KIT | KIT-Bibliothek | Impressum | Datenschutz

Fully Screen‐Printed, Flexible, and Scalable Organic Monolithic Thermoelectric Generators

Brunetti, Irene 1; Ferrari, Federico; Pataki, Nathan James; Abdolhosseinzadeh, Sina; Heier, Jakob; Koster, L. Jan Anton; Lemmer, Ulrich 1; Kemerink, Martijn; Caironi, Mario
1 Lichttechnisches Institut (LTI), Karlsruher Institut für Technologie (KIT)

Abstract:

Energy-harvesting technologies offer a sustainable, maintenance-free alternative to conventional energy-storage solutions in distributed low-power applications. Flexible thermoelectric generators (TEGs) can generate electric power from a temperature gradient, even on complex surfaces. Organic materials are ideal candidates for flexible TEGs due to their good solution-processability, natural abundance, low weight, and flexibility. Electronic and thermoelectric properties of organic materials have steadily progressed, while device architectures leveraging their advantages are largely missing. Here, a design and fabrication method are proposed for producing fully screen-printed, flexible monolithic organic TEGs scalable up to m2, compatible with any screen-printable ink. This approach is validated, along with its scalability, by printing TEGs composed of two different active inks, in three configurations, with up to 800 thermoelements, with performances well matching simulations based on materials parameters. It is demonstrated that by using an additive-free graphene ink, a remarkable power density of 15 nW cm−2 at ΔT = 29.5 K can be achieved, with an estimated weight-normalized power output of 1 µW g−1, highlighting a strong potential in portability. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000169841
Veröffentlicht am 10.04.2024
Originalveröffentlichung
DOI: 10.1002/admt.202302058
Scopus
Zitationen: 2
Web of Science
Zitationen: 2
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT 3D Matter Made to Order (3DMM2O)
Institut für Mikrostrukturtechnik (IMT)
Lichttechnisches Institut (LTI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 2365-709X
KITopen-ID: 1000169841
HGF-Programm 38.01.02 (POF IV, LK 01) Materials and Interfaces
Erschienen in Advanced Materials Technologies
Verlag John Wiley and Sons
Seiten Art-Nr.: 2302058
Vorab online veröffentlicht am 06.04.2024
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page