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Abstract

The reliable and secure operation of energy systems is a major cornerstone of modern
societies. However, in light of the present strive for a sustainable and climate-neutral
energy supply, existing schemes of operating energy systems reach their limits. New
operation strategies are required which account for the increasing number of distrib-
uted components and more flexible system configurations arising from volatile gen-
eration/demand situations and the growing networking between energy systems of
different physical domains into networked multi-energy systems.

This thesis presents a new paradigm for the future operation of networked energy
systems by providing a passivity-based framework for the decentralized stabilization
of voltages, currents, frequencies, pressures, and volume flow rates. The basis of the
framework is a unifying system description of various energy systems (DC power
systems, AC power systems, district heating networks, and networked multi-energy
systems) which combines a graph-based, networked system representation with the
domain-unifying modeling approach of port-Hamiltonian systems. The key element
and innovation are analytical, equilibrium independent passivity-based conditions that
allow to infer asymptotic stability of any feasible networked system equilibrium in a
modular manner. Moreover, the conditions are independent of specific technologies,
control strategies, and physical domains and thus ensure interoperability between units
within and across various networked energy systems. Based on these conditions, de-
centralized controllers for various energy system actuators (converters, pumps, valves)
are developed to asymptotically stabilize desired voltage, current, frequency, pressure,
and volume flow rate setpoints. Several case studies validate the theoretical findings
and illustrate their advantages. Due to the unifying, decentralized character of the
stabilization conditions, the presented framework allows for topology-independent,
flexible system configurations in a plug-and-play fashion. In addition, the validity of
the stabilization conditions is not limited to the models and controllers proposed in this
work. They readily extend to other control solutions, technologies, or altogether new
components. This unifying perspective, in particular, paves the way towards realiz-
ing holistic system and control solutions for the operation of networked multi-energy
systems.





Kurzfassung

Die zuverlässige und sichere Betriebsführung von Energiesystemen ist ein unverzicht-
barer Eckpfeiler moderner Gesellschaften. Im Zuge der aktuellen Bestrebungen nach
einer nachhaltigen und klimaneutralen Energieversorgung stoßen bestehende Betrieb-
skonzepte jedoch an ihre Grenzen. Insbesondere die steigende Zahl an verteilten
Komponenten und flexiblere Systemkonfigurationen, die aus volatilen Erzeugungs-
/Verbrauchssituationen sowie aus der zunehmenden Vernetzung von verschiedenen
Energiesystemdomänen zu vernetzten Multi-Energiesystemen resultieren, machen neue
Betriebsstrategien erforderlich.

Die vorliegende Dissertation präsentiert ein neues Paradigma für den zukünftigen
Betrieb vernetzter Energiesysteme basierend auf einem passivitätsbasierten Framework
für die dezentrale Stabilisierung von Spannungen, Strömen, Frequenzen, Drücken und
Volumenströmen. Grundlage des Frameworks bildet eine vereinheitlichende Systembes-
chreibung verschiedener Energiesysteme (DC Stromnetze, AC Stromnetze, Fernwärmen-
etze, vernetzte Multi-Energiesysteme), welche Graphentheorie mit dem generalisierten
Modellierungsansatz der port-Hamiltonschen Systeme kombiniert. Die zentrale In-
novation und Kernstücke des Frameworks sind analytische, ruhelagenunabhängige
Passivitätsbedingungen, welche es erlauben auf modulare Weise Aussagen über die
asymptotische Stabilität jeder möglichen Ruhelage eines vernetzten Systems zu machen.
Zudem sind die Bedingungen nicht gebunden an Technologien, Regelstrategien oder
physikalische Domänen und gewährleisten somit die Interoperabilität zwischen Be-
triebsmitteln innerhalb verschiedener Energiesystem sowie über Domänengrenzen
hinweg. Ausgehend von den Passivitätsbedingungen werden dezentrale Regler für
verschiedene Aktuatoren (Umrichter, Pumpen, Ventile) entwickelt, um gewünschte
Spannungs-, Strom-, Frequenz-, Druck- und Volumenstrom-Sollwerte asymptotisch zu
stabilisieren. Mehrerer Fallstudien validieren die theoretischen Ergebnisse und veran-
schaulichen deren Vorteile. Aufgrund des vereinheitlichenden, dezentralen Charakters
der passivitätsbasierten Stabilitätsbedingungen ermöglicht das vorgestellte Framework
topologieunabhängige, flexible Systemkonfiguration im plug-and-play Stil. Darüber
hinaus ist die Gültigkeit der Stabilitätsbedingungen nicht auf die in dieser Arbeit
vorgeschlagenen Modelle und Regler beschränkt. Ein Übertrag auf andere Regelung-
skonzepte, Technologien oder gänzlich neue Komponenten ist problemlos möglich.
Diese vereinheitlichende Perspektive bereitet den Weg zur Realisierung ganzheitlicher
System- und Steuerungslösungen für den Betrieb vernetzter Multi-Energiesysteme.
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1 Introduction

The reliable and secure operation of energy systems is a major cornerstone of modern
societies. Over the last decade, policy makers and governments around the globe
have set out agendas for a transition towards a sustainable and climate neutral energy
supply (see for example He et al. [2020], International Energy Agency [2020], Council
and Parliament of the European Union [2021], Parliament of Canada [2021], Deutscher
Bundestag [2022], and United States Congress [2022]). This transition is resulting in
unprecedented changes in the energy systems and poses fundamental challenges to
their operation. Particularly the pervasive integration of distributed renewable energy
sources (RESs) into electrical power systems and district heating networks (DHNs) is
significantly changing the network structures, system behavior, and system dynamics
[Lund et al., 2018; Dörfler and Groß, 2023].

In order to ensure a cost-efficient integration of RESs and the best possible system
utilization while retaining a reliable and secure energy supply, it has been widely
acknowledged that a higher degree of automation is required with novel operation
strategies [Lund et al., 2014; Dörfler et al., 2019; O’Malley et al., 2020; Novitsky et al.,
2020; Osiadacz and Chaczykowski, 2020]. In principle, such operation strategies can
be broken down into two main tasks: Firstly, the fundamental system variables, i.e.,
voltages, currents, frequency, pressures, and volume flow rates need to be stabilized. This
stabilization forms the grid over which some flows of energy can then be established.1

Secondly, generation, transmission, and consumption of energy have to be coordinated
such that the desired amount of energy is provided in the right place at the right time
within the operational constraints and in an economically efficient manner.2

Traditionally, both tasks are organized hierarchically with the stabilization at the lowest
control layer serving as the necessary precondition for a subsequent coordination at
higher control layers [Gómez-Expósito et al., 2018, p. 380ff.]; [Novitsky et al., 2020;
Zhang et al., 2021]; [Kölsch, 2022, Section 2.3]. However, in light of the ongoing en-
ergy transition, practical evidence indicates that established stabilization schemes and
guarantees become void.

Most notably, this circumstance can be seen in power systems where large, centralized
generation plants comprising synchronous machines, considerable rotating masses,
and predictable power generation are being replaced by smaller, converter-interfaced,

1 Formal definitions for decentralized stabilization in electrical power systems, DHNs, and NMESs will be
provided in Sections 2.1, 2.2, 2.3, and 7.2.

2 See Gómez-Expósito et al. [2018, p. 374ff.], Novitsky et al. [2020], and Nussbaumer et al. [2020, p. 44ff] for
more information on energy system operation strategies.
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distributed generation units (DGUs) without rotating masses and intermittent power
generation. As a consequence, power systems are becoming more distributed with
higher numbers of interacting units and are exhibiting increasingly time-varying net-
work topologies. Furthermore, the resulting reduction of rotating masses leads to a
reduction of their naturally stabilizing effects on power systems and an increased sens-
itivity to contingencies [Milano et al., 2018; Dörfler et al., 2019]. On the other hand,
compared to synchronous machines, converters are freely configurable actuators with
fast dynamics that allow for a wide range of new operation strategies [Milano et al.,
2018; Dörfler et al., 2019]. However, if not carefully designed and controlled, converters
can exhibit undesired interactions that destabilize power systems (see the discussions
in Milano et al. [2018], Farrokhabadi et al. [2020], Hatziargyriou et al. [2021], and Liu
et al. [2022]). The consequences of these developments towards converter-based power
systems are, for example, reflected in the increasing costs for grid and system security
measures, which include grid stabilizing measures. Over the last decade, they have
risen in Germany from around 0.5 billion euro in 2013 to around 4.25 billion euro in
2022 [Bundesverband der Energie- und Wasserwirtschaft, 2023].

From a systems and control perspective, the above developments and challenges point
out two main requirements for future power system stabilization:

• The large number of interacting units along with the intermittent nature of RESs
call for novel power system stabilization methods that are scalable and allow for
flexible system configurations. In other words, it should be possible to easily
add or remove subsystems without adapting other controllers, without requiring
communication, and without endangering stability—a feature which is commonly
referred to in the power system literature as plug-and-play capability [Lasseter,
2001; Riverso et al., 2015; Tucci and Ferrari-Trecate, 2020]. From a control en-
gineering perspective, such plug-and-play capabilities are inherently provided
by decentralized controllers relying only on local information (see Lunze [1992,
Figure 1] and Meng et al. [2017, Figure 2]).3

• In addition to increasing numbers of units, the variety of technologies and control
strategies that are deployed in power systems is increasing as well. Together with
more flexible system configurations, this creates the need to develop not only
scalable, decentralized stabilization methods, but in fact aim for a general frame-
work with analytical conditions that ensures decentralized stabilization in power
systems across different technologies and control strategies, i.e., interoperability
(see also the recent review by Dörfler and Groß [2023]).

Interestingly, similar development trends, challenges, and stabilization requirements
can be identified for DHNs. As central element of the sustainable energy transition,

3 Historically, plug-and-play capability with setpoint offsets has already been provided at power system
transmission level by local, i.e., decentralized, control of synchronous machines (droop control). However,
it appears that simply transferring established schemes to converter-interfaced units at distribution level
does not preserve the plug-and-play feature (see Sections 2.1.1 and 2.2.1 for a detailed discussion).
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DHNs are also undergoing a large-scale integration of distributed RESs such as heat
pumps, combined heat and power, waste/biomass-to-energy, solar, and geothermal heat
plants [Lund et al., 2014; Vandermeulen et al., 2018]. Additionally, DHNs increasingly
feature intermittent in-feed of excess energy from wind and solar power plants, which
cannot be accommodated by the power system. Consequently, similar to power systems,
DHNs are starting to exhibit more distributed, flexible system configurations with large
numbers of interacting units and an intermittent heat supply. Furthermore, renewable
heat sources interface to DHNs via a variety of hydraulic interfaces that comprise freely
configurable actuators with fast dynamics, viz. pumps and control valves. Similar to
converters, pumps and control valves, if not carefully designed and controlled, can
exhibit undesired, destabilizing interactions leading for example to pronounced pressure
oscillations [Stræde, 1995; Boysen and Thorsen, 2003; Wang et al., 2017a; Sommer
et al., 2019]. Recently, it has also been shown by Lennermo et al. [2014, 2019] that
apparent malfunctions of higher-level controllers, which coordinate the thermal power
in-feed of distributed heat generation units (DGUs), can in fact be traced back to
insufficient hydraulic stabilization, i.e., oscillating network pressures and an insufficient
pump control. Thus, following the above argumentation for power systems, there is a
similar need to develop a decentralized stabilization framework for DHNs that ensures
interoperability across different hydraulic technologies and control strategies by means
of analytical design conditions.

In addition to these domain-specific perspectives and needs, there is a broad consensus
emerging across different professional disciplines and social groups that aiming for
a further networking between energy systems towards integrated, networked multi-
energy systems (NMESs) is desirable as it offers technical, economical, strategical,
and societal advantages (see for example Geidl [2007], Federal Ministry for Economic
Affairs and Energy [2018], O’Malley et al. [2020], Chicco et al. [2020], and The European
Commission [2020]).4 From systems theory, it is well-known that such an additional
networking in general complicates the stabilization problem and thus requires a detailed
analysis. In fact, it has been shown by Schäfer et al. [2022] based on the works of
Braess et al. [2005] that the widespread assumption of network expansion serving as
a universal tool for the energy transition is inherently flawed. Counter-intuitively,
network expansion may even reduce system performance.

Thus, besides the need for decentralized, cross-technology stabilization frameworks in
individual energy system such as power systems and DHNs, it is desirable to explore
the possibilities of decentralized stabilization frameworks that provide interoperability
also across different energy system domains.

4 Among other things, these advantages comprise robustness and social acceptance due the efficient reuse of
existing infrastructure, a more resilient and secure overall energy supply, an overall operational optimization
potential at regional/urban level, cost efficiency, the reduction of external dependencies, the strengthening
of the competitiveness of national economies as technology leaders, and new market designs with greater
consumer empowerment.



4 1 Introduction

1.1 Research Objective and Contributions

The main objective of this thesis is to develop cross-technology frameworks for the
decentralized stabilization in various networked energy systems.

Apart from decentralized stabilization solutions for power systems, which have been
extensively studied in the literature, the problem of decentralized stabilization in DHNs
and NMESs as well as unifying, technology-independent stabilization concepts for
power systems, DHNs, and NMESs have scarcely been considered. In particular,
there exist no decentralized stabilization frameworks that provide analytical, decentral-
ized design conditions ensuring interoperability of different technologies and control
strategies within individual energy systems (power systems, DHNs) and across domain
borders (NMESs). Motivated by the above-outlined leading role of power systems and
DHNs in the sustainable energy transition, the main developments of the thesis will
concentrate on electrical DC and AC power systems with converter-interfaced DGUs
as well as DHNs. Additionally, first results will be provided on how the findings from
electrical power systems and DHNs can be transferred to NMESs.

In a broad sense, the thesis at hand makes the following contributions:

1. Generalized, domain-unifying modeling of networked energy systems:
The development of comprehensive system models for DC power systems, AC
power systems, and DHNs. In particular, the models are presented in a generalized
form which combines a graph-based, networked system representation with the
domain-unifying modeling approach of port-Hamiltonian systems (PHSs). This
allows to highlight similarities between the different energy systems and paves
the way for a generalized system-theoretical treatment and analysis of NMESs.
The results of this thesis are the first to adopt such a generalized perspective in an
energy system context and project the generalized effort-flow modeling paradigm
onto various networked energy systems.

2. Decentralized, technology- and domain-independent stability conditions:
The development of a decentralized, passivity-based asymptotic stability theorem
for general networked system equilibria. In contrast to the results that straight-
forwardly can be deduced from the literature and whose application to practical
problems is severely limited by their strict passivity requirements, the developed
theorem allows for relaxed passivity properties (see Chapter 3 for more details).
The application of this theorem to DC power systems, AC power systems, DHNs,
and NMESs provides decentralized asymptotic stability conditions. Due to their
generalized nature, these conditions ensure—independent of specific technologies,
control strategies, or physical domains—asymptotic stability of the fundamental
system variables (voltages, currents, frequency, pressures, volume flow rates).

3. Parameter specifications and decentralized component controllers:
The development of parameter specifications and decentralized converter, pump,
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and valve controllers that ensure the established, decentralized asymptotic sta-
bility conditions are met and setpoints with desired voltage, current, frequency,
pressure, and volume flow rate values are asymptotically stabilized.

1.2 Outline and Notation

In order to ensure clarity and readability, the outline and notation of the remainder of
this thesis are provided in the following.

Outline

Chapter 2 reviews the state of the art as well as emerging trends and challenges re-
garding the stability and stabilization of AC power systems, DC power system, and
DHNs. A special focus is set on works that promote cross-technology, decentralized
stabilization concepts. At the end of each section, a discussion of the main insights
from the literature review reveals existing gaps and leads to corresponding research
questions that are to be addressed in the remainder of this thesis.

Chapter 3 lays the methodological foundation for the passivity-based, decentralized
stabilization frameworks put forth in this thesis. Firstly, to allow for a clear, concise
presentation of the technical contents and provide the basis for a unifying system descrip-
tion of power systems, DHNs, and NMESs, the notion of an autonomous, networked
system is introduced. Subsequently, based on equilibrium-independent passivity (EIP),
a general theorem is developed which provides decentralized, sufficient conditions for
the asymptotic stability of any feasible equilibrium of such an autonomous, networked
system. Finally, the main class of models that is used throughout this thesis, viz. explicit
state-space models in input-state-output PHS (ISO-PHS) form, is introduced and its
EIP properties are analyzed. Due to their port-based perspective and inherent passivity
properties, such PHS models provide a natural starting point for an EIP-based con-
trol synthesis and stability analysis of autonomous, networked systems. Additionally,
they allow for a generalized, domain-unifying modeling of various networked energy
systems.

The specific contributions for the respective energy systems together with validating
simulations are elaborated in Chapter 4 (DC power systems), Chapter 5 (AC power
systems), and Chapter 6 (DHNs). In each case, a generalized, graph-based model of the
energy system in question is presented. Subsequently, decentralized, asymptotic stabil-
ity conditions are derived by application of the main theorem established in Chapter 3.
Finally, parameter specifications for the unactuated subsystems are established and
appropriate controller designs for the actuated subsystems are performed to ensure that
the previously derived decentralized stability conditions are met.



6 1 Introduction

Chapter 7 combines the insights from the individual energy systems to lay the founda-
tion for a unifying, technology- and domain-independent, decentralized stabilization
framework for integrated NMESs. Definitions for the terms stability of and decentral-
ized stabilization in NMESs are provided together with decentralized conditions for the
asymptotic stability of any feasible NMES equilibrium. This paves the way for the
future design of decentralized stabilization solutions in NMESs.

Finally, Chapter 8 closes the thesis with a conclusive statement on the presented contri-
butions and possible next steps.

Chapter 1

Introduction

Chapter 2

State of Research and Research Questions

Chapter 3

Methodological Approach

Chapter 4

Passivity-Based
Decentralized Stabilization

in DC Power Systems

Chapter 5

Passivity-Based
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Chapter 6
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Decentralized Stabilization

in District Heating Networks

Chapter 7

Towards a Unifying Framework for Decentralized
Stabilization in Networked Multi-Energy Systems

Chapter 8

Conclusion

Figure 1.1: Outline of this thesis
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Notation

The sets of natural and real numbers are denoted by N and R, respectively. The sets of
positive and strictly positive real numbers are denoted by R≥0 and R>0, respectively.
All other sets and spaces are written either in blackboard bold or calligraphic font. The
cardinality of a set V is denoted by |V|. Set subtraction is denoted by “\”, e.g., R\{0} is
the set of real numbers without zero.

Vectors and matrices are written in bold font lowercase and uppercase letters, respect-
ively. Let x ∈ Rn be an n-dimensional (column) vector and A ∈ Rn×m be a matrix
with n rows and m columns. 0n and 1n are n-dimensional vectors of zeros and ones,
respectively. Accordingly, 0n×m is an n×m matrix of zero entries and In the identity
matrix of order n. The transpose of any vector or matrix is denoted by (·)⊤. The inverse
of a matrix A, if it exists, is denoted by A−1. A ≻ 0 denotes a positive definite and
A ≽ 0 a positive semidefinite matrix. Conversely, A ≺ 0 and A ⪯ 0 denote a negative
definite and negative semidefinite matrix, respectively. Given x ∈ Rn, diag(x) ∈ Rn×n
denotes a diagonal matrix with the elements of x on the diagonal. The Kronecker
product between two matrices A and C is denoted by A⊗C. The Euclidean norm of a
vector x is given by ∥x∥, whereas ∥x∥Q denotes the Euclidean norm of x weighted by a
symmetric, positive definite matrix Q, i.e., ∥x∥Q = x⊤Qx. The stacking (concatenation)
of some vectors xi for all i ∈ V is denoted by xV = stack(xi)i∈V .

The notation x̄ or x̄ denotes any variable x or vector x in steady state, whereas x∗ or
x∗ denotes a desired setpoint or vector of setpoints that is to be established in steady
state.

A finite digraph is denoted by G = (V, E) with nodes (vertices) V and edges E ⊂ V × V .
All digraphs in this work are assumed to be without self loop, i.e., for i ∈ V it holds that
(i, i) ̸∈ E . The incidence matrix B ∈ R|V|×|E| of graph G is defined by

bil =


+1 if node i is the target of edge l,
−1 if node i is the source of edge l,
0 otherwise.

(1.1)

To provide a clear and intuitive presentation throughout Chapters 4 to 6, the domain-
specific variables, i.e., voltages, currents, pressures, and volume flow rates, are used
instead of generalized effort and flow variables. However, one can straightforwardly
replace the domain variables with their generalized counterparts (see Table A.1) to
obtain generalized models, e.g., for composing a generalized NMES model.





2 State of Research and Research Questions

This chapter identifies the research gaps regarding decentralized, cross-technology
stabilization frameworks in AC power systems, DC power systems, and DHNs that are
to be addressed in this thesis.

The chapter starts with AC power systems in Section 2.1, since they are the only energy
systems with a standardized stability definition and standardized control structures.
Initially, a short overview of the state of the art as well as emerging trends and challenges
regarding the stability and stabilization of AC power systems is provided. To provide
clarity for the literature review and the following chapters, a definition for decentralized
stabilization in AC power systems is established. Subsequently, the state of research
regarding decentralized stabilization in AC power systems is reviewed. In line with
the overall research objective in Section 1.1, a special focus is set on works that promote
unifying stabilization concepts across different technologies. At the end of the section,
a concluding discussion identifies the existing research gaps and formulates research
questions that are to be addressed in order to establish a decentralized, cross-technology
stabilization framework in AC power systems.

DC power systems and DHNs are treated in Sections 2.2 and 2.3 along the same struc-
ture as in Section 2.1, i.e., an overview of the state of the art regarding stability and
stabilization leads to a decentralized stabilization definition, which is followed by a
literature review whose discussion leads to research questions.

Section 2.4 concludes the chapter with an overall summary. This summary leads
to the formulation of another research question regarding the decentralized, cross-
technology stabilization in NMESs.1 Additionally, it motivates the passivity-based
approach pursued in the following chapters.

Lastly, note that the state of research regarding decentralized stabilization in power
systems and DHNs has evolved significantly during the course of this thesis. In order to
provide a clear perspective on the initial state of research, the reviews in Sections 2.1–2.3
only discuss works that have been published prior to the results obtained in this thesis.
Works published in parallel and featuring passivity-based approaches to the decentral-
ized stabilization in power systems and DHNs are briefly summarized in an addendum
remark along with the publications related to this thesis. A comprehensive discussion
of these works is presented at the end of the respective chapters in Sections 4.5, 5.5, and
6.5.

1 A brief overview of the few works that contribute towards a system-theoretical treatment of stability and
stabilization in NMESs is provided in Section 7.2.
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2.1 Decentralized Stabilization in AC Power Systems

AC power systems are the only energy systems with a standardized stability definition
and standardized control structures. The accepted definition of the power system
community can be found in Kundur et al. [2004] or Hatziargyriou et al. [2021] and reads
as follows:

Definition 2.1 (AC power system stability)
Power system stability is the ability of an electric (AC) power system, for a given initial
operating condition, to regain a state of operating equilibrium after being subjected to
a physical disturbance, with most system variables bounded so that practically the
entire system remains intact.

An alternative definition in the context of AC microgrids is given in Farrokhabadi et al.
[2020]:

Definition 2.2 (AC microgrid stability)
Consider an (AC) microgrid which is operating in equilibrium, with state variables
taking on appropriate steady-state values satisfying operational constraints, such
as acceptable ranges of currents, voltages, and frequency (. . . ). Such a microgrid is
stable if, after being subjected to a disturbance, all state variables recover to (possibly
new) steady-state values which satisfy operational constraints (. . . ), and without the
occurrence of involuntary load shedding.

From a systems and control perspective, the two stability definitions above comprise
several control requirements that can be categorized into two main tasks:

• Firstly, desired network equilibria comprising the system variables (currents,
voltages, frequency) have to be asymptotically stabilized.

• Secondly, feasibility of such network equilibria within the operational constraints
has to be ensured by appropriate coordination of generation, transportation, and
consumption.

In state-of-the-art AC power systems, these two tasks are addressed by hierarchical fre-
quency and voltage control structures (see, e.g., Gómez-Expósito et al. [2018, pp. 373ff.],
Farrokhabadi et al. [2020], and Liu et al. [2022] ).

The goal of frequency control is to keep the frequency at a nominal value (50Hz or 60Hz)
by balancing the generated and consumed active power. At the primary frequency
control layer, decentralized proportional controllers called droop controllers establish a
linear relation between the active power injection and the frequency deviation, called
droop slopes. These droop slopes are scaled according to the contribution of each
generation unit to the overall active power generation. This establishes so-called power
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sharing and ensures that imbalances are picked up by the different generation units
according to their nominal power ratings. However, primary frequency control only
attenuates the disturbance and stabilizes the frequency at a new equilibrium with steady-
state offset from the nominal value. Thus, a secondary frequency control is required to
asymptotically reject the disturbance and regulate the frequency to the desired nominal
value. It is implemented as a centralized, distributed, or semi-decentralized integral
control over a region or control area, respectively. In order to regain the active power
balance before the disturbance and possibly provide new setpoints for the secondary
frequency control, tertiary frequency control is employed. It is implemented as cent-
ralized feedforward solving an optimization problem minimizing some cost function
such as economic dispatch or social welfare and satisfying operational constraints (see
Milano et al. [2018], Dörfler et al. [2019], Liu et al. [2022], and Gómez-Expósito et al.
[2018, p. 382ff] for further details).2

The goal of voltage control is to keep the voltage magnitudes at each node of an AC
power system within permissible limits around a nominal voltage by balancing the
generated and consumed reactive power. Decentralized primary voltage controllers
regulate the voltage magnitudes at some nodes to desired reference values by adjusting
the excitation system of synchronous machines (so-called automatic voltage regulation),
by passive components such as shunt capacitor or inductor banks, or by active flexible
AC transmission systems (FACTSs). The secondary voltage controllers then coordinate
the decentralized primary voltage controllers in a geographical region by adjusting their
setpoints such that the voltage at a chosen pilot node reaches a desired reference value.
The tertiary voltage controllers, in turn, centrally coordinate the reference values for the
different regional pilot nodes within a larger geographical area such that some optimiz-
ation criterion, e.g., minimal transmission losses, is fulfilled (see [Gómez-Expósito et al.,
2018, p. 405ff] and [Liu et al., 2022, p. 701] for further details).

In the context of converter-based AC power systems considered in this thesis (see
Section 1.1), frequency and voltage control must increasingly be shouldered by many
smaller converter-interfaced DGUs via appropriate control of their converters [Guerrero
et al., 2013; Olivares et al., 2014; Farrokhabadi et al., 2020]. As these converters effectively
form the grid by controlling their output to desired frequency and voltage setpoints,
they are referred to as operating in grid-forming mode. Conversely, converters that only
inject specified currents at network nodes are referred to as operating in grid-feeding
mode [Rocabert et al., 2012].3

In the state-of-the-art hierarchical control structures, the asymptotic stabilization and
coordination task are divided over different layers. In particular, decentralized droop
control at primary level does not ensure the asymptotic stability of the desired network
equilibrium. Instead, droop control only attenuates disturbances and accepts steady-
state offsets at the benefit of achieving power sharing. However, a direct transfer of

2 A good illustration over the different timescales and tasks is provided in Milano et al. [2018, Figure 1].
3 Note that injecting a specified current at network nodes with a given voltage and frequency is equivalent to

injecting a specified active and reactive power.
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droop control into a converter-based setting does neither provide asymptotic stability of
the desired network equilibrium, nor power sharing. Additionally, analytical asymptotic
stability statements only exist for simplified AC power system models (see Section 2.1.1
below for a detailed discussion). Furthermore, converters and their controls have very
different characteristics when compared to synchronous machines. From a practical
perspective, it is thus inefficient and practically problematic to force converters into
control structures designed for synchronous machines (see, e.g., the discussions in
Olivares et al. [2014], Milano et al. [2018], and Dörfler et al. [2019]).

This thesis therefore proposes to take on a new perspective on stability, stabilization,
and coordination of AC power systems closer to systems and control theory. The
leading idea is to clearly divide the tasks to achieve AC power system stability into their
respective control requirements. At the lowest control layer, decentralized stabilization
ensures asymptotic stability of the desired network equilibrium comprising the system
variables (frequency, voltages, currents) via decentralized controllers. The decentralized
realization provides plug-and-play capability and avoids the need for communication
or global model knowledge.4 This allows for very fast responses and avoids single point
of failures, which is favorable in terms of reliability. It also simplifies the control design
by decomposing the complex problem of stabilization into more manageable control
problems, viz. designing decentralized component controllers. Appropriate tuning
of the decentralized controllers via analytical or heuristic design procedures ensures
a suitable transient behavior within the permissible frequency, voltage, and current
limits. The frequency, voltage, and current setpoints for the decentralized controllers
are provided by a higher level control. In order to generate the setpoints and ensure that
they constitute a feasible network equilibrium within the operational constraints, the
higher level control solves a feasibility problem by appropriately coordinating generation,
transportation, and demand.5

For clarity and further reference, decentralized stabilization in AC power systems is
defined as follows:

Definition 2.3 (Decentralized stabilization in AC power systems)
Decentralized stabilization in AC power systems refers to the basic control task
conducted by decentralized controllers at the lowest control layer of a hierarchical
stabilization-coordination control structure for AC power systems. It ensures that such
AC power system equilibria are asymptotically stabilized that the system frequency as
well as voltages and currents of actuated subsystems are at desired setpoints.

4 Note that there is communication with the higher control layer that possibly receives model parameters and
measurement values and provides setpoints for the decentralized controllers. However, this communication
is not part of the control loop of the decentralized controllers (see, e.g., Meng et al. [2017, Figure 2(d)]).

5 For the higher level control, established schemes from secondary frequency and voltage control such
as centralized integral control can be employed as well as novel, distributed approaches, e.g., based on
multi-agent systems and consensus algorithms (see Dörfler et al. [2019] for an overview).
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Remark 2.1. Note that Definition 2.3 covers not only the asymptotic stabilization of the system
frequency and voltages, i.e., grid forming, but also current injections, i.e., grid feeding. Current
control is considered explicitly here, as while it does not actively contribute to forming a grid, it
nevertheless has to be conducted without introducing adverse, destabilizing behavior.

In the following, approaches that provide decentralized stabilization in converter-based
AC power systems are reviewed. Additionally, in line with the objective in Section 1.1,
works that promote unifying, cross-technology stabilization concepts are considered.

2.1.1 Literature Review

Approaches to the decentralized frequency and voltage control of converter-based AC
power systems are manifold. A recent overview can for example be found in Dörfler
et al. [2019]. As a natural starting point and to provide full backward compatibility
with traditional AC power systems based on synchronous machines, extensive research
effort has been put into developing decentralized solutions that allow to integrating
converters into the established hierarchical frequency and voltage control structures.

The most prevalent and developed approaches in this category are converter droop
control and extensions thereof (see for example Chandorkar et al. [1993], Guerrero et al.
[2011], Guerrero et al. [2013], Zhong [2013], Olivares et al. [2014], Dörfler et al. [2014],
Schiffer et al. [2014], and Simpson-Porco et al. [2017]). In fact, as of today, droop control
serves as the required standard and unifying concept in AC power system stabilization,
as the linear relations between power injections, frequencies, and voltages, i.e., the
droop slopes, are written into the grid codes [Dörfler et al., 2019]. Despite its status
as the de facto standard, the practical implementation of converter droop controllers
typically requires various, additional heuristics [Dörfler et al., 2019]. Furthermore, due
to its proportional control structure, droop control shows load-dependent voltage and
frequency deviations from the nominal values [Guerrero et al., 2011, 2013; Olivares
et al., 2014]. Moreover, droop control establishes two independent single-input single
output (SISO) loops for frequency via active power and voltage via reactive power.
At transmission level, where synchronous machines are connected, such a decoupling
assumption can be made due to a low R/X ratio. However, at distribution level
where DGUs with droop-controlled converters are typically integrated, high R/X

ratios create a non-negligible coupling of active power, reactive power, frequency, and
voltage. The result is a poor transient performance of droop control and a limited region
of attraction for desired operating points. Furthermore, power sharing is no longer
achieved [Rocabert et al., 2012; Olivares et al., 2014; Dörfler et al., 2019]. In order to
recover power sharing and ensure zero steady-state errors, distributed or centralized
secondary controllers are used which necessitate information exchange [Guerrero et al.,
2011, 2013; Olivares et al., 2014; Kolluri et al., 2018]. Additionally, rigorous system-
theoretic analyses of stability properties of droop-controlled, converter-based AC power
systems only exist for simplified, first-order models of the converter dynamics, quasi
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steady-state network models, and simplified load models [Simpson-Porco et al., 2013;
Schiffer et al., 2014; Simpson-Porco et al., 2017]. Thus, droop-controlled converters
effectively do not guarantee decentralized stabilization in more realistic, dynamic AC
power system setups.

Besides droop control, alternative approaches have been proposed that try to transfer the
concept of inertia from synchronous machines to converters by controlling the convert-
ers such that they emulate the behavior of synchronous machines (virtual synchronous
machines) [Beck and Hesse, 2007; D’Arco et al., 2015], emulate the behavior of nonlinear
oscillators (virtual oscillators) [Johnson et al., 2014; Sinha et al., 2015], or are structurally
equivalent to synchronous machines (matching control) [Jouini et al., 2016; Monshiza-
deh et al., 2017; Arghir et al., 2018]. These approaches are unifying in the sense that
they establish interoperability between synchronous machines and different converter
technologies. Additionally, existing methods and knowledge earned from decades of
operating synchronous machine-based AC power systems can be reused. However,
as converters have nearly opposite characteristics when compared to synchronous
machines,6 it seems to be inefficient “to force a converter (a fully actuated, modular,
and very fast control system) to behave like a (under-actuated, rigidly controlled, and
comparatively slow) synchronous machine that does not make use of the converters’
key resources and strengths” [Milano et al., 2018]. Furthermore, the structural parallels
are deceptive and in fact cause problems when used in real AC power systems (see, e.g.,
the discussions in Olivares et al. [2014], Milano et al. [2018], and Dörfler et al. [2019]).

In recent years, another class of approaches has seen growing interest which is unifying
in the sense that it uses the system-theoretical input-output property of passivity and
its close link to Lyapunov stability7 to facilitate AC power system stability analysis.
Particularly with the advent of PHS theory, pioneering stability results were obtained
for AC power systems with synchronous machines, simplified load models [Fiaz et al.,
2013; Caliskan and Tabuada, 2014; van der Schaft and Stegink, 2016], quasi steady-
state network models [Fiaz et al., 2013; van der Schaft and Stegink, 2016], or single
synchronous machines directly connected to a single load [Monshizadeh et al., 2019].8

For converter-based AC power systems, Avila-Becerril et al. [2017] and Avila-Becerril
et al. [2018] use passivity-based control (PBC) designs and PHS theory for voltage
stabilization. However, their controllers require knowledge about all line parameters
and are thus not decentralized.

6 Synchronous machines have a large inherent energy storage in form of the rotating masses of rotor
and turbine which store around 4 s-12 s of nominal power. In comparison, the 10ms-80ms of nominal
power stored in the DC-side capacitors of converters is three orders of magnitudes smaller and negligible
[Jouini et al., 2016, Remark 2]; Dörfler and Groß [2023]. On the other hand, while the AC voltage control
performance of synchronous machines is limited by their physical structure (e.g. fixed field inductance)
and a complex excitation control with slow-acting over- and under-excitation limiters, converters allow for
a much faster actuation in the order of milliseconds, a fully controllable AC voltage, and freedom in control
solutions [Milano et al., 2018; Dörfler et al., 2019].

7 See Section A.1 for more details.
8 The rationale behind this connection is the fact that every PHS is a passive system. For more details

regarding passivity theory, PHSs, and Lyapunov stability see Chapter 3.
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Besides the application of passivity techniques on an AC power system level, PBC
designs for standalone converters have been thoroughly discussed for example by Perez
et al. [2004], Harnefors et al. [2016], Serra et al. [2017], Zhong and Stefanello [2017], and
Gui et al. [2018]. While these works provide a detailed analysis and synthesis from a
power electronic perspective, they lack an overall system analysis and rely on canonical
assumptions such as a stable, stiff grid behaving like a constant voltage source for their
stability analyses.

In addition to the above-discussed approaches that have some kind of unifying, cross-
technology feature, several other decentralized, droop-free approaches have been pro-
posed in recent years. These approaches implement voltage controllers in the dq frame
and use open-loop frequency control based on internal oscillators with, e.g., global
positioning system (GPS) or Ethernet synchronization to stabilize the system frequency.
Etemadi et al. [2012a] conduct a decentralized robust servomechanism design based
on a linearized model of a converter-based AC power system comprising linear loads.
Riverso et al. [2015], Tucci et al. [2016a], Tucci and Ferrari-Trecate [2017], Sadabadi et al.
[2017], and Floriduz et al. [2018] use the concept of neutral interactions from Lunze
[1992, p. 170] to design decentralized voltage controllers. However, asymptotic stability
of the AC power system equilibrium is only guaranteed under quasi-stationary line ap-
proximations and if the solution of linear matrix inequalities states that the plug-in/out
of a DGU is feasible. The improved line-independent design algorithm by Tucci and
Ferrari-Trecate [2020] is instead always feasible, but still requires quasi-stationary line
approximations to prove asymptotic stability. Shafiee-Rad et al. [2021] use a polytopic-
type uncertainty approach to design “decentralized” voltage controllers. However,
their design and stability proof requires knowledge about the fixed number of overall
DGUs, which spoils its true decentralized nature. Furthermore, all the approaches in
this paragraph consider load-connected topologies in which loads are connected at
nodes together with DGUs. This significantly limits the possible AC power system
configurations.

2.1.2 Discussion and Research Questions

Considering the literature review in Section 2.1.1, it can be seen that there is no con-
verter control approach that achieves decentralized stabilization as per Definition 2.3.
Additionally, there exists no cross-technology, decentralized stabilization concept unify-
ing different AC power system technologies and control strategies. The main feature
all the above-discussed works have in common is that they do not provide any de-
centralized, technology-independent conditions that can ensure asymptotic stability of
desired AC power system equilibria. The developed control solutions and asymptotic
stability analyses only apply to their specific AC power system models (e.g., with a
load-connected topology, a quasi steady-state network, simplified DGU and load mod-
els, specific synchronous generator models, etc.). However, no inferences are drawn on
how their results can be translated into general system and control design guidelines
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for decentralized stabilization. In summary, there exists no unifying, cross-technology
framework with decentralized, analytical conditions that can serve as normative basis
and ensures decentralized stabilization in AC power systems across different tech-
nologies and control strategies (see also Farrokhabadi et al. [2020] and Dörfler and
Groß [2023]). The discussed passivity-based approaches suggest that passivity theory
presents a promising tool to develop such a cross-technology framework. The existing,
passivity-based works, however, are not decentralized or remain limited to specific
applications and setups (e.g., quasi steady-state networks, simplified loads, AC power
systems with synchronous machines).

The present de facto standard to investigate stability and interoperability over different
AC power system technologies and control strategies are thus high-fidelity simulations
[Farrokhabadi et al., 2020; Dörfler and Groß, 2023]. However, in practice, the required
high-fidelity models and detailed information may not always be available due to
information barriers (e.g. proprietary information and models). Furthermore, recent
results have identified that depending on system topologies, technologies, and control
approaches, there are large numbers of very different unfavorable interactions and
interdependencies possible [Dörfler and Groß, 2023]. Considering the sheer infinite
possibilities of combining system topologies, technologies, and control approaches, it is
unrealistic to make reliable design decisions and generalizations based on simulations
alone.

Therefore, in order to establish a decentralized, cross-technology stabilization frame-
work in AC power systems, the following two questions need to be answered:

(Q1.1) How to provide decentralized, analytical conditions that ensure across different
technologies and control strategies asymptotic stability of any feasible AC power
system equilibrium?

(Q1.2) How to design, based on the conditions of research question (Q1.1), decentralized
converter controllers that asymptotically stabilize the system frequency, desired
node voltages, and current injections?

2.2 Decentralized Stabilization in DC Power Systems

While AC is still the prevailing technical standard in electrical power systems, high
voltage DC transmission systems and DC distribution systems at low-to-medium
voltage levels have attracted rising attention in recent years as they exhibit definite
advantages over their AC counterparts. One the one hand, they show higher efficiency,
improved power quality, and low system cost. In particular, DC distribution systems
reduce the number of converters and thus of lossy DC-AC and AC-DC conversion stages
as many DGUs, energy storage systems, and consumer devices (e.g., electric vehicles,
household appliances, industrial equipment, lights) directly operate in DC. On the other
hand, DC power systems are much simpler to operate as they avoid synchronization
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issues and the need for controlling frequency and reactive power [Justo et al., 2013;
Zhao and Dörfler, 2015; Meng et al., 2017].

In contrast to AC power system stability, however, there exists no standardized defini-
tion of DC power system stability and no standardized control structures. Nevertheless,
similar to the AC case, the operation of DC power systems can be organized hierarch-
ically to account for different control requirements covering different technical areas,
time scales, and physical levels. Overall, the same two main control task as in AC
power systems have to be fulfilled. That is, asymptotic stabilization of different network
equilibria comprising the system variables (voltages, currents)9 and coordination to
ensure that such network equilibria exist within the operational constraints [Dragičević
et al., 2016; Meng et al., 2017].

The hierarchy prevalent in the DC literature is based on the hierarchical AC control
structures [Dragičević et al., 2016; Meng et al., 2017]. At the primary control layer,
the basic regulation of voltages (grid-forming) and currents (grid-feeding) as well
as power sharing are achieved. At the superordinate secondary and tertiary layers,
centralized or distributed control strategies are implemented to achieve zero steady-
state errors and some possibly optimal, global coordination of generation, transmission,
and consumption within the operational constraints.

However, motivated by the lacking performance and analytical stability guarantees of
state-of-the-art primary controllers based on DC droop control (see Section 2.2.1 below
for a detailed discussion), large parts of the DC power system community have adopted
an asymptotic stabilization-coordination hierarchy as discussed in Section 2.1 for AC
power systems. In fact, all non-droop based works reviewed below in Section 2.2.1
implicitly or explicitly assume such a hierarchy. That is, they only focus on voltage and
current control and outsource all coordination tasks including power sharing to higher
level controllers at the secondary and tertiary level.

Following Definition 2.3 for the AC case, decentralized stabilization in DC power
systems can be defined as follows:

Definition 2.4 (Decentralized stabilization in DC power systems)
Decentralized stabilization in DC power systems refers to the basic control task
conducted by decentralized controllers at the lowest control layer of a hierarchical
stabilization-coordination control structure for DC power systems. It ensures that such
DC power system equilibria are asymptotically stabilized that voltages and currents
of actuated subsystems are at desired setpoints.

The following review provides an overview of the current state of research regarding
decentralized stabilization solutions in converter-based DC power systems. In line with

9 Note that this also implies a suitable transient behavior within the permissible voltage and current limits.
As for the AC case and in line with control engineering practice, this is ensured by appropriate tuning of
the decentralized controllers via analytical or heuristic design procedures.
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the overall research objective in Section 1.1, particular attention is given to works that
promote unifying, cross-technology concepts.

2.2.1 Literature Review

Inspired by decentralized, droop-based frequency and voltage control in AC power
systems, several researchers have focused on adapting converter droop control and
extensions thereof for the decentralized voltage stabilization in DC power systems
(see Guerrero et al. [2011], Justo et al. [2013], Zhao and Dörfler [2015], Dragičević
et al. [2016], Meng et al. [2017] and the references therein). However, similar to its
AC counterpart, DC droop control typically requires various, additional heuristics
for its practical implementation. Furthermore, it also shows load-dependent voltage
deviations from the desired nominal values and propagation of voltage errors along
resistive transmission lines [Guerrero et al., 2011; Zhao and Dörfler, 2015; Dragičević
et al., 2016]. Moreover, its power sharing accuracy is limited by the specific system setup
(e.g., linear loads, quasi-stationary line approximations), the parameters of the system
model, and the control parameters [Zhao and Dörfler, 2015; Dragičević et al., 2016; Meng
et al., 2017]. Thus, stability results for droop-controlled DC power systems either rely
on a secondary control layer with some form of information exchange [Guerrero et al.,
2011; Zhao and Dörfler, 2015; Dragičević et al., 2016; Meng et al., 2017] or are limited
to small signal analyses of specific topologies [Shafiee et al., 2014]. Additionally, DGU
dynamics are often simplified, e.g., to unit gains (see for example Zhao and Dörfler
[2015]).

Similar to the AC case, passivity-based approaches for decentralized stabilization have
also been explored in DC power systems. Gu et al. [2015] propose to shape converter
admittances via voltage feedforward control such that the admittances fulfill desired
passivity properties guaranteeing system-wide stability. However, line dynamics are
not considered and their passivity analysis in the frequency domain is only admissible
for linear SISO systems which hampers the analysis of inherently nonlinear components
such as constant impedance10, constant current, constant power (ZIP) or exponential loads.
Zonetti et al. [2015] propose a unified model for multi-terminal, high-voltage DC trans-
mission systems based on PHS theory and a decentralized proportional-integral (PI)
controller for AC/DC voltage source rectifiers to asymptotically stabilize desired output
currents and node voltages. Martinelli et al. [2018] explore a nonlinear, passivity-based
controller design for voltage stabilization in medium-voltage DC power systems. How-
ever, their design is not decentralized as it requires information about line parameters
and updating other controllers in the event of plug-in/out operations. Han et al. [2019]
propose decentralized voltage and current controllers for DGUs in a load-connected
topology with dynamic power lines and linearized ZIP load models. At several places,

10 Note that despite the wording, it is common practice to express the constant impedances (Z) as admittances
(Y). For further details, see Appendix B.1.



2.2 Decentralized Stabilization in DC Power Systems 19

the authors provide hints regarding passivity interpretations of their results, but do
not elaborate further on this. These passivity relations are explored in more detail
by Soloperto et al. [2018] and Nahata et al. [2020], whereas Soloperto et al. [2018] is a
simplified, preliminary version of Nahata et al. [2020]. Nahata et al. [2020] in particular
show that the decentralized, state-feedback controller of Han et al. [2019] (see also Tucci
et al. [2018]) indeed passivate DGUs in closed-loop subject to some inequalities for the
controller gains and ZIP load model parameters (see Section 4.3.3 for more details).

Besides the application of passivity techniques on a DC power system level, various
PBC designs for standalone DC converters have been proposed by the power electronic
community (see for example Sira-Ramirez et al. [1997]; Kwasinski and Krein [2007];
Kwasinski and Onwuchekwa [2011]; Zeng et al. [2014]). While these works provide
a detailed analysis and synthesis from a power electronic perspective, they lack an
overall system analysis and consider only single converters directly connected to a load.
Furthermore, the specific controller designs often require system knowledge such as the
load parameters [Sira-Ramirez et al., 1997; Kwasinski and Onwuchekwa, 2011; Zeng
et al., 2014]. A review of unifying stability criteria for DC distribution systems that are
used by the power electronic community can be found, e.g., in Riccobono and Santi
[2014] and Gu et al. [2015]. The main drawback all these criteria have in common is
that they require a comprehensive overall system model and are thus not decentralized.
Impedance- and passivity-based methods, for example, require knowledge about all
converter and load impedances in order to make a stability statement. Consequently,
it is not possible to a priori and independent of the system configuration provide
decentralized control design guidelines that ensure asymptotic stability. Furthermore,
besides some Lyapunov-based approaches, all criteria only hold for linear systems.

In addition to decentralized converter control approaches that fall into the unifying
category of droop control or passivity methods, several other decentralized approaches
to the voltage stabilization in DC power systems have been proposed in recent years.
Tucci et al. [2016b] propose a state-feedback voltage controller for DC power systems
with general topology. Sadabadi et al. [2018] develop a PI voltage controller for DGUs
featuring boost converters. Sadabadi and Shafiee [2020b] propose a robust two-degree-
of-freedom feedback-feedforward controller design for voltage control in DC power
systems with constant power loads. The controllers in these three works, however,
require information about the impedances of neighboring lines. While scalability is
still provided to a certain extend, these controllers are effectively not decentralized.
Furthermore, their implementation requires the online solution of an optimization
problem. If the problem is infeasible, the plug-in/out operation of the respective DGU is
denied, which is cumbersome and impractical. Additionally, the stability statements in
these works rely on quasi-stationary line approximations in which the line inductances
are neglected. This assumption might be valid in low-voltage DC networks, which are
mainly resistive, but does not hold at higher voltage levels where line inductances are
significant [Andreasson et al., 2017]. The improved design by Tucci et al. [2018] manages
to avoid line information, but retains the issues regarding numerical infeasibility and
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quasi-stationary line approximations. Zonetti et al. [2019] propose a decentralized
voltage controller design based on monotonicity. Their stability statements require
quasi-stationary line approximations as well. Additionally, the authors assume that
DGU dynamics are simplified to controllable current injections. Sadabadi and Shafiee
[2020a] propose a decentralized PI voltage control design for DC microgrids with linear
ZI loads. All works in this paragraph consider a load-connected topology in which loads
are always connected at nodes together with DGUs. Furthermore, except Sadabadi and
Shafiee [2020b] and Nahata et al. [2020], all works consider loads as current disturbances
or linear loads and thus disregard the destabilizing effect of exponential loads covering
constant power loads.11 This significantly restricts the possible DC power system
configurations.

2.2.2 Discussion and Research Questions

Considering the literature review in Section 2.2.1, it can be seen that the situation is
similar to that in AC power systems. While there exists a variety of works that provide
decentralized stabilization concepts, the controllers and asymptotic stability analyses
proposed in these works only apply to their specific DGU and DC power system models
(e.g., with a load-connected topology, linear or simplified loads, small signal models).
The only results that are cross-technology and independent of the specific converter-
based, closed-loop DGU model are the passivity-, impedance-, and Lyapunov-based
stability criteria from the power electronic community summarized in Riccobono and
Santi [2014] and Gu et al. [2015]. However, they are not decentralized as they require
overall system knowledge (complete system model or overall bus impedance) and with
exception of the Lyapunov-based approaches only apply to linear systems. In summary,
non of the above-discussed works provide any decentralized, analytical conditions that
may serve as basis for a unifying, cross-technology framework for the decentralized
stabilization in DC power systems.

Similar to the AC case, there are again some passivity-based approaches whose res-
ults suggest that passivity theory may present a promising tool to develop such a
cross-technology framework. The existing works, however, are not decentralized (see
Riccobono and Santi [2014] and Martinelli et al. [2018]) or remain limited to specific
setups with no line dynamics and linear SISO systems (see Gu et al. [2015]), high-
voltage DC transmission systems (see Zonetti et al. [2015]), or DGUs with state-feedback
controllers and a load-connected DC power system topology (see Nahata et al. [2020]).

Therefore, the following two questions regarding the decentralized stabilization in
DC power systems need to be answered in order to establish a decentralized, cross-
technology stabilization framework:

11 The reason behind this destabilizing behavior is the negative incremental impedance of these loads. For
further details see Dragičević et al. [2016] and Meng et al. [2017, Equation (8)].
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(Q2.1) How to provide decentralized, analytical conditions that ensure across different
technologies and control strategies asymptotic stability of any feasible DC power
system equilibrium?

(Q2.2) How to design, based on the conditions of research question (Q2.1), decentralized
converter controllers that asymptotically stabilize desired node voltages and
current injections?

2.3 Decentralized Stabilization in
District Heating Networks

The operation of DHNs combines two physical domains, viz. hydraulics and thermody-
namics. The actual thermal power transferred between heat sources and heat consumers
is a product of the temperature and the mass flow of heated water [Krug et al., 2021, Sec-
tion 2.3]. While controlling the temperature is important for meeting the head demand
of consumers and an efficient operation of DHNs [Lund et al., 2014], well-defined, stable
hydraulic conditions, i.e., pressures and volume flow rates, are a fundamental require-
ment for the operation of DHNs [Boysen and Thorsen, 2003; Pan et al., 2016; Novitsky
et al., 2020]. The role of pressures and volume flow rates in a hydraulic network in fact
shares many similarities with that of voltages and currents in an electrical DC network.
When considering that both pressures and voltages represent potential quantities in
their respective physical domains,12 it becomes clear that controlling pressures fulfills
the same task of forming the grid that voltage stabilization of grid-forming converters
does in electrical DC power systems. In light of the main objective in Section 1.1, the
focus in the following is thus on the hydraulic stabilization in DHNs.

Similar to DC power systems, there exists no standardized definition of DHN stability
or the term hydraulic stabilization. There exist, however, two basic pressure regulation
tasks, viz. static and differential pressure control, which are widely used in practice
and can be understood as hydraulic stabilization. The operating principle behind these
pressure controls is motivated by the prevalent configuration of state-of-the-art 2nd and
3rd generation DHNs, which comprise at most a few down to a single main heat source
supplying multiple consumers over a hydraulic pipe network.13 Similar to traditional
power system operation, the hydraulics and consequently the thermal power flows are
well-understood in such DHN structures. Originating from a few main heat sources
with circulation pumps, volume flow rates and thermal power flows, respectively, follow
decreasing pressure levels, so-called pressure cones, along the supply pipe layer to the
consumer substations and back via the return pipe layer (see for example Nussbaumer

12 See Section A.2.1 for further details on formal equivalences between different physical domains and
generalized modeling.

13 See Lund et al. [2014] for a comparison and overview of the different DHN generations. The main differences
between 2nd, 3rd, and emerging 4th generation DHNs are a trend towards lower temperatures and the
integration of distributed, renewable heat sources.
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et al. [2020, pp. 52–54] and Buffa et al. [2021, Figure 1]). The consumers regulate the
volume flow rate and thus the thermal power they receive via control valves. However,
as control valves can only induce variable pressure losses, ensuring a proper heat supply
requires that each consumer receives a minimum differential pressure ranging from
0.4 bar-1 bar [Nussbaumer et al., 2020, p. 49]. At present, due to the simple structure
and well-understood hydraulic conditions, the consumers with the lowest differential
pressures between supply and return are known a priori. Consequently, these critical
consumer pressures can be observed and controlled centrally by adjusting the main
network pumps [Brand et al., 2014; Vandermeulen et al., 2018; Buffa et al., 2021].14

In addition to differential pressure control, closed hydraulic circuits such as DHNs
require at least one pressure holding unit to establish an absolute static pressure (see, e.g.,
Wang et al. [2017a] and Nussbaumer et al. [2020, pp. 54–55]). While this static pressure
does not influence the hydraulic dynamics, which depend only on the differential
pressures, it is nevertheless important to avoid pipe bursts or damaging equipment, e.g.,
by cavitation in the circulation pumps [Nussbaumer et al., 2020, pp. 54–55]; [Sommer
et al., 2019; Buffa et al., 2021].

However, in light of the sustainable energy transition and emerging 4th generation
DHNs, new strategies and methods of operating, controlling, and analyzing DHNs are
required [Lund et al., 2014; Vandermeulen et al., 2018; Novitsky et al., 2020]. Similar to
power systems, DHN operation is facing a decentralization with increasing numbers of
interacting subsystems and controllable components (pumps, control valves). Primarily,
this is due to the integration of renewable DGUs such as heat pumps, combined heat
and power, waste/biomass-to-energy, solar, and geothermal heat plants. Additionally,
DHNs increasingly feature intermittent in-feed of excess energy from wind and solar
power plants, which cannot be accommodated by the power system [Lund et al., 2014;
Vandermeulen et al., 2018]. Furthermore, DHN setups in which distributed variable-
speed pumps (DVSPs) are installed at every DGU and some (up to all) consumer
substations have shown considerable potential to reduce the overall pumping costs for
DHNs [Yan et al., 2013; Wang et al., 2017a; Gong et al., 2019].

Making DHNs more sustainable also comprises improving efficiency. This in turn leads
to decreasing water temperatures, decreasing pipe diameters, novel topologies with
multiple temperature layers, and frequently changing hydraulic network conditions
[Lund et al., 2014; Vandermeulen et al., 2018]. Supply/return temperatures, for example,
are decreasing from around 80 ◦C-120 ◦C/40 ◦C-70 ◦C in 2nd or 3rd generation DHNs to
40 ◦C-70 ◦C/20 ◦C-40 ◦C in 4th generation DHNs (see Lund et al. [2014], Novitsky et al.
[2020], and Nussbaumer et al. [2020, p. 44]). On the one hand, this allows to efficiently
integrate renewable heat sources and new consumers (e.g., low-energy buildings).
On the other hand, together with decreasing pipe diameters, this reduces the heat
distribution losses [Nussbaumer et al., 2020, p. 44]; [Köfinger et al., 2017; Volkova

14 In smaller DHNs, the pump operating points are often even only adjusted by means of offline look-up
tables, which are predetermined by a hydraulic network analysis during the DHN design.
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et al., 2020, 2022]. Besides that, different temperature layers can be combined to multi-
layer topologies in future DHN to increase efficiency.15 The return pipes of a 2nd or
3rd generation DHN may then serve as supply for a new low-temperature DHN part.
However, such new network structures and operation strategies often require additional
booster pumps, i.e., yet more controllable components, at strategic points in pipes and
consumers to ensure suitable hydraulic conditions and a proper heat supply.16

In summary, these developments towards more sustainable DHNs lead to an overall
increase in complex pressure and volume flow dynamics and interactions between
actuators (pumps, valves) on small time scales (see also the discussion in Novitsky
et al. [2020]). Similar to interacting converters in power systems, these dynamics and
interactions, if not carefully analyzed and understood, can cause serious operational
problems such as severe hydraulic oscillations [Yan et al., 2013; Wang et al., 2017a;
Sommer et al., 2019]. Furthermore, due to the frequently changing hydraulic conditions
caused by increasingly variable volume flow rates and flow reversals [van der Heijde
et al., 2017; Mohring et al., 2021], the locations of the critical consumer pressures vary and
are not clearly determined [Brand et al., 2014; Hassine and Eicker, 2014]; [Nussbaumer
et al., 2020, p. 50].

Similar to power system stabilization, new hydraulic stabilization schemes thus must
be able to address an increasing number of interacting units, ensure interoperability
across different hydraulic technologies and control strategies, and handle flexible sys-
tem configurations in which units connect and disconnect in a plug-and-play fashion.
Considering the similarities in the development trends, challenges, and stabilization
requirements between power systems and DHNs as well as the equivalences between
pressures/voltages and volume flow rates/currents, it seems promising to adopt the
asymptotic stabilization-coordination hierarchy established in Sections 2.1.2 and 2.2.2
for controlling DHNs. At the lowest control layer, hydraulic network equilibria com-
prising the hydraulic system variables (pressures, volume flow rates) are asymptotically
stabilized by decentralized controllers.17 The setpoints for the hydraulic stabilization
are provided by higher control layers. Via appropriate coordination of generation,
transportation, and demand, these higher layers ensure that suitable hydraulic network
equilibria exist within the operational constraints and that these equilibria guarantee a
proper heat supply.18

Following Definitions 2.3 and 2.4 for AC and DC power systems, decentralized stabiliz-
ation in DHNs is defined as follows:

15 See temperature cascading in Köfinger et al. [2017], Nussbaumer et al. [2020, p. 44], Volkova et al. [2020],
and Volkova et al. [2022].

16 See De Persis and Kallesøe [2011], Lund et al. [2014], and Nussbaumer et al. [2020, p. 54] for a discussion.
17 Recall that in line with control engineering practice, a suitable transient behavior within the permissible

pressure and volume flow rate limits is ensured via appropriate tuning of the decentralized controllers.
18 Note that temperature control is part of these higher control layers.
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Definition 2.5 (Decentralized stabilization in DHNs)
Decentralized stabilization in DHNs refers to the basic hydraulic control task con-
ducted by decentralized controllers at the lowest control layer of a hierarchical
stabilization-coordination control structure for DHNs. It ensures that such hydraulic
DHN equilibria are asymptotically stabilized that pressures and volume flow rates in
actuated DHN subsystems are at desired setpoints.

Remark 2.2. Note that similar to current control in AC and DC power systems, this thesis
considers volume flow rate control explicitly as part of the stabilization. This is due to the fact
that when volume flow rates are increasingly controlled via pumps instead of via control valves
alone, it has to be ensured that these pumps do not introduce adverse, destabilizing behavior.

In contrast to AC and DC power systems, the following review not only considers
the current state of research regarding decentralized stabilization. It also provides a
broader overview about hydraulic control approaches that address characteristics of
future DHNs such as distributed pumps/producers, topology changes, or plug-and-
play operation. This is due to the fact that DHNs have received much less attention by
the control community than electrical power systems due to their seemingly simple
structures and operating strategies [Novitsky et al., 2020]. In particular, the literature
discussing hydraulic control challenges and new hydraulic control methods is scarce
and fragmented.

2.3.1 Literature Review

The topic of plug-and-play control in the context of DHNs was first introduced by
Knudsen et al. [2008] and Trangbaek et al. [2009]. The authors labeled plug-and-play
as the idea of a control system to automatically initialize and reconfigure in the face
of varying system topologies due to plug-in/out of a new device. However, the focus
of their works is on system identification with least-squares methods to obtain linear,
time-invariant, control-design models of the overall DHN hydraulics. Plug-and-play
in their understanding refers to updating this overall model automatically in case a
new devices is added or removed from the DHN. Their subsequent design of pressure
controllers, however, is based on the overall DHN model and thus must be adjusted,
whenever changes occur in the DHN.

The pressure regulation in hydraulic networks with topology changes and multiple,
distributed pumps has also been addressed by De Persis and Kallesøe [2011], De Persis
et al. [2014], and Scholten et al. [2017b]. The authors consider the problem of controlling
the differential pressures over consumers to constant desired setpoints via distributed
PI controllers. However, their control strategy is distributed and not decentralized
and thus requires information exchange among the controllers to ensure the hydraulic
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equilibrium is asymptotically stable. Furthermore, the setups considered in these works
remain limited to one heat source and require pumps at every producer and consumer.
Scholten et al. [2017a] consider temperature and storage volume control for DHNs with
a single heat source and simplified hydraulic dynamics in quasi steady state. Trip et al.
[2019] address the optimal regulation of storage levels at each node in a simplified DHN.
However, the important aspect of pipe friction is neglected.

In contrast to AC and DC power systems, passivity-based approaches for the decentral-
ized stabilization of hydraulics in DHNs have not been investigated in detail. Jensen
[2012] provides first elaborations on how the passivity properties of the hydraulic model
of a DHN and the negative feedback interconnection of passive systems can be used
to design pressure controllers regulating the differential pressure over consumers as
in De Persis and Kallesøe [2011], De Persis et al. [2014], and Scholten et al. [2017b].
However, being based on the model of De Persis and Kallesøe [2011], the results apply
only to a limited class of DHNs as mentioned above, viz. DHNs with only one heat
source and pumps at every producer and consumer. Furtheremore, the controllers still
require information exchange and are thus not decentralized.

Another noteworthy work that contributes towards a passivity-based analysis of DHNs
by introducing a PHS model for DHNs is from Hauschild et al. [2020]. In their work, the
authors propose a partial differential equation (PDE)-based thermohydraulic, spatially-
discretized PHS model of DHNs with a single producer. While being highly detailed
and thus suitable, e.g., for validation purposes or optimization techniques, the PDE
model is not well-suited for standard system analyses and decentralized control design
methods applicable only to ordinary differential equations (ODEs).

In summary, it can be seen that a major limitation of the works of De Persis and Kallesøe
[2011], Jensen [2012], De Persis et al. [2014], Scholten et al. [2017b], and Scholten et al.
[2017a] arises from the restriction to DHNs with only a single heat source. The authors
justify this limitation by referring to state-of-the-art 2nd and 3rd generation DHNs, which
often fulfill this requirement. At the same time, however, they assume pumps at every
heat source and every consumer. While this assumption might become reality in some
future DHNs, it prevents backward compatibility of the developed solutions to current
DHNs as well as to intermediate development stages in which consumers use control
valves for volume flow rate regulation. In addition, all works reviewed in this section
only consider DHNs with two temperature layers and symmetric return and supply
network topologies. This excludes two practically relevant cases: firstly, current DHNs
in which the supply pipes form a meshed network, while the return pipes constitute
a tree structure; secondly, future DHNs with multi-layer topologies and temperature
cascading. Furthermore, at most static pump models are used and control valves are
not considered as actuators (control inputs), although they are in fact one of the main
actuators in DHNs (see, e.g., Li et al. [2017, p. 19,29], Vandermeulen et al. [2018], and
Nussbaumer et al. [2020, pp. 143–145,151]). Lastly, non of the reviewed works consider
pressure holding units necessary for controlling the static DHN pressure.
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2.3.2 Discussion and Research Questions

Considering the literature review in Section 2.3.1, it can be seen that the current state of
research regarding hydraulic control approaches for DHNs is restricted by substantial
model limitations. Overall, there is no dynamic, hydraulic DHN model suitable for
control design that encompasses traditional 2nd and 3rd generation DHNs, future 4th

generation DHNs as well as intermediate development stages. While some component
models exist or can be derived from the literature, there exists no adequate hydraulic
DHN model that incorporates all of these components, viz. dynamic pump models,
valves as actuators, pressure holding units, and temperature cascading circuits, to rep-
resent the relevant DHN subsystems and assemble them in a general topology. General
topology hereby means an arbitrary number of producers and consumers connected
in a meshed, possibly asymmetric pipe network topology with multiple temperature
layers (temperature cascading), distributed pumps at producers, consumers, and pipes,
as well as traditional valve-controlled consumers.

Consequently, there are no pressure and volume flow rate, i.e., hydraulic, control
approaches that achieve decentralized stabilization as per Definition 2.5 across DHNs of
various generations and designs. In particular, there exists no unifying, cross-technology
framework with decentralized, analytical, asymptotic stability conditions that can serve
as normative basis and ensures decentralized stabilization across different DHN setups,
technologies, and control strategies.

Therefore, the following three questions regarding the decentralized stabilization in
DHNs need to be answered in order to establish a decentralized, cross-technology
stabilization framework:

(Q3.1) How can the hydraulic dynamics of different DHN generations and setups be
modeled for control design purposes?

(Q3.2) How to provide decentralized, analytical conditions that ensure across different
DHN setups, technologies, and control strategies asymptotic stability of any
feasible, hydraulic DHN equilibrium?

(Q3.3) How to design, based on the conditions of research question (Q3.2), decentralized
pump and valve controllers that asymptotically stabilize desired pressures and
volume flow rates?

2.4 Summary

This chapter has provided an overview over the current state of stabilization in AC
power systems, DC power systems, and DHNs. Similarities in the development trends
of these three energy systems and emerging challenges for their stabilization have been
reviewed. Most prominently, the challenges comprise:
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• a decentralization with increasing numbers of interacting subsystems and control-
lable components (converters, pumps, control valves);

• an intermittent energy supply and operation of subsystems demanding plug-and-
play capability and flexible system configurations;

• and an overall increase in complex system dynamics and interactions on small
time scales.

Based on these insights and the shortcomings of state-of-the-art stabilization schemes,
this thesis proposes a new perspective on the hierarchical control of networked energy
systems closer to systems and control theory. The leading idea is to clearly separate the
tasks to achieve “stability of an energy system” into their respective control require-
ments, viz. decentralized stabilization at the lowest control layer and coordination at
higher control layers.

Considering the current state of research regarding decentralized stabilization and
cross-technology stabilization concepts, it has been shown that similar gaps and con-
sequently research questions have to be addressed in order to establish decentralized,
cross-technology stabilization frameworks in AC power systems, DC power systems,
and DHNs. Apart from the modeling question (Q3.1) for DHNs, the main questions re-
garding the decentralized, cross-technology stabilization frameworks read as follows:

• How to provide decentralized, analytical conditions that ensure asymptotic stabil-
ity of any feasible networked energy system equilibrium?

• How to design, based on the decentralized, analytical conditions of the above
question, decentralized controllers that asymptotically stabilize desired system
variables?

The respective literature reviews in Sections 2.1.1, 2.2.1, and 2.3.1 hint that passivity-
based approaches present a promising starting point to address these questions in a
unifying, cross-technology manner. Furthermore, for AC and DC power systems, the
discussed preliminary works have shown that PHS theory can facilitate the application
of passivity methods and the subsequent stability analysis with Lyapunov theory.

Within this thesis, these relations are elaborated. It is shown how a passivity-based
approach together with the energy-focused modeling of physical systems in the PHS framework
enables the consistent design of a unifying, cross-technology framework for the decentralized
stabilization in various networked energy systems. While the main focus is on converter-
based DC and AC power systems (Chapters 4 and 5) and DHNs (Chapter 6), it is
demonstrated that the developed approach can readily be used to answer the following
research question related to establishing a unifying, cross-technology stabilization
framework for NMESs:

(Q4.1) How to provide decentralized, analytical conditions that ensure across different
technologies, control strategies, and physical domains asymptotic stability of
any feasible NMES equilibrium?
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2.4.1 Addendum Remark Regarding Parallel Works

At this point, it is important to highlight that the state of research regarding decentral-
ized stabilization in energy systems has significantly evolved compared to its status
that lead to the research questions of this thesis. In particular, initially independently
from each other and later in some joint works, various research groups have explored
passivity-based approaches and designs for providing decentralized, asymptotic stabil-
ity conditions and decentralized stabilization solutions.

For AC power systems, decentralized, passivity-based stabilization solutions have been
proposed by Strehle et al. [2019], Nahata and Ferrari-Trecate [2019], Watson et al. [2019],
Spanias and Lestas [2019], Strehle et al. [2020a], Spanias et al. [2020], Ojo et al. [2021],
Watson et al. [2021], and Strehle et al. [2022b].

For DC power systems, Cucuzzella et al. [2019a], Strehle et al. [2020a], Strehle et al.
[2020b], Cucuzzella et al. [2020], Ferguson et al. [2021], Kosaraju et al. [2021], and
Cucuzzella et al. [2023] have considered the problem of decentralized voltage stabiliza-
tion.

For DHNs, Strehle et al. [2021], Strehle et al. [2022a], Machado et al. [2022a], and
Machado et al. [2022b] have provided comprehensive control design models for various
multi-producer DHN setups and conducted passivity-based system analyses. Machado
et al. [2022a] have further proposed controller designs for the decentralized, hydraulic
stabilization in multi-producer setups.

An in-depth discussion and comparison of the above works from other researchers
with the results of this thesis is presented at the end of the respective chapters in
Sections 4.5, 5.5, and 6.5. The main drawback most of these works share is that they
provide model- and technology-specific results only. That is, similar to the works
reviewed in Sections 2.1.1 and 2.2.1, their controller designs and asymptotic stability
statements only apply to their specific DGU and energy system models. No inferences
are drawn on how passivity properties can be used to establish general, decentralized
system and control guidelines for ensuring asymptotic stability.19 In addition, none of
these works investigate similarities between the models and control problems of the
various energy systems or explore the possibilities of transferring solutions developed
for one energy system to another by using generalized models and concepts. In light
of the desired development towards NMESs, it is, however, of great interest to explore
such aspects.

19 An exception are the works of Spanias and Lestas [2019], Spanias et al. [2020], and Watson et al. [2021] for
AC power systems.
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The main goal of this thesis is the development of cross-technology frameworks for
the decentralized stabilization in various networked energy systems. Following the
discussion in Section 2.4, it seems promising to approach such an endeavor by means
of passivity methods complemented with a domain-unifying modeling in the PHS
framework.

Within this chapter, the methodological groundwork for the passivity-based, decentral-
ized stabilization frameworks is developed. To allow for a clear, concise presentation
of the technical contents and provide a basis for the unifying system description of the
respective energy systems in Chapters 4 to 7, Section 3.1 first introduces the notion of an
autonomous networked system. Subsequently, in Section 3.2, equilibrium-independent
passivity (EIP) is introduced. EIP allows for a modular stability analysis of any feasible
equilibrium of an autonomous, networked system and thus is a promising tool for
answering the research questions of Chapter 2. However, existing EIP theory does not
provide any ready theorems with decentralized, asymptotic stability conditions. Thus,
in a first step inspired by existing literature, decentralized, EIP-based conditions are
deduced which are sufficient for the asymptotic stability of any feasible, autonomous
networked system equilibrium. In line with the classical passivity theorems, however,
these conditions require strict EIP properties. This restriction introduces a high degree
of conservatism and severely limits their practical applicability. Consequently, in Sec-
tion 3.3, the prior findings are revisited and a theorem is developed which provides
relaxed, decentralized asymptotic stability conditions. Throughout Chapters 4 to 7, it
will be shown how this theorem can be applied to the respective energy systems. In fact,
it will become clear that the relaxed conditions are essential for answering the research
questions of Chapter 2, as the restrictive, strict EIP conditions are not applicable.

The chapter is concluded in Section 3.4 with an analysis of the EIP properties of the
main class of models that is used throughout this thesis, viz. explicit state-space models
in input-state-output PHS (ISO-PHS) form. Due to their port-based perspective and
inherent passivity properties, such PHS models provide a natural starting point for an
EIP-based control synthesis and stability analysis of networked systems. Additionally,
they allow for a generalized, domain-unifying modeling of networked systems that
comprise various physical domains.
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3.1 Networked Systems

The AC power systems, DC power systems, DHNs, and NMESs considered in this thesis
constitute networked systems in which different units are interconnected via some
network structure of power lines or pipelines, respectively. From a system-theoretical
viewpoint, analyzing and synthesizing such networked systems can be facilitated by
means of graph theory (see, e.g., van der Schaft [2017, pp. 76–77]).

Inspired by Pfeifer [2022, Term 2.2], Arcak et al. [2016, p. 13], and van der Schaft [2017,
pp. 10,76–77], the notion of an autonomous, networked system is introduced to provide a
basis for a unifying description of networked energy systems. The following definition
combines state-space representations, which are the usual starting point for subsequent
stability analyses and controller designs, with a graph-theoretical system description.

Definition 3.1 (Autonomous, networked system)
An autonomous, networked system is a system

ẋ(t) = f(x(t)) (3.1a)

with states x(t) ∈ X ⊆ Rn and sufficiently smooth mapping f : X → X which can be
described by a weakly connected digraph G = (V, E) without self-loops and N ∈ N
subsystems on the nodes V and edges E . The subsystems are described by

ẋk(t) = fk(xk(t),dk(t)), zk(t) = hk(xk(t)), k = 1, . . . , N (3.1b)

with states xk(t) ∈ Xk ⊆ Rnk ⊂ X , x(t) = [x1(t), . . . ,xN (t)]
⊤, interaction (coupling)

input dk(t) ∈ Rm, interaction (coupling) output zk(t) ∈ Rm, and sufficiently smooth
mappings fk : Xk × Rm → Xk, hk : Xk → Rm. The dynamics of all node and edge
subsystems, respectively, are given by

ẋV(t) = fV(xV(t),dV(t)), zV(t) = hV(xV(t)) (3.1c)

ẋE(t) = fE(xE(t),dE(t)), zE(t) = hE(xE(t)) (3.1d)

with (·)V = stack((·)i)i∈V , (·)E = stack((·)l)l∈E , denoting the respective, stacked
vectors and mappings of the subsystems. The interconnection structure between the
subsystems is given by[

dV(t)

dE(t)

]
=

[
0|V|×|V| B

−B⊤ 0|E|×|E|

]
⊗ Im

[
zV(t)

zE(t)

]
=: M

[
zV(t)

zE(t)

]
. (3.1e)

where M = −M⊤ ∈ R(mN)×(mN) is the static, skew-symmetric interconnection
matrix and B ∈ R|V|×|E| the incidence matrix of graph G.
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Remark 3.1 (Notation). In the remainder of this thesis, the time dependence of variables and
vectors is only made explicit when it provides clarity, e.g, in some proofs, and is otherwise
omitted.

Remark 3.2. To simplify the exposition throughout this chapter, Definition 3.1 only considers
subsystems (3.1b) with interaction ports (dk, zk). In particular, this implies that subsystems
which are accessible for control via a control port (uk,yk) with control input uk ∈ Rmu and
corresponding output yk ∈ Rmu , i.e.,

ẋk = f̃k(xk,uk,dk), yk = hy,k(xk), zk = hk(xk), (3.2)

are in closed loop with some controller. Furthermore, note that closing the loop of (3.2) with
some controller uk does not change the selection of the interaction port pair variables (dk, zk)
(compare (3.2) with (3.1b)). This insight will be relevant later on during the controller designs
in Chapters 4 to 6.

Remark 3.3. Note that in some works from the literature, e.g., van der Schaft [2017, Equation
(4.83)], the signs in front of the incidence matrices are reversed compared to (3.1e).

3.2 Equilibrium-Independent Passivity and
Stability of Networked Systems

Passivity is one of the major tools for the analysis of and control design in nonlinear,
networked systems. Of particular importance for this thesis is the possibility to provide
stability statements of equilibria of autonomous, networked systems in a modular,
bottom-up manner [Arcak et al., 2016, p. 17].

With standard passivity theory, stability of the origin x̄ = 0n, 0n = f(x̄), of an autonom-
ous, networked system (3.1a) can be investigated by requiring certain passivity prop-
erties of the subsystems (3.1b) and posing conditions on the interconnection structure
(3.1e).1 However, stability of the origin is typically not of interest in practical applica-
tions. Instead, stability of a desired steady-state operating point x̄ ̸= 0n or a range of
feasible operating points x̄ within some equilibrium set X̄ ⊆ Rn has to be investigated.
In such cases, the shifted passivity [van der Schaft, 2017, p. 96] or EIP [Arcak et al., 2016,
p. 24–26] property has to be used.

While the basic approach of a modular, EIP-based stability analysis of any feasible
equilibrium x̄ ∈ X̄ of an autonomous, networked system (3.1a) is similar to that used
for the origin (see Appendix A, Lemma A.1), there exist no propositions or theorems
in the literature that are readily applicable to autonomous, networked systems and
provide decentralized, asymptotic stability conditions. Inspired by the results of Arcak

1 A short recapiculation of the technical details behind this idea is provided in Appendix A.



32 3 Methodological Approach

et al. [2016, Theorem 3.1] and classical passivity theorems, this section provides such
decentralized, EIP-based asymptotic stability conditions for any feasible x̄ ∈ X̄ .

To begin with, different notions of EIP are introduced. The following definition combines
the results from Arcak et al. [2016, p. 24–26] and Hines et al. [2011, Definitions 1 and 2]
with the introduction of a dissipation rate as in Definition A.1 for standard passivity.

Definition 3.2 (EIP, strict EIP, output strict EIP (OSEIP))
Consider a state-space system (3.1b) and suppose there exists a non-empty set X̄k ⊆
Rnk , where for every x̄k ∈ X̄k there is a unique input d̄k ∈ Rm such that 0nk

=

fk(x̄k, d̄k) and z̄k = hk(x̄k). Then system (3.1b) is EIP w.r.t. the supply rate (dk −
d̄k)

⊤(zk−z̄k), if there exists a continuously differentiable, positive semidefinite storage
function Sk : Xk × X̄k → R≥0, Sk(x̄k, x̄k) = 0, and a positive semidefinite dissipation
rate ψk : Xk × X̄k → R≥0, ψk(x̄k, x̄k) = 0, such that ∀(xk, x̄k,dk) ∈ Xk × X̄k × Rm, it
holds that

Ṡk(xk, x̄k) = −ψk(xk, x̄k) + (dk − d̄k)
⊤(zk − z̄k) ≤ (dk − d̄k)

⊤(zk − z̄k). (3.3)

Moreover, system (3.1b) is strictly EIP w.r.t. the supply rate (dk − d̄k)
⊤(zk − z̄k) and

a continuously differentiable, positive semidefinite storage function Sk(x̄k, x̄k), if the
dissipation rate is positive definite, i.e., ψk(xk, x̄k) > 0,∀xk ̸= x̄k, ψk(x̄k, x̄k) = 0. If
∀(xk, x̄k,dk) ∈ Xk × X̄k × Rm it holds that

Ṡk(xk, x̄k) =− ψk(xk, x̄k)− (zk − z̄k)
⊤(ρk(zk)− ρk(z̄k)) + (dk − d̄k)

⊤(zk − z̄k)

≤ (dk − d̄k)
⊤(zk − z̄k) (3.4)

with positive semidefinite dissipation rate ψk : Xk × X̄k → R≥0, ψk(x̄k, x̄k) = 0

and strictly monotone function ρk(zk) : Rm → Rm, (zk − z̄k)
⊤(ρk(zk) − ρk(z̄k)) >

0,∀zk ̸= z̄k, then system (3.1b) is output strictly EIP (OSEIP) w.r.t. the supply rate
(dk − d̄k)

⊤(zk − z̄k) and a continuously differentiable, positive semidefinite storage
function Sk(x̄k, x̄k).

Remark 3.4 (Notation). When referring to EIP properties, the addition “w.r.t. the supply rate
(. . . ) and (. . . ) storage function Sk(xk, x̄k)” is commonly omitted in the literature. However,
for clarity, the additional information regarding the supply rate and the properties of the storage
function are provided throughout this thesis except when explicitly clear from the context, e.g, in
a technical argument with repetitive reference to the same EIP property.

Remark 3.5 (Wording). EIP is also termed “shifted passivity with respect to any constant
input d̄ and corresponding equilibrium x̄” by van der Schaft [2017, p. 169] or “passivity of
incremental systems” by Bürger et al. [2014] and Jayawardhana et al. [2007]. On the other
hand, “incremental passivity” as defined by Stan and Sepulchre [2007] and van der Schaft
[2017, p. 94–95], i.e., passivity with respect to two arbitrary state trajectories x1(t),x2(t), is
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more general than EIP, where one of the trajectories is an equilibrium x̄ [Hines et al., 2011;
Simpson-Porco, 2019]. However, this makes incremental passivity also harder to verify. Within
this thesis, the denotation EIP is used as the author believes it provides the clearest understanding
of the passivity property it describes, i.e., passivity independent of an explicit equilibrium point.

In line with the stability analysis of the origin in Lemma A.1, (asymptotic) stability of
any feasible equilibrium x̄ ∈ X̄ of the autonomous, networked system (3.1a) can now
be investigated by requiring certain EIP properties of the subsystems (3.1b) and using
the skew symmetry of the interconnection structure (3.1e). The following proposition is
inspired by Arcak et al. [2016, Theorem 3.1].

Proposition 3.1 (Equilibrium-independent stability of networked systems)
Consider an autonomous, networked system as in Definition 3.1. Assume (3.1a)
admits equilibria within a non-empty equilibrium set X̄ , i.e., x̄ ∈ X̄ . If each subsystem
(3.1b) is EIP w.r.t. the supply rate (dk−d̄k)

⊤(zk− z̄k) and a continuously differentiable,
positive definite storage function Sk(xk, x̄k) > 0,∀xk ̸= x̄k, Sk(x̄k, x̄k) = 0, then any
equilibrium x̄ ∈ X̄ is stable. If each subsystem (3.1b) is strictly EIP w.r.t. the supply
rate (dk − d̄k)

⊤(zk − z̄k) and a continuously differentiable, positive definite storage
function, Sk(xk, x̄k), then any equilibrium x̄ ∈ X̄ is asymptotically stable.

Proof:
The proof follows a similar reasoning as that of Lemma A.1. Choose the storage func-
tion S : X × X̄ → R≥0 of the autonomous, networked system (3.1a) as the sum of
the subsystem storage functions S(x, x̄) =

∑N
k=1 Sk(xk, x̄k). Since each Sk(xk, x̄k) is

continuously differentiable and positive definite, S(x, x̄) is continuously differentiable
and positive definite. Due to the skew symmetry of the interconnection structure (3.1e),
it holds that (d − d̄)⊤(z − z̄) = (z − z̄)⊤M(z − z̄) = 0. Thus, the time derivative of
S(x, x̄) is given by

Ṡ(x, x̄) = −
N∑
k=1

ψk(xk, x̄k) ≤ 0, ∀x ∈ X , (3.5)

which makes S(x, x̄) a Lyapunov function for any feasible equilibrium x̄ ∈ X̄ and
proves its stability (see van der Schaft [2017, p. 44]). From strict EIP of each subsystem
(3.1b), it follows that

Ṡ(x̄, x̄) = 0, Ṡ(x, x̄) = −
N∑
i=1

ψk(xk, x̄k) < 0, ∀x ̸= x̄, (3.6)

which proves asymptotic stability of any feasible equilibrium x̄ ∈ X̄ (see van der Schaft
[2017, p. 44]).
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Remark 3.6. Note that in order to directly infer stability statements from passivity/EIP prop-
erties as done in Proposition 3.1 and Lemma A.1, the storage functions Sk are required to be
positive definite (see also Khalil [2002, Lemma 6.6]). In general, this additional requirement is
needed, since the passivity/EIP properties introduced in Definitions 3.2 and A.1 only require
positive semidefinite storage functions. In case of standard passivity, alternatively to requiring
positive definite storage functions, additional detectability conditions can be posed on the sub-
systems to infer stability of the origin [Sepulchre et al., 1997, pp. 48-50]. However, in practice,
the positive definiteness requirement is typically used as it is not restrictive. In particular,
when storage functions are proposed based on energy considerations of the subsystem models
(3.1b), they are often quadratic functions of the form Sk(xk) =

1
2x

⊤
kQkxk, Qk ≻ 0, which are

naturally positive definite (see for example Sections 4.2.2, 5.2.2, and 6.2.2).

3.3 Equilibrium-Independent Passivity and Asymptotic
Stability of Networked Systems Revisited

Proposition 3.1 gives decentralized, analytical conditions that allow to infer asymptotic
stability of any feasible equilibrium x̄ ∈ X̄ of an autonomous, networked system (3.1).
In principle, it thus provides a general answer to the research questions (Q1.1), (Q2.1),
(Q3.2), and (Q4.1).

However, asymptotic stability can only be deduced directly in case all subsystems are
strictly EIP, i.e., all dissipation rates ψk(xk, x̄k) have to be positive definite functions that
satisfy ψk(xk, x̄k) > 0,∀xk ̸= x̄k, ψk(x̄k, x̄k) = 0. In other words, every state variable in
each subsystem state vector xk is required to appear in the dissipation rate, as only then
ψk(xk, x̄k) = 0 implies xk ≡ x̄k. In practice, this means that every state variable in xk
must be subject to some direct damping, e.g., via a serial or parallel resistor in electrical
systems or friction in hydraulic systems. However, in many applications including the
various networked energy systems considered in this thesis, this requirement cannot be
fulfilled in all subsystems (see for example Sections 4.3, 5.3, 6.2.2, and 6.3).

Thus, milder decentralized conditions are sought that allow to infer asymptotic stability
of any feasible equilibrium x̄ ∈ X̄ of an autonomous, networked system (3.1). For
standard passivity, the strict passivity requirement that each subsystem has to fulfill in
order to prove asymptotic stability can be relaxed by requiring additional invariance
arguments or detectability/observability conditions (see, e.g., Sepulchre et al. [1997,
pp. 48–50] or Khalil [2002, pp.243–250]). For the feedback interconnection of two passive
subsystems, for example, OSP and zero-state observability (ZSO) (see Definition 3.3)
are sufficient to proof asymptotic stability of the origin [Khalil, 2002, Theorem 6.3].
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Definition 3.3 (Zero-state observability [van der Schaft, 2017, Definition 3.2.11])
A state-space system (3.1b) is zero-state observable (ZSO), if dk(t) = 0m, zk(t) = 0m,
∀t ≥ 0 implies xk(t) = 0nk

.

However, there exists no theorem within EIP theory that provides similarly relaxed,
decentralized conditions to infer asymptotic stability of any feasible equilibrium x̄ ∈ X̄
of an autonomous, networked system (3.1). Thus, inspired by classical passivity results
and preliminary works in the EIP context by Hines et al. [2011], Bürger et al. [2014],
and Simpson-Porco [2019], a general theorem is proposed which combines EIP, OSEIP,
equilibrium-independent observability (EIO), and confined dynamics arguments to
prove asymptotic stability of any feasible x̄ ∈ X̄ . The main idea behind the theorem is
as follows: firstly, the EIP properties of the subsystems and their positive definite stor-
age functions are combined to prove stability of x̄. Subsequently, the specific digraph
representation of an autonomous, networked system, particularly its skew-symmetric
interconnection structure, OSEIP, EIO, and confined dynamics arguments are used to
modularize the asymptotic convergence analysis via the Invariance principle and prove
asymptotic stability of x̄.

Definition 3.4 (Equilibrium-independent observability (EIO) [Simpson-Porco, 2019,
Definition 4.1])
Consider a state-space system (3.1b) and suppose there exists a non-empty set X̄k ⊆
Rnk , where for every x̄k ∈ X̄k there is a unique input d̄k ∈ Rm such that 0nk

=

fk(x̄k, d̄k) and z̄k = hk(x̄k). Then (3.1b) is equilibrium-independent observable
(EIO), if dk(t) = d̄k, zk(t) = z̄k, ∀t ≥ 0 implies xk(t) = x̄k.
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Theorem 3.1 (Equilibrium-independent asymptotic stability of networked systems)
Consider an autonomous, networked system as in Definition 3.1. Assume (3.1a)
admits equilibria within a non-empty equilibrium set X̄ ⊆ Rn, i.e., x̄ ∈ X̄ . Then any
equilibrium x̄ ∈ X̄ is asymptotically stable, if the following four conditions hold:

(i) Each edge subsystem l ∈ E is OSEIP w.r.t. the supply rate (dl − d̄l)
⊤(zl − z̄l)

and a continuously differentiable, positive definite storage function Sl(xl, x̄l) >
0,∀xl ̸= x̄l, Sl(x̄l, x̄l) = 0.

(ii) Each edge subsystem l ∈ E is either EIO or such that no solution other than
xl = x̄l can stay in El = {xl ∈ Xl ⊆ Rnl |Ṡl(xl, x̄l) = 0,dl = d̄l} for all time.

(iii) Each node subsystem i ∈ V is EIP w.r.t. the supply rate (di − d̄i)
⊤(zi − z̄i)

and a continuously differentiable, positive definite storage function Si(xi, x̄i) >
0,∀xi ̸= x̄i, Si(x̄i, x̄i) = 0.

(iv) Each node subsystem i ∈ V is such that no solution other than xi = x̄i can stay
in Ei = {xi ∈ Xi ⊆ Rni |Ṡi(xi, x̄i) = 0,di = d̄i} for all time.

Furthermore, the asymptotic stability statement continues to hold when the conditions
for the node and edge subsystems are interchanged.

Proof:
Choose the storage function S : X × X̄ → R≥0 of the autonomous, networked sys-
tem (3.1a) as the sum of the subsystem storage functions S(x, x̄) =

∑N
k=1 Sk(xk, x̄k).

Since each Sk(xk, x̄k) is continuously differentiable and positive definite per condi-
tions (i) and (iii), S(x, x̄) is continuously differentiable and positive definite. Due to the
skew symmetry of the interconnection structure (3.1e), it holds that (z − z̄)⊤(d− d̄) =

(z − z̄)⊤M(z − z̄) = 0. Thus, with the OSEIP and EIP properties from conditions (i)
and (iii), the time derivative of S(x, x̄) satisfies

Ṡ(x, x̄) =
∑
i∈V

Ṡi(xi, x̄i)−
∑
l∈E

Ṡl(xl, x̄l) (3.7a)

= −
∑

k∈V∪E

ψk(xk, x̄k)−
∑
l∈E

(zl − z̄l)
⊤(ρl(zl)− ρl(z̄l)) ≤ 0, ∀x ∈ X , (3.7b)

which makes S(x, x̄) a Lyapunov function for any feasible equilibrium x̄ ∈ X̄ and
proves its stability (see van der Schaft [2017, p. 44]).

Furthermore, as t → ∞, every solution x(t) starting in X converges to the largest
invariant set M contained in

E = {x ∈ X |Ṡ(x, x̄) = 0}. (3.8)

Due to its invariance, set M can be found by considering only those solutions x(t) of
(3.1a) which start in E and evolve with their dynamics constraint to E.
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From (3.7), condition (i), and condition (iii), it follows that set E in (3.8) can equivalently
be characterized by Ṡi(xi, x̄i) = 0, i ∈ V , and Ṡl(xl, x̄l) = 0, l ∈ E . Due to the
OSEIP of the edge subsystems (see condition (i)), Ṡl(xl, x̄l) = 0 implies zl ≡ z̄l for all
l ∈ E and thus zE ≡ z̄E . Due to the interconnection structure (3.1e), zE ≡ z̄E implies
dV ≡ d̄V . From dV ≡ d̄V , Ṡi(xi, x̄i) = 0, and the confined node dynamics behavior
in condition (iv), it follows that xV ≡ x̄V , which in turn implies zV ≡ z̄V . Due to the
interconnection structure (3.1e), zV ≡ z̄V implies dE ≡ d̄E . With dE ≡ d̄E and zE ≡ z̄E
established, the EIO property or the confined dynamics behavior of the edge subsystems
in condition (ii) implies xE ≡ x̄E . Consequently, the largest invariant set contained in
(3.8) is x = x̄ = [x̄V , x̄E ]

⊤ ∈ X̄ . Thus, any feasible equilibrium x̄ ∈ X̄ is asymptotically
stable.

In case the conditions for the node and edge subsystem are interchanged, the proof
follows analogously by appropriately swapping the indices (·)i, (·)l and (·)E , (·)V , re-
spectively.

Remark 3.7. Note that in Theorem 3.1, the EIO property is only added as alternative for the
edge subsystems (see condition (ii)), since it does not add any limitation on the other subsystem
conditions. In contrast, adding EIO as an alternative property in the node condition (iv) alone
would not yield a working proof. After establishing dV ≡ d̄V , the argument would stop since
zV ≡ z̄V would be needed to infer xV ≡ x̄V and continue the proof. A possibility to establish
zV ≡ z̄V in E would be to require the node subsystems to be OSEIP instead of EIP. However,
this adds more conservativeness. The confined dynamics requirement in condition (iv), on the
other hand, only needs dV ≡ d̄V to make the xV ≡ x̄V statement. Additionally, when applying
the conditions from Theorem 3.1 to a given autonomous networked system model, the confined
dynamics requirement makes not only use of di ≡ d̄i, but also considers any confinements
arising from Ṡi(xi, x̄i) = 0. That is, states in xi that experience direct damping and thus
appear in Ṡi(xi, x̄i) via the dissipation rate (see (3.7b)) can be set to zero in E. Experience
gained by applying the conditions of Theorem 3.1 throughout Chapters 4 to 6 indicate that this
often largely simplifies the confined dynamics and allows for a much more direct and simple
analysis compared to establishing EIO.

As a last step within this section, the results of Proposition 3.1 and Theorem 3.1 are
combined. The resulting corollary accounts for the fact that if some subsystem (3.1b) at
a node or edge k of an autonomous, networked system (3.1a) is strictly EIP w.r.t. the
supply rate (dk − d̄k)

⊤(zk − z̄k) and a continuously differentiable, positive definite
storage function Sk(xk, x̄k), it can readily be integrated into the asymptotic stability
proof of Theorem 3.1.
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Corollary 3.1 (Theorem 3.1 with some strictly EIP subsystems)
Consider an autonomous, networked system as in Definition 3.1. Assume (3.1a) admits
equilibria within a non-empty equilibrium set X̄ ⊆ Rn, i.e., x̄ ∈ X̄ . Furthermore,
define V = VTh ∪VSEIP, E = ETh ∪ ESEIP, and assume some subsystems k ∈ VTh ∪ ETh

fulfill the conditions of Theorem 3.1, while others given by k ∈ VSEIP ∪ ESEIP are
strictly EIP w.r.t. the supply rate (dk− d̄k)

⊤(zk− z̄k) and a continuously differentiable,
positive definite storage function Sk(xk, x̄k) > 0,∀xk ̸= x̄k, Sk(x̄k, x̄k) = 0. Then any
equilibrium x̄ ∈ X̄ is asymptotically stable.

Proof:
The proof is similar to that of Theorem 3.1. The main difference is that in case of strict
EIP, it holds for the respective subsystems that Ṡi(xi, x̄i) = 0 and Ṡl(xl, x̄l) = 0 directly
imply xi ≡ x̄i and xl ≡ x̄l, respectively. Furthermore, xi ≡ x̄i and xl ≡ x̄l imply
zi ≡ z̄i and zl ≡ z̄l, respectively. Consequently, either from OSEIP in condition (i) of
Theorem 3.1 or from strict EIP, it follows that zE ≡ z̄E and thus dV ≡ d̄V . Then, either
from condition (iv) of Theorem 3.1 or from strict EIP, it follows that xV ≡ x̄V , which in
turn implies zV ≡ z̄V . Lastly, either from condition (ii) of Theorem 3.1 or strict EIP, it
follows that xE ≡ x̄E .

3.3.1 Discussion

By requiring each subsystem to be strictly EIP, decentralized conditions for the asymp-
totic stability of any feasible networked system equilibrium can be deduced (see Pro-
position 3.1). This strict EIP requirement, however, is of limited practical use as it often
cannot be fulfilled in real networked systems (see for example the various networked
energy system models in Sections 4.3, 4.3, 6.2.2, and 6.3).

Theorem 3.1 remedies this limitation and demonstrates that less restricting EIP and
OSEIP properties together with a confined dynamics requirement suffice for proving
asymptotic stability of any feasible networked system equilibrium in a modular man-
ner. The main innovation of the theorem lies in a full modularization of the two-step
procedure which is commonly used when proving asymptotic stability of equilibria
by means of non-strict passivity properties (see, e.g., Sepulchre et al. [1997, pp. 43,50]).
In this procedure, firstly, stability of the/any equilibrium is established by generating
a composite Lyapunov function V from the storage functions of the subsystems and
combining their passivity/EIP properties to show negative semidefiniteness of V̇ . In
absence of strict passivity/EIP, however, the second step towards an asymptotic stability
statement cannot directly be conducted in a modular way. Instead, the Invariance Prin-
ciple is applied to the overall system dynamics. In the proof of Theorem 3.1, this second
step is also modularized by combining the skew-symmetric interconnection structure
of autonomous, networked systems with EIP, OSEIP, EIO, and confined dynamics
properties of the subsystems. The generality of the decentralized, asymptotic stability
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conditions in Theorem 3.1, which are applicable to general, nonlinear state-space sub-
systems of the form (3.1b), provides a solid, system-theoretical foundation for realizing
flexible networked system configurations comprising different technologies, control
strategies, and physical domains. The local, decentralized nature furthermore allows
for time-varying network topologies in which subsystems can connect and disconnect
in a plug-and-play fashion.

Throughout Chapters 4 to 7, it will be shown how these beneficial features can be used
to lay the foundation for decentralized stabilization frameworks in various networked
energy systems. It will become evident that the relaxed EIP and OSEIP properties are in
fact essential for proving asymptotic stability of any feasible equilibrium in AC power
systems, DC power systems, DHNs, and NMESs, and thus for answering research
questions (Q1.1), (Q2.1), (Q3.2), and (Q4.1).

3.4 Equilibrium-Independent Passivity of
Port-Hamiltonian Systems

The representation of explicit state-space models (see (3.1b) or (3.2)) in PHS form
provides a clear perspective on which input-output ports are accessible for control
and over which ports subsystems interact with each other in a network structure. Fur-
thermore, the passivity properties with respect to these ports and the Hamiltonian as a
storage function are directly visible. This makes PHS representations the natural starting
point or desired closed-loop form of many PBC designs (see, e.g., Ortega and García-
Canseco [2004]; Jayawardhana et al. [2007]; Donaire and Junco [2009] and van der Schaft
[2017, Chapter 7]) and facilitates a subsequent EIP-based stability analysis. Moreover,
the generalized, power- and energy-based perspective underlying PHS modeling allows
to describe different physical domains in a formally equivalent way and thus provides
the basis for the analysis and control synthesis of multi-domain physical systems. In the
context of this thesis, the domain-unifying nature of the PHS framework together with
the notion of an autonomous, networked system are used to provide a unifying sys-
tem description of the various networked energy systems, to transfer control solutions
between energy systems, and formulate the NMES results in Chapter 7.

For a recapitulation of the concept of generalized modeling, which underlies PHSs
theory, and basic ISO-PHS definitions, the reader is referred to Appendix A. Of particular
interest within this thesis is the following subclass of ISO-PHSs, which is used to model
the different subsystems within the networked energy systems. It combines aspects of a
linear ISO-PHS with that of an ISO-PHS with nonlinear resistive structure.2

2 Note that the term nonlinear in the context of the resistive structure does not refer to a nonlinearity with
respect to x, which can already occur in expressions of the form R(x)

∂H(x)
∂x

. Instead, the nonlinearity
refers to the so-called resistive port variables. For a detailed discussion see van der Schaft and Jeltsema
[2014, p. 24] and Pfeifer [2022, pp. 28–29].
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Definition 3.5 (Partially linear ISO-PHS with nonlinear resistive structure)
A partially linear ISO-PHS with nonlinear resistive structure is an explicit state-space
model of the form

ẋ = [J −R]
∂H

∂x
(x)−R

(
∂H

∂x
(x)

)
+G(x)u+Kd, (3.9a)

y = G⊤(x)
∂H(x)

∂x
, (3.9b)

z = K⊤ ∂H(x)

∂x
, (3.9c)

H(x) =
1

2
x⊤Qx, (3.9d)

with x, ∂H∂x (x), (u,y), (d, z) as in Definition A.2. The Hamiltonian H(x) is a quadratic,
positive definite function with Q = Q⊤ ≻ 0. The matrices J ,R ∈ Rn×n, J = −J⊤,
R = R⊤ ≽ 0, and K ∈ Rn×m are constant. The matrix G(x) ∈ Rn×mu is state-
dependent. The nonlinear damping function R

(
∂H
∂x (x)

)
: Rn → Rn is monotone

wr.t. ∂H
∂x (x) and satisfies R(0n) = 0n such that

(
∂H
∂x (x)

)⊤ R
(
∂H
∂x (x)

)
≥ 0 for all

∂H
∂x (x) ∈ Rn (cf. Rockafellar and Wets [1998, Definition 12.1]).

In the sequel, during the modeling of the DC power systems, AC power systems, and
DHNs in Sections 4.1, 5.1, and 6.1, it is shown that each of the subsystems within the
respective energy system can be represented as an ISO-PHS of the form (3.9). Thus, to
facilitate the technical arguments in the remainder of this thesis, the EIP properties of
the ISO-PHS (3.9) are analyzed in the following lemma.

Lemma 3.1 (EIP properties of ISO-PHS (3.9))
The ISO-PHS (3.9) is EIP w.r.t. the supply rate (u − ū)⊤(y − ȳ) + (d − d̄)⊤(z − z̄)

and the shifted Hamiltonian as continuously differentiable, positive definite storage
function

S(x, x̄) =
1

2
(x− x̄)⊤Q(x− x̄) =

1

2
∥x− x̄∥2Q, (3.10)

if G(x) is constant, i.e., G(x) = G. If additionally

R̃
(
∂H
∂x (x)

)
:= R∂H

∂x (x) +R
(
∂H
∂x (x)

)
(3.11)

is strictly monotone w.r.t. ∂H∂x (x), then (3.9) is strictly EIP.

Proof:
In order to show EIP, let G(x) = G be constant in (3.9). Then, let u and d be fixed to
arbitrary equilibrium values ū and d̄ with associated ȳ, z̄, and x̄. Since x̄ satisfies

0 = [J −R] ∂H∂x (x̄)−R
(
∂H
∂x (x̄)

)
+Gū+Kd̄, (3.12)
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the ISO-PHS (3.9) can equivalently be written as

ẋ = [J −R]
(
∂H
∂x (x)− ∂H

∂x (x̄)
)
−
[
R
(
∂H
∂x (x)

)
−R

(
∂H
∂x (x̄)

)]
+G(u− ū) +K(d− d̄), (3.13a)

y − ȳ = G⊤ (∂H
∂x (x)− ∂H

∂x (x̄)
)
, (3.13b)

z − z̄ = K⊤ (∂H
∂x (x)− ∂H

∂x (x̄)
)
. (3.13c)

By introducing R̃
(
∂H
∂x (x)

)
as in (3.11), (3.13a) can be rewritten as

ẋ = J
(
∂H
∂x (x)− ∂H

∂x (x̄)
)
−
[
R̃
(
∂H
∂x (x)

)
− R̃

(
∂H
∂x (x̄)

)]
+G(u− ū) +K(d− d̄). (3.14)

For the time derivative of S(x, x̄) in (3.10), it holds that

Ṡ(x, x̄) = −
(
∂H
∂x (x)− ∂H

∂x (x̄)
)⊤ [R̃ (

∂H
∂x (x)

)
− R̃

(
∂H
∂x (x̄)

)]
︸ ︷︷ ︸

ψ(x,x̄)

+ (x− x̄)⊤Q⊤G︸ ︷︷ ︸
(y−ȳ)⊤

(u− ū) + (x− x̄)⊤Q⊤K︸ ︷︷ ︸
(z−z̄)⊤

(d− d̄). (3.15)

Since per definition R ≽ 0 and R
(
∂H
∂x (x)

)
is monotone w.r.t. ∂H∂x (x). R̃

(
∂H
∂x (x)

)
is also

monotone w.r.t. ∂H∂x (x) such that(
∂H
∂x (x)− ∂H

∂x (x̄)
)⊤ [R̃ (

∂H
∂x (x)

)
− R̃

(
∂H
∂x (x̄)

)]
≥ 0, ∀∂H∂x (x) ∈ Rn, (3.16)

and consequently ψ(x, x̄) ≥ 0. Thus, according to Definition 3.2, the ISO-PHS (3.9)
with G(x) = G is EIP w.r.t. the supply rate (u− ū)⊤(y − ȳ) + (d− d̄)⊤(z − z̄) and the
continuously differentiable, positive definite storage function (3.10).

If R̃
(
∂H
∂x (x)

)
is strictly monotone w.r.t. ∂H∂x (x), i.e.,(

∂H
∂x (x)− ∂H

∂x (x̄)
)⊤ [R̃ (

∂H
∂x (x)

)
− R̃

(
∂H
∂x (x̄)

)]
> 0, ∀∂H∂x (x) ̸= ∂H

∂x (x̄), (3.17)

it follows that ψ(x, x̄) > 0 for all x ̸= x̄. Thus, the ISO-PHS (3.9) with G(x) = G is
strictly EIP.

Remark 3.8. If R ≻ 0 or R
(
∂H
∂x (x)

)
is strictly monotone w.r.t. ∂H∂x (x), i.e.,(

∂H
∂x (x)− ∂H

∂x (x̄)
)⊤ [R (

∂H
∂x (x)

)
−R

(
∂H
∂x (x̄)

)]
> 0, ∀∂H∂x (x) ̸= ∂H

∂x (x̄), (3.18)

the strict monotonicity requirement of R̃ in Lemma 5.2 is directly fulfilled.

Remark 3.9. Note that while the standard passivity properties of ISO-PHS models of the form
(A.5) or (3.9) can readily be verified (see, e.g., Duindam et al. [2009, p. 108] or Pfeifer [2022,
Remark 2.27]), this is in general not the case for their EIP properties. The reason for this is the
state dependence of the matrices (see, e.g., van der Schaft [2017, pp.136–137]). Lemma 3.1 thus
provides a remedy for the relevant use cases that will appear within this thesis.



42 3 Methodological Approach

Remark 3.10. Note that since the Hamiltonian (3.9d) is a quadratic, positive definite function,
its shifted version directly qualifies as a positive definite storage function. This property will
be used throughout Chapters 4 to 6, since the various networked energy system models only
comprise linear storage elements which always lead to quadratic Hamiltonians.

This concludes the outline of the methodological approach. In the following, the con-
cepts introduced in this chapter are used to answer the research questions formulated in
Chapter 2 and develop cross-technology frameworks for the decentralized stabilization
in DC power systems, AC power systems, DHNs, and NMESs.

In contrast to the order of appearance in the literature discussion in Chapter 2, the
following presentation starts with DC power systems. As outlined in Section 2.2, DC
power systems are on the rise over the last decades due to technological improvements
and their advantages over their AC counterparts. In particular, the treatment of DC
power systems is simpler than that of AC power systems as the system frequency,
reactive power, and the consideration of electrical three-phase systems in a coupled dq
frame are avoided. This simplifies the system modeling, stability analysis, and controller
design and thus motivates DC power systems as the starting point for developing the
ideas put forth in this thesis.



4 Passivity-Based Decentralized
Stabilization in DC Power Systems

In this chapter, the graph-based description of a networked system, PHS modeling,
and the EIP-based asymptotic stability theorem from Chapter 3 are used to develop a
cross-technology framework for the decentralized stabilization of voltages and currents
in DC power systems.

Firstly, Section 4.1 presents a graph-based, networked system description of the con-
sidered DC power systems along the lines of Definition 3.1. In particular, following
Section 3.4, the subsystems at the nodes and edges of the DC power system digraph are
modeled in a generalized manner as ISO-PHSs to facilitate the subsequent derivation of
decentralized, technology-independent, asymptotic stability conditions and the PBC
design.

Based on the model, Section 4.2 demonstrates how the passivity-based approach of
Theorem 3.1 and Corollary 3.1 provides a direct answer to research question (Q2.1).
Subsequently, the unactuated subsystems are shown to fulfill the derived, decentralized
asymptotic stability conditions under parameter requirements. Lastly, the main control
problems related to answering research question (Q2.2) are formulated.

In Section 4.3, the formulated control problems are addressed. Decentralized, passivity-
based current and voltage controllers for the actuated DGU subsystems are designed.
Additionally, the unifying, cross-technology nature of the established decentralized
stabilization framework is showcased. By example of the voltage controller of Nahata
et al. [2020] it is demonstrated how decentralized control solutions available in the
literature are readily compatible with the decentralized asymptotic stability conditions
derived in Section 4.2.

Subsequently, Section 4.4 presents simulation scenarios to validate the findings of the
prior sections.

Sections 4.5 and 4.6 conclude this chapter with a discussion and summary of the main
contributions. In particular, the main results are compared to the passivity-based works
published in parallel to this thesis (see Section 2.4).1

1 Preliminary results leading to the content of this chapter have been published in the conference papers
[Strehle et al., 2020a; Strehle et al., 2020b].
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4.1 Modeling

In this section, the model of the considered DC power systems is established along
the lines of Definition 3.1. Firstly, in Section 4.1.1, the DC power system setup is
outlined and formally described as a digraph. Afterwards, in Sections 4.1.2 and 4.1.3,
the subsystems on the nodes (DGUs, loads) and the edges (power lines) are modeled as
explicit state-space systems in the form of ISO-PHSs (3.9). Lastly, the interconnection
structure of the subsystems is formalized via the incidence matrix of the digraph in
Section 4.1.4.

4.1.1 System Setup

This chapter considers DC power systems comprising DGUs, loads, and power lines
that are connected in flexible, time-varying system configurations. Such DC power
systems can be described by a weakly connected digraph G = (V, E) without self-loops
as illustrated in Figure 4.1 with subsystems on the nodes V and edges E . The nodes
V are partitioned into two sets: D = {1, . . . , D}, D ≥ 1, represents the DGUs, which
may each supply a local load, and L = {D + 1, · · · , D + L}, L ≥ 1, represents load
nodes without DGUs. The edges E = P = {1, . . . , P}, P ≥ 1, represent power lines. The
edge orientation represents the arbitrary reference direction of positive line currents.
Furthermore, the digraph G is completely specified by its incidence matrix B ∈ R|V|×|E|

with elements bil (cf. (1.1)).

In the following, the models of the DGUs and loads on the nodes V and the power lines
on the edges E of a DC power system digraph are presented.

4.1.2 Subsystems on Nodes

DGUs

The circuit diagram of a DGU at any node i ∈ D in the DC power system is shown
in the left dashed frame of Figure 4.2. The DGU comprises a DC voltage source, a
voltage-source converter (VSC), and a series RLC filter with parameters Ri, Li, Ci > 0.
The DC voltage source represents an RES (e.g., a photovoltaic power plant), a storage
device or a combination thereof. The losses in the VSC and filter are lumped together in
Ri. The VSC is modeled by a time-averaged model commonly employed for control
design (see for example Chiniforoosh et al. [2010] and Schiffer et al. [2016]).2

2 The average model is motivated by the fact that the switching frequencies of converters are typically very
high (2 kHz-20 kHz) compared to the other system dynamics and sufficiently suppressed by RLC filters.
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(0.2 km)

Figure 4.1: Digraph representation of Feeder 1 of the medium-voltage CIGRE AC benchmark network from
Strunz et al. [2014, Figure 6.5] as DC power system comprising ZIP and exponential loads; DGUs
are added at nodes i ∈ D = {1, 2, 3, 4, 5, 6}.

The DC source together with the averaged VSC model is assumed to form an ideal
voltage source VS,i that supplies sufficient power at all times.3 The current IN,i is the
net-current injected into the DC power system which equals the accumulated incoming
and outgoing line currents. Furthermore, each DGU may supply a local load described
by a voltage-dependent current sink IL,i(Vi).

From Kirchhoff’s current law (KCL) and Kirchhoff’s voltage law (KVL), the dynamics
for each DGU i ∈ D follow as

Liİi = −RiIi + VS,i − Vi

CiV̇i = Ii − IL,i(Vi)− IN,i,
(4.1a)

3 Implicitly or explicitly, the ideal voltage source assumption is commonly made in the literature without
any further discussion (see, e.g., all works reviewed in Section 2.2.1 and the parallel works focusing on DC
power systems mentioned in Section 2.4.1). In the discussion in Section 4.5, its practical implications will be
illuminated.
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DGU i ∈ D Line l ∈ P

−

+

VS,i

Ii
Ri Li

Ci

+

−

Vi

IL,i(Vi)

IN,i

∑
l∈E

|bil|
Cl
2

VSCi

Rl Il
Ll

j ∈ V

Figure 4.2: Circuit diagram of a DGU i ∈ D comprising a DC voltage source, a VSC with control input VS,i,
and a series RLC filter (green) connected to Π-model power lines (blue) and a local DC load
represented by a voltage-dependent current sink IL,i(Vi) (orange). The line capacitances Cl are
considered to be part of the respective subsystems at the nodes.

with Ii, VS,i, IN,i ∈ R, Vi ≥ 0, IL,i : R≥0 → R, and parameters Ri, Li, Ci > 0. In order to
write (4.1) as an ISO-PHS model, the following assumption has to be made:

Assumption 4.1 (Monotonicity of DC load current functions)
The load current function IL,i(Vi) is monotonically increasing and satisfies IL,i(0) = 0.

Remark 4.1. In Section 4.2.2, conditions on the load parameters will be established such that
Assumption 4.1 holds. It will be shown that ensuring the monotonicity property is equivalent to
providing parameter specifications under which the load model is EIP.

Given Assumption 4.1, the DGU model (4.1) can be written as an ISO-PHS of the form
(3.9) with state and co-state vectors

xi =

[
LiIi
CiVi

]
,

∂Hi

∂xi
(xi) =

[
Ii
Vi

]
, (4.1b)

control port pair
ui = VS,i, yi = Ii, (4.1c)

uncontrolled interaction (coupling) port pair

di = −IN,i =
∑
l∈E

bilIl, zi = Vi, (4.1d)

matrices

Ji =

[
0 −1

1 0

]
, Ri =

[
Ri 0

0 0

]
, Gi =

[
1

0

]
, Ki =

[
0

1

]
, Qi =

[ 1
Li

0

0 1
Ci

]
, (4.1e)

and nonlinear damping function

Ri

(
∂Hi

∂xi
(xi)

)
=

[
0

IL,i(Vi)

]
. (4.1f)
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Line l ∈ P Load i ∈ L

Rl Il
Ll IN,i

Ci =∑
l∈E

|bil|
Cl
2

∑
l∈E
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2

+

−

Vj

+

−

Vi

IL,i(Vi)

j ∈ V

Figure 4.3: Circuit diagram of a load node i ∈ L comprising a nonlinear static ZIP or exponential load
represented by a voltage-dependent current sink IL,i(Vi) (orange) connected to Π-model power
lines (blue). The capacitance Ci is the sum of the parallel capacitances of the lines connecting to
the load node.

Remark 4.2. In this thesis, the specific current-voltage relation IL,i(Vi) of a local load is
either given by (4.2f) or (4.2g). In case a DGU does not supply a local load, IL,i(Vi) = 0 and
Ri

(
∂Hi

∂xi
(xi)

)
= 02.

Load nodes

The circuit diagram of a DC load node i ∈ L along with connecting power lines is shown
in Figure 4.3. The load is modeled as a voltage-dependent current sink representing a
nonlinear static DC load. From KCL, the dynamic equation for each load node i ∈ L
follows as

CiV̇i = −IL,i(Vi)− IN,i, (4.2a)

with IN,i ∈ R, Vi ≥ 0, IL,i : R≥0 → R, and capacitance Ci > 0.

Under Assumption 4.1, the load node model (4.2) can be written as an ISO-PHS of the
form (3.9) with state and co-state

xi = CiVi,
∂Hi

∂xi
(xi) = Vi, (4.2b)

uncontrolled interaction (coupling) port pair

di = −IN,i =
∑
l∈E

bilIl, zi = Vi, (4.2c)

scalars
Ji = 0, Ri = 0, Gi = 0, Ki = 1, Qi =

1
Ci
, (4.2d)

and nonlinear damping function

Ri

(
∂Hi

∂xi
(xi)

)
= IL,i(Vi). (4.2e)

The nonlinear damping function (4.2e) is specified by the nonlinear, static current-
voltage relation of the respective DC load models. In this thesis, the prevalent nonlinear,
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static ZIP and exponential load models are considered (see Appendix B.1). For voltages
above 0.7 times the nominal voltage V0 > 0, i.e., Vi ≥ 0.7V0, ZIP and exponential
DC loads are modeled by the power equations (B.3a) and (B.4a), respectively. For
Vi < 0.7V0, they behave like constant impedances (B.5a).

To obtain the current-voltage relation in (4.2e), the power equations (B.3a), (B.4a), and
(B.5a) are divided by the respective node voltage Vi. This yields the ZIP load current
relation

IL,i(Vi) =

 YP,iVi + IP,i +
PP,i

Vi
, Vi ≥ 0.7V0,

ỸP,iVi, Vi < 0.7V0,

(4.2f)

with ZIP parameters YP,i, IP,i, PP,i ≥ 0, ỸP,i = YP,i+
IP,i

0.7V0
+

PP,i

(0.7V0)2
, and the exponential

load current relation

IL,i(Vi) =

 P0,i
V
nP,i−1
i

V
nP,i

0

, Vi ≥ 0.7V0,

ỸP,iVi, Vi < 0.7V0,

(4.2g)

with nominal power consumption P0,i ≥ 0, voltage index nP,i ≥ 0, and admittance
ỸP,i =

P0,i 0.7
nP,i

(0.7V0)2
.

4.1.3 Subsystems on Edges

Power lines

The model of a DC power line at any edge l ∈ P is given by the Π-equivalent model
of a transmission line [Kundur, 1994, pp. 201–207] with Cl, Rl, Ll > 0 as illustrated in
Figures 4.2 and 4.3. The capacitances on both sides of the line are considered to be
included in the equivalent capacitance Ci of the respective node subsystem i ∈ V . This
avoids dependent storages (i.e. parallel capacitances in this case) and thus dependent
states. From KVL, the dynamic equation of each power line l ∈ E follows as

Llİl = −RlIl −
∑
i∈V

bilVi, (4.3a)

with Il ∈ R, Vi ≥ 0, and parameters Rl, Ll > 0. Equation (4.3a) can be written as a linear
ISO-PHS of the form (3.9) with state and co-state

xl = LlIl,
∂Hl

∂xl
(xl) = Il, (4.3b)

uncontrolled interaction (coupling) port pair

dl = −
∑
i∈V

bilVi, zl = Il, (4.3c)
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and scalars
Jl = 0, Rl = Rl, Gl = 0, Kl = 1, Ql =

1

Ll
. (4.3d)

Note that (4.3) has no control port (ul, yl).

4.1.4 Interconnection Structure

The interconnection of the DGU and load subsystems on the nodes i ∈ V with the power
line subsystems on the edges l ∈ E is clearly defined by the interaction (coupling) ports
(4.1d), (4.2c), (4.3c) arising from their respective PHS representations. In particular, it
holds that

di =
∑
l∈E

bilIl =
∑
l∈E

bilzl, (4.4a)

dl = −
∑
i∈V

bilVi = −
∑
i∈V

bilzi, (4.4b)

and (cf. (3.1e) with m = 1)[
dV
dE

]
=

[
0|V|×|V| B

−B⊤ 0|E|×|E|

][
zV
zE

]
=: M

[
zV
zE

]
(4.5)

with (·)V = stack((·)i)i∈V and (·)E = stack((·)l)l∈E denoting the respective, stacked
vectors of the subsystems.

4.2 Asymptotic Stability Conditions and
Control Problems

With the DC power system formalized as a digraph and its model established, research
questions (Q2.1) and (Q2.2) can now formally be addressed. Firstly, in Section 4.2.1,
decentralized asymptotic stability conditions are derived by application of Theorem 3.1
and Corollary 3.1. Subsequently, in Section 4.2.2, parameter requirements for the
unactuated power line and load subsystems are established such that the derived,
decentralized stability conditions are met. Lastly, in Section 4.2.3, the remaining control
problems for the actuated DGU subsystems are formulated. Their solution in Section 4.3
will provide answers to research question (Q2.2).

4.2.1 Decentralized Asymptotic Stability Conditions

As a first step, note that the DC power system model outlined in Section 4.1 is similar to
that of an autonomous, networked system given in Definition 3.1. So far, however, the
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control ports (ui, yi) of the DGUs at nodes i ∈ D are open, i.e., the DGU models are of
the form (3.2). In order to conduct an equilibrium stability analysis, it is thus assumed
that each DGU is in closed loop with some controller (see Remark 3.2).

Then, by direct application of Theorem 3.1 and Corollary 3.1 to the now autonomous
DC power system model, decentralized, analytical conditions can be obtained, which,
if satisfied, ensure asymptotic stability of any feasible DC power system equilibrium
x̄DC = stack(x̄k)k∈V∪E . The vectors x̄k are the respective equilibrium state vectors of
the subsystems that are proportional to the steady-state voltages and currents of the DC
power system (cf. (4.1b), (4.2b), (4.3b)).4

Theorem 4.1 (Decentralized, asymptotic stability conditions for DC power systems)
Consider an autonomous DC power system as described in Section 4.1 with some
controller ui at each DGU i ∈ D. Any feasible equilibrium x̄DC = stack(x̄k)k∈V∪E of
such an autonomous DC power system is asymptotically stable, if the following two
conditions hold:

(DC 1) each subsystem at a node i ∈ V is

• strictly EIP w.r.t. the supply rate (di − d̄i)(zi − z̄i) and a continuously
differentiable, positive definite storage function Si(xi, x̄i), or

• EIP w.r.t. the supply rate (di−d̄i)(zi−z̄i) and a continuously differentiable,
positive definite storage function Si(xi, x̄i), and such that no solution
other than xi(t) = x̄i can stay in Ei = {xi ∈ Xi ⊆ Rni |Ṡi(xi, x̄i) = 0, di =

d̄i} for all time.

(DC 2) each subsystem at an edge l ∈ E is

• strictly EIP w.r.t. the supply rate (dl − d̄l)(zl − z̄l) and a continuously
differentiable, positive definite storage function Sl(xl, x̄l), or

• OSEIP w.r.t. the supply rate (dl − d̄l)(zl − z̄l) and a continuously differ-
entiable, positive definite storage function Sl(xl, x̄l), and either EIO or
such that no solution other than xl(t) = x̄l can stay in El = {xl ∈ Xl ⊆
Rnl |Ṡl(xl, x̄l) = 0, dl = d̄l} for all time.

Proof:
The proof follows directly by application of Theorem 3.1 and Corollary 3.1 to the DC
power system model established in Section 4.1 with some controller ui at each DGU
i ∈ D.

The conditions (DC 1) and (DC 2) of Theorem 4.1 answer research question (Q2.1). Next,
it has to be ensured that the DGU and load subsystems fulfill (DC 1) and the power line
subsystems fulfill (DC 2).

4 Note that x̄k for k ∈ D possibly implies a slight abuse of notation, as in the case of dynamic DGU controllers
the original state vector xk from (4.1b) is augmented by additional controller states.
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4.2.2 Properties of the Unactuated Systems

For the unactuated subsystems without control ports, i.e, load nodes i ∈ L (see (4.2))
and power lines l ∈ P (see (4.3)), requirements on the model parameters have to be
established such that conditions (DC 1) and (DC 2) are satisfied.

Load Nodes

Under Assumption 4.1, each load node i ∈ L can be represented as an ISO-PHS of form
(3.9) with Gi(xi) = Gi = 0 (see (4.2d)). According to Lemma 3.1, the load node model
(4.2) is thus EIP w.r.t. the supply rate (di − d̄i)(zi − z̄i) and the shifted Hamiltonian as
continuously differentiable, positive definite storage function Si(xi, x̄i) = 1

2∥xi − x̄i∥2Qi
.

So far, however, it has not been investigated under which conditions Assumption 4.1
holds.

In the following proposition, necessary and sufficient conditions are provided that
ensure each load node i ∈ L fulfills Assumption 4.1 and condition (DC 1). Furthermore,
in the proof, it will be shown that ensuring EIP is in fact equivalent to fulfilling the
monotonicity property from Assumption 4.1.

Proposition 4.1 (EIP and confined dynamics behavior of ZIP and exponential DC
loads)
Consider a load node i ∈ L described by (4.2). If and only if

• for ZIP loads with (4.2f), it holds that

YP,i −
PP,i

V 2
i

≥ 0, Vi ≥ 0.7V0. (4.6)

• for exponential loads with (4.2g), it holds that

nP,i − 1 ≥ 0, Vi ≥ 0.7V0, (4.7)

then Assumption 4.1 is fulfilled and (4.2a) is EIP w.r.t. the supply rate (di− d̄i)(zi− z̄i)

and the continuously differentiable, positive definite storage function

Si(xi, x̄i) =
1
2∥xi − x̄i∥2Qi

(4.8)

for any (feasible) equilibrium pair (d̄i, z̄i) and associated equilibrium state

x̄i = CiV̄i. (4.9)

Furthermore, no solution other than xi(t) = x̄i as in (4.9) can stay in Ei = {xi ∈ Xi ⊆
R|Ṡi(xi, x̄i) = 0, di = d̄i} for all time.
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Proof:
In order to show that the load model (4.2) is EIP w.r.t. the supply rate (di − d̄i)(zi − z̄i)

and the continuously differentiable, positive definite storage function Si(xi, x̄i) in (4.8),
let di be fixed to an arbitrary equilibrium value d̄i with associated equilibrium values
z̄i = V̄i and x̄i = CiV̄i (cf. (4.2b), (4.2c)) for the interaction output and state, respectively.
Since x̄i satisfies −Ri

(
∂Hi

∂xi
(xi)

)
+ d̄i = 0, the load model (4.2) can equivalently be

written as
ẋi = −

[
Ri

(
∂Hi

∂xi
(xi)

)
−Ri

(
∂Hi

∂xi
(x̄i)

)]
+Ki(di − d̄i). (4.10)

For the time derivative of Si(xi, x̄i) in (4.8), it holds that

Ṡi(xi, x̄i) =−
(
∂Hi

∂xi
(xi)− ∂Hi

∂xi
(x̄i)

) [
Ri

(
∂Hi

∂xi
(xi)

)
−Ri

(
∂Hi

∂xi
(x̄i)

)]
︸ ︷︷ ︸

ψi(xi,x̄i)

+
(
∂Hi

∂xi
(xi)− ∂Hi

∂xi
(x̄i)

)
Ki︸ ︷︷ ︸

(zi−z̄i)

(di − d̄i).
(4.11)

Following Definition 3.2, the load model (4.2) is EIP, if and only if

ψi(xi, x̄i)
(4.2)
=
(
Vi − V̄i

) (
IL,i(Vi)− IL,i(V̄i)

)
≥ 0. (4.12)

Note that according to Rockafellar and Wets [1998, Definition 12.1], (4.12) is the defin-
ition of a monotonically increasing, differentiable mapping IL,i : R → R. Thus, (4.12)
is fulfilled, if and only if the load current function IL,i(Vi) is monotonically increasing,
i.e., if and only if dIL,i(Vi)

dVi
≥ 0 (see Rockafellar and Wets [1998, Proposition 12.3]). Ad-

ditionally, IL,i(0) = 0 holds (see (4.2f) and (4.2g)). Thus, fulfilling Assumption 4.1 and
ensuring EIP are equivalent.

For the ZIP current-voltage function (4.2f), the derivative condition is given by

dIL,i(Vi)

dVi
=


YP,i −

PP,i

V 2
i

≥ 0, Vi ≥ 0.7V0,

ỸP,i = YP,i +
IP,i
0.7V0

+
PP,i

(0.7V0)2
≥ 0, Vi < 0.7V0.

(4.13)

Since YP,i, IP,i, PP,i, V0 ≥ 0 per definition, ỸP,i ≥ 0 is always fulfilled. Thus, only the
condition for Vi ≥ 0.7V0 poses a restriction on the load parameters (see (4.6)).

For the exponential current-voltage function (4.2g), the derivative condition is given
by

dIL,i(Vi)

dVi
=


(nP,i − 1)P0,i

V
nP,i−2
i

V
nP,i

0

≥ 0, Vi ≥ 0.7V0,

ỸP,i =
P0,i 0.7

nP,i

(0.7V0)2
≥ 0, Vi < 0.7V0.

(4.14)
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Since P0,i, nP,i ≥ 0 and V0 > 0 per definition, ỸP,i ≥ 0 is always fulfilled and only the
condition for Vi ≥ 0.7V0 poses restrictions on the load parameters. With P0,i, nP,i ≥ 0

and Vi ≥ 0.7V0 > 0, (4.14) holds if and only if (4.7).

Lastly, it is proven that conditions (4.6) and (4.7), respectively, also imply that no solu-
tion other than x̄i as in (4.9) can stay in Ei = {xi ∈ Xi ⊆ R|Ṡi(xi, x̄i) = 0, di = d̄i} for all
time. From (4.11), it follows that set Ei is characterized by ψi(xi, x̄i) = 0, which either
directly implies Vi = V̄i or IL,i(Vi)− IL,i(V̄i) = 0. For the latter, consider the evolution
of a solution of (4.10) starting in Ei. Confine the dynamics (4.10) to Ei for any future
time by inserting Ri

(
∂Hi

∂xi
(xi)

)
− Ri

(
∂Hi

∂xi
(x̄i)

)
= 0 and di = d̄i. This yields ẋi ≡ 0,

which implies Vi ≡ V̄i and xi ≡ x̄i, respectively. Thus, no solution other than x̄i as in
(4.9) can stay in Ei for all time.

Remark 4.3. The ZIP load condition (4.6) is most restrictive on the ratio between YP,i and PP,i

at the lower voltage bound Vi = 0.7V0, where

0.49V 2
0 YP,i ≥ PP,i (4.15)

has to be fulfilled. Thus, to ensure that some load node i ∈ L fulfills (DC 1) for all voltages
Vi ≥ 0, condition (4.15) has to be fulfilled.

Remark 4.4. From (4.6) and (4.15), it can be seen that loads whose constant power share
PP,i becomes too large compared to the constant impedance share YP,i violate the derived load
conditions and thus prevent statements about the asymptotic stability of any DC power system
equilibrium x̄DC. This is in line with power engineering practice and provides insights into
the destabilizing effect of constant power loads mentioned in the literature (see, e.g., Dragičević
et al. [2016] and Meng et al. [2017, Equation (8)]). Similarly, it can be seen from (4.7) that
exponential loads must not behave too much like constant power loads (nP,i = 0 for constant
power load behavior).

Remark 4.5. Note that if (4.13) and (4.14), respectively, hold strictly, the load current function
IL,i(Vi) is strictly monotonically increasing, i.e., dIL,i(Vi)

dVi
> 0 (see Rockafellar and Wets [1998,

Proposition 12.3]) and the load model is thus strictly EIP.

Power Lines

The DC power line models (4.3) can be represented as linear ISO-PHS models with
constant matrices and positive definite dissipation Rl > 0 (see (4.3d)). According
to Lemma 3.1, the power line models (4.3) are thus strictly EIP w.r.t. the supply rate
(dl − d̄l)(zl − z̄l) and the shifted Hamiltonian as continuously differentiable, positive
definite storage function Sl(xl, x̄l) = 1

2∥xl − x̄l∥2Ql
. Consequently, they satisfy condition

(DC 2) for all model parameters.
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4.2.3 Control Problems

For the actuated DGU subsystems i ∈ D, decentralized controllers for the VSCs are to be
designed such that the closed-loop systems satisfy condition (DC 1). Furthermore, the
respective closed-loop equilibrium state vectors ¯̂xi, i ∈ D, should be such that desired
node voltages V̄i = V ∗

i > 0 and current injections Īi = I∗i > 0 are established in steady
state (see research question (Q2.2)).

In particular, recall from Section 2.2 that the operating modes of VSCs can be separated
into grid-forming voltage control and grid-feeding current control (see also Rocabert
et al. [2012]). Consequently, in the following, the set of DGUs with VSCs stabilizing
voltage setpoints V ∗

i is denoted by i ∈ Dform. Conversely, the set of DGUs with VSCs
stabilizing the injected currents to setpoints I∗i is denoted by i ∈ Dfeed.

In order to achieve decentralized stabilization in DC power systems as per Definition 2.4
and provide answers to research question (Q2.2), the following control problem is left
to be addressed:

Problem 4.1 (Decentralized voltage and current control)
Consider DGUs i ∈ D described in open loop by (4.1). For the VSC in each DGU i ∈ D,
design decentralized controllers of the form

ẋc,i = fc,i(xi, xc,i), ui = VS,i = ûi(xi, xc,i) (4.16)

with controller state xc,i ∈ R such that the resulting closed-loop system fulfills (DC 1).
Furthermore, the respective closed-loop equilibrium state vector ¯̂xi = [x̄i, x̄c,i]

⊤ shall
fulfill the following characteristics:

(a) For each grid-feeding DGU i ∈ Dfeed, Īi = I∗i > 0 in ¯̂xi.

(b) For each grid-forming DGU i ∈ Dform, V̄i = V ∗
i > 0 in ¯̂xi.

Remark 4.6. In line with the hierarchical control structure discussed in Section 2.2.2, the
setpoints V ∗

i and I∗i are assumed to be known and specified by a higher-level control ensuring
that these setpoints constitute feasible DC power system equilibria x̄DC within the operational
constraints.

4.3 Passivity-Based Control Design

In this section, Problem 4.1 is addressed. In Sections 4.3.1 and 4.3.2, current and voltage
controllers are designed for the VSCs such that the closed-loop DGU models fulfill the
requirements in Problem 4.1. To showcase the unifying nature of the derived decentral-
ized stability conditions, Section 4.3.3 demonstrates by example of the voltage controller
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proposed by Nahata et al. [2020] that decentralized, passivity-based controllers which
are available in the literature are compatible with condition (DC 1).

4.3.1 Current Controller

The goal of current controllers in grid-feeding DGUs i ∈ Dfeed is to asymptotically
stabilize closed-loop DGU equilibria ¯̂xi =

[
LiI

∗
i , CiV̄i, x̄c,i

]⊤ containing some desired
VSC output current I∗i > 0 (see Problem 4.1 (a)). As Ii = yi is the natural passive control
output of the open-loop DGU model (see (4.1c)), a standard PI controller working on
y∗i − yi = I∗i − Ii can stabilize any equilibrium value ¯̂xi while preserving EIP of the
closed-loop system with respect to the supply rate (di − d̄i)(zi − z̄i) (cf. Jayawardhana
et al. [2007]). In the present case of grid-feeding DGUs i ∈ Dfeed, it can be shown that a
standard PI current controller also suffices to ensure the additional confined dynamics
requirement posed by (DC 1).

Proposition 4.2 (Current controller for grid-feeding DGUs)
Consider a grid-feeding DGU i ∈ Dfeed described in open loop by (4.1). Assume the
local ZIP or exponential load (4.1f) fulfills the conditions of Proposition 4.1. Assign
the control input ui = VS,i with the PI controller

QI,iṙi = −(Ii − I∗i ), (4.17a)

ui = −kP,i(Ii − I∗i ) + ri, (4.17b)

where I∗i > 0 is a desired current setpoint and kP,i, QI,i > 0 are control parameters.
Then, the closed-loop DGU system can be written as

d

dt

 LiIiCiVi
QI,iri


︸ ︷︷ ︸

x̂i

=

−RiIi − kP,i(Ii − I∗i ) + ri − Vi
Ii − IL,i(Vi)

−(Ii − I∗i )


︸ ︷︷ ︸

f̂i(x̂i)

+

01
0


︸︷︷︸
K̂i

di, (4.18a)

zi = Vi. (4.18b)

Moreover, (4.18) is EIP w.r.t. the supply rate (di − d̄i)(zi − z̄i) and the continuously
differentiable, positive definite storage function

Ŝi(x̂i, ¯̂xi) =
1

2

∥∥x̂i − ¯̂xi
∥∥2
Q̂i
, (4.19a)

Q̂i = diag

(
1

Li
,
1

Ci
,

1

QI,i

)
, (4.19b)
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for any (feasible) equilibrium pair (d̄i, z̄i) and associated equilibrium state vector

¯̂xi =
[
LiI

∗
i , CiV̄i, QI,ir̄i

]⊤
. (4.20)

Furthermore, no solution other than x̂i = ¯̂xi as in (4.20) can stay in Ei = {x̂i ∈ X̂i ⊆
R3| ˙̂Si(x̂i, ¯̂xi) = 0, di = d̄i} for all time.

Proof:
Writing the closed-loop DGU model as in (4.18) directly follows by inserting the PI
controller (4.17) into the open-loop DGU model (4.1).

In order to show that (4.18) is EIP w.r.t. the supply rate (di − d̄i)(zi − z̄i) and the
continuously differentiable, positive definite storage function (4.19), let di be fixed to
an arbitrary equilibrium value d̄i with associated equilibrium values z̄i and ¯̂xi for the
interaction output and state, respectively. Since ¯̂xi satisfies f̂i(¯̂xi) + K̂id̄i = 03, the
closed-loop DGU model (4.18) can equivalently be written as

˙̂xi = f̂i(x̂i)− f̂i(¯̂xi) + K̂i(di − d̄i) (4.21a)
(4.18)
(4.20)
=

−Ri(Ii − I∗i )− kP,i(Ii − I∗i ) + (ri − r̄i)− (Vi − V̄i)

(Ii − I∗i )− (IL,i(Vi)− IL,i(V̄i)

−(Ii − I∗i )

+

01
0

 (di − d̄i),

(4.21b)

zi − z̄i = Vi − V̄i. (4.21c)

For the time derivative of Ŝi(x̂i, ¯̂xi) in (4.19), it holds that

Ṡi(x̂i, ¯̂xi) = (x̂i − ¯̂xi)
⊤Q̂⊤

i

(
f̂i(x̂i)− f̂i(¯̂xi)

)
︸ ︷︷ ︸

−ψ̂i(x̂i,¯̂xi)

+(x̂i − ¯̂xi)
⊤Q̂⊤

i K̂i︸ ︷︷ ︸
(zi−z̄i)

(di − d̄i). (4.22)

With (4.18), (4.19), and (4.20), the dissipation rate can be written as

ψ̂i(x̂i, ¯̂xi) = (Ri + kP,i)(Ii − I∗i )
2 +

(
Vi − V̄i

) (
IL,i(Vi)− IL,i(V̄i)

)
. (4.23)

Under the load conditions of Proposition 4.1 and since Ri, kP,i > 0, it holds that
ψ̂i(x̂i, ¯̂xi) ≥ 0. Thus, according to Definition 3.2, the closed-loop DGU model (4.18) is
EIP w.r.t. the supply rate (di − d̄i)(zi − z̄i) and the continuously differentiable, positive
definite storage function (4.19).

Lastly, it is proven that no solution other than ¯̂xi as in (4.20) can stay in Ei = {x̂i ∈ X̂i ⊆
R3| ˙̂Si(x̂i, ¯̂xi) = 0, di = d̄i} for all time. From (4.22), it follows that set Ei is characterized
by

ψ̂i(x̂i, ¯̂xi) ≡ 0
(4.23)
=⇒ Ii ≡ I∗i . (4.24)
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Now consider the evolution of a solution of (4.21) starting in Ei. Confine the dynamics
(4.21) to Ei for any future time by inserting (4.24). This yields the set of equations

0 = (ri − r̄i)− (Vi − V̄i),

CiV̇i = IL,i(Vi)− IL,i(V̄i),

QI,iṙi = 0,

(4.25)

whose unique solution is Vi ≡ V̄i, ri ≡ r̄i. Thus, no solution other than ¯̂xi as in (4.20)
can stay in Ei for all time.

In case a grid-feeding DGU i ∈ Dfeed does not supply a local load, i.e., IL,i(Vi) = 0

(see Remark 4.2), the statements of Proposition 4.2 still hold. The following corollary
summarizes this insight.

Corollary 4.1 (Current control of grid-feeding DGUs without local loads)
Consider a grid-feeding DGU i ∈ Dfeed that does not supply a local load, i.e., its
open-loop model is given by (4.1) with IL,i(Vi) = 0. Assign the control input with the
PI controller as in Proposition 4.2. Then the closed-loop DGU system is given by (4.18)
with IL,i(Vi) = 0. Moreover, all statements from Proposition 4.2 regarding the EIP
properties of the closed loop and its dynamics confined to set Ei hold.

Proof:
The proof is identical to that of Proposition 4.2 except with IL,i(Vi) = IL,i(V̄i) = 0 in the
respective equations.

4.3.2 Voltage Controller

The goal of voltage controllers in grid-forming DGUs i ∈ Dform is to asymptotically
stabilize DGU equilibria ¯̂xi =

[
LiĪi, CiV

∗
i , x̄c,i

]⊤ containing some desired node voltage
V ∗
i > 0 (see Problem 4.1 (b)). However, the node voltage is the passive interaction

output zi = Vi (see (4.1d)) whose corresponding input di is not accessible as control
input. Thus, a standard PI controller as for the current controller in Section 4.3.1 does not
directly ensure EIP of the closed-loop with respect to the supply rate (di− d̄i)(zi− z̄i).

In order to meet the requirements for grid-forming DGUs i ∈ Dform stated in Problem 4.1,
a voltage controller is proposed based on a design combining algebraic IDA-PBC from
Ortega and García-Canseco [2004] and integral action from Donaire and Junco [2009].
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Proposition 4.3 (Voltage controller for grid-forming DGUs)
Consider a grid-forming DGU i ∈ Dform described in open loop by (4.1). Assume the
local ZIP or exponential load (4.1f) fulfills the conditions of Proposition 4.1. Assign
the control input ui = VS,i as

QI,iṙi = Vi − V ∗
i , (4.26a)

ui = V ∗
i + (Ri − R̂i)Ii − R̂iri +

Li
QI,i

(V ∗
i − Vi), (4.26b)

where V ∗
i > 0 is a desired voltage setpoint and R̂i, QI,i > 0 are control parameters.

Then, with the change of coordinates from Ii to

χi := Ii + ri, (4.27)

the closed-loop DGU system can be written as

d

dt

 LiχiCiVi
QI,iri


︸ ︷︷ ︸

x̂i

=

−R̂iχi − (Vi − V ∗
i )

χi − ri − IL,i(Vi)

Vi − V ∗
i


︸ ︷︷ ︸

f̂i(x̂i)

+

01
0


︸︷︷︸
K̂i

di, (4.28a)

zi − z̄ = Vi − V ∗
i . (4.28b)

Moreover, (4.28) is EIP w.r.t. the supply rate (di − d̄i)(zi − z̄i) and the continuously
differentiable, positive definite storage function

Ŝi(x̂i, ¯̂xi) =
1

2

∥∥x̂i − ¯̂xi
∥∥2
Q̂i
, (4.29a)

Q̂i = diag

(
1

Li
,
1

Ci
,

1

QI,i

)
(4.29b)

for any (feasible) equilibrium pair (d̄i, z̄i) and associated equilibrium state

¯̂xi = [Liχ̄i, CiV
∗
i , QI,ir̄i]

⊤
. (4.30)

Furthermore, no solution other than x̂i = ¯̂xi as in (4.30) can stay in Ei = {x̂i ∈ X̂i ⊆
R3| ˙̂Si(x̂i, ¯̂xi) = 0, di = d̄i} for all time.

Proof:
Firstly, it is illustrated how to assign desired closed-loop dynamics (4.28) according to
IDA-PBC and systematically derive the coordinate transformation (4.27). Following
the IDA-PBC design methodology from Ortega and García-Canseco [2004], the directly
actuated current dynamics (see (4.1a)) are assigned a desired damping R̂i > 0 and
the Hamiltonian is shifted such that it contains a term Ci(Vi − V ∗

i ) implying a min-
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imum at the desired voltage setpoint V ∗
i . Additionally, following Donaire and Junco

[2009], an integrator state (4.26a) is added to guarantee zero steady-state voltage errors.
Subsequently, by introducing a new coordinate χi, the resulting DGU dynamics in
closed-loop (see (4.28a)) can be written in the form of an ISO-PHS (3.9)

d

dt

 LiχiCiVi
QI,iri

 =

−R̂i −1 0

1 0 −1

0 1 0

 χi
Vi − V ∗

i

ri

−

 0

IL,i(Vi)

0

+

01
0

 di. (4.31)

The specific coordinate transformation (4.27) is found by matching the voltage dynamics,
which are not directly actuated, in closed-loop (4.28a) (see also (4.31)) and open-loop
(4.1a). This yields

χi − ri − IL,i(Vi) + di = Ii − IL,i(Vi) + di, (4.32)

⇔ χi = Ii + ri, (4.33)

as in (4.27). In order to derive the controller (4.26b), compute Liχ̇i to get

Liχ̇i
(4.27)
= Liİi + Liṙi

(4.1a)
(4.26a)
= −RiIi − Vi + ui + Li

1

QI,i
(Vi − V ∗

i ). (4.34)

By matching (4.34) with the assigned Liχ̇i dynamics in (4.28a) (see also (4.31)), i.e.,

−R̂iχi−(Vi−V ∗
i )

(4.27)
= −R̂iIi−R̂iri−(Vi−V ∗

i ) = −RiIi−Vi+ui+Li
1

QI,i
(Vi−V ∗

i ), (4.35)

and rearranging, the control law (4.26b) is obtained.

Next, it is shown that (4.28) is EIP w.r.t. the supply rate (di − d̄i)(zi − z̄i) and the
continuously differentiable, positive definite storage function (4.29). Following the
same reasoning as in the proof of Proposition 4.2, the closed-loop DGU model (4.28) can
equivalently be written as

˙̂xi = f̂i(x̂i)− f̂i(¯̂xi) + K̂i(di − d̄i) (4.36a)
(4.28)
(4.30)
=

 R̂i(χi − χ̄i)− (Vi − V ∗
i )

(χi − χ̄i)− (ri − r̄i)− (IL,i(Vi)− IL,i(V
∗
i ))

Vi − V ∗
i

+

01
0

 (di − d̄i), (4.36b)

zi − z̄i = Vi − V̄i. (4.36c)

For the time derivative of Ŝi(x̂i, ¯̂xi) in (4.29), it holds that

Ṡi(x̂i, ¯̂xi) = (x̂i − ¯̂xi)
⊤Q̂⊤

i

(
f̂i(x̂i)− f̂i(¯̂xi)

)
︸ ︷︷ ︸

−ψ̂i(x̂i,¯̂xi)

+(x̂i − ¯̂xi)
⊤Q̂⊤

i K̂i︸ ︷︷ ︸
(zi−z̄i)

(di − d̄i). (4.37)

With (4.28), (4.29), and (4.30), the dissipation rate can be written as

ψ̂i(x̂i, ¯̂xi) = R̂i(χi − χ̄i)
2 + (Vi − V ∗

i ) (IL,i(Vi)− IL,i(V
∗
i )) . (4.38)
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Under the load conditions of Proposition 4.1 and since R̂i > 0, it holds that ψ̂i(x̂i, ¯̂xi) ≥
0. Thus, according to Definition 3.2, the closed-loop DGU model (4.28) is EIP w.r.t.
the supply rate (di − d̄i)(zi − z̄i) and the continuously differentiable, positive definite
storage function (4.29).

Lastly, it is proven that no solution other than ¯̂xi as in (4.30) can stay in Ei = {x̂i ∈ X̂i ⊆
R3| ˙̂Si(x̂i, ¯̂xi) = 0, di = d̄i} for all time. From (4.37), it follows that set Ei is characterized
by

ψ̂i(x̂i, ¯̂xi) ≡ 0
(4.38)
=⇒ χi ≡ χ̄i. (4.39)

Now consider the evolution of a solution of (4.36) starting in Ei. Confine the dynamics
(4.36) to Ei for any future time by inserting (4.39). This yields the set of equations

0 = −(Vi − V ∗
i ),

CiV̇i = −(ri − r̄i)− (IL,i(Vi)− IL,i(V
∗
i )),

QI,iṙi = (Vi − V ∗
i ),

(4.40)

whose unique solution is Vi ≡ V ∗
i , ri ≡ r̄i. Thus, no solution other than ¯̂xi as in (4.30)

can stay in Ei for all time.

Remark 4.7. Note that the controller (4.26) is composed of a setpoint feedforward V ∗
i , a static

state feedback proportional to Ii for damping assignment, and a PI term acting on the control
error V ∗

i − Vi to ensure zero steady-state errors under parameter uncertainties and unknown,
steady-state interaction inputs d̄i = −ĪN,i. All these building blocks are available as industrial
standard, off-the-shelf control functions.

Similar to current-controlled, grid-feeding DGUs (see Corollary 4.1), the statements
about voltage-controlled, grid-forming DGUs in Proposition 4.3 remain valid in case
the DGUs do not supply a local load, i.e., IL,i(Vi) = 0 (see Remark 4.2). The following
corollary summarizes this insight.

Corollary 4.2 (Voltage control of grid-forming DGUs without local loads)
Consider a grid-forming DGU i ∈ Dform that does not supply a local load, i.e., its
open-loop model is given by (4.1) with IL,i(Vi) = 0. Assign the control input and
coordinate transformation as in Proposition 4.2. Then the closed-loop DGU system
is given by (4.28) with IL,i(Vi) = 0. Moreover, all statements from Proposition 4.3
regarding the EIP properties of the closed loop and its dynamics confined to set Ei
hold.

Proof:
The proof is identical to that of Proposition 4.3 except with IL,i(Vi) = IL,i(V̄i) = 0 in the
respective equations.
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In Appendix B.2, it is shown how the results of the voltage control design from Proposi-
tion 4.3 can be generalized for a passivity-based output control of linear second-order
systems. On the one hand, the generalized results will be used in the sequel to transfer
the insights from the DC voltage control design to controlling pumps in DHNs (see
Section 6.3.1). On the other hand, due to the simple structure of the resulting controller
(see Remark 4.7) and the ubiquity of linear second-order systems in practical control
engineering problems, the generalization presents an interesting result for promoting
passivity-based control in practical control problems.

4.3.3 Voltage Controller of Nahata et al. [2020]

In this last control design section, it is shown by example of the voltage controller
proposed by Nahata et al. [2020] that decentralized controllers in the literature are
readily compatible with the decentralized stability conditions of Theorem 4.1.

For the subsequent elaborations, note that Nahata et al. [2020] model DGUs with the
permutated version of the co-state vector ∂Hi

∂xi
(xi) (4.1b) as actual state vector, i.e.,

xi = [Vi, Ii]
⊤. To allow for a transparent cross-referencing, this model perspective is

used in the following proposition.

Proposition 4.4 (Voltage controller of Nahata et al. [2020])
Consider a grid-forming DGU i ∈ Dform described in open loop by (4.1). Assume the
local ZIP or exponential load (4.1f) fulfills the conditions of Proposition 4.1. Assign
the control input ui = VS,i according to Nahata et al. [2020] as

ṙi = −(Vi − V ∗
i ), (4.41a)

ui = k1,iVi + k2,iIi + k3,iri, (4.41b)

with voltage setpoint V ∗
i > 0 and control parameters

k1,i < 1, k2,i < Ri, 0 < k3,i <
1

Li
(k1,i − 1)(k2,i −Ri). (4.42)

Then, the closed-loop DGU system can be written as

d

dt

ViIi
ri


︸ ︷︷ ︸

x̂i

=

 1
Ci
Ii − 1

Ci
IL,i(Vi)

αiVi + βiIi + γiri
−(Vi − V ∗

i )


︸ ︷︷ ︸

f̂i(x̂i)

+

 1
Ci

0

0


︸ ︷︷ ︸
K̂i

di, (4.43a)

zi = Vi, (4.43b)
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with
αi =

k1,i − 1

Li
, βi =

k2,i −Ri
Li

, γi =
k3,i
Li

. (4.43c)

Moreover, (4.43) is EIP w.r.t. the supply rate (di − d̄i)(zi − z̄i) and the continuously
differentiable, positive definite storage function

Ŝi(x̂i, ¯̂xi) =
1

2

∥∥x̂i − ¯̂xi
∥∥2
Q̂i
, (4.44a)

Q̂i =

Ci 0 0

0 βi

ωi

γi
ωi

0 γi
ωi

αiγi
ωi

 , (4.44b)

ωi = γi − αiβi, (4.44c)

for any (feasible) equilibrium pair (d̄i, z̄i) and associated equilibrium state

¯̂xi =
[
V ∗
i , Īi, r̄i

]⊤
. (4.45)

Lastly, no solution other than x̂i = ¯̂xi as in (4.45) can stay in Ei = {x̂i ∈ X̂i ⊆
R3| ˙̂Si(x̂i, ¯̂xi) = 0, di = d̄i} for all time.

Proof:
Writing the closed-loop DGU model as in (4.43) directly follows by inserting the state-
feedback controller (4.41) into the open-loop DGU model (4.1) and rewriting with states
as in Nahata et al. [2020].

In order to show that (4.43) is EIP w.r.t. the supply rate (di − d̄i)(zi − z̄i) and the
continuously differentiable, positive definite storage function (4.44), the same reasoning
as in the proof of Proposition 4.2 is used. In particular, the closed-loop DGU model
(4.43) can equivalently be written as (cf. Nahata et al. [2020, Equation (25)])

˙̂xi = f̂i(x̂i)− f̂i(¯̂xi) + K̂i(di − d̄i) (4.46a)
(4.43)
(4.45)
=

 1
Ci

(Ii − Īi)− 1
Ci

(IL,i(Vi)− IL,i(V
∗
i ),

αi(Vi − V ∗
i ) + βi(Ii − Īi) + γi(ri − r̄i)

−(Vi − V ∗
i )

+

 1
Ci

0

0

 (di − d̄i), (4.46b)

zi − z̄i = Vi − V̄i. (4.46c)

For the time derivative of Ŝi(x̂i, ¯̂xi) in (4.44), it holds that

˙̂
Si(x̂i, ¯̂xi) = (x̂i − ¯̂xi)

⊤Q̂⊤
i

(
f̂i(x̂i)− f̂i(¯̂xi)

)
︸ ︷︷ ︸

−ψ̂i(x̂i,¯̂xi)

+(x̂i − ¯̂xi)
⊤Q̂⊤

i K̂i︸ ︷︷ ︸
(zi−z̄i)

(di − d̄i). (4.47)
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With (4.43), (4.44), and (4.45), the dissipation rate can be written as (cf. Nahata et al.
[2020, Equation (37)])

ψ̂i(x̂i, ¯̂xi) =

(
βi(Ii − Īi) + γi(ri − r̄i)

)2
ω

+ (Vi − V ∗
i ) (IL,i(Vi)− IL,i(V

∗
i )) . (4.48)

If the control parameters k1,i, k2,i, k3,i, satisfy (4.42) (see the proof of Theorem 2 in
Nahata et al. [2020], particularly (41)) and the load conditions of Proposition 4.1 hold,
it follows that ψ̂i(x̂i, ¯̂xi) ≥ 0. Thus, according to Definition 3.2, the closed-loop DGU
model (4.43) is EIP w.r.t. the supply rate (di − d̄i)(zi − z̄i) and the continuously differen-
tiable, positive definite storage function (4.44).

Lastly, it is proven that no solution other than ¯̂xi as in (4.30) can stay in Ei = {x̂i ∈ X̂i ⊆
R3| ˙̂Si(x̂i, ¯̂xi) = 0, di = d̄i} for all time. From (4.47), it follows that set Ei is characterized
by (cf. Nahata et al. [2020, Equation (44)])

ψ̂i(x̂i, ¯̂xi) ≡ 0
(4.48)
=⇒ βi(Ii − Īi) ≡ −γi(ri − r̄i). (4.49)

Now consider the evolution of a solution of (4.36) starting in Ei. Confine the dynamics
(4.36) to Ei for any future time by inserting (4.49). This yields the set of equations

V̇i = − γi
Ciβi

(ri − r̄i)−
1

Ci
(IL,i(Vi)− IL,i(V

∗
i ), (4.50a)

−γi
βi
ṙi = αi(Vi − V ∗

i ), (4.50b)

ṙi = −(Vi − V ∗
i ). (4.50c)

From (4.50b) and (4.50c) follows that αiβi(Vi − V ∗
i ) = γi(Vi − V ∗

i ). Following the ex-
planations around Nahata et al. [2020, Equation (48)]), this can only hold if Vi ≡ V ∗

i ,
which implies by (4.50a) that ri ≡ r̄i and by (4.49) that Ii ≡ Īi. Thus, no solution other
than ¯̂xi as in (4.45) can stay in Ei for all time.

Remark 4.8. Compared to the voltage controller (4.26) in Proposition 4.3, the voltage control
law (4.41) by Nahata et al. [2020] is more restrictive on the choice of control parameters that are
required to fulfill condition (DC 1). While the controller (4.26) only requires positive control
parameters R̂i, QI,i > 0, the control parameters of (4.41) must fulfill the three inequality
conditions given by (4.42). On the other hand, the voltage controller (4.41) of Nahata et al.
[2020] comprises individual gains for the voltage Vi, the current Ii, and the integral voltage
error ri, while the voltage controller (4.26) only has two control parameters for the three terms
containing Vi, Ii, and ri.

4.4 Simulation

This section demonstrates the validity of the presented unifying stabilization frame-
work via two simulative case studies. In particular, the stability properties of ZIP and
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exponential loads under the conditions of Proposition 4.1 as well as the stabilizing
properties, plug-and-play capabilities, and disturbance rejection behavior of the voltage
and current controllers from Propositions 4.2 and 4.3 are shown.

The first scenario in Section 4.4.2 focuses on plug-and-play operations of DGUs and
flexible, time-varying system configurations. The second scenario in Section 4.4.3
investigates whether different setpoints for the controlled node voltages and VSC
output currents can be asymptotically stabilized and disturbances arising from load
variations be rejected. In order to highlight the unifying nature of the presented, EIP-
based stabilization framework, both scenarios are complemented with a DGU controlled
by the voltage controller of Nahata et al. [2020] (see Proposition 4.4). Additionally, both
scenarios are simulated with an uncertainty on the DGU filter parameters to evaluate the
disturbance rejection capabilities of the controllers against parameter uncertainties.

4.4.1 General Simulation Setup

For the simulations, a DC power system based on the topology of Feeder 1 of the
CIGRE medium-voltage AC benchmark network from Strunz et al. [2014, Figure 6.5]
and Farrokhabadi et al. [2018, pp. 42ff] is implemented in MATLAB/SIMULINK using
SIMSCAPE components.5 In order to adequately assess the control schemes proposed in
this chapter, the network is modified in two ways (see Figure 4.1):

• The connection to the high-voltage transmission network at node 1 is resolved.
Instead, DGUs are added at nodes i ∈ D = {1, 2, 3, 4, 5, 6} with the proposed
current controller (4.17) at DGUs i ∈ Dfeed = {3, 5, 6}, the proposed voltage
controller (4.26) at DGUs i ∈ DPBC = {2, 4}, and the voltage controller (4.41) from
Nahata et al. [2020] at DGU i ∈ DN20 = {1}.

• Instead of only exponential loads as in Farrokhabadi et al. [2018, pp. 42ff], ZIP
loads are connected at nodes i ∈ LZIP = {1, 2, 4, 7, 8}, while exponential loads
remain at nodes i ∈ LEXP = {5, 6, 9, 10, 11}.

The network, DGU filter, and electrical line parameters used in the simulations are
summarized in Table 4.1. They are in line with typical values (see, e.g., Tucci et al.
[2016b], Han et al. [2019], and Cucuzzella et al. [2023]). In both scenarios, the RLC filters
of all DGUs are parameterized identically with nominal values as in Table 4.1. These
nominal values are used in all DGU controllers (4.17), (4.26), and (4.41), while the actual
implemented filter parameters have a +10% offset to evaluate the disturbance rejection
capabilities of the controllers against parameter uncertainties. The resulting effective
cut-off frequency of the RLC filters is thus fcut = 1√

LiCi
= 80Hz.

5 The SIMSCAPE toolbox extends SIMULINK with tools for modeling and simulating multi-domain physical
systems. It allows to textually create physical component models based on physical ports and generalized
effort and flow variables (see www.mathworks.com/help/simscape).

www.mathworks.com/help/simscape
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The parameters of the controllers are summarized in Table 4.1 as well. The DGU
references used in the controllers are set as in Table 4.2 to yield reasonable network
situations.

The load parameters are given in Tables 4.3 and 4.4. The exponential load parameters are
taken from Farrokhabadi et al. [2018, pp. 42,45] and adapted to the DC case. That is, only
the active power values are used. Additionally, the overall power demand of the loads
is scaled down from originally 1MW to 19 kW to account for the lower network voltage
of V0 = 380V compared to the original V0 = 20 kV. The ZIP load parameters then
follow from the exponential load parameters in Farrokhabadi et al. [2018, pp. 42,45] via
the equivalence transformation in Farrokhabadi et al. [2018, Equation (38)] with Zp =
5
7 , I

p = 1
7 , P

p = 1
7 . The parameters of each load satisfy the conditions of Proposition 4.1

for all voltages Vi ≥ 0. For the ZIP loads, this means that the condition from Remark 4.3
is fulfilled.

Table 4.1: Simulation parameters for the DC power system simulation

Network V0 = 380V

DGU filters (4.1) Ri = 0.2Ω, Li = 1.8mH, Ci = 2.2mF

Electrical lines (4.3) Rl = 0.1Ω/km, Ll = 2µH/km, Cl = 151.2 nF/km

length ∈ [0.24; 4.42] km (see Figure 4.1)

Current controller (4.17), i ∈ Dfeed kP,i = 0.1, Q−1
I,i = 15

Voltage controller (4.26), i ∈ DPBC R̂i = 0.4, Q−1
I,i = 200

Voltage controller (4.41), i ∈ DN20 k1,i = 0.3, k2,i = 0.05, k3,i = 40

Table 4.2: Voltage and current setpoints of the DGUs. For Scenario A in Section 4.4.2, only the base values are
used. For Scenario B in Section 4.4.3 featuring load and setpoint changes, the values vary at the
indicated times.

DGU i 1 2 3 4 5 6
(blue) (red) (yellow) (purple) (turquoise) (black)

base V ∗
i (V) 385 383 – 383 – –

t = 15 s V ∗
i (V) 386 384 – 384 – –

base I∗i (A) – – 3 – 5 6
t = 20 s I∗i (A) – – 4 – 6 7
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Table 4.3: ZIP load parameters. For Scenario A in Section 4.4.2, only the base values are used. For Scenario B
in Section 4.4.3 featuring load and setpoint changes, the values vary at the indicated times.

i 1 2 4 7 8

base YP,i (mS) 7.9 10.3 5.5 5.5 6.2

t = 1 s YP,i (mS) 11.8 15.4 8.2 8.2 9.2

base IP,i (A) 0.6 0.78 0.416 0.416 0.468

t = 1 s IP,i (A) 0.9 1.17 0.624 0.624 0.702

base PP,i (W) 228 296.4 158 158 177.8

t = 1 s PP,i (W) 342 444.6 237 237 266.7

Table 4.4: Exponential load parameters. For Scenario A in Section 4.4.2, only the base values are used. For
Scenario B in Section 4.4.3 featuring load and setpoint changes, the base values are ramped up from
t = 5 s to the final value at t = 10 s.

i 5 6 9 10 11

base P0,i (W) 1720 889 967 1383 1520

t = 10 s P0,i (W) 2579 1334 1451 2075 2280

base nP,i 1.5 1.5 1.5 1.5 1.5

t = 10 s nP,i 1.5 1.5 1.5 1.5 1.5

4.4.2 Scenario A: Plug-and-Play

This scenario features disconnecting and connecting DGUs and power lines in order to
validate the decentralized nature of the stability conditions (DC 1) and (DC 2). At the
indicated times, the following events occur (see Figure 4.1 for the network):

• t = 5 s: DGU 4 disconnects.

• t = 10 s: Power lines 17 and 19 disconnect.

• t = 15 s: DGU 4 reconnects.

• t = 20 s: DGU 5 disconnects.

• t = 25 s: Power lines 17 and 19 reconnect.

• t = 30 s: DGU 5 reconnects.

During the complete scenario, the DGU setpoints as well as the load parameters remain
at the base values provided in Tables 4.2, 4.3, and 4.4.
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Figure 4.4: Scenario A: node voltages Vi with uncontrolled nodes in grey. The colors of the voltage-controlled
DGU nodes i ∈ {1, 2, 4} and their setpoins are given in Table 4.2. The voltage errors are given in
% w.r.t. the nominal voltage V0 = 380V.
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Figure 4.5: Scenario A: filter currents Ii and load currents IL,i with uncontrolled currents in grey. The colors
of the current-controlled DGUs i ∈ {3, 5, 6} and their setpoints are given in Table 4.2. The current
errors are given in % w.r.t. the average amplitude of the currents setpoints I0 = 4.67A.

The results of the simulation are given in Figures 4.4–4.7. The colored lines represent
the node voltages Vi and filter currents Ii of the voltage- and current-controlled DGUs
i ∈ D = {1, 2, 3, 4, 5, 6} with colors as per Table 4.2. Additionally, all uncontrolled node
voltages as well as all uncontrolled filter, load, and line currents are given in grey. The
deviations of controlled node voltages Vi, i ∈ {1, 2, 4}, and controlled filter currents Ii,
i ∈ {3, 5, 6}, from their setpoints in Table 4.2 are given in % with respect to the nominal
voltage V0 = 380V and the average amplitude of the current setpoints I0 = 4.67A,
respectively.

The maximum voltage errors at the voltage-controlled DGU nodes i ∈ {1, 2, 4} remain
within a 0.46% (1.75V) band around their desired setpoints (see Figure 4.4). At the latest
0.25 s after an event, the controlled node voltages settle to within a 0.005% (0.02V) band
(see Figure 4.6). The uncontrolled node voltages show similar deviation magnitudes
and converge similarly fast to their corresponding steady-state values.
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Figure 4.6: Scenario A: zoomed in errors of the controlled node voltages Vi, i ∈ {1, 2, 4}, and the controlled
filter currents Ii, i ∈ {3, 5, 6}, with colors as per Table 4.2.
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Figure 4.7: Scenario A: line currents Il, l ∈ P = {12, . . . , 23}.

Overall, the voltages thus stay well within a 5% band around the nominal voltage.6

Note that between t = 5 s − 15 s, the voltage at node 4 (purple line) is not controlled
since DGU 4 is disconnected. Consequently, during that period, the voltage error is set
to zero.

The filter current errors at the current-controlled DGU nodes i ∈ {3, 5, 6} show peaks
during the events of around 50% (2.3A) except for a larger peak at t = 30 s of approx-
imately 107% (5A) which lasts for around 20ms (see Figure 4.5). At the latest 0.4 s
after an event, the controlled filter currents settle within a 0.06% (0.003A) band around
their setpoints (see Figure 4.6). The uncontrolled filter, load, and line currents converge
similarly fast to their corresponding steady-state values (see Figures 4.5 and 4.7).

6 The AC power system standard EN 50160 defines a nominal voltage range of ±5% around the nominal
voltage for fast voltage transients in low-voltage networks. In absence of any comparable norm for DC
power systems, the 5% measure is transferred to the DC case for orientation.
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Note that between t = 5 s− 15 s and t = 20 s− 30 s, DGU 4 and DGU 5, respectively, are
disconnected and their filter currents as well as the current error for DGU 5 are thus set
to zero.

The reason for the seemingly high current peak at t = 30 s is the abrupt setpoint change
caused by the reconnection of DGU 5. While the setpoint undergoes a step change from
0A to 5A, the actual current is subject to the RLC filter and controller dynamics. As
illustrated in the left part of Figure 4.5, there is thus no real peak, but instead merely
a large difference between desired setpoint and measured current. Furthermore, the
overshoot of I5 remains below 8% (0.37A).

In summary, the results confirm the statements of Theorem 4.1 and demonstrate that all
node voltages and currents and thus all states of the system (see (4.1b), (4.2b), (4.3b)) can
be asymptotically stabilized throughout the complete scenario despite flexible system
configurations with plug-and-play operations and topology changes. Furthermore, the
integral parts of the proposed controllers ensure zero steady-state errors in the presence
of parameter uncertainties which naturally occur in practice.

4.4.3 Scenario B: Setpoint and Load Changes

This scenario features changes in the voltage and current setpoints of the DGU control-
lers to investigate whether the asymptotic stability guarantee given by Theorem 4.1
is indeed independent of the specific equilibrium values. In addition to parameter
uncertainties, load variations in form of step changes and ramps are simulated to fur-
ther evaluate the disturbance rejection capabilities of the proposed controllers. At the
indicated times, the following events occur (see Figure 4.1 for the network):

• t = 1 s: All ZIP loads i ∈ LZIP = {1, 2, 4, 7, 8} increase their demand by 50%.

• t = 5 s − 10 s: All exponential loads i ∈ LEXP = {5, 6, 9, 10, 11} increase their
demand by 50%.

• t = 15 s: All voltage setpoints V ∗
i , i ∈ D = {1, 2, 4} are increased by 1V.

• t = 20 s: All current setpoints I∗i , i ∈ D = {3, 5, 6} are increased by 1A.

The DGU setpoints as well as the load parameters before and after the changes are
summarized in Tables 4.2, 4.3, and 4.4.

The results of the simulation are given in Figures 4.8–4.11. The colored lines represent
the node voltages Vi and filter currents Ii of the voltage- and current-controlled DGUs
i ∈ D = {1, 2, 3, 4, 5, 6} with colors as per Table 4.2. Additionally, all uncontrolled node
voltages as well as all uncontrolled filter, load, and line currents are given in grey. The
deviations of controlled node voltages Vi, i ∈ {1, 2, 4}, and controlled filter currents Ii,
i ∈ {3, 5, 6}, from their setpoints in Table 4.2 are given in % with respect to the nominal
voltage V0 = 380V and the average amplitude of the current setpoints I0 = 5.17A,
respectively.
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The maximum voltage errors at the voltage-controlled DGU nodes i ∈ {1, 2, 4} remain
within a 0.63% (2.4V) band around their desired setpoints (see Figure 4.8). At the latest
0.18 s after an event, the controlled node voltages settle to within a 0.005% (0.02V) band
(see Figure 4.10). The uncontrolled node voltages show similar deviation magnitudes
and converge similarly fast to their corresponding steady-state values. During the load
ramps between t = 5 s− 10 s, the maximum voltage errors stay within a 0.15% (0.57V)
band. As in Scenario A, the voltages throughout Scenario B stay well within a 5% band
around the nominal voltage.
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Figure 4.8: Scenario B: node voltages Vi with uncontrolled nodes on grey. The colors of the voltage-controlled
DGU nodes i ∈ {1, 2, 4} and their setpoins are given in Table 4.2. The voltage errors are given in
% w.r.t. the nominal voltage V0 = 380V.
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Figure 4.9: Scenario B: filter currents Ii and load currents IL,i with uncontrolled currents in grey. The colors
of the current-controlled DGU nodes i ∈ {3, 5, 6} and their setpoints are given in Table 4.2. The
current errors are given in % w.r.t. the average amplitude of the currents setpoints I0 = 5.17A.

The maximum current errors at the current-controlled DGU nodes i ∈ {3, 5, 6} remain
within a 40.1% (2.07A) band (see Figure 4.9). Except during the load ramps between
t = 5 s−10 s, the controlled filter currents settle to within a 0.06% (0.003A) band around
their desired setpoints after at most 0.32 s (see Figure 4.10).
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Figure 4.10: Scenario B: zoomed in errors of the controlled node voltages Vi, i ∈ {1, 2, 4}, and the controlled
filter currents Ii, i ∈ {3, 5, 6}, with colors as per Table 4.2.
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Figure 4.11: Scenario B: line currents Il, l ∈ P = {12, . . . , 23}.

The uncontrolled filter, load, and line currents converge similarly fast to their cor-
responding steady-state values (see Figures 4.9 and 4.11). During the load ramps
between t = 5 s − 10 s, the maximum current errors remain below 0.2% (0.01A) (see
Figure 4.10).

In summary, the results confirm the statements of Theorem 4.1 and demonstrate that
the asymptotically stabilizing properties of the controllers (4.17), (4.26), and (4.41) are
indeed independent of the specific voltage and currents setpoints. Furthermore, al-
though not a specific focus of the controller designs, constant disturbances arising
from unknown load demands and parameter uncertainties can be fully rejected by the
integral parts of the controllers. Additionally, the integrators are sufficiently fast to
reject the time-varying disturbances caused by the load ramps to negligible values.

This concludes the presentation and validation of the unifying stabilization framework
for DC power systems. In the next section, the presented model, decentralized stability
conditions, and controller designs are discussed with respect to the main research
questions (Q2.1) and (Q2.2). Additionally, the results from this chapter are compared to
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those of the passivity-based works that have been published in parallel to this thesis
(see Section 2.4.1).

4.5 Discussion

Theorem 4.1 and Propositions 4.1, 4.2, 4.3, are the main results of this chapter. Together,
these results establish a cross-technology framework for the decentralized stabilization
of voltages and currents in DC power systems.

Theorem 4.1 answers research question (Q2.1) and provides two decentralized analytical
conditions (DC 1) and (DC 2) that are sufficient for ensuring asymptotic stability of any
feasible DC power system equilibrium. The conditions (DC 1) and (DC 2) are unifying
conditions that provide model- and technology-independent system and control design
requirements for the decentralized stabilization in flexible DC power system configura-
tions. Other subsystems (e.g., for different loads or with more detailed converter models,
different converter topologies and technologies with output filters different than RLC,
as well as altogether new units) can thus readily be integrated into the presented DC
power system model. Then, following the steps taken in this chapter, requirements
on the model parameters and/or appropriate control laws can be developed to ensure
(DC 1) and (DC 2) are met.

Propositions 4.1, 4.2 and 4.3 provide explicit parameter requirements and control solu-
tions for ensuring the conditions of Theorem 4.1 are met for the DC power system
described in Section 4.1. The passivity-based voltage controller for grid-forming DGUs
i ∈ Dform and the passivity-based current controller for grid-feeding DGUs i ∈ Dfeed

in particular provide two explicit solutions for research question (Q2.2). However,
due to the technology-independent nature of the decentralized stabilization condi-
tions, research question (Q2.2) allows for a variety of decentralized control solutions
as illustrated by example of the voltage controller from Nahata et al. [2020] in Proposi-
tion 4.4. From a practical engineering perspective, this is appealing as it creates a large,
technology-neutral solution space to the problem of DC power system stabilization.

A further practically appealing aspect is that despite the complex methodological
concepts underlying the conditions (DC 1) and (DC 2), the controllers required to
enforce these conditions are simple and use standard, off-the-shelf control functions:
a PI current controller (see (4.17)); a combination of setpoint feedforward, static state
feedback, and PI term for the voltage controller (see (4.26) and Remark 4.7); and a state
feedback voltage controller in Nahata et al. [2020] (see (4.41)). Furthermore, note that
each of the control inputs ui = VS,i is in fact a function of the duty cycle δi of the VSC
and the DC voltage VDC,i supplied by the DC voltage source, i.e., a RES, a storage device
or a combination thereof (see Section 4.1.2). For a practical implementation of any
control law ui, the duty cycle δi can be obtained from ui. For a buck VSC, for example,
the relation is given by ui = VS,i = δiVDC,i.
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For a proper functioning of the controllers and a stabilization-coordination hierarchy
as proposed in Section 2.2.2, it is crucial that the combination of DC voltage source
and VSC behaves approximately like an ideal voltage source VS,i (see Section 4.1.2). In
practice, this has three implications: firstly, sufficient short-term energy buffer (battery
storage, supercapacitors, headroom on generation, or a combination thereof) must be
available at the input-side of each VSC to provide sufficient power for a time scale of
seconds to a few minutes (see also Matevosyan et al. [2019]).7 For example, for the 380V

DC power system from Section 4.4 with an overall demand of approximately 15 kW,
a 50% demand increase of all loads equals 7.5 kW. Depending on the communication
rate with the coordination layer and assuming no headroom for the DGU generation,
stored energy of 1.875 kWh for a 15min communication interval, 0.125 kWh for a 1min

interval, and 0.021 kWh for a 10 s interval must be available.

Secondly, the combination of short-term energy storage and VSC must have sufficient
peak power capability to realize the control inputs provided by the controllers. For both
scenarios from Section 4.4, for example, the maximum power peaks are in the range
of 3 kW to 4 kW, which equals peak currents of 7.9A to 10.5A. Practical experience
indicates that integrated energy storage architectures combining batteries and superca-
pacitors are promising solutions for providing both, fast, high-power transients as well
as sufficient short-term energy storage [Matevosyan et al., 2019; Rocabert et al., 2019].

Thirdly, several seconds to a few minutes after a disturbance, the coordination layer has
to intervene and reschedule the setpoints according to the present generation-demand
situation. In the last few years, first coordination schemes that operate on such smaller
time-scales have been developed for example by Zhao and Dörfler [2015], Cucuzzella
et al. [2019b], Malan et al. [2022], and Nahata et al. [2022].

4.5.1 Comparison with Parallel Works

As outlined in Section 2.4, during the time of this thesis, several other research groups
have explored independently from each other the possibilities of using passivity tech-
niques to provide decentralized stability conditions and controller designs for DC power
systems.

The main feature this works have in common is that they do not provide any unify-
ing, model- and technology-independent, decentralized asymptotic stability conditions
comparable to those in Theorem 4.1. Instead, they focus on developing decentralized,
passivity-based controllers for specific VSC types and DC power system models. The
different passivity properties of the subsystem models are then merely used to facil-
itate the stability statement. However, no inferences are drawn on how the passivity
properties can be translated into general system and control design guidelines.

7 The exact duration depends on the computing speed of and communication interval with the coordination
layer.
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In detail, Cucuzzella et al. [2019a], Cucuzzella et al. [2020], Kosaraju et al. [2021], and
Cucuzzella et al. [2023] propose decentralized voltage controllers for DC power systems
with different VSC types (buck, boost, buck-boost, Cúk). Their stability analysis and
controller designs are based on new passivity notions in which the storage functions
require the first-order time derivatives of the voltages [Cucuzzella et al., 2020, 2023] or
the voltages and currents [Cucuzzella et al., 2019a; Kosaraju et al., 2021] of the VSCs.8

The ZIP load condition in Cucuzzella et al. [2019a, Assumption 1] and Cucuzzella et al.
[2023, Remark 2] are similar to the condition in (4.6).

Ferguson et al. [2021] use the PHS framework to develop two decentralized PBC schemes
for voltage stabilization in DC power systems with dynamic power lines, ZIP loads
with unknown parameters, and other unknown time-varying disturbances. In Ferguson
et al. [2023], the same authors devise a linear, decentralized, passivity-based voltage
controller which injects additional damping to relax the ZIP load conditions commonly
required to proof asymptotic stability in DC power systems (see (4.6), Cucuzzella et al.
[2019a, Assumption 1], and Cucuzzella et al. [2023, Remark 2]).

Overall, the results of this chapter are thus the first to provide a unifying, model- and
technology-independent framework for the decentralized stabilization in DC power
systems. As illustrated by example of the voltage controller of Nahata et al. [2020] in
Section 4.3.3, the large, technology-neutral solution space arising from a decentralized,
passivity-based stabilization framework allows the results of different researchers to
positively complement each other. Instead of creating a black and white situation with
opposing solutions, different foci and insights can contribute together towards the
overall goal of addressing the stabilization challenges emerging along the transforma-
tion towards sustainable energy systems. In this spirit, the models and decentralized
controller for different VSC types in Cucuzzella et al. [2019a] and Kosaraju et al. [2021]
as well as the advanced control techniques used by Ferguson et al. [2021], Cucuzzella
et al. [2023], and Ferguson et al. [2023] to improve the control performance present
promising extensions to the model and controllers developed in this chapter.

In addition to this main benefit, the specific DC power system model and controller
designs presented in this chapter extend the above-discussed works in several other
directions. Firstly, the considered DC power system setup preserves the original net-
work structure and does not require a load-connected topology in which the loads
are mapped to the DGU terminals. Additionally, instead of merely focusing on the
grid-forming voltage control, the problem of current control in grid-feeding DGUs is
considered explicitly. Lastly, detailed ZIP and exponential load models are introduced
with a practically-motivated two-tier behavior for voltages below and above 0.7V0,
respectively.9

8 The new types of storage functions are so-called Krasovskii-type storage functions [Cucuzzella et al., 2019a]
(see Kosaraju et al. [2019] and Khalil [2002, p. 183] for further details) and mixed-potential storage functions
[Cucuzzella et al., 2020; Kosaraju et al., 2021; Cucuzzella et al., 2023].

9 Note that Ferguson et al. [2023] consider a similar two-tier load behavior, although only for ZIP loads.



4.6 Summary and Contributions 75

4.6 Summary and Contributions

The sustainable energy transition challenges power system stabilization with large
numbers of interacting units that feature an increasing variety of technologies and
control strategies. To make the stabilization task manageable, allow for flexible system
configurations in a plug-and-play fashion, and ensure interoperability between units,
this chapter establishes a passivity-based framework that ensures the decentralized
stabilization of voltages and currents in DC power systems in a unifying manner across
different technologies and control strategies. The results of this chapter are the first to
provide such a decentralized, cross-technology stabilization framework for DC power
systems. In summary, the main contributions of this chapter are:

• a generalized networked system model for DC power systems which combines
graph theory with PHS modeling (Section 4.1);

• decentralized, EIP-based conditions that provide model- and technology-inde-
pendent system and control design requirements for ensuring asymptotic stability
of any feasible DC power system equilibrium (Theorem 4.1);

• parameter specifications and decentralized converter controllers that ensure the
EIP-based asymptotic stability conditions are met and desired voltage and current
setpoints are asymptotically stabilized (Propositions 4.1, 4.2, and 4.3).

Together, these contributions answer the research questions (Q2.1) and (Q2.2) formulated
in Section 2.2.2. Simulation studies based on a CIGRE benchmark network demonstrate
the functionality of the developed decentralized stabilization framework and illustrate
its unifying nature.





5 Passivity-Based Decentralized
Stabilization in AC Power Systems

In the previous chapter, a cross-technology framework for the decentralized stabiliza-
tion in DC power systems has been presented. The central elements of this framework
are a generalized, graph-based DC power system model and decentralized, model- and
technology-independent conditions based on EIP that ensure asymptotic stability of
any feasible DC power system equilibrium. Motivated by the unifying, model- and
technology-independent nature of these results, this chapter pursues a similar approach
for developing a decentralized, cross-technology framework for the decentralized sta-
bilization of voltages, currents, and the system frequency in AC power systems. In
addition to profiting from a transfer of the main principles and ideas, this procedure
provides a first assessment to what extent a passivity-based approach can also provide
interoperability across different energy systems.1

Following the outline of Chapter 4, Section 5.1 first presents a graph-based, networked
system description of the considered AC power system model along the lines of Defin-
ition 3.1. The subsystems at the nodes and edges are modeled in a generalized man-
ner as ISO-PHSs to facilitate the subsequent derivation of decentralized, technology-
independent, asymptotic stability conditions and the PBC design.

Based on the model, Section 5.2 shows how the passivity-based approach of Theorem 3.1
and Corollary 3.1 can also be used to answer research question (Q1.1). Subsequently,
parameter requirements for the unactuated subsystems are derived such that they fulfill
the established, decentralized asymptotic stability conditions. Lastly, the main control
problems related to answering research question (Q1.2) are formulated.

In Section 5.3, the formulated control problems are addressed. Decentralized, passivity-
based controllers for the actuated DGU subsystems are designed to asymptotically
stabilize desired setpoints for the system frequency, node voltages, and current injections.
Additionally, the unifying, cross-technology nature of the established decentralized
stabilization framework is shown by example of the voltage controller proposed by
Nahata and Ferrari-Trecate [2019].

Subsequently, Section 5.4 presents simulation scenarios to validate the findings of the
prior sections.

1 Note that while both DC and AC power systems are physically based on the electrical domain, the AC
power system case is technically not a straightforward extension of the DC case. In particular, the system
frequency and electrical three-phase signals considerably complicate the system analysis and control
synthesis.
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Sections 5.5 and 5.6 conclude this chapter with a discussion and summary of the main
contributions. In particular, the main results are compared to the passivity-based works
published in parallel to this thesis (see Section 2.4).2

5.1 Modeling

In this section, the model of the considered AC power systems is established along the
lines of Definition 3.1. Firstly, in Section 5.1.1, the AC power system setup is outlined
and formally described as a digraph. Subsequently, in Sections 5.1.2 and 5.1.3, the three
main subsystems DGU, load, and power line are modeled as explicit state-space system
in the form of ISO-PHSs (3.9). Lastly, the interconnection structure of the subsystems is
formalized via the incidence matrix of the digraph in Section 5.1.4.

5.1.1 System Setup

This chapter considers AC power systems comprising DGUs, loads, and power lines
that are connected in flexible, time-varying system configurations. Such AC power
systems can be described by a weakly connected digraph G = (V, E) without self-loops
as illustrated in Figure 5.1 with subsystems on the nodes V and edges E . The nodes
V are partitioned into two sets: D = {1, . . . , D}, D ≥ 1, represents the DGUs, which
may each supply a local load, and L = {D + 1, · · · , D + L}, L ≥ 1, represents load
nodes without DGUs. The edges E = P = {1, . . . , P}, P ≥ 1, represent the power lines.
The orientation of the edges represents the arbitrary reference direction of positive line
currents. Furthermore, the digraph G is completely specified by its incidence matrix
B ∈ R|V|×|E| with elements bil (cf. (1.1)).

Following standard practice and the pertinent literature (see, e.g., Etemadi et al. [2012a],
Glover et al. [2012, p. 74–75], Riverso et al. [2015], Schiffer et al. [2016], Baimel et al.
[2017], and Gómez-Expósito et al. [2018, pp.280–281]), the following assumption is made
throughout this chapter:

Assumption 5.1 (Balanced three-phase signals)
Three-phase electrical signals are balanced and thus without a zero-sequence.

2 Preliminary results leading to the content of this chapter have been published in the conference papers
[Strehle et al., 2019; Strehle et al., 2020a] and the journal article [Strehle et al., 2022b].
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Figure 5.1: Digraph representation of Feeder 1 of the medium-voltage CIGRE AC distribution benchmark
network [Strunz et al., 2014, Figure 6.5] comprising ZIP and exponential loads; DGUs are added at
nodes i ∈ D = {1, 2, 3, 4, 5, 6}.

in the dq frame rotating with some frequency ω0 > 0. Consequently, in steady state, peri-
odic orbits are transformed into constant, two-dimensional equilibrium vectors, which
simplifies the control design and analysis in AC power systems (for a comprehensive
introduction into the topic of modeling electrical three-phase systems in the dq frame see,
e.g., Schiffer et al. [2016], Baimel et al. [2017], and Levron et al. [2018]). In the remainder
of this chapter, all three-phase voltage and currents are represented in dq coordinates
resulting from the orthogonal, power-invariant version of the dq transformation (see,
e.g., Schiffer et al. [2016, Equation (2.1)]). This version of the dq transformation preserves
the proper relations between power, voltage, and current, and is thus desirable in a

Under Assumption 5.1, electrical three-phase signals can be fully represented by two-
dimensional vectors

xdq(t) =

[
xd(t)

xq(t)

]
∈ X dq ⊆ R2 (5.1)
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Property 5.1 (Voltage amplitudes and reference frequency)
The amplitude V (t) of any instantaneous, complex dq voltage vector V dq(t) ∈ R2 is
positive, i.e.

V (t) =
√
V d(t)2 + V q(t)2 ≥ 0, ∀t ≥ 0. (5.2)

In steady state, the amplitude V̄ equals the phase-to-phase root-mean-square (RMS)
voltage. Any nominal phase-to-phase RMS voltage is denoted by V0 > 0 (e.g., V0 =

20 kV). The reference frequency is strictly positive ω0 > 0.

In the following, the models of the DGUs and loads on the nodes V and the power lines
on the edges E of the AC power system digraph are presented in dq coordinates.

5.1.2 Subsystems on Nodes

DGUs

The circuit diagram of a DGU at any node i ∈ D in the AC power system is shown
in the left dashed frame of Figure 5.2. The DGU comprises a DC voltage source, a
voltage-source inverter (VSI), and a series RLC filter with parameters Ri, Li, Ci > 0.
The DC voltage source represents a RES (e.g., a wind power plant), a storage device
or a combination thereof. The losses in the VSI and filter are lumped together in Ri.
The VSI is modeled by a time-averaged model commonly employed for control design
(see for example Chiniforoosh et al. [2010] and Schiffer et al. [2016]).3 The DC source
together with the averaged VSI model is assumed to form an ideal voltage source V dq

S,i

that supplies sufficient power at all times.4

The current Idq
N,i is the net-current injected into the AC power system which equals the

accumulated incoming and outgoing line currents. Furthermore, each DGU may supply
a local load described by a voltage-dependent current sink Idq

L,i(V
dq
i ).

3 The average model is motivated by the fact that the switching frequencies of the inverters are typically very
high (2 kHz-20 kHz) compared to the other system dynamics and sufficiently suppressed by the RLC filter.

4 Implicitly or explicitly, the ideal voltage source assumption is commonly made in the literature without
any further argument (see, e.g., the review in Section 2.1.1 and the works of Nahata and Ferrari-Trecate
[2019], Watson et al. [2019], Ojo et al. [2021], and Watson et al. [2021] which were published in parallel to
this thesis). In the discussion in Section 5.5, its practical implications will be illuminated.

power system context [Paap, 2000]. Furthermore, under normal grid conditions, the
following properties hold:
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Figure 5.2: Circuit diagram of a DGU i ∈ D comprising a DC voltage source, a VSI with control input V dq
S,i ,

and a series RLC filter (green) connected to Π-model power lines (blue) and a local AC load
represented by a voltage-dependent current sink Idq

L,i(V
dq
i ) (orange). The line capacitances are

considered to be part of the respective subsystems at the nodes.

Li
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Liİ
q
i = −ω0LiI
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CiV̇
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i = Idi + ω0CiV

q
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CiV̇
q
i = Iqi − ω0CiV

d
i − IqL,i(V

dq
i )− IqN,i,

(5.3a)

with Idq
i ,V dq

i ,V dq
S,i , I

dq
N,i ∈ R2, Idq

L,i : R2 → R2, and parameters Ri, Li, Ci > 0. Similar to
the DC case, the following assumption is necessary to write (5.3) in ISO-PHS form.

Assumption 5.2 (Monotonicity of AC load current functions)
The load current function Idq

L,i(V
dq
i ) is monotone and satisfies Idq

L,i(02) = 02.

Remark 5.1. In Section 5.2.2, conditions on the load parameters will be established such that
Assumption 5.2 holds. It will be shown that these parameter specifications also ensure the load
model is EIP.

Given Assumption 5.2, the DGU model (5.3) can be written as ISO-PHS of the form (3.9)
with state and co-state vectors

xi =


LiI

d
i

LiI
q
i

CiV
d
i

CiV
q
i

 , ∂Hi

∂xi
(xi) =


Idi
Iqi
V d
i

V q
i

 , (5.3b)

control port pair
ui = V dq

S,i , yi = Idq
i , (5.3c)

By applying KCL and KVL to the components in dq coordinates (see Schiffer et al. [2016]
and Baimel et al. [2017]), the dynamics for each DGU i ∈ D follow as
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Figure 5.3: Circuit diagram of a load node i ∈ L comprising a nonlinear static AC ZIP or exponential load
represented by a voltage-dependent current sink Idq

L,i(V
dq
i ) (orange) connected to Π-model power

lines (blue). The capacitance Ci is the sum of the parallel capacitances of the lines connecting to
the load node.

uncontrolled interaction (coupling) port pair

di = −Idq
N,i =

∑
l∈E

bilI
dq
l , zi = V dq

i , (5.3d)

matrices

Ji =


0 ω0Li −1 0

−ω0Li 0 0 −1

1 0 0 ω0Ci
0 1 −ω0Ci 0

 , Gi =


1 0

0 1

0 0

0 0

 , Ki =


0 0

0 0

1 0

0 1

 ,
Ri = diag (Ri, Ri, 0, 0) , Qi = diag

(
1

Li
,
1

Li
,
1

Ci
,
1

Ci

)
,

(5.3e)

and nonlinear damping function

Ri

(
∂Hi

∂xi
(xi)

)
=


0

0

IdL,i(V
dq
i )

IqL,i(V
dq
i )

 . (5.3f)

Remark 5.2. In this thesis, the specific current-voltage relation Idq
L,i(V

dq
i ) of a local load is

either given by (5.9) or (5.10). In case a DGU does not supply a local load, Idq
L,i(V

dq
i ) = 02 and

Ri

(
∂Hi

∂xi
(xi)

)
= 04.

Load nodes

The circuit diagram of an AC load node i ∈ L along with connecting power lines
is shown in Figure 5.3. The load is modeled as a voltage-dependent current sink
representing a nonlinear static AC load. By applying KCL to the components in dq
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coordinates (see Schiffer et al. [2016] and Baimel et al. [2017]), the dynamic equation for
each load node i ∈ L follows as

CiV̇
d
i = −IdL,i(V

dq
i ) + ω0CiV

q
i − IdN,i,

CiV̇
q
i = −IqL,i(V

dq
i )− ω0CiV

d
i − IqN,i,

(5.4a)

with V dq
i , Idq

N,i ∈ R2, Idq
L,i : R2 → R2, and capacitance Ci > 0. Under Assumption 5.2,

the load node model (5.4) can be written as ISO-PHS of the form (3.9) with state and
co-state

xi =

[
CiV

d
i

CiV
q
i

]
,

∂Hi

∂xi
(xi) =

[
V d
i

V q
i

]
, (5.4b)

uncontrolled interaction (coupling) port pair

di = −Idq
N,i =

∑
l∈E

bilI
dq
l , zi = V dq

i , (5.4c)

matrices

Ji =

[
0 ω0Ci

−ω0Ci 0

]
, Ri = 02×2, Gi =

[
0

0

]
, Ki =

[
1 0

0 1

]
, Qi =

[ 1
Ci

0

0 1
Ci

]
, (5.4d)

and nonlinear damping function

Ri

(
∂Hi

∂xi
(xi)

)
= Idq

L,i(V
dq
i ). (5.4e)

The nonlinear damping function (5.4e) is specified by the nonlinear, static current-
voltage relation of the respective AC load models. In this thesis, the prevalent nonlinear,
static ZIP and exponential load models are considered (see Appendix B.1). However, the
active and reactive power representations (B.3), (B.4), and (B.5) found in the literature
do not coincide with the first-principles modeling of a voltage-dependent current sink
as in (5.4e). Furthermore, in contrast to the DC case (see the explanations around
(4.2f) and (4.2g)), a simple division by the node voltage V dq

i is not possible as it is
a two-dimensional vector. The following lemma outlines how to generally obtain
current-voltage relations of the form Idq

L (V dq) from the active and reactive power
representations PL(V ) and QL(V ) of generally nonlinear, static AC loads.

Lemma 5.1 (Current-voltage relations of nonlinear static AC loads)
Consider a balanced, nonlinear, static three-phase AC load described by voltage-
dependent active and reactive power equations PL(V ) and QL(V ), respectively. Such
a load can equivalently be represented by the dq current-voltage relation

Idq
L (V dq) =

1

V 2

[
PL(V ) QL(V )

−QL(V ) PL(V )

] [
V d

V q

]
, (5.5)

where V ≥ 0 is the amplitude (Euclidean norm) of the instantaneous dq load voltage
vector V dq ∈ R2 (see (5.2)).
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Proof:
Let the instantaneous complex power of a load SL be expressed in terms of the dq
voltage V dq over the load and the dq current Idq

L flowing into the load (see Schiffer et al.
[2016, Definition 2.11] and van Cutsem and Vournas [1998, p. 57])

SL = PL + jQL =
(
V dIdL + V qIqL

)
+ j
(
V qIdL − V dIqL

)
. (5.6)

Equating the real and imaginary parts of (5.6) yields the linear system of equations[
PL

QL

]
=

[
V d V q

V q −V d

] [
IdL
IqL

]
. (5.7)

Solving (5.7) for Idq
L gives

IdL(V
dq) =

V dPL(V ) + V qQL(V )

(V d)2 + (V q)2
, (5.8a)

IqL(V
dq) =

V qPL(V )− V dQL(V )

(V d)2 + (V q)2
, (5.8b)

which is equivalent to (5.5).

With Lemma 5.1, the current-voltage relations for ZIP and exponential AC loads can be
calculated from the active and reactive power representations (B.3), (B.4), and (B.5). In
particular, the ZIP load current relation is given by

Idq
L,i(V

dq
i ) =




PP,iV

d
i + PQ,iV

q
i

V 2
i

+
IP,iV

d
i + IQ,iV

q
i

Vi
+ YP,iV

d
i + YQ,iV

q
i

PP,iV
q
i − PQ,iV

d
i

V 2
i

+
IP,iV

q
i − IQ,iV

d
i

V
+ YP,iV

q
i − YQ,iV

d
i

, Vi ≥ 0.7V0,

[
ỸP,iV

d
i + ỸQ,iV

q
i

ỸP,iV
q
i − ỸQ,iV

d
i

]
, Vi < 0.7V0,

(5.9a)

with ZIP parameters YP,i, YQ,i, IP,i, IQ,i, PP,i, PQ,i ≥ 0, ỸP,i = YP,i +
IP,i

0.7V0
+

PP,i

(0.7V0)2
,

and ỸQ,i = YQ,i +
IQ,i

0.7V0
+

PQ,i

(0.7V0)2
. The exponential load current relation is given by

Idq
L,i(V

dq
i ) =




P0,iV

nP,i−2

i

V
nQ,i

0

V d
i +Q0,i

V
nQ,i−2

i

V
nQ,i

0

V q
i

P0,iV
nP,i−2

i

V
nQ,i

0

V q
i −Q0,i

V
nQ,i−2

i

V
nQ,i

0

V d
i

 , Vi ≥ 0.7V0,

[
ỸP,iV

d
i + ỸQ,iV

q
i

ỸP,iV
q
i − ỸQ,iV

d
i

]
, Vi < 0.7V0,

(5.10a)

with nominal active and reactive power consumptions P0,i, Q0,i ≥ 0, voltage indices
nP,i, nQ,i ≥ 0, and admittances ỸP,i =

P0,i 0.7
nP,i

(0.7V0)2
, ỸQ,i =

Q0,i 0.7
nQ,i

(0.7V0)2
.
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5.1.3 Subsystems on Edges

Power lines

The model of an AC power line at any edge l ∈ P is given by the Π-equivalent model
of a transmission line [Kundur, 1994, pp. 201–207] with Cl, Rl, Ll > 0 as illustrated in
Figures 5.2 and 5.3. The capacitances on both sides of the line are considered to be
included in the equivalent capacitance Ci of the respective node subsystem i ∈ V . This
avoids dependent storages (i.e. parallel capacitances in this case) and thus dependent
states. By applying KVL to the components in dq coordinates (see Schiffer et al. [2016]
and Baimel et al. [2017]), the dynamic equation of each power line l ∈ E follows as

Llİ
d
l = ω0LlI

q
l −RlI

d
l −

∑
i∈V

bilV
d
i ,

Llİ
q
l = −ω0LlI

d
l −RlI

q
l −

∑
i∈V

bilV
q
i ,

(5.11a)

with Idq
l ,V dq

i ∈ R2, and parameters Rl, Ll > 0. Equation (5.11a) may be written as
linear ISO-PHS of the form (3.9) with state and co-state vectors

xl =

[
LlI

d
l

LlI
q
l

]
,

∂Hl

∂xl
(xl) =

[
Idl
Iql

]
, (5.11b)

uncontrolled interaction (coupling) port pair

dl = −
∑
i∈V

bilV
dq
i , zl = Idq

l , (5.11c)

and matrices

Jl =

[
0 ω0Ll

−ω0Ll 0

]
, Rl =

[
Rl 0

0 Rl

]
, Gl = 02, Kl =

[
1 0

0 1

]
, Ql =

[
1
Ll

0

0 1
Ll

]
. (5.11d)

Note that (5.11) has no control port (ul,yl).

Remark 5.3. The Π-equivalent model of a transmission line with lumped parameters is a
simplified version of a more detailed distributed parameter line model, which can be obtained by
connecting an arbitrary number of Π-model elements in series. As the number of used Π-model
elements tends to infinity, this line model tends to the telegrapher equations (see Watson [2021,
p. 119] for more details). For a clear presentation, the following elaborations are performed based
on the the lumped parameter Π-model. However, the statements and results straightforwardly
extended to the distributed line model.
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5.1.4 Interconnection Structure

The interconnection of the DGU and load subsystems on the nodes i ∈ V with the power
line subsystems on the edges l ∈ E is clearly defined by the interaction (coupling) ports
(5.3d), (5.4c), (5.11c) arising from their respective PHS representations. In particular, it
holds that

di =
∑
l∈E

bilI
dq
l =

∑
l∈E

bilzl, (5.12a)

dl = −
∑
i∈V

bilV
dq
i = −

∑
i∈V

bilzi, (5.12b)

and (cf. (3.1e) with m = 2)[
dV
dE

]
=

[
0|V|×|V| B

−B⊤ 0|E|×|E|

]
⊗ I2×2

[
zV
zE

]
=: M

[
zV
zE

]
(5.13)

with (·)V = stack((·)i)i∈V and (·)E = stack((·)l)l∈E denoting the respective, stacked
vectors of the subsystems.

5.2 Asymptotic Stability Conditions and
Control Problems

With the AC power system formalized as a digraph and its model established, research
questions (Q1.1) and (Q1.2) can now formally be addressed. Firstly, in Section 5.2.1,
decentralized asymptotic stability conditions are derived by application of Theorem 3.1
and Corollary 3.1. Subsequently, in Section 5.2.2, parameter requirements for the
unactuated power line and load subsystems are established such that the derived,
decentralized stability conditions are satisfied. Lastly, in Section 5.2.3, the remaining
control problems for the actuated DGU subsystems are formulated. Their solution in
Section 5.3 will provide answers to research question (Q1.2).

5.2.1 Decentralized Asymptotic Stability Conditions

In order to develop decentralized stability conditions that capture the system frequency,
voltages, and currents, firstly recall that a variable

xdq(t) =

[
xd(t)

xq(t)

]
∈ X dq ⊆ R2 (5.14)
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in the dq frame rotating at frequency ω0 can be considered a Cartesian representation of
a complex vector with polar representation [Schiffer et al., 2016]

A(t)∠θ(t) with

{
A(t) =

√
(xd(t))2 + (xq(t))2

θ(t) = arctan
(
xq(t)
xd(t)

) , (5.15)

often referred to as phasor [Machowski et al., 2008, p. 60]. From (5.15), it is evident that
an asymptotically stable equilibrium x̄dq ∈ X̄ dq ⊂ R2 implies

lim
t→∞

A(t) = const., (5.16)

lim
t→∞

θ(t) = const. (5.17)

Thus, if the various nodal dq frames are synchronized to the desired system frequency
ω0, asymptotic stability of the dq node voltages V̄ dq

i , i ∈ V , and the dq filter and line
currents Īdq

k , k ∈ V ∪ E also guarantees an asymptotically stable equilibrium ω̄0 = ω0

for the system frequency. Technologies for achieving such synchronization via internal
oscillators at each VSI and infrequent communication, e.g. via GPS, are available (see,
e.g., Etemadi et al. [2012a], Etemadi et al. [2012b], IEEE 1588 [2008], and IEEE 1588
[2017]).5 This motivates the following assumption, whose practical implications are
discussed in detail in Section 5.5.

Assumption 5.3 (Synchronized dq frames)
The controller clocks and thus the dq reference frames at all nodes i ∈ V are syn-
chronized to the desired system frequency ω0 via internal oscillators at each VSI and
infrequent GPS communication.

Remark 5.4. Note that the dq reference frames for load nodes i ∈ L and power lines l ∈ P are
only used as means to facilitate the analysis of the balanced, three-phase AC signals. As loads
and power lines are unactuated, there is no need for synchronization. Their dq frames are simply
set to rotate at the desired system frequency ω0.

Under Assumption 5.3, research question (Q1.1) reduces to finding decentralized con-
ditions that ensure asymptotic stability of any feasible equilibrium comprising the dq
voltages and currents.

Next, note that the AC power system model outlined in Section 5.1 is similar to that of
an autonomous, networked system given in Definition 3.1. So far, however, the control
ports (ui,yi) of the DGUs at nodes i ∈ D are open, i.e., the DGU models are of the form

5 Etemadi et al. [2012a] and Etemadi et al. [2012b] show that open-loop frequency control with (low-cost)
internal oscillators of an accuracy between 20ps–2µs and infrequent GPS synchronization (at 1 s intervals)
of the oscillators with an accuracy of 1µs can keep frequencies well within permissible limits of standards
and grid codes.
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(3.2). In order to conduct an equilibrium stability analysis, it is thus assumed that each
DGU is in closed loop with some controller (see Remark 3.2).

Then, by direct application of Theorem 3.1 and Corollary 3.1 to the now autonomous
AC power system model, decentralized, analytical conditions can be obtained, which,
if satisfied, ensure asymptotic stability of any feasible AC power system equilibrium
x̄AC = stack(x̄k)k∈V∪E . The vectors x̄k are the respective equilibrium state vectors of
the subsystems that are proportional to the steady-state voltages and currents of the AC
power system (cf. (5.3b), (5.4b), (5.11b)).6

Theorem 5.1 (Decentralized, asymptotic stability conditions for AC power systems)
Consider an autonomous AC power system as described in Section 5.1 with some
controller ui at each DGU i ∈ D. Any feasible equilibrium x̄AC = stack(x̄k)k∈V∪E of
such an autonomous AC power system is asymptotically stable, if the following two
conditions hold:

(AC 1) each subsystem at a node i ∈ V is

• strictly EIP w.r.t. the supply rate (di − d̄i)
⊤(zi − z̄i) and a continuously

differentiable, positive definite storage function Si(xi, x̄i), or

• EIP w.r.t. the supply rate (di − d̄i)
⊤(zi − z̄i) and a continuously dif-

ferentiable, positive definite storage function Si(xi, x̄i), and such such
that no solution other than xi(t) = x̄i can stay in Ei = {xi ∈ Xi ⊆
Rni |Ṡi(xi, x̄i) = 0,di = d̄i} for all time.

(AC 2) each subsystem at an edge l ∈ E is

• strictly EIP w.r.t. the supply rate (dl − d̄l)
⊤(zl − z̄l) and a continuously

differentiable, positive definite storage function Sl(xl, x̄l), or

• OSEIP w.r.t. the supply rate (dl − d̄l)
⊤(zl − z̄l) and a continuously differ-

entiable, positive definite storage function Sl(xl, x̄l), and either EIO or
such that no solution other than xl(t) = x̄l can stay in El = {xl ∈ Xl ⊆
Rnl |Ṡl(xl, x̄l) = 0,dl = d̄l} for all time.

Proof:
The proof follows directly by application of Theorem 3.1 and Corollary 3.1 to the AC
power system model established in Section 4.1 with some controller ui at each DGU
i ∈ D.

Under Assumption 5.3, i.e., synchronized dq frames, the conditions (AC 1) and (AC 2) of
Theorem 5.1 answer research question (Q1.1). Next, it has to be ensured that the DGU
and load subsystems fulfill (AC 1) and the power line subsystems fulfill (AC 2).

6 Note that x̄k for k ∈ D possibly implies a slight abuse of notation as in the case of dynamic DGU controllers
the original state vector xk from (5.3b) is augmented by additional controller states.
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5.2.2 Properties of the Unactuated Systems

For the unactuated subsystems without control ports, i.e, load nodes i ∈ L (see (5.4))
and power lines l ∈ P (see (5.11)), requirements on the model parameters have to be
established such that condition (AC 1) and (AC 2), respectively, are satisfied.

Load Nodes

Under Assumption 5.2, each load node i ∈ L can be represented as an ISO-PHS
of the form (3.9) with G(x) = G = 02 (see (5.4d)). According to Lemma 3.1, the
load node model (5.4) is thus EIP w.r.t. the supply rate (di − d̄i)

⊤(zi − z̄i) and the
shifted Hamiltonian as continuously differentiable, positive definite storage function
Si(xi, x̄i) =

1
2∥xi − x̄i∥2Qi

. So far, however, it has not been investigated when Assump-
tion 5.2 holds. In the following proposition, necessary and sufficient conditions are
provided that ensure each load node i ∈ L fulfills Assumption 5.2 and condition (AC 1).
Furthermore, in the proof, it will be shown that ensuring EIP is in fact equivalent to
fulfilling the monotonicity property from Assumption 5.2.

Proposition 5.1 (EIP and confined dynamics behavior of ZIP and exponential AC
loads)
Consider a load node i ∈ L described by (5.4). If and only if

• for ZIP loads with (5.9), it holds for all Vi ≥ 0.7V0 that

Y 2
P,iV

4
i + YP,iIP,iV

3
i ≥ 1

4
IQ,iV

2
i + (IP,iPP,i + IQ,iPQ,i)Vi +

(
P 2
P,i + P 2

Q,i

)
, (5.18)

• for exponential loads with (5.10), it holds for all Vi ≥ 0.7V0 that

4 (nP,i − 1)P 2
0,i

(
Vi
V0

)2nP,i

≥ (nQ,i − 2)
2
Q2

0,i

(
Vi
V0

)2nQ,i

, (5.19)

then Assumption 5.2 is fulfilled and (5.4a) is EIP w.r.t. the supply rate (di−d̄i)
⊤(zi−z̄i)

and the continuously differentiable, positive definite storage function

Si(xi, x̄i) =
1

2
∥xi − x̄i∥2Qi

(5.20)

for any (feasible) equilibrium pair (d̄i, z̄i) and associated equilibrium state vector

x̄i = CiV̄
dq
i . (5.21)

Furthermore, no solution other than xi(t) = x̄i as in (5.21) can stay in Ei = {xi ∈
Xi ⊆ R2|Ṡi(xi, x̄i) = 0,di = d̄i} for all time.
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Proof:
In order to show that the load model (5.4) is EIP w.r.t. the supply rate (di− d̄i)

⊤(zi− z̄i)

and the continuously differentiable, positive definite storage function Si(xi, x̄i) in
(5.20), let di be fixed to an arbitrary equilibrium value d̄i with associated equilibrium
values z̄i = V̄ dq

i and x̄i = CiV̄
dq
i (cf. (5.4b), (5.4c)) for the interaction output and state,

respectively. Since x̄i satisfies Ji ∂Hi

∂xi
(x̄i)−Ri

(
∂Hi

∂xi
(x̄i)

)
+ d̄i = 0, the load model (5.4)

can equivalently be written as

ẋi = Ji

(
∂Hi

∂xi
(xi)− ∂Hi

∂xi
(x̄i)

)
−
[
Ri

(
∂Hi

∂xi
(xi)

)
−Ri

(
∂Hi

∂xi
(x̄i)

)]
+Ki(di− d̄i). (5.22)

For the time derivative of Si(xi, x̄i) in (5.20), it holds that

Ṡi(xi, x̄i) =−
(
∂Hi

∂xi
(xi)− ∂Hi

∂xi
(x̄i)

)⊤ [
Ri

(
∂Hi

∂xi
(xi)

)
−Ri

(
∂Hi

∂xi
(x̄i)

)]
︸ ︷︷ ︸

ψi(xi,x̄i)

+
(
∂Hi

∂xi
(xi)− ∂Hi

∂xi
(x̄i)

)⊤
Ki︸ ︷︷ ︸

(zi−z̄i)⊤

(di − d̄i).

(5.23)

Following Definition 3.2, the load model (5.4) is EIP, if and only if

ψi(xi, x̄i)
(5.4)
=
(
V dq
i − V̄ dq

i

)⊤ (
Idq
L,i(V

dq
i )− Idq

L,i(V̄
dq
i )
)
≥ 0. (5.24)

Note that according to Rockafellar and Wets [1998, Definition 12.1], (5.24) is the defini-
tion of a monotone, differentiable mapping Idq

L,i : R2 → R2. Thus, (5.24) is fulfilled, if
and only if the load current function Idq

L,i(V
dq
i ) is monotone. Additionally, Idq

L,i(02) = 02

holds (see (5.9) and (5.10)). Thus, fulfilling Assumption 4.1 and ensuring EIP are equi-
valent.

Next, monotonicity conditions for Idq
L,i(V

dq
i ) are derived. Following Rockafellar and

Wets [1998, Proposition 12.3], Idq
L,i(V

dq
i ) is monotone, if and only if its Jacobian

∇Idq
L,i(V

dq
i ) =

∂Idq
L,i

∂V dq
i

(V dq
i ) =


IdL,i
∂V d

i

IdL,i
∂V q

i
IqL,i
∂V d

i

IqL,i
∂V q

i

 (5.25)

is positive semidefinite. Furthermore, since the Jacobian is a real-valued, quadratic
matrix ∇Idq

L,i(V
dq
i ) ∈ R2×2, its definiteness properties are simply those of its symmetric

part (see Rockafellar and Wets [1998, p. 534])

∇Idq
L,i(V

dq
i ) +

(
∇Idq

L,i(V
dq
i )
)⊤

2
:=

[
a b

b c

]
. (5.26)
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Note that the dependence of the amplitude Vi on the elements in V dq
i (see (5.2)) must

be taken into account when calculating the partial derivatives in (5.25) and (5.26),
respectively.

For the ZIP current-voltage function (5.9) at voltage amplitudes Vi ≥ 0.7V0, (5.26)
results in

a = YP,i +
IP,i (V

q
i )

2 − IQ,iV
d
i V

q
i

V 3
i

−
PP,i

((
V d
i

)2 − (V q
i )

2
)
+ 2PP,iV

d
i V

q
i

V 4
i

, (5.27a)

b =
IQ,i

((
V d
i

)2 − (V q
i )

2
)
− 2IP,iV

d
i V

q
i

2V 3
i

+
PQ,i

((
V d
i

)2 − (V q
i )

2
)
− PP,iV

d
i V

q
i

V 4
i

,

(5.27b)

c = YP,i +
IP,i (V

q
i )

2
+ IQ,iV

d
i V

q
i

V 3
i

+
PP,i

((
V d
i

)2 − (V q
i )

2
)
+ 2PP,iV

d
i V

q
i

V 4
i

. (5.27c)

Then, using computer algebra software, the eigenvalues of (5.26) with (5.27) can be
computed as

λ1,2 = YP,i +
IP,i
2Vi

± 1

V 2
i

[
1

4

(
I2P,i + I2Q,i

)
V 2
i + (IP,iPP,i + IQ,iPQ,i)Vi + P 2

P,i + P 2
Q,i

] 1
2

. (5.28)

Finally, it is evaluated when the eigenvalues (5.28) are non-negative to infer positive
semidefiniteness of the symmetric part of the Jacobian, i.e., (5.26) with (5.27). As (5.28)
are eigenvalues of a real-valued, symmetric matrix, their values are always real [Rugh,
1996, p. 8]. Consequently, λ2, where the square-root term is subtracted, is critical for
investigating the non-negativity of the eigenvalues (5.28). Multiplication with V 2

i yields
the inequality

YP,iV
2
i +

1

2
IP,iVi ≥

[
1

4

(
I2P,i + I2Q,i

)
V 2
i + (IP,iPP,i + IQ,iPQ,i)Vi + P 2

P,i + P 2
Q,i

] 1
2

. (5.29)

Since YP,i, IP,i, PP,i, YQ,i, IQ,i, PQ,i ≥ 0 per definition, both sides in (5.29) are positive.
Squaring them results in

Y 2
P,iV

4
i + YP,iIP,iV

3
i +

1

4
I2P,iV

2
i

≥ 1

4

(
I2P,i + I2Q,i

)
V 2
i + (IP,iPP,i + IQ,iPQ,i)Vi + P 2

P,i + P 2
Q,i, (5.30)

which after rearranging is equivalent to (5.18).
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For the exponential current-voltage function (5.10) at voltage amplitudes Vi ≥ 0.7V0,
the procedure is similar. The symmetric part of the Jacobian (5.26) is given by

a =
P0,i

[
(nP,i − 1)

(
V d
i

)2
+ (V q

i )
2
]

V
nP,i

0 V
4−nP,i

i

+
(nQ,i − 2)Q0,iV

d
i V

q
i

V
nQ,i

0 V
4−nQ,i

i

, (5.31a)

b =
(nP,i − 2)P0,iV

d
i V

q
i

V
nP,i

0 V
4−nP,i

i

−
(nQ,i − 2)Q0,i

((
V d
i

)2 − (V q
i )

2
)

2V
nQ,i

0 V
4−nQ,i

i

, (5.31b)

c =
P0,i

[
(nP,i − 1)

(
V d
i

)2
+ (V q

i )
2
]

V
nP,i

0 V
4−nP,i

i

− (nQ,i − 2)Q0,iV
d
i V

q
i

V
nQ,i

0 V
4−nQ,i

i

, (5.31c)

with eigenvalues

λ1,2 =
1

2V 2
i

(
nP,iP0,i

(
Vi
V0

)nP,i

±

[
(nP,i − 2)2P 2

0,i

(
Vi
V0

)2nP,i

+ (nQ,i − 2)2Q2
0,i

(
Vi
V0

)2nQ,i
] 1

2

 . (5.32)

The critical eigenvalue λ2 (see (5.32)) is positive under

nP,iP0,i

(
Vi
V0

)nP,i

≥

[
(nP,i − 2)2P 2

0,i

(
Vi
V0

)2nP,i

+ (nQ,i − 2)2Q2
0,i

(
Vi
V0

)2nQ,i
] 1

2

. (5.33)

Since both sides in (5.33) are positive, squaring them results in

nP,iP0,i

(
Vi
V0

)2nP,i

≥ (nP,i − 2)2P 2
0,i

(
Vi
V0

)2nP,i

+ (nQ,i − 2)2Q2
0,i

(
Vi
V0

)2nQ,i

, (5.34)

which after rearranging is equivalent to (5.19).

For Vi < 0.7V0, the procedure for both ZIP and exponential loads is as before. The
symmetric part of the Jacobian is given by (5.26) with

a = ỸP,i, b = 0, c = ỸP,i. (5.35a)

Since ỸP,i ≥ 0 per definition (see (5.9) and (5.10)), monotonicity and thus EIP follow
directly.

Lastly, it is proved that conditions (5.18) and (5.19), respectively, also imply that no
solution other than x̄i as in (5.21) can stay in Ei = {xi ∈ Xi ⊆ R2|Ṡi(xi, x̄i) = 0,di = d̄i}
for all time. From (5.23), it follows that set Ei is characterized by ψi(xi, x̄i) = 0, which
either directly implies V dq

i ≡ V̄ dq
i or Idq

L,i(V
dq
i )−Idq

L,i(V̄
dq
i ) = 02. For the latter, consider

the evolution of a solution of (5.22) starting in Ei. Confine the dynamics (5.22) to Ei
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for any future time by inserting Ri

(
∂Hi

∂xi
(xi)

)
−Ri

(
∂Hi

∂xi
(x̄i)

)
= 02 and di = d̄i. This

yields the set of equations

0 = ω0Ci
(
V q
i − V̄ q

i

)
,

0 = −ω0Ci
(
V d
i − V̄ d

i

)
,

(5.36)

whose unique solution is V d
i ≡ V̄ d

i , V q
i ≡ V̄ q

i implying xi ≡ x̄i. Thus, no solution other
than x̄i as in (5.21) can stay in Ei for all time.

Remark 5.5. The ZIP load condition (5.18) is most restrictive on the ratio between its parameters
at the lower voltage bound Vi = 0.7V0. Thus, to ensure that some load node i ∈ L fulfills (AC 1)
for all voltages Vi ≥ 0, the inequality

Y 2
P,i(0.7V0)

4 + YP,iIP,i(0.7V0)
3 ≥ 1

4
IQ,i(0.7V0)

2 + (IP,iPP,i + IQ,iPQ,i) 0.7V0

+
(
P 2
P,i + P 2

Q,i

) (5.37)

has to be fulfilled. In contrast, the exponential load condition (5.19) does not allow for a
conservative worst-case approximation. Instead, the validity of (5.19) has to be checked for
voltage amplitudes Vi within some set that covers all voltage amplitudes that might reasonably
occur during operation.

Remark 5.6. From (5.18), (5.37), and (5.19), it can be seen that a purely reactive power
consumption violates the load conditions. Furthermore, as with the DC case (see Remark 4.4), it
can be seen that a too dominant constant power load behavior also violates the derived conditions.

Remark 5.7. Note that if (5.18) and (5.19), respectively, hold strictly and additionally ỸP,i > 0,
the load current function Idq

L,i(V
dq
i ) is strictly monotone and the load model is strictly EIP.

Power Lines

The AC power line models (5.11) can be represented as linear ISO-PHS models with
constant matrices and positive definite dissipation matrix Rl ≻ 0 (see (5.11d)). Accord-
ing to Lemma 3.1, the power line models (5.11) are thus strictly EIP w.r.t. the supply
rate (dl − d̄l)

⊤(zl − z̄l) and the shifted Hamiltonian as continuously differentiable,
positive definite storage function Sl(xl, x̄l) = 1

2∥xl − x̄l∥2Ql
. Consequently, they satisfy

condition (AC 2) for all model parameters.

5.2.3 Control Problems

For the actuated DGU subsystems i ∈ D, decentralized controllers for the VSIs are to be
designed such that the closed-loop systems satisfy condition (AC 1). Furthermore, the
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respective closed-loop equilibrium state vectors ¯̂xi, i ∈ D, should be such that desired
node voltages V̄ dq

i = V dq∗
i ∈ R2 and current injections Īdq

i = Idq∗
i ∈ R2 are established

in steady state (see research question (Q1.2)).

In particular, recall from Section 2.1 that the operating modes of VSIs can be separated
into grid-forming voltage control and grid-feeding current control (see also Rocabert
et al. [2012]). Consequently, following the notation used for the DC case (see Sec-
tion 4.2.3), the set of DGUs with VSIs stabilizing voltage setpoints V dq∗

i is denoted
by Dform. Conversely, the set of DGUs with VSIs stabilizing the injected currents to
setpoints I∗i is denoted by Dfeed.

In order to achieve decentralized stabilization in AC power systems as per Definition 2.3
and provide answers to research question (Q1.2), the following control problem is left
to be addressed:

Problem 5.1 (Decentralized voltage and current control)
Consider DGUs i ∈ D described in open loop by (5.3). For the VSI in each DGU i ∈ D,
design decentralized controllers of the form

ẋc,i = fc,i(xi,xc,i), ui = V dq
S,i = ûi(xi,xc,i) (5.38)

with controller states xc,i ∈ R2 such that the resulting closed-loop system fulfills
(AC 1). Furthermore, the respective closed-loop equilibrium state vector ¯̂xi =

[
x̄⊤
i , x̄

⊤
c,i

]⊤
shall fulfill the following characteristics:

(a) For each grid-feeding DGU i ∈ Dfeed, Īdq
i = Idq∗

i ∈ R2 in ¯̂xi.

(b) For each grid-forming DGU i ∈ Dform, V̄ dq
i = V dq∗

i ∈ R2 in ¯̂xi.

Remark 5.8. In line with the hierarchical control structure discussed in Section 2.1.2, the
setpoints V dq∗

i and Idq∗
i are assumed to be known and specified by a higher-level control

ensuring that these setpoints constitute feasible AC power system equilibria x̄AC within the
operational constraints.

5.3 Passivity-Based Control Design

In this section, Problem 5.1 is addressed. In Sections 5.3.1 and 5.3.2, current and voltage
controllers are designed for the VSIs such that the closed-loop DGU models fulfill
the requirements in Problem 5.1. To showcase the unifying nature of the derived
decentralized stability conditions, Section 5.3.3 demonstrates by example of the voltage
controller proposed by Nahata and Ferrari-Trecate [2019] that decentralized, passivity-
based controllers which are available in the literature are compatible with condition
(AC 1).
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5.3.1 Current Controller

The goal of current controllers in grid-feeding DGUs i ∈ Dfeed is to asymptotically
stabilize closed-loop DGU equilibria ¯̂xi =

[
LiI

d∗
i , LiI

q∗
i , CiV̄

d
i , CiV̄

q
i , x̄

⊤
c,i

]⊤ containing
some desired VSI output current Idq∗

i (see Problem 5.1 (a)). As in the DC case (see
Section 4.3.1), Idq

i = yi is the natural passive control output of the open-loop DGU
model (see (5.3c)). Thus, a standard PI controller working on y∗

i − yi = Idq∗
i − Idq

i can
stabilize any equilibrium value ¯̂xi while preserving EIP of the closed-loop system with
respect to the supply rate (di − d̄i)

⊤(zi − z̄i) (cf. Jayawardhana et al. [2007]). In the
present case of grid-feeding DGUs i ∈ Dfeed, it can be shown that a standard PI current
controller also suffices to ensure the additional confined dynamics requirement posed
by (AC 1).

Proposition 5.2 (Current controller for grid-feeding DGUs)
Consider a grid-feeding DGU i ∈ Dfeed described in open loop by (5.3). Assume the
local ZIP or exponential load (5.3f) fulfills the conditions of Proposition 5.1. Assign
the control input ui = V dq

S,i with the PI controller[
Qd

I,i 0

0 Qq
I,i

]
ṙi = −

(
Idq
i − Idq∗

i

)
, (5.39a)

ui =

[
kdP,i 0

0 kqP,i

](
Idq
i − Idq∗

i

)
+ ri +

[
−ω0LiI

q
i

ω0LiI
d
i

]
, (5.39b)

where Idq∗
i ∈ R2 is a desired dq current setpoint and kdP,i, k

q
P,i, Q

d
I,i, Q

q
I,i > 0 are

control parameters. Then, the closed-loop DGU system can be written as

d

dt



LiI
d
i

LiI
q
i

CiV
d
i

CiV
q
i

Qd
I,ir

d
i

Qq
I,ir

q
i


︸ ︷︷ ︸

x̂i

=



−RiIdi − V d
i − kdP,i

(
Idi − Id∗i

)
+ rdi

−RiIqi − V q
i − kqP,i

(
Iqi − Iq∗i

)
+ rqi

Idi + ω0CiV
q
i − IdL,i(V

dq
i )

Iqi − ω0CiV
d
i − IqL,i(V

dq
i )

−
(
Idi − Id∗i

)
−
(
Iqi − Iq∗i

)


︸ ︷︷ ︸

f̂i(x̂i)

+



0 0

0 0

1 0

0 1

0 0

0 0


︸ ︷︷ ︸

K̂i

di, (5.40a)

zi = V dq
i . (5.40b)
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Moreover, (5.40) is EIP w.r.t. the supply rate (di − d̄i)
⊤(zi − z̄i) and the continuously

differentiable, positive definite storage function

Ŝi(x̂i, ¯̂xi) =
1

2

∥∥x̂i − ¯̂xi
∥∥2
Q̂i
, (5.41a)

Q̂i = diag

(
1

Li
,
1

Li
,
1

Ci
,
1

Ci
,

1

Qd
I,i

,
1

Qq
I,i

)
(5.41b)

for any (feasible) equilibrium pair (d̄i, zi) and associated equilibrium state vector

¯̂xi =
[
LiI

d∗
i , LiI

q∗
i , CiV̄

d
i , CiV̄

q
i , Q

d
I,ir̄

d
i , Q

q
I,ir̄

q
i

]⊤
. (5.42)

Furthermore, no solution other than x̂i = ¯̂xi as in (5.42) can stay in Ei = {x̂i ∈ X̂i ⊆
R6| ˙̂Si(x̂i, ¯̂xi) = 0,di = d̄i} for all time.

Proof:
Writing the closed-loop DGU model as in (5.40) directly follows by inserting the PI
controller (5.39) into the open-loop DGU model (5.3). The remaining proof is largely
identical to that of Proposition 4.2. Substitute the variables, vectors, and matrices with
the respective ones from (5.3) and (5.40).

In particular, the dissipation rate is given by

ψ̂i(x̂i, ¯̂xi) = (Ri + kdP,i)
(
Idi − Id∗i

)2
+ (Ri + kqP,i)

(
Iqi − Iq∗i

)2
+
(
V dq
i − V̄ dq

i

)⊤ (
Idq
L,i(V

dq
i )− Idq

L,i(V̄
dq
i )
) (5.43)

and positive semidefinite under the load conditions of Proposition 5.1 (Ri, kdP,i, k
q
P,i > 0

per definition). Furthermore, set Ei is characterized by

ψ̂i(x̂i, ¯̂xi) ≡ 0
(5.43)
=⇒ Idq

i ≡ Idq∗
i . (5.44)

The shifted dynamics of (5.40) confined to Ei are given by

0 = rdi − r̄di −
(
V d
i − V̄ d

i

)
,

0 = rqi − r̄qi −
(
V q
i − V̄ q

i

)
,

CiV̇
d
i = ω0Ci

(
V q
i − V̄ q

i

)
−
(
IdL,i(V

dq
i )− IdL,i(V̄

dq
i )
)
,

CiV̇
q
i = −ω0Ci

(
V d
i − V̄ d

i

)
−
(
IqL,i(V

dq
i )− IqL,i(V̄

dq
i )
)
,

Qd
I,iṙ

d
i = 0,

Qq
I,iṙ

q
i = 0,

(5.45)

whose unique solution is V dq
i ≡ V̄ dq

i , ri ≡ r̄i.
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Remark 5.9. The last term in (5.39b) is added to decouple the dynamics of the d and q
component of Idq

i (compare (5.40) with (5.3a)). While the results of Proposition 5.2 hold without
such a decoupling, the decoupling is commonly done in practice when designing dq current
controllers to improve control performance.

Similar to the DC current controller, the statements of Proposition 5.2 still hold when
a grid-feeding DGU i ∈ Dfeed does not supply a local load, i.e., Idq

L,i(V
dq
i ) = 02 (see

Remark 5.2). The following corollary summarizes this insight.

Corollary 5.1 (Current control of grid-feeding DGUs without local loads)
Consider a grid-feeding DGU i ∈ Dfeed that does not supply a local load, i.e., its
open-loop model is given by (5.3) with Idq

L,i(V
dq
i ) = 02. Assign the control input with

the PI controller as in Proposition 5.2. Then the closed-loop DGU system is given by
(5.40) with Idq

L,i(V
dq
i ) = 02. Moreover, all statements from Proposition 5.2 regarding

the EIP properties of the closed loop and its dynamics confined to set Ei hold.

Proof:
The proof is identical to that of Proposition 5.2 except with Idq

L,i(V
dq
i ) = Idq

L,i(V̄
dq
i ) = 02

in the respective equations.

5.3.2 Voltage Controller

The goal of voltage controllers in grid-forming DGUs i ∈ Dform is to asymptotically
stabilize DGU equilibria ¯̂xi =

[
LiĪ

d
i , LiĪ

q
i , CiV

d∗
i , CiV

q∗
i , x̄⊤

c,i

]⊤ containing some desired
node voltage V dq∗

i (see Problem 5.1 (b)). However, the node voltage is the passive
interaction output zi = V dq

i (see (5.3d)) whose corresponding input di is not accessible
as control input. Thus, a similar control design as in the DC case is used which combines
algebraic IDA-PBC from Ortega and García-Canseco [2004] and integral action from
Donaire and Junco [2009].

Proposition 5.3 (Voltage controller for grid-forming DGUs)
Consider a grid-forming DGU i ∈ Dform described in open loop by (5.3). Assume the
local ZIP or exponential load (5.3f) fulfills the conditions of Proposition 5.1. Assign
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the control input ui = V dq
S,i as[

Qd
I,i 0

0 Qq
I,i

]
ṙi = V dq

i − V dq∗
i , (5.46a)

ui =

[
(1− R̂d

i ω0Ci)V
q∗
i

(1 + R̂q
i ω0Ci)V

d∗
i

]
+

[
(Ri − R̂d

i − ω0Li)I
d
i

(Ri − R̂q
i + ω0Li)I

q
i

]

−
[
R̂d
i 0

0 R̂q
i

]
ri +

[ Li

Qd
I,i

0

0 Li

Qq
I,i

](
V dq∗
i − V dq

i

)
, (5.46b)

where V dq∗
i ∈ R2 is a desired dq voltage setpoint and R̂d

i , R̂
q
i , Q

d
I,i, Q

q
I,i > 0 are control

parameters. Then, with the change of coordinates from Idq
i to

χi := Idq
i + ri +

[
ω0CiV

q∗
i

−ω0CiV
d∗
i

]
, (5.47)

the closed-loop DGU system can be written as

d

dt



Liχ
d
i

Liχ
q
i

CiV
d
i

CiV
q
i

Qd
I,ir

d
i

Qq
I,ir

q
i


︸ ︷︷ ︸

x̂i

=



−R̂d
i χ

d
i −

(
V d
i − V d∗

i

)
−R̂q

i χ
q
i −

(
V q
i − V q∗

i

)
χd
i + ω0Ci

(
V q
i − V q∗

i

)
− rdi − IdL,i(V

dq
i )

χq
i − ω0Ci

(
V d
i − V d∗

i

)
− rqi − IqL,i(V

dq
i )(

V d
i − V d∗

i

)(
V q
i − V q∗

i

)


︸ ︷︷ ︸

f̂i(x̂i)

+



0 0

0 0

1 0

0 1

0 0

0 0


︸ ︷︷ ︸

K̂i

di, (5.48a)

zi − z̄ = V dq
i − V dq∗

i . (5.48b)

Moreover, (5.48) is EIP w.r.t. the supply rate (di − d̄i)
⊤(zi − z̄i) and the continuously

differentiable, positive definite storage function

Ŝi(x̂i, ¯̂xi) =
1

2

∥∥x̂i − ¯̂xi
∥∥2
Q̂i
, (5.49a)

Q̂i = diag

(
1

Li
,
1

Li
,
1

Ci
,
1

Ci
,

1

Qd
I,i

,
1

Qq
I,i

)
(5.49b)

for any (feasible) equilibrium pair (d̄i, z̄i) and associated equilibrium state

¯̂xi =
[
Liχ̄

d
i , Liχ̄

q
i , CiV

d∗
i , CiV

q∗
i , Qd

I,ir̄
d
i , Q

q
I,ir̄

q
i

]⊤
. (5.50)

Furthermore, no solution other than x̂i = ¯̂xi as in (5.50) can stay in Ei = {x̂i ∈ X̂i ⊆
R6| ˙̂Si(x̂i, ¯̂xi) = 0,di = d̄i} for all time.
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Proof:
Firstly, it is illustrated how to assign desired closed-loop dynamics (5.48) according to
IDA-PBC and systematically derive the coordinate transformation (5.47). Following
the IDA-PBC design methodology from Ortega and García-Canseco [2004], the directly
actuated current dynamics (see (5.3a)) are assigned a desired damping R̂d

i , R̂
q
i > 0 and

the Hamiltonian is shifted such that is contains the termsCi(V d
i −V d∗

i ) andCi(V
q
i −V q∗

i )

implying a minimum at the desired voltage setpoint V dq∗
i . Additionally, the current

dynamics are assigned a decoupled structure by removing the terms containing ω0Li.

Next, following Donaire and Junco [2009], two integrator states (5.46a) are added to
guarantee zero steady-state voltage errors Subsequently, by introducing a new coordin-
ate vector χi = [χd

i , χ
q
i ]

⊤, the resulting DGU dynamics in closed-loop (cf. (5.48a)) can
be written in the form of an ISO-PHS (3.9)

d

dt



Liχ
d
i

Liχ
q
i

CiV
d
i

CiV
q
i

Qd
I,ir

d
i

Qq
I,ir

q
i

=


−R̂d
i 0 −1 0 0 0

0 −R̂d
i 0 −1 0 0

1 0 0 ω0Ci −1 0

0 1 −ω0Ci 0 0 −1

0 0 1 0 0 0

0 0 0 1 0 0





χd
i

χq
i

V d
i − V d∗

i

V q
i − V q∗

i

rdi
rqi

−


0

0

IdL,i(V
dq
i )

IqL,i(V
dq
i )

0

0


+



0

0

1

1

0

0

di. (5.51)

The coordinate transformation (5.47) is found by matching the not directly actuated
voltage dynamics in closed loop (5.48a) (see also (5.51)) and open loop (5.3a), i.e.,

χi +

[
0 ω0Ci

−ω0Ci 0

](
V dq
i − V dq∗

i

)
− ri − Idq

L,i(V
dq
i ) + di =

Idq
i +

[
0 ω0Ci

−ω0Ci 0

]
V dq
i − Idq

L,i(V
dq
i ) + di (5.52)

⇔ χi = Idq
i + ri +

[
ω0CiV

q∗
i

−ω0CiV
d∗
i

]
(5.53)

In order to derive the controller (5.46b), compute Liχ̇i to get

Liχ̇i
(5.47)
= Liİ

dq
i + Liṙi

(5.3a)
(5.46a)
=

[
−Ri + ω0LiI

q
i

−Ri − ω0LiI
d
i

]
− V dq

i + ui +

[ Li

Qd
I,i

0

0 Li

Qq
I,i

](
V dq
i − V dq∗

i

)
.

(5.54)

By matching (5.54) with the assigned Liχ̇i dynamics in (5.48a) (see also (5.51)), i.e.,[
−R̂d

i χ
d
i

−R̂q
i χ

q
i

]
− (V dq

i − V dq∗
i )

(5.47)
=

[
−R̂d

i (I
d
i + rdi + ω0CiV

q∗
i )

−R̂q
i (I

q
i + rqi − ω0CiV

d∗
i )

]
−
(
V dq
i − V dq∗

i

)
=

[
−Ri + ω0LiI

q
i

−Ri − ω0LiI
d
i

]
− V dq

i + ui +

[ Li

Qd
I,i

0

0 Li

Qq
I,i

](
V dq
i − V dq∗

i

)
,

(5.55)
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and rearranging, the control law (5.46b) is obtained.

The remaining proof is largely identical to that of Proposition 4.3. Simply substitute
the variables, vectors, and matrices with the respective ones from (5.3) and (5.48). In
particular, the dissipation rate is given by

ψ̂i(x̂i, ¯̂xi) = R̂d
i

(
χd
i − χ̄d

i

)2
+ R̂q

i

(
χq
i − χ̄d

i

)2
+
(
V dq
i − V̄ dq

i

)⊤ (
Idq
L,i(V

dq
i )− Idq

L,i(V̄
dq
i )
) (5.56)

and positive semidefinite under the load conditions of Proposition 5.1 (R̂d
i , R̂

q
i > 0 per

definition). Furthermore, set Ei is characterized by

ψ̂i(x̂i, ¯̂xi) ≡ 0
(5.56)
=⇒ χi ≡ χ̄i. (5.57)

The shifted dynamics of (5.48) confined to Ei are given by

0 = −
(
V d
i − V d∗

i

)
,

0 = −
(
V q
i − V q∗

i

)
,

CiV̇
d
i = ω0Ci

(
V q
i − V q∗

i

)
−
(
rdi − r̄di

)
−
(
IdL,i(V

dq
i )− IdL,i(V

dq∗
i )

)
,

CiV̇
q
i = −ω0Ci

(
V d
i − V d∗

i

)
− (rqi − r̄qi )−

(
IqL,i(V

dq
i )− IqL,i(V

dq∗
i )

)
,

Qd
I,iṙ

d
i = V di − V d∗

i ,

Qq
I,iṙ

q
i = V q

i − V q∗
i ,

(5.58)

whose unique solution is V dq
i ≡ V dq∗

i , ri ≡ r̄i.

Remark 5.10. Note that the controller (5.46) is composed of a setpoint feedforward proportional
to V dq∗

i , a static state feedback proportional to Idq
i for damping assignment and decoupling,

and a PI term acting on the control error V dq∗
i − V dq

i to ensure zero steady-state errors under
parameter uncertainties and unknown, steady-state interaction inputs d̄i = −Īdq

N,i. All these
building blocks are available as industrial standard, off-the-shelf control functions.

Similar to the AC voltage controller, the statements of Proposition 5.3 still hold when
a grid-forming DGU i ∈ Dform does not supply a local load, i.e., Idq

L,i(V
dq
i ) = 02 (see

Remark 5.2). The following corollary summarizes this insight.

Corollary 5.2 (Voltage control of grid-forming DGUs without local loads)
Consider a grid-forming DGU i ∈ Dform that does not supply a local load, i.e., its
open-loop model is given by (5.3) with Idq

L,i(V
dq
i ) = 02. Assign the control input and

coordinate transformation as in Proposition 5.2. Then the closed-loop DGU system
is given by (5.48) with Idq

L,i(V
dq
i ) = 02. Moreover, all statements from Proposition 5.3

regarding the EIP properties of the closed-loop and its dynamics confined to set Ei
hold.
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Proof:
The proof is identical to that of Proposition 5.3 except with Idq

L,i(V
dq
i ) = Idq

L,i(V̄
dq
i ) = 02

in the respective equations.

5.3.3 Voltage Controller of Nahata and Ferrari-Trecate [2019]

In this section, it is shown by example of the voltage controller proposed by Nahata
and Ferrari-Trecate [2019] that decentralized controllers in the literature are readily
compatible with the decentralized stability conditions of Theorem 5.1.

As with their DC version (see Section 4.3.3), Nahata and Ferrari-Trecate [2019] model
DGUs with the permutated version of the co-state vector ∂Hi

∂xi
(xi) (5.3b) as actual state

vector, i.e., xi =
[
V d
i , V

q
i , I

d
i , I

q
i

]⊤. To allow for a transparent cross-referencing, this
model perspective is used in the following proposition.7

Proposition 5.4 (Voltage controller of Nahata and Ferrari-Trecate [2019])
Consider a grid-forming DGU i ∈ Dform described in open loop by (5.3). Assume the
local ZIP or exponential load (5.3f) fulfills the conditions of Proposition 5.1. Assign
the control input ui = V dq

S,i according to Nahata and Ferrari-Trecate [2019] as

ṙi = −
(
V dq
i − V dq∗

i

)
, (5.59a)

ui = K11,iV
dq
i +K12,iI

dq
i +K13,iri, (5.59b)

with dq voltage setpoint V dq∗
i ∈ R2 and control parameter matrices K11,i, K12,i,

K13,i ∈ R2×2. Then, the closed-loop DGU system can be written as

d

dt

V dq
i

Idq
i

ri


︸ ︷︷ ︸

x̂i

=

F11,iV
dq
i + F12,iI

dq
i − 1

Ci
Idq
L,i(V

dq
i )

F21,iV
dq
i + F22,iI

dq
i + F23,iri,

−
(
V dq
i − V dq∗

i

)


︸ ︷︷ ︸
f̂i(x̂i)

+

 1
Ci

I2
02×2

02×2


︸ ︷︷ ︸

K̂i

di, (5.60a)

zi = V dq
i , (5.60b)

7 Note that in the following elaborations, reference is made to the PhD thesis by Nahata [2021] since major
parts of the proofs and information is missing in the abbreviated conference version Nahata and Ferrari-
Trecate [2019].
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with matrices

F11,i =

[
0 ω0

−ω0 0

]
, F12,i =

1

Ci
I2, (5.60c)

F21,i = − 1

Li
(I2 −K11,i), F22,i =

[
−Ri

Li
ω0

−ω0 −Ri

Li

]
+

1

Li
K12,i, F23,i =

1

Li
K13,i. (5.60d)

If the control parameter matrices satisfy

K11,i = LiX
−1
i + I2, (5.61a)

K12,i =

[
Ri −ω0Li
ω0Li Ri

]
−K13,i(Z

−1
i +Xi), (5.61b)

−K13,i(Z
−1
i X−1

i )− (Z−1
i X−1

i )⊤K⊤
13,i ≺ 0, (5.61c)

with Xi,Zi ∈ R2×2, Xi,Zi ≻ 0, then (5.60) is EIP w.r.t. the supply rate (di− d̄i)
⊤(zi−

z̄i) and the continuously differentiable, positive definite storage function

Ŝi(x̂i, ¯̂xi) =
1

2

∥∥x̂i − ¯̂xi
∥∥2
Q̂i
, (5.62a)

Q̂i =

 CiI2 02×2 02×2

02×2 Xi +XiZiXi XiZi
02×2 −ZiXi Zi

 , (5.62b)

for any (feasible) equilibrium pair (d̄i, z̄i) and associated equilibrium state

¯̂xi =
[
Īdi , Ī

q
i , V

d∗
i , V q∗

i , r̄di , r̄
q
i

]⊤
. (5.63)

Furthermore, no solution other than x̂i = ¯̂xi as in (5.50) can stay in Ei = {x̂i ∈ X̂i ⊆
R6| ˙̂Si(x̂i, ¯̂xi) = 0,di = d̄i} for all time.

Proof:
Writing the closed-loop DGU model as in (5.60) directly follows by inserting the state-
feedback controller (5.59) into the open-loop DGU model (5.3) and rewriting with states
as in Nahata and Ferrari-Trecate [2019] (cf. Nahata [2021, Equations (4.17)–(4.20)]).

In order to show that (5.60) is EIP w.r.t. the supply rate (di − d̄i)
⊤(zi − z̄i) and the

continuously differentiable, positive definite storage function (5.62), the same reasoning
as in the proof of Proposition 4.4 is used. In particular, the closed-loop DGU model
(5.60) can equivalently be written as
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˙̂xi = f̂i(x̂i)− f̂i(¯̂xi) + K̂i(di − d̄i) (5.64a)

(5.60)
(5.63)
=


F11,i

(
V dq
i − V dq∗

i

)
+ F12,i

(
Idq
i − Īdq

i

)
− 1

Ci

(
Idq
L,i(V

dq
i )− Idq

L,i(V
dq∗
i )

)
F21,i

(
V dq
i − V dq∗

i

)
+ F22,i

(
Idq
i − Īdq

i

)
+ F23,i(ri − r̄i)

−
(
V dq
i − V dq∗

i

)


+
[

1
Ci

I2 02×2 02×2

]⊤
(di − d̄i) (5.64b)

zi − z̄i = V dq
i − V dq∗

i (5.64c)

For the time derivative of Ŝi(x̂i, ¯̂xi) in (5.62), it holds that

˙̂
Si(x̂i, ¯̂xi) = (x̂i − ¯̂xi)

⊤Q̂i

(
f̂i(x̂i)− f̂i(¯̂xi)

)
︸ ︷︷ ︸

−ψ̂i(x̂i,¯̂xi)

+(x̂i − ¯̂xi)
⊤Q̂iK̂i︸ ︷︷ ︸

(zi−z̄i)

(di − d̄i). (5.65)

With (5.60), (5.62), and (5.63), the dissipation rate can be written as (cf. Nahata [2021,
Equations (4.17), (4.27)])

ψ̂i(x̂i, ¯̂xi) = −
(
x̂i − ¯̂xi

)⊤ (
F⊤
i Q̂i + Q̂iFi

) (
x̂i − ¯̂xi

)
+
(
V dq
i − V̄ dq

i

)⊤ (
Idq
L,i(V

dq
i )− Idq

L,i(V̄
dq
i )
) (5.66a)

with

Fi =

F11,i F12,i 02×2

F21,i F22,i F23,i

−I2 02×2 02×2

 . (5.66b)

If the control parameter matrices contained in Fi satisfy (5.61) (see the proof of The-
orem 4.3.1 in Nahata [2021]) and the load conditions of Proposition 5.1 hold, it follows
that ψ̂i(x̂i, ¯̂xi) ≥ 0. Thus, according to Definition 3.2, the closed-loop DGU model (5.60)
is EIP w.r.t. the supply rate (di − d̄i)

⊤(zi − z̄i) and the continuously differentiable,
positive definite storage function (5.62).

Lastly, it is proved that no solution other than ¯̂xi as in (5.50) can stay in Ei = {x̂i ∈ X̂i ⊆
R6| ˙̂Si(x̂i, ¯̂xi) = 0,di = d̄i} for all time. From (5.65), it follows that set Ei is characterized
by ψ̂i(x̂i, ¯̂xi) ≡ 0. Following Nahata [2021, Equations (4.58)–(4.68)], it can be shown that
ψ̂i(x̂i, ¯̂xi) ≡ 0 implies

V dq
i ≡ V dq∗

i . (5.67)

Under (5.67), the evolution of a solution of the shifted dynamics (5.64b) confined to Ei
is given by

02 = F12,i

(
Idq
i − Īdq

i

)
, (5.68a)

İdq
i = F22,i

(
Idq
i − Īdq

i

)
+ F23,i (ri − r̄i) , (5.68b)

ṙi = 02, (5.68c)
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whose unique solution is Idq
i ≡ Īdq

i , ri ≡ r̄i. Thus, no solution other than ¯̂xi as in (5.63)
can stay in Ei for all time.

Remark 5.11. Note that compared to the voltage controller (5.46) in Proposition 5.3, the voltage
control law (5.59) by Nahata and Ferrari-Trecate [2019] is more restrictive on the choice of
control parameters that are required to fulfill condition (AC 1). While the controller (5.46) only
requires positive control parameters R̂d

i , R̂
q
i , Q

d
I,i, Q

q
I,i > 0, the control parameters of (5.59)

must fulfill the three equations given by (5.61), one of which is a linear matrix inequality. On
the other hand, the voltage controller (5.59) of Nahata and Ferrari-Trecate [2019] comprises
individual gains for the voltage V dq

i , the current Idq
i , and the integral voltage error ri together

with cross-coupling terms, while the voltage controller (5.46) only has four control parameters
for the six terms containing V dq

i , Idq
i , and ri.

5.4 Simulation

This section demonstrates the validity of the presented unifying stabilization framework
via two simulative case studies. In particular, the stability properties of ZIP and expo-
nential loads under the conditions of Proposition 5.1 as well as the stabilizing properties,
plug-and-play capabilities, and disturbance rejection behavior of the voltage and current
controllers from Propositions 5.2 and 5.3 are shown. The simulated scenarios and most
of the general setup are identical to the DC case presented in Chapter 4, Section 4.4.
However, as the DC case required some adaptations, all necessary information for the
following simulation studies, even if redundant, is given in this section to ensure a
consistent and clear presentation.

The first scenario in Section 5.4.2 focuses on plug-and-play operations of DGUs and
flexible, time-varying system configurations. The second scenario in Section 5.4.3 invest-
igates whether different setpoints for the controlled dq node voltages and VSI output
currents can be asymptotically stabilized and disturbances arising from load variations
be rejected. In order to highlight the unifying nature of the presented, EIP-based sta-
bilization framework, both scenarios are complemented with a DGU controlled by the
voltage controller of Nahata and Ferrari-Trecate [2019] (see Proposition 5.4). Addition-
ally, both scenarios are simulated with an uncertainty on the DGU filter parameters
to evaluate the disturbance rejection capabilities of the controllers against parameter
uncertainties.

5.4.1 General Simulation Setup

For the simulations, an AC power system based on Feeder 1 of the CIGRE medium-
voltage AC benchmark network from Strunz et al. [2014, Figure 6.5] and Farrokhabadi
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et al. [2018, pp. 42ff] is implemented in MATLAB/SIMULINK using SIMSCAPE compon-
ents. The CIGRE network operates at V0 = 20 kV, f0 = 50Hz, and comprises 11 nodes.
In its original form, the CIGRE network reflects a classical AC distribution system
structure in which the medium-voltage feeder only comprises loads and is fed by a
110 kV high-voltage transmission network via a transformer at node 1.

Thus, in order to assess the control schemes proposed in this chapter and operational
scenarios arising with the pervasive integration of RESs, the network is modified in two
ways as illustrated in Figure 5.1:

• The connection to the 110 kV transmission network at node 1 is resolved. Instead,
DGUs are added at nodes i ∈ D = {1, 2, 3, 4, 5, 6} with the proposed current
controller (5.39) at DGUs i ∈ Dfeed = {3, 5, 6}, the proposed voltage controller
(5.46) at DGUs i ∈ DPBC = {2, 4}, and the voltage controller (5.59) from Nahata
and Ferrari-Trecate [2019] at DGU i ∈ DN19 = {1}.

• Instead of only exponential loads as in Farrokhabadi et al. [2018, pp. 42ff], ZIP
loads are connected at nodes i ∈ LZIP = {1, 2, 4, 7, 8}, while exponential loads
remain at nodes i ∈ LEXP = {5, 6, 9, 10, 11}.

The network, DGU, and eletrical line parameters used in the simulations are summar-
ized in Table 5.1. They are in line with typical values (see, e.g., Strunz et al. [2014],
Riverso et al. [2015], and Watson et al. [2021]). In both simulations, the RLC filters
of all DGUs are parameterized identically with nominal values as in Table 5.1. These
nominal values are used in all DGU controllers (5.39), (5.46), and (5.59), while the actual
implemented filter parameters have a +10% offset to evaluate the disturbance rejection
capabilities of the controllers against parameter uncertainties. The resulting effective
cut-off frequency of the RLC filters is thus fcut = 1√

LiCi
= 682Hz.

The line parameters in Table 5.1 follow from Strunz et al. [2014, Table 6.12] by using the
relations in Strunz et al. [2014, Equations (18),(19)] and solving for the positive-sequence
components. Note that as only balanced AC power systems are considered in this
thesis (see Assumption 5.1), the lines have only positive-sequence and no zero-sequence
components.

The parameters of the controllers are summarized in Table 5.1. The structures of
the gain matrices for the controller (5.59) of Nahata and Ferrari-Trecate [2019] are
chosen according to the elaborations around Nahata [2021, p. 58] where Xi = Zi = I2.
However, to allow for tuning and a better control performance, two parameters a, b > 0

are introduced such that X−1
i = aI2, Zi = I2, and K13,i = bI2. Note that for any

a, b > 0 the obtained gain matrices satisfy (5.61).

The DGU references used in the controllers are set as in Table 5.2 to yield reasonable
network situations.

The load parameters are given in Tables 5.3 and 5.4. The exponential load parameters
are taken from Farrokhabadi et al. [2018, pp. 42,45]. The ZIP load parameters follow
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from the exponential load parameters in Farrokhabadi et al. [2018, pp. 42,45] via the
equivalence transformations in Farrokhabadi et al. [2018, Equations (38),(41)] with
Zp = Zq = 5

14 , I
p = Iq = 1

14 , P
p = P q = 1

14 . The parameters of each ZIP load
satisfy the condition (5.18) in Proposition 5.1 for all voltage amplitudes Vi ≥ 0. This
means that condition (5.37) from Remark 5.5 is fulfilled. As discussed in Remark 5.5,
the exponential load condition (5.19) does not allow for a conservative worst-case
approximation. Instead, the validity of (5.19) for the parameters of each exponential
load is checked for voltage amplitudes within a range of Vi ∈ [0.7V0; 2V0], which
securely covers all voltage amplitudes that might reasonably occur during operation.

Table 5.1: Simulation parameters for the AC power system simulation

Network V0 = 20 kV, f0 = 50Hz

DGU filters (5.3) Ri = 0.1Ω, Li = 1.8mH, Ci = 25µF

Electrical lines (5.11) Rl = 0.343Ω/km, Ll = 0.875mH/km,
Cl = 151.2 nF/km

length ∈ [0.24; 4.42] km (see Figure 5.1)

Current controller (5.39), i ∈ Dfeed kdP,i = kqP,i = 0.1, Qd
I,i = Qq

I,i =
1
15

Voltage controller (5.46), i ∈ DPBC R̂d
i = R̂q

i = 0.4, Qd
I,i = Qq

I,i =
1

200

Voltage controller (5.59), i ∈ DN19 K11,i = (aLi + 1)I2×2,

K12,i =

[
Ri −ω0Li
ω0Li Ri

]
−K13,i

(
1
a + 1

)
,

K13,i = bI2×2, a = b = 1000

Table 5.2: Voltage and current setpoints of the DGUs. For Scenario A in Section 5.4.2, only the base values are
used. For Scenario B in Section 5.4.3 featuring load and setpoint changes, the values vary at the
indicated times.

DGU i 1 2 3 4 5 6
(blue) (red) (yellow) (purple) (turquoise) (black)

base V d∗
i (kV) 21 20.998 – 20.996 – –

t = 15 s V d∗
i (kV) 21.05 21.048 – 21.046 – –

base V q∗
i (V) 1000 998 – 996 – –

t = 20 s V q∗
i (V) 950 948 – 946 – –

base Id∗i (A) – – -3 – -5 -6
t = 25 s Id∗i (A) – – -2 – -4 -5

base Iq∗i (A) – – 160 – 161 162
t = 30 s Iq∗i (A) – – 161 – 162 163
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Table 5.3: ZIP load parameters. For Scenario A in Section 5.4.2, only the base values are used. For Scenario B
in Section 5.4.3 featuring load and setpoint changes, the values vary at the indicated times.

i 1 2 4 7 8

base YP,i = YQ,i (µS) 75 97.5 51.96 51.96 58.48

t = 1 s YP,i = YQ,i (µS) 112.5 146.25 77.95 77.95 87.72

base IP,i = IQ,i (A) 0.3 0.39 0.208 0.208 0.234

t = 1 s IP,i = IQ,i (A) 0.45 0.585 0.312 0.312 0.351

base PP,i = PQ,i (kW, kVar) 6 7.8 4.157 4.157 4.679

t = 1 s PP,i = PQ,i (kW, kVar) 9 11.7 6.235 6.235 7.018

Table 5.4: Exponential load parameters. For Scenario A in Section 5.4.2, only the base values are used. For
Scenario B in Section 5.4.3 featuring load and setpoint changes, the base values are ramped up from
t = 5 s to the final value at t = 10 s.

i 5 6 9 10 11

base P0,i = Q0,i (kW, kVar) 90.5 46.8 50.9 72.8 80

t = 10 s P0,i = Q0,i (kW, kVar) 135.75 70.2 76.35 109.2 120

base nP,i = nQ,i 1.5 1.5 1.5 1.5 1.5

t = 10 s nP,i = nQ,i 1.5 1.5 1.5 1.5 1.5

5.4.2 Scenario A: Plug-and-Play

This scenario features disconnecting and connecting DGUs and power lines in order to
validate the decentralized nature of the stability conditions (AC 1) and (AC 2). At the
indicated times, the following events occur (see Figure 5.1 for the network):

• t = 5 s: DGU 4 disconnects.

• t = 10 s: Power lines 17 and 19 disconnect.

• t = 15 s: DGU 4 reconnects.

• t = 20 s: DGU 5 disconnects.

• t = 25 s: Power lines 17 and 19 reconnect.

• t = 30 s: DGU 5 reconnects.

During the complete scenario, the DGU setpoints as well as the load parameters remain
at the base values provided in Tables 5.2, 5.3, and 5.4.
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The results of the simulation are given in Figures 5.4–5.6. The colored lines represent
the dq node voltages V dq

i and filter currents Idq
i of the voltage- and current-controlled

DGUs i ∈ D = {1, 2, 3, 4, 5, 6} with colors as per Table 5.2. Additionally, all uncontrolled
dq node voltages as well as all uncontrolled dq filter, load, and line currents are given
in grey. The deviations of controlled node voltages V dq

i , i ∈ {1, 2, 4}, and controlled
filter currents Idq

i , i ∈ {3, 5, 6}, from their setpoints in Table 5.2 are given with respect
to the nominal voltage V0 = 20 kV and the average amplitude of the current setpoints
I0 = 161.07A, respectively.

The maximum voltage errors at the voltage-controlled DGU nodes i ∈ D = {1, 2, 4}
remain within a 0.22% (44V) band for the d component and a 0.33% (66V) band for
the q component. At the latest 70ms after an event, the controlled dq node voltages
settle to within a 0.005% (1V) band around their desired setpoints. The uncontrolled
node voltages show similar deviation magnitudes and converge similarly fast to their
corresponding steady-state values. Overall, the voltages thus stay well within the 4%

voltage band around the nominal voltage which is prescribed in the AC power system
standard EN 50160 for fast voltage transients in medium-voltage networks. Note that
between t = 5 s− 15 s, the voltage at node 4 (purple line) is not controlled since DGU 4
is disconnected. Consequently, during that period, the voltage error is set to zero.

The maximum current error for the d component at the current-controlled DGU nodes
i ∈ D = {3, 5, 6} remains within a 4.25% (6.85A) band. The error for the q component
remains within a 6.8% (10.95A) band except for the overshoot at t = 30 s of approxim-
ately 12.7% (20.5A) which lasts for around 6ms. At the latest 0.6 s after an event, the
controlled dq filter currents settle to within a 0.06% (0.1A) band around their desired
setpoints. The uncontrolled filter, load, and line currents converge similarly fast to
their corresponding steady-state values (see Figures 5.5 and 5.6). Note that between
t = 5 s− 15 s and t = 20 s− 30 s, DGU 4 and DGU 5, respectively, are disconnected and
their filter currents as well as the current error for DGU 5 are set to zero.

The reason for the peak in Idi at t = 30 s are compensation currents that flow for a very
short time into the filter capacitance when DGU 4 is reconnected. For the simulations,
the reconnection of DGUs is tuned with a simple heuristic in which the voltage over
the filter capacitance is firstly controlled close to the present node voltage before the
respective DGU is connected. For a practical implementation, more elaborated schemes
can be used, which are, however, outside the scope of this thesis.

Another interesting observation related to the filter capacitances can be made by con-
sidering the Iqi , I

q
L,i plot in Figure 5.5. In particular, note that the upper current lines

between 150A− 250A all represent filter currents Iqi of DGUs i ∈ D = {1, 2, 3, 4, 5, 6}.
The reason for their different order of magnitude compared to the load currents IqL,i
and the line currents Iql in Figure 5.6 is the high reactive power demand of the filter
capacitances. Figure 5.7 illustrates this fact by plotting the injected net-current Idq

N,i after
the filter capacitance instead of Idq

i together with the load currents Idq
L,i.
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In summary, the results confirm the statements of Theorem 5.1 and demonstrate that
all node voltages and currents and thus all states of the system (see (5.3b), (5.4b),
(5.11b)) can be asymptotically stabilized throughout the complete scenario despite
flexible system configurations with plug-and-play operations and topology changes.
Furthermore, the integral parts of the proposed controllers ensure zero steady-state
errors in the presence of parameter uncertainties which naturally occur in practice.



110 5 Passivity-Based Decentralized Stabilization in AC Power Systems

0 5 10 15 20 25 30 35

2.0995

2.1

2.1005

2.101
10

4

0 5 10 15 20 25 30 35

970

980

990

1000

0 5 10 15 20 25 30 35
-0.2

-0.1

0

0.1

0.2

0.3

0 5 10 15 20 25 30 35
-0.4

-0.2

0

0.2

0.4

0 5 10 15 20 25 30 35
-5

0

5
10

-3

0 5 10 15 20 25 30 35
-5

0

5
10

-3

Figure 5.4: Scenario A: node voltages V dq
i with uncontrolled nodes in grey. The colors of the voltage-

controlled DGU nodes i ∈ {1, 2, 4} and their setpoints are given in Table 5.2. The voltage
deviations ∆V dq

i from the setpoints are given in % w.r.t. the nominal voltage V0 = 20 kV and
provided in full view and a zoomed perspective.
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Figure 5.5: Scenario A: filter currents Idq
i and load currents Idq

L,i with uncontrolled currents in grey. The
colors of the current-controlled DGU nodes i ∈ {3, 5, 6} and their setpoints are given in Table 5.2.
The current deviations ∆Idq

i from the setpoints are given in % w.r.t. the average amplitude of the
current setpoints I0 = 161.07A and provided in full view and a zoomed perspective.
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Figure 5.6: Scenario A: line currents Idq
l , l ∈ P = {12, . . . , 23}.
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Figure 5.7: Scenario A: injected net-currents Idq
N,i of the DGUs and load currents Idq

L,i with uncontrolled
currents in grey. The colors of the current-controlled DGU nodes i ∈ {3, 5, 6} are given in
Table 5.2.

5.4.3 Scenario B: Setpoint and Load Changes

This scenario features changes in the dq voltage and current setpoints of the DGU con-
trollers to investigate whether the asymptotic stability guarantee given by Theorem 5.1
is indeed independent of the specific equilibrium values. In addition to parameter
uncertainties, load variations in form of step changes and ramps are simulated to fur-
ther evaluate the disturbance rejection capabilities of the proposed controllers. At the
indicated times, the following events occur (see Figure 5.1 for the network):

• t = 1 s: All ZIP loads i ∈ LZIP = {1, 2, 4, 7, 8} increase their demand by 50%.

• t = 5 s − 10 s: All exponential loads i ∈ LEXP = {5, 6, 9, 10, 11} ramp up their
demand by 50%.

• t = 15 s: All voltage setpoints V d∗
i , i ∈ D = {1, 2, 4} are increased by 50V.

• t = 20 s: All voltage setpoints V q∗
i , i ∈ D = {1, 2, 4} are decreased by 50V.
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• t = 25 s: All current setpoints Id∗i , i ∈ D = {3, 5, 6} are increased by 1A.

• t = 30 s: All current setpoints Iq∗i , i ∈ D = {3, 5, 6} are increased by 1A.

The DGU setpoints as well as the load parameters before and after the changes are
summarized in Tables 5.2, 5.3, and 5.4.

The results of the simulation are given in Figures 5.8–5.10. The colored lines represent
the dq node voltages V dq

i and filter currents Idq
i of the voltage- and current-controlled

DGUs i ∈ D = {1, 2, 3, 4, 5, 6} with colors as per Table 5.2. Additionally, all uncontrolled
dq node voltages as well as all uncontrolled dq filter, load, and line currents are given
in grey. The deviations of controlled node voltages V dq

i , i ∈ {1, 2, 4}, and controlled
filter currents Idq

i , i ∈ {3, 5, 6}, from their setpoints in Table 5.2 are given with respect
to the nominal voltage V0 = 20 kV and the average amplitude of the current setpoints
I0 = 161.56A, respectively.

The maximum voltage errors at the voltage-controlled DGU nodes i ∈ D = {1, 2, 4} re-
main within a 0.25% (50V) band around their setpoints for both the d and q component.
At the latest 0.8 s after an event, the controlled dq node voltages settle to within a 0.005%

(1V) band around their desired setpoints. The uncontrolled node voltages show similar
deviation magnitudes and converge similarly fast to their corresponding steady-state
values. During the load ramps between t = 5 s − 10 s, the maximum voltage errors
remain below 0.0001% (0.02V). As in Scenario A, the voltages throughout Scenario B
stay well within the prescribed 4% voltage band around the nominal voltage.

The maximum current errors at the current-controlled DGU nodes i ∈ D = {3, 5, 6}
remain within a 17.4% (28.1A) band for both the d and q component. At the latest
1.2 s after an event, the controlled dq filter currents settle to within a 0.06% (0.1A)
band around their desired setpoints. The uncontrolled filter, load, and line currents
converge similarly fast to their corresponding steady-state values (see Figures 5.9 and
5.10). During the load ramps between t = 5 s− 10 s, the maximum current errors remain
below 0.037% (0.06A).

In summary, the results confirm the statements of Theorem 5.1 and demonstrate that
the asymptotically stabilizing properties of the controllers (5.39), (5.46), and (5.59) are
indeed independent of the specific dq voltage and current setpoints. Furthermore,
although not a specific focus of the controller designs, constant disturbances arising
from unknown load demands and parameter uncertainties can be fully rejected by the
integral parts of the controllers. Additionally, the integrators are sufficiently fast to
reject the time-varying disturbances caused by the load ramps to negligible values.

This concludes the presentation and validation of the unifying stabilization framework
for AC power systems. In the next section, the presented model, decentralized stability
conditions, and controller designs are discussed with respect to the main research
questions (Q1.1) and (Q1.2). Additionally, the results from this chapter are compared to
those of the passivity-based works that have been published in parallel to this thesis
(see Section 2.4.1).
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Figure 5.8: Scenario B: node voltages V dq
i with uncontrolled nodes in grey. The colors of the voltage-

controlled DGU nodes i ∈ {1, 2, 4} and their setpoints are given in Table 5.2. The voltage
deviations ∆V dq

i from the setpoints are given in % w.r.t. the nominal voltage V0 = 20 kV.
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Figure 5.9: Scenario B: filter currents Idq
i and load currents Idq

L,i with uncontrolled currents in grey. The colors
of the current-controlled DGU nodes i ∈ {3, 5, 6} and their setpoints are given in Table 5.2. The
current deviations ∆Idq

i from the setpoints are given in % w.r.t. the average amplitude of the
current setpoints I0 = 161.56A and provided in full view and a zoomed perspective.
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Figure 5.10: Scenario B: line currents Idq
l , l ∈ P = {12, . . . , 23}.

5.5 Discussion

Theorem 5.1 and Propositions 5.1, 5.2, 5.3 are the main results of this chapter. Together,
these results establish a cross-technology framework for the decentralized stabilization
of the system frequency, voltages, and currents in AC power systems.

Remarkably, despite the technical differences between DC and AC power systems, the
findings of this chapter share many similarities with the DC results in Chapter 4:

• Similar to Theorem 4.1 answering (Q1.1), Theorem 5.1 answers research question
(Q2.1) and provides two sufficient conditions (AC 1) and (AC 2) that establish
model- and technology-independent system and control design requirements for
the decentralized stabilization in flexible AC power system configurations. In
fact, these conditions are identical to (DC 1) and (DC 2) in Theorem 4.1. Other
subsystem models (e.g., for more detailed line models (see Remark 5.3), different
loads, more detailed inverter models, different inverter topologies and techno-
logies with output filters different than RLC, or altogether new units such as
FACTSs or synchronous generators) can readily be integrated into the presented
AC power system model. Then, following the steps taken in this chapter, para-
meter requirements and/or appropriate controllers can be developed to ensure
(AC 1) and (AC 2) are satisfied.

• Propositions 5.1, 5.2 and 5.3 follow the same principle steps and controller designs
as Propositions 4.1, 4.2 and 4.3. Similar to the DC case, these propositions ensure
via parameter requirements and controllers that the conditions of Theorem 5.1
are met for the AC power system described in Section 5.1. The passivity-based
current and voltage controllers in particular provide an explicit answer to research
question (Q1.2). However, due to the technology-independent nature of the de-
centralized stabilization conditions, research question (Q1.2) allows for a variety of
decentralized control solutions as illustrated by example of the voltage controller
from Nahata and Ferrari-Trecate [2019] in Proposition 5.4.
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• Similar to the DC results, the controllers required to enforce conditions (AC 1) and
(AC 2) use standard control functions such as a PI term, a state feedback, and a
setpoint feedforward (see (5.39), (5.46), Remark 5.10, and (5.59)). Furthermore, it
should be highlighted that the controllers proposed in this thesis follow a single-
loop design. In recent years, such single-loop designs have emerged as promising
alternatives to the traditional double-loop designs with inner current and outer
voltage control loops as they are easier to implement and show better stability
properties (see Watson et al. [2021] and the references therein). Lastly, note that
each of the control inputs ui = V dq

S,i is again a function of the duty cycle δi of
the VSI and the DC voltage VDC,i supplied by the DC voltage source, i.e., a RES,
a storage device, or a combination thereof (see Section 5.1.2). For a practical
implementation of any control law ui, the duty cycle δi can be obtained from ui.

• Analogously to the DC case, it is crucial for a proper functioning of the AC con-
trollers and a stabilization-coordination hierarchy as proposed in Section 2.1.2
that the combination of DC voltage source and VSI approximately behaves like an
ideal voltage source V dq

S,i (see Section 5.1.2). Consequently, this entails the same
practical requirements as discussed in Section 4.5, viz. sufficient short-term energy
buffer via battery storage, supercapacitors, headroom on generation, or a combin-
ation thereof, sufficient peak power capability, and a sufficiently fast coordination
layer that can reschedule setpoints within several seconds to a few minutes.8 For
example, for the 20 kV CIGRE AC power system from Section 5.4 with an overall
demand of approximately 787.4 kW and 787.4 kVar, a 50% demand increase of
all loads equals 393.7 kW and 393.7 kVar. Depending on the communication rate
with the coordination layer and assuming no headroom for the DGU genera-
tion, stored energy of 98.4 kWh/98.4 kVar h for a 15min communication interval,
6.56 kWh/6.56 kVar h for a 1min interval, and 1.1 kWh/1.1 kVar h for a 10 s in-
terval must be available. Furthermore, for both scenarios from Section 5.4, the
maximum power peaks are in the range of 800 kW and 1000 kVar, respectively.
Practical experience indicates that integrated energy storage architectures combin-
ing batteries and supercapacitors are promising solutions for providing both, fast,
high-power transients as well as sufficient short-term energy storage [Matevosyan
et al., 2019; Rocabert et al., 2019].

However, in addition to the DC power system results, the findings in this chapter
are based on two further assumptions, which account for the technical characteristics
of AC power systems: firstly, Assumption 5.1 restricts the investigation to balanced
three-phase signals such that two-dimensional dq coordinates can be used for modeling
AC power systems. Secondly, Assumption 5.3 requires the local controller clocks and dq
frames to be synchronized to the desired system frequency ω0.

The balanced assumption is motivated by the fact that AC power systems are typically

8 In the last years, first coordination schemes that operate on such smaller time-scales have been developed
(see for example Milano et al. [2018], Dörfler et al. [2019], and the references therein).
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designed to be balanced to ensure an efficient and reliable power supply and minimize
the losses during transmission and distribution (see, e.g., Glover et al. [2012, p. 74–75]
and Gómez-Expósito et al. [2018, pp.280–281]). Thus, it is common practice to assume
balanced operating conditions (see, e.g., Etemadi et al. [2012a], Riverso et al. [2015],
Schiffer et al. [2016], and Baimel et al. [2017]). Furthermore, in case of unbalanced
conditions, the unbalanced three-phase system can be decomposed via the method of
symmetrical components into three balanced systems exhibiting a positive, negative,
and zero sequence (see Glover et al. [2012, p. 419ff], Akagi et al. [2007, p. 34], Gómez-
Expósito et al. [2018, p. 281–282], and Paap [2000]). Subsequently, elaborating on the
ideas in Ojo and Schiffer [2017], each of the (balanced) sequences can be represented
again in dq or dq0 coordinates, respectively. Consequently, results obtained for balanced
systems, such as the ones presented in this chapter, can in principle be extended to the
unbalanced case.

The assumption of synchronized local controller clocks (see Assumption 5.3) has seen
increasing use in the last decade (see, e.g., the review in Section 2.1.1 as well as Babaza-
deh and Karimi [2013], Nahata and Ferrari-Trecate [2019], and Watson et al. [2021]). It
is motivated by well-established technological results that allow to achieve practically
negligible synchronization errors via an open-loop frequency control based on internal
oscillators at each VSI and infrequent communication solutions. The Precision Time
Protocol IEEE standard [IEEE 1588, 2008] and its use in power system applications [IEEE
1588, 2017], for example, provide solutions based on GPS and Ethernet that achieve a
clock accuracy of 100 ns–1µs via infrequent updates in time intervals of 10ms–1 s (see
also Tucci and Ferrari-Trecate [2020]). Etemadi et al. [2012a] provide a good review for
(low-cost) crystal oscillators that achieve a high accuracy with drifts of 20 ps–2µs per
year. A highly reliable synchronization of these local oscillators can be achieved via a
common timing signal such as the GPS radio clock (accuracy 1µs) that is communicated
infrequently at time intervals of 1 s and more. In Etemadi et al. [2012b], the same authors
validate their prior statements by extensive lab studies and show that low-cost, local
crystal oscillators together with infrequent GPS synchronization can keep the system
frequency well within permissible limits of practical standards and grid codes.

Overall, the results of this chapter illustrate that a similar passivity-based approach
can be used to establish decentralized, cross-technology stabilization frameworks in
both DC and AC power systems. Moreover, the results obtained by such a passivity-
based approach show similarities across the different domains. Most notably, the
decentralized asymptotic stability conditions in Theorem 4.1 and Theorem 5.1, which
form the core of the stabilization frameworks, are identical. In addition to creating a
large, technology-neutral solution space to the decentralized stabilization problems
in DC or AC power systems, these conditions thus also establish a common system-
theoretical basis that ensures interoperability of decentralized stabilization solutions in
hybrid DC/AC settings, i.e., across domain borders.
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5.5.1 Comparison with Parallel Works

As outlined in Section 2.4, during the time of this thesis, several other research groups
have explored independently from each other the possibilities of using passivity tech-
niques to provide decentralized stability conditions and controller designs for AC power
systems.

Similar to the results of this chapter, all these work consider balanced three-phase
signals and model AC power systems in dq coordinates. Moreover, in contrast to the
DC case, the lack of an analytical framework with conditions that ensure decentral-
ized stabilization in AC power systems under “heterogeneous generation technologies
across physics, control, and overlapping timescales” [Dörfler and Groß, 2023] has been
addressed in the works of Spanias and Lestas [2019], Spanias et al. [2020], and Watson
et al. [2021].

Spanias and Lestas [2019] and Spanias et al. [2020] view AC power systems as negative
feedback, i.e., skew-symmetric, interconnection and establish decentralized conditions
based on strict passivity properties of the node dynamics such that the overall system
equilibrium is asymptotically stable. While the general idea of establishing technology-
independent, decentralized stability conditions via passivity properties is similar to
Theorem 4.1, the conditions from Spanias and Lestas [2019] and Spanias et al. [2020]
require more restrictive, strict passivity properties. As shown within this chapter, this
requirement cannot always be fulfilled.

Nevertheless, the decentralized, passivity-based stability conditions of Spanias and
Lestas [2019] can be applied to certain systems as illustrated by Watson et al. [2019].
The authors compare control performances and conduct a numerical passivity ana-
lysis for linearized closed-loop DGUs that use several existing control schemes for
frequency/active power regulation of grid-forming inverters such as frequency droop,
angle droop, and matching control. While their results are numerical, require a linear-
ization, and are restricted to Z loads, their focus on the passivity properties of other
established control schemes represents an interesting starting point for further assessing
the unifying character of the results of this chapter in future research.

Watson et al. [2021] establish less restrictive conditions than Spanias and Lestas [2019]
and Spanias et al. [2020], which ensure asymptotic stability of the AC power system
equilibrium under shifted OSP properties of the closed-loop DGU nodes. Subsequently,
they propose two decentralized grid-forming voltage controllers to achieve OSP. Their
first controller is based on full state-feedback design. Their second controller results
from a mixed H∞/passivity design that additionally provides desired closed-loop per-
formance guarantees (small control inputs, fast convergence, limited inverter coupling)
via H∞ constraints. Similar to the results of this chapter, frequency control is assumed
to be conducted in open loop via internal oscillators and infrequent synchronization.
The considered network model comprises detailed, dynamic distributed power line
models as discussed in Remark 5.3. Loads are however not considered in detail. Instead,
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the authors refer to the preliminary version of the load analysis of Proposition 5.1 which
is provided in Strehle et al. [2020a]. Considering that the shifted OSP properties are still
more conservative than condition (AC 1) and thus compatible with it, the controllers pro-
posed by Watson et al. [2021] present promising alternatives to the controllers designed
in this chapter. Particularly in some demanding real-world settings the closed-loop
performance guarantees might warrant the additional cost of a mixed H∞/passivity
design.

In contrast to the above works that develop or use decentralized, asymptotic stability
conditions, Nahata and Ferrari-Trecate [2019] and Ojo et al. [2021] focus on developing
decentralized, passivity-based voltage controllers for grid-forming inverters. Similar
to the parallel DC works discussed in Section 4.5.1, the passivity properties of the
subsystem models are then merely used to facilitate the stability statement.

The results of Nahata and Ferrari-Trecate [2019] in particular are a direct extension of
their decentralized DC voltage control design from Nahata et al. [2020] to AC power
systems. That is, they use the same decentralized, state-feedback controller structure
than in the DC case (compare (4.41) and (5.59)) to ensure that the closed-loop DGU is
passive. As illustrated in this chapter, the so-obtained closed-loop DGU properties are
readily compatible with the condition (AC 1) from Theorem 5.1. Furthermore, similar to
the results of this chapter and Watson et al. [2021], frequency control is assumed to be
conducted in open loop via internal oscillators and infrequent synchronization.

Ojo et al. [2021] propose a decentralized frequency and voltage control scheme for
grid-forming inverters. Via a numerical analysis, the authors demonstrate that the
linearized, closed-loop DGU model can be made strictly passive by an appropriate
choice of the controllers gains. While the linearization and purely numerical passivity
analysis present a limitation on the stability statement, the proposed control design
opens up several possible directions of complementing the results from this chapter.
The dedicated frequency feedback loop based on angle droop and its passivity-based
interpretation in particular provide a promising starting point for developing frequency
controllers under the roof of the conditions of Theorem 5.1. Additionally, including the
DC voltage in the voltage control loop as done by Ojo et al. [2021] seems to provide a
simple means to improve the performance of the voltage controller in Proposition 5.3, if
this should be needed in some practical applications.

Lastly, the results of this chapter extend the existing body of research by a detailed
load modeling with accompanying EIP analysis (see Section 5.1.2 and Proposition 5.1).9

Furthermore, in contrast to the above-discussed works, the problem of current control
in grid-feeding DGUs is considered explicitly (see Proposition 5.2).

9 All the above-referenced works do not consider loads in detail and at most treat linear load models (ZI or
RL).
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5.6 Summary and Contributions

In the wake of the sustainable energy transition, future power system operation is
in need of novel methods that ensure stabilization in the face of large numbers of
interacting units with a wide variety of deployed technologies and control strategies.
This chapter provides a passivity-based framework for AC power system stabilization
that makes large numbers of units manageable by means of decentralized methods and
ensures interoperability across different AC power system technologies and control
strategies. Together with the findings of Spanias and Lestas [2019], Spanias et al. [2020],
and Watson et al. [2021], the results of this chapter are among the first to provide
such decentralized, cross-technology stabilization frameworks in AC power systems.
In particular, while the conditions of Theorem 5.1 are not the sole result in this area,
they to date provide the least restrictive, technology-independent framework for the
decentralized stabilization in AC power systems. In summary, the main contributions
of this chapter are:

• a generalized networked system model for AC power systems which combines
graph theory with PHS modeling (Section 5.1);

• decentralized, EIP-based conditions that provide model- and technology-inde-
pendent system and control design requirements for ensuring asymptotic stability
of any feasible AC power system equilibrium (Theorem 5.1);

• parameter specifications and decentralized converter controllers that ensure the
EIP-based asymptotic stability conditions are met and desired voltage and current
setpoints are asymptotically stabilized (Propositions 5.1, 5.2, and 5.3).

Together, these contributions answer the research questions (Q1.1) and (Q1.2) formulated
in Section 2.1.2. Simulation studies based on a CIGRE benchmark network demonstrate
the functionality of the developed decentralized stabilization framework and illustrate
its unifying nature.

In addition to these main findings, the results of this chapter highlight that a passivity-
based framework can not only serve as a unifying concept for ensuring decentralized
stabilization across different technologies and control strategies within a specific energy
system, but also across energy system domains (in this case DC and AC power systems).
To further explore this domain-unifying aspect, the development of a decentralized,
cross-technology framework for the decentralized stabilization of the hydraulics in
DHNs shall initially be approached with the same passivity-based methods as before.
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Stabilization in District Heating Networks

So far, cross-technology frameworks for the decentralized stabilization in DC and
AC power systems have been developed. It has been observed that the graph-based
networked system description, PHS modeling, and the EIP-based asymptotic stability
theorem from Chapter 3 can provide unifying, model- and technology-independent
requirements that ensure decentralized stabilization across different electrical energy
systems. Motivated by the unifying nature of these results, this chapter approaches the
goal of establishing a cross-technology framework for the decentralized stabilization
of pressures and volume flow rates in DHNs along the same lines as Chapters 4 and 5.
In addition to profiting from a transfer of knowledge, this procedure allows to further
asses the domain-unifying features of a passivity-based stabilization framework.

Thus, Section 6.1 starts with developing a hydraulic DHN model that combines a
graph-based, networked system representation along the lines of Definition 3.1 with
generalized, ISO-PHS models of the subsystems at the nodes and edges of the DHN
digraph. In contrast to DC and AC power systems, this modeling part is more extensive
and constitutes to answering its own research question, viz. (Q3.1). This is due to the fact
that the literature on system and control design models for DHN hydraulics is scattered,
incomplete, and a lot of information can only be found in white papers, reports, etc. of
manufacturers, suppliers, and operators.

Subsequently, Section 6.2 demonstrates how the passivity-based approach of The-
orem 3.1 and Corollary 3.1 can be used to derive decentralized, cross-technology, asymp-
totic stability conditions that answer research question (Q3.2). After proving that the
unactuated DHN subsystems inherently fulfill the derived conditions, the main control
problems related to answering research question (Q3.3) are formulated.

In Section 6.3, the formulated control problems are addressed. Firstly, decentralized,
passivity-based pressure and volume flow rate controllers are developed for the main ac-
tuators, i.e., pumps and valves. Then, the actuated subsystems containing the controlled
pumps and valves are shown to fulfill the requirements formulated in Section 6.2.

Afterwards, Section 6.4 presents simulation scenarios to validate the findings.

Sections 6.5 and 6.6 conclude this chapter with a discussion and summary of the main
contributions. In particular, the main results are compared to the passivity-based works
published in parallel to this thesis (see Section 2.4).1

1 Preliminary results of this chapter have been published in Strehle et al. [2021] and Strehle et al. [2022a].
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6.1 Modeling

In this section, the model of the considered DHN is established along the lines of
Definition 3.1. Firstly, in Section 6.1.1, the DHN setup is outlined and formally described
as a digraph. Subsequently, in Section 6.1.2, the main hydraulic actuators pumps and
valves, which are responsible for pressure and volume flow rate control in DHNs, are
modeled. Their models serve as building blocks for the actual models of the subsystem
on the edges and nodes of the DHN digraph in Sections 6.1.3 and 6.1.4. To provide
a clear presentation for the subsequent stability analysis and control design, the ISO-
PHS representations of the subsystems are summarized in Section 6.1.5. Lastly, in
Section 6.1.6, the interconnection structure of the subsystems is formalized via the
incidence matrix of the DHN digraph.

6.1.1 System Setup

This chapter considers DHNs comprising DGUs, consumers, pipes, mixing connections
(for temperature cascading), and pressure holding units that are connected in flexible,
time-varying system configurations (see, e.g., Figure 6.1). Such DHNs can be described
by a weakly connected digraph G = (V, E) without self-loops as illustrated in Figure 6.2
with subsystems on the nodes V and edges E . The edges E are partitioned into four
sets: D = {1, . . . , D}, D ≥ 1, represents the DGUs, L = {D + 1, · · · , D + L}, L ≥ 1,
the consumers (loads), P = {D + L + 1, · · · , D + L + P}, P ≥ 2, the pipes, and
M = {D+L+P +1, · · · , D+L+P +M}, M ≥ 0, the mixing connections. The nodes
V are composed of two sets: H represents the pressure holding units and C = V\H
the capacitances arising from volume storage in the DGU circuits, consumer circuits,
and pipes. The orientation of the edges represents the arbitrary reference direction of
positive volume flow rates. Furthermore, the digraph G is completely specified by its
incidence matrix B ∈ R|V|×|E| with elements bil (cf. (1.1)).

Note that conversely to the power systems models in Sections 4.1 and 5.1, the main
subsystems for DHNs are represented by edges.
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Figure 6.1: Hydraulic schematic of a DHN containing three DGUs, a pressure holding unit at the return side
of DGU 1, five consumers, 16 pipes (pipe 15 with booster pump), and one mixing connection in a
three-temperature layer topology indicated by the three different colors of the network nodes.
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Figure 6.2: Digraph representation of the DHN from Figure 6.1 containing three DGUs l ∈ D = {1, 2, 3}, five
consumers l ∈ L = {4, 5, 6, 7, 8}, 16 pipes l ∈ P = {9, . . . , 24} (l ∈ Pboost = {15} with booster
pump), and one mixing connection l ∈ M = {25} in a three-temperature layer topology. The 17
nodes represent one pressure holding unit i ∈ H = {4} and 16 capacitances i ∈ C = V\{4}.
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Figure 6.3: Illustration of a traditional 2nd or 3rd generation DHN with high-temperature supply and medium-
temperature return (left) and a 4th generation DHN with medium-temperature supply and low-
temperature return (right). Between the temperature layers may be an any number of D ≥ 1 DGU
and L ≥ 1 consumer edges. The two temperature layers coincide with the two hydraulic layers
(dashed grey bubbles).

high (80 ◦C-120 ◦C)

medium (40 ◦C-70 ◦C)

D LM M M

low (20 ◦C-40 ◦C)
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low (20 ◦C-40 ◦C)

P D L

low (20 ◦C-40 ◦C)

P D L

Figure 6.4: Illustration of a DHN with the three temperature layers high (red), medium (orange), low (blue),
and the two hydraulic layers (dashed grey bubbles). Between the temperature layers may be any
number of D ≥ 1 DGU and L ≥ 1 consumer edges. Between the high and medium layer may be
any number of M ≥ 0 mixing connections.

Temperature and Hydraulic Layers

As illustrated in Figures 6.1–6.4, DHNs may comprise different temperature layers. It
is standard practice to distinguish between three temperature layers: high temperature
(80 ◦C-120 ◦C), medium temperature (40 ◦C-70 ◦C), and low temperature (20 ◦C-40 ◦C) (see
Lund et al. [2014], Hertle et al. [2015, pp. 33,59], Li et al. [2017, pp. 16–17], Nussbaumer
et al. [2020, p. 44], Volkova et al. [2020], and Volkova et al. [2022]). The high- and
medium-temperature layers form the supply and return of the dominating 2nd and 3rd

generation DHNs, while the medium- and low-temperature layers form the supply and
return of the emerging 4th generation DHNs (see Figure 6.3) [Lund et al., 2014]; [Li et al.,
2017, pp. 16–17].

In future DHNs, the medium-temperature return of a 2nd or 3rd generation DHN may
additionally serve as supply for (new) low-temperature DHN sections, yielding a three
temperature layer topology as illustrated in Figures 6.2 and 6.4. Such low-temperature
DHN sections allow to efficiently use the heat energy in a DHN (temperature cascading)
and integrate renewable heat sources (e.g., waste heat, solar thermal, heat pumps) and
new consumers (e.g., low-energy buildings) into existing DHNs [Hertle et al., 2015,
pp. 33,59]; [Nussbaumer et al., 2020, p. 44]; [Köfinger et al., 2017; Volkova et al., 2020,
2022]. However, due to the ongoing trend of decreasing DHN temperatures, particularly
in summer, the medium-temperature might not be sufficiently high to cover the heat
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demand of some low-temperature consumers. Thus, low-temperature DHN sections in
a three layer topology typically have at least one mixing connection, i.e., an edge i ∈ M,
that allows to boost the temperature by mixing high with medium-temperature water
(see node 7 in Figure 6.2) [Köfinger et al., 2017; Volkova et al., 2020, 2022].

Furthermore, in a three-temperature layer topology, the low-temperature water is
typically fed directly into the medium-temperature layer (see node 5 in Figure 6.2
and the set of pipe edges P between low- and medium-temperature in Figure 6.4)
[Köfinger et al., 2017; Volkova et al., 2020, 2022]. This implies that despite possibly three
temperature layers, there are exactly two hydraulic layers (see Figure 6.4). The number
of hydraulic layers can be defined as follows:

Definition 6.1 (Hydraulic layers in a DHN)
A DHN has nh ≥ 2 hydraulic layers, where nh is the number of weakly connected
subgraphs G1, . . . ,Gnh

obtained by removing all edges l ∈ D ∪ L ∪M, i.e., all DGUs,
consumers, and mixing connections, from G.

6.1.2 Hydraulic Actuators

With the DHN setup formalized as a digraph, the next step is to derive the mathematical
models describing the hydraulic dynamics of the subsystems on the edges and nodes of
the DHN digraph. As a preliminary step, this section first presents the models of the
main actuators responsible for pressure and volume flow rate control, i.e., pumps and
valves. These models serve as building blocks for the hydraulic models of the DGUs,
consumers, pipes, and mixing connections on the edges E (see Section 6.1.3) as well as
the pressure holding units and capacitances on the nodes V (see Section 6.1.4).

For the modeling, the following assumption is made which is valid under normal
operating conditions [De Persis and Kallesøe, 2011; Chertkov and Novitsky, 2019].

Assumption 6.1 (Incompressible water)
The compressibility of water is neglected.

Furthermore, the following monotonicity properties hold for the pressure losses due
to friction in pipes and valves [Boysen and Thorsen, 2003, Equations (7) and (12)];
[De Persis and Kallesøe, 2011]; [Nussbaumer et al., 2020, pp. 117–119].
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Property 6.1 (Monotonicity of pressure losses inside pipes and valves)
Pressure losses inside pipes λ(q) : R → R and valves µ(q, s) : R× R≥0 → R caused by
volume flow rates q ∈ R are continuously differentiable, strictly increasing functions
and satisfy λ(0) = 0 and µ(0, s) = 0 for all valve stem positions s ∈ R≥0, respectively.

Pumps

−
+uP,k

qP,k
RP,k

JP,k

qk

CP,k

+

−
pP,k

Figure 6.5: Equivalent circuit of a linear, second-order approximation of pump dynamics (cf. Goppelt et al.
[2018]).

Pumps are the essential actuated components in DHNs. They are used for controlling
the absolute pressure at specific points (pressure holding) (see Wang et al. [2017a] and
Nussbaumer et al. [2020, pp. 54–55]), for (differential) pressure and volume flow rate
control in DGUs (see De Persis and Kallesøe [2011], De Persis et al. [2014], Wang et al.
[2017a], Vandermeulen et al. [2018], and Gong et al. [2019]) for boosting the pressure in
consumers and pipes (see De Persis and Kallesøe [2011], and Lund et al. [2014]), and for
direct volume flow rate control in consumers (see Yan et al. [2013], Wang et al. [2017a],
and Gong et al. [2019]).

In the prevalent literature (see, e.g., the above-referenced literature or the discussion
in Section 2.3.2), pumps are considered as ideal pressure sources modeled by an ideal
generalized DC voltage source in the equivalent circuit diagram. However, the dynamics
of pumps, particularly the ones of centrifugal pumps that are widely used in DHNs
[De Persis and Kallesøe, 2011; Scholten et al., 2017b], lie in the range of several hundred
milliseconds (see, e.g., Goppelt et al. [2018, Figures 8 and 9]). Since this is a time scale
comparable to that of the overall DHN hydraulics (see, e.g., Chertkov and Novitsky
[2019] and Novitsky et al. [2020]), a more accurate control design and system analysis
by means of dynamic pump models must be performed if increasing numbers of pumps
are integrated into DHNs.

As a starting point for such an improved design and analysis, the complex arrangement
of power electronics, speed-controlled AC motor, and pump hydraulics is approximated
by a linear second-order system (see also Goppelt et al. [2018]). The linear second-
order system can be represented by a linear RLC equivalent circuit as illustrated in
Figure 6.5. The parameters RP,k, JP,k, CP,k > 0 are pure black box parameters without
physical interpretation. This is due to the fact that in the RLC equivalent circuit, the
speed control and AC motor dynamics are merged with the hydraulic pump dynamics
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comprising fluid mass inertia, pressure losses, and hydraulic capacitance due to fluid
compressibility and fluid volume [Goppelt et al., 2018]. The control input uP,k ∈ R can
be interpreted as a pressure source originating from the rotational speed of the pump
produced by an AC motor.2 The pressure difference produced by the pump between
its terminals is given by pP,k ∈ R. The volume flow rate through the pump is given by
qk ∈ R, while qP,k ∈ R is an auxiliary variable without physical interpretation.

By applying KVL and KCL to Figure 6.5, the pump dynamics can be obtained as

JP,kq̇P,k = −pP,k −RP,kqP,k + uP,k,

CP,kṗP,k = qP,k − qk,
(6.1)

with qP,k, pP,k, qk, uP,k ∈ R, and parameters RP,k, JP,k, CP,k > 0.

Remark 6.1. In practice, the black-box parameters RP,k, JP,k, and CP,k can be identified
from measurement data obtained by operating the respective pump in typical scenarios (see, e.g,
Goppelt et al. [2018]). Alternatively, they can be fitted in simulations to match characteristic
curves provided in data sheets.

Control Valves

Besides pumps, valves are the main actuators in DHNs. Their main task is the regulation
of volume flow rates [Li et al., 2017, p. 19,29]; [Wang et al., 2017b; Vandermeulen et al.,
2018]; [Nussbaumer et al., 2020, pp. 143–145,151]. In order to establish a desired volume
flow rate q∗k, valves adjust their pressure drop µk(sv,k, qk) by varying their stem position
between fully closed (sv,k = 0) and fully open (sv,k = 1). That is, they behave as
variable, nonlinear flow resistors. In order to avoid volume surge behavior around their
closing point, valves are designed such that the stem has a lower limit just above zero
in normal operation [Nussbaumer et al., 2020, pp. 145]. Consequently, the following
assumption can be made:

Assumption 6.2 (Valve design)
In normal operation, the valve stem position is never zero, i.e., sv,k ∈ (0, 1].

The nonlinear characteristic pressure drop equation of any valve is given by [Wang
et al., 2017b, Equation (18)]; [Gong et al., 2019, Equation (5)]

µk(sv,k, qk) =
1

(Cv,kfv,k(sv,k))2
|qk|qk, (6.2a)

2 In practice, the actual control input of a pump system is a desired rotational speed, which enters into
an automatic speed control of the AC motor driving the pump [KSB Aktiengesellschaft, 2006, pp. 28,51];
[Goppelt et al., 2018].
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where sv,k ∈ (0, 1] is the stem position, qk ∈ R the volume flow rate through the valve,
Cv,k > 0 the flow capacity of the valve, and fv,k(sv,k) the valve characteristic3 (see also
the static orifice law in Boysen and Thorsen [2003, Equation (12)] or the definition of the
kv-value in Nussbaumer et al. [2020, p. 144]). By substituting

uv,k(sv,k) :=
1

fv,k(sv,k)2
, µ̃k(qk) :=

1

C2
v,k

|qk|qk (6.2b)

in (6.2a), the pressure drop can be written as

µk(sv,k, qk) = uv,k(sv,k)µ̃k(qk), (6.3)

where uv,k(sv,k) : (0, 1] → R>0 is a bijective mapping of the actual stem position
sv,l ∈ (0, 1] to the virtual control input uv,k > 1, and µ̃k(qk) : R → R a continuously
differentiable, strictly increasing function satisfying µ̃k(0) = 0. Note that (6.3) is affine
in the virtual control input uv,k.

Remark 6.2. It might not be intuitively clear that f(sv,k) = sv,k represents a linear valve
characteristic qk = vk · sv,k with some constant vk > 0. However, when considering that valve
characteristics are specified assuming a fixed pressure drop µk(sv,k, qk) = µ̄k > 0 [Nussbaumer
et al., 2020, pp. 143–145,151], (6.2a) can directly be rewritten as qk = vk ·fv,k(sv,k) = vk ·sv,k
with vk = Cv,k

√
µ̄k.

Remark 6.3. Since valves can only function as variable, nonlinear flow resistors, valve-based
volume flow rate control requires sufficient differential pressure over the hydraulic circuit the
valve is part of (see Assumption 6.3 in the sequel). In future DHNs with frequently changing
hydraulic conditions, this motivates the addition of booster pumps in some consumer circuits or
pipes (see Figures 6.7 and 6.11).

6.1.3 Subsystems on Edges

In this section, the hydraulic models of the DGUs l ∈ D, consumers l ∈ L, pipes l ∈ P ,
and mixing connections l ∈ M on the edges E = D ∪ L ∪ P ∪M of the DHN diagraph
are presented.

Pipe Model

The hydraulic schematic of a pipe at an edge l ∈ P is illustrated in Figure 6.6. The
corresponding equivalent circuit is given in Figure 6.7. The pipe friction is modeled by
a nonlinear, volume flow-dependent resistance λl(ql) : R → R (see Property 6.1) and the

3 The two most common valve types are equal percentage valves with characteristic fv,k(sv,k) = η
sv,k−1

k
and rangeability ηk > 0 and linear valves with characteristic fv,k(sv,k) = sv,k .
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pi pj

Figure 6.6: Hydraulic schematic of a pipe l ∈ P with optional booster pump.

pi

ql
λl(ql)

Jl
− +

pP,l

pj

Figure 6.7: Equivalent circuit of a hydraulic pipe model l ∈ P with optional booster pump pP,l; i, j ∈ V, i ̸= j.

volume inertia by the linear inductance Jl > 0. Any kind of volume storage in a pipe
is modeled by a capacitance Ci and Cj at the source and target node, respectively (see
Section 6.1.4). Furthermore, it is taken into account that some pipes might have booster
pumps in series. Such a pump is represented by the generalized voltage source in
Figure 6.7 and modeled by (6.1). By applying KVL and KCL to Figure 6.7, the dynamics
for each pipe l ∈ P follow as

Jlq̇l = pP,l − λl(ql)−
∑
i∈V

bilpi, (6.4a)

JP,lq̇P,l = −pP,l −RP,l qP,l + uP,l, (6.4b)

CP,lṗP,l = qP,l − ql, (6.4c)

with pi ≥ 0, ql, pP,l, qP,l, uP,l ∈ R, parameters Jl, RP,l, JP,l, CP,l > 0, elements of the in-
cidence matrix bil (see (1.1)), and continuously differentiable, strictly increasing function
λl : R → R, λl(0) = 0 (see Property 6.1).

Remark 6.4. Any pipe l ∈ P\Pboost without a booster pump can be modeled by (6.5) by fixing
uP,l = pP,l = 0 and removing the part corresponding to the dynamics of qP,l and pP,l.

DGU Model

pi pj

p0 = 1bar

Figure 6.8: Hydraulic schematic of a DGU l ∈ D comprising a circulation pump, a control valve, pipes, and
a heat exchanger (green). At the suction side of the circulation pump, a pressure holding unit is
connected (black pump).



132 6 Passivity-Based Decentralized Stabilization in District Heating Networks
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ql

µ̃l(ql)uv,l(sv,l)

λl(ql)
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Figure 6.9: Equivalent circuit of the hydraulic DGU schematic from Figure 6.8. The DGU l ∈ D comprises
a pressure holding unit (black voltage source) and a circulation circuit (green). Without loss of
generality, the capacitance Ci may be lumped with the pressure holding unit (see Section 6.1.4);
i, j ∈ V, i ̸= j.

From a hydraulic viewpoint, a DGU may comprise two main parts as illustrated in the
hydraulic schematic in Figure 6.8 and the corresponding equivalent circuit in Figure 6.9:
a circulation circuit (green) [Lamaison et al., 2017; Lennermo et al., 2019] and an optional
pressure holding unit (black generalized voltage source) [Nussbaumer et al., 2020, pp. 54–
55]. The circulation circuit in green is viewed as the actual edge l ∈ D. It comprises a
serial connection of a circulation pump, a control valve, pipes, and a heat exchanger. The
circulation pump is represented by the green generalized voltage source in Figure 6.9
and modeled by (6.1). The control valve is modeled as a variable, nonlinear resistance
µ̃l(ql)uv,l(sv,l) with control input uv,l(sv,l) as in (6.2). All pipe segments including those
of the heat exchanger are lumped into the nonlinear, volume flow-dependent resistance
λl(ql) : R → R (see Property 6.1) and the linear inductance Jl > 0, which represent the
pipe friction and volume inertia, respectively. By applying KVL and KCL to the green
part in Figure 6.9, the dynamics for each DGU l ∈ D follow as

Jlq̇l = pP,l − λl(ql)− µ̃l(ql)uv,l(sv,l)−
∑
i∈V

bilpi, (6.5a)

JP,lq̇P,l = −pP,l −RP,l qP,l + uP,l, (6.5b)

CP,lṗP,l = qP,l − ql, (6.5c)

with ql, pP,l, qP,l, pi ≥ 0, uP,l ∈ R, uv,l : (0, 1] → [1,∞), parameters Jl, RP,l, JP,l, CP,l >

0, elements of the incidence matrix bil (see (1.1)), and continuously differentiable, strictly
increasing functions λl : R → R, λl(0) = 0 (see Property 6.1) and µ̃l : R → R, µ̃l(0) = 0

(see (6.2b)).

Remark 6.5. In case a given DGU comprises a pressure holding unit, it is represented by the
black generalized voltage source pP,l shown in Figure 6.9. The capacitances Ci and Cj model any
volume storage effect, e.g., due to hydraulic elasticity of the components in the DGU circulation
circuit, particularly of the heat exchanger [Stræde, 1995; Boysen and Thorsen, 2003]. To avoid
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dependent storages and thus dependent states, it is assumed that Ci is lumped with CP,i of the
pressure holding (see Figure 6.5). Furthermore, to clearly describe the network interconnection
among all the subsystems in the DHN via the incidence matrix as in (3.1e), the pressure holding
unit and the capacitances are viewed as nodes of the DHN digraph. Their models are elaborated
in Section 6.1.4.

Consumer Model

pi pj

Figure 6.10: Hydraulic schematic of a consumer l ∈ L with optional pump.
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Figure 6.11: Equivalent circuit of the hydraulic model of a consumer l ∈ L with optional pump pP,l (green);
i, j ∈ V, i ̸= j.

Most of nowadays consumers are connected indirectly to a DHN via heat exchangers
in series with pipes and a control valve for volume flow rate control [Nussbaumer
et al., 2020, pp. 87,143]. In future DHNs, however, additional pumps are expected to be
included in some (up to all) consumer circuits as illustrated in Figure 6.10: either for
pressure boosting to ensure a proper functioning of the control valves under unclear
and changing hydraulic conditions (see Remark 6.3, De Persis and Kallesøe [2011], and
Lund et al. [2014]) or in DHNs operated with DVSPs [Yan et al., 2013; Wang et al., 2017a;
Gong et al., 2019]. Consequently, the hydraulic consumer circuit at an edge l ∈ L is
modeled similarly to the hydraulic DGU circulation circuit (compare the green part in
Figures 6.9 and 6.11). The only differences are on the working direction of the pump and
the sign convention of the volume flow rate, which is reflected in the edge orientation in
the DHN digraph (see Figure 6.2 and Nussbaumer et al. [2020, pp. 87,143]). Similar to
the DGU model (see Remark 6.5), the capacitances Ci and Cj are considered to be part
of the set of nodes V . Furthermore, pressure holding units are typically not installed at
consumers. By applying KVL and KCL to Figure 6.11, the dynamics for each consumer
l ∈ L follow as in (6.5).



134 6 Passivity-Based Decentralized Stabilization in District Heating Networks

Remark 6.6. Any consumer l ∈ L without a pump can be modeled by (6.5) by fixing uP,l =
pP,l = 0 and removing the part corresponding to the dynamics of qP,l and pP,l. Such consumers
regulate their volume flow rate ql through their respective control valve with control input uv,l.

Mixing Connection Model

pi pj

Figure 6.12: Hydraulic schematic of a mixing connection l ∈ M.

pi

ql
λl(ql)

Jl
µ̃l(ql)uv,l(sv,l)

pj

Figure 6.13: Equivalent circuit of the hydraulic model of a mixing connection l ∈ M; i, j ∈ V, i ̸= j.

As outlined in Section 6.1.1, future DHNs may have a topology with three temperature
layers. In order to guarantee sufficient heat supply of the low-temperature sections,
the medium-temperature water is typically mixed with high-temperature water via a
mixing connection before it is fed into the low-temperature section (see, e.g., node 7 in
Figure 6.2) [Köfinger et al., 2017; Volkova et al., 2020, 2022]. The hydraulic schematic
of a mixing connection at an edge l ∈ M is illustrated in Figure 6.12 and comprises
a pipe in series with a control valve. The corresponding equivalent circuit is given in
Figure 6.13. By applying KVL to Figure 6.13, the dynamic equation for each mixing
connection l ∈ M follows as

Jlq̇l = −λl(ql)− µ̃l(ql)uv,l(sv,l)−
∑
i∈V

bilpi, (6.6)

with ql, pi ≥ 0, uv,l : (0, 1] → [1,∞), parameter Jl > 0, elements of the incidence matrix
bil (see (1.1)), and continuously differentiable, strictly increasing functions λl : R → R,
λl(0) = 0 (see Property 6.1) and µ̃l : R → R, µ̃l(0) = 0 (see (6.2b)). Note that as with the
pipe model, any kind of volume storage is modeled by a capacitance Ci and Cj at the
source and target node, respectively (see Section 6.1.4).

6.1.4 Subsystems on Nodes

In this section, the hydraulic models of the pressure holding units H and capacitors C
on the nodes V = H ∪ C of the DHN diagraph are presented.
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Pressure Holding Model

Pressure holding units are realized technically in two ways: dynamic pressure hold-
ing with a pressure dictation pump, and static pressure holding with a closed vessel
[Nussbaumer et al., 2020, pp. 54–56]. In both cases, pressure holding units are almost
exclusively installed on the suction side of circulation pumps (pre-pressure control) (see
Figure 6.9) and are instrumental in avoiding pipe bursts or damaging equipment, e.g.,
by cavitation in the circulation pumps [Sommer et al., 2019]; [Nussbaumer et al., 2020,
pp. 54–55]; [Buffa et al., 2021, Figure 1].

Dynamic pressure holding is typically conducted in larger DGUs with powerful circula-
tion pumps. It is realized by a pressure dictation pump located between a pressurized
container and the DHN [Nussbaumer et al., 2020, pp. 54–55]; [Buffa et al., 2021, Fig-
ure 1]. As outlined in Section 6.1.2, the dynamics of any pump are approximated within
this thesis by the linear second-order system (6.1). Thus, the case in which a dynamic
pressure holding unit is installed at a DGU l ∈ D is equivalent to replacing the black
generalized voltage source in Figure 6.9 by the RLC equivalent circuit in Figure 6.5.
Note that in contrast to the circulation pump, which is coupled with the circulation
circuit (green part in Figure 6.9), the black generalized voltage source already represents
the entire pressure holding unit. That is, the dictation pump is assumed to be lumped
together with the pressurized container.

The dynamics for each pressure holding unit i ∈ H are thus similar to (6.1) and given
by

JP,iq̇P,i = −pP,i −RP,iqP,i + uP,i,

CP,iṗP,i = qP,i +
∑
l∈E

bilql,
(6.7)

with pP,i ≥ 0, qP,i, uP,i, ql ∈ R, parameters RP,i, JP,i, CP,i > 0, and elements of the
incidence matrix bil (see (1.1)).

Static pressure holding is installed in smaller DGUs with compact circulation pumps. It
is realized by directly adding a closed, pressurized vessel. From an equivalent circuit
perspective, this can be understood as a preloaded capacitance. Thus, in case of static
pressure holding, the black generalized voltage source in Figure 6.9 is replaced with a
capacitance. To avoid dependent storages and thus dependent states, this capacitance
is assumed to be lumped with Ci (see also the power line models in Sections 4.1.3 and
5.1.3). Consequently, the case of static pressure holding is not considered further in the
following.

Remark 6.7. The presented DHN model allows for pressure holding units to be installed at
the suction side of each DGU l ∈ D. In practice, however, it is typically sufficient to operate
only one of them at any given time (see, e.g., Nussbaumer et al. [2020, p. 55], Buffa et al. [2021,
Figure 1], and Figure 6.2). This is due to the fact that in a connected and closed hydraulic
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network, the pressure values at each node i ∈ V are uniquely determined by fixing one node
pressure value and expressing all edge subsystems by means of differential pressure dynamics as
done in Section 6.1.3 (see, e.g., Krug et al. [2021, Section 2.3]).

Capacitor Node Model

The capacitances Ci arising from volume storage in the DGU circuits, consumer circuits,
and pipes are viewed as nodes i ∈ C of the DHN digraph. From KCL, the dynamic
equation for each capacitor node i ∈ C follows as

Ciṗi =
∑
l∈E

bilql, (6.8)

with pi ≥ 0, ql ∈ R, parameter Ci > 0, and elements of the incidence matrix bil (see
(1.1)).

6.1.5 Port-Hamiltonian System Representation

In this section, it is shown that the subsystem models from Sections 6.1.3 and 6.1.4 can
be written as ISO-PHS models of the form (3.9). For the subsequent stability analysis
and control designs, this gives a clear perspective on which input-output ports are
accessible—or are convenient for control—and over which ports subsystems interact
with each other. Furthermore, the passivity properties with respect to these ports
and the Hamiltonian as a storage function are directly visible. In particular, since the
Hamiltonians are quadratic functions, their shifted versions directly qualify as positive
definite storage functions for proving EIP (see Lemma 3.1).

Pumps (6.1) and pressure holding units (6.7) The ISO-PHS model is given by (3.9)
with state and co-state

xk =

[
JP,kqP,k
CP,kpP,k

]
,

∂Hk

∂xk
(xk) =

[
qP,k
pP,k

]
, (6.9a)

control port pair
uk = uP,k, yk = qP,k, (6.9b)

uncontrolled interaction (coupling) port pair

dk = −qk, zk = pP,k, (6.9c)

and matrices

Jk =

[
0 −1

1 0

]
, Rk =

[
RP,k 0

0 0

]
, Gk =

[
1

0

]
, Kk =

[
0

1

]
,

Qk = diag

(
1

JP,k
,

1

CP,k

) (6.9d)

For pressure holding units (6.7) replace the index k with i.
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Pipes (6.4) The ISO-PHS model is given by (3.9) with state and co-state

xl =

 Jlql
JP,lqP,l
CP,lpP,l

 , ∂Hl

∂xl
(xl) =

 ql
qP,l
pP,l

 , (6.10a)

control port pair
ul = uP,l, yl = qP,l, (6.10b)

uncontrolled interaction (coupling) port pair

dl = −
∑
i∈V

bilpi, zl = ql, (6.10c)

matrices

Jl =

 0 0 1

0 0 −1

−1 1 0

 , Rl =

0 0 0

0 RP,l 0

0 0 0

 , Gl =

01
0

 , Kl =

10
0

 ,
Ql = diag

(
1

Jl
,

1

JP,l
,

1

CP,l

) (6.10d)

and nonlinear damping function

Rl

(
∂Hl

∂xl
(xl)

)
=

λl(ql)0

0

 . (6.10e)

DGUs and consumers (6.5) The ISO-PHS model is given by (3.9) with state and
co-state

xl =

 Jlql
JP,lqP,l
CP,lpP,l

 , ∂Hl

∂xl
(xl) =

 ql
qP,l
pP,l

 , (6.11a)

control port pair

ul =

[
uv,l
uP,l

]
, yl =

[
−µ̃l(ql)ql
qP,l

]
, (6.11b)

uncontrolled interaction (coupling) port pair

dl = −
∑
i∈V

bilpi, zl = ql, (6.11c)

matrices

Jl =

 0 0 1

0 0 −1

−1 1 0

 , Rl =

0 0 0

0 RP,l 0

0 0 0

 , Gl(xl) =

−µ̃l(ql) 0

0 1

0 0

 , Kl =

10
0

 ,
Ql = diag

(
1

Jl
,

1

JP,l
,

1

CP,l

)
(6.11d)
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and nonlinear damping function

Rl

(
∂Hl

∂xl
(xl)

)
=

λl(ql)0

0

 . (6.11e)

Mixing connections (6.6) The ISO-PHS model is given by (3.9) with state and co-state

xl = Jlql,
∂Hl

∂xl
(xl) = ql, (6.12a)

control port pair
ul = uv,l, yl = −µ̃l(ql)ql, (6.12b)

uncontrolled interaction (coupling) port pair

dl = −
∑
i∈V

bilpi, zl = ql, (6.12c)

scalars (instead of matrices)

Jl = 0, Rl = Rl, Gl(xl) = −µ̃l(ql), Kl = 1, Ql =
1

Jl
, (6.12d)

and nonlinear damping function

Rl

(
∂Hl

∂xl
(xl)

)
= λl(ql). (6.12e)

Capacitor nodes (6.8) The ISO-PHS model is given by (3.9) with state and co-state

xi = Cipi,
∂Hi

∂xi
(xi) = pi, (6.13a)

uncontrolled interaction (coupling) port pair

di =
∑
l∈V

bilql, zi = pi, (6.13b)

and scalars (instead of matrices)

Ji = 0, Ri = Ri, Gi = 0, Ki = 1, Qi =
1

Ci
. (6.13c)
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6.1.6 Interconnection Structure

The interconnection of the pressure holding and capacitor subsystems on the nodes
i ∈ V with the DGU, consumer, pipe, and mixing connection subsystems on the edges
l ∈ E is clearly defined by the interaction (coupling) ports (6.9c), (6.10c), (6.11c), (6.12c),
and (6.13b) arising from their respective PHS representations. In particular, it holds that

di =
∑
l∈E

bilql =
∑
i∈V

bilzl, (6.14a)

dl = −
∑
i∈V

bilpi = −
∑
i∈V

bilzi, (6.14b)

and (cf. (3.1e)) [
dV
dE

]
=

[
0|V|×|V| B

−B⊤ 0|E|×|E|

] [
zV
zE

]
=: M

[
zV
zE

]
, (6.15)

with (·)V = stack((·)i)i∈V and (·)E = stack((·)l)l∈E denoting the respective, stacked
vectors of the subsystems.

6.2 Asymptotic Stability Conditions and
Control Problems

With the DHN formalized as a digraph and its model established, research questions
(Q3.2) and (Q3.3) can now formally be addressed. Firstly, in Section 6.2.1, decentralized
asymptotic stability conditions are derived by application of Theorem 3.1 and Corol-
lary 3.1. Subsequently, in Section 6.2.2, the unactuated DHN subsystems are shown
to fulfill the derived, decentralized stability conditions. Lastly, in Section 6.2.3, the
remaining control problems for the actuated DHN subsystems are formulated. Their
solution in Section 6.3 will provide answers to research question (Q3.3).

6.2.1 Decentralized Asymptotic Stability Conditions

The DHN model outlined in Section 6.1 is similar to that of an autonomous, networked
system given in Definition 3.1. So far, however, the control ports (uk, yk) associated with
the actuated subsystems k ∈ D ∪ L ∪ Pboost ∪M∪H (see Section 6.1.5) are open, i.e.,
the models are of the form (3.2). In order to conduct an equilibrium stability analysis, it
is thus assumed that each actuated subsystem is in closed loop with some pump and/or
valve controller, respectively (see Remark 3.2).

Then, by direct application of Theorem 3.1 and Corollary 3.1 to the now autonom-
ous DHN model, decentralized, analytical conditions can be obtained, which, if satis-
fied, ensure asymptotic stability of any feasible, hydraulic DHN equilibrium x̄DHN =
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stack(¯̂xk)k∈V∪E . The vectors x̄k are the respective equilibrium state vectors of the sub-
systems that are proportional to the steady-state pressures and volume flow rates of the
DHN (cf. (6.10a), (6.11a), (6.12a), (6.9), (6.13a)).4

Theorem 6.1 (Decentralized, asymptotic stability conditions for DHNs)
Consider an autonomous DHN as described in Section 4.1 with some controller uk at
each subsystem k ∈ D ∪ L ∪ Pboost ∪M∪H which is actuated with a pump and/or
a valve. Any feasible, hydraulic equilibrium x̄DHN = stack(x̄k)k∈V∪E of such an
autonomous DHN is asymptotically stable, if the following two conditions hold:

(DHN 1) each subsystem at a node i ∈ V is

• strictly EIP w.r.t. the supply rate (di − d̄i)(zi − z̄i) and a continuously
differentiable, positive definite storage function Si(xi, x̄i), or

• EIP w.r.t. the supply rate (di− d̄i)(zi− z̄i) and a continuously differenti-
able, positive definite storage function Si(xi, x̄i), and such that no solu-
tion other than xi(t) = x̄i can stay in Ei = {xi ∈ Xi ⊆ Rni |Ṡi(xi, x̄i) =
0, di = d̄i} for all time.

(DHN 2) each subsystem at an edge l ∈ E is

• strictly EIP w.r.t. the supply rate (dl − d̄l)(zl − z̄l) and a continuously
differentiable, positive definite storage function Sl(xl, x̄l), or

• OSEIP w.r.t. the supply rate (dl − d̄l)(zl − z̄l) and a continuously differ-
entiable, positive definite storage function Sl(xl, x̄l), and either EIO or
such that no solution other than xl(t) = x̄l can stay in El = {xl ∈ Xl ⊆
Rnl |Ṡl(xl, x̄l) = 0, dl = d̄l} for all time.

Proof:
The proof follows directly by application of Theorem 3.1 and Corollary 3.1 to the
DHN model established in Section 4.1 with some controller uk at each subsystem
k ∈ D ∪ L ∪ Pboost ∪M∪H.

The conditions (DHN 1) and (DHN 2) of Theorem 6.1 answer research question (Q3.2).
Next, it has to be ensured that the DHN subsystems modeled in Section 6.1 fulfill the
respective conditions.

6.2.2 Properties of the Unactuated Systems

For the unactuated subsystems without control ports, i.e, capacitor nodes i ∈ C (see
(6.13)) and pipe edges without booster pumps l ∈ P\Pboost (see (6.10) and Remark 6.4),

4 Note that x̄k for k ∈ D ∪ L ∪ Pboost ∪M∪H possibly implies a slight abuse of notation as in the case of
dynamic controllers the original state vectors xk are augmented by additional controller states.
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requirements on the model parameters have to be established such that conditions
(DHN 1) and (DHN 2) are met.

Capacitor Nodes

The capacitor node models (6.8) can be represented as linear ISO-PHSs with constant
matrices (see (6.13)). According to Lemma 3.1, the capacitor node subsystem (6.8) is thus
EIP w.r.t. the supply rate (di − d̄i)(zi − z̄i) and the shifted Hamiltonian as continuously
differentiable, positive definite storage function Si(xi, x̄i) = 1

2Ci
∥xi − x̄i∥2, x̄i = Cip̄i.

Next, it is shown that no solution other than x̄i can stay in Ei = {xi ∈ Xi ⊆ R|Ṡi(xi, x̄i) =
0, di = d̄i} for all time. For di = d̄i, it directly follows from (6.8) that Ciṗi = 0, implying
pi ≡ p̄i and xi ≡ x̄i, respectively. Thus, the capacitor node models (6.8) fulfill condition
(DHN 1) for all model parameters.

Pipes without Booster Pumps

The model of each pipe l ∈ P\Pboost without booster pumps is given by (see Remark 6.4)

Jlq̇l︸︷︷︸
ẋl

= −λl(ql)︸ ︷︷ ︸
Rl(xl)

−
∑
i∈V

bilpi︸ ︷︷ ︸
dl

, (6.16a)

zl = ql, (6.16b)

Hl(xl) =
1

2Jl
x2l . (6.16c)

The model (6.16) constitutes an ISO-PHS of the form (3.9) with strictly increasing,
nonlinear damping function Rl(xl) (see Property 6.1) and G(x) = G = 0. According
to Lemma 3.1, (6.16) is thus strictly EIP w.r.t. the supply rate (di − d̄i)(zi − z̄i) and the
shifted Hamiltonian as continuously differentiable, positive definite storage function
Sl(xl, x̄l) =

1
2Jl

∥xl − x̄l∥2, x̄l = Jlp̄l. Consequently, the models of pipes without booster
pumps fulfill condition (DHN 2) for all model parameters.

6.2.3 Control Problems

For the actuated DHN subsystems k ∈ D∪L∪Pboost∪M∪H, decentralized controllers
for the pumps and/or valves are to be designed such that the closed-loop systems fulfill
(DHN 1) and (DHN 2), respectively. Furthermore, the respective closed-loop equilibrium
state vectors ¯̂xk should be such that desired pressures p̄P,k = p∗P,k and volume flow
rates q̄k = q∗k are established in steady state (see research question (Q3.3)).
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In the following, the individual control problems for each of the actuated subsystems
are specified and subsequently summarized in Problem 6.1.

DGUs

DGUs l ∈ D may operate in two modes: pressure-controlled or volume flow rate-
controlled. From a generalized modeling perspective, these modes are similar to grid-
forming voltage control and grid-feeding current control of DGUs in electrical power
systems (cf. Table A.1). To highlight this similarity, the grid-forming and grid-feeding
terminology from electrical power systems is used in the following to describe the
operating modes of DGUs in a DHN.5

DGUs in grid-forming mode l ∈ Dform actively form the hydraulic conditions required
to operate DHNs by regulating the differential pressure generated by their circulation
pumps to desired setpoints p∗P,l [Nussbaumer et al., 2020, pp. 47–48]. In this case, the
control valves in their circulation circuits are fully open, i.e., ūv,l = uv,l(sv,l = 1) (see
(6.2)). DGUs in grid-feeding mode l ∈ Dvalve ⊆ Dfeed regulate the volume flow rate
through their circulation circuits to desired setpoints q∗l by means of their control valves.
Under approximately constant water temperature, this is equivalent to controlling the
thermal energy they feed into a DHN (see Lennermo et al. [2014], Lennermo et al. [2019],
and Krug et al. [2021, Section 2.3]). Note that for a proper functioning of the control
valve, the circulation pump still introduces some differential pressure p∗P,l, which is
then throttled by the control valve such that the desired desired volume flow rate q∗l is
reached.

Consumers

Consumers l ∈ L regulate the thermal energy they consume by controlling their volume
flow rates to desired setpoints q∗l [Li et al., 2017, p. 29]; [Nussbaumer et al., 2020, pp. 143–
145,151]. Traditionally, this volume flow rate control is conducted by control valves
only. The set of consumers for which uv,l(sv,l) is the main control input is thus denoted
by Lvalve ⊆ L. However, as discussed in Section 6.1.3, booster pumps might be added
to some consumer circuits. These consumers are identified by the set Lboost ⊆ L. In
each consumer l ∈ Lboost, the pump pressure is controlled to some desired setpoint p∗P,l,
which is then throttled by the control valve such that the desired volume flow rate q∗l is
reached.

Remark 6.8. In some DHN setups with DVSPs (see, e.g., Yan et al. [2013] and Wang et al.
[2017a]), it is suggested to directly conduct the volume flow rate control in grid-feeding DGUs
l ∈ DVSP ⊆ Dfeed and consumers l ∈ LVSP ⊆ L by pumps without including any control
valves in the respective hydraulic circuits (cf. Figures 6.9 and 6.11). Gong et al. [2019] propose

5 Although this perspective is not yet established in the DHN community, hints regarding this parallel can
already be found in the literature. Lennermo et al. [2014] and Lennermo et al. [2019], for example, compare
the principle of regulating the heat power infeed of decentralized solar-thermal power plants via the fed-in
volume flow rate with that of photovoltaic power plants that operate in grid-feeding mode.
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a hybrid DVSP setup in which all DGUs and some consumers have only pumps, while some
consumers have only control valves. Consequently, it is apparent that depending on the topology
and producer-consumer configuration, different hydraulic designs of DGU and consumer circuits
might be beneficial. Thus, in this thesis, all possible combinations of designs (see Problem 6.1
below) are considered.

Pipes

For pipes l ∈ P , as introduced in Remark 6.4, Pboost ⊆ P denotes the subset of pipes that
have a booster pump connected in series. These pumps are in charge of counteracting
the differential pressure loss over the corresponding pipe by introducing a differential
pressure p∗P,l.

Mixing connections

Mixing connections l ∈ M control their volume flow rates to desired setpoints q∗l such
that a desired mixing ratio of high- and medium-temperature water is achieved (see
Section 6.1.3).

Pressure holding units

Pressure holding units i ∈ H are located at the suction sides of DGUs l ∈ D. Regardless
of the operation mode of the DGU they are associated with, pressure holding units
control the pressure at their nodes to desired setpoints p∗P,i. This pressure also serves as
the static pressure in a DHN (see Nussbaumer et al. [2020, p. 55] and Buffa et al. [2021,
Figure 1]).

In summary, it can be seen that the control tasks amount to pressure and volume flow rate
control of pumps and volume flow rate control of valves in the respective subsystems. Con-
sequently, in order to achieve decentralized stabilization in DHNs as per Definition 2.5
and provide answers to research question (Q3.3), the following control problem is left
to be addressed:

Problem 6.1 (Decentralized pressure and volume flow rate control)
Consider a DHN as described in Section 4.1. For the pump and/or control valve in
each actuated subsystem k ∈ D∪L∪Pboost ∪M∪H, design decentralized controllers
of the form

ẋc,k = fc,k(xk,xc,k), uk =

[
uv,k
uP,k

]
= ûk(xk,xc,k), (6.17)

with controller states xc,k ∈ R2 such that the resulting closed-loop system fulfills
(DHN 1) or (DHN 2), respectively. Furthermore, the respective control inputs and
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the closed-loop equilibrium state vector ¯̂xk =
[
x̄⊤
k , x̄

⊤
c,k

]⊤
shall fulfill the following

characteristics:

(a) For each DGU l ∈ Dform, uv,l(sv,l = 1) = 1 = ūv,l is fixed and uP,l is such that
pP,l = p∗P,l > 0 in ¯̂xl.

(b) For each DGU l ∈ Dvalve, uv,l and uP,l are such that q̄l = q∗l > 0 and pP,l = p∗P,l >

0 in ¯̂xl.

(c) For each DGU l ∈ DVSP, uv,l(sv,l = 1) = 1 = ūv,l is fixed and uP,l is such that
q̄l = q∗l > 0 in ¯̂xl.

(d) For each consumer l ∈ Lboost, uv,l and uP,l are such that q̄l = q∗l > 0 and
pP,l = p∗P,l > 0 in ¯̂xl.

(e) For each consumer l ∈ Lvalve, uP,l = 0 and uv,l is such that q̄l = q∗l > 0 in ¯̂xl.

(f) For each consumer l ∈ LVSP, uv,l(sv,l = 1) = 1 = ūv,l is fixed and uP,l is such
that q̄l = q∗l > 0 in ¯̂xl.

(g) For each pipe l ∈ Pboost with booster pump, uP,l is such that pP,l = p∗P,l > 0 in
¯̂xl.

(h) For each mixing connection l ∈ M, uv,l is such that q̄l = q∗l > 0 in ¯̂xl.

(i) For each pressure holding unit i ∈ H, uP,i is such that pP,i = p∗P,i > 0 in ¯̂xi.

Remark 6.9 (Notation). To avoid cluttering the notation, it is assumed that the valves in the
circuits of DGUs l ∈ Dform ∪ DVSP and consumers l ∈ LVSP physically remain, but are fully
open, i.e., uv,l(sv,l = 1) = 1 = ūv,l is fixed (see (6.2)).

Remark 6.10. In line with the hierarchical control structure discussed in Section 2.3.2, the
setpoints p∗k > 0, k ∈ Dform ∪Dvalve ∪Lboost ∪Pboost ∪H, and q∗k > 0, k ∈ Dvalve ∪DVSP ∪
L ∪M, are assumed to be known and specified by a higher-level control ensuring that these
setpoints constitute feasible, hydraulic DHN equilibria x̄DHN within the operational constraints.
A preliminary analysis regarding the degrees of freedom in choosing the operating modes of the
DHN subsystems outlined in Problem 6.1 can be found in Appendix C.1.
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6.3 Passivity-Based Control Design

In this section, Problem 6.1 is addressed. Following a classical divide-and-conquer
approach, firstly, the controllers for pumps and for valves in series with a pipe element
are designed. Subsequently, these controllers are assigned to the respective models of
the actuated subsystems k ∈ D ∪ L ∪ Pboost ∪M∪H.

6.3.1 Pressure Control of Pumps

Instrumental to solving Problem 6.1 is the ability to regulate the pressure pP,k of a given
pump in each subsystem k ∈ Dform ∪ Dvalve ∪ Lboost ∪ Pboost ∪ H towards a desired
constant setpoint p∗P,k. For the design of the pump pressure controller, recall that the
pump model (6.1) constitutes a linear second-order system represented by a generalized
RLC equivalent circuit (see Figure 6.5). The pump pressure pP,k is the actual output of
the linear, second-order system, which constitutes the interaction output zk = pP,k from
a ISO-PHS model perspective (see (B.8c), (6.9c)). Consequently, the generalized results
from Section B.2, i.e., the combined algebraic IDA and integral action design applied to
linear, second-order systems, can be used for the pressure control design.

Proposition 6.1 (Pressure controller for pumps)
Consider a pump in open loop described by (6.1). Assign the control input uk = uP,k
as

QI,kṙk = pP,k − p∗P,k, (6.18a)

uk = p∗P,k + (RP,k − R̂k)qP,k − R̂krk +
JP,k
QI,k

(p∗P,k − pP,k), (6.18b)

where p∗P,k > 0 is a desired pressure setpoint and R̂k, QI,k > 0 are control parameters.
Then, with the change of coordinates from qP,k to

χk := qP,k + rk, (6.19)

the closed-loop system can be written as

d

dt

 JP,kχk
CP,kpP,k
QI,krk


︸ ︷︷ ︸

xp
k

=

−R̂kχk − (pP,k − p∗P,k)

χk − rk
pP,k − p∗P,k


︸ ︷︷ ︸

fp
k (xp

k)

+

01
0


︸︷︷︸
Kp

k

dk, (6.20a)

zk = pP,k. (6.20b)
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Moreover, (6.20) is EIP w.r.t. the supply rate (dk − d̄k)(zk − z̄k) and the continuously
differentiable, positive definite storage function

Sp
k =

1

2
∥xp

k − x̄p
k∥Qp

k
, (6.21a)

Qp
k = diag

(
1

JP,k
,

1

CP,k
,

1

QI,k

)
(6.21b)

for any (feasible) equilibrium pair (d̄k, z̄k) and associated equilibrium state vector

x̄p
k =

[
JP,kχ̄k, CP,kp

∗
P,k, QI,kr̄k

]⊤
. (6.22)

Furthermore, no solution other than xp
k = x̄p

k as in (6.22) can stay in Ek = {xp
k ∈ X p

k ⊆
R3|Ṡp

k (x
p
k, x̄

p
k) = 0, dk = d̄k} for all time.

Proof:
The proof follows directly from Proposition B.1 by comparing (B.8) with (6.9) and substi-
tuting K = 1, T1 = JP,k, T2 = CP,k, x1 = JP,kqP,k, x2 = CP,kpP,k, x1

T1
= qP,k, x2

T2
= pP,k,

and 2D
√

T1

T2
= RP,k.

Remark 6.11. Note that the controller (6.18) is composed of a setpoint feedforward p∗P,k, a
static state feedback proportional to qP,k for damping assignment, and a PI term acting on the
control error p∗P,k − pP,k to ensure zero steady-state errors under parameter uncertainties and
unknown, steady-state interaction inputs d̄. All these building blocks are available as industrial
standard, off-the-shelf control functions. However, in contrast to the current Ii in the DC voltage
controller (4.26), the volume flow rate qP,k does not represent a measurable, physical quantity
(see also Section 6.1.2). Thus, for a practical implementation, either the damping assignment has
to be neglected, i.e., R̂k = RP,k, or the variable qP,k has to be estimated.

6.3.2 Volume Flow Rate Control via Pumps

In each DGU or consumer subsystem k ∈ DVSP∪LVSP, the volume flow rate qk through
the pipes of the circulation circuit has to be regulated via pumps to a desired con-
stant setpoint q∗k. In fact, the dynamics (6.5) of DGUs and consumers are, excluding
the control valve, equivalent to the dynamics (6.4) of a pipe element in series with a
pump. Thus, the following control design focuses on the model of a pump in series
with a pipe element, i.e., (6.4), (6.10), but with dk treated as an arbitrary external input.
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Proposition 6.2 (Volume flow rate controller for pumps)
Consider a pump in open loop in series with a pipe element (see (6.4)). Assign the
control input uk = uP,k as

QI,kṙk = qk − q∗k, (6.23a)

uk = −KP,kpP,k − rk, (6.23b)

where q∗k > 0 is a desired volume flow rate setpoint and QI,k,KP,k are control para-
meters satisfying

QI,k > 0, 0 < QI,k(KP,k + 1)− CP,k =: κfk. (6.24)

Then, the closed-loop system can be written as

d

dt


Jkqk

JP,kqP,k
CP,kpP,k
QI,krk


︸ ︷︷ ︸

xf
k

=


pP,k − λk(qk)

−pP,k −RP,kqP,k −KP,kpP,k − rk
qP,k − qk
qk − q∗k


︸ ︷︷ ︸

f f
k(x

f
k)

+


1

0

0

0


︸︷︷︸
Kf

k

dk, (6.25a)

zk = qk. (6.25b)

Moreover, (6.25) is OSEIP w.r.t. the supply rate (dk− d̄k)(zk− z̄k) and the continuously
differentiable, positive definite storage function

Sf
k =

1

2

∥∥xf
k − x̄f

k

∥∥
Qf

k

, (6.26a)

Qf
k =


1
Jk

0 0 0

0
QI,k

JP,kκf
k

0 0

0 0 1
CP,k

+ 1
κf
k

1
κf
k

0 0 1
κf
k

1
κf
k

 , (6.26b)

for any (feasible) equilibrium pair (d̄k, z̄k) and associated equilibrium state vector

x̄f
k = [Jkq

∗
k, JP,kq

∗
k, CP,kp̄P,k, QI,kr̄k]

⊤
. (6.27)

Furthermore, no solution other than xf
k = x̄f

k as in (6.27) can stay in Ek = {xf
k ∈ X f

k ⊆
R4|Ṡf

k(x
f
k, x̄

f
k) = 0, dk = d̄k} for all time.

Proof:
The proof is similar to that of Proposition 4.2. By combining (6.4) with the controller
(6.23), the closed-loop system (6.25) follows directly.
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To show that (6.25) is OSEIP, consider the time derivative of Sf
k, i.e.,

Ṡf
k(x

f
k, x̄

f
k) = (xf

k − x̄f
k)

⊤Qf
k

(
f f
k(x

f
k)− f f

k(x̄
f
k)
)︸ ︷︷ ︸

−ψf
k(x

f
k,x̄

f
k)

+(xf
k − x̄f

k)
⊤Qf

kK
f
k︸ ︷︷ ︸

(zk−z̄k)

(dk − d̄k). (6.28)

With (6.25) and (6.27), the dissipation rate can be written as

ψf
k(x

f
k, x̄

f
k) = (qk − q∗k) (λk(qk)− λk(q

∗
k)) + 2

RP,kQI,k

κfk
(qP,k − q̄P,k)

2 (6.29a)

(6.25b)
= (zk − z∗k) (λk(zk)− λk(z

∗
k)) + 2

RP,kQI,k

κfk
(qP,k − q̄P,k)

2. (6.29b)

Since λk(zk) is strictly increasing (see Property 6.1) and (6.24) holds, the closed-loop
system (6.25) is OSEIP w.r.t. the supply rate (dk − d̄k)(zk − z̄k) and the continuously
differentiable, positive definite storage function Sf

k as in (6.26) (see Definition 3.2).
From

ψf
k(x

f
k, x̄

f
k) ≡ 0

(6.29)
=⇒ qk ≡ q∗k, qP,k ≡ q̄P,k ≡ q∗k (6.30)

follows that the shifted dynamics of (6.25) confined to Ek = {xf
k ∈ X f

k ⊆ R4|Ṡf
k(x

f
k, x̄

f
k) =

0, dk = d̄k} are given by

0 = pP,k − p̄P,k,

0 = −(1 +KP,k)(pP,k − p̄P,k)− (rk − r̄k),

CP,kṗP,k = 0,

QI,kṙk = 0,

(6.31)

whose unique solution is pP,k ≡ p̄P,k, rk ≡ r̄k. Thus, no solution other than x̄f
k as in

(6.27) can stay in Ek for all time.

Remark 6.12. Note that the controller (6.23) and particularly the structuring of the positive def-
inite matrix Qf

k for the storage function in (6.26) is inspired by Nahata et al. [2020, Theorem 2],
which provides an analytical solution to a similarly structured storage function (compare (4.44)
and (6.26)).

6.3.3 Volume Flow Rate Control via Valves

Problem 6.1 also considers the regulation of volume flow rates qk through DGUs, con-
sumers, and mixing connections, k ∈ Dfeed ∪ Lboost ∪ Lvalve ∪ M via control valves.
Similar to the volume flow rate control via pumps, the valve controller design is con-
ducted by means of the model of a valve in series with a pipe element, i.e., (6.6) and
(6.12), but with dk treated as an arbitrary external input.
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Proposition 6.3 (Volume flow rate controller for valves)
Consider a control valve in open loop in series with a pipe element (see (6.6)). Let

ŷv,k = −µ̃k(qk) (qk − q∗k) (6.32)

and assign the control input uk = uv,k as

QI,kṙk = −ŷv,k, (6.33a)

uk = −KP,kŷv,k + rk, (6.33b)

where q∗k > 0 is a desired volume flow rate setpoint and QI,k,KP,k > 0 are control
parameters. Then, the closed-loop system can be written as

d

dt

[
Jkqk
QI,krk

]
︸ ︷︷ ︸

xv
k

=

[
−λk(qk)− µ̃k(qk)(−KP,kŷv,k + rk)

−ŷv,k

]
︸ ︷︷ ︸

fv
k (x

v
k)

+

[
1

0

]
︸︷︷︸
Kv

k

dk, (6.34a)

zk = qk. (6.34b)

Moreover, (6.25) is OSEIP w.r.t. the supply rate (dk− d̄k)(zk− z̄k) and the continuously
differentiable, positive definite storage function

Sv
k =

1

2
∥xv

k − x̄v
k∥Qv

k
, (6.35a)

Qv
k = diag

(
1

Jk
,

1

QI,k

)
, (6.35b)

for any (feasible) equilibrium pair (d̄k, z̄k), and associated equilibrium state vector

x̄v
k =

{
[Jkq

∗
k, QI,kr̄k]

⊤
, d̄k ̸= 0,

[0, QI,kr̄k]
⊤
, d̄k = 0.

(6.36)

Proof:
The proof is similar to that of Proposition 6.2. By combining (6.6) with the controller
(6.33), the closed-loop system (6.34) follows directly. Furthermore, the equilibrium state
vector x̄v

k in (6.36) follows directly from (6.34) in steady-state.

Next, by using the identity ūk = r̄k and adding and subtracting µ̃k(qk)r̄k, (6.25) can
equivalently be written as

Jkq̇k =− (λk(qk)− λk(q̄k)) + µ̃k(qk)KP,kŷk − µ̃k(qk)(rk − r̄k)

− r̄k(µ̃k(qk)− µ̃k(q̄k)) + (dk − d̄k), (6.37a)

QI,kṙk = µ̃k(qk)(qk − q̄k). (6.37b)
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with q̄k = q∗k for d̄k ̸= 0 and q̄k = 0 for d̄k = 0. For the time derivative of Sv
k in (6.35a), it

holds that

Ṡv
k(x

v
k, x̄

v
k) = (xv

k − x̄v
k)

⊤Qv
k (f

v
k (x

v
k)− fv

k (x̄
v
k))︸ ︷︷ ︸

−ψv
k(x

v
k,x̄

v
k)

+(xv
k − x̄v

k)
⊤Qv

kK
v
k︸ ︷︷ ︸

(zk−z̄k)

(dk − d̄k). (6.38)

With (6.34), (6.36), and (6.37), the dissipation rate can be written as

ψv
k(x

v
k, x̄

v
k) = (qk − q̄k) (λk(qk)− λk(q̄k)) + r̄k(qk − q̄k)(µ̃k(qk)− µ̃(q̄k)) (6.39a)

(6.34b)
= (zk − z̄k) (λk(zk)− λk(z̄k)) + r̄k(zk − z̄k)(µ̃k(zk)− µ̃(z̄k)). (6.39b)

Since λk(zk) and µ̃k(zk) are strictly increasing (see (6.2b) and Property 6.1) and ūv,k =

r̄k > 0 per definition (see Section 6.1.2), the closed-loop system (6.34) is OSEIP w.r.t.
the supply rate (dk − d̄k)(zk − z̄k) and the continuously differentiable, positive definite
storage function Sv

k as in (6.35a) (see Definition 3.2).

Remark 6.13. The design of the PI controller (6.33) is based on the observation that the
dynamics of a control valve in series with a pipe element, i.e, (6.6) and (6.12), respectively, are
EIP with respect to the supply rate (uv,k − ūv,k)(ŷk − ¯̂yk) and the continuously differentiable,
positive definite storage function Sv

k in (6.35a). The definition of the output ŷk originates from
the fact that the input matrix Gk(xk) as in (6.12d) is state-dependent. This circumstance
complicates the use of a standard PI controller around the shifted, natural passive output y − ȳ

(see also Arcak et al. [2016, p. 26], van der Schaft [2017, p. 137], and Monshizadeh et al. [2019]).
Following Monshizadeh et al. [2019, Equation (8)], a new passive output ŷk as in (6.32) can be
proposed, which is obtained from a suitable, shifted representation of the dynamics.

As state in the proof above, ŷk = 0 allows for either q̄k = q∗k or q̄k = 0 (see (6.32) and
(6.34)). However, q̄k = 0 implies λk(0) = 0, µ̃k(0) = 0 (see (6.2b) and Property 6.1)
and thus d̄k = 0, where dk is the pressure difference over the serial connection of
valve and pipe element (cf. (6.6)). This makes sense from a practical perspective, as a
control valve with zero differential pressure available is not functional. Since valves
can only function as variable, nonlinear flow resistors, the assembly of control valve
and pipe requires a sufficient positive differential pressure dk > 0 to establish a desired
volume flow rate setpoint q̄k = q∗k in steady state (see Remark 6.3). In practice, sufficient
positive differential pressure is ensured by a proper assignment of the pump pressure
setpoints p∗P,k via a higher-level control (see Remark 6.10), which motivates the following
assumption:

Assumption 6.3 (Positive differential pressure for valves)
Any control valve in series with a pipe element has a positive differential pressure
dl > 0 for all time. This implies for DGUs and consumer circuits l ∈ D ∪ L that
pi + pP,l − pj > 0 (see (6.11c) and Figures 6.9 and 6.11) and for mixing connections
l ∈ M that pi − pj > 0 (see (6.12c) and Figure 6.13).
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6.3.4 Properties of the Closed-Loop Systems

In this section, the controlled pumps and valves from Propositions 6.1–6.3 are de-
ployed in the corresponding actuated subsystems k ∈ D ∪ L ∪ Pboost ∪ M ∪ H. It is
shown that the resulting closed-loop systems fulfill the requirements set in Problem 6.1.

Proposition 6.4 (Properties of the closed-loop DHN subsystems)
Assign the pump controllers (6.18), (6.23), and the valve controller (6.33) to the respect-
ive edge and node subsystems k ∈ D ∪ L ∪ Pboost ∪M∪H according to the control
tasks in Problem 6.1. Then, the resulting closed-loop subsystems can be written as

˙̂xk = f̂k(x̂k) + K̂kdk, (6.40a)

zk = K̂⊤
k Q̂kx̂, (6.40b)

with appropriate vectors and matrices. For each actuated edge subsystem k ∈ D ∪
L∪Pboost ∪M, the closed loop (6.40) is OSEIP w.r.t. the supply rate (dk − d̄k)(zk − z̄k)

and the continuously differentiable, positive definite storage function

Ŝk(x̂k, ¯̂xk) =
1

2

∥∥x̂k − ¯̂xk
∥∥2
Q̂k
, (6.41)

where Q̂k is a suitable positive definite diagonal matrix, and ¯̂xk is any (feasible)
equilibrium value of x̂k with associated (d̄k, z̄k). In addition, under Assumption 6.3,
¯̂xk is such that q̄k = q̄P,k = q∗k and p̄P,k = p∗P,k in accordance with Problem 6.1.

For each actuated node subsystem k ∈ H, the closed loop (6.40) is EIP w.r.t. the supply
rate (dk−d̄k)(zk−z̄k), the continuously differentiable, positive definite storage function

as in (6.41), and any (feasible) equilibrium value x̂k =
[
JP,kχ̄k, CP,kp

∗
P,k, QI,kr̄k

]⊤
with associated (d̄k, z̄k).

Furthermore, for each k ∈ D ∪ L ∪ Pboost ∪M∪H, no solution other than x̂k = ¯̂xk

can stay in Ek = {x̂k ∈ X̂k ⊆ Rn̂k | ˙̂Sk(x̂k, ¯̂xk) = 0, dk = d̄k} for all time.

Proof:
The proof follows similar steps than the proofs of Propositions 6.1–6.3. To avoid dis-
rupting the reading flow, the straightforward yet lengthy proof is provided in Ap-
pendix C.2.

6.4 Simulation

This section demonstrates the stabilizing properties, plug-and-play capabilities, and
disturbance rejection behavior of the proposed pressure and volume flow rate controllers
via simulations in MATLAB/SIMULINK using SIMSCAPE components. In Section 6.4.1, a
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scenario with plug-and-play operations and varying reference values is presented. In
Section 6.4.2, the first scenario is repeated, albeit with parameter uncertainties and a
saturation to the valve input.

The simulations are conducted by means of the DHN depicted in Figures 6.1 and 6.2
which shows all structural features discussed in Section 6.1. Furthermore, all control
problems outlined in Problem 6.1 are covered by assigning appropriate DGU, consumer,
and pressure holding configurations, i.e., Dform = {1}, Dvalve = {2}, DVSP = {3},
Lboost = {7}, Lvalve = {4, 5, 6}, LVSP = {8}, Pboost = {15}, M = {25}, H = {4}. Ad-
ditionally, all requirements posed by the operation mode analysis in Proposition C.1
are fulfilled, i.e., there is at least one grid-forming DGU (at edge 1) between the two
hydraulic layers constituted by the high-temperature pipe network (red) and the combin-
ation of the medium- and low-temperature network (orange, blue) (compare Figure 6.2
with Figure 6.4).

The model and controller parameters are given in Tables 6.1 and 6.2.

The pump parameters follow from Goppelt et al. [2018, Equation (42)] by considering
that RP,k

JP,k
≈ 7.2878, 1

JP,kCP,k
≈ 341.4283, and setting RP,k = 1 · 106 Pa s/m3 for pressure-

controlled pumps, k ∈ Dform ∪ Dvalve ∪ Lboost ∪ Pboost ∪H and RP,k = 1 · 1010 Pa s/m3

for volume flow rate-controlled pumps, k ∈ DVSP ∪ LVSP.6

The flow capacity of the control valves is obtained by considering a maximum volume
flow rate of kvs = 90m3/h = 0.025m3/s at full valve opening sv,k = 1, for which follows
fv,k(sv,k = 1) = 1 and µk(sv,k = 1, kvs = 0.025m3/s) = 1 · 105 Pa valve pressure (see
also Nussbaumer et al. [2020, p. 144]). The value in Table 6.1 then follows from

Cv,k =
kvs√

1 · 105 Pa
. (6.42)

Any pipe resistance λl(ql) and fluid inertia Jl, l ∈ E , are modeled by using the hydraulic
pipe resistance and hydraulic fluid inertia SIMSCAPE components with standard values
and no elevation. The diameters, roughness, and lengths given in Tables 6.1 and 6.2 are
in line with typical values (see, e.g., Liu et al. [2016] and Machado et al. [2022b]) and
correspond to diameter nominal (DN) 32 and DN 80 pipes, respectively.

The elasticities lumped into the capacitive nodes i ∈ C are chosen according to exemplary
values for one-family installations given in Stræde [1995] and Boysen and Thorsen
[2003].

Following Remark 6.11, the pressure controllers (6.18) of pumps do not comprise any
damping assignment, i.e., RP

k = RP,k, to avoid dependency on the non-physical, auxili-
ary variable qP,k. Additionally, preliminary simulations have shown that neglecting the
reference feedforward of p∗P,k in (6.18) yields a better control performance. Thus, the

6 Note that these hydraulic resistance values are in the order of magnitude of DN 80 and DN 20 pipes,
respectively, for a length of 1m and an external pressure of 1 · 105 Pa.
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pressure controllers implemented and simulated in the following scenarios are only PI
controllers7

QI,kṙk = pP,k − p∗P,k, (6.43a)

uk = −RP,krk +
JP,k
QI,k

(pP,k − p∗P,k). (6.43b)

Table 6.1: Simulation parameter values for the DHN simulation

Pressure-controlled RP,k = 1 · 106 Pa s/m3

pumps (6.1) JP,k = 1.37 · 105 Pa s2/m3

CP,k = 2.13 · 10−8 m3/Pa

Flow-controlled RP,k = 1 · 1010 Pa s/m3

pumps (6.1) JP,k = 1.37 · 109 Pa s2/m3

CP,k = 2.13 · 10−12 m3/Pa

Control valves (6.2) Cv,k = 7.9 · 10−5 m3/(s Pa0.5)

DGUs & consumers (6.5) length = 25m

(DN 32) diameter = 0.0359m

roughness = 4.5 · 10−5 m

Pipes (6.4) diameter = 0.0825m

(DN 80) roughness = 4.5 · 10−5 m

Mixing connection (6.6) length = 25m

(DN 80) diameter = 0.0825m

roughness = 4.5 · 10−5 m

Capactive nodes (6.6) Cj = 5 · 10−10 m3/Pa

Pressure controller Q−1
I,k = 3.64 · 10−7

pump (6.43) RP
k = RP,i

Flow controller KP,k = 2 · 106
pump (6.23) Q−1

I,k = 2 · 1010

Flow controller KP,k = 1 · 104
valve (6.33) Q−1

I,k = 1 · 104

7 Note that the statements of Proposition 6.1 are not undermined by these changes. To see this, consider the
equivalent proof of the DC voltage controller and set V ∗

i = 0, R̂i = Ri in (4.28a), (4.31), and (4.35). The
resulting controller has a PI structure and the following steps are as before with R̂i = Ri.



154 6 Passivity-Based Decentralized Stabilization in District Heating Networks

Table 6.2: Pipe lengths

Pipe Length Pipe Length Pipe Length

9 350m 15 50m 20 100m

10 300m 16 400m 21 100m

11 300m 17 100m 22 100m

12 200m 18 100m 23 100m

13 200m 19 100m 24 100m

14 50m

Table 6.3: Pressure and volume flow rate setpoints for the DGUs, consumers, the pipe with booster pump, the
mixing connection, and the pressure holding unit. The values in the brackets indicated the setpoint
variations throughout Scenario A and B.

Edges p∗P,k in 105 Pa q∗k in 10−3 m3/s

DGU 1 15 —
DGU 2 10 3.5 (4.5)
DGU 3 — 3

Consumer 4 — 2
Consumer 5 — 2
Consumer 6 — 2 (4)
Consumer 7 6 2.5 (5)
Consumer 8 — 3 (6)

Pipe 15 5 —

Mixing connection 25 — 1 (3)

Nodes

Pressure holding 4 2 —

6.4.1 Scenario A: Plug-and-Play and Setpoint Changes

In this scenario, the simulation starts with DGU 3 disconnected. The pressure and
volume flow rate setpoints for the pumps and valves are assigned as in Table 6.3. At the
indicated times, the following events occur (see Figure 6.2 for the DHN):

• t = 5 s− 10 s: Consumers l ∈ {6, 7, 8} increase their volume flow rates by 100%.

• t = 20 s: To help cover the increased demand, DGU 3 connects and the mixing
connection 25 increases its volume flow rate to 3 · 10−3 m3/s.

• t = 30 s: DGU 2 increases its input volume flow rate to 4.5 · 10−3 m3/s.

• t = 40 s: Consumer 4 disconnects.
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The pressure and volume flow rate trajectories shown in Figures 6.14 and 6.15 confirm
the theoretical stability statements. Despite plug-and-play operations and changing
operating conditions, the pressures of pressure-controlled pumps and the volume flow
rates of flow-controlled pumps and valves are asymptotically stabilized at their desired
setpoints. For the pressures, the maximum deviations resulting from the events at t ∈
{5 s, 20 s, 30 s, 40 s} remain within a 1% band with respect to the setpoints and subside
below 0.2% within approximately 5 s. For the volume flow rates, larger deviations can
be observed. In particular at t = 20 s and t = 30 s during the connection of DGU 3 and
the setpoint changes the error plots in Figure 6.15 shows large outliers. However, from
a practical perspective, this is natural as abrupt setpoint changes cannot be realized
instantly by the respective volume flow rate controllers. More importantly, except for
the load ramps at t ∈ [5 s; 10 s], the volume flow rates settle to within a 1.5% band
with respect to the setpoints after at most 5 s. During the load ramps, the errors are
higher, but remain below 8%. This shows that the volume flow rate controllers for both
pumps and valves, although not specifically designed for it, are sufficiently fast to track
setpoints that vary on a time scale of seconds.
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Figure 6.14: Scenario A: simulated pump pressures in DGUs l ∈ {1, 2}, consumer l ∈ {7}, booster pump
l ∈ {15}, and dynamic pressure holding unit at node i ∈ {4} with corresponding deviations
from the references. The line colors are as per Table 6.3.

6.4.2 Scenario B: Parameter Uncertainty and Valve Saturation

Scenario B is similar to Scenario A except for two modification: firstly, a 10% uncer-
tainty is added to the pump parameters RP,k, JP,k, CP,k and the valve parameters Cv,i.
Secondly, the virtual valve control input of all valves is saturated to uv ∈

[
1, umax

v,i
]

(see
Assumption 6.2).8

8 In line with classical feedback control design, the possibility of control input saturation is not considered
explicitly during the control design stage in Section 6.3. Instead, its impact on the performance is analyzed
by means of the numerical simulation in this section.
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Figure 6.15: Scenario A: simulated volume flow rates through DGUs l ∈ {2, 3}, consumers l ∈ {4, 5, 6, 7, 8},
and mixing valve l ∈ {25} with corresponding deviations from the references. The line colors
are as per Table 6.3.

The resulting pressure and volume flow rate trajectories shown in Figures 6.16 and 6.17
are similar to those shown in Figures 6.14. The main difference introduced by the valve
saturation is an impaired convergence performance of the volume flow rate control
via valves, particularly at DGU 2 and Consumer 6 (see the orange and black lines in
Figure 6.17). In practice, the control performance can be improved by an appropriate
redesign of the valves or by increasing the available pressure, e.g., via the booster pump
in Pipe 15 or a separate booster pump in the respective consumer.

Overall, the results of the two scenarios illustrate that the passivity-based pressure and
volume flow rate controllers indeed asymptotically stabilize the hydraulic variables
while allowing for plug-and-play operations of the different DHN subsystems. Further-
more, the integral parts of the proposed controllers ensure zero steady-state errors in
the presence of parameter uncertainties and changing hydraulic conditions naturally
occurring during the operation of DHNs.

This concludes the presentation of the unifying stabilization framework for DHNs. In
the next section, the presented model, decentralized stability conditions, and controller
designs are discussed with respect to the main research questions (Q3.1), (Q3.2), and
(Q3.3) related to stabilization in DHNs. Additionally, the results from this chapter are
compared to those of the passivity-based works that have been published in parallel to
this thesis (see Section 2.4.1).
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Figure 6.16: Scenario B: simulated pump pressures in DGUs l ∈ {1, 2}, consumer l ∈ {7}, booster pump
l ∈ {15}, and dynamic pressure holding unit at node i ∈ {4} with corresponding deviations
from the references. The line colors are as per Table 6.3.
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Figure 6.17: Scenario B: simulated volume flow rates through DGUs l ∈ {2, 3}, consumers l ∈ {4, 5, 6, 7, 8},
and mixing valve l ∈ {25} with corresponding deviations from the references. The line colors
are as per Table 6.3.

6.5 Discussion

The first main result of this chapter is the comprehensive dynamic, hydraulic DHN
model provided in Section 6.1. In contrast to the current state of research (see the
discussion in Section 2.3.2), the presented model covers 2nd, 3rd, and 4th generation
DHNs as well as intermediate development stages. In particular, the model allows for
DHNs with asymmetric, meshed topologies, multiple temperature layers (temperature
cascading), multiple DGUs, pressure holding units, booster pumps at consumers and
pipes, DVSP configurations, as well as mixing connections used to increase the water
temperature in topologies with multiple temperature layers. Moreover, opposed to
the ideal pressure source consideration in the literature (see Section 2.3.2), pumps are
described by dynamic design models to improve control design and system analysis in
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the face of increasing numbers of pump interactions. Furthermore, instead of as mere
nonlinear hydraulic resistances, control valves are explicitly considered as actuators. In
summary, the presented DHN model thus enables the unifying description of the hy-
draulic dynamics of flexible DHN configurations spanning different DHN generations
and designs.

The second main result are the decentralized, asymptotic stability conditions (DHN 1)
and (DHN 2) in Theorem 6.1, which answer research question (Q3.2). Similar to the
power system conditions in Theorems 4.1 and 5.1, the conditions (DHN 1) and (DHN 2)
provide model- and technology-independent system and control design requirements
for the decentralized stabilization in DHNs. Other subsystem models and decentralized
control solutions can thus readily be integrated into the presented DHN model, if they
adhere to the requirements posed by (DHN 1) and (DHN 2). Note that such other
subsystem models or controllers may be required to account for modifications to the
presented subsystems types, e.g., due to different pump technologies, valve designs
(like pressure-independent control valves [Nussbaumer et al., 2020, p. 146]) or new
components such as thermal energy storages. Besides the presented hydraulic circuit
designs for DGUs, consumers, and mixing connections, which represent the most
commonly used structures, there also exists a variety of other circuit designs (see, e.g.,
Lamaison et al. [2017] and Lennermo et al. [2019] for DGUs and Köfinger et al. [2017],
Volkova et al. [2020], and Volkova et al. [2022] for temperature cascading and mixing
connections). Furthermore, there exist also altogether new subsystem types such as
prosumers which can both produce and consume thermal energy [Brand et al., 2014].

By comparing (DHN 1) and (DHN 2) with the conditions in Theorems 4.1 and 4.1, it
can be seen that the asymptotic stability conditions in the various energy systems are
in fact identical. Consequently, despite the technical and physical differences between
power systems and DHNs, passivity theory can serve as a unifying tool for providing
technology- and domain-independent system and control design requirements for the
decentralized stabilization in various networked energy systems. On the one hand,
this allows for a transfer of passivity-based results between different engineering fields
as demonstrated with the pump controller in Proposition 6.1. On the other hand, this
provides a system-theoretic basis for establishing a unifying, technology- and domain-
independent framework for the decentralized stabilization in NMESs.9

The third main result are the decentralized pump and valve control designs in Pro-
positions 6.1, 6.2, 6.3, and 6.4, which provide explicit solutions for research question
(Q3.3). Similar to the decentralized DC and AC controllers from Chapters 4 and 5,
the developed pump and valve controllers are simple and use standard, off-the-shelf
control functions such as a setpoint feedforward, a static state feedback, and a PI term
(see (6.18), (6.23), and (6.33)). However, note that for a proper functioning of the control
valves, it is crucial that the differential pressure over each control valve is sufficiently
high (see Remark 6.3 and Assumption 6.3). An insufficient differential pressure at best

9 This implication will be elaborated in more detail the next chapter.
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impairs the convergence performance of the respective valve and at worst leads to a
complete loss of functionality with a large offset from the desired volume flow rate and
a fully open valve. In such cases, the established volume flow rate only depends on the
hydraulic conditions of the remaining DHN and cannot be influenced. In the light of the
emerging trends and challenges discussed in Section 2.3, this motivates to develop new
coordination methods in addition to the presented decentralized, hydraulic stabilization
solution. Due to the outlined parallels between DC power systems and DHNs and their
generalized models presented in this thesis, it seems promising to transfer existing DC
coordination solutions such as consensus algorithms (see, e.g., Cucuzzella et al. [2019b],
Malan et al. [2022], and Nahata et al. [2022]) to the coordination in DHNs.

6.5.1 Comparison with Parallel Works

In contrast to electrical DC and AC power systems, DHNs and particularly the hydraulic
stabilization problem have so far not received much attention by the systems and control
community. The most noteworthy works regarding the hydraulic control in DHNs
with topology changes and multiple distributed pumps revolve around the research
activities supervised and lead by De Persis (see Section 2.3.1). In particular, Jensen [2012]
is the first to explicitly elaborate on using passivity properties for the design of pressure
controllers in such a setup. Despite providing valuable insights, the obtained results are
more of a first approach due to the very limited DHN model allowing only for one heat
source, the requirement of pumps and valves at every producer and consumers, as well
as the need for communication to implement the controllers.

Machado et al. [2022a] and Machado et al. [2022b] are the first to take up the above works
and elaborate a decentralized, passivity-based approach for hydraulic stabilization
problems. In fact, these are the only works published in parallel to this thesis to
address hydraulic stabilization problems in DHNs by a decentralized, passivity-based
approach. In Machado et al. [2022b], the model setup from De Persis and Kallesøe [2011]
and Jensen [2012], respectively, is extended to account for the main emerging DHN
trend, i.e., multiple heat producers/DGUs. Additionally, storage tanks at producers are
considered. Subsequently, a detailed passivity analysis and an outlook on how these
passivity properties might be used for a decentralized pressure and volume flow rate
design is given. Based on these insights, Machado et al. [2022a] propose a decentralized
pump controller which combines elements from backstepping, adaptive, and passivity-
based control to regulate both the volume flow rates in a DHN and the storage volumes
in the storage tanks at the producers.

While the addition of storage tanks and the controller designs are promising extensions
to the results developed in this chapter, the DHN model considered by Machado
et al. [2022a] and Machado et al. [2022b] exhibits a number of restrictions compared
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to the model presented in Section 6.1: symmetric DHN topologies10, two temperature
layers only, static pump models, no pressure holding units, and valves modeled as
non-actuated components. Furthermore, pumps are assumed to be installed at every
producer and every consumer, which excludes traditional DHNs in which consumers
regulate their volume flow rates only via control valves.

Additionally, similar to the parallel works in DC power systems (see Section 4.5.1),
Machado et al. [2022b] and Machado et al. [2022a] follow a constructive procedure of
modeling, control design, and stability analysis. The (shifted) passivity properties of
their closed-loop models are merely used to facilitate the stability statement. However,
no inferences are drawn on how the passivity properties can be translated into general
system and control design guidelines.

The results of this chapter are thus the first to provide a unifying, technology-independent
framework for the decentralized, hydraulic stabilization in DHNs.

6.6 Summary and Contributions

Future DHN stabilization is confronted with increasing numbers of interacting units
which comprise a variety of deployed technologies and control strategies. This chapter
provides a passivity-based framework for DHN stabilization which makes large num-
bers of units manageable by means of decentralized methods and ensures interoperabil-
ity across different technologies and control strategies. The results of this chapter are
the first to provide such a decentralized, cross-technology stabilization framework for
DHNs. In summary, the main contributions of this chapter are:

• a comprehensive dynamic, hydraulic DHN model which covers different DHN
generations and is represented in a generalized networked system form (Sec-
tion 6.1);

• decentralized, EIP-based conditions that provide model- and technology-inde-
pendent system and control design requirements for ensuring asymptotic stability
of any feasible, hydraulic DHN equilibrium (Theorem 6.1);

• decentralized pump and valve controllers that ensure the EIP-based asymptotic
stability conditions are met and desired pressure and volume flow rate setpoints
are asymptotically stabilized (Propositions 6.1, 6.2, 6.3, and 6.4).

Together, these contributions answer the research questions (Q3.1), (Q3.2), and (Q3.3)
formulated in Section 2.3.2. Simulation studies based on realistic DHN data demonstrate
the functionality of the developed decentralized stabilization framework and illustrate
its unifying nature.

10 In symmetric DHN topologies, supply and return pipes are laid in parallel. This excludes practically
relevant cases with meshed supply pipe networks and tree-like return pipe networks or more complex
structures arising in multi-layer topologies.
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In addition to these DHN-related main contributions, the results of this chapter fur-
ther demonstrate the domain-unifying capabilities of a passivity-based, decentralized
stabilization framework. The identical, general formulation of the decentralized sta-
bility conditions in Theorems 4.1, 5.1, and 6.1 in particular provides direct indications
for establishing a unifying, technology- and domain-independent framework for the
decentralized stabilization in NMESs.





7 Towards a Unifying Framework
for Decentralized Stabilization in
Networked Multi-Energy Systems

In this chapter, it is shown how the passivity-based approach from the previous chapters
naturally extends to the NMES case providing a unifying, decentralized stabilization per-
spective not only across different technologies and control strategies within individual
energy systems, but also across different energy system domains. While a detailed mod-
eling and controller synthesis for NMESs is outside the scope of this thesis, the following
sections establish the necessary foundation for such an endeavor and showcase the basic
ideas. In particular, some fundamental concepts such as stability of and decentralized
stabililzation in NMESs are formally defined by combining the insights from the previous
chapters. Furthermore, decentralized asymptotic stability conditions for the equilibria
in NMESs are derived. Such conditions form the foundation of a unifying, decentralized
stabilization framework for NMESs and answer research question (Q4.1).

7.1 Modeling

In Chapters 4 to 6, it has been shown that various network energy systems can be repres-
ented by the graph-based description of an autonomous networked system introduced
in Definition 3.1. Consequently, their combination in NMESs can also be represented
in such a way (see, e.g., Strehle et al., [2018] for coupled gas and AC power systems,
Maurer [2023, Figure 2.1] for coupled DHNs and AC power systems, Malan et al.,
[2023] for gas networks, and Shahbakhsh and Nieße [2019] for a conceptual work on
NMESs).

Thus, in the following, consider NMESs described by a weakly connected digraph
G = (V, E) without self-loops with subsystems on the nodes i ∈ V and edges l ∈ E . The
subsystems may represent various producers/DGUs, consumers/loads, storage devices,
pipes, power lines, various other units necessary for the operation (e.g., pressure holding
units, pressure regulating stations, transformers, FACTSs, etc.), as well as converters
between the energy system domains such as heat pumps, combined heat and power
plants, gas turbines, or power-to-gas stations. Furthermore, it is assumed that each of
the subsystems is represented by a generalized state-space model of the form (3.1b), if
unactuated, and (3.2), if actuated. Consequently, the domain-specific variables (voltages,
pressures, currents, volume flow rates) are represented by their effort (voltage, pressure)
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and flow (current, volume flow rate) counterparts as given in Table A.1. Then, the
orientation of the edges in G represents the arbitrary reference direction of positive,
generalized flow. Furthermore, the digraph G is completely specified by its incidence
matrix B ∈ R|V|×|E| with elements bil (cf. (1.1)).

Remark 7.1. Note that for clarity of presentation, the domain-specific effort (voltage, pressure)
and flow (current, volume flow rate) variables are used in Chapters 4 to 6. However, one
can straightforwardly replace them with their generalized counterparts and use the obtained
generalized models for composing an NMES model.

7.2 Stability and Decentralized Stabilization

In this section, initial suggestions for the definition of NMES stability and decentralized
stabilization in NMESs are developed. Such definitions are essential for developing
holistic, integrated operation strategies for NMESs and pave the way for a systematic,
system-theoretical treatment of NMESs. While there are conceptual statements on
what is required for the “stable” operation of NMESs (see, e.g., Mancarella [2014],
Shahbakhsh and Nieße [2019], O’Malley et al. [2020], and Martínez Ceseña et al. [2020]),
a clear systems and control perspective on this topic is missing in the current state of
research.

Remark 7.2. In fact, there is little work regarding the modeling and analysis of integrated
NMESs as a whole (see also Chicco et al. [2020]). The majority of works focus on coordination
topics such as enabling flexibility in the framework of energy hubs or extensions thereof (see, e.g.,
Geidl [2007], Mancarella [2014], Martínez Ceseña et al. [2020], Chicco et al. [2020], and the
references therein).1 In particular, there exists no analysis and control design model of NMESs
which combines the network variables, their constitutive relations, and system dynamics that go
beyond simple storage elements. Consequently, a comprehensive system-theoretical treatment of
stability and stabilization in NMESs is, to the best of the author’s knowledge, missing in the
literature.

To begin with, recall from the introduction in Chapter 1 and the overviews in Sections 2.1,
2.2, and 2.3 that the operation of different energy systems comprises two main tasks
which can be approached by a hierarchical control structure: firstly, at the lowest
control layer, different energy system equilibria comprising the system variables (efforts,
flows) have to be asymptotically stabilized via decentralized controllers. Subsequently,
feasibility of such equilibria within the operational constraints has to be ensured at

1 The energy hub framework represent an aggregated perspective on NMESs in which the main ressources,
i.e., producers, consumers, and converters are lumped together in so-called energy hubs. The main focus is
on obtaining an input-output perspective on a power flow level, which is then used, e.g., for optimal power
flow coordination or flexiblity provision (see Geidl [2007], Martínez Ceseña et al. [2020], and Chicco et al.
[2020] for further details).
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higher control layers by appropriate coordination of generation, transportation, and
consumption.

Together, decentralized stabilization and coordination have to ensure what may be
referred to as the stability of an energy system, i.e., despite disturbances, the neces-
sary amount of energy can be provided in the right place at the right time within
the operational constraints. However, note that the term “stability” only has a clear,
standardized definition in an AC power system context (see Sections 2.1). As discussed
in Sections 2.2 and 2.3, there exist no standardized stability definitions for DC power
systems and DHNs. Nevertheless, the requirements posed on their “stable” operation
can be categorized into decentralized stabilization and coordination as well.

Motivated by these insights, it is proposed to define NMES stability based on a gen-
eralized formulation of AC power system stability as provided in Farrokhabadi et al.
[2020].

Definition 7.1 (Stability of NMESs)
Consider an NMES which is operating in equilibrium with state variables taking on
appropriate steady-state values satisfying operational constraints, such as acceptable
ranges of efforts and flows. Such an NMES is stable if, after being subjected to a
disturbance, all state variables recover without the occurrence of involuntary load
shedding to (possibly new) steady-state values satisfying operational constraints.

To ensure NMESs stability as in Definition 7.1, it is suggested to follow the insights
established for the individual energy systems and employ a hierarchical asymptotic
stabilization-coordination control structure. Following Definitions 2.3, 2.4, and 2.5,
decentralized stabilization in NMESs can then be defined as follows:

Definition 7.2 (Decentralized stabilization in NMESs)
Decentralized stabilization in NMESs refers to the basic control task conducted by
decentralized controllers at the lowest control layer of an hierarchical stabilization-
coordination control structure for NMESs. It ensures that such NMES equilibria are
asymptotically stabilized that efforts and flows of actuated subsystems are at desired
setpoints.

In order to ensure decentralized stabilization as per Definition 7.2, two main problems
are to be addressed: firstly, decentralized, analytical conditions are to be provided which
ensure asymptotic stability of any feasible NMES equilibrium. Secondly, parameter
specifications for the unactuated subsystems are to be established and appropriate
decentralized controllers for the actuated subsystems are to be designed such that the
asymptotic stability conditions are satisfied.
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The following section focuses on the first of the two above problems which lays the
groundwork for a unifying, decentralized stabilization framework in NMESs. That
is, it provides decentralized, analytical conditions that ensure asymptotic stability of
any feasible NMES equilibrium across different technologies, control strategies, and
physical domains.

7.3 Asymptotic Stability Conditions

Following the reasoning established in Sections 4.2, 5.2, and 6.2, decentralized asymp-
totic stability conditions can be derived by means of Theorem 3.1 and Corollary 3.1.

Starting point is the NMES model outlined in Section 7.1, which is similar to that of an
autonomous, networked system given in Definition 3.1. So far, however, the control
ports (uk,yk) of the actuated subsystems k ∈ VAct ∪ EAct ⊆ V ∪ E are open, i.e., their
models are of the form (3.2). In order to conduct an equilibrium stability analysis, it
is thus assumed that each actuated subsystem is in closed loop with some static or
dynamic controller (see also Remark 3.2).

Then, by direct application of Theorem 3.1 and Corollary 3.1 to the now autonomous
NMES model, decentralized, analytical conditions can be obtained, which, if satisfied,
ensure asymptotic stability of any feasible NMES equilibrium x̄NMES = stack(x̄k)k∈V∪E .
The vectors x̄k are the respective equilibrium state vectors of the subsystems that are
proportional to the steady-state efforts and flows.2

2 Note that x̄k possibly implies a slight abuse of notation as in the case of dynamic controllers the original
state vector xk is augmented by additional controller states.
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Theorem 7.1 (Decentralized, asymptotic stability conditions for NMESs)
Consider an autonomous NMES as described in Section 7.1 with some controller
uk at each actuated subsystem k ∈ VAct ∪ EAct. Any feasible equilibrium x̄NMES =

stack(x̄k)k∈V∪E of such an autonomous NMES is asymptotically stable, if the following
two conditions hold:

(NMES 1) each subsystem at a node i ∈ V is

• strictly EIP w.r.t. the supply rate (di− d̄i)
⊤(zi− z̄i) and a continuously

differentiable, positive definite storage function Si(xi, x̄i), or

• EIP w.r.t. the supply rate (di − d̄i)
⊤(zi − z̄i) and a continuously dif-

ferentiable, positive definite storage function Si(xi, x̄i), and such that
no solution other than xi(t) = x̄i can stay in Ei = {xi ∈ Xi ⊆
Rni |Ṡi(xi, x̄i) = 0,di = d̄i} for all time.

(NMES 2) each subsystem at an edge l ∈ E is

• either strictly EIP w.r.t. the supply rate (dl − d̄l)
⊤(zl − z̄l) and a con-

tinuously differentiable, positive definite storage function Sl(xl, x̄l),
or

• OSEIP w.r.t. the supply rate (dl − d̄l)
⊤(zl − z̄l) and a continuously

differentiable, positive definite storage function Sl(xl, x̄l), and either
EIO or such that no solution other than xl(t) = x̄l can stay in El =
{xl ∈ Xl ⊆ Rnl |Ṡl(xl, x̄l,dl = d̄l) = 0} for all time.

Proof:
The proof follows directly by application of Theorem 3.1 and Corollary 3.1 to the graph-
based NMES model from Section 7.1 with some controller ui at each actuated subsystem
k ∈ D ∪ E .

The conditions (NMES 1) and (NMES 2) of Theorem 7.1 answer research question (Q4.1).
Next, it has to be ensured that the NMES subsystems satisfy the respective conditions.
Furthermore, for the actuated subsystems, the respective closed-loop equilibrium state
vectors ¯̂xk should be such that desired effort and flow setpoints are established in steady
state.

Recalling the results from Chapters 4, 5, and 6, the following guidelines can be estab-
lished on how to proceed:

• if a subsystem is unactuated, i.e, it has no control port (uk,yk), its system design
(parameter specifications, model structure) has to ensure that condition (NMES 1)
or (NMES 2), respectively, are satisfied.

• if a subsystem is accessible for control, the design of a decentralized controller
together with system design measures (parameter specifications, model structure)
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has to ensure that the closed-loop subsystem satisfies its respective condition
(NMES 1) or (NMES 2). Furthermore, the closed-loop equilibrium state vector ¯̂xk
should be such that desired effort and/or flow setpoints are established in steady
state.

• if an unactuated subsystem cannot fulfill condition (NMES 1) or (NMES 2), re-
spectively, via system design alone, the decomposition of the overall NMES model
into subsystems can be revised. Alternatively, actuators for passivation can be
added.3

7.4 Summary and Contributions

The increase in interacting units and deployed technologies resulting from the sus-
tainable energy transition is calling for decentralized, cross-technology stabilization
frameworks in power systems and DHNs. However, in light of a growing networking
between energy systems of different domains towards integrated NMESs, it is also of
interest to explore the possibilites of a framework that provides a unifying basis for
decentralized stabilization solutions across different technologies, control strategies, and
energy system domains. This chapter establishes the foundation of such a unifying, de-
centralized stabilization framework for NMESs by the following main contributions:

• formal, system-theoretical definitions for stability of NMESs (Definition 7.1) and
decentralized stabilization in NMESs (Definition 7.2);

• decentralized, EIP-based conditions that provide model-, technology-, and domain-
independent system and control design requirements for ensuring asymptotic
stability of any feasible NMES equilibrium (Theorem 7.1).

Together, these contributions answer the research question (Q4.1) formulated in Sec-
tion 2.4.

The results of this chapter are the first to approach the topics of NMES stability and
NMES stabilization from a systems and control perspective. Together with the findings
of Chapters 4 to 6, these first results provide solid, system-theoretical starting points
for the future development of holistic, integrated system and control solutions for
NMESs.

3 See for example the recent results by Ferguson et al. [2023] which provide first ideas on how this can be
done in a DC power system context.
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The strive for a climate neutral energy supply fundamentally changes the dynamics,
behavior, and network structures of energy systems, particularly of power systems
and district heating networks (DHNs). Most prominently and impactful among these
changes are the increasing number of dynamically interacting subsystems, both con-
trollable and uncontrollable, and more flexible system configurations due to volatile
generation/demand situations. Additionally, promoted by societal and engineering
advantages, individual energy systems with different physical domains are increasingly
developing into networked multi-energy systems (NMESs). To retain a secure and
efficient energy supply in light of these changes, new operation strategies are required
with the stabilization at the lowest control layer as a necessary foundation. From a
systems and control viewpoint, the stabilization challenges and requirements in the
various networked energy systems show similarities.1 Scalability and interoperability
via decentralized, cross-technology stabilization solutions, in particular, are of para-
mount importance to address the increasing number and variety of subsystems and
allow for flexible system configurations.

This thesis develops a unifying, passivity-based framework for the decentralized stabil-
ization in networked energy systems that provides such scalability and ensures interop-
erability across different technologies, control strategies, and energy system domains.
The main idea is to use the input-output property of equilibrium-independent passivity
(EIP) to establish decentralized, analytical conditions that ensure—independent of spe-
cific technologies, control strategies, or physical domains—asymptotic stability of any
feasible networked energy system equilibrium. Subsequently, stabilization amounts to
ensuring that these EIP-based conditions are satisfied by the individual subsystems that
constitute the energy system in question. For unactuated subsystems, satisfying the
EIP-based conditions entails an appropriate system design, while actuated subsystems
can use both system and control design measures.

Along the lines of this basic idea, the thesis at hand answers the research questions
stated in Chapter 2 with the following main contributions:

1 Note the dual meaning of networked in this context covering both the increased network aspect in power
systems and DHNs due to the increasing numbers of interacting units as well as the growing networking
between energy systems of different domains towards integrated NMESs.
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1. Firstly, comprehensive, unifying system descriptions for DC power systems, AC
power systems, and DHNs have been presented which combine a graph-based,
networked system representation with the domain-unifying framework of port-
Hamiltonian systems (PHSs). The results of this thesis are the first to adopt such a
generalized perspective in an energy system context and project the generalized
effort-flow modeling paradigm onto various networked energy systems.

2. Secondly, an EIP-based stability theorem has been developed which provides de-
centralized, technology- and domain-independent conditions for the asymptotic
stability of general networked system equilibria. In contrast to the asymptotic
stability conditions that can be deduced by combining results from the literature,
the developed theorem is not limited to strict EIP properties, which significantly
extends its practical applicability. By application of this theorem to DC power sys-
tems, AC power systems, and DHNs, a unifying, EIP-based framework has been
established that ensures—independent of specific technologies, control strategies,
or physical domains—decentralized stabilization. In addition, elaborating on the
results from the individual energy systems, stability and decentralized stabiliz-
ation definitions for NMESs as well as decentralized, analytical conditions for
the asymptotic stability of any feasible NMES equilibrium have been developed.
The presented stability conditions lay the foundation for establishing a unifying,
decentralized stabilization framework for NMESs and provide clear system and
control design guidelines.

3. Thirdly, for DC power systems, AC power systems, and DHNs, parameter specific-
ations and decentralized component controllers have been provided that ensure
the EIP-based, asymptotic stability conditions are satisfied and desired voltage,
current, frequency, pressure, and volume flow rate setpoints are asymptotically
stabilized. The validity of the developed stabilization framework together with its
unifying nature has been demonstrated by various, simulative case studies based
on benchmark networks and realistic network data.

The unifying, technology- and domain-independent nature of the established, decent-
ralized stabilization framework can serve as common ground between the engineering
communities and practitioners within and across the various networked energy systems.
The results for NMESs presented in Chapter 7, in particular, present a first step towards
realizing holistic system and control solutions for the operation of NMESs. Besides
scalability and interoperability, the decentralized and unifying perspective on stabiliza-
tion provides further practically appealing engineering advantages such as flexibility
and adaptability in the control architectures of energy system operators. Together, these
benefits also establish the technical foundation for realizing, e.g., novel, liberalized
energy market concepts with active customer involvement or cross-domain ancillary
services (e.g., where DHNs provide flexibility services for power systems).
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Outlook

A natural direction for future, practically-oriented research is to evaluated the theoretical
benefits of the proposed frameworks in field applications and compare them to the
currently implemented methods and heuristics. As demonstrated for example by
Watson et al. [2019] for AC power systems, it is to be expected that several of the state-of-
the-art controllers and components can, possibly with minimal adaptations, be shown to
fulfill some kind of passivity condition. A natural direction for future, methodological-
focused research is to complement the stabilization framework presented in this thesis
by a unifying framework for the coordination in energy systems. Moreover, it seems
promising to explore the possibilities of relaxing the conservativeness of the presented
EIP-based, asymptotic stability conditions. Such conservativeness is inherent to any
decentralized, passivity-based stability conditions and is related to the fact that if there
is a single subsystem which, after system and/or control design measures, still does
not fulfill the specified passivity/EIP conditions, no statement can be made about the
asymptotic stability of the considered system equilibrium. One way of overcoming this
limitation seems to be via appropriate control designs. Recent results by Ferguson et al.
[2023], for example, showcase in a DC power system context how appropriate control
of actuated subsystems can be used to passivate inherently non-passive subsystems.
Another way of reducing conservativeness are more differentiated passivity notions
which allow to quantify the lack or excess of passivity/EIP via passivity indices. Under
appropriate interconnection structures, lack and excess can compensate each other
and allow for decentralized, asymptotic stability statements even with non-passive
subsystems (see, e.g., Bao and Lee [2007, p. 24ff.] and the references therein).

In summary, this thesis is the first to provide a unifying, technology- and domain-
independent framework for the decentralized stabilization in networked energy
systems such as DC power systems, AC power systems, DHNs, and NMESs.





A Appendices to Chapter 3

A.1 Passivity and Stability of Networked Systems

To recapitulate the basic ideas behind the passivity-based approach of this thesis, this
section presents selected content regarding passivity theory and its use for the composi-
tional stability analysis of the origin x̄ = 0n, 0n = f(x̄), of an autonomous, networked
system (3.1a).

To begin with, different elementary passivity properties are introduced. The following
definition is condensed from Khalil [1996, Definition 10.4], Khalil [2002, Definition 6.3],
and van der Schaft [2017, Definition 4.1.1].

Definition A.1 (Passivity, strict passivity, output strict passivity (OSP))
A state-space system (3.1b) is passive w.r.t. the supply rate d⊤

k zk, if there exists a
continuously differentiable, positive semidefinite storage function Sk : Xk → R≥0,
Sk(0nk

) = 0, and a positive semidefinite dissipation rate ψk : Xk → R≥0, ψk(0nk
) = 0,

such that the differential passivity inequality

Ṡk = −ψk(xk) + d⊤
k zk ≤ d⊤

k zk, ∀(xk,dk) ∈ Xk × Rm. (A.1)

holds. Moreover, system (3.1b) is strictly passive w.r.t. d⊤
k zk, if the dissipation rate is

positive definite, i.e., ψk(xk) > 0,∀xk ̸= 0, ψk(0nk
) = 0. If

Ṡk = −ψk(xk)− z⊤
k ρk(zk) + d⊤

k zk ≤ d⊤
k zk, ∀(xk,dk) ∈ Xk × Rm, (A.2)

with positive semidefinite dissipation rate ψk : Xk → R≥0, ψk(0nk
) = 0, and strictly

monotone function ρk(zk) : Rm → Rm, z⊤
k ρk(zk) > 0,∀z ̸= 0m, then system (3.1b) is

output strictly passive (OSP) w.r.t. d⊤
k zk.

Next, different passivity requirements for the subsystems (3.1b) are combined for spe-
cific interconnection structures to make stability statements about the origin. Of par-
ticular interest within this thesis is the skew-symmetric interconnection of passive
subsystems which naturally arises in autonomous, networked systems (see (3.1e)) and
other control engineering applications.1

1 The elementary negative feedback interconnection of two SISO subsystems of the form (3.1b) with m = 1 is

for example a skew-symmetric interconnection with
[
d1
d2

]
=

[
0 −1
1 0

] [
z1
z2

]
[Arcak et al., 2016, p. 17].
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The following lemma is condensed from Khalil [2002, p. 242–243], Arcak et al. [2016,
p. 13–17], and van der Schaft [2017, pp.49,50,77].

Lemma A.1 (Stability of networked, passive systems)
Consider an autonomous, networked system as in Definition 3.1. If each subsystem
(3.1b) is passive w.r.t. the supply rate d⊤

k zk and a continuously differentiable, positive
definite storage function Sk(xk) > 0, ∀xk ̸= 0, Sk(0nk

) = 0, then the origin x̄ = 0n is
a stable equilibrium of the autonomous, networked system (3.1a). If each subsystem
(3.1b) is strictly passive w.r.t. d⊤

k zk and a continuously differentiable, positive definite
storage function, then the origin is an asymptotically stable equilibrium.

Proof:
Choose the storage function S : X → R≥0 of the autonomous, networked system (3.1a)
as the sum of the subsystem storage functions S(x) =

∑N
i=1 Sk(xk). Since each Sk(xk)

is continuously differentiable and positive definite, S(x) is continuously differentiable
and positive definite. Due to the skew symmetry of the interconnection structure (3.1e),
it holds that z⊤d = z⊤Mz = 0. Thus, the time derivative of S(x) is given by

Ṡ(x) = −
N∑
k=1

ψk(xk) ≤ 0, ∀x ∈ X , (A.3)

which makes S(x) a Lyapunov function for the origin x̄ = 0n and proves its stability
(see [van der Schaft, 2017, p. 44]). From strict passivity of each subsystem (3.1b), it
follows that

Ṡ(0n) = 0, Ṡ(x) = −
N∑
k=1

ψk(xk) < 0, ∀x ̸= 0n, (A.4)

which proves asymptotic stability of x̄ = 0n (see van der Schaft [2017, p. 44]).

A.2 Port-Hamiltonian Systems

This section provides a short overview about selected fundamentals of PHS theory that
are relevant in the context of this thesis. In Section A.2.1, the concept of generalized
modeling is shortly recapitulated. In Section A.2.2 some of the main class of ISO-PHS
models are introduced. A combination of these ISO-PHS models is used throughout
this thesis to model the subsystems in the various networked energy systems.

A.2.1 Generalized Modeling

The PHS framework follows the power- and energy-based perspective used in the
Lagrangian and Hamiltonian modeling of multi-domain physical systems (see, e.g.,
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Wellstead [1979], Jeltsema and Scherpen [2009], and Duindam et al. [2009] for a com-
prehensive introduction). The general idea behind such an energy-based approach is
to use energy as the universally conserved quantity across different physical domains.
In particular, the instantaneous exchange of energy, i.e., power flow P = dE

dt , formally
equals the inner product of two physical quantities in the various physical domains.
Hence, two time-dependent, generalized variables can be introduced, viz. an effort
e ∈ Rn and a flow f ∈ Rn, whose inner product P = e⊤f has the unit of power.

For different physical domains, effort and flow have straightforward correspondences
to the respective domain-specific variables. Within this thesis, the relevant corres-
pondences in the electrical and hydraulic domains are given in Table A.1. Note that
these correspondences follow the so-called thermodynamic framework in which the
(generalized) state results from the time integral over the flow, i.e., x =

∫
fdt.

Table A.1: Correspondences between the generalized and physical variables of the electrical and hydraulic
domain in the thermodynamic framework (cf. Duindam et al. [2009, p. 24])

f flow e effort x state

electric I current V voltage Q charge

magnetic V voltage I current Ψ flux linkage

elastic hydraulic q volume flow p pressure Λ volume

kinetic hydraulic p pressure q volume flow Γ momentum of a fluid

Under the roof of such an energy-based generalization, systems within different physical
domains can formally be represented by structurally identical equations. Furthermore,
generalized equivalent circuit diagrams can be used to represent different physical
domains in the familiar schematics from electrical circuit theory (see, e.g., the hydraulic
DHN subsystem models in Section 6.1 and the examples in Wellstead [1979, pp. 178–179]
and Pfeifer [2022, Example 2.14]). In addition to facilitating and unifying the model
representation over different physical domains, such generalized equivalent circuit
diagrams directly enable the transfer of established methods from electrical circuit
theory such as Kirchhoff’s laws to other physical domains. Among others, these benefits
are used to develop the DHN results in Chapter 6.

A.2.2 Input-State-Output Port-Hamiltonian Systems

In this thesis, an important subclass of PHSs, so-called ISO-PHSs, are used to model
the different subsystems within the networked energy systems. ISO-PHs are explicit
state-space models with a specific structure and represent the starting point for most of
the control engineering methods that exploit PHS theory (see, e.g., Ortega and García-
Canseco [2004], Jayawardhana et al. [2007], Donaire and Junco [2009], and van der
Schaft [2017, Chapter 7]). A comprehensive theoretical introduction into PHS theory
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and explicit ISO-PHSs can be found in the textbooks of Duindam et al. [2009], van der
Schaft and Jeltsema [2014], and van der Schaft [2017]. For an illustrative summary, see
Pfeifer [2022, Section 2.2].

The following definition is based on Duindam et al. [2009, p. 69].

Definition A.2 (ISO-PHS without feedthrough)
An ISO-PHS without feedthrough is an explicit state-space model of the form

ẋ = [J(x)−R(x)]
∂H

∂x
(x) +G(x)u+K(x)d, (A.5a)

y = G(x)⊤
∂H

∂x
(x), (A.5b)

z = K(x)⊤
∂H

∂x
(x), (A.5c)

with state vector x ∈ X ⊆ Rn, co-state vector ∂H
∂x (x) ∈ Rn, control port pair (u,y) ∈

Rmu × Rmu , and uncontrolled interaction (coupling) port pair (d, z) ∈ Rm × Rm.
The Hamiltonian H is a continuously differentiable, positive semidefinite function
H : X → R≥0. The matrices J(x),R(x) ∈ Rn×n satisfy J(x) = −J(x)⊤ and R(x) =

R(x)⊤ ≽ 0. Furthermore, G(x) ∈ Rn×mu and K(x) ∈ Rn×m.

Remark A.1. Note that in contrast to the ISO-PHS definitions commonly found in the literature,
for example in van der Schaft and Jeltsema [2014, p. 56] or van der Schaft [2017, Definition 6.1.1],
Definition A.2 makes a precise distinction between inputs u that are accessible for control and
(uncontrolled) inputs d that arise from the interaction (coupling) with the system environment
or other subsystems. Particularly in the context of networked systems, such a distinction is
helpful for control design and a modular stability analysis.

For some practical applications, e.g., for nonlinear loads in power systems (see Sec-
tions 4.1.2 and 5.1.2) or pressure drops in hydraulic networks (see Section 6.1.5), the
relation describing dissipation effects cannot be brought into an expression of the form
R(x)∂H∂x (x) as in (A.5a). In such cases, the ISO-PHS definition has to be extended to
nonlinear resistive structures2 expressed by a general nonlinear damping function (cf.
van der Schaft [2017, p. 115])

R(x, ·) : Rn → Rn,
(
∂H

∂x
(x)

)⊤

R
(
x,
∂H

∂x
(x)

)
≥ 0, ∀∂H

∂x
(x) ∈ Rn,x ∈ X . (A.6)

2 Note that the term nonlinear in the context of the resistive structure does not refer to a nonlinearity with
respect to x, which can already occur in expressions of the form R(x)

∂H(x)
∂x

. Instead, the nonlinearity
refers to the so-called resistive port variables. For a detailed discussion see van der Schaft and Jeltsema
[2014, p. 24] and Pfeifer [2022, pp. 28–29].
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On the other end of the spectrum, an important subclass of ISO-PHS models constitute
linear state-space models. Such linear ISO-PHSs are given by (A.5) with quadratic,
positive semidefinite HamiltoniansH(x) = 1

2x
⊤Qx, Q = Q⊤ ≽ 0 and constant matrices

J ,R ∈ Rn×n, G ∈ Rn×mu , K ∈ Rn×m with J = −J⊤ and R = R⊤ ≽ 0 [van der Schaft,
2017, p. 116].
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B.1 Nonlinear Static Load Models

The most common nonlinear static load models are polynomial and exponential models.
In the case of AC power system, they are described by the active and reactive powers
PL(V ) and QL(V ) as voltage-dependent functions [van Cutsem and Vournas, 1998,
pp. 95ff]; [Machowski et al., 2008, pp. 111-112]; [Farrokhabadi et al., 2018, pp. 33–
34]. Polynomial models comprise constant impedance (aZ), constant current (aI) and
constant power (aP) coefficients, leading to the ZIP load equations

PL = P0

[
aZ,P

(
V

V0

)2

+ aI,P

(
V

V0

)
+ aP,P

]
, (B.1a)

QL = Q0

[
aZ,Q

(
V

V0

)2

+ aI,Q

(
V

V0

)
+ aP,Q

]
, (B.1b)

where V ≥ 0 is the amplitude of any instantaneous, complex voltage vector (see (5.2)),1

V0 > 0 is the nominal phase-to-phase RMS value (e.g., 400V or 20 kV), and P0 > 0

and Q0 > 0 are the nominal active and reactive powers, respectively. By grouping the
coefficients and nominal values in (B.1) into the model parameters

YP =
aZ,P
V 2
0

, IP =
aI,PP0

V0
, PP = aP,PP0, (B.2a)

YQ =
aZ,QQ0

V 2
0

, IQ =
aI,QQ0

V0
, PQ = aP,QQ0, (B.2b)

the simplified ZIP load equations

PL(V ) = YPV
2 + IPV + PP , (B.3a)

QL(V ) = YQV
2 + IQV + PQ , (B.3b)

are obtained. Note that the constant impedances (Z) are expressed as admittances (Y).

Exponential load models, on the other hand, are given by

PL(V ) = P0

(
V

V0

)nP

, (B.4a)

QL(V ) = Q0

(
V

V0

)nQ

, (B.4b)

1 Recall from Property 5.1 that under a power-invariant dq transformation, V in steady-state equals the
phase-to-phase RMS voltage.
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where V0, P0, Q0 as above and nP ≥ 0 and nQ ≥ 0 are the voltage indices of the active
and reactive power, respectively.

As per Machowski et al. [2008, pp. 110-112], the models in (B.3) and (B.4) are only
accurate above 0.7V0. Below 0.7V0, real loads typically exhibit a rapid power drop and
approximately behave like constant impedances

PL(V ) = P0

[
aZ,P

(
V

V0

)2
]
= ỸPV

2, (B.5a)

QL(V ) = Q0

[
aZ,Q

(
V

V0

)2
]
= ỸQV

2. (B.5b)

From continuity considerations, i.e., by comparing (B.3) and (B.4) with (B.5a) and (B.5b)
at V = 0.7V0, it follows for ZIP loads that

ỸP = YP +
IP

0.7V0
+

PP

(0.7V0)2
, ỸQ = YQ +

IQ
0.7V0

+
PQ

(0.7V0)2
. (B.5c)

For exponential loads, it follows that

ỸP =
P0 0.7

nP

(0.7V0)2
, ỸQ =

Q0 0.7
nQ

(0.7V0)2
. (B.5d)

The combination of (B.5) for V < 0.7V0 and (B.3) and (B.4), respectively, for V ≥ 0.7V0
is referred to as two-tier load model [Machowski et al., 2008, p. 112].

In DC power systems, the reactive power equations are not needed. Thus, ZIP and
exponential DC loads are simply modeled by (B.3a) and (B.4a), respectively, for V ≥
0.7V0 and by (B.5a) for V < 0.7V0.

B.2 Passivity-Based Output Control of
Linear Second-Order Systems

In many practical engineering problems (e.g., second-order generator models [Ajala
et al., 2020], dynamics in multi-agent systems [Yu et al., 2010], RLC circuits and filters
[Desoer and Khu, 1969, Chapter 5]), it is sufficient for the control design to describe the
dynamics of the systems in question by linear, second-order dynamics of the form

Y (s)

U(s)
=

K

T 2s2 + 2DTs+ 1
(B.6)

with ẏ(t = 0) = 0, y(t = 0) = 0, u(t = 0) = 0, time constant T > 0, damping factor
D > 0, and gain K > 0. A typical control problem is then to asymptotically stabilize the
output y to some desired setpoint y∗.
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However, the ‘control input u to measured and controlled output y’-perspective of
linear, second-order models (B.6) hampers their integration into physically networked
system models such as the energy system models considered in this thesis. This is
due to the fact that in contrast to models obtained from first-principle physics (see,
e.g., the DC power system modeling in Section 4.1), the interfaces, i.e., the control and
interaction (coupling) ports, of subsystems modeled as transfer functions (B.6) are not
automatically well-defined. Instead, to recover a suitable network model and conduct
an overall system analysis, the definition of the ports over which the transfer function
models interact with the network has to be given careful consideration.

In the following, it is shown how suitable control and interaction ports can be defined for
general linear, second-order systems of the form (B.6) such that they can be represented
as linear ISO-PHSs. Subsequently, it is shown how the voltage controller design from
Proposition 4.3 that combines algebraic IDA-PBC and integral action can be applied
to ensure ȳ = y∗ while providing additional EIP properties and confined dynamics
behavior as required per Theorem 3.1. Moreover, it is demonstrated that the insight
from Remark 4.7 extends to general linear second-order systems of the form (B.6), i.e.,
the resulting controller amounts to a combination of standardized setpoint feedforward,
state-feedback, and PI control functions.

To begin with, the linear, second-order system (B.6) is rewritten without loss of generality
as

Y (s)

U(s)
=

K

T1T2s2 + 2D
√
T1T2s+ 1

, (B.7)

where the time constant T is expressed by two auxiliary variables T1, T2 > 0 as
T =

√
T1T2. Subsequently, by introducing a suitable interaction input d, (B.7) can

be represented as a linear ISO-PHSs [van der Schaft, 2017, p. 116].

Lemma B.1 (ISO-PHS model of a linear, second-order transfer function)
Consider a linear, second-order system of the form (B.7) with ẏ(t = 0) = 0, y(t = 0) =

0, u(t = 0) = 0. By introducing a suitable interaction input d, (B.7) can be written as
linear ISO-PHS of the form[

ẋ1
ẋ2

]
=

[
−2D

√
T1

T2
−1

1 0

] [x1

T1
x2

T2

]
+

[
K

0

]
u+

[
0

1

]
d, (B.8a)

yp = [K, 0]

[x1

T1
x2

T2

]
=
K

T1
x1, (B.8b)

z = [0, 1]

[x1

T1
x2

T2

]
=
x2
T2

= y, (B.8c)
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with quadratic, positive definite Hamiltonian H : R2 → R≥0

H(x) =
1

2
x⊤
[ 1
T1

0

0 1
T2

]
x, (B.8d)

states x1 = T1T2ẏ ∈ R, x2 = T2y ∈ R, control port pair (u, yp) ∈ R×R, and interaction
port pair (d, z) ∈ R× R.

Proof:
By choosing the states as x1 = T1T2ẏ, x2 = T2y, and the Hamiltonian as in (B.8d), (B.7)
can be written in the time domain as[

ẋ1
ẋ2

]
=

[
−2D

√
T1

T2
−1

1 0

] [x1

T1
x2

T2

]
+

[
K

0

]
u, (B.9a)

yp = [K, 0]

[x1

T1
x2

T2

]
=
K

T1
x1, (B.9b)

with yp the passive output of relative degree one with respect to the control input
u [Sepulchre et al., 1997, pp. 61,63]. Next, the interaction port pair (d, z) is defined.
Firstly, consider that with the state definition used in (B.9), the actual output y of the
second-order transfer function (B.7) is given by

y =
x2
T2

= [0 1]

[x1

T1
x2

T2

]
(B.10)

Since system (B.7) interacts via output y with other subsystems (in the networked case)
or the environment, define the interaction output as z := y to obtain (B.8c). Lastly, the
corresponding passive input d is introduced by using [0, 1]

⊤ as suitable interaction input
matrix such that z has a relative degree of one with respect to d.

Remark B.1. Note that since yp = KT2ẏ = KT2ż holds, z = y has a relative degree of two
with respect to the control input u.

Remark B.2. From the second-order transfer function (B.7), one can directly recover the transfer
function

Y (s)

U(s)
=

1

LCs2 +RCs+ 1
(B.11)

of a generalized RLC equivalent circuit as illustrated in Figure B.1 by identifying K = 1,

T1 = L, T2 = C, and R = 2D
√

T1

T2
. Note in order to obtain a transfer function as in (B.11)

from an RLC equivalent circuit, the interaction flow is set to zero, i.e. d = −fN = 0. If an
RLC equivalent circuit is connected to a larger network, i.e. with fN ̸= 0, it can directly be

represented as a linear ISO-PHS as in (B.8) with K = 1, T1 = L, T2 = C, R = 2D
√

T1

T2
,

control port pair (u = eS, yp = f), and interaction port pair (d = −fN, z = e).
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Figure B.1: Linear, generalized RLC equivalent circuit diagram with generalized voltage source

Based on the ISO-PHS model in Lemma B.1, the combined algebraic IDA and integral
action design from Proposition 4.3 can now be applied. The resulting controller ensures
that the non-passive, relative-degree-two output2 z = y reaches some desired setpoint
z̄ = ȳ = y∗ in steady-state while additional EIP properties and confined dynamics
behavior are provided as required by Theorem 3.1.

Proposition B.1 (EIP-based output controller for linear second-order systems)
Consider a linear second-order system (B.8). Assign the control input u as

QIṙ = y − y∗, (B.12a)

u =
1

K

[
y∗ +

(
2D

√
T1
T2

− R̂

)
x1
T1

− R̂r +
T1
QI

(y∗ − y)

]
, (B.12b)

where y∗ =
x∗
2

T2
> 0 is a desired output setpoint and R̂,QI > 0 are control parameters.

Then, with the change of coordinates from x1

T1
to

χ :=
x1
T1

+ r, (B.13)

the closed-loop system can be written as

d

dt

T1χx2
QIr


︸ ︷︷ ︸

x̂

=

−R̂χ− (y − y∗)

χ− r

y − y∗


︸ ︷︷ ︸

f̂(x̂)

+

01
0


︸︷︷︸
K̂

d, (B.14a)

z − z̄ = y − y∗. (B.14b)

2 Note that the relative degree and the non-passivity refer to the control input u.
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Moreover, (B.14) is EIP w.r.t. the supply rate (d − d̄)(z − z̄) and the continuously
differentiable, positive definite storage function

Ŝ(x̂, ¯̂x) =
1

2

∥∥x̂− ¯̂x
∥∥2
Q̂
, (B.15a)

Q̂ = diag

(
1

T1
,
1

T2
,
1

QI

)
, (B.15b)

for any (feasible) equilibrium pair (d̄, z̄) and associated equilibrium state vector

¯̂x = [T1χ̄, T2y
∗, QIr̄]

⊤
. (B.16)

Lastly, no solution other than x̂ = ¯̂x as in (B.16) can stay in E = {x̂ ∈ X̂ ⊆
R3| ˙̂S(x̂, ¯̂x) = 0, d = d̄} for all time.

Proof:
The proof is similar to that of Proposition 4.3. In particular, substitute T1 = Li, T2 = Ci,
x1 = LiIi, x2 = CiVi, x1

T1
= Ii, x2

T2
= Vi, and set IL,i(Vi) = 0. The factor 1

K in the
controller (B.12b) arises by noting that Ku instead of ui in (4.34) and (4.35).



C Appendices to Chapter 6

C.1 Operating Modes of District Heating
Network Subsystems

In this section, a preliminary investigation is conducted regarding the degrees of free-
dom that are available in choosing the operating modes of the DHN subsystems. In
particular, it is to be determined (i) if DGUs are subject to any restrictions on their choice
of operating modes, i.e., grid-forming or grid-feeding, and (ii) whether all consumers
and mixing connections can in principle, i.e., disregarding any technical constraints,
independently control their volume flow rates to desired steady-state values.

Proposition C.1 (Operating modes of DHN subsystems)
Consider a DHN as modeled in Section 6.1 withD ≥ 1 DGUs, L ≥ 1 consumers, P ≥ 2

pipes, M ≥ 0 mixing connections, and two hydraulic layers G1,G2 (see Definition 6.1).
Then, the following holds:

(i) there must be at least one grid-forming DGU l ∈ Dform connecting the two
hydraulic layers G1,G2.

(ii) each steady-state volume flow rate q̄l, l ∈ Dfeed∪L∪M∪Ploop, is an independent
variable where each Ploop ⊆ P forms an independent loop within G1 or G2.

Proof:
Following Desoer and Khu [1969, pp. 477–482], the subsequent proof makes use of
the fundamental loop analysis of circuit theory. Firstly, note that since the digraph G
representing a DHN is weakly connected, it admits a generally non-unique spanning
tree T (see, e.g., De Persis and Kallesøe [2011] and Wang et al. [2017b]). The spanning
tree T is a weakly connected subgraph of G that contains all nodes of G and no loops
[Desoer and Khu, 1969, p. 477]. Any edge of G not in T is referred to as chord and creates
a (fundamental) loop when added to T . For G = (N , E), there are |E| − |N |+ 1 chords
and loops, respectively. By applying KCL, it can be shown that each steady-state flow
through an edge in T is the superposition of one or more of the steady-state loop flows
[Desoer and Khu, 1969, p. 482]. By setting the loop flows equal to the chord flows, it
thus follows that the |E| − |N | + 1 chord flows form a complete set of independent
variables.

To prove (i), note that per Definition 6.1, only DGU, consumer, or mixing edges may
connect the two hydraulic layers G1 and G2 (see also Figures 6.3 and 6.4). Additionally,
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the hydraulic layers may have a meshed structure. Thus, in order to create a spanning
tree T of G, G1 and G2 have to be connected via exactly one edge in the union D ∪
L ∪M. Furthermore, some pipe edges in Ploop ⊆ P that form loops within G1 and G2,
respectively, may have to be removed. From the fundamental loop analysis follows that
the steady-state flow through the single edge connecting G1 and G2 is not independent.
Thus, this edge must be a pressure-controlled subsystem in D ∪ L ∪M, which can only
be fulfilled by a grid-forming DGU l ∈ Dform.

In turn, the set of chords can be chosen such that it contains all DGU edges except one,
all consumer edges, possibly some pipe edges that form loops within a meshed, hy-
draulic layer G1 or G2, respectively, and all mixing edges. Consequently, the steady-state
flows through these edges are independent variables, which proves (ii).

Remark C.1. The independent steady-state pipe flows q̄l, l ∈ Ploop, provide additional de-
grees of freedom that might be used, e.g., to minimize pumping costs (see Wang et al. [2017b,
Section 2.2]).

C.2 Proof of Proposition 6.4

In the following, the closed-loop systems are considered successively according to their
order in Problem 6.1 (a)–(i).

k ∈ Dform By combining the open-loop DGU model (6.5), (6.11) with uP,k as in (6.18)
and fixing uv,k(sv,k = 1) = ūv,k = 1 > 0, the closed loop can be written as in (6.40) with

d

dt


Jkqk
JP,kχk
CP,kpP,k
QI,krk


︸ ︷︷ ︸

x̂k

=


pP,k − λk(qk)− µ̃k(qk)ūv,k

−R̂kχk −
(
pP,k − p∗P,k

)
χk − rk

pP,k − p∗P,k


︸ ︷︷ ︸

f̂k(x̂k)

+


1

0

0

0


︸︷︷︸
K̂k

dk, (C.1a)

zi =
[

1
Ji

0 0 0
]︸ ︷︷ ︸

K̂⊤
k Q̂k

x̂k. (C.1b)

To show that (C.1) is OSEIP, write (C.1) equivalently as

˙̂xk = f̂k(x̂k)− f̂k(¯̂xk) + K̂k(dk − d̄k), (C.2a)

zk − z̄k = K̂⊤
k Q̂k(x̂k − ¯̂xk), (C.2b)
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and take the storage function Ŝk as in (6.41) with

Q̂k = diag−1(Jk, JP,k, CP,k, QI,k). (C.3)

For the time derivative of Ŝk(x̂k, ¯̂xk), it holds that

˙̂
Sk(x̂k, ¯̂xk) = (x̂k − ¯̂xk)

⊤Q̂k

(
f̂k(x̂k)− f̂k(¯̂xk)

)
︸ ︷︷ ︸

−ψ̂k(x̂k,¯̂xk)

+(x̂k − ¯̂xk)
⊤Q̂kK̂k︸ ︷︷ ︸

(zk−z̄k)

(dk − d̄k). (C.4)

With (C.1) and (C.3), the dissipation rate can be written as

ψ̂k(x̂k, ¯̂xk) = (qk − q̄k) (λk(qk)− λk(q̄k)) + ūv,k(qk − q̄k)(µ̃k(qk)− µ̃(q̄k))

+ R̂k(χi − χ̄i)
2 (C.5a)

= (zk − z̄k) (λk(zk)− λk(z̄k)) + (zk − z̄k)ūv,k(µ̃k(zk)− µ̃(z̄k))

+ R̂k(χi − χ̄i)
2. (C.5b)

Since λk(zk) and µ̃k(zk) are strictly increasing and ūv,k, R̂k > 0, the closed-loop system
(C.1) is OSEIP w.r.t. the supply rate (dk−d̄k)(zk− z̄k) and the continuously differentiable,
positive definite storage function (6.41) with Q̂k as in (C.3). Then, from (C.4), it follows
that set Ek is characterized by

ψ̂k(x̂k, ¯̂xk) ≡ 0
(C.5)
=⇒ qk ≡ q̄k, χk ≡ χ̄k. (C.6)

Now consider the evolution of a solution of (C.2) starting in Ek. Confine the dynamics
(C.2) to Ek for any future time by inserting (C.6). This yields the set of equations

0 = pP,k − p∗P,k,

0 = −
(
pP,k − p∗P,k

)
,

CP,kṗP,k = −(rk − r̄k),

QI,kṙk = pP,k − p∗P,k,

(C.7)

whose unique solution is pP,k ≡ p∗P,k, rk ≡ r̄k. Thus, no solution other than

¯̂xk =
[
Jkq̄k, JP,kχ̄k, CP,kp

∗
P,k, QI,kr̄k

]⊤
. (C.8)

can stay in Ek for all time.
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k ∈ Dvalve By combining the open-loop DGU model (6.5), (6.11) with uP,k and uv,k as
in (6.18) and (6.33), respectively, the closed loop can be written as in (6.40) with

d

dt


Jkqk
JP,kχk
CP,kpP,k
QαI,kr

α
k

QαI,kr
β
k


︸ ︷︷ ︸

x̂k

=


pP,k − λk(qk)− µ̃k(qk)(−Kv,kŷk + rβk )

−R̂kχk −
(
pP,k − p∗P,k

)
χk − rαk

pP,k − p∗P,k
µ̃k(qk)(qk − q∗k)


︸ ︷︷ ︸

f̂k(x̂k)

+


1

0

0

0

0


︸︷︷︸
K̂k

dk, (C.9a)

zk =
[

1
Jk

0 0 0 0
]

︸ ︷︷ ︸
K̂⊤

k Q̂k

x̂k. (C.9b)

Note that the indices α and β are used to distinguish between the integral actions of
(6.18) and (6.33), respectively. The remaining steps are similar as before. From (C.9) and
the storage function Ŝk as in (6.41) with

Q̂k = diag−1(Jk, JP,k, CP,k, Q
α
I,k, Q

β
I,k) (C.10)

follows the dissipation rate

ψ̂k(x̂k, ¯̂xk) = (qk − q̄k) (λk(qk)− λk(q̄k)) + r̄βk (qk − q̄k)(µ̃k(qk)− µ̃(q̄k))

+ R̂k(χi − χ̄i)
2 +Kv,kŷ

2
k (C.11a)

= (zk − z̄k) (λk(zk)− λk(z̄k)) + (zk − z̄k)ūv,k(µ̃k(zk)− µ̃(z̄k))

+ R̂k(χi − χ̄i)
2 +Kv,kŷ

2
k. (C.11b)

Since λk(zk) and µ̃k(zk) are strictly increasing, ūv,k = r̄βk > 0 per definition (see Sec-
tion 6.1.2), and Kv,k, R̂k > 0, the closed-loop system (C.9) is OSEIP w.r.t. the supply rate
(dk − d̄k)(zk − z̄k) and the continuously differentiable, positive definite storage function
Ŝk. Under Assumption 6.3, it holds that

ψ̂k(x̂k, ¯̂xk) ≡ 0
(C.11)
=⇒ χk ≡ χ̄k, ŷk ≡ 0 =⇒ qk ≡ q̄k ≡ q∗k (C.12)

and the shifted dynamics of (C.9) confined to Ek are given by

0 = pP,k − p∗P,k − µ̃k(q
∗
k)
(
rβk − r̄βk

)
,

0 = −(pP,k − p∗P,k),

CP,kṗP,k = −(rαk − r̄αk ),

QαI,kṙ
α
k = pP,k − p∗P,k,

QβI,kṙ
β
k = 0,

(C.13)

whose unique solution is pP,k ≡ p∗P,k, rαk ≡ r̄αk , rβk ≡ r̄βk . Thus, no solution other than

¯̂xk =
[
Jkq

∗
k, JP,kχ̄k, CP,kp

∗
P,k, Q

α
I,kr̄

α
k , Q

β
I,kr̄

β
k

]⊤
(C.14)

can stay in Ek for all time.
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k ∈ DVSP By combining the open-loop DGU model (6.5), (6.11) with uP,k as in (6.23)
and fixing uv,k(sv,k = 1) = ūv,k = 1 > 0, the closed loop can be written as in (6.40) with

d

dt


Jkqk
JP,kχk
CP,kpP,k
QI,krk


︸ ︷︷ ︸

x̂k

=


pP,k − λk(qk)− µ̃k(qk)ūv,k

−(1 +KP,k)pP,k −RP,kqP,k − tk
qP,k − qk
qk − q∗k


︸ ︷︷ ︸

f̂k(x̂k)

+


1

0

0

0


︸︷︷︸
K̂k

dk, (C.15a)

zk =
[

1
Jk

0 0 0
]

︸ ︷︷ ︸
K̂⊤

k Q̂k

x̂k. (C.15b)

The remaining steps are similar as before. From (C.15) and the storage function Ŝk as in
(6.41) with Q̂k = Qf

k (see (6.26b)) follows the dissipation rate

ψ̂k(x̂k, ¯̂xk) = (qk − q∗k) (λk(qk)− λk(q
∗
k)) + ūv,k(qk − q∗k)(µ̃k(qk)− µ̃(q∗k))

+ 2
RP,kQI,k

κfi
(qP,k − q̄P,k)

2 (C.16a)

= (zk − z∗k) (λk(zk)− λk(z
∗
k)) + ūv,k(zk − z∗k)(µ̃k(zk)− µ̃(z∗k))

+ 2
RP,kQI,k

κfi
(qP,k − q̄P,k)

2. (C.16b)

Since λk(zk) and µ̃k(zk) are strictly increasing, ūv,k = 1 > 0, and (6.24) holds, the
closed-loop system (C.15) is OSEIP w.r.t. the supply rate (dk − d̄k)(zk − z̄k) and the
continuously differentiable, positive definite storage function Ŝk. From

ψ̂k(x̂k, ¯̂xk) ≡ 0
(C.16)
=⇒ qk ≡ q∗k, qP,k ≡ q̄P,k ≡ q∗k (C.17)

follows that the shifted dynamics of (C.15) confined to Ek are given by

0 = (pP,k − p̄P,k),

0 = −(1 +KP,k)(pP,k − p̄P,k)− (rk − r̄k),

CP,kṗP,k = 0,

QI,kṙk = 0,

(C.18)

whose unique solution is pP,k ≡ p̄P,k, rk ≡ r̄k. Thus, no solution other than

¯̂xk = [Jkq
∗
k, JP,kq

∗
k, CP,kp̄P,k, QI,kr̄k]

⊤ (C.19)

can stay in Ek for all time.

k ∈ L Recall that the open-loop model of any consumer k ∈ L is identical to that of
any DGU k ∈ D, i.e., to (6.5), (6.11). For any k ∈ Lboost, assigning uP,k and uv,k as
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in (6.18) and (6.33) thus yields a closed loop equivalent to (C.9) and the proof follows
as above. For any k ∈ Lvalve, the associated pump can either be turned off or is not
present. Thus, the open-loop model is equivalent to that of a control valve in series with
a pipe element, i.e., to (6.34) and OSEIP follows directly by Proposition 6.3. Additionally,
under Assumption 6.3, it holds that

ψ̂k(x̂k, ¯̂xk) ≡ 0
(6.39)
=⇒ qk ≡ q̄k ≡ q∗k (C.20)

and the shifted dynamics of (6.34) confined to Ek are given by

0 = (rk − r̄k),

QI,kṙ
β
k = 0,

(C.21)

whose unique solution is rk ≡ r̄k. Thus, no solution other than

¯̂xk = [Jkq
∗
k, QI,kr̄k]

⊤ (C.22)

can stay in Ek for all time. For any k ∈ LVSP, fixing uv,k(sv,k = 1) = ūv,k = 1 > 0 and
assigning uP,k as in (6.23) yields a closed loop equivalent to (C.15) and the proof follows
as above.

k ∈ Pboost The open-loop model (6.4), (6.10) of any pipe k ∈ Pboost with booster pump
can be obtained from the open-loop DGU model (6.5), (6.11) by setting uv,k = 0. Thus,
assigning uP,k as in (6.18) to the open-loop pipe model (6.4), (6.10) results in a closed
loop as in (C.1) except with ūv,k = 0. Thus, the proof follows analogously as above for
k ∈ Dform by setting ūv,k = 0 in the respective equations.

k ∈ M Combining the open-loop model (6.6), (6.12) with uv,k as in (6.33) yields a
closed loop equivalent to (6.34). Thus, the proof is identical to that of k ∈ Lvalve.

k ∈ H The open-loop model (6.7) is identical to (6.1) and thus the proof follows directly
from Proposition 6.1.
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Abbreviations

CIGRE Conseil International des Grands Réseaux Électriques
DGU distributed generation unit (electrical)/

distributed heat generation unit (heat)
DHN district heating network
DN diameter nominal
DVSP distributed variable-speed pump
EIO equilibrium-independent observable/observability
EIP equilibrium-independent passive/passivity
FACTS flexible alternating current transmission system
GPS global positioning system
IDA interconnection and damping assignment
ISO input-state-output
KCL Kirchhoff’s current law
KVL Kirchhoff’s voltage law
NMES networked multi-energy system
ODE ordinary differential equation
OSEIP output strictly equilibrium-independent passive/

output strict equilibrium-independent passivity
OSP output strictly passive/output strict passivity
PBC passivity-based control
PDE partial differential equation
PHS port-Hamiltonian system
PI proportional-integral
RES renewable energy source
RMS root-mean-square
SISO single-input single-output
VSC voltage-source converter
VSI voltage-source inverter
w.r.t. with respect to
ZIP constant impedance, constant current, constant power
ZSO zero-state observable
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Latin Letters

Symbol Description

bil element of the incidence matrix of a digraph G
B incidence matrix of a digraph G
C capacitance
Cv flow capacity of a valve
d interaction (coupling) input variable
d interaction (coupling) input vector
f0 nominal frequency of an AC power system
fv valve characteristic
f system dynamics
G input matrix of a port-Hamiltonian system
h interaction output function
H Hamiltonian of a port-Hamiltonian system
Ii filter current of a distributed generation unit at node i
IL,i load current of a load at node i
IN,i net-current injected at node i into a power system
IP constant current load parameter for active power
IQ constant current load parameter for reactive power
Idq dq current vector
J volume inertia of water in a pipe/pump
J interconnection matrix of a port-Hamiltonian system
k1 state feedback control parameter (see also k2, k3)
kp proportional control parameter for a converter controller
Kp proportional control parameter for a pump controller
K interaction matrix of a port-Hamiltonian system
K11 multivariable state feedback control parameter matrix (see also K12,K13)
L inductance
m number of interaction inputs/outputs
M interconnection matrix of an autonomous, networked system
n number of states
nP voltage index parameter of an exponential for active power
nQ voltage index parameter of an exponential for reactive power
N number of subsystems
p pressure
P active power
PP constant power load parameter for active power
PQ constant power load parameter for reactive power
q volume flow rate
Q reactive power
QI integrator control parameter
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Symbol Description

Q state weight matrix used in a quadratic storage function
r integrator co-state variable
r integrator co-state vector
R resistance
R̂ assigned filter resistance
Rp assigned pump resistance
R dissipation matrix of a port-Hamiltonian system
s valve stem position
S storage function
SL instantaneous complex power of a load
t time
u control input variable
uv virtual control input of a valve
u control input vector
V DC voltage or amplitude of an instantaneous voltage vector in dq coordin-

ates
V0 nominal voltage (DC) or nominal phase-to-phase RMS voltage (three-phase

AC)
Vi voltage at node i
VS,i converter output voltage of the distributed generation unit at node i
V dq dq voltage vector
x state variable
x state vector
¯̂x closed-loop equilibrium state vector
X auxilliary voltage controller matrix [Nahata and Ferrari-Trecate, 2019]
y output variable
y output vector
YP active power constant impedance load parameter
ỸP active power constant impedance load parameter for voltages below 0.7V0
YQ reactive power constant impedance load parameter
ỸQ reactive power constant impedance load parameter for voltages below

0.7V0
z interaction (coupling) output variable
z interaction (coupling) output vector
Z auxilliary voltage controller matrix [Nahata and Ferrari-Trecate, 2019]
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Greek Letters

Symbol Description

λ pressure losses inside pipes
µ pressure losses due to valves
ρ output function for OSP/OSEIP
χ state variable after coordinate transformation
χ state vector after coordinate transformation
ψ dissipation rate
ω0 rotating frequency of a dq coordinate frame

Calligraphic and Blackboard Bold

Symbol Description

C set of capacitor nodes
D set of distributed generation units (electrical)/

distributed heat generation units (heat)
E set of edges of a digraph G
E set where the time derivative of the storage function/Lyapunov function

is zero
G digraph
H set of pressure holding units
L set of loads/consumers
M set of mixing connections
M largest invariant set contained in E
N set of natural numbers
P set of power lines/pipes
R nonlinear damping function of a port-Hamiltonian system
R set of real numbers
V set of nodes of a digraph G
X state space
X̄ state equilibrium set
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Indices and Exponents

Symbol Description

□AC variable/function/etc. corresponding to the complete AC power system
under consideration

□boost set related to pipes/consumers with booster pumps
□c variable/function/etc. corresponding to a controller
□d d-component of a vector/function in dq coordinates
□dq vector/function in dq coordinates or set related to variables in dq coordin-

ates
□DC variable/function/etc. corresponding to the complete DC power system

under consideration
□DHN variable/function/etc. corresponding to the complete district heating net-

work under consideration
□E variable/function/etc. corresponding to all edge subsystems of a digraph
□EXP set related to exponential loads
□f variable/function/etc. related to a flow-controlled pump
□feed set related to distributed (heat) generation units in grid-feeding mode
□form set related to distributed (heat) generation units in grid-forming mode
□i variable/function/etc. corresponding to a node subsystem i

□k variable/function/etc. corresponding to a general (edge or node) subsys-
tem k

□l variable/function/etc. corresponding to an edge subsystem l

□L variable/function/etc. related to a load
□NMES variable/function/etc. corresponding to the complete networked multi-

energy system under consideration
□p variable/function/etc. related to a pressure-controlled pump
□P load parameter related to active power
□P variable/function/etc. related to a pump
□q q-component of a vector/function in dq coordinates
□Q load parameter related to reactive power
□SEIP set of subsystems that are strictly EIP
□Th set of subsystems that fulfill the conditions of Theorem 3.1
□v variable/function/etc. related to a flow-controlled valve
□v variable/function/etc. related to a valve
□valve set related to distributed heat generation units/consumers with valve-

based volume flow regulation
□VSP set related to distributed heat generation units/consumers with volume

flow regulation based on variable-speed pumps
□V variable/function/etc. corresponding to all node subsystems of a digraph
□ZIP set related to ZIP loads
□0 nominal (e.g., power, voltage, pressure, etc.)
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Symbol Description

□≥0 set of positive real/natural numbers
□>0 set of strictly positive real/natural numbers
□̄ steady-state variable/vector
□∗ desired setpoint or vector of setpoints to be established in steady state
□̇ time derivative
□̂ variable/function/etc. related to a closed-loop (sub)-system
□̃ auxiliary superscript to avoid unclear overloading of notation
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of nonlinear incremental systems: Application to PI stabilization of nonlinear RLC
circuits. Systems & Control Letters, 56(9):618 – 622.

Jeltsema, D. and Scherpen, J. M. (2009). Multidomain modeling of nonlinear networks
and systems. IEEE Control Systems Magazine, 29(4):28–59.

Jensen, T. N. (2012). Plug and play control of hydraulic networks. PhD thesis, Aalborg
University.

Johnson, B. B., Dhople, S. V., Hamadeh, A. O., and Krein, P. T. (2014). Synchronization
of parallel single-phase inverters with virtual oscillator control. IEEE Transactions on
Power Electronics, 29(11):6124–6138.

Jouini, T., Arghir, C., and Dörfler, F. (2016). Grid-friendly matching of synchronous ma-
chines by tapping into the DC storage. IFAC-PapersOnLine, 49(22):192–197. 6th IFAC
Workshop on Distributed Estimation and Control in Networked Systems (NECSYS)
2016.

Justo, J. J., Mwasilu, F., Lee, J., and Jung, J.-W. (2013). AC-microgrids versus DC-
microgrids with distributed energy resources: A review. Renewable and Sustainable
Energy Reviews, 24:387–405.

Khalil, H. K. (1996). Nonlinear Systems. Prentice Hall, Upper Saddle River, NJ, 2nd
edition.



References 207

Khalil, H. K. (2002). Nonlinear Systems. Prentice Hall, Upper Saddle River, NJ, 3rd
edition.

Knudsen, T., Trangbaek, K., and Kallesøe, C. S. (2008). Plug and play process control
applied to a district heating system. IFAC Proceedings Volumes, 41(2):325–330. 17th
IFAC World Congress.

Köfinger, M., Basciotti, D., and Schmidt, R.-R. (2017). Reduction of return temperatures
in urban district heating systems by the implementation of energy-cascades. Energy
Procedia, 116:438–451. 15th International Symposium on District Heating and Cooling,
DHC15-2016, 4–7 September 2016, Seoul, South Korea.

Kolluri, R., Mareels, I., T., A., Brazil, M., de Hoog, J., and Thomas, D. (2018). Stability
and active power sharing in droop controlled inverter interfaced microgrids: Effect of
clock mismatches. Automatica, 93:469 – 475.

Kölsch, L. (2022). Dynamic Incentives for Optimal Control of Competitive Power Systems.
PhD thesis, Karlsruher Institut für Technologie (KIT).

Kosaraju, K. C., Cucuzzella, M., Scherpen, J. M. A., and Pasumarthy, R. (2021). Differ-
entiation and passivity for control of brayton–moser systems. IEEE Transactions on
Automatic Control, 66(3):1087–1101.

Kosaraju, K. C., Kawano, Y., and Scherpen, J. M. (2019). Krasovskii’s passivity. IFAC-
PapersOnLine, 52(16):466–471.

Krug, R., Mehrmann, V., and Schmidt, M. (2021). Nonlinear optimization of district
heating networks. Optimization and Engineering, 22(2):783–819.

KSB Aktiengesellschaft (2006). Pump control / system automation.

Kundur, P. (1994). Power System Stability and Control. McGraw-Hill, New York.

Kundur, P., Paserba, J., Ajjarapu, V., Andersson, G., Bose, A., Canizares, C., Hatzi-
argyriou, N., Hill, D., Stankovic, A., Taylor, C., Van Cutsem, T., and Vittal, V. (2004).
Definition and classification of power system stability IEEE/CIGRE joint task force on
stability terms and definitions. IEEE Transactions on Power Systems, 19(3):1387–1401.

Kwasinski, A. and Krein, P. T. (2007). Passivity-based control of buck converters with
constant-power loads. In 2007 IEEE Power Electronics Specialists Conference, pages
259–265.

Kwasinski, A. and Onwuchekwa, C. N. (2011). Dynamic behavior and stabilization of
dc microgrids with instantaneous constant-power loads. IEEE Transactions on Power
Electronics, 26(3):822–834.

Lamaison, N., Bavière, R., Cheze, D., and Paulus, C. (2017). A multi-criteria ana-
lysis of bidirectional solar district heating substation architecture. In Proceedings of
SWC2017/SHC2017, pages 1–11.



208 References

Lasseter, B. (2001). Microgrids [distributed power generation]. In 2001 IEEE Power
Engineering Society Winter Meeting, volume 1, pages 146–149.

Lennermo, G., Lauenburg, P., and Brand, L. (2014). Decentralised heat supply in district
heating systems: Implications of varying differential pressure. In Proceedings from the
14th International Symposium on District Heating and Cooling.

Lennermo, G., Lauenburg, P., and Werner, S. (2019). Control of decentralised solar
district heating. Solar Energy, 179:307–315.

Levron, Y., Belikov, J., and Baimel, D. (2018). A tutorial on dynamics and control of
power systems with distributed and renewable energy sources based on the dq0
transformation. Applied Sciences, 8(9):1661.

Li, H., Svendsen, S., Gudmundsson, O., Kuosa, M., Rämä, M., Sipilä, K., Blesl, M.,
Broydo, M., Stehle, M., Pesch, R., Pietruschka, D., Huther, H., Grajcar, M., Jentsch, A.,
Kallert, A., Schmidt, D., Nord, N., Tereshchenko, T., Park, P., Im, Y., Liu, J., Dag, S.,
Wiltshire, R., and Bevilacqua, C. (2017). Future low temperature district heating design
guidebook: Final Report of IEA DHC Annex TS1. Low Temperature District Heating for
Future Energy Systems. International Energy Agency.

Liu, T., Song, Y., Zhu, L., and Hill, D. J. (2022). Stability and control of power grids.
Annual Review of Control, Robotics, and Autonomous Systems, 5(1):689–716.

Liu, X., Wu, J., Jenkins, N., and Bagdanavicius, A. (2016). Combined analysis of
electricity and heat networks. Applied Energy, 162:1238–1250.

Lund, H., Østergaard, P. A., Chang, M., Werner, S., Svendsen, S., Sorknæs, P., Thorsen,
J. E., Hvelplund, F., Mortensen, B. O. G., Mathiesen, B. V., Bojesen, C., Duic, N., Zhang,
X., and Möller, B. (2018). The status of 4th generation district heating: Research and
results. Energy, 164:147–159.

Lund, H., Werner, S., Wiltshire, R., Svendsen, S., Thorsen, J. E., Hvelplund, F., and
Mathiesen, B. V. (2014). 4th generation district heating (4GDH): Integrating smart
thermal grids into future sustainable energy systems. Energy, 68:1–11.

Lunze, J. (1992). Feedback Control of Large-Scale Systems. Prentice Hall, Upper Saddle
River, NJ, USA.

Machado, J. E., Cucuzzella, M., Pronk, N., and Scherpen, J. M. A. (2022a). Adaptive
control for flow and volume regulation in multi-producer district heating systems.
IEEE Control Systems Letters, 6:794–799.

Machado, J. E., Cucuzzella, M., and Scherpen, J. M. (2022b). Modeling and passivity
properties of multi-producer district heating systems. Automatica, 142:110397.

Machowski, J., Bialek, J. W., and Bumby, J. R. (2008). Power System Dynamics: Stability
and Control. John Wiley & Sons, Ltd., Chichester, United Kingdom, 2nd edition.



References 209

Malan, A. J., Pfeifer, M., and Hohmann, S. (2022). Distributed coordination of physically-
interconnected multi-agent systems with actuated and unactuated agents. European
Journal of Control, 68:100673. 2022 European Control Conference Special Issue.

Mancarella, P. (2014). MES (multi-energy systems): An overview of concepts and
evaluation models. Energy, 65:1–17.

Martinelli, A., Nahata, P., and Ferrari-Trecate, G. (2018). Voltage stabilization in MVDC
microgrids using passivity-based nonlinear control. In 2018 IEEE Conference on
Decision and Control (CDC), pages 7022–7027.

Martínez Ceseña, E. A., Loukarakis, E., Good, N., and Mancarella, P. (2020). Integ-
rated electricity-heat–gas systems: Techno–economic modeling, optimization, and
application to multienergy districts. Proceedings of the IEEE, 108(9):1392–1410.

Matevosyan, J., Badrzadeh, B., Prevost, T., Quitmann, E., Ramasubramanian, D., Urdal,
H., Achilles, S., MacDowell, J., Huang, S. H., Vital, V., O’Sullivan, J., and Quint, R.
(2019). Grid-forming inverters: Are they the key for high renewable penetration?
IEEE Power and Energy Magazine, 17(6):89–98.

Maurer, J. (2023). Transactive Control of Coupled Electric Power and District Heating Networks.
PhD thesis, Karlsruher Institut für Technologie (KIT).

Meng, L., Shafiee, Q., Ferrari-Trecate, G., Karimi, H., Fulwani, D., Lu, X., and Guerrero,
J. M. (2017). Review on control of DC microgrids and multiple microgrid clusters.
IEEE Journal of Emerging and Selected Topics in Power Electronics, 5(3):928–948.

Milano, F., Dörfler, F., Hug, G., Hill, D. J., and Verbič, G. (2018). Foundations and
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The strive for climate neutrality fundamentally changes the dynamics, behavior, and network 
structures of energy systems. To retain a secure and eff icient energy supply, new operation 
strategies are required which account for the increasing number of distributed components 
and more fl exible system confi gurations arising from volatile generation/demand situations 
and the growing networking between energy systems of diff erent physical domains into net-
worked multi-energy systems.

This work presents a framework for the decentralized stabilization in networked energy sys-
tems that allows for topology-independent, fl exible system confi gurations in a plug-and-play 
fashion and ensures interoperability across diff erent technologies, control strategies, and 
energy system domains. The basis of the framework is a unifying system description of DC 
power systems, AC power systems, district heating networks, and networked multi-energy 
systems, which combines a graph-based network representation with port-Hamiltonian mo-
deling. The key innovation are passivity-based design conditions that ensure asymptotic sta-
bility in a modular manner and independent of specifi c technologies, control strategies, and 
physical domains. Based on these conditions, decentralized controllers for various energy 
system actuators are developed that asymptotically stabilize desired voltage, current, fre-
quency, pressure, and volume fl ow rate setpoints. 

Due to the unifying, technology- and domain-independent character of the passivity-based 
stabilization conditions, the presented framework readily extends to other technologies, 
control solutions, and energy system domains, paving the way towards holistic system and 
control approaches for networked multi-energy systems.
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