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Abstract. Running machine learning algorithms on encrypted data is
a way forward to marry functionality needs common in industry with
the important concerns for privacy when working with potentially sen-
sitive data. While there is already a variety of protocols in this setting
based on fully homomorphic encryption or secure multiparty computa-
tion (MPC), we are the first to propose a protocol that makes use of a
specialized Order-Revealing Encryption scheme. This scheme allows to
do secure comparisons on ciphertexts and update these ciphertexts to
be encryptions of the same plaintexts but under a new key. We call this
notion Updatable Order-Revealing Encryption (uORE) and provide a
secure construction using a key-homomorphic pseudorandom function.
In a second step, we use this scheme to construct an efficient three-round
protocol between two parties to compute a decision tree (or forest) on
labeled data provided by both parties. The protocol is in the passively-
secure setting and has some leakage on the data that arises from the
comparison function on the ciphertexts. We motivate how our protocol
can be compiled into an actively-secure protocol with less leakage using
secure enclaves, in a graceful degradation manner, e.g. falling back to
the uORE leakage, if the enclave becomes fully transparent. We also an-
alyze the leakage of this approach, giving an upper bound on the leaked
information. Analyzing the performance of our protocol shows that this
approach allows us to be much more efficient (especially w.r.t. the num-
ber of rounds) than current MPC-based approaches, hence allowing for
an interesting trade-off between security and performance.
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1 Introduction

Privacy-preserving machine learning has gained a lot of traction in recent years,
due to the tremendous benefits of having automated data-driven decision mak-
ing, while caring for the legitimate privacy interests of the user, especially in a
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multiparty setting. More importantly, due to legal requirements, many uses of
machine learning (ML) algorithms would not even be possible in a setting where
access to sensitive information (such as medical data) is required.

One ML algorithm that is relatively popular, due to its simplicity and inter-
pretability, is decision tree learning. It is usually employed in the more general
decision forest version. Here, we use a training data set of entries with many
attributes and a label, to build a decision tree. This tree branches based on
thresholds w.r.t. the attribute values, and has labels annotated to its leaf nodes.
To classify a new entry, one follows the tree from the root to a leaf node by
comparing the attributes against the thresholds. The classification result is the
label annotated to the reached leaf node.

Training such trees via secure multiparty computation has already been pro-
posed by [2, 16]. Because this is in a strong privacy model, these protocols are
relatively expensive regarding computation and round complexity. The overall
round complexity of [16] is O(h(logm+log n)), where h is the a priori fixed depth
of the tree, m is the number of attributes and n is the number of data entries.
Hence, in the setting where they add a realistic 50ms delay to each message on
the network, the overall running time of the protocols increases by several orders
of magnitude.

This motivates the following research question: Can we greatly improve the
performance and round complexity of the protocol by allowing for some leakage.
(This leakage can later be partly avoided again, with the help of secure enclaves.)
Ideally, we would want a small constant number of rounds.

As comparisons or sorting are the main ingredients to Decision Tree training
algorithms, we propose to use an extended version of Order-Revealing Encryp-
tion (ORE). In ORE schemes, the values are encrypted using a secret key, but
given two ciphertexts, one can evaluate the order of the messages they encrypt
without knowing this key. We extend this by a way to update the ciphertexts to a
new key, in a setting where the key space is a multiplicative group. Hence, given
a ciphertext c = Enc(k,m) and second key k′, one can run Upd(k′, c) to obtain a
new ciphertext c′ that is equal to Enc(k ·k′,m), making use of key-homomorphic
pseudorandom functions (PRFs).

Using this new primitive, which we believe to be of independent interest, we
construct a conceptually simple protocol, using only three rounds, that allows
two parties to jointly compute a decision tree on their data. Here, the two parties
A and B both have a horizontal partition of the data set and B does the main
tree computation. In a nutshell this works as follows:

– To have all data points ORE-encrypted under the same keys (using one
key per attribute), the parties proceed in a Diffie-Helman key exchange-like
manner: B encrypts his data under his keys kj . A updates these ciphertexts
with her keys k′j , obtaining ciphertexts under kj · k′j . B then updates these

ciphertexts using k−1
j , obtaining ciphertexts under keys k′j .

– A also sends her own data points encrypted under k′j to B, together with the
used labels (outcome attributes).
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– Now, B has all the data points under the same keys k′j , and can use the
comparison function and the labels to compute a decision tree that uses the
encrypted values as thresholds.

– B sends this encrypted tree to A, who can now decrypt it using her keys k′j .
This is a three-round protocol in the honest-but-curious setting, and hence much
faster than the MPC protocols of Hamada et al. [16] and Abspoel, Escudero,
and Volgushev [2], if one assumes plausible latency. However, this also comes at
the cost of considerable overall leakage due to what can be inferred from the
comparisons (and the leakage of the ORE scheme), if the scheme is used in the
bare (non-enclave) version. We give a more general analysis on the leakage, as
well as an information-theoretic upper bound thereof in Section 5.

1.1 Related Work

Order-Revealing Encryption Order-Revealing Encryption (ORE) was introduced
by Boneh et al. [5] as a more flexible and more secure notion of Order-Preserving
Encryption (OPE). In contrast to OPE, where the natural ordering of ciphertexts
must be identical to the natural ordering of the messages they encrypt, Order-
Revealing Encryption allows to define a dedicated comparison function on the
ciphertexts for evaluating the natural order of the elements contained within
the ciphertexts. The main motivation for this was to enable efficient search op-
erations in encrypted databases. Following the introduction of ORE, Chenette
et al. [10] formalized security of ORE schemes, as well as giving a construction
of such a scheme. This construction inspired a new scheme by Lewi and Wu [23],
which is in a slightly different setting, namely the left–right framework, where
there are “left” ciphertexts and “right” ciphertexts and a left ciphertext can be
compared only with a right ciphertext. To allow for ORE schemes to be used in a
multi-user setting, Li, Wang, and Zhao [24] introduced the notion of delegatable
ORE schemes, where it is possible to issue comparison tokens, which allows one
to compare ciphertexts of different users. In a similar way, Lv et al. [27] extend
ORE schemes to a multi-user setting. One problem with this approach, however,
is that if one party has a comparison token allowing another party’s ciphertexts
to be compared to her own, it can decrypt the other party’s ciphertexts again.

As ORE schemes allow comparisons of elements, they inherently leak infor-
mation about the messages encrypted in ciphertexts, as soon as more than one
message is encrypted under the same key. This has led to several investigations
on how severely this leakage affects the data privacy. Grubbs et al. [15] and
Durak, DuBuisson, and Cash [13] have shown that under some circumstances,
ORE schemes provide no meaningful security. Jurado, Palamidessi, and Smith
[18] however show that ORE schemes still provide some security if the message
space is significantly larger than the amount of messages encrypted.

Privacy-Preserving Machine Learning Since machine learning models have be-
come more widespread, there has been work towards being able to perform the
training process thereof in a privacy-preserving manner. Several machine learning
models have been considered in this setting, ranging from simple regression tasks
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[8, 19] to neural networks. Approaches for the latter include Fully-Homomorphic
Encryption (FHE) [22], and MPC protocols [20]. Multiparty computation has
also been used for training decision trees, where it is the most prevalent approach
since the work by Lindell and Pinkas [25]. In their work, they discuss how MPC
protocols can use the ID3 algorithm for training a decision tree. Since then, there
have been several improvements over this work [12, 17].

Since the ID3 algorithm only supports discrete attributes, these approaches
are not applicable to a setting with with continuous attributes. To overcome this
issue, [2] use a variation of the C4.5 algorithm, which also supports continuous
attributes. Their protocol works by computing the training process for each
possible node in the resulting decision tree. However, this results in the runtime
of their protocol being linear in the maximum number of possible nodes in a
decision tree, and therefore exponential in the depth of the tree. Hamada et al.
[16] improve over this with a protocol, which is linear in the depth of the tree,
by partitioning the dataset in an oblivious way and performing the training once
for each layer, considering this partitioning. This comes at the cost of requiring
many network rounds. While these two state-of-the-art-approaches perform well
under ideal circumstances, due to their runtime [2] is not applicable in a setting,
where a high-depth decision tree is to be trained and [16] is not applicable in a
high-latency environment.

Privacy-Preserving protocols based on fully-homomorphic encryption (FHE)
are mostly restricted to decision tree evaluation (e.g. [11, 14]) and do not consider
the secure training of decision trees. Most of those papers considering training
a decision tree, consider a different setting. For example [3] consider the setting,
where their goal is to outsource the training to a server, while some of the
computationally intensive steps (for FHE) are still done by the client. Hence,
it is not directly comparable to our work. Vaidya et al. [32] consider a setting,
where the training data is partitioned vertically and FHE is only used to evaluate
a heuristic in the training process, but the remaining computation is done in
plain text. So far, there are no efficient decision tree training protocols, that
perform the entire training using FHE. This is due to the fact that comparisons
are computationally expensive in FHE. Indeed, Liu et al. [26] aim to provide a
FHE-bsed protocol allowing comparisons in a multi-user setting, however a single
plaintext to ciphertext comparison in their case takes a computation time of
100 ms and 1 s for a ciphertext-ciphertext comparison, rendering this approach
infeasable in our setting.

1.2 Our Contribution

Our main contributions are as follows:
– We extend the notion of Order-Revealing Encryption (ORE) to Updatable

ORE and give an instantiation thereof.
– Using this Updatable ORE scheme, we construct a three-round two-party

protocol to compute a decision tree on a horizontal partitioning of a dataset
with both parties providing training data. With this approach, we can apply
the same training algorithms as used in plaintext training.
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– We describe how this protocol can be combined with enclaves providing dif-
ferent security guarantees, in order to eliminate or reduce the introduced
ORE leakage and to make the protocol actively secure. We also use an
information-theoretic approach to quantify and give an upper bound for
the ORE leakage.

– We implemented and experimentally verified the efficiency of our protocol,
showing that it is faster than current state-of-the-art protocols, while achiev-
ing this speedup at the cost of some information leakage.

1.3 Outline

We introduce necessary preliminaries including the universal composability (UC)
model, ORE and decision tree learning in Section 2. We propose our notion of
Updatable Order-Revealing encryption and also present a construction and a
security proof in Section 3. Section 4 contains the decision tree learning protocol,
together with its security proof, and a remark on how to translate it into an
actively-secure version using secure enclaves in a graceful-degradation manner. In
Section 5, we discuss the implications of the ORE leakage on the protocol. Finally
in Section 6, we evaluate our constructions based on a practical implementation.

2 Preliminaries

In the remainder of this work, PPT refers to a probabilistic Turing Machine
with a polynomial runtime bound. Furthermore, (G, p, [1]) is an additive group
of prime order p > 3. We use the additive implicit notation for group operations
with the group generator [1]. In implicit notation, x · [y] = [x · y]. In this nota-
tion, the DDH assumption means that ([1] , [x] , [y] , [x · y]) and ([1] , [x] , [y] , [z])
are computationally indistinguishable for x, y, z ← Z×

p . A function PRF : Zp ×
{0, 1}∗ → G is a pseudorandom function (PRF), if oracle access to PRF with a
random key k ← Zp is computationally indistinguishable to oracle access to a
random function. A PRF is key-homomorphic, if for all messages m ∈ {0, 1}∗
and keys k, k′ ∈ Zp

PRF(k,m) + PRF(k′,m) = PRF(k + k′,m)

and therefore also

a · PRF(k,m) = PRF(a · k,m)

for all a ∈ Zp.

Naor, Pinkas, and Reingold [28] have constructed a key-homomorphic PRF
under the DDH assumption in the random oracle model for RO : {0, 1}∗ → G \
{[0]}:

PRF(k,m) := k · RO(m) (1)
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2.1 The Universal Composability Model

The universal composability (UC) model introduced by Canetti [7] is a well
established security model for cryptographic protocols. It extends from the real-
ideal paradigm, meaning that the security of a protocol is captured by an ideal
functionality, that is secure by definition. If a protocol is then shown to be secure,
relative to an ideal functionality (in which case we say that the protocol realizes
the ideal functionality), all security guarantees present in the ideal functionality
carry over to the protocol. Protocols secure in the universal composition theorem
remain secure under universal composition.

For a more in-depth introduction to the UC framework, see Appendix A or
[7].

2.2 Order-Revealing Encryption

We follow the definition in [10]. An ORE scheme is defined as a 3-tuple of PPT
algorithms ORE = (Gen,Enc,Cmp) over message space M, key space K and
ciphertext space C, where
– Gen(1κ) returns a secret key k ∈ K
– Enc(k,m) takes a key k ∈ K and a message m ∈ M as input and returns a

ciphertext c ∈ C
– Cmp(c0, c1) is deterministic, takes two ciphertexts ct0, ct1 ∈ C and returns a

bit b or ⊥.
We require correctness for the scheme:

∀m0,m1 ∈M, k ← Gen(1κ) :

Pr [Cmp(Enc(k,m0),Enc(k,m1)) = 1⇔ m0 < m1] ≥ 1− negl(κ).

In addition, ORE schemes have an implicit Dec(k, c) algorithm, which takes a
secret key k ∈ K and a ciphertext c ∈ C and outputs a message m ∈ M. Dec is
implicitly defined using Enc and Cmp to perform a binary search on the message
space and return the result or ⊥ if the ciphertext is invalid under key k.

Security of ORE Schemes For the security definition of an ORE schemes w.r.t.
some leakage function L(m1, . . . ,mt), we use the security notion defined in [10].
Let ORE = (Gen,Enc,Cmp) be an ORE scheme. For some q = poly(κ), let A be
a stateful adversary and let SORE be a stateful simulator. Then, the experiments
REALORE

A and SIMORE
A,S,L are defined as in Fig. 1. We say an ORE scheme ORE

is secure w.r.t. the leakage function L, if there exists a PPT simulator SORE,
such that for all PPT adversaries A, the games REALORE

A and SIMORE
A,S,L are

computationally indistinguishable.

Best-Possible Leakage for ORE schemes Naturally, one is interested in an ORE
scheme with the least amount of leakage. Given t ORE ciphertexts c1, . . . , ct ∈ C
of messages m1, . . . ,mt ∈M under the same key, then for each pair (ci, cj), one
can inevitably learn whether mi ≤ mj by using the comparison algorithm. We
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REALORE
A (κ):

1: k ← Gen(1κ)
2: m← A(1κ)
3:
4: ct1 ← Enc(k,m1)
5: for i = 2, . . . , q do
6: m← A(ct1, . . . , cti−1)
7:
8: cti = Enc(k,m)
9: end for
10: output (ct1, . . . , ctq) and the state of A

SIMORE
A,S,L(κ):

1: M = ∅
2: m← A(1κ)
3: M .append(m)
4: ct1 ← SORE(L(M))
5: for i = 2, . . . , q do
6: m← A(ct1, . . . , cti−1)
7: M .append(m)
8: cti ← SORE(L(M))
9: end for
10: output (ct1, . . . , ctq) and the state of A

Fig. 1: Definition of experiments REALORE
A and SIMORE

A,S,L for ORE scheme ORE

and stateful TMs A and SORE, cf. [10].

call a leakage function Lideal best-possible or ideal, if one learns nothing else, i.e.,
if the leakage is given by

Lideal(m1, . . . ,mt) = {(i, j) | mi ≤ mj}.

Note that unfortunately there is no known ORE scheme for superpolynomial
message space with this ideal leakage, except for one that uses very strong as-
sumptions, such as multilinear maps [5], rendering this scheme unsuitable in
practice.

Assumptions on the Leakage Functions In the remainder of this work, we make
a few assumptions about the leakage function.

Assumption 1. ∀m : L(m) = ∅.

While one could think of ORE schemes, for which this assumption does not hold,
the assumption holds for established schemes like the ones in [10, 23], as well as
our ORE scheme.

Assumption 2. For t messages m1, . . . ,mt and index 0 ≤ i ≤ t, it holds that
L≤i := L(m1, . . . ,mi) can be efficiently computed from L = L(m1, . . . ,mt).

While this assumption does not have to hold for all ORE leakage functions, it
does hold for leakage functions that tightly capture the leakage of the respective
ORE scheme. Again, this assumption holds for the ORE schemes in [10, 23], as
well as for our ORE scheme.

2.3 Decision Tree Training

We consider a domain with data points x with X continuous attributes xj and a
label ℓ(x) from a small discrete set of labels. In this context, a decision tree is a
binary tree, where each leaf node contains a label and each inner node contains
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a tuple (j, t), where j is an index of an attribute and t is a value of the j-th
attribute. When performing a classification on a data point x at an inner node
(j, t), we recurse to the left child node, if xj ≤ t, and to the right child node,
otherwise. This is repeated until reaching a leaf node, where the label of the
node is returned.

Decision tree training is the task of building a decision tree given a set of la-
beled training data. Established decision tree frameworks like [6, 1] use variations
of the recursive C4.5 algorithm by Quinlan [30]. An adaption of this algorithm
can be seen in Algorithm 1. One source of variation in this algorithm is the
heuristic H used in Line 11. A common example used here is the Information
Gain heuristic. Following the definition in [21], it is defined as

H ′(S) = −
∑
l∈L

|{x ∈ S : ℓ(x) = l}| log(|{x ∈ S : ℓ(x) = l}|)
|S|

,

H(S,L,R) = H ′(S)− |L|
|S|

H ′(L)− |R|
|S|

H ′(R),

where L is the set of labels. This heuristic describes the information-theoretic
gain when separating the set S into sets L and R. Another common heuris-
tic is the GINI Index, which performs nearly identically as the information gain
heuristic [31]. The other common variation is the threshold value used in Line 13,
where most frameworks use an intermediate value between the threshold and the
next larger occurring attribute value. While in a classical setting both the labels

Algorithm 1 Decision tree training with a heuristic H.

1: function TrainDecisionTree(data)
2: assert ∀x, y ∈ data : ∃j : xj ̸= yj
3: if ∀x ∈ data : ℓ(x) = ℓ(data0) then
4: return LeafNode(ℓ(data0))
5: end if
6: j∗ := thresh∗ := ⊥, h∗ := −∞
7: for 1 ≤ j ≤ X do
8: L := ∅
9: for thresh ∈ {xj | x ∈ data} in ascending order do
10: L := L ∪ {x ∈ data | xj = thresh}
11: h := H(data, L, data \ L)
12: if h > h∗ then
13: j∗ := j, thresh∗ := thresh, h∗ := h
14: end if
15: end for
16: end for
17: L := {x ∈ data | xj∗ ≤ thresh∗}, R := data \ L
18: return InnerNode(j∗, thresh∗,TrainDecisionTree(L),TrainDecisionTree(R))
19: end function

as well as the attribute values, are numeric values, we note that the training algo-
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rithm itself only needs to evaluate the order of attribute values. This is required
in Lines 9, 10 and 17. While one could think of a heuristic H which requires addi-
tional operations on the attributes, established heuristics like Information Gain
do not consider the attribute values, but only take the labels into consideration.

It is possible to use different training algorithms and variations of trees, such
as XBoost [9], which trains gradient-boosted trees. In this approach, the training
process requires performing arithmetic operations on the attributes. Another
variation is the use of decision forests consisting of multiple decision trees. A
classification of a data point in such a decision forest is done by classifying it
with each tree and performing a majority vote on the resulting labels. Bentéjac,
Csörgő, and Mart́ınez-Muñoz [4] have empirically shown that in a real-world
scenario, gradient boosted trees, although requiring arithmetic operations on the
training data, do not perform significantly better than decision forest that can
be trained with Algorithm 1 only comparing elements and performing equality
checks on the labels.

3 Updatable Order-Revealing Encryption

We now augment the definition of ORE to allow for updating a ciphertext from
one key to another, while retaining the messages contained in the ciphertexts.

Definition 1 (Updatable ORE). A 4-tuple of PPT algorithms ORE = (Gen,
Enc,Cmp,Upd) is an Updatable ORE (uORE) scheme over key space K = Z×

p ,
message spaceM and ciphertext space C, if
– (Gen,Enc,Cmp) is an ORE scheme over key space K, message spaceM, and

ciphertext space C.
– Upd(k, c) takes a key k ∈ K and a ciphertext c ∈ C as input and outputs a

new ciphertext c′ ∈ C.
– Enc and Upd are deterministic.

ORE is correct, if (Gen,Enc,Cmp) is a correct ORE scheme and satisfies the
updatability property:

∀k, k′ ∈ K : Upd(k′,Enc(k,m)) = Enc(k · k′,m)

Moreover, ORE is a secure uORE scheme w.r.t. a leakage function L iff
(Gen,Enc,Cmp) is a secure ORE scheme w.r.t. L.

Note that in our definition, we require that the key space K := Z×
p . This means

that any key k is invertible modulo p.
For our construction of an uORE scheme, we adapt the scheme from [10]:

Construction 1 Let (G, p, [1]) be an additive group with prime order p > 3 and
let PRF : Zp × {0, 1}∗ → G be a key-homomorphic PRF with key space Zp and
message space {0, 1}∗. Then, we define the uORE scheme ORE = (Gen,Enc,Cmp,
Upd) with message space M = {0, 1}n for a parameter n, and ciphertext space
C = Gn, as follows:
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– Gen(1κ): Return a uniformly random k ← Z×
p

– Enc(k,m = (m1, . . . ,mn)): For i = 1, . . . , n, set

ui = (1 +mi) · PRF(k, (m1, . . . ,mi−1)).

Return ct = (u1, . . . , un).
– Cmp(ct = (u1, . . . , un), ct

′ = (u′
1, . . . u

′
n)): Find the smallest i, such that

ui ̸= u′
i. If such an i exists and u′

i = 2 · ui, return 1. Otherwise, return 0.
– Upd(k′, ct = (u1, . . . , un)): Set u

′
i = k′ · ui. Return ct′ = (u′

1, . . . , u
′
n).

Our construction is similar to the one by Chenette et al. [10]. In both cases,
the key generation algorithm Gen(1κ) samples a random element from the PRF
key space, and Enc(k, (m1, . . . ,mn)) is done bit by bit, by first computing u′

i =
PRF(k, (m1, . . . ,mi−1)) and then returning ui = u′

i if mi = 0. If mi = 1, both
schemes return ui = π(u′

i) for an efficiently invertible permutation π. In both
schemes, Cmp((u1, . . . , un), (u

′
1, . . . , u

′
n)) works by identifying the smallest i, for

which ui ̸= u′
i and checking if u′

i = π(ui) with the same permutation.
Comparing these two schemes, the only two differences are the PRF and

the permutation π being used. In our scheme, we require the PRF to be key-
homomorphic, which does not need to be the case in their scheme. This allows
them to use Z3 as output space of the PRF and Zn

3 as the ciphertext space,
whereas our used ciphertext space is Gn. Moreover, we use π(x) = 2 · x as a
permutation, whereas in their scheme, π(x) = x+ 1 mod 3 is used.

Because of this similarity, their security proof and ORE simulator also applies
to our construction, when adjusting the permutation. Hence, both schemes are
secure under the same leakage function:

Theorem 1. Construction 1 is secure with the leakage function

L(m1, . . . ,mt) = {(i, j, hsb(mi ⊕mj)) | mi < mj},

where hsb(x) returns the position of the highest set bit of x.

Because of the similarity to the proof of [10], we will only give a proof intu-
ition: For (u)ORE security to hold, there needs to be a simulator SORE that,
given only the leakage of messages, needs to be able to generate ciphertexts that
are indistinguishable from encryptions of the messages with a random but (dur-
ing the games) fixed key. In a first step, one replaces the PRF with a random
function via lazy sampling. When asked to generate the first ciphertext, SORE

samples n elements from the output space of the PRF uniformly at random
and outputs them as the first ciphertext. When asked to generate ciphertexts
for any subsequent messages, it learns the position of the leftmost differing bit
between this message and previous messages, as well as the message bit at these
positions. This allows it to answer with consistent parts of ciphertexts, where
message prefixes are equal, and with π(x) or π−1(x) where the most significant
difference is. Finally, for all other positions, for which no common prefix with
another message exists, it proceeds as in the case for the first message, sampling
and outputting elements from the output space of the PRF.
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Since this proof only requires the security of PRF and the efficient computa-
tion/inversion of π, the proof from [10] directly translates to our setting.

Remark 1. The leakage L of our scheme is actually sufficient to use faster sort-
ing algorithms than plain comparison-based algorithms. For example MSD radix
sort uses exactly the information provided by L to allow sorting in linear time.
Sorting all ciphertexts by the first bit is easy, as there are only two compara-
ble group elements for the first bit. After that, sorting the two partitions after
the second bit is possible with the same approach. This reduces the amount of
group operations required for sorting from O(n log n) to O(n). This is especially
interesting, as a main use-case for ORE are encrypted databases, where sorting
is a major concern. Large databases often use advanced sorting algorithms that
are not comparison-based, so the additional leakage of L over Lideal can be used
to speed up sorting.

Theorem 2. Construction 1 is a correct ORE scheme.

Proof. Fix two messages m,m′ ∈ {0, 1}n with m = (m1, . . . ,mn) and m′ =
(m′

1, . . . ,m
′
n). Then, we show that the correctness property holds for any k ←

Gen(1κ), (u1, . . . , un) ← Enc(k,m) and (u′
1, . . . , u

′
n) ← Enc(k,m′). We consider

each case separately.

m < m′: In this case, there exists an i, such that mj = m′
j for j < i and mj = 0

and m′
j = 1. In this case, it holds that uj = u′

j for j < i. For PRF output
o = PRF(k, (m1, . . . ,mi−1)), and by definition of Enc, it holds that ui = o
and u′

i = 2 · o. If o ̸= 0G, ui and u′
i are different and Cmp returns 1 in this

case. The probability for the event that o = 0G is negligible (which follows
from the fact that this probability is 1/p for a random function and because
PRF is a PRF). Therefore, Cmp will output 1 with overwhelming probability.

m = m′: In this case ui = u′
i for all i, as Enc is deterministic and Cmp will

output 0.
m > m′: Similarly to the first case, there exists an i, such that mj = m′

j for
j < i and mj = 1 and m′

j = 0. With the same argument as in the case for
m < m′, we know that uj = u′

j for j < i and ui = 2 · u′
i. Since G is of prime

order with p > 3, it also holds that u′
i ̸= 2 · ui = 2 · 2 · u′

i and therefore Cmp
returns 0 with overwhelming probability. ⊓⊔

Theorem 3. Construction 1 satisfies the updatability property.

Proof. The updatability follows from the key-homomorphism of PRF. For all
k, k′ ∈ K and m ∈ {0, 1}n, it holds that

Upd(k′,Enc(k,m)) = Upd(k′, ((1 +mi) · PRF(k,m1..i−1))i=1,...,n)

= (k′ · (1 +mi) · PRF(k,m1..i−1))i=1,...,n

= ((1 +mi) · PRF(k′ · k,m1..i−1))i=1,...,n

= Enc(k′ · k,m),

where m1..i−1 := (m1, . . . ,mi−1). ⊓⊔
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4 Secure Decision Tree Training

In our protocol, we want to train a decision tree without revealing the training
data, using the previously constructed Updatable ORE scheme. The core idea
is to have training data from one party uORE encrypted under a key which the
party itself does not know. To accomplish this, we make use of the updatability
of the created ciphertexts. In the second step, we apply the decision tree training
algorithm in Algorithm 1 to the ORE ciphertexts from the previous step. Here,
we make use of the fact that Algorithm 1 only requires the comparability of
attributes, and is deterministic.

In principle, any decision tree training algorithm with these properties can be
used. While the determinism of the training algorithm is required, de-randomi-
zation can be done by prepending the protocol with a secure coin-toss and using
these coins as input for the decision tree training. If randomness in the training
algorithm does not have a security impact, an alternative and more performant
way of de-randomization is to use a non-cryptographic PRG with a fixed seed.

Let us first formalize an ideal functionality that captures the security of
secure decision tree protocols.

Definition 2 (Ideal functionality FDTTrain). FDTTrain in Fig. 2 models the
security of the decision tree training protocol. A graphical representation thereof
is in Fig. 3. In this setting, there are two parties A and B. The training data has
X attributes and discrete labels.

– Upon receiving input (Input, nB,m
B
1,1, . . .m

B
nB,X

) from B, send
(InputReceived, nB) to A

– Upon receiving (Input, nA,m
A
1,1, . . . ,m

A
nA,X

, lA1 , . . . , l
A
nA

) from A,

compute Lj := L(mA
1,j , . . . ,m

A
nA,j

,mB
1,j , . . . ,m

B
nB,j

) and send

(Leakage, (L1, . . . , LX), (lA1 , . . . , l
A
nA

)) to B.
– Upon receiving input (Labels, lB1 , . . . , l

B
nB

) from B, compute the decision tree
tree = train(mA

1,1, . . . ,m
A
nA,X

,mB
1,1, . . . ,m

B
nB,X

, lA1 , . . . , l
A
nA

, lB1 , . . . , l
B
nB

) and out-
put (Trained, tree) to A

Fig. 2: Ideal functionality FDTTrain.

Construction 2 (Protocol πDTTrain) Here, we define the two-party protocol
πDTTrain between parties A and B. As before, let X be the number of attributes of
the training data. Also, let mA

i,j be the j-th attribute of the i-th training data of A

with the labels lAi (respectively for the dataset of B), and let (Gen,Enc,Cmp,Upd)
be an uORE scheme. Then we define the protocol πDTTrain as follows:

B: – Generate ORE keys kBi,j for 1 ≤ i ≤ nB, 1 ≤ j ≤ X
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FDTTrain

nB data points
nB

nA data points + labels
leakage + nA labels

nB labelsTrained tree

Fig. 3: Graphical representation of FDTTrain. Some details about the concrete
values being sent to/from the ideal functionality are omitted.

– Send cBi,j = Enc(kBi,j ,m
B
i,j) for 1 ≤ i ≤ nB, 1 ≤ j ≤ X to A

A: – Generate ORE keys kAj for 1 ≤ j ≤ X

– Send CA
i,j = Enc(kAj ,m

A
i,j) for 1 ≤ i ≤ nA, 1 ≤ j ≤ X to B

– Send labels lAi for 1 ≤ i ≤ nA to B
– Send c′Bi,j = Upd(kAj , c

B
i,j) for 1 ≤ i ≤ nB, 1 ≤ j ≤ X to B

B: – Compute CB
i,j =Upd(1/kBi,j , c

′B
i,j) for 1 ≤ i ≤ nB, 1 ≤ j ≤ X

– Train the decision tree on the data points (CA
i , l

A
i )i=1...,nA

and (CB
i , l

B
i )i=1...,nB

,
obtaining a trained decision tree.

– Send the tree to A
A: – Decrypt and output the decision tree: For each inner node in the tree

containing an attribute id j and an encrypted value v, replace v with
Dec(kAj , v).

Note that this protocol has a constant number of rounds, as only three messages
are exchanged. Here, A learns no additional information beyond what can be
learned from her own training data and the trained decision tree. B receives
only the leakage of the ORE scheme of both parties training data for each at-
tribute separately and the respective label. Note that because A uses different
keys to encrypt the values of different attributes, B only receives the leakage
L(mA

1,j , . . .m
A
nA,j

,mB
1,j , . . .m

B
nB,j

) for each j. This leakage is much smaller than

the entire leakage L(mA
1,1, . . .m

A
nA,X

,mB
1,1, . . .m

B
nB,X

), because attribute values
of different attributes cannot be compared.

Theorem 4. πDTTrain securely realizes FDTTrain for static corruption and semi-
honest adversaries if the uORE scheme is secure with leakage L.

To show this theorem, we follow the UC framework and construct a simulator,
such that the real world running the protocol and ideal world with FDTTrain are
indistinguishable. Concretely, for any PPT-environment controlling a corrupted
party A or B, we show that the environment cannot distinguish between a real
interaction of the corrupted party with the uncorrupted one and an interaction of
the corrupted party with the ideal functionality through the simulator. Because
we consider semi-honest adversaries, the environment chooses the inputs of the
honest and corrupted parties and learns their output. It also learns sent and
received messages, internal state and randomness of corrupted parties.

We give two different simulators, one for the case where A is corrupted and
one for the case where B is corrupted. (If both parties are corrupted, no mean-
ingful security guarantees are left.)
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For the case, where A is corrupted, we use the simulator S from Fig. 4. To

– When receiving (InputReceived, nB) from FDTTrain, invoke the nB instances of
the ORE simulator with the leakage ∅ (possible by Assumption 1) and send
the resulting ciphertexts to A.

– When receiving ciphertexts CA
i,j , updated ciphertexts c′Bi,j and labels

lAi from A, extract A’s ORE keys kA
j and messages mA

i,j . Send
(Input, nA,m

A
1,1, . . . ,m

A
nA,X

, lA1 , . . . , l
A
nA

) to FDTTrain in the name of A.
– When receiving (Trained, tree) from FDTTrain for A, encrypt each value v in a

node branching by attribute j as Enc(kA
j , v) and send the resulted encrypted

tree to A.
– When receiving a query for FRO, answer consistently or draw a random x← Z×

p

and return [x] if the message has not previously been queried.

Fig. 4: Simulator for a corrupted A.

show its validity, we define a number of games Gi, each having (implicitly defined)
ideal functionalities Fi and simulators Si, and each being a modified version of
the previous one. The first game is defined, s.t. the corrupted A interacts with
the honest B through the protocol and the last game is the game where the
corrupted A interacts with the ideal functionality through the simulator. We
show that games Gi are indistinguishable from Gi+1.
– G0: The execution of πDTTrain with dummy adversary D.
– G1: The execution with a dummy ideal functionality F1 that lets the ad-

versary determine all inputs and learn all outputs of the honest party. S1 is
the simulator that executes the protocol πDTTrain honestly on behalf of the
honest party using the inputs from F1 and making outputs through F1.

– G2: The same as G1, except that when sending the encrypted decision tree
to A, instead of sending the tree, S2 extracts the keys kj from A, uses them
to decrypt and reencrypt the tree and sends this reencrypted tree.

– G3: The same as G2, except that now S3 does not perform the training on
the ciphertexts, it now performs the training on the plaintext training data,
where it extracted A’s training data and received B’s training data from F4.

– G4: The same as G3, except that instead of sending the values ci,j = Enc(ki,j ,mi,j)
to A, S4 generates c′i,j = SORE(∅) and sends these values to A instead.

– G5: The execution of the ideal functionality FDTTrain with the simulator S as
in Fig. 4.

As we can see, the game G0 is the game, in which the corrupted party interacts
with the honest one using the protocol, whereas G5 is the game, where the
corrupted party interacts with the ideal functionality through the simulator.

Claim 1 G0
c
≈ G1

Proof. These changes are only syntactic and therefore oblivious to the environ-
ment. The claim follows. ⊓⊔
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Claim 2 G1
c
≈ G2

Proof. The simulator participates in the protocol as the honest party would.
Therefore, each inner node of the tree contains elements (j, c), where c is either
a ciphertext from A, in which case c = Enc(kAj ,m) for some m, or a ciphertext
from the simulator, in which case

c = Upd(k′−1,Upd(kAj ,Enc(k
′,m))) = Enc(kAj ,m)

for some k′ and m. Therefore, decrypting c with kAj and deterministically reen-
crypting the result again with the same key results in the same ciphertext. Hence,
the games are indistinguishable. ⊓⊔

Claim 3 G2
c
≈ G3

Proof. It follows from the uORE correctness that evaluating the order on the
ciphertexts is equivalent to evaluating the order on the plaintexts (with over-
whelming probability), if the ciphertexts to be compared are ciphertexts under
the same key. The decision tree training algorithm only compares ciphertexts
associated with the same attribute and ciphertexts for an attribute j are all
ciphertexts under key kAj (either directly or by updating and reverse-updating).
Therefore, it follows from the correctness of the ORE scheme that encrypting
the messages, training the decision tree on the ciphertexts and decrypting the
decision tree again (as done in G2) results (with overwhelming probability) in
the same tree as directly training the decision tree on the plaintexts (as done in
G3). ⊓⊔

Claim 4 G3
c
≈ G4

Proof. This change is only relevant for the ciphertexts the simulator sends to
A. While it receives these ciphertexts back, updated with A’s keys, they are no
longer used by the simulator in any further computations. Because of Assump-
tion 1 and the fact that the keys ki,j are only ever used for encryption once,
it holds that for all messages m, including the messages the simulator encrypts
in G, that L(m) = ∅. Therefore, an adversary that can distinguish between G3

and G4 can be used to distinguish between REALORE
A (κ) and SIMORE

A,S,L(κ) using
a hybrid argument. ⊓⊔

Claim 5 G4
c
≈ G5

Proof. The only difference between these two games is who performs the train-
ing of the decision tree. In G5, the simulator S5 performs the training of the
decision tree, while in G6, the ideal functionality F6 performs the training. In
both cases, the training is performed on the same training data and as training
is deterministic, it results in the same decision tree in both cases. ⊓⊔

For the case, where B is corrupted, we use the simulator S from Fig. 5. Again,
we define hybrid games to show its validity:
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– When receiving ciphertexts cBi,j from B, extract the messages mB
i,j from B and

send (Input, nB,m
B
1,1, . . .m

B
nB,X

) to FDTTrain in the name of B.

– Upon receiving (Leakage, (L1, . . . , LX), (lA1 , . . . , l
A
nA

)) from FDTTrain for B, pro-
ceed as follows for all j:
• For each i, compute the sub-leakage L≤i

j from Lj . This is possible using
Assumption 2.

• Generate ciphertexts Ci,j = SORE(L≤i
j ) for 1 ≤ i ≤ nA + nB

• Set c′Bi,j ← Upd(kB
i,j , Ci+nA,j) for 1 ≤ i ≤ nB

Send the Ci,j , c
′B
i,j and lAj to B.

– Upon receiving tree from B, extract labels lBj from B and send
(Labels, lB1 , . . . , l

B
nB

) to FDTTrain in the name of B.

Fig. 5: Simulator for corrupted B.

– G′
0: The execution of πDTTrain with dummy adversary D.

– G′
1: The execution with an ideal functionality F ′

1 that lets the adversary
determine all inputs and learn all outputs. S ′1 is the simulator that executes
the protocol πDTTrain honestly on behalf of the honest party using the inputs
from F ′

1 and making outputs through F ′
1.

– G′
2: The same as G′

1, except that when S ′2 would update a ciphertext, which
B computed as ct = Enc(k′,m) to ct∗ = Upd(k, ct), instead it computes
ct∗ = Upd(k′,Enc(k,m)) using the corresponding key k′ and message m it
extracts from B.

– G′
3: The same as G′

2, but instead of decrypting and outputting the tree re-
ceived from B, the simulator extracts the training data from B. Then it uses
both parties training data and labels to train the decision tree in plain text
and outputs the tree to A through F ′

3.
– G′

4: The same as G′
3, except that whenever we would perform an encryption

(both in the encrypt- or update-step) as Enc(k,m), we compute it with SORE

using the corresponding leakage, using one instance per k.
– G′

5: The ideal functionality FDTTrain with the simulator S.
Now we look at the case, where B is corrupted:

Claim 6 G′
0

c
≈ G′

1

Proof. These changes are only syntactic and therefore oblivious to the environ-
ment. The claim follows. ⊓⊔

Claim 7 G′
1

c
≈ G′

2

Proof. As the difference between these two games is the order in which Enc and
Upd are applied, this claim follows directly from the updatability property. ⊓⊔

Claim 8 G′
2

c
≈ G′

3
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Proof. The only difference between these two games is the decision tree that is
oututted to A. In G3, the simulator knows A’s training data, because it received
them from F3 and it knows B’s training data, because it can extract them
from B. From the uORE correctness and the fact that the decision tree training
is deterministic, it follows that the decision tree S ′3 computes in plaintext is
identical to the one B computes in G′

3 and G′
2 on the ciphertexts. ⊓⊔

Claim 9 G′
3

c
≈ G′

4

Proof. In G′
3, the ORE encryption is performed using real keys kj , whereas in

G′
4, the ORE simulator is used to generate ciphertexts. To show this indistin-

guishability, we define additional hybrids Hj , where for the first j attributes, the
ORE simulator is used to generate ciphertexts, and for all other attributes, a
real encryption is performed. It holds that G′

4 = H0 and G′
5 = HX .

The indistinguishability of these games therefore follows from the ORE-
security using a standard hybrid argument. ⊓⊔

Claim 10 G′
4

c
≈ G′

5

Proof. The difference between these two games is that in G′
5, the simulator per-

forms the training and sends the trained decision tree to A through the ideal
functionality, while in G′

6 the ideal functionality performs the training and out-
puts it directly. As the decision tree training algorithm is deterministic and the
same input to the training process is used by S ′5 and F ′

6, the tree is identical
and the games are indistinguishable. ⊓⊔

The security of the protocol πDTTrain (Theorem 4) now follows from Claim 1 –
5 and Claim 6 – 10.

4.1 Variations of the Training Process

In the protocol from Construction 2, we only considered standard decision tree
training. When using decision trees in practice, additional steps are usually taken
like pruning, limiting the depth of the tree, gradient boosted training or training
a decision forest for better classification accuracy.

Performing gradient boosted training is inherently not compatible with our
approach, as it requires performing arithmetic operations on attribute values,
which ORE schemes do not support.

Pruning and limiting the depth of the tree could be performed by B by
adding a leaf node instead of an inner node to the tree, whenever the number of
datapoints at the current position in the tree is small enough or if a certain depth
of the tree is reached during the training process. Both of these techniques are
compatible with our decision tree training protocol. Indeed any form of pruning
that adheres to the limitation that attributes can only be compared, but no
arithmetic can be performed on the attribute values, is compatible with our
approach.

Additionally, our protocol can be used for training a decision forest. Training
a T -tree decision forest can be done as follows:
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1. Each party partitions their training data into T subsets.
2. The parties run πDTTrain once for each subset in parallel to perform the

training on each data.
3. After receiving the T decision trees from B, A outputs the decision forest

containing these trees.

This realizes a forest-variant of the ideal functionality FDTTrain. The security of
the protocol follows from the universal composability theorem in the UC model.

Another variation is to consider training data that is split vertically between
parties, i.e. A has one part of the attributes and B has a different set of the
attributes of the same dataset (and they share some kind of id attribute to
match up the data). In this setting, training is easily possible with the ORE-
based approach by having A encrypt her attribute values using an ORE scheme
with one key per attribute and sending the ciphertexts to B. B can then train a
decision tree using A’s encrypted attributes and his own attributes in plaintext,
as no comparison between his and A’s data is required. Indeed this does not even
require the ORE scheme to be updatable.

4.2 Graceful Degradation using Enclaves

Hardware enclaves allow other parties to verify the code running in them while
ideally hiding all internal state. While hiding internal state is difficult due to side
channels, either inherent in the enclave program (like timing or memory access
patterns), or due to the used platform (like power consumption, cache timing
or other microarchitecural state side channels), the minimal functionality of an
enclave, namely to attest the correct program execution, is usually well hard-
ened and implemented side-channel free. These side channels have motivated
two major security models for the functionality provided by an enclave system:
“regular” enclaves (hiding all internal state) and transparent enclaves (revealing
all internal state, especially the used randomness, but not attestation keys). If
additionally attestation keys are leaked, the enclave provides no meaningful se-
curity. In between transparent and regular, enclave models with varying amount
of side channels can be useful, like explicitly modeling a memory access side
channel, as done in [29].

In the minimal form of a transparent enclave, they can be seen as a generic
passive-to-active compiler. Executing an arbitrary passively secure protocol in-
side an enclave allows other involved parties to verify the produced attestation
evidence to ensure that the other parties executed their part of the protocol
correctly.

When applied to the presented decision tree training protocol (Construc-
tion 2), we can go one step further: When the protocol for B is executed inside
a non-transparent enclave, the leakage from the ORE scheme to B is hidden. To
implement this, A needs to send her ciphertexts to the enclave of B confidentially,
which can be done by performing a key exchange into the enclave. Additional
care needs to be taken to ensure that the enclave program does not leak more
information about the input than necessary. Also, the enclave needs to hold a
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Table 1: Comparison of security under different enclave security assumptions
with radix sort and comparison-based sorting.

ours with radix ours without radix plaintext with radix plaintext without radix

fully secure enclaves ✓ ✓ ✓ ✓
with memory side channels ORE leakage ideal-ORE leakage ORE-leakage ideal-ORE leakage

transparent enclaves ORE leakage ORE leakage full leakage full leakage

significant amount of memory to store the ORE-encrypted training data. Re-
quiring access to this amount of data will result in many memory-management
operations by the enclave system and thus has an impact on the overall perfor-
mance.

An overview of the provided security in the different scenarios is given in
Table 1. The algorithms that are compared are:

– the proposed algorithm with MSD radix sort inside an enclave
– the proposed algorithm with comparison-based sorting, where all compar-

isons are done memory-oblivious (e.g. using the primitives from [29])
– the plaintext decision tree training algorithm executed inside an enclave

using MSD radix sort
– the plaintext decision tree training algorithm executed inside an enclave with

comparison-based sorting using memory-oblivious comparisons

When using a fully secure enclave, all computation happens inside the enclave
and cannot be eavesdropped or tampered with, so all algorithms are secure.
When we assume memory side channels, radix sort exploits the concrete ORE
leakage and thereby leaks it via the memory access patterns, both in the plaintext
and encrypted variant. The other two algorithms only use the result of pairwise
comparisons and thereby leak at most an ideal-ORE leakage (cf. Section 2.2).
Using comparison-based sorting and memory-oblivious comparisons, memory
access patterns can only leak at most the results of those comparisons. When
the enclave becomes fully transparent, all information stored inside the enclave
is potentially leaked, which are ORE ciphertexts for the first two algorithms and
the plain training data for the last two.

As can be seen, our algorithm provides a more graceful degradation of secu-
rity when the enclave fails to provide its security promise (e.g. due to expected
or unexpected side channels in the implementation), at the cost of higher com-
putational overhead. Therefore, if the trust model of the enclave is uncertain,
combining our approach with secure enclaves allows decision tree training with
less leakage than solely relying on either approach exclusively.

Note that the plaintext algorithm needs to employ similar techniques to the
decision tree evaluation algorithm from [29] to avoid additional leakage. However
as the authors only describe an evaluation but no training algorithm, no direct
comparison can be made with the decision tree algorithm they provide.
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Table 2: Proportion of leaked bits to total bits, for leakage L on n uniformly
random messages of length k bits.

k = 8, n = 8 k = 8, n = 256 k = 8, n = 512 k = 64, n = 1000 k = 64, n = 10000 k = 64, n = 50000

Leaked Bits 39.1% 93.6% 97.7% 16.0% 21.3% 24.9%

5 Analysis of the leakage

Grubbs et al. [15] have shown that in the context of encrypted databases, there
are datasets, such that when encrypting them using ORE schemes, no meaning-
ful security guarantees are left. They have shown that in one of their datasets
containing first and last names, they could recover 98% of all first names and
75% of all last names in a database encrypted using the scheme from [10].

While these results also apply to our scheme and therefore also to our decision
tree training protocol, we want to emphasize that these results are not univer-
sally applicable to all datasets. In their example, the dataset of first names had
relatively low entropy with the most common first name appearing in 5% of all
cases. Jurado, Palamidessi, and Smith [18] have shown for example that attacks
recovering all ORE-encrypted data is possible when the amount of ciphertexts is
large compared to the message space, whereas this is not possible if the amount
of ciphertexts is significantly smaller than the message space.

To give meaningful security guarantees, we analyze the leakage from an
information-theoretic point of view. We consider the uniform distribution of
messages, because for this distribution, each bit of the message space contains
one bit of information. In a first step, we analyze the leakage when both parties
use uniformly random training data. In a second step, we give an upper bound
for the leakage, when an adversary (B in the case of the decision tree training
protocol) selects its training data maliciously. Finally, we argue why considering
only the uniform distribution is sufficient.

5.1 Leakage for Random Message Selection

In the case where both parties use uniformly random messages as inputs, we
can experimentally estimate the information leaked on different datasets. We
consider a bit to be leaked, if the leakage function allows to infer the value of
this bit. In our experiments, we sample n data samples uniformly at random from
the bitstrings of length k and count the number of leaked bits. These results are
available in Table 2. As we can see, the experiments show a significant leakage
when the amount of data samples is large compared to the domain, leaking nearly
all bits if there are more data samples than there are possible messages in the
domain. If the message space is significantly larger than the amount of messages
leaking information, the amount of bits leaked is less than 25% (for messages
chosen uniformly at random). This matches the result of Jurado, Palamidessi,
and Smith [18], namely that for ORE to provide a benefit over comparing the
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messages in plain text, the message space must be much larger than the amount
of messages encrypted under the same key.

This suggests that the leakage from our ORE approach is small enough to
provide some security if the attributes of the training data have sufficiently large
entropy, compared to the amount of training data. An example for attributes
that have naturally high entropy are geopositions with latitude and longitude.

5.2 Additional Leakage for Malicious Message Selection

We also want to give an analytical upper bound of the additionally leaked infor-
mation for independently uniformly distributed training data if one party selects
their inputs maliciously. This is not a classical setting for ORE, but makes sense
in our case, because here, the party receiving the leakage (B in the case of
πDTTrain) contributes data influencing the leakage.

Let L be the leakage function as in Theorem 1. Consider the following ex-
periment with an attacker choosing N = 2k messages:

1. The adversary chooses N messages m∗
i ∈M = {0, 1}n.

2. The experiment chooses a message m←M uniformly at random.

3. The adversary learns L(m,m∗
1, . . . ,m

∗
N ).

Choosing the messages optimally to have the maximum (over the attacker-chosen
m∗

1, . . . ,m
∗
N ) leaked information on average (over m), the adversary receives no

more than (k + 2)bit of information.

Consider the first attacker-chosen message m∗
1. The leakage contains the in-

formation whether the first bit of m is equal to the first bit of m∗
1 (the position

of the most significant different bit is hsb(m ⊕m∗
1) > 1) or if they are unequal

(hsb(m ⊕m∗
1) = 1). Therefore, the attacker learns the first bit of m containing

1bit of information. The same argument also holds for the second bit, but only
if the first bit is the same in m and m∗

1.

Therefore, he obtains the second bit (and therefore one additional bit of
information) with probability 1/2, as m’s first bit was chosen uniformly at ran-
dom. Generalizing this for more bits, he learns the i-th bit of m with probability
1/2i−1. For the expected information, we get the geometric series:

n∑
i=1

1

2i−1
· 1bit ≤ 2bit.

To generalize the maximum leakage to N = 2k attacker-chosen messages, we
consider the information stored in the first k + 1 bits of m and the remaining
bits separately. (Here, we assume k + 1 < n, as otherwise, the attacker would
choose every second message from M = {0, 1}n and learn the content of all
ciphertexts.) The first k + 1 bits of m contain (k + 1)bit of information, so that
is the maximum amount of information an attacker can infer. For the remaining
message bits, the probability of m having the same k + 1-bit prefix as any of



22 Robin Berger, Felix Dörre and Alexander Koch

the m∗
i , and therefore causing a bit to leak, is 1/2k+1. Ignoring possible overlap

between messages gives us an upper bound of

2k · 1

2k+1
· 2bit = 1bit,

where the 2bit is again an upper bound for the geometric series over the expected
leaked information in the remaining bits.

Combining the two leakages, we get (k + 1)bit + 1bit = (k + 2)bit. This
establishes an upper bound for the average leakage.

While we only considered a single message m selected by the experiment,
it can naturally be extended to a setting, where the experiment chooses mul-
tiple messages m1, . . . ,mN ′ and the adversary receives L(m1,m

∗
1, . . . ,m

∗
N ), . . . ,

L(mN ′ ,m∗
1, . . . ,m

∗
N ) instead. (We are only interested in the additional leakage

by the attacker, the leakage L(m1, . . . ,mN ′) is already analyzed in the previous
subsection.) As long as these messages are chosen independently from each other,
the maximum leakage per message mi remains the same. This multi-message sce-
nario captures the leakage B receives about A’s training data in πDTTrain for each
attribute when selecting his messages maliciously.

Note that this analysis extends to the use of multiple uncorrelated attributes,
due to the use of separate ORE keys per attribute. If multiple attributes are
correlated, this correlation can be interpreted as information known in advance
by the adversary. Hence, the upper bound on the average leakage also holds for
the information given what is known to the adversary, due to a union bound.

Overall, for any adversarially selected input data of B in πDTTrain consisting
of N = 2k training data, the expected leaked information consists of (log2(N)+
2)bit per A’s training data per attribute.

5.3 Transformation for Non-uniform Distributions

While the distribution of input data is important because changing the encoding
of messages (and therefore also the distribution over the message space) influ-
ences how much and what information is leaked, we want to emphasize that this
is not a restriction, as any input data distribution can be encoded in such a way
that the resulting distribution is uniform. We now sketch one way to do this.

Let µ be the probability measure of the distribution over the message space
M. Assume there exists a l, such that µ(m) · 2l ∈ N holds for all m ∈ M.3

Then we encode the messages into {0, 1}l as follows: The valid encodings of a
message m are the µ(m) · 2l bitstrings starting from the bitstring of the binary
representation of µ({m′ ∈ M | m′ < m}) · 2l. To encode a message, one of its
valid encodings is used uniformly at random. This encoding preserves the order,
but the resulting distribution is uniform over {0, 1}l.

3 If the assumption does not hold, an approximation of µ with powers of 2−l for some
l results in a distribution, that is computationally indistinguishable from uniform.
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Table 3: Operations per second us-
ing ORE with a 32-bit message
space. Sort refers sorting 1000 ci-
phertexts using Java’s Arrays.sort()
or our own implementation of MSD
radix sort.

Our scheme Scheme from [10]

Encryption 1.6 · 102 7.2 · 104
Update 2.0 · 102 –
Comparison 7.0 · 104 6.9 · 107
Sort 8.0 · 100 3.8 · 105
Radix sort 6.9 · 101 1.0 · 103
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Fig. 6: Full results of the benchmarks
from Table 4 where the datasets of A
and B are of the same size.

6 Implementation and evaluation

We implemented the ORE scheme from [10], our updatable ORE scheme from
Construction 1, as well as our decision tree training protocol from Construction 2
in Java/Kotlin4 and used it to evaluate the practical efficiency of our protocol.
For the group G, we used the Ed25519 curve. We used the PRF from Eq. (1),
implemented the random oracle using SHA-256 and mapped its output to points
on the curve G \ {[0]}. We ran our experiments on a machine with two AMD
EPYC-Rome 7282 processors with 16 Cores/32 Threads and 90GB of RAM.

6.1 Evaluation of the Updatable ORE Scheme

For completeness, we start by comparing our updatable ORE scheme with the
non-updatable scheme from Chenette et al. [10]. The benchmark results can be
seen in Table 3.

For encryption, our scheme is two orders of magnitude slower, because they
only need to evaluate a PRF, while evaluating the key-homomorphic PRF in
our case requires a scalar multiplication in the group. Updating a ciphertext is
roughly as fast as encryption with the running time of both operations being
dominated by the scalar multiplication.

Comparisons using our updatable scheme are three orders of magnitude
slower than with the non-updatable scheme because the non-updatable scheme
requires no cryptographic operations, while we require one group operation per
comparison. This translates over to comparison-based sorting. Radix sort offers
a running time improvement of one order of magnitude, because – in contrast to
comparison-based sorting, where one group operation is required per comparison
per element – only one group operation is required per element in total. Radix
sort does not offer a performance improvement with the non-updatable scheme,
because the running time is not dominated by comparing the elements (or bits
thereof), but by the sorting algorithm itself.

4 https://github.com/kastel-security/ORE-Decision-Tree

https://github.com/kastel-security/ORE-Decision-Tree
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Table 4: Benchmark results of the protocol on the MNIST dataset and modified
versions of the Boston Housing and Titanic datasets, and a custom dataset
comparable to the one used by [16], with and without 50ms of network latency.

Dataset #Attributes
Compute Threads

per party
Dataset Size Computation

time
Network traffic

A B A← B A→ B

MNIST 784

1 100 100 243.9 s 21.7 MB 43.4 MB
16 100 100 22.6 s 21.7 MB 43.4 MB
16 500 500 106.3 s 108.6 MB 217.2 MB
16 500 1000 180.6 s 217.2 MB 325.8 MB
16 1000 500 135.1 s 108.6 MB 325.8 MB
16 1000 1000 213.6 s 217.2 MB 434.3 MB

Boston Housing 7
1 253 253 23.2 s 1.9 MB 3.6 MB
16 253 253 3.7 s 1.9 MB 3.6 MB

Titanic 5
1 357 357 23.8 s 2.1 MB 3.6 MB
16 357 357 5.0 s 2.1 MB 3.6 MB

Custom
7

16 4096 4096 20.1 s 8.8 MB 15.9 MB
Custom (with latency) 16 4096 4096 20.2 s 8.8 MB 15.9 MB

6.2 Evaluation of the Protocol

For our experiments of the training protocol, we used the unmodified MNIST
dataset using all 784 attributes and datapoints of all 10 labels. We also ran
experiments on the Boston Housing and Titanic dataset5, which we modified to
ignore entries with null-attributes, as well as discrete attributes. As required for
decision tree training, we also discretized the labels. This leaves seven attributes
in the Boston Housing dataset and five attributes in the Titanic dataset.

In the MNIST dataset, attribute values are 8 bit unsigned integers. In the
other datasets, we converted all attributes to integers by taking their 32 bit IEEE
754 representation, reinterpreting it as a 32 bit unsigned integer and dropping
the last bit, therefore obtaining an unsigned 31-bit integer, which preserves the
order of all positive floating point numbers, including “+0”. We used the first
nA datapoints as training data for A and the last nB datapoints as training
data for B. We used the training algorithm in Algorithm 1 with the Information
Gain heuristic. As the training algorithm used here is the same as for plaintext
training, the accuracy of the trained model is identical to a model trained on
the same data in plaintext. The results can be seen in Table 4 and Fig. 6.

As we can see, the protocol is viable, both computationally, as well as from
a network traffic perspective. We can also see that the effects of the dataset size
of A are less significant than the effects of the dataset size of B, as B’s data
needs to be processed three times – when encrypting, when updating, when
reverse updating – whereas A’s data only needs to be processed once during
encryption. A similar argument holds for the network traffic. While we did run
the experiments on the same machine, we expect the performance to only differ
insignificantly from our test results when run on separate machines over a LAN
or WAN. This is because we only have three rounds of interaction, so the effects

5 The datasets are available on https://www.kaggle.com/.

https://www.kaggle.com/
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of network latency are insignificant. Additionally, the total network traffic is well
below the limits of a normal internet uplink.

Running time comparison with Hamada et al. [16] To compare our results with
the results of [16], the current state-of-the-art in MPC-based decision tree train-
ing, we generate a dataset consisting of 213 samples with 11 attributes each,
which results in a trained decision tree of depth 42. On this dataset, our pro-
tocol takes 20.1 s. In [16], they have performed a benchmark on a dataset of
the same size and amount of attributes and a tree depth of 40 on a machine
comparable to ours. In this scenario, their protocol takes 43.61 s, which is slower
than our protocol by a factor of ≈ 2.

When adding 50ms of artificial network latency, the running time of their
protocol increases to 4821.56 s, which is caused by the many rounds of inter-
action in their protocol. In contrast to this, when adding the same artificial
network latency to our protocol, the running time does not change noticeably,
still only requiring 20.2 s, because our protocol only consists of three rounds. In
this scenario, our protocol is faster by several orders of magnitude.

Running time comparison with Abspoel, Escudero, and Volgushev [2] In [2], the
authors did not measure the running time of the entire decision tree training
algorithm, but only extrapolated its runtime based on benchmarks of its basic
operations. To compare the runtime performance of their approach with ours,
we use their extrapolation formula for their runtime to a setting, for which we
have have benchmark results with our approach. They use

T (N,m,∆) ≈ m · (S(N) + (2∆ − 1)I(N) + 2∆L(N))

to estimate their runtime, where N,m and ∆ are the number of training data,
the amount of attributes and the maximum depth of the decision tree and
S(N), I(N) and L(N) are the time for sorting, and computing an inner or leaf
node on N training data points.

We use this formula to estimate the runtime of their approach to the titanic
dataset, where N = 357,m = 5 and the depth of the resulting decision tree is
∆ = 25. Using the optimistic values S(256) = 0.392 s, I(256) = 0.127 s and
L(256) = 0.004 s, we obtain a runtime estimate of ≈ 2.2 · 107 s in the passively
secure setting. This is several orders of magnitude slower than with our approach,
which is mostly caused by their training algorithm having exponential runtime
in the tree depth.

Limiting the depth of the decision tree to ∆ = 10 only affects the runtime of
our approach insignificantly, as the majority of the runtime comes from encrypt-
ing and updating the training data. Their approach, however, is significantly
sped up by this change, estimated to only have a runtime of ≈ 672 s, which is
still significantly slower than our approach.

Applicability comparison with [16, 2] While our protocol solely relies on Order-
Revealing Encryption, both of the protocols from [16, 2] are built on top of
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generic MPC primitives. Therefore, future advances in (u)ORE or general pur-
pose MPC respectively, will lead to performance improvements of these proto-
cols.

Due to the asymmetric nature of our protocol, it is fixed for the two-party
setting with one passive corruption. In addition to this setting, Hamada et al. [16]
and Abspoel, Escudero, and Volgushev [2] state that their protocols can fulfill
different trust models, such as two-out-of-three corruptions, if the underlying
protocol for these MPC primitives is chosen accordingly, however this may cause
additional computational/network overhead.

While their protocol can only be applied to the training algorithms they con-
sider, our protocol can generically use any decision tree training algorithm that
adheres to the limitations of being deterministic and only requiring comparisons
on the training data. Indeed this is even covered by our security proof.

7 Conclusion

We have constructed an Updatable Order-Revealing Encryption scheme, which
allows to update ciphertexts from one key to another using a key-homomorphic
PRF. This construction is secure under the same leakage function as established
ORE schemes, leaking the order of the encrypted messages, as well as the position
of the most significant bit in which they differ.

Using such an Updatable ORE scheme, we have constructed a passively se-
cure protocol that allows for securely training a decision tree on two parties’
inputs without revealing the inputs to the other party. This protocol can either
be used by itself or can be used as a building block to train a decision forest.

We have experimentally verified this decision tree protocol and are able to
compute a decision tree on the Titanic dataset, equally partitioned between
both parties, within 5.0 seconds. The experiments have also shown that this
approach is faster than the current state-of-the-art approaches [2, 16] and orders
of magnitude faster when considering network latency or training high-depth
decision trees. However, this speedup comes at the cost of some information
leakage.

Analyzing the leakage of the ORE scheme, we have found that while it is
significant, it is also hides a large proportion of the training data. This provides
us with an interesting trade-off between security and efficiency: We leak more
information but are faster than relying entirely on MPC to train a decision tree,
but we are more secure, but less efficient than performing training in plain-
text. We have also found that the proportional information leaked is larger on
low-entropy attributes than on high entropy attributes. Whether this leakage is
acceptable needs to be decided for each usecase individually. To further reduce
the leakage, we show how this approach can also be used in a secure enclave,
reducing the leakage even more in a graceful degradation manner, even in the
presence of low-entropy attributes.

This leaves us with a special-purpose protocol for decision tree learning that
is more performant than generic solutions in a scenario that fits its limitations:
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– The protocol has some information leakage and can only be used in a sce-
nario, in which this is acceptable.

– The concrete algorithm for training needs to fulfill some constraints:
• The training algorithm needs to be deterministic.
• The split heuristic needs to be evaluated based on comparisons only.
• As described the protocol allows training between exactly two parties.
• For training forests: The partitioning of each party’s data needs to be
independent of the data of the other party.

– The protocol requires more computation compared to the number of com-
munication rounds, so its strength shows better in a higher-latency setting.
While some leakage is inherent with this approach, this also leads us to two

interesting open questions:
– How to construct an Updatable ORE scheme with a smaller leakage or in

the left-right framework of [23]?
– How to devise an efficient actively-secure protocol based on Updatable ORE

schemes?
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Appendix

A A brief introduction to the UC framework

In the following, we give a brief introduction to into the Universal Composability
framework by Canetti [7], tailored to our usecase. As the framework is quite
complex, we omit any details that are not relevant for our work.

The UC model extends the notion of the real-ideal paradigm, where the
security of a protocol is defined through some ideal functionality, that captures
the computation to be done and is secure by definition.

All parties are modeled as an interactive PPT machines. In addition to parties
existing in the protocol, UC execution is defined with two additional entities,
namely the environment and the adversary, which are modeled in the same way.

The adversary can corrupt any subset of parties. Considering passive security,
the adversary can see the view of parties it corrupts (including all internal state,
randomness, incoming and outgoing messages), but it cannot make corrupted
parties deviate from the protocol. If it accesses variables from the internal state
of a corrupted party, we say it extracts this information.

The environment selects inputs for honest parties and receives their outputs.
Additionally, it can freely interact with the adversary, sending and receiving
arbitrary messages.

To prove the security of a protocol, UC uses the notion of protocol emulation.
We say a protocol π in the real world securely realizes an ideal functionality F
in the ideal world, if for all adversaries A, there exists a simulator S, such that
no environment can distinguish between an interaction with π and A in the real
world and an interaction with F and S in the ideal world. This can be done
by constructing a simulator for each A, which internally runs A and translates
ideal messages from/to the ideal functionality and protocol messages from/to
corrupted parties. Additionally, it is sufficient to only consider the dummy ad-
versary, that sends all protocol messages it receives to the environment and sends
any messages it receives from the environment as protocol messages. In the real
world, the honest parties execute the protocol and the environment can interact
with them using the real adversary. In the ideal world, the input of honest parties
is directly sent to the ideal functionality and the output of the ideal functionality
to the honest parties is directly outputted by them.

If a protocol π is proven to realize an ideal functionality F , all security
properties from F carry over to π, as this could otherwise be used to distinguish
the real and ideal execution.

In UC, the universal composition theorem says that if a protocol is proven
to realize an ideal functionality, it remains secure under universal composition.
Therefore, it can for example be run in parallel, concurrently or as a subprotocol

https://doi.org/10.1145/1409620.1409624
https://doi.org/10.1145/1409620.1409624
https://doi.org/10.1145/1409620.1409624
https://doi.org/10.1145/1409620.1409624
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to other protocols without becoming insecure. If a protocol π′ realizes a func-
tionality F ′ using F as a building block, we say π′ realizes F ′ in the F-hybrid
model. Due to the universal composition theorem, π′ still realizes F ′, even after
F is instantiated with a protocol that securely realizes F .
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