KIT | KIT-Bibliothek | Impressum | Datenschutz

Numerical and experimental investigations of hydrogen-air-steam deflagration in two connected compartments with initial turbulent flow

Wang, Fangnian ORCID iD icon 1; Xiao, Jianjun 1; Gupta, Sanjeev; Freitag, Martin; Kuznetsov, Mike 2; Rui, Shengchao 2; Zhou, Shangyong 2; Jordan, Thomas 1
1 Institut für Thermische Energietechnik und Sicherheit (ITES), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)

Abstract:

Turbulence in the hydrogen combustion field influences flame propagation and its consequences, which is of great importance for the safety of hydrogen/nuclear energy systems. The large-scale deflagration experiment of the premixed H2-air-steam cloud with initial high turbulence in the large closed two-compartment system is conducted. The Computational Fluid Dynamics (CFD) tool GASFLOW-MPI developed to assess hydrogen safety during accidents, is utilized here to simulate this experiment. The objectives encompass exploring the numerical and experimental aspects of H2 flame propagation and deflagration consequences with turbulence effect, and validating the CFD code through this experiment. The agreements between the prediction and the experimental data indicate that simulation modeling with the Large Eddy Simulation (LES) turbulence model and turbulent flame speed closure is recommended for investigating the H2 deflagration. The experimental and predicted results indicate the following highlights. 1. The hydrogen flame can propagate in the opposite direction of the gas flow when there is an intense turbulent fluctuation upstream. 2. Turbulence accelerates the combustion velocity, causing the pressure to rise to its maximum in less than 2 s 3. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000169902
Veröffentlicht am 11.04.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Thermische Energietechnik und Sicherheit (ITES)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 04.2024
Sprache Englisch
Identifikator ISSN: 0957-5820
KITopen-ID: 1000169902
Erschienen in Process Safety and Environmental Protection
Verlag Elsevier
Band 184
Seiten 248–259
Vorab online veröffentlicht am 08.02.2024
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page