of the
ROYAL ASTRONOMICAL SOCIETY

MNRAS 529, 2032-2046 (2024)
Advance Access publication 2024 March 9

https://doi.org/10.1093/mnras/stac664

Simulations of galaxy cluster mergers with velocity-dependent, rare, and
frequent self-interactions

V. M. Sabarish *','* Marcus Briiggen *',! Kai Schmidt-Hoberg,> Moritz S. Fischer**
and Felix Kahlhoefer’

'Hamburger Sternwarte, Universitiit Hamburg, Gojenbergsweg 112, D-21029 Hamburg, Germany

2Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, D-22607 Hamburg, Germany

3 Universitiits-Sternwarte, Fakultit fiir Physik, Ludwig-Maximilians-Universitdit Miinchen, Scheinerstr. 1, D-81679 Miinchen, Germany
4Excellence Cluster ORIGINS, Boltzmannstrasse 2, D-85748 Garching, Germany

3 Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of Technology (KIT), D-76128 Karlsruhe, Germany

Accepted 2024 February 28. Received 2024 February 6; in original form 2023 September 30

ABSTRACT

Self-interacting dark matter (SIDM) has been proposed to solve small-scale problems in ACDM cosmology. In previous work,
constraints on the self-interaction cross-section of dark matter have been derived assuming that the self-interaction cross-section is
independent of velocity. However, a velocity-dependent cross-section is more natural in most theories of SIDM. Using idealized
N-body simulations without baryons, we study merging clusters with velocity-dependent SIDM. In addition to the usual rare
scattering in the isotropic limit, we also simulate these systems with anisotropic, small-angle (frequent) scatterings. We find
that the collisionless brightest cluster galaxy (BCG) has an offset from the DM peak that grows at later stages. Finally, we also
extend the existing upper bounds on the velocity-independent, isotropic self-interaction cross-section to the parameter space
of rare and frequent velocity-dependent self-interactions by studying the central densities of dark matter-only isolated haloes.
For these upper-bound parameters, the DM-BCG offsets just after the first pericentre in the dark matter-only simulations are
found to be <10kpc. On the other hand, because of BCG oscillations, we speculate that the distribution of BCG offsets in a
relaxed cluster is a statistically viable probe. Therefore, this motivates further studies of BCG off-centring in hydrodynamic

cosmological simulations.

Key words: astroparticle physics —methods: numerical —dark matter.

1 INTRODUCTION

Cold dark matter (CDM) is a fundamental component of the standard
ACDM cosmology. It plays a vital role in explaining the formation
of the large-scale structure of the Universe and the anisotropies
in the cosmic microwave background. While cosmological N-body
simulations within ACDM have successfully reproduced many ob-
servations of the large-scale structure, there seem to be discrepancies
between observations and simulations on small scales (see Bullock &
Boylan-Kolchin 2017 for a review of the small-scale problems). A
solution to the small-scale problems was proposed by Spergel &
Steinhardt (2000) via a model of DM, where DM particles can
non-gravitationally scatter off each other. Constraints on the self-
interaction cross-section can be obtained by studying different
astrophysical systems. In particular, relaxed galaxy clusters (e.g.
Andrade et al. 2021; Sagunski et al. 2021) have provided the most
stringent constraint on the cross-section. We also have constraints
from galaxy cluster mergers (Randall et al. 2008; Harvey et al. 2015).
For a review on astrophysical constraints on self-interacting dark
matter (SIDM) see Adhikari et al. (2022).

* E-mail: sabarish.venkataramani @uni-hamburg.de

Velocity-dependent anisotropic cross-sections are natural in most
theories of SIDM (for a review of SIDM models see Tulin & Yu
2018). Examples of such models include light mediator models
(Ackerman et al. 2009; Tulin, Yu & Zurek 2013), atomic DM
(Cline et al. 2014), strongly interacting DM (Boddy et al. 2014).
Moreover, velocity-dependent cross-sections are also well moti-
vated observationally. Most constraints on the self-interaction cross-
section per unit mass of DM particle (o/m,) in the literature,
have been derived assuming velocity-independent and isotropic
scattering. For example, Sagunski et al. (2021) quote an upper
limit of o/m, < 0.35 cm?g~' (95 percentC.L.) at cluster scales
and o/m, < 1.1 cm? g1 (95 per cent C.L.) at group scales. On the
galactic scales, Ren et al. (2019) find that o/m, is required to
be in the range 3-10cm? g~! to explain the observed diversity in
the rotation curves in the SPARC data set. Similarly, Sankar Ray,
Sarkar & Kumar Shaw (2022) quote an upper-bound of o/m, <
9.8 cm? g~ (95 per cent C.L.). At the scale of dwarf galaxies, there
is no concrete upper bound on the cross-section. A cross-section with
alm, > 30 cm? g~! is favoured by the observed central densities of
Milky Way’s dwarf spheroidal galaxies (Correa 2021). Elbert et al.
(2015) find that o'/m,, can be as large as 50 cm? g~! at these scales and
still be consistent with observations. These considerations highlight
the viability of velocity-dependent cross-sections.
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Observationally probing the angular dependence is a daunting task.
One reason being that the effects of angular dependence are not strong
enough when studying the evolution of systems that do not have a
preferred direction. For example, Robertson, Massey & Eke (2017b)
and Fischer et al. (2021) simulated isolated haloes using N-body
simulations and found that there is no big difference in the evolution
of core-sizes between isotropic and anisotropic cross-sections for a
given choice of parameters. Moreover, simulating differential cross-
sections which peak for tiny scattering angles, using conventional
SIDM implementations (e.g. Rocha et al. 2013) is prohibitively
expensive. This type of interaction will be called frequent self-
interactions (as introduced in Kahlhoefer et al. 2014) as opposed
to rare self-interactions corresponding to large-angle scattering.
Frequently self-interacting dark matter (fSIDM) is natural in the
mass-less mediator limit of light mediator models. The scattering
of DM particles in this regime can be modelled as a drag force,
where the drag force depends not on the total cross-section but on
the momentum transfer cross-section given by Kahlhoefer, Schmidt-
Hoberg & Wild (2017) and Robertson, Massey & Eke (2017b)

' do
or=2m (I — [ 08 Oems|) d €08 Ocns, (D
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where 6., and Q. are the scattering angle, and solid angle in
the centre of mass frame. Frequent self-interactions have previously
been studied by Kahlhoefer et al. (2014), Kummer, Kahlhoefer &
Schmidt-Hoberg (2018), Kummer et al. (2019), and Fischer et al.
(2021, 2022) assuming velocity independence.

Mergers of galaxy clusters are interesting test beds for models of
SIDM since the mass distribution of the system could be measured
through lensing. The gas and galaxies can be probed through their
direct emission in various wavelengths. The existence of offsets
between the DM component and galaxies may hint at DM self-
interactions (Randall et al. 2008). Moreover, mergers are sensitive
to both velocity and angular dependence of the scattering cross-
section. First, as the haloes undergo many pericentre passages, the
collisional velocity changes with time. Scattering velocities are the
largest at the first pericentre passage and, subsequently, the haloes
slow down with every passage. The self-interactions at the pericentre
passages are mainly responsible for an increase in the offset. Thus,
the evolution is sensitive to the parameters of velocity-dependent
cross-section. Secondly, mergers unlike isolated haloes also have a
preferred direction, i.e. the merger axis. Fischer et al. (2022) find
that offsets are larger for frequent self-interactions with a given o',
when compared to rare self-interactions of the same or. They also
showed that small-angle scattering can produce larger offsets than
the maximal possible offset from isotropic scattering.

There have been earlier studies that have simulated mergers.
For example, studies with velocity-independent isotropic cross-
sections have been done by Kim, Peter & Wittman (2017) who
simulated equal-mass mergers; Robertson, Massey & Eke (2017a)
simulated a bullet cluster like system. Fischer et al. (2021, 2022) stud-
ied equal and unequal-mass mergers with isotropic and anisotropic
velocity-independent cross-sections. Robertson, Massey & Eke
(2017b) looked at mergers until just after the first pericentre pas-
sage. They used a velocity-dependent isotropic cross-section and
a velocity-dependent cross-section that corresponds to Yukawa
scattering under the Born approximation. It is unknown as to how the
merger evolution is affected at late stages by velocity-dependent self-
interactions. Similarly, mergers in the fSIDM regime with velocity
dependence are yet to be studied.

In this work, we aim to (i) study the qualitative differences in
merger simulations between velocity-dependent and independent
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cross-sections, (ii) extend the upper bound on constant cross-
section quoted by Sagunski et al. (2021) to the parameter space
of velocity-dependent cross-section, (iii) find the maximum offsets
between DM and the brightest cluster galaxy (BCG) with velocity-
dependent cross-section parameters that are consistent with upper
bound parameters. To this end, we simulate the full evolution of
galaxy cluster mergers and isolated haloes with rare and frequent self-
interactions. In a companion paper (Fischer et al. 2024), cosmological
simulations are studied with velocity-dependent fSIDM. The paper is
presented as follows. In Section 2 we briefly describe our numerical
scheme and the SIDM models that are considered. In Section 3
we present our simulation results, which illustrate the qualitative
differences between velocity-dependent and velocity-independent
cross-section simulations. In Section 4, we describe the simulations
of mergers with cross-section parameters that correspond to the
95 per cent C.L. limits provided in Sagunski et al. (2021). In Section
5, we summarize our results and conclude. Additional details are
provided in the Appendices A and B.

2 METHODS

In this section, we describe the numerical setup of our simulations,
and we discuss our choice for the self-interaction cross-section that
is used in the simulations.

2.1 Numerical method

For our simulations, we use the cosmological N-body simulation
code OPENGADGET3, adapted for frequent self-interactions using
the implementation given in Fischer et al. (2021). In this section,
we briefly describe the implementation of rare and frequent self-
interactions. The numerical scheme for the self-interactions of rarely
self-interacting dark matter (rSIDM) follows Fischer et al. (2021),
which is similar to the method described in Rocha et al. (2013). In
this scheme, the probability that a numerical particle 1 with mass m;
scatters off another numerical particle 2 with mass m; is given by,

o(vi2)

Py = ma||via| At Ay, (2)

X

where vy, is the relative velocity between the numerical particles 1
and 2, At is the time-step used in the simulation, A, is the kernel
overlap integral, o (v2)/m, is the total cross-section per unit mass
of DM particle. For more details on the implementation and the
choice for the kernel, see appendix A and B of Fischer et al. (2021).
A collection of kernels used in other modern implementations of
SIDM within N-body simulations can be found in Adhikari et al.
(2022, equations 11-15).

The drag force of frequent self-interactions is based on the relation
derived in Kahlhoefer et al. (2014), which describes the deceleration
rate experienced by a particle as it travels through a constant
background density of DM,

1.dyy _ povoor

R =
€T v dt 2m,

3)
vg is the velocity of the particle, v; is the parallel component of
the velocity of the particle, pg is the background density, o is the
momentum transfer cross-section defined in equation (1). We can also
see that the deceleration rate captures the rate of change of the parallel
component of the velocity. Therefore, the above expression can then
be cast into an expression for drag force for the physical particles.
The drag force as experienced by numerical particles, labelled 1 and
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2, in the N-body code is given as (Fischer et al. 2021),

or(v12)
ﬁmlmzf\lz, 4

! 2
Fdrag = §|U12| ",
which is proportional to the momentum transfer cross-section or.
From here on, we will drop the subscripts and let v denote the
relative velocity between DM particles.

In addition to the drag force, momentum is added to the particles
in a random but perpendicular direction relative to the motion in the
centre-of-mass frame. As for rSIDM, the post-scattered momenta
in the centre-of-mass frame have the same absolute value as the
pre-scattered ones.

In our SIDM implementation, we search for pairs of potentially
interacting particles. A search for the neighbours of each particle
achieves this, employing the same tree structure as used in the gravity
computation.

The code employs an adaptive time-stepping scheme, where the
time-step of an individual particle is obtained by the minimum of
different time-step criteria, i.e. given by gravity and self-interactions.

The implementation of rSIDM and fSIDM does conserve mo-
mentum as well as energy explicitly. This is achieved by executing
the scattering computations for pairs of particles in a consecutive
manner such that their velocities are updated after each scattering
event and used for the next one. At the same time, we allow for
multiple interactions per particle per time-step.

Massively parallel computations of the self-interactions are en-
abled by a parallelized implementation using the message passing
interface (MPI). Note, here we order the communication and com-
putation of the processes in a manner to reduce waiting time.

The implementation of the velocity-dependent self-interactions
into the SIDM module has been described in detail by Fischer
et al. (2024). To ensure numerically stable results, a novel time-
step criterion has been added. This criterion is based on the velocity
at which self-interactions are strongest, i.e. on the maximum of
ot(v) v, instead of the velocity distribution that an individual particle
encountered in the previous time-step. In principle, such a scheme
guarantees that the simulation time-step is always sufficiently small
to account for or(v) for any v.

2.2 Initial conditions and simulation parameters

In this work, we simulate both DM-only isolated haloes and galaxy
cluster merger with two different merger mass ratios (MMR). First for
the isolated DM-only haloes, they have a virial mass of 1 x 10> My,
and are initialized with an NFW density profile Navarro, Frenk &
White (1996), i.e.

Scpcrit — o
r/r)(A+rfr)? = (r/r)( +r/r)?

DM positions are sampled from a probability density function such
that the density profile follows the NFW profile. Given the virial
mass of the halo and the critical density p.q of the universe, the
parameters of the NFW profile are determined as follows: (i) the
concentration parameter cy; is determined using the concentration—
mass relation given in Dutton & Maccio (2014), (ii) characteristic
density 4. is computed using c.;; from the earlier step (using equation
2 of Navarro, Frenk & White 1996), (iii) scale radius r, is computed
using its definition r; = ry;/cyi;. The NFW parameters thus obtained
are given in Table 1. Using the resulting density profile, the initial
velocity dispersion (v?),(r) is obtained by integrating the Jeans
equation (Binney & Tremaine 2008). Then, initial velocities in each
radial bin are drawn from a Gaussian distribution with the variance

p(r) = (&)
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Table 1. This table contains the NFW parameters used in generating the ICs
for merger simulations. The first column contains the virial mass, the second
the density parameter po := &, Pcrit, followed by scale radius r, concentration
parameter and number of DM and galaxy particles. DM-only isolated haloes
have the same NFW parameters as given in the first row.

Myir 00 T c Npm =Nga  NcG
Mo) (Mokpe™)  (kpe)

1013 1.33 x 10°  389.3 5.42 1009878 1
2 x 10 1.908 x 106  194.76 6.33 181319 1

Table 2. This table contains the initial separation, initial relative velocity
between the two clusters, and the relative velocity of the BCGs at the first
pericentre passage.

Merger mass ratios Xini Avipi AU%SG)
(Mg : Mg) (kpc) (kms™") (kms™1)
1013 1013 4000 1000 5500
10'3:2 x 10 4000 1000 4800

(v®)ini(r). The isolated DM halo simulations use the same NFW
parameters as the main halo of the merger for initial conditions (ICs).
We simulate mergers with MMR € {1, 5}. The barycentre of the
clusters are initially 4000 kpc apart and they are put on course towards
each other with a relative velocity of 1000kms™' as summarized in
Table 2.

In the galaxy cluster used in the merger simulations, the cluster
has three particle species: DM, galaxy, and BCG. Galaxies and BCG
are approximated to be collision-less, while DM is collisional with
self-interaction characterized by its cross-section. An equal number
of DM and galaxy particles is used in the simulation. A sufficient
number of galaxy particles are chosen to ensure that it is easier to
find the peak position of the galaxies. The main halo has a virial
mass of 10'°Mg, and both species initially follow an NFW profile.
The particle masses are as follows: for DM, mpy = 2 X 10° Mo,
for galaxies, mga = 4 x 107 Mpg. In addition, the brightest cluster
galaxy (BCG) is represented by a single particle at the centre of the
halo with a mass mgcg = 7 x 10'! M. As the BCG is approximated
to be a point particle, the effects of gravitational scattering become
strong if the mass is large, therefore the BCG particle is taken to be
less massive than the observed BCGs. This choice is adopted from
earlier studies (e.g. Kim, Peter & Wittman 2017; Fischer et al. 2022).
The mass resolution chosen works reasonably well for measuring
offsets in simulation since the simulation is run only for a few
dynamical time-scales. The detailed effects of such a treatment on
measurements other than offsets are yet to be studied. We use a fixed
gravitational softening length of ¢ = 1.2kpc for all particles. For
both mergers and isolated haloes we use an adaptive kernel size for
the DM self-interactions, such that the number of neighbours within
each particles’ kernel, Ny, is equal to 64. This choice follows from
Fischer et al. (2021).

All simulations have been performed with a resolution of O(10°)
particles. For certain cross-section parameters, the simulations were
rerun at a higher resolution of O(107) particles to validate the lower
resolution runs (see Appendix A).

2.3 Dark matter cross-section model

We assume a fairly generic form for the self-interaction momen-
tum transfer cross-section for rare and frequent self-interactions,
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parametrized as follows (Gilman et al. 2021; Yang et al. 2023),

O'T(U) _ 2 (1 n U2>_2 (6)

w2
my my w

where v is the relative velocity of the DM particles. We furthermore
assume that the total cross-section has the same velocity dependence
as the momentum transfer cross-section, such that

or(v) o)
or(v=0) ow=0)"

@)
This assumption is automatically satisfied if the differential cross-
section is a separable function, i.e. it is of the following form,

do _
dcosf

00
N—00)g(w, v), (8)
ny

where N is a normalization constant, ®(0) captures the angular
dependence and g(w, v) = (1 + v*/w?)~2. However, even for non-
separable differential cross-sections, such as Rutherford scattering,
the assumption in equation (7) gives a useful approximation.

Depending on the choice of N and ®(f), the above differen-
tial cross-section can correspond to either frequent or rare self-
interactions. In this work, we consider isotropic scattering for the case
of rare self-interactions, such that ®(6) is simply a number. The total
cross-section to calculate the scattering probability in equation (2)
is then given by o (v) = 20 1(v), see equation (1). For frequent self-
interactions, on the other hand, ®(6) is strongly peaked for small
angles. The normalization, , is then chosen such that the momentum
transfer cross-section given in equation (6) is recovered, which is
used in the simulations to compute the drag force experienced by the
particles, see equation (4).

To run the simulations, the parameters o ,, and w must be chosen,
where o, := o¢/m,. In this paper, we are interested in studying
the qualitative differences in the evolution of galaxy cluster mergers
between the different regions of ¢, — w parameter space. A priori,
it is conceivable that there are degeneracies in this parameter space,
such that different parameter combinations lead to very similar
merger observables. Such a degeneracy was found by Yang et al.
(2023) (see their fig. 8) when analysing the rotation curve of LSB
dwarf galaxy UGC 128. In other words, it was possible to compensate
a change in w by an appropriate change in o,. We refer to a
prescription to determine the cross-section normalization o, for
a given velocity dependence (determined by w) as matching. In the
following, we will explore different matching procedures.

The choice for w follows from the typical relative velocity scales.
These scales can be estimated by running CDM simulations. The
observed values are displayed as dashed lines in Fig. 1. The largest
observed scales are the relative velocities of the infalling BCGs
shown as the last two lines corresponding to MMR:5 and MMR:1,
respectively. The average scattering velocity with which DM parti-
cles scatter off each other within 100 kpc around the barycentre at
the first pericentre passage are shown. Finally, the relative velocity
dispersion within 100 kpc of a 1 x 10'> Mg, halo is displayed as the
leftmost vertical dashed line and it is approximately 1400 kms~".
This implies that for any value of w larger than 1400 km s~!, the self-
interactions within the halo will be in the weakly velocity-dependent
regime. Therefore, the following choice for w is made, w € {1000,
2000, 3000, 4000} kms~!.

We have analysed cluster mergers with o, chosen according to
two matching procedures: The first is to choose the same value of
oo for all chosen values of w, the second is to choose o, such that
the evolution of the central density of the isolated haloes for different
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Figure 1. Momentum transfer cross-section for oo, = 5 cm? g*l , and the
values of w are given in the legend. The vertical coloured dashed lines
correspond to different velocity scales in the system. The left most is the
relative velocity dispersion within 100kpc of the 1 x 10'> My cluster. The
second and third from the left correspond to the relative velocity dispersion
within 100 kpc around the barycentre at the first pericentre for MMR:5 and
MMR:1, respectively. Finally, the second last and the last are the relative
velocity of the BCGs at the first pericentre passage of the system with MMR:5
and MMR:1, respectively.

values of w is similar. These procedures will be explained further in
the following sections.

2.4 Analysis methods

In order to find the peak position of any component, i.e. DM or
galaxies, we use the peak finding method based on the gravitational
potential, see Fischer et al. (2022). In the simulations, all particles
have a unique particle ID assigned to them. Using the ID, particles
belonging to a given halo can be identified. Then, the gravitational
potential in each cell in a grid is computed. The cell with the lowest
potential corresponds to the position of the peak. Fischer et al. (2022)
also propose the isodensity-based peak finding algorithm. In this
algorithm, the peaks are identified as the cell in the merger plane with
the highest projected density. This method is closer to observations
where, for example, gravitational shear measurements can be used
to infer mass densities. We find that gravitational potential based
peak finding is more reliable when the simulation is run with low
resolution. Hence, this is our choice for finding peaks. To find the
errors on the peak position, we bootstrap the particle distribution
20 times and determine 20 such peaks. Then we estimate the error,
by finding the standard deviation in the obtained peak positions.

We define offsets as the distance between the peaks of two different
species of the same cluster. For example, dpy.pcg is the distance
between the DM and BCG peak of a given cluster.

3 VARYING w ONLY

In this scheme, the same value of oy, is used for different values
of the parameter w. Even though it is a very simple choice, it is
easier to observe the qualitative difference introduced by velocity-
dependent cross-sections. To make the differences stand out, we use
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Table 3. Simulation labels and the corresponding cross-section parameters.
The generic form of labels is XwDsNpM, where X is F(frequent), R(rare), or
C(constant). D that follows w is the value of the parameter w to be read as
D kms~! and NpM following the s is the value of o, to be read as N.M

em? gl

Simulation name o om (cm? gfl) w (kms™!)
FC5p0 5 00
Fw1000s5p0 5 1000
Fw2000s5p0 5 2000
Fw3000s5p0 5 3000
Fw4000s5p0 5 4000
600 P
/ B \\\\ MMR=1
400 Y/ XY
4 W
! “
. 20074 ll' \\\\\ //\,
[S] W RS S,
£ o ¥ 7 NET SENGRe
g { X 7o
X 2004
—400-
—600 -
20 25 30 35 40 45 50
Time [Gyr]
— CDM —— Fw2000s5p0 Fw4000s5p0
—— Fw1000s5p0 Fw3000s5p0 FC5p0

MMR=5
15001
10004 \
g 5009 \ /7/7’1::::
igz_ o ez ---—.--".E..//{ ——————— \
=
<
~500
~1000-
~1500
20 25 30 35 40 45 50
Time [Gyr]
— CDM —— Fw2000s5p0 Fw4000s5p0
—— Fw1000s5p0 Fw3000s5p0 FC5p0

Figure 2. The dotted and solid lines correspond to the DM peak position of
the main halo and subhalo, respectively. Upper panel: DM peaks in equal-
mass merger, lower panel: Merger with mass ratio 5. Plot labels are described
in Table 3. Simulation results presented in this figure corresponds to varying
values of w and a fixed o,.

a large value of o, = 5.0 cm? g~'. We confirmed the results to be
qualitatively similar but less pronounced for smaller values of o ,,.
The names for the individual runs shown in the plots are tabulated in
Table 3.

3.1 DM peak position

The plots of the peak positions of DM against time for equal and
unequal-mass mergers are given in Fig. 2. The peaks of the main halo
are marked by dotted lines, while those of subhalo are indicated by
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solid lines. First, we observe that for constant o 7 the drag force from
self-interaction is strong enough to stop the DM component in their
tracks and they coalesce at the first pericentre passage. For the same
oom» the DM peak positions in the velocity-dependent SIDM runs
are closer to the CDM run for smaller values of w. This observation
matches our expectation that, for fixed o, increasing w increases
the effective self-interaction strength.

The separation of the peaks at the first apocentre is largest for
CDM and decreases with increasing self-interaction strength. This
can be attributed to the fact that DM particles experience a drag force
and thus stay closer to the centre-of-mass of the system.

The first pericentre passage occurs at different times for different
parameter combinations. Albeit a small effect, self-interactions tend
to increase the time taken to reach the first pericentre passage.
Then the second passage occurs earlier for increasing self-interaction
strength. For example, we see that the first pericentre passage occurs
slightly later in the simulation with constant o 7. This could be
understood as self-interactions generating pressure that resists the
infall, thus slowing the halo down. The difference is large for constant
or because the effective self-interaction strength of the velocity-
dependent ones is much smaller than the one of constant o 7 at early
stages, as or(v) is small for v > w.

At later stages of the evolution, the scenario changes. For example,
at the third apocentre, we see that the oscillation in the DM peak for
w = 2000 km s~ has an amplitude that is greater than that of CDM.
During these stages, the central density of the haloes are lower for
SIDM simulations (see Fig. C2). Therefore, the oscillations are less
dampened by dynamical friction for SIDM simulations.

For the unequal-mass mergers, the subhalo dissolves faster, mak-
ing it difficult to identify the DM peaks during later stages of the
evolution. Both equal and unequal mass mergers have identical initial
separation and initial relative velocity. Therefore, in unequal mass
merger, the less massive cluster traverses more distance than the
massive one and this leads to fewer oscillations. For instance, in
Fig. 2, we see that within 5 billion years, the subhalo in MMR:5
system has undergone fewer pericentre passages than the equal-mass
merger.

3.2 BCG peak position

The BCG positions for subhaloes are given in Fig. 3, the upper panel
corresponds to the equal-mass merger system, while the lower panel
corresponds to the unequal-mass merger. In CDM simulations, the
BCG oscillations are damped faster compared to SIDM simulations.
This general feature has already been observed in earlier work (Kim,
Peter & Wittman 2017; Fischer et al. 2021, 2022). This could be
explained by noting that the merger remnants have a cored density
distribution at the centre owing to the self-interactions. On the other
hand, merger remnants in CDM simulations have larger central
densities. As a result, the oscillations dampen out faster in CDM
due to dynamical friction.

In the equal-mass merger, we observe that the peak positions of
subhalo BCGs are closer to the CDM for smaller values of w at the
early stages of the merger evolution. At later stages, around 5 billion
years, the BCG oscillations in the CDM simulation have dampened
considerably. On the other hand, the oscillations approximately stay
constant for the constant o1 simulation for the period 1—8 billion
years, as shown in Fig. 3. The position of the BCG in velocity-
dependent simulations start deviating from CDM with time. For
example, let us consider the w = 2000 km s~! simulation: (i) we see
that the curve is initially close to the CDM simulation (ii) during
the period 4—7 billion years, the oscillations have approximately a
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Figure 3. BCG position of the subhalo versus time. The upper panel shows
peak positions in the equal-mass merger, while the lower panel corresponds
to the unequal-mass merger. For better visibility, we plot only the position of
the BCG of the subhalo. Plot labels are described in Table 3.

constant amplitude, and they have significantly deviated from the
CDM simulation. The typical velocities around the DM peak at
various stages of the evolution are given in Fig. D2. The central
relative velocity dispersion around the DM peak is large at the
first pericentre owing to the active merging. At later stages, when
the haloes have slowed down, they have a very slowly rising
relative velocity dispersion for the rest of the simulated time period.
Therefore, from Fig. 1 we see that for w = 2000kms~' and v
> 2000kms~!, the o is less than 1 cm? g~!, whereas for v <
2000 km s~ the cross-section is larger than 1 cm? g~!. Thus, merger
remnants experience larger self-interactions at later stages, leading to
more cored distributions and lesser dynamical friction. Cumulatively,
this leads to steady oscillations at later stages.

The distance travelled by the BCGs at the first apocentre is
observed to become smaller with increasing values of w. This can
be understood by looking at the DM peaks. For example, the DM
haloes coalesce at the first pericentre passage for the constant o7
simulation. As a result, the BCG experiences a larger gravitational
force due to the coalesced DM distribution at the barycentre. This
accumulation of DM at the barycentre reduces with decreasing w
since the average interaction strength reduces with w. This effectively
leads to smaller amplitudes at the first apocentre in both equal
and unequal-mass mergers. Immediately after the second pericentre
passage, the amplitude of the velocity-dependent SIDM and CDM
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curves have decreased significantly due to dynamic friction. In the
constant o7 simulation, the DM peaks have come to rest, and the
merger remnants start coring. This leads to the persistence of the
BCG oscillation amplitude.

3.3 Morphology

In Fig. 4, we show the physical density of DM within the slice |z|
< 100kpc projected on the merger plane. There are three columns,
each correspond to a DM model and each row corresponds to a
particular simulation time. First we look at time ¢ = 1.4 Gyr, i.e.
before the first pericentre passage. Both haloes in the constant
o7 simulation (column 2) have lower central densities than in the
CDM (column 1) and velocity-dependent simulations (column 3).
The second row shows results at a time ¢t = 2.1 Gyr, which is just
after the first pericentre passage. Owing to the large self-interaction
strength, the haloes in the constant o7 simulation have coalesced,
while for CDM and velocity-dependent self-interactions the DM
haloes pass through each other. At later stages, t > 5 Gyr, the merger
remnant in the constant ¢ simulation has a lower central density.
While for the velocity-dependent simulations, the effects of velocity-
dependence slowly becomes relevant as the system slows down.
Thus, this leads to more cored distribution at the centre of the merger
remnant when compared to the one from CDM simulation. This
feature essentially leads to the persistent BCG oscillations at late
stages. In Fig. 5 we have a similar plot displaying only the subhalo’s
projected density for MMR:5. Independent of the choice for the
o r(v), the subhaloes are observed to evaporate with time. With self-
interactions, the evaporation is more pronounced. At t = 4.5 Gyr, the
subhalo experiencing constant o 7 has its core dissolved significantly
and comes to rest. For CDM, the core has remained relatively intact.
Finally, in the velocity-dependent simulation, the core has dissolved.
Although the merger remnant seems to be oscillating even at these
stages. In addition, in the CDM simulation, we see shell-like features.
These features are missing in the constant o7 simulation, since the
haloes have coalesced.

4 CENTRAL DENSITY MATCHED
CROSS-SECTION

In this section, we explore a more refined matching procedure
based on simulations of isolated haloes. In this matching scheme,
parameters {oq,, w} are chosen such that different parameter
combinations lead to similar central density evolution. We will refer
to parameters matched according to this scheme as CD-matched. To
avoid performing multiple simulations to find the matched parameter
set, we make use of the self-similar nature of the gravothermal
fluid equations of an isolated halo (Balberg, Shapiro & Inagaki
2002; Essig et al. 2019). This allows us to obtain the central
density evolution without running a suite of simulations. In Balberg,
Shapiro & Inagaki (2002), they assume that the total cross-section is
velocity independent. In order to illustrate the rescaling, consider two
constant cross-section parameters a({;n, oolfn. Then, the central density
evolution obeys the following scaling relation:

o B
pL'(tA) = Pc (tB X %) ’ )
Oom

where 4, 1% correspond to the evolution time of the isolated haloes
simulated with parameters og} , o & .

Velocity-dependent cross-sections contain two parameters, and it
is not immediately clear how the central densities can be rescaled.
Yang & Yu (2022) propose an effective cross-section o g to model
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Figure 4. The density of DM haloes, accounting for the particles within |z| < 100 kpc. The first column corresponds to CDM simulations, while the second and
the third columns correspond to simulations with the following momentum transfer cross-sections (o o, w): (5, 00), (5, 2000). The rows correspond to different
times. The first row being before the pericentre passage, the second, just after the first pericentre passage and the third being at later stages. The time stamps in

the images are in units of Gyr.

the halo evolution. For a differential cross-section do/dcos @, the
effective cross-section is given by
2
P 4012D '

1 d
Oeff = ——— / v2dv dcos 6 v° sin’ 070 ex
512(o1p)® dcos@
(10)

In the expression given above, v is the relative velocity of DM
particles, o p is the characteristic velocity dispersion of the halo.
Yang & Yu (2022) show that the evolution of central density in a
simulation with the differential cross-section can be mimicked by a
constant cross-section simulation with the same o .. They also note
that the equivalence holds well when the halo is in short-mean-free-
path regime. In the long-mean-free-path regime, o . does not capture
the effects of self-scattering accurately. However, it provides a
reasonable approximation to the halo evolution. Therefore, we extend
the rescaling procedure given in equation (9) to any differential cross-
section by using the corresponding effective cross-section o ef.
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Integrating the angular part of equation (10), we get

2
Oeff X /vzdvvsov(v, w) exp (—v—2> X oo f (W), (11)
4oy
where
do
= [ dcosfsin? ———, 12
oy / cos 6 sin Joosd (12)

is the viscosity cross-section.

Thus, fora given w, 0 /08 = o, /o£,. In other words, rescaling
by o 1s equivalent to rescaling by o, for the same w. We verify
this method by performing tests with some parameter combinations,
see Appendix B.

In order to find the value o, given a w, such that the evolution of
the central density matches that of a target simulation with parameter
set, Q = {0’0?”, w2} we follow the procedure given below.
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Figure 5. Plot similar to Fig. 4, but displaying only the subhalo of MMR:5 simulation.

(i) Simulate an isolated halo with the target parameter set. Find
the evolution of the central density p(.Q (t2) from the simulation
snapshots.

(ii) Simulate an isolated halo with the parameter set A = {a(ﬁn, w},
followed by the estimation of the evolution of central density pCA(tA)
from the simulation data.

(iii) To obtain the evolution p® (¢#) corresponding to the parameter
set B = {ao‘fn, w}, rescale the time axis of the simulation A, i.e.

B(.B Al 4 %
o, 7)) =p; (t X —B”’) . 13)
Oom
(iv) Repeat the previous step with different values of o, until
p5(¢%) matches p2(t9).

Thus, we have obtained the CD-matched o2, for the given w.
To make a guess for the value of o}, for one of our chosen values

of w, we solve,

Ouir(0g, w) = 0. (14)

To this end, we need a value for op. In Yang & Yu (2022), they
propose to use the velocity dispersion in the central region of the
halo at the maximal core expansion stage for the characteristic
dispersion o p. Using semi-analytic modelling, Outmezguine et al.
(2023) show that the 1D velocity dispersion is 0.64Vy,. at the
maximal core expansion phase. Using Viax & 1.65r,4/G po for our
NFW parameters, we find o1p ~ 980km s~!. On the other hand,
we observe ojp &~ 1000kms™! in our simulations. Thus, we find
consistency between our simulations and the semi-analytic result.

We calculate the initial guess o}, for rare self-interactions and use
the same for frequent self-interactions. For this calculation, we use
the differential cross-section given in Section 2.3.

We choose the target set Q to correspond to the values quoted
in Sagunski et al. (2021). They quoted a 95 per cent upper limit on
almy 0f0.35 cm* g~!, assuming isotropy and velocity independence.
Therefore, this value translates to o, = 0.175 cm? g~ for rare self-
interactions (because o = 20 7). In other words, we choose the target
set Q = {0.175 cm?> g~!, oo}. In Fig. 6, we show an example for
the matching procedure in detail. The black band corresponds to

the target central density of constant o7 with o, = 0.175 cm? g~
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Figure 6. Evolution of central density of an isolated halo of virial mass
10Me. There are three bands in the plot corresponing to, (i) simulation
with rare self-interactions with constant o7 of o, = 0.175 (ii) simulation
for w= 2000 km s™! with an initial guess of oq, = 2.72 cm? g~ ! (iii) the
same simulation as the earlier one , but rescaled to ¢, = 1.2 cm? g’l. The
width of the band corresponds to the uncertainty in the estimation of central
density, and it is proportional to 1/+/N.
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Figure 7. The plot contains viscosity cross-section evaluated at v = 0, for
different values of w. At each w, the inferred value of o ¢y, is used to compute
ovy. The triangles and stars represent oy calculated using the o, inferred
from N-body simulations for fSIDM and rSIDM, respectively. The solid line
corresponds to o, inferred by solving o = 0.35 cm? g’l.

The orange band corresponds to a simulation with {2.72 cm? g™,
2000 km s~!'}. This value for o, is our initial guess calculated using
equation (14). After rescaling by trial and error, the desired value
of o, is found to be 1.2 cm? g~!. This procedure can be extended
to all chosen values of w and the obtained results are tabulated in
Table 5. The inferred values of o, at different values of w can then
be used to calculate the corresponding viscosity cross-section o'y.
This is shown in Fig. 7. The orange triangles and blue stars represent
the values of oy obtained using the inferred values of o, from N-
body simulations for rare and frequent self-interactions, respectively.
Similarly, the solid line corresponds to the oy calculated from the
values of oy, inferred by solving equation (14). The fact that the
results obtained from o and N-body simulations are different can
be attributed to the fact that the isolated halo is in the long-mean-
free-path regime. This was already noted in Yang & Yu (2022).
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The evolution of an isolated halo has a feature that, as long as it
is in the core expansion phase, at any given time the central density
is monotonically decreasing with o .g. This implies that for a given
value of w, and at a given time in the evolution of the halo, core-size is
larger for larger values of o ¢,,. Andrade et al. (2021), Sagunski et al.
(2021), and Eckert et al. (2022) constrain o, using the observed
core-size in clusters. Hence, for every value of w, there is a value
of o, that produces core sizes, or central densities, similar to the
current upper bound. Increasing o, any further would increase the
core size to values larger than what is observed. Thus, this matching
procedure can be used to extend the bounds from constant o7 to
different values of w.

‘When matched using o or central density evolution, we observe
that the ratio between the o, s of rare and frequent is approximately
0.64 at every chosen values of w. This can be understood from the
definition of o.g. From equation (11), we have for any w, for rare
self-interactions,

—v? 2\ 7
Ot = C(ro,,,/de sin39/duu7 exp(— ) (1+— (15)
4o{p w

4
= Cgo'()mf(w)' (16)

Here, C =1/ (512018])). Now from equation (6), for rare self-
interactions we have o1 = o, g(w, v), which implies that

4
Oeff = §0ch/g- (17)

For frequent self-interactions, we consider a differential cross-
section of the form given in equation (8) with the function ®(9)
having support only for values of 6 close to 0. A simple choice for
®(0) is a step-function that is non-zero in the interval [0, €], where
€ is some small number. Therefore, o is given as

.2

ot = CNogy, /d@ sin® 0©(0) [ dvv” exp (71)2 ) g(w,v) (18)
4o0{p

~ CNoon / doo’ed) f(w) = CNog, f(w)e* /4, (19)

where in the second equality we have Taylor-expanded and retained
only the leading order in 6 in the angular integrand. Similarly, for
the momentum transfer cross-section we have

or = Noomg(w, v) /d6 sinf(1 — | cos 0])O(H) (20)

~ Noowg(w, v)e'/8. @1
Thus for frequent self-interactions, we have
oert = 201Cf /8. (22)

Now for matching with oy or the central density we require
ocf(Rare) = o (Freq.). Upon using equation (17) and equation (22),
this requirement leads to the matching condition or(Freq.) =
(2/3)o r(Rare)=0 ¢, (Freq.) = (2/3)oon(Rare) as seen in Table 5.

4.1 Central density matched simulations — qualitative features

In this subsection, we look at the qualitative differences in mergers
when parameters are chosen according to the central density match-
ing procedure. Again, as in Section 3, we only simulate frequent
self-interactions. In Section 3, we investigated the effects arising
from changing the value of w. To ensure that the effects of self-
interaction are not negligible for w = 1000 kms~!, we used a large
value for o, of 5.0 cm? g~'. On the other hand, in this section the
cross-section parameters are CD-matched for which we choose the
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Table 4. This table contains labels and cross-section parameters matched to
constant cross-section, o', = 1.0 cm? g~ ! of frequent self-interactions using
central density matching scheme.

w O0m Label
(kms™") (em?g™")
1000 70.0 Fw1000s70p0
2000 8.67 Fw2000s8p67
3000 3.67 Fw3000s3p67
4000 2.33 Fw4000s2p33
00 1.0 FCl1p0
600
400 A
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o
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o
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Figure 8. BCG positions of the subhalo against time. The upper panel
corresponds to equal mass merger, while the lower one corresponds to unequal
mass merger.

target set to be Q = {1.0 cm? g~!, oco}. The matched parameters
are given in Table 4. We have chosen a value for o, such that
the effects of self-interaction are observable, but not as large as the
previous value 5.0 cm? g~

For brevity, we show only the BCG oscillations in Fig. 8. We see
that the BCG oscillations of velocity-dependent simulations all have
similar amplitudes at early stages. Only at a later stages they start
to deviate. This similarity stems from the fact that the parameters
are CD-matched. Similar to what was explained in Section 3.2, at
early times the DM particles have a large relative velocity. As a
result, most of the velocity-dependent cross-sections have a small
effective self-interaction strength. At later stages, the system slows
down and v < w and the effective self-interaction strength increases.

Velocity-dependent SIDM mergers 2041

Table 5. This table contains the conservative upper bound on oy, for
different values of w given in the first column. The second column contains
oom the value for frequent self-interactions, and the third for rare self-
interactions.

w Frequent Rare

O 0m Label O0m Label
(kms™)  (em?g™") (em?g™")
1000 5.6 Fw1000s5p6 9.0 Rw1000s9p0
2000 0.78 Fw2000s0p78 1.25 Rw2000s1p25
3000 0.36 Fw3000s0p36 0.57 Rw3000s0p57
4000 0.25 Fw4000s0p25 0.39 Rw4000s0p39
00 0.11 FCOpl11 0.175 RCOp175

In addition, the internal evolution around a DM peak is similar for
all the cross-section parameters chosen, since they are CD-matched.
See appendix C for the evolution of the central density of the main
halo.

4.2 Central density matched upper bound simulations

In Section 4, the conservative upper bounds were obtained using the
central density matching scheme. Values are tabulated in Table 5.
We run merger simulations for this set of parameters and estimate
the offsets dpm.cg. For velocity-independent cross-sections up to
0.5 cm? g~!, Fischer et al. (2021) found that the DM-BCG and
DM-Galaxy offsets increase with increasing values of og,. By
running merger simulations at the upper bound values of the cross-
section parameters, we estimate the order of magnitude of the largest
possible offsets allowed by current bounds.

In Fig. 9, we show the DM-BCG offset at the first pericentre
passage for the equal mass merger. The offset is O(1)kpc, while the
offsets after the third pericentre passage (¢ ~ 4 billion years) start
increasing and is seen to be O(10)kpc. The effective self-interaction
strength is not large enough to produce an observable offset at the
first pericentre. Hence, it might be difficult to find such an offset
in real observations. We do not show the offsets for unequal mass
merger because, the offsets just after the first pericentre are smaller
than the ones of equal mass merger. In addition, at later stages due
to the evaporation of halo, we do not have reliable peak positions.
We can also see from Fig. 9 that the offsets produced by fSIDM are
larger than that of rSIDM, and this is due to the fact that mergers are
sensitive to the angular dependence.

5 CONCLUSIONS

We first discuss the assumptions made in the paper before we
conclude. The first assumption that we make is that we use idealized
initial conditions. Yet, it is informative to study them to find the
appropriate features to look out for in more realistic simulations
and observations. One example is the amplitude of BCG oscillation
at late stages, which is seen to depend on the velocity-dependent
cross-section parameters. Therefore, it is instructive to simulate
cosmological boxes with velocity-dependent cross-section at higher
resolution in order to estimate the distribution of DM-BCG offsets.
Later, this could be compared to observations (e.g. Lauer et al. 2014;
Cross et al. 2023). For example, Harvey et al. (2019) studied the
DM-BCG offsets in the BAHAMAS-SIDM suite of cosmological
simulations and placed constraints on o/m, assuming velocity-
independent isotropic SIDM.

In addition, we have modelled the BCG and galaxies as collision-
less point particles. A more realistic treatment of BCG’s and galaxies
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Figure 9. DM-BCG offsets in the equal-mass merger. Upper panel corre-
sponds to fSIDM, while bottom panel to rSIDM. The plot labels are described
in Table 5. The vertical dashed lines correspond to the time of the first
pericentre passage.

is necessary for better comparison with observations. Furthermore,
we neglect the effect of galaxies having their own DM halo (Kummer,
Kahlhoefer & Schmidt-Hoberg 2018). In reality, approximately
10 percent of the mass of clusters is made up by the intracluster
medium (ICM), which is not included in our simulations. Merger
studies that include the ICM, such as Robertson, Massey & Eke
(2017a), find that the DM-galaxy offset is not significantly affected
by the presence of the ICM. Fischer et al. (2023) also finds similar
results. Therefore, we argue that the absence of an ICM component
does not significantly affect our conclusions. We leave the study of
these systems with hydrodynamic simulations to a future study.

As mentioned in Section 2.3, we have assumed that the angular
and velocity dependence of the differential cross-sections can be
separated into two functions. This assumption has to be dropped
when dealing with realistic SIDM models (Feng et al. 2009; Tulin,
Yu & Zurek 2013). There are other SIDM models leading to different
effects that are not included in our studies. For example, in addition
to elastic scattering, inelastic scattering could be included (O’Neil
et al. 2023). We leave the study of such models to future work.
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On the observation side, all observed DM-BCG offsets are inferred
to be just after pericentre passage and have uncertainties that make
them consistent with zero (Bradac et al. 2008; Dawson et al. 2012;
Dawson 2013; Jee et al. 2014, 2015). Similarly, estimating DM-
galaxy offsets are difficult due to shot noise arising from the smaller
galaxy count. In our simulations we had 10° galaxy particles, but in
reality we observe at most ~10* of them. On the other hand, Lauer
etal. (2014) find a median offset of ~10 kpc, with the offset measured
between BCG and cluster centre, the latter being identified by X-ray
observations. Their sample comprised 433 BCGs that are located
in Abell galaxy clusters. The DM-BCG offset distribution could be
compared to predictions of cosmological simulations. Overall, the
situation with observations is expected to improve with forthcoming
surveys, such as SuperBIT (Romualdez et al. 2016) and Euclid
(Laureijs et al. 2011).

We have simulated idealized, isolated haloes and galaxy cluster
mergers with equal and unequal merger mass ratios with velocity-
dependent, frequent, and rare self-interactions. Mergers are inter-
esting astrophysical probes since the system is sensitive to self-
interaction cross-sections with both angular and velocity dependen-
cies. Therefore, we focused on understanding the qualitative effects
that arise from velocity dependence in mergers. On the quantitative
side, we also investigate the maximum offsets that can be observed
given the current bounds on o/m,,.

(i) Independent of the matching procedure used in the paper,
the effects of velocity-dependent cross-sections can be observed
on galaxy cluster mergers by comparing the early time and late
time oscillations of BCG. In particular, the degeneracy in the cross-
section parameters when studying the evolution of central density in
isolated haloes is broken when studying mergers. This is due to the
fact that the relative velocities of the merging clusters change with
time.

(ii) The evolution of central densities of isolated haloes are similar
between rare and frequent self-interaction, when the momentum
transfer cross-section or(v) of fSIDM is chosen to be 2/3o1(v)
of rSIDM. The factor 2/3 follows from matching the angular
dependence of fSIDM and rSIDM with viscosity cross-section, as
seen in Fig. 7.

(iii) We extend the existing upper bounds on the constant cross-
section o, to the parameter space {o,, w} of velocity-dependent,
rare, and frequent self-interactions.

(iv) Inthe equal-mass merger simulations with upper-bound cross-
section parameters, we find that the offsets after the first pericentre
is approximately O(1) kpc. In particular, the offsets are the largest in
the constant cross-section simulation. As the system evolves further,
offsets grow. After the third pericentre passage, due to the oscillations
of BCG, and the galactic component the offsets are O(10) kpc. Thus,
mergers in their late stages are interesting to test and constrain SIDM.

In conclusion, we have studied the qualitative effects of velocity-
dependent SIDM cross-sections in galaxy cluster mergers. Our
models do not have the realism required for a direct comparison
with astronomical data, owing to the neglection of baryonic effects.
However, they offer insights into the physical processes that gov-
ern the phenomenology of SIDM. More realistic predictions can
be obtained by performing full hydrodynamical simulations that
include stars, cooling, and feedback effects. The significantly larger
complexity of such models with additional degrees of freedom render
the interpretation much harder. Clearly, this is an avenue for future
work.
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APPENDIX A: VALIDATING LOWER
RESOLUTION SIMULATIONS

In this section, we compare the peak positions of DM, galaxy,
and BCG components between low resolution and high resolution
simulations. The low- and the high-resolution simulation use the
NFW parameters given in Table 1 for generating the haloes. The
only difference being that the DM and galaxy particles in the high-
resolution simulation have a resolution of 107 particles instead of
109 particles. Both of them also use the same initial conditions as
given in Table 2. The DM component is simulated with and without
self-interactions. For the SIDM case, we simulate with frequent
self-interactions with a constant o7 of 0.5cm?g~!. We observe
that the peak positions evolve almost identically independent of the
resolution up until 5 billion years. See Figs Al and A2.
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Figure Al. Comparison of peaks positions of different components between
low and high resolutions for both CDM and SIDM simulations in the equal
mass merger. Top, middle, and bottom panels correspond DM, galaxy, and
BCG components. The dashed lines correspond to low resolution and solid
lines correspond to high resolution. The SIDM case corresponds to the

frequent self-interactions with o, = 0.5 m? g~ 1.
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Figure A2. Comparison of peaks positions of different components between
low and high resolutions for CDM and SIDM simulations in the unequal mass
merger. Top, middle, and bottom panels correspond to DM, galaxy, and BCG
components. The dashed lines correspond to low resolution and solid lines
correspond to high resolution. The SIDM case corresponds to the frequent

self-interactions with oo, = 0.5 m? g_l.
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APPENDIX B: TESTING RESCALING

We test the rescaling by o, for a given w with rare self-interactions.
Fig. B1 shows the evolution of central density of an isolated halo for
two values of w —2000 km s~! and 3000 km s~! — in the left and right
panel, respectively. For example, in the left panel, after rescaling ¢
of 6, =20 cm? g~! simulation by a factor 20/13, the evolution is
similar to the simulation with o¢,, = 13 cm? g~
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Figure B1. Evolution of central density for two values of w, 2000 and
3000 km s~! in the top and bottom panel, respectively.

APPENDIX C: CENTRAL DENSITY
EVOLUTION IN MERGER

In Fig. C1, we show the evolution of the central density around the
DM peak of the main halo in the equal mass merger. The curves

Velocity-dependent SIDM mergers 2045
correspond to simulations where the cross-section parameters are
CD-matched. Similarly, in Fig. C2 we show the central densities for
cases when the cross-section parameters have the same o ,,,, but with
varying w.
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Figure C1. Evolution of the central density measured within 100 kpc around
the DM peak of main halo. The parameters are CD-matched and the labels
are explained in Table 4.
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Figure C2. Evolution of the central density measured within 100 kpc, around
the DM peak of main halo in the equal mass merger. The parameters have the
same value of o, = 5 cm? g~!, but with varying values of w. The labels are
explained in Table 3.

APPENDIX D: CENTRAL VELOCITY
DISPERSION EVOLUTION IN MERGER

The relative velocity dispersion around the DM peak within 100 kpc
in the equal mass merger is shown as a function of time in
Figs D1 and D2. The earlier figure corresponds to simulations
with cross-section parameters that are CD-matched, while the latter
figure corresponds to cross-section parameters with fixed o, and
varying w. The relative velocity dispersion is calculated from the 1D
velocity dispersion, i.e. oy = ﬁal D.
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Figure D1. Evolution of the central relative velocity dispersion measured
within 100 kpc around the DM peak of main halo. The parameters are CD-
matched and the labels are explained in Table 4.
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APPENDIX E: MOMENTUM TRANSFER
CROSS-SECTION OF CD-MATCHED
PARAMETERS

Plots similar to Fig. 1 but with CD-matched parameters are provided.
Figs E1 and E2 correspond to the parameters in Tables 4 and 5,
respectively.
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Figure E1. Momentum transfer cross-section as a function of velocity for
the parameters given in Table 4. The vertical dashed lines are explained in
the captions of Fig. 1.
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