To ensure a fair comparison, solely approaches are considered that
evaluate using identical splits and evaluation protocols.

8.3.1 Specialization

Table 8.6 reports the state-of-the-art results concerning PAR for the
PETA [Den14], PA-100K [Liu17], RAPv2 [Li19a], and Market-1501 [Zhe15,
Lin19] datasets.

The proposed approach yields state-of-the-art results, although its develop-
ment focused on attribute-based person retrieval optimization. Specifically,
the proposed framework, utilizing ConvNeXt-Base as the backbone, outper-
forms all other methods in terms of instance-based F1. When it comes to
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mA, more complex approaches surpass the method for the PETA and PA-
100K datasets. Note that the PARFormer [Fan23] applies different backbone
architectures, which complicates the comparability. Similar findings are ob-
served for the proposed framework with ResNet-50 as the backbone. Other
approaches leveraging the same backbone model are unable to achieve bet-
ter results in terms of F1. Overall, it is impressive that the straightforward
and lightweight architecture utilized in this thesis achieves state-of-the-art
performance and surpasses more complex methods from the literature. This
demonstrates that concentrating on the thorough analysis and mitigation of
the most severe challenges in PAR, as was done in Section 6.1, can be superior
to developing novel modules that add numerous parameters to the models. In
particular, for applications where inference time requirements are a crucial
issue, this approach proves advantageous.

Table 8.6: State-of-the-art PAR – The proposed framework achieves state-of-the-art results in
PAR even though it is designed and optimized for attribute-based person retrieval.
Red and blue colors denote the best and second-best results, respectively. † Results
were produced using the official implementation.

Method Backbone
PETA PA-100K RAPv2 Market-1501

mA F1 mA F1 mA F1 mA F1
MsVAA[Sar18b] ResNet101 84.6 86.5 – – – – – –
VAC [Guo19] ResNet-50 83.6 86.2 79.0 86.8 – – – –
ALM [Tan19c] BN-Inception 86.3 86.9 80.7 86.5 – – – –
JLPLS-PAA [Tan19b] SE-BN-Inception 84.9 86.9 81.6 87.3 – – – –
JLAC [Tan20] ResNet-50 87.0 87.5 82.3 87.6 – – – –
MSCC [Zho21] ResNet-50 – – 82.1 86.8 80.2 79.1 – –
SB [Jia21b] ResNet-50 84.0 86.4 80.2 87.4 78.5 78.7 – –
SB [Jia21b]† ResNet-50 84.0 86.3 81.6 88.1 77.4 78.5 76.5 83.6
SSCsₒft [Jia21a] ResNet-50 86.5 87.0 81.9 86.9 – – – –
MCFL [Zhe21] ResNet-50 86.8 86.7 81.1 87.4 – – – –
Rein-PAR [Ji22] ResNet-50 85.5 85.9 80.6 85.7 – – – –
DRFormer [Tan22] ViT-Base 90.0 88.3 82.5 88.0 – – – –
VTB [Che22b]† ViT-Base 86.8 86.9 83.6 88.0 78.5 79.8 80.8 85.2

COB [Zho23]
ResNet-50 86.4 86.8 84.5 87.0 – – – –
ConvNeXt-Base 88.1 88.5 88.1 89.1 – – – –

PARFormer [Fan23]
Swin-Base 88.7 88.7 84.0 87.7 – – – –
Swin-Large 89.3 89.1 84.5 88.5 – – – –

Proposed framework
ResNet-50 87.1 87.7 82.2 88.5 79.4 80.1 79.4 85.1
ConvNeXt-Base 88.2 89.5 84.9 90.2 80.5 80.7 84.3 87.5
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Next, the state-of-the-art results regarding the primary task addressed in this
thesis, namely attribute-based person retrieval, are presented in Table 8.7.
Scores for mADM are not reported since there are no values for compari-
son yet.

Table 8.7: State-of-the-art attribute-based person retrieval – The proposed framework
achieves state-of-the-art results for each of the datasets and regardless of the back-
bone model. The only exception is the R-1 metric on the Market-1501 dataset. When
two backbone models are stated, the first one represents the image, while the second
one represents the text or attribute encoder. Multi-layer Perceptron (MLP) refers to
a small network of FC layers. Typically, three to four layers are used. Red and blue
colors denote the best and second-best results, respectively. †Results were produced
using the official implementation.

Method Backbone
PETA PA100K RAPv2 Market-1501

mAP R-1 mAP R-1 mAP R-1 mAP R-1
AAIPR [Yin18] ResNet-50 + MLP – – – – – – 20.7 40.3
AIHM [Don19] ResNet-50 + Word2Vec [Mik13] – – – – – – 24.3 43.3
SAL [Cao20]† ResNet-50 + MLP – – 15.0 22.7 – – 29.4 44.4
TAVD [Iod20] ResNet-50 + GloVe [Pen14] – – 18.2 33.8 – – 34.4 46.1
SB [Jia21b]† ResNet-50 20.5 20.7 24.3 33.5 17.5 12.0 25.5 37.8
SB [Jia21b]† ConvNeXt-Base 24.4 24.4 26.2 34.5 20.5 14.5 31.6 47.7
ASMR [Jeo21] ResNet-50 + MLP – – 20.6 31.9 – – 31.0 49.6
ASMR [Jeo21]† ResNet-50 + MLP – – – – – – 30.1 43.2
MCML [Zhu23a] ResNet-50 + MLP – – – – – – 36.4 52.5

Proposed framework
ResNet-50 25.6 24.4 29.1 34.8 26.4 18.6 38.0 52.1
ConvNeXt-Base 34.0 31.0 35.7 43.7 30.4 21.9 45.5 55.8

The proposed method with ConvNeXt-Base as the backbone achieves su-
perior results on all datasets and metrics. The second-best performance is
also achieved using the proposed framework, but with ResNet-50 as the
backbone model. The only exception is the Market-1501 dataset, where
the obtained R-1 accuracy with ResNet-50 slightly falls short of the score
achieved by the MCML [Zhu23a] method. However, in terms of the more
important mAP measure that evaluates the quality of the overall rankings,
the proposed framework demonstrates clear superiority. The proposed
framework surpasses the best performing method from the literature, namely
MCML [Zhu23a], by impressive 1.6 and 9.1 points in mAP depending on
the backbone used.
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8.3.2 Generalization

The following study compares the proposed framework with existing liter-
ature approaches for both generalization evaluation protocols of the UPAR
dataset. Fewer methods are compared than in the specialization scenario due
to the need for re-training of approaches with the new UPAR dataset. The
unavailability of official implementations and problems with reproducing the
results of works from the literature through re-implementations hinder the
reporting of reliable results for additional methods. For fair comparison, such
approaches are excluded and only reliable results are presented.

First, the state-of-the-art results for the LOOCV evaluation protocol are inves-
tigated in Table 8.8. This protocol involves training with three sub-datasets in
each split and evaluation on the fourth one.

Table 8.8: State-of-the-art UPAR LOOCV – Generalization results for the UPAR LOOCV pro-
tocol. The proposed framework outperforms the methods from related literature, par-
ticularly concerning the attribute-based person retrieval task. When two backbone
models are stated, the first one represents the image, while the second one represents
the text or attribute encoder. MLP refers to a small network of FC layers. Typically,
three to four layers are used. Red and blue colors denote the best and second-best
results, respectively. † Results were produced using the official implementation.

Method Backbone mA F1 mADM mAP R-1
VAC [Guo19]† ResNet-50 64.3±1.8 71.4±6.1 – 6.2±3.3 7.4±4.1
ALM [Tan19c]† BN-Inception 72.0±2.3 78.0±2.7 – 11.4±4.2 13.9±9.0
SAL [Cao20]† ResNet-50 + MLP – – – 7.9±3.4 10.5±7.2

SB [Jia21b]†
ResNet-50 71.1±2.0 78.7±3.0 49.0±7.1 13.3±4.6 16.4±10.0
ConvNeXt-Base 73.2±1.9 82.1±2.7 56.1±5.1 17.6±4.3 19.2±8.3

Proposed framework
ResNet-50 72.9±2.3 80.5±2.5 56.4±6.7 20.2±6.0 21.3±10.4
ConvNeXt-Base 75.1±2.0 83.9±1.9 61.2±5.3 27.2±6.0 28.0±10.7

The proposed framework sets the state-of-the-art by a large margin. When
comparing the methods that leverage identical backbones, improvements
are observed regarding both tasks and all metrics. Especially concerning
attribute-based person retrieval metrics, methods from the related literature
achieve clearly worse results. For the experiments with the ResNet-50 and
ConvNeXt-Base backbones, the gap to the best approach from the literature
in mADM is 7.4 and 5.1 points, respectively. A further remarkable finding

192



8.3 Comparison with the State-of-the-Art

is that the use of models with straightforward PAR architectures, such as
SB [Jia21b] and the proposed framework, leads to superior performance
compared to more complex models, e.g., SAL [Cao20]. This demonstrates that
intricate methods carry an increased risk of overfitting and overadapting to
the training data and its characteristics, resulting in poor generalization.

Identical observations are made for the 4FCV evaluation protocol for which
the results are provided in Table 8.9. In each split, a single sub-dataset of
UPAR is utilized for training and three datasets are leveraged for evaluation.

Table 8.9: State-of-the-art UPAR 4FCV – Generalization results for the UPAR 4FCV protocol.
The proposed framework outperforms the methods from related literature, particu-
larly concerning the attribute-based person retrieval task. When two backbone mod-
els are stated, the first one represents the image, while the second one represents the
text or attribute encoder. MLP refers to a small network of FC layers. Typically, three
to four layers are used. Red and blue colors denote the best and second-best results,
respectively. † Results were produced using the official implementation.

Method Backbone mA F1 mADM mAP R-1
VAC [Guo19]† ResNet-50 64.3±1.8 71.4±6.1 – 6.2±3.3 7.4±4.1
ALM [Tan19c]† BN-Inception 66.3±2.0 71.0±5.4 – 5.5±3.0 7.3±4.0
SAL [Cao20]† ResNet-50 + MLP – – – 3.7±1.5 4.8±2.0

SB [Jia21b]†
ResNet-50 65.4±2.4 71.1±5.9 36.4±6.5 6.5±3.3 8.2±4.6
ConvNeXt-Base 70.1±1.5 77.2±4.2 46.4±5.8 11.0±3.6 12.8±4.6

Proposed framework
ResNet-50 68.3±1.6 73.6±5.5 45.1±6.9 11.7±4.5 13.1±5.3
ConvNeXt-Base 70.9±1.6 79.7±3.4 51.7±5.8 19.0±5.3 19.9±6.4

Theproposed framework achieves the strongest results concerning both tasks.
The second-best SB [Jia21b] method with the same backbone is outperformed
by 8.7 and 5.3 points in mADM for ResNet-50 and ConvNeXt-Base, respec-
tively.

In conclusion, the proposed framework demonstrates superiority over the
state-of-the-art methods in related literature for both specialization and
generalization scenarios. Notably, impressive outcomes are achieved for
attribute-based person retrieval, but also w.r.t. PAR, even when design
choices are made that are optimal for improving attribute-based person
retrieval at the expense of PAR performance.
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8.4 Summary

Finally, the results of this chapter and their implications for the real-world
application of the proposed attribute-based person retrieval framework are
discussed.

Combining the proposed approaches toward enhancing PAR (refer to Chap-
ter 6) and attribute-based person retrieval (refer to Chapter 7) yields signif-
icant improvements. The results demonstrate that additional components
added to the framework improve the outcomes, despite the similar objec-
tives of individual optimizations. Whether investigating specialization or
generalization, the combined methods lead to superior performance. The
PARNorm module is the only exception, that is thus omitted from the final
results. The analysis of the inference time of the proposed feature extraction
model demonstrates little overhead compared to the baseline model. Using an
NVIDIA GeForce RTX 3090 GPU, more than 400 person images are processed
per second with the PyTorch framework, which is expected to be sufficient
for the use in real-world scenarios.

Representative search results were then examined to verify the effectiveness
of the proposed methodology. The observations indicate that attribute recog-
nition is significantly improved and that other components such as the HP,
reliability calibration, and the DBD distance achieve their objectives. This ap-
plies to both the specialization and generalization scenarios. The study found
that the suggested framework generates reliable retrieval rankings that are
in line with human expectations. Moreover, it showcased the system’s abil-
ity to retrieve matches in challenging scenarios where there is only a single
matching sample for the query in the gallery dataset.

Regarding weaknesses and potential areas for improvement, it has been dis-
covered that in rare cases, inaccurate hardness scores generated by the HP
lead to some attributes being ignored during retrieval. Thus, some samples
are ranked at early positions that do not match the query. Nevertheless, given
that considerable enhancements are observed through the inclusion of the
HP, this appears to be only a minor issue for a small percentage of queries.
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The analysis also revealed that failure cases, where the proposed framework
is unable to retrieve samples matching the query description, are caused by
attributes with large intra-class variance, unbalanced attributes, and poor im-
age quality due to low resolution, noise, or illumination. This demonstrates
that although these issues have been addressed and significant improvements
have been made, there is still room for further progress.

The comparison with current state-of-the-art methods showed that the pro-
posed framework outperforms methods from the literature. Regardless of
the selected backbone model, the proposed framework surpasses other meth-
ods in terms of attribute-based person retrieval on each of the specialization
datasets, as well as on both UPAR evaluation protocols. In particular, the
framework exhibits strong generalization performance, while more complex
approaches from the literature struggle with overfitting. This demonstrates
the adaptability and versatility of the approach for the use in a variety of
real-world applications, regardless of the availability of training data from
the target domain. Additionally, the investigation indicates that achieving
top performance in the field of PAR does not require complex model architec-
tures. The well-tuned baseline architecture introduced in this thesis is suffi-
cient, even though it is not specifically optimized for the task.
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To complete the concept of this thesis presented in Chapter 3, this chap-
ter outlines a MTMCT system that incorporates the proposed framework for
attribute-based person retrieval. Since the primary focus of this thesis is on
the topics of PAR and person retrieval, only a concise overview of additional
research conducted on MTMCT is presented. More details regarding the ap-
proaches are provided in the related publications [Köh20, Spe22a, Spe22c].

In general, MTMCT systems track the movements of multiple individuals cap-
tured by a network of cameras placed at different locations. The use of such a
system in the context of this thesis provides several key advantages, including:

• The information regarding individuals is compressed, meaning entire
movements of people can be retrieved based on attribute queries
instead of single occurrences. This improves clarity, reduces manual
effort, and enhances efficiency.

• The resulting tracks include an increased amount of information, thus
enabling the use of video-based PAR methods, as detailed in
Section 6.3. As a result, attribute predictions are more robust.

The processing pipeline of MTMCT approaches often follows the tracking-by-
detection paradigm [Cia20]. Figure 9.2 visualizes this procedure based on the
Weighted Distance Aggregation (WDA) tracker [Köh20]. Initially, individu-
als are detected and localized in the video frames generated by each camera.
Subsequently, single-camera trackers are employed to connect the person de-
tections showing the same individual over time in the same camera view. This
stage commonly incorporates person re-identification models to generate fea-
ture vectors for each detected bounding box that encode the visual appearance
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of individuals. This information enables the continuation of tracks after oc-
clusions and the creation of multi-camera tracks by connecting single-camera
tracks across different camera views. At this point, the PAR model proposed
in Chapter 6 can be employed as an additional feature extractor. The video-
based temporal pooling approach enables the aggregation of visual informa-
tion over time, resulting in track-level predictions of soft biometric charac-
teristics. Finally, the inter-camera association module, or the actual multi-
camera tracker, combines the obtained single-camera tracks across multiple
cameras. The resultingmulti-camera tracks represent the entire trajectories of
persons through the camera network, which are stored as the gallery in con-
junction with the extracted semantic attributes. Utilizing the attribute-based
person retrieval methodology presented in Chapter 7, this gallery database
can be searched through with person descriptions as queries.

The remainder of this chapter provides a brief overview of the author’s contri-
butions to the research field of MTMCT of persons. Further works concerning
vehicle tracking [Spe21b, Spe22b] are left out since the transfer to the person
domain is not yet evaluated. First, the MTA dataset is presented to address the
lack of large-scale MTMCT datasets [Köh20]. This is followed by the intro-
duction of approaches for the offline [Köh20] and online [Spe22a] use cases
presented in Chapter 1. Last, a specific system implementation for real-world
deployment in real-time is described [Spe22c].

MTAdataset: TheMTA dataset aims at solving the lack of proper datasets for
MTMCT, as the existing datasets [Kuo10, Zha15] have a shortage of diverse
person identities, capture a short video span, and lack diversity in environ-
mental aspects like weather and illumination. Due to privacy concerns and te-
dious manual annotation processes, creating real-world datasets for MTMCT
is a strenuous task. For instance, the DukeMTMC [Ris16] dataset was with-
drawn due to inappropriate consent collection. To avoid such issues, the pop-
ular video game GTA V¹ was used to record the MTA dataset. It is argued
that, contrary to direct image processing tasks, findings about MTMCT can

¹ https://www.rockstargames.com/de/gta-v
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be transferred from synthetic to real-world data with a significantly smaller
domain gap.

The dataset illustrates an urban scene recorded by six cameras, as displayed
in Figure 9.1. The dataset is unique compared to existing MTMCT datasets,
since it contains both overlapping as well as non-overlapping camera views.
Additionally, it exhibits an extensive range of characteristics, such as day-
time and nighttime, indoor and outdoor areas, varying levels of crowds, and
fluctuating weather conditions.

Figure 9.1: MTA dataset – The upper figure depicts the fields of view of five out of six cameras
that were employed in gathering the MTA dataset via the GTA V video game. The
remaining camera is positioned indoors in a subway station near camera 1. The
camera perspectives are visualized in the bottom part.
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In total, the datasets comprises 10 hours of video footage depicting over 2,800
distinct individuals, featuring highly accurate annotations that include per-
son IDs, 2D and 3D person positions, as well as labels for 22 human body
joints. Therefore, the MTA dataset allows for comprehensive evaluations of
MTMCT techniques under real-world conditions, including varying weather
conditions. The dataset served as the basis for developing the offline and on-
line tracking approaches detailed in the following.

Offline tracking: Offline tracking addresses the forensic use case, meaning
that MTMCT and investigations are conducted after all necessary data has
been collected. As a post-processing step, offline trackers can solve the task
without a real-time processing requirement, and all data is readily available.
Consequently, offline tracking is generally considered easier and achieves bet-
ter accuracy than online algorithms. Thus, most research in the related liter-
ature concentrates on this type of processing [Ris18, He20, Ye21].

The WDA offline tracker [Köh20] was developed as part of this thesis. An
overview is provided in Figure 9.2. Given the multitude of established
methods available for the person detection [Ren16, Fen21, Zha21a, Wan22a,
Joc23] and single-camera tracking [Ber19, Zho20, Aha22, Du23] stages, the
WDA tracker focuses on the inter-camera association part of the processing
pipeline. To associate single-camera tracks across the network of cameras,
agglomerative hierarchical clustering is utilized. Basically, this method
connects the two most similar tracks iteratively until a stopping criterion is
met. The WDA tracker employs five different criteria to assess the similarity,
which leverage prior knowledge about the scene. Without this information,
accomplishing strongMTMCT accuracy becomes challenging due to the mas-
sive complexity of the task. The clustering process stops when the similarity
criteria between the closest tracks drops below a threshold. The five criteria
that contribute to the similarity measure are the following ones:

• Visual similarity: The visual similarity of peoples’ overall
appearance is key for rediscovering persons who exit one camera’s
view and enter another. The person re-identification model extracts
feature representations to facilitate this process. Moreover, semantic
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attributes predicted by a PAR may serve as complementary features to
discern the visual similarity between tracks.

• Single-camera time constraint: Individuals cannot appear within
multiple tracks on the same camera simultaneously. This temporal
constraint prevents the linking of such single-camera tracks.

• Multi-camera time constraint: Similar to the single-camera time
constraint, it is not possible for one person to appear simultaneously
in multiple cameras with non-overlapping fields of view. Thus, such
combinations are avoided.

• Homography matching: For the overlapping camera views,
individuals’ positions within the tracks are transformed into the
overlapping camera views and then compared with the active tracks in
these cameras at corresponding times. The level of similarity is
assessed by measuring the agreement between the transformed track
positions and track detections in the overlapping camera.

• Movement prediction: Last, predictions of persons further
movements are made once a single-camera track has ended. The
similarity of tracks qualifying as potential successors is increased
when initiated near the spatio-temporal predictions.

Each of the criteria is formulated as a distance metric and the weighted sum of
these distances is leveraged to determine the similarity between tracks. The
experimental results show a notable improvement in the MTMCT evaluation
metric Identity F1 (IDF1) [Ris16] on theMTA dataset, with a rise from 17.3% to
30.1%. The IDF1 score quantifies the tracking accuracy by computing the ra-
tio of successfully identified detections to the average number of ground truth
and produced detections. These findings underscore the importance of incor-
porating knowledge regarding camera placement to obtain robust MTMCT
accuracy. Furthermore, the modular WDA framework provides a solid foun-
dation to enhance MTMCT by including additional similarity measures and
constraints.
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Figure 9.2: WDA tracker – Overview of the functional principle of the WDA tracker. It fol-
lows the tracking-by-detection paradigm. The inter-camera association relies on the
weighted aggregation of multiple distances. Changed representation after [Köh20].

Online tracking: In contrast to offline approaches, online tracking must ad-
dress the MTMCT task on a frame-by-frame basis, i.e., tracks must be associ-
ated across cameras immediately after their first appearance. Instances that
have previously been observed in another camera must be re-identified as
quickly as possible without having much information about the new track.
This enables real-time analytics and attribute-based person searches of tracks
in live situations. For instance, criminals matching a certain person descrip-
tion can be found and tracked in the live feeds to arrest them. Nonetheless,
global clustering approaches are infeasible for online scenarios since the infor-
mation is incrementally available. Therefore, theWDA tracker’s inter-camera
association component is replaced for online processing [Spe22a]. Compared
to offline MTMCT, there are limited studies in the literature that focus on
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the online use case [Zha19a, Gai21, Ric23]. Additionally, these studies ei-
ther ignore vital scene information and concentrate solely on visual appear-
ance features [Gai21] or tackle the specialized task where all cameras over-
lap [Zha19a, Ric23]. The proposed online MTMCT approach can handle both
overlapping and non-overlapping cameras and improves tracking accuracy
through a scene model. It follows a similar procedure to the WDA tracker
for person detection, single-camera tracking, and similarity computation, but
differs in the inter-camera association algorithm. A probability-based associ-
ation procedure is introduced, replacing the clustering method. Connecting a
new track to a multi-camera track displaying the same person as early as pos-
sible is preferred. However, when someone enters a camera view, the person
is only seen from a single viewing angle, resulting in a weak appearance rep-
resentation. Thus, directly assigning the track to a multi-camera track may
increase the chance of erroneous associations. On the other hand, delaying
the decision for too long leads to offline tracking and hinders the goal of real-
time person search.

To achieve a suitable tradeoff and address this issue objectively, it is suggested
making the assignment once enough information is available to make an in-
formed decision. This involves connecting a new track within a camera to a
potential set of predecessors instead of assigning it directly to a certain multi-
camera track. At each subsequent time step, the similarity between the new
track and the potential predecessors is recalculated to refine the set. For in-
stance, unlikely tracks and tracks that have since been matched with another
track that violates one of the spatio-temporal constraints are removed. Once
only one multi-camera track remains or one track is much more likely to be
the predecessor than the others in the set, the assignment is carried out. Ex-
perimental results confirm that decisions are generally made within the first
few frames, as the scene model successfully eliminates impossible combina-
tions and limits the feasible predecessors. Furthermore, experimental results
prove the benefits concerning difficult assignment decisions.

The proposedmethodology surpasses Gaikwad et al. [Gai21]’s approach by 4.3
percentage points in IDF1 on the MTA dataset. In terms of the performance
difference between offline and online trackers, the proposed online approach
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scored 2.1 points lower in IDF1 compared to the offline WDA tracker, which
appears acceptable considering the advantages for the online use case. The ap-
proach demonstrated its capability for real-time processing since it achieved
a processing speed of over 37 Frame Per Second (FPS) in the experiments pro-
cessing six cameras simultaneously.

Real-world person retrieval system: Finally, covering the processing
pipeline introduced in Chapter 3, the following briefly outlines the imple-
mentation of a real-world person retrieval system [Spe22c]. Deploying these
systems in real-world scenarios presents additional challenges and require-
ments compared to research. Specifically, when used in online settings, these
systems need to satisfy real-time processing. Achieving this goal can be
challenging due to budget constraints that necessitate utilizing affordable
hardware. Additionally, it is essential to ensure high levels of flexibility and
scalability that enable seamless integration of additional camera streams or
processing hardware. Moreover, compliance with data protection regulations
is imperative.

An overview of the system implementation is given in Figure 9.3. The system
utilizes Docker¹, a container virtualization software, for its flexible scalabil-
ity and multi-server deployment capabilities. The system comprises distinct
modules that intercommunicate with each other. Each color depicted in the
figure characterizes a separate Docker image, and each box represents a sep-
arate Docker container instance. The system can be readily expanded by con-
necting additional servers and managing camera streams through starting or
stopping Docker containers. It should be noted that the inter-camera associa-
tion of tracks was added to the system after the publication of this paper and
is therefore not included in the overview.

The single-camera processing module comprises components for person de-
tection, single-camera tracking, and feature extraction. In the context of this
thesis, feature extraction includes creating global appearance feature vectors

¹ https://www.docker.com/
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utilizing person re-identification techniques and extracting the semantic at-
tributes for individuals via the video-based PAR model introduced in Chap-
ter 6.

Detection

Feature extraction

Tracking

Single-camera Processing

Detection

Feature extraction

Tracking

Single-camera Processing

Detection

Feature extraction

Tracking

Single-camera Processing

.

.

.

.

.

.

Data Storage

Feature
Database

Image
Database

Privacy Module

Search Module

| 𝑞 − 𝑝 |2

Clients

Figure 9.3: Real-world person retrieval system – The implementation of a real-world per-
son retrieval system is depicted. It consists of multiple stages. First, persons are
tracked and features, such as the individuals’ semantic attributes, are extracted. The
collected data stored in a gallery database can then be queried using clients and a
separate search module. Furthermore, a privacy modules ensures compliance with
legal regulations. Figure source: [Spe22c].

The data storage module maintains data for the tracks, including metadata
about time and place of occurrence, re-identification features along with se-
mantic attributes, and image data for visualization purposes. This module
serves as the gallery database for subsequent attribute-based person searches.

A privacy module is utilized to adhere to the European Union’s General Data
Protection Regulation (GDPR) through the strict enforcement of a maximum
storage period. In addition, if the privacy module identifies any problems or
is disabled by a user, the entire system is immediately terminated, and system
operators are notified.
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The search module responds to client search requests and performs person
retrievals as explained in Chapter 7. This module offers two types of retrieval:
the typical person search and a watch list search. In a typical person search, a
ranked list of tracks in the database is generated based on the similarity of the
query to the stored tracks. In contrast, solely new entries in the database are
taken into account during a watch list search. Clients receive a notification
along with its associated metadata if the distance between the query and a
track falls below a particular threshold.

An extensive analysis of the system and assessment of various processing
components and configurations verified the proposed retrieval system’s abil-
ity to operate in real-time.

Summary: In summary, this chapter outlines the necessary components for
a complete real-world attribute-based person retrieval system. The chapter in-
troduces theMTMCT task and theMTA dataset, which addresses the shortage
of suitable research datasets for MTMCT. Furthermore, this chapter provides
a brief description of two multi-camera tracking methods, each of which ad-
dresses one of the two use cases motivated in Chapter 1, namely retrograde
and online investigations. Last, a concrete implementation of such a system
is presented, including a description of the integration of the attribute-based
person retrieval framework proposed in Chapters 6 and 7.
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After the evaluation of the framework for attribute-based person retrieval pro-
posed in this thesis, the conclusion and outlook chapter summarizes and re-
flects the main findings and outcomes in Section 10.1. Following this, Sec-
tion 10.2 provides an outlook on potential future developments.

10.1 Conclusion

In this thesis, a novel deep learning-based framework for attribute-based per-
son retrieval is proposed. This framework enables efficient search in mass
data collected by multi-camera networks. As the base approach for solving
this task, the use of PAR methods to extract soft biometric characteristics of
persons is chosen. First, various design characteristics of PAR approaches are
systematically studied for their impact on attribute-based person retrieval.
Particularly, using SWA, the focal loss function, and reducing the batch size
for small datasets are found to significantly improve the results of attribute-
based person retrieval. However, optimizing a PAR model for attribute-based
person retrieval may lead to suboptimal recognition of individual attributes.
To counteract this, the PARNorm module proposes normalizing the model’s
output logits in two distinct ways. First, it normalizes them attribute by at-
tribute along the batch dimension to increase the positive recall of attribute
recognition. Then, since this degrades instance-based PARmetrics and person
retrieval, instance-wise normalization is performed along the attribute dimen-
sion to avoid overestimating the number of present attributes. The experimen-
tal results illustrate that the module is effective in improving the recognition
of individual soft biometric characteristics, while also enhancing attribute-
based person retrieval. Furthermore, camera networks typically offer video
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feeds rather than single images, providing more comprehensive information
about a person’s appearance as the individual is captured multiple times from
various perspectives. This thesis argues that straightforward temporal aver-
age pooling is adequate for video-based PAR since relevant soft biometrics are
not motion dependent. Experimental validation confirms the hypothesis. The
proposed method of pooling global backbone features over time outperforms
temporal attention models, 3D architectures, and transformer-based methods,
while offering favorable inference time.

To further enhance the accuracy and reliability of attribute-based person re-
trieval rank lists, an independent HP is proposed. The HP is implemented as
a distinct model branch and is trained to predict the difficulty of recognizing
semantic attributes in the input image. It is demonstrated that the quality
of retrieval rank lists is significantly improved by using this complementary
information to focus on reliably recognized attributes during the generation
of retrieval results. The analysis of difficulty predictions and the comparison
with self-referential hardness prediction methods show the superiority of the
proposed independent HP, as it more accurately identifies challenging factors
in the input image that raise the chance of failure in attribute recognition. Be-
sides, three additional enhancements to the retrieval process are investigated.
Reliability calibration aims to align the confidence scores of attribute presence
from the PAR model with the empirical probabilities of attribute presence.
This eliminates over- or underconfidence in predictions caused by imbalanced
attribute distributions and limited intra-class diversity in the training set. Ap-
plying such methods before computing the retrieval distance proves benefi-
cial. However, the effectiveness of this approach relies on the availability of
suitable validation data. Additionally, a weighting mechanism is proposed
which balances the influence of attributes on the retrieval results by compen-
sating for the differing expected errors produced by the attributes. Similar
to reliability calibration, noteworthy improvements are observed. Last, a dis-
tance measure is proposed that takes into account the actual output distribu-
tions of the PAR classifier for the presence and absence of attributes. For this,
logistic distributions are fitted to the classifier’s output distributions. The re-
sulting cumulative density and survival functions are then utilized to evaluate
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the probability that the attribute predictions match the query. It is notewor-
thy that compared to the use of annotated validation data, the technique of
estimating distribution parameters by generating pseudo-labels for data from
the target domain has shown superior performance. This can be attributed to
the existence of a domain gap between the validation and testing data.

The lack of uniform attribute annotations across datasets prevents generaliza-
tion experiments with training and evaluation data from different domains.
To evaluate the generalizability of PAR and attribute-based person retrieval
methods, four research datasets are harmonized to form the UPAR dataset by
contributing more than 3.3 million new binary soft biometric annotations and
two evaluation protocols. Furthermore, this thesis claims that current metrics
for evaluating attribute-based person retrieval omit important information as
they do not take into account the degree of match between the query and
retrieved gallery samples. The novel mADM metric resembles mAP, but ac-
counts for the degree of correspondence between gallery samples and query
attributes. It also introduces a normalization procedure to reduce the depen-
dence of the resulting scores on the specific gallery, thus improving the com-
parability of the obtained results across datasets.

To ensure accurate retrieval, the proposed methods are combined into a uni-
fied framework. With the exception of the PARNorm module, which solely
enhances PAR when used together with optimized design decisions, the com-
bination proves to be advantageous. Furthermore, experiments exploring in-
ference times demonstrate the efficient computation of the proposed PAR
approach with little overhead over the baseline. The proposed framework
surpasses representative works from the literature concerning both PAR and
attribute-based person retrieval. The results demonstrate that this applies not
only to the individual research datasets but also to the generalization exper-
iments with the UPAR dataset.

Finally, an entire system for attribute-based person retrieval is outlined. The
system incorporates the proposed framework and covers the full process from
video feeds of cameras in the network to retrieval rank lists displayed to the
system operators.
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10.2 Outlook

Despite achieving remarkable outcomes regarding attribute-based person re-
trieval, additional enhancements and extensions could lead to further im-
provements and increase the practical applicability of the framework.

The analysis revealed that large and diverse training datasets are key to
improving the generalization capabilities of attribute-based person retrieval
methods, which is crucial for robust results in real-world scenarios. Conse-
quently, extending the existing UPAR dataset and incorporating new data
sources with diverse characteristics is a promising research direction. For
instance, the dataset contains indoor and outdoor imagery taken during both
daytime and nighttime. However, it currently lacks imagery captured in
different weather conditions, such as rain or snow. In addition, utilizing
drone-based cameras to capture mass events is on the rise, so the inclusion
of drone-based camera footage may broaden the applicability in different
scenarios. Furthermore, annotating additional soft biometric characteristics
to the existing UPAR data would enable more detailed searches. Particular
attention should be paid to differentiating between multiple types of clothing
patterns, as the evaluation revealed problems when searching for persons
wearing such garments. In addition, the MARS [Zhe16, Che19] dataset
represents the only video-based surveillance dataset for PAR. Expanding
the concept of the UPAR dataset to incorporate a video-based version is
considered advantageous in order to allow generalization experiments and
to validate results on different datasets. For instance, the MEVID data-
set [Dav23] is an excellent choice since it features a variety of scenarios that
accurately reflect real-world situations.

Another finding suggests that the recognition of individual attributes, as re-
flected by the label-based mAmetric, has potential for enhancement. Qualita-
tive evaluation results also indicate possible benefits for attribute-based per-
son retrieval. However, it was observed that employing techniques that in-
crease the mA can negatively impact the retrieval process. Considering the
straightforward architecture of the PAR model in the proposed framework,
it is worth exploring the integration of additional modules, such as attention
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mechanisms or spatial projection components to improve localization of at-
tributes and account for varying spatial extents of attributes. According to
initial studies by the author of this thesis [Spe23a], positive effects are sug-
gested on both PAR and attribute-based person retrieval tasks. Nonetheless,
it is essential to consider potential implications, such as increased model sizes
and inference times, to ensure compatibility with real-world deployment re-
quirements.

Continuous improvement of the attribute-based person retrieval system is es-
sential during practical application. Even with large-scale training datasets,
there may not be enough diversity to guarantee models that can general-
ize effectively to all scenarios. Furthermore, specific characteristics or issues
may arise only in the target domain. At present, the person retrieval system
lacks a continuous learning component. Therefore, investigating, developing,
and integrating continuous learning algorithms [Lan22, Wan23b] for PAR and
attribute-based person retrieval into the system can enhance the system’s use-
fulness and robustness iteratively during operation.
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