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A B S T R A C T 

Self-interacting dark matter (SIDM) has been proposed to solve small-scale problems in � CDM cosmology. In previous work, 
constraints on the self-interaction cross-section of dark matter have been derived assuming that the self-interaction cross-section is 
independent of velocity. Ho we ver, a velocity-dependent cross-section is more natural in most theories of SIDM. Using idealized 

N -body simulations without baryons, we study merging clusters with velocity-dependent SIDM. In addition to the usual rare 
scattering in the isotropic limit, we also simulate these systems with anisotropic, small-angle (frequent) scatterings. We find 

that the collisionless brightest cluster galaxy (BCG) has an offset from the DM peak that grows at later stages. Finally, we also 

e xtend the e xisting upper bounds on the v elocity-independent, isotropic self-interaction cross-section to the parameter space 
of rare and frequent velocity-dependent self-interactions by studying the central densities of dark matter-only isolated haloes. 
For these upper-bound parameters, the DM-BCG offsets just after the first pericentre in the dark matter-only simulations are 
found to be � 10 kpc. On the other hand, because of BCG oscillations, we speculate that the distribution of BCG offsets in a 
relaxed cluster is a statistically viable probe. Therefore, this moti v ates further studies of BCG off-centring in hydrodynamic 
cosmological simulations. 

Key words: astroparticle physics – methods: numerical – dark matter. 
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 I N T RO D U C T I O N  

old dark matter (CDM) is a fundamental component of the standard
 CDM cosmology. It plays a vital role in explaining the formation

f the large-scale structure of the Universe and the anisotropies
n the cosmic microwave background. While cosmological N -body
imulations within � CDM have successfully reproduced many ob-
ervations of the large-scale structure, there seem to be discrepancies
etween observations and simulations on small scales (see Bullock &
oylan-Kolchin 2017 for a re vie w of the small-scale problems). A

olution to the small-scale problems was proposed by Spergel &
teinhardt ( 2000 ) via a model of DM, where DM particles can
on-gravitationally scatter off each other. Constraints on the self-
nteraction cross-section can be obtained by studying different
strophysical systems. In particular, relaxed galaxy clusters (e.g.
ndrade et al. 2021 ; Sagunski et al. 2021 ) have provided the most

tringent constraint on the cross-section. We also have constraints
rom galaxy cluster mergers (Randall et al. 2008 ; Harv e y et al. 2015 ).
or a re vie w on astrophysical constraints on self-interacting dark
atter (SIDM) see Adhikari et al. ( 2022 ). 
 E-mail: sabarish.venkataramani@uni-hamburg.de 
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Velocity-dependent anisotropic cross-sections are natural in most
heories of SIDM (for a re vie w of SIDM models see Tulin & Yu
018 ). Examples of such models include light mediator models
Ackerman et al. 2009 ; Tulin, Yu & Zurek 2013 ), atomic DM
Cline et al. 2014 ), strongly interacting DM (Boddy et al. 2014 ).

oreo v er, v elocity-dependent cross-sections are also well moti-
 ated observ ationally. Most constraints on the self-interaction cross-
ection per unit mass of DM particle ( σ / m χ ) in the literature,
ave been derived assuming velocity-independent and isotropic
cattering. F or e xample, Sagunski et al. ( 2021 ) quote an upper
imit of σ/m χ < 0 . 35 cm 

2 g −1 (95 per cent C . L . ) at cluster scales
nd σ/m χ < 1 . 1 cm 

2 g −1 (95 per cent C . L . ) at group scales. On the
alactic scales, Ren et al. ( 2019 ) find that σ / m χ is required to
e in the range 3–10 cm 

2 g −1 to explain the observed diversity in
he rotation curves in the SPARC data set. Similarly, Sankar Ray,
arkar & K umar Sha w ( 2022 ) quote an upper-bound of σ/m χ <

 . 8 cm 

2 g −1 (95 per cent C . L . ). At the scale of dwarf galaxies, there
s no concrete upper bound on the cross-section. A cross-section with
/ m χ > 30 cm 

2 g −1 is fa v oured by the observed central densities of
ilky Way’s dwarf spheroidal galaxies (Correa 2021 ). Elbert et al.

 2015 ) find that σ / m χ can be as large as 50 cm 

2 g −1 at these scales and
till be consistent with observations. These considerations highlight
he viability of velocity-dependent cross-sections. 
© 2024 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 
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Observationally probing the angular dependence is a daunting task. 
ne reason being that the effects of angular dependence are not strong 

nough when studying the evolution of systems that do not have a
referred direction. F or e xample, Robertson, Massey & Eke ( 2017b )
nd Fischer et al. ( 2021 ) simulated isolated haloes using N -body
imulations and found that there is no big difference in the evolution
f core-sizes between isotropic and anisotropic cross-sections for a 
iven choice of parameters. Moreover, simulating differential cross- 
ections which peak for tiny scattering angles, using conventional 
IDM implementations (e.g. Rocha et al. 2013 ) is prohibitively 
 xpensiv e. This type of interaction will be called frequent self-
nteractions (as introduced in Kahlhoefer et al. 2014 ) as opposed 
o rare self-interactions corresponding to large-angle scattering. 
requently self-interacting dark matter (fSIDM) is natural in the 
ass-less mediator limit of light mediator models. The scattering 

f DM particles in this regime can be modelled as a drag force,
here the drag force depends not on the total cross-section but on

he momentum transfer cross-section given by Kahlhoefer, Schmidt- 
oberg & Wild ( 2017 ) and Robertson, Massey & Eke ( 2017b ) 

T = 2 π
∫ 1 

−1 

d σ

d �cms 
( 1 − | cos θcms | ) d cos θcms , (1) 

here θ cms and �cms are the scattering angle, and solid angle in 
he centre of mass frame. Frequent self-interactions have previously 
een studied by Kahlhoefer et al. ( 2014 ), Kummer, Kahlhoefer &
chmidt-Hoberg ( 2018 ), Kummer et al. ( 2019 ), and Fischer et al.
 2021 , 2022 ) assuming velocity independence. 

Mergers of galaxy clusters are interesting test beds for models of
IDM since the mass distribution of the system could be measured 

hrough lensing. The gas and galaxies can be probed through their 
irect emission in various wavelengths. The existence of offsets 
etween the DM component and galaxies may hint at DM self-
nteractions (Randall et al. 2008 ). Moreo v er, mergers are sensitiv e
o both velocity and angular dependence of the scattering cross- 
ection. First, as the haloes undergo many pericentre passages, the 
ollisional velocity changes with time. Scattering velocities are the 
argest at the first pericentre passage and, subsequently, the haloes 
lo w do wn with e very passage. The self-interactions at the pericentre
assages are mainly responsible for an increase in the offset. Thus,
he evolution is sensitive to the parameters of velocity-dependent 
ross-section. Secondly, mergers unlike isolated haloes also have a 
referred direction, i.e. the merger axis. Fischer et al. ( 2022 ) find
hat offsets are larger for frequent self-interactions with a given σ T , 
hen compared to rare self-interactions of the same σ T . They also 

howed that small-angle scattering can produce larger offsets than 
he maximal possible offset from isotropic scattering. 

There have been earlier studies that have simulated mergers. 
 or e xample, studies with v elocity-independent isotropic cross- 
ections have been done by Kim, Peter & Wittman ( 2017 ) who
imulated equal-mass mergers; Robertson, Massey & Eke ( 2017a ) 
imulated a bullet cluster like system. Fischer et al. ( 2021 , 2022 ) stud-
ed equal and unequal-mass mergers with isotropic and anisotropic 
 elocity-independent cross-sections. Robertson, Masse y & Eke 
 2017b ) looked at mergers until just after the first pericentre pas-
age. They used a velocity-dependent isotropic cross-section and 
 velocity-dependent cross-section that corresponds to Yukawa 
cattering under the Born approximation. It is unknown as to how the
erger evolution is affected at late stages by velocity-dependent self- 

nteractions. Similarly, mergers in the fSIDM regime with velocity 
ependence are yet to be studied. 
In this work, we aim to (i) study the qualitati ve dif ferences in
erger simulations between velocity-dependent and independent 
ross-sections, (ii) extend the upper bound on constant cross- 
ection quoted by Sagunski et al. ( 2021 ) to the parameter space
f velocity-dependent cross-section, (iii) find the maximum offsets 
etween DM and the brightest cluster galaxy (BCG) with velocity- 
ependent cross-section parameters that are consistent with upper 
ound parameters. To this end, we simulate the full evolution of
alaxy cluster mergers and isolated haloes with rare and frequent self- 
nteractions. In a companion paper (Fischer et al. 2024 ), cosmological 
imulations are studied with velocity-dependent fSIDM. The paper is 
resented as follows. In Section 2 we briefly describe our numerical
cheme and the SIDM models that are considered. In Section 3
e present our simulation results, which illustrate the qualitative 
ifferences between velocity-dependent and velocity-independent 
ross-section simulations. In Section 4 , we describe the simulations 
f mergers with cross-section parameters that correspond to the 
5 per cent C.L. limits provided in Sagunski et al. ( 2021 ). In Section
 , we summarize our results and conclude. Additional details are
rovided in the Appendices A and B . 

 M E T H O D S  

n this section, we describe the numerical setup of our simulations,
nd we discuss our choice for the self-interaction cross-section that 
s used in the simulations. 

.1 Numerical method 

or our simulations, we use the cosmological N -body simulation 
ode OPENGADGET3 , adapted for frequent self-interactions using 
he implementation given in Fischer et al. ( 2021 ). In this section,
e briefly describe the implementation of rare and frequent self- 

nteractions. The numerical scheme for the self-interactions of rarely 
elf-interacting dark matter (rSIDM) follows Fischer et al. ( 2021 ),
hich is similar to the method described in Rocha et al. ( 2013 ). In

his scheme, the probability that a numerical particle 1 with mass m 1 

catters off another numerical particle 2 with mass m 2 is given by, 

 12 = 

σ ( v 12 ) 

m χ

m 2 ‖ v 12 | 	t � 12 , (2) 

here v 12 is the relative velocity between the numerical particles 1
nd 2, 	 t is the time-step used in the simulation, � 12 is the kernel
 v erlap inte gral, σ ( v 12 )/ m χ is the total cross-section per unit mass
f DM particle. For more details on the implementation and the
hoice for the kernel, see appendix A and B of Fischer et al. ( 2021 ).
 collection of kernels used in other modern implementations of 
IDM within N -body simulations can be found in Adhikari et al.
 2022 , equations 11–15). 

The drag force of frequent self-interactions is based on the relation
erived in Kahlhoefer et al. ( 2014 ), which describes the deceleration
ate experienced by a particle as it travels through a constant
ackground density of DM, 

 dec = 

1 

v 0 

d v ‖ 
d t 

= 

ρ0 v 0 σT 

2 m χ

, (3) 

 0 is the velocity of the particle, v ‖ is the parallel component of
he velocity of the particle, ρ0 is the background density, σ T is the

omentum transfer cross-section defined in equation ( 1 ). We can also
ee that the deceleration rate captures the rate of change of the parallel 
omponent of the velocity. Therefore, the above expression can then 
e cast into an expression for drag force for the physical particles.
he drag force as experienced by numerical particles, labelled 1 and
MNRAS 529, 2032–2046 (2024) 
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Table 1. This table contains the NFW parameters used in generating the ICs 
for merger simulations. The first column contains the virial mass, the second 
the density parameter ρ0 : = δc ρcrit , followed by scale radius r s , concentration 
parameter and number of DM and galaxy particles. DM-only isolated haloes 
have the same NFW parameters as given in the first row. 

M vir ρ0 r s c N DM 

= N Gal N BCG 

( M �) ( M �kpc −3 ) (kpc) 

10 15 1.33 × 10 6 389 .3 5 .42 1 009 878 1 
2 × 10 14 1.908 × 10 6 194 .76 6 .33 181 319 1 

Table 2. This table contains the initial separation, initial relative velocity 
between the two clusters, and the relative velocity of the BCGs at the first 
pericentre passage. 

Merger mass ratios x ini 	v ini 	v 
(BCG) 
FPP 

( M � : M �) (kpc) ( km s −1 ) ( km s −1 ) 

10 15 : 10 15 4000 1000 5500 
10 15 : 2 × 10 14 4000 1000 4800 
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, in the N -body code is given as (Fischer et al. 2021 ), 

 drag = 

1 

2 
| v 12 | 2 σT ( v 12 ) 

m χ

m 1 m 2 � 12 , (4) 

hich is proportional to the momentum transfer cross-section σ T .
rom here on, we will drop the subscripts and let v denote the
elativ e v elocity between DM particles. 

In addition to the drag force, momentum is added to the particles
n a random but perpendicular direction relative to the motion in the
entre-of-mass frame. As for rSIDM, the post-scattered momenta
n the centre-of-mass frame have the same absolute value as the
re-scattered ones. 
In our SIDM implementation, we search for pairs of potentially

nteracting particles. A search for the neighbours of each particle
chieves this, employing the same tree structure as used in the gravity
omputation. 

The code employs an adaptive time-stepping scheme, where the
ime-step of an individual particle is obtained by the minimum of
if ferent time-step criteria, i.e. gi ven by gravity and self-interactions.
The implementation of rSIDM and fSIDM does conserve mo-
entum as well as energy explicitly. This is achieved by executing

he scattering computations for pairs of particles in a consecutive
anner such that their velocities are updated after each scattering

vent and used for the next one. At the same time, we allow for
ultiple interactions per particle per time-step. 
Massively parallel computations of the self-interactions are en-

bled by a parallelized implementation using the message passing
nterface (MPI). Note, here we order the communication and com-
utation of the processes in a manner to reduce waiting time. 
The implementation of the velocity-dependent self-interactions

nto the SIDM module has been described in detail by Fischer
t al. ( 2024 ). To ensure numerically stable results, a no v el time-
tep criterion has been added. This criterion is based on the velocity
t which self-interactions are strongest, i.e. on the maximum of
T ( v ) v , instead of the velocity distribution that an individual particle
ncountered in the previous time-step. In principle, such a scheme
uarantees that the simulation time-step is al w ays sufficiently small
o account for σ T ( v) for any v. 

.2 Initial conditions and simulation parameters 

n this work, we simulate both DM-only isolated haloes and galaxy
luster merger with two different merger mass ratios (MMR). First for
he isolated DM-only haloes, they have a virial mass of 1 × 10 15 M �
nd are initialized with an NFW density profile Navarro, Frenk &

hite ( 1996 ), i.e. 

( r ) = 

δc ρcrit 

( r /r s )(1 + r/r s ) 2 
: = 

ρ0 

( r /r s )(1 + r/r s ) 2 
. (5) 

M positions are sampled from a probability density function such
hat the density profile follows the NFW profile. Given the virial

ass of the halo and the critical density ρcrit of the universe, the
arameters of the NFW profile are determined as follows: (i) the
oncentration parameter c vir is determined using the concentration–
ass relation given in Dutton & Macci ̀o ( 2014 ), (ii) characteristic

ensity δc is computed using c vir from the earlier step (using equation
 of Navarro, Frenk & White 1996 ), (iii) scale radius r s is computed
sing its definition r s = r vir / c vir . The NFW parameters thus obtained
re given in Table 1 . Using the resulting density profile, the initial
elocity dispersion 〈 v 2 〉 ini ( r ) is obtained by integrating the Jeans
quation (Binney & Tremaine 2008 ). Then, initial velocities in each
adial bin are drawn from a Gaussian distribution with the variance
NRAS 529, 2032–2046 (2024) 
 v 2 〉 ini ( r ). The isolated DM halo simulations use the same NFW
arameters as the main halo of the merger for initial conditions (ICs).
e simulate mergers with MMR ∈ { 1, 5 } . The barycentre of the

lusters are initially 4000 kpc apart and they are put on course towards
ach other with a relativ e v elocity of 1000 kms −1 as summarized in
able 2 . 
In the galaxy cluster used in the merger simulations, the cluster

as three particle species: DM, galaxy, and BCG. Galaxies and BCG
re approximated to be collision-less, while DM is collisional with
elf-interaction characterized by its cross-section. An equal number
f DM and galaxy particles is used in the simulation. A sufficient
umber of galaxy particles are chosen to ensure that it is easier to
nd the peak position of the galaxies. The main halo has a virial
ass of 10 15 M � and both species initially follow an NFW profile.
he particle masses are as follows: for DM, m DM 

= 2 × 10 9 M �,
or galaxies, m Gal = 4 × 10 7 M �. In addition, the brightest cluster
alaxy (BCG) is represented by a single particle at the centre of the
alo with a mass m BCG = 7 × 10 11 M �. As the BCG is approximated
o be a point particle, the effects of gravitational scattering become
trong if the mass is large, therefore the BCG particle is taken to be
ess massive than the observed BCGs. This choice is adopted from
arlier studies (e.g. Kim, Peter & Wittman 2017 ; Fischer et al. 2022 ).
he mass resolution chosen works reasonably well for measuring
ffsets in simulation since the simulation is run only for a few
ynamical time-scales. The detailed effects of such a treatment on
easurements other than offsets are yet to be studied. We use a fixed

ravitational softening length of ε = 1.2 kpc for all particles. For
oth mergers and isolated haloes we use an adaptive kernel size for
he DM self-interactions, such that the number of neighbours within
ach particles’ kernel, N ngb is equal to 64. This choice follows from
ischer et al. ( 2021 ). 
All simulations have been performed with a resolution of O(10 6 )

articles. For certain cross-section parameters, the simulations were
erun at a higher resolution of O(10 7 ) particles to validate the lower
esolution runs (see Appendix A ). 

.3 Dark matter cross-section model 

e assume a fairly generic form for the self-interaction momen-
um transfer cross-section for rare and frequent self-interactions,
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Figure 1. Momentum transfer cross-section for σ 0 m = 5 cm 

2 g −1 , and the 
values of w are given in the legend. The vertical coloured dashed lines 
correspond to different velocity scales in the system. The left most is the 
relativ e v elocity dispersion within 100 kpc of the 1 × 10 15 M � cluster. The 
second and third from the left correspond to the relative velocity dispersion 
within 100 kpc around the barycentre at the first pericentre for MMR:5 and 
MMR:1, respectively . Finally , the second last and the last are the relative 
velocity of the BCGs at the first pericentre passage of the system with MMR:5 
and MMR:1, respectively. 
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arametrized as follows (Gilman et al. 2021 ; Yang et al. 2023 ), 

σT ( v) 

m χ

= 

σ0 

m χ

(
1 + 

v 2 

w 

2 

)−2 

, (6) 

here v is the relative velocity of the DM particles. We furthermore
ssume that the total cross-section has the same velocity dependence 
s the momentum transfer cross-section, such that 

σT ( v) 

σT ( v = 0) 
= 

σ ( v) 

σ ( v = 0) 
. (7) 

his assumption is automatically satisfied if the differential cross- 
ection is a separable function, i.e. it is of the following form, 

d σ

d cos θ
= N 

σ0 

m χ

 ( θ ) g ( w, v ) , (8) 

here N is a normalization constant,  ( θ ) captures the angular
ependence and g ( w, v) = (1 + v 2 / w 

2 ) −2 . Ho we ver, e ven for non-
eparable differential cross-sections, such as Rutherford scattering, 
he assumption in equation ( 7 ) gives a useful approximation. 

Depending on the choice of N and  ( θ ), the abo v e differen-
ial cross-section can correspond to either frequent or rare self- 
nteractions. In this work, we consider isotropic scattering for the case 
f rare self-interactions, such that  ( θ ) is simply a number. The total
ross-section to calculate the scattering probability in equation ( 2 )
s then given by σ ( v) = 2 σ T ( v), see equation ( 1 ). For frequent self-
nteractions, on the other hand,  ( θ ) is strongly peaked for small
ngles. The normalization, N , is then chosen such that the momentum
ransfer cross-section given in equation ( 6 ) is recovered, which is
sed in the simulations to compute the drag force experienced by the
articles, see equation ( 4 ). 
To run the simulations, the parameters σ 0 m and w must be chosen, 

here σ 0 m : = σ 0 / m χ . In this paper, we are interested in studying
he qualitative differences in the evolution of galaxy cluster mergers 
etween the different regions of σ 0 m − w parameter space. A priori, 
t is concei v able that there are degeneracies in this parameter space,
uch that different parameter combinations lead to very similar 
erger observables. Such a de generac y was found by Yang et al.

 2023 ) (see their fig. 8) when analysing the rotation curve of LSB
warf galaxy UGC 128. In other words, it was possible to compensate
 change in w by an appropriate change in σ 0 m . We refer to a
rescription to determine the cross-section normalization σ 0 m for 
 given velocity dependence (determined by w) as matching . In the
ollowing, we will explore different matching procedures. 

The choice for w follows from the typical relative velocity scales. 
hese scales can be estimated by running CDM simulations. The 
bserved values are displayed as dashed lines in Fig. 1 . The largest
bserved scales are the relative velocities of the infalling BCGs 
hown as the last two lines corresponding to MMR:5 and MMR:1,
espectiv ely. The av erage scattering v elocity with which DM parti-
les scatter off each other within 100 kpc around the barycentre at
he first pericentre passage are shown. Finally, the relative velocity 
ispersion within 100 kpc of a 1 × 10 15 M � halo is displayed as the
eftmost vertical dashed line and it is approximately 1400 km s −1 .
his implies that for any value of w larger than 1400 km s −1 , the self-

nteractions within the halo will be in the weakly velocity-dependent 
egime. Therefore, the following choice for w is made, w ∈ { 1000,
000, 3000, 4000 } km s −1 . 
We have analysed cluster mergers with σ 0 m chosen according to 

wo matching procedures: The first is to choose the same value of
0 m for all chosen values of w, the second is to choose σ 0 m such that

he evolution of the central density of the isolated haloes for different
alues of w is similar. These procedures will be explained further in
he following sections. 

.4 Analysis methods 

n order to find the peak position of any component, i.e. DM or
alaxies, we use the peak finding method based on the gravitational
otential, see Fischer et al. ( 2022 ). In the simulations, all particles
ave a unique particle ID assigned to them. Using the ID, particles
elonging to a given halo can be identified. Then, the gravitational
otential in each cell in a grid is computed. The cell with the lowest
otential corresponds to the position of the peak. Fischer et al. ( 2022 )
lso propose the isodensity-based peak finding algorithm. In this 
lgorithm, the peaks are identified as the cell in the merger plane with
he highest projected density. This method is closer to observations 
here, for example, gravitational shear measurements can be used 

o infer mass densities. We find that gravitational potential based 
eak finding is more reliable when the simulation is run with low
esolution. Hence, this is our choice for finding peaks. To find the
rrors on the peak position, we bootstrap the particle distribution 
0 times and determine 20 such peaks. Then we estimate the error,
y finding the standard deviation in the obtained peak positions. 
We define offsets as the distance between the peaks of two different 

pecies of the same cluster. F or e xample, d DM-BCG is the distance
etween the DM and BCG peak of a given cluster. 

 VA RY IN G  w O N LY  

n this scheme, the same value of σ 0 m is used for dif ferent v alues
f the parameter w. Even though it is a very simple choice, it is
asier to observe the qualitative difference introduced by velocity- 
ependent cross-sections. To make the differences stand out, we use 
MNRAS 529, 2032–2046 (2024) 
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Table 3. Simulation labels and the corresponding cross-section parameters. 
The generic form of labels is XwDsNpM, where X is F(frequent), R(rare), or 
C(constant). D that follows w is the value of the parameter w to be read as 
D km s −1 and NpM following the s is the value of σ 0 m to be read as N.M 

cm 

2 g −1 . 

Simulation name σ 0 m ( cm 

2 g −1 ) w ( km s −1 ) 

FC5p0 5 ∞ 

Fw1000s5p0 5 1000 
Fw2000s5p0 5 2000 
Fw3000s5p0 5 3000 
Fw4000s5p0 5 4000 

Figure 2. The dotted and solid lines correspond to the DM peak position of 
the main halo and subhalo, respectively. Upper panel: DM peaks in equal- 
mass mer ger, lower panel: Mer ger with mass ratio 5. Plot labels are described 
in Table 3 . Simulation results presented in this figure corresponds to varying 
values of w and a fixed σ 0 m . 
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 large value of σ 0 m = 5.0 cm 

2 g −1 . We confirmed the results to be
ualitatively similar but less pronounced for smaller values of σ 0 m .
he names for the individual runs shown in the plots are tabulated in
able 3 . 

.1 DM peak position 

he plots of the peak positions of DM against time for equal and
nequal-mass mergers are given in Fig. 2 . The peaks of the main halo
re marked by dotted lines, while those of subhalo are indicated by
NRAS 529, 2032–2046 (2024) 
olid lines. First, we observe that for constant σ T the drag force from
elf-interaction is strong enough to stop the DM component in their
racks and they coalesce at the first pericentre passage. For the same

0 m , the DM peak positions in the velocity-dependent SIDM runs
re closer to the CDM run for smaller values of w. This observation
atches our expectation that, for fixed σ 0 m , increasing w increases

he ef fecti ve self-interaction strength. 
The separation of the peaks at the first apocentre is largest for

DM and decreases with increasing self-interaction strength. This
an be attributed to the fact that DM particles experience a drag force
nd thus stay closer to the centre-of-mass of the system. 

The first pericentre passage occurs at different times for different
arameter combinations. Albeit a small effect, self-interactions tend
o increase the time taken to reach the first pericentre passage.
hen the second passage occurs earlier for increasing self-interaction
trength. F or e xample, we see that the first pericentre passage occurs
lightly later in the simulation with constant σ T . This could be
nderstood as self-interactions generating pressure that resists the
nfall, thus slowing the halo down. The difference is large for constant

T because the ef fecti ve self-interaction strength of the velocity-
ependent ones is much smaller than the one of constant σ T at early
tages, as σ T ( v) is small for v > w. 

At later stages of the evolution, the scenario changes. For example,
t the third apocentre, we see that the oscillation in the DM peak for
 = 2000 km s −1 has an amplitude that is greater than that of CDM.
uring these stages, the central density of the haloes are lower for
IDM simulations (see Fig. C2 ). Therefore, the oscillations are less
ampened by dynamical friction for SIDM simulations. 
For the unequal-mass mergers, the subhalo dissolves faster, mak-

ng it difficult to identify the DM peaks during later stages of the
volution. Both equal and unequal mass mergers have identical initial
eparation and initial relative velocity. Therefore, in unequal mass
erger, the less massive cluster traverses more distance than the
assive one and this leads to fewer oscillations. For instance, in
ig. 2 , we see that within 5 billion years, the subhalo in MMR:5
ystem has undergone fewer pericentre passages than the equal-mass
erger. 

.2 BCG peak position 

he BCG positions for subhaloes are given in Fig. 3 , the upper panel
orresponds to the equal-mass merger system, while the lower panel
orresponds to the unequal-mass merger. In CDM simulations, the
CG oscillations are damped faster compared to SIDM simulations.
his general feature has already been observed in earlier work (Kim,
eter & Wittman 2017 ; Fischer et al. 2021 , 2022 ). This could be
xplained by noting that the merger remnants have a cored density
istribution at the centre owing to the self-interactions. On the other
and, merger remnants in CDM simulations have larger central
ensities. As a result, the oscillations dampen out faster in CDM
ue to dynamical friction. 
In the equal-mass merger, we observe that the peak positions of

ubhalo BCGs are closer to the CDM for smaller values of w at the
arly stages of the merger evolution. At later stages, around 5 billion
ears, the BCG oscillations in the CDM simulation have dampened
onsiderably. On the other hand, the oscillations approximately stay
onstant for the constant σ T simulation for the period 1 −8 billion
ears, as shown in Fig. 3 . The position of the BCG in velocity-
ependent simulations start deviating from CDM with time. For
xample, let us consider the w = 2000 km s −1 simulation: (i) we see
hat the curve is initially close to the CDM simulation (ii) during
he period 4 −7 billion years, the oscillations have approximately a
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Figure 3. BCG position of the subhalo versus time. The upper panel shows 
peak positions in the equal-mass merger, while the lower panel corresponds 
to the unequal-mass merger. For better visibility, we plot only the position of 
the BCG of the subhalo. Plot labels are described in Table 3 . 
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onstant amplitude, and they have significantly deviated from the 
DM simulation. The typical velocities around the DM peak at 
arious stages of the evolution are given in Fig. D2 . The central
elativ e v elocity dispersion around the DM peak is large at the
rst pericentre owing to the active merging. At later stages, when 

he haloes have slowed down, they have a very slowly rising
elativ e v elocity dispersion for the rest of the simulated time period.
herefore, from Fig. 1 we see that for w = 2000 km s −1 and v 
 2000 km s −1 , the σ T is less than 1 cm 

2 g −1 , whereas for v <
000 km s −1 the cross-section is larger than 1 cm 

2 g −1 . Thus, merger
emnants experience larger self-interactions at later stages, leading to 
ore cored distributions and lesser dynamical friction. Cumulatively, 

his leads to steady oscillations at later stages. 
The distance travelled by the BCGs at the first apocentre is

bserved to become smaller with increasing values of w. This can 
e understood by looking at the DM peaks. F or e xample, the DM
aloes coalesce at the first pericentre passage for the constant σ T 

imulation. As a result, the BCG experiences a larger gravitational 
orce due to the coalesced DM distribution at the barycentre. This
ccumulation of DM at the barycentre reduces with decreasing w 

ince the average interaction strength reduces with w. This ef fecti vely
eads to smaller amplitudes at the first apocentre in both equal 
nd unequal-mass mergers. Immediately after the second pericentre 
assage, the amplitude of the velocity-dependent SIDM and CDM 
urv es hav e decreased significantly due to dynamic friction. In the
onstant σ T simulation, the DM peaks have come to rest, and the
erger remnants start coring. This leads to the persistence of the
CG oscillation amplitude. 

.3 Morphology 

n Fig. 4 , we show the physical density of DM within the slice | z|
 100 kpc projected on the merger plane. There are three columns,

ach correspond to a DM model and each row corresponds to a
articular simulation time. First we look at time t = 1.4 Gyr, i.e.
efore the first pericentre passage. Both haloes in the constant 
T simulation (column 2) have lower central densities than in the 
DM (column 1) and velocity-dependent simulations (column 3). 
he second ro w sho ws results at a time t = 2.1 Gyr, which is just
fter the first pericentre passage. Owing to the large self-interaction 
trength, the haloes in the constant σ T simulation have coalesced, 
hile for CDM and velocity-dependent self-interactions the DM 

aloes pass through each other. At later stages, t > 5 Gyr, the merger
emnant in the constant σ T simulation has a lower central density. 

hile for the velocity-dependent simulations, the effects of velocity- 
ependence slowly becomes relevant as the system slows down. 
hus, this leads to more cored distribution at the centre of the merger

emnant when compared to the one from CDM simulation. This 
eature essentially leads to the persistent BCG oscillations at late 
tages. In Fig. 5 we have a similar plot displaying only the subhalo’s
rojected density for MMR:5. Independent of the choice for the 
T ( v), the subhaloes are observed to e v aporate with time. With self-

nteractions, the e v aporation is more pronounced. At t = 4.5 Gyr, the
ubhalo experiencing constant σ T has its core dissolved significantly 
nd comes to rest. For CDM, the core has remained relatively intact.
inally, in the velocity-dependent simulation, the core has dissolved. 
lthough the merger remnant seems to be oscillating even at these

tages. In addition, in the CDM simulation, we see shell-like features.
hese features are missing in the constant σ T simulation, since the 
aloes have coalesced. 

 C E N T R A L  DENSITY  M AT C H E D  

ROSS-SECTION  

n this section, we explore a more refined matching procedure 
ased on simulations of isolated haloes. In this matching scheme, 
arameters { σ 0 m , w} are chosen such that different parameter 
ombinations lead to similar central density evolution. We will refer 
o parameters matched according to this scheme as CD-matched. To 
 v oid performing multiple simulations to find the matched parameter
et, we make use of the self-similar nature of the gra v othermal
uid equations of an isolated halo (Balberg, Shapiro & Inagaki 
002 ; Essig et al. 2019 ). This allows us to obtain the central
ensity evolution without running a suite of simulations. In Balberg, 
hapiro & Inagaki ( 2002 ), they assume that the total cross-section is
elocity independent. In order to illustrate the rescaling, consider two 
onstant cross-section parameters σA 

0 m 

, σB 
0 m 

. Then, the central density 
volution obeys the following scaling relation: 

c ( t 
A ) = ρc 

(
t B × σB 

0 m 

σA 
0 m 

)
, (9) 

here t A , t B correspond to the evolution time of the isolated haloes
imulated with parameters σA 

0 m 

, σB 
0 m 

. 
Velocity-dependent cross-sections contain two parameters, and it 

s not immediately clear how the central densities can be rescaled.
ang & Yu ( 2022 ) propose an ef fecti ve cross-section σ eff to model
MNRAS 529, 2032–2046 (2024) 
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Figure 4. The density of DM haloes, accounting for the particles within | z| < 100 kpc. The first column corresponds to CDM simulations, while the second and 
the third columns correspond to simulations with the following momentum transfer cross-sections ( σ 0 m , w): (5, ∞ ), (5, 2000). The rows correspond to different 
times. The first row being before the pericentre passage, the second, just after the first pericentre passage and the third being at later stages. The time stamps in 
the images are in units of Gyr. 
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he halo evolution. For a differential cross-section d σ /dcos θ , the
f fecti ve cross-section is given by 

eff = 

1 

512( σ1D ) 8 

∫ 
v 2 d v d cos θ v 5 sin 2 θ

d σ

d cos θ
exp 

(
− v 2 

4 σ 2 
1D 

)
. 

(10)

n the expression given above, v is the relative velocity of DM
articles, σ 1D is the characteristic velocity dispersion of the halo.
ang & Yu ( 2022 ) show that the evolution of central density in a
imulation with the differential cross-section can be mimicked by a
onstant cross-section simulation with the same σ eff . They also note
hat the equi v alence holds well when the halo is in short-mean-free-
ath regime. In the long-mean-free-path regime, σ eff does not capture
he effects of self-scattering accurately. However, it provides a
easonable approximation to the halo evolution. Therefore, we extend
he rescaling procedure given in equation ( 9 ) to any differential cross-
ection by using the corresponding ef fecti ve cross-section σ eff . 
NRAS 529, 2032–2046 (2024) 
Integrating the angular part of equation ( 10 ), we get 

eff ∝ 

∫ 
v 2 d v v 5 σV ( v , w) exp 

(
− v 2 

4 σ 2 
1D 

)
∝ σ0 m 

f ( w) , (11) 

here 

V = 

∫ 
d cos θ sin 2 θ

d σ

d cos θ
, (12) 

s the viscosity cross-section. 
Thus, for a given w, σA 

eff /σ
B 
eff = σA 

0 m 

/σB 
0 m 

. In other words, rescaling
y σ eff is equi v alent to rescaling by σ 0 m for the same w. We verify
his method by performing tests with some parameter combinations,
ee Appendix B . 

In order to find the value σ 0 m given a w, such that the evolution of
he central density matches that of a target simulation with parameter
et, Q = { σQ 

0 m 

, w 

Q } we follo w the procedure gi ven belo w. 
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Figure 5. Plot similar to Fig. 4 , but displaying only the subhalo of MMR:5 simulation. 
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(i) Simulate an isolated halo with the target parameter set. Find 
he evolution of the central density ρQ 

c ( t 
Q ) from the simulation

napshots. 
(ii) Simulate an isolated halo with the parameter set A = { σA 

0 m 

, w} ,
ollowed by the estimation of the evolution of central density ρA 

c ( t 
A )

rom the simulation data. 
(iii) To obtain the evolution ρB 

c ( t 
B ) corresponding to the parameter 

et B = { σB 
0 m 

, w} , rescale the time axis of the simulation A, i.e. 

B 
c ( t 

B ) = ρA 
c 

(
t A × σA 

0 m 

σB 
0 m 

)
. (13) 

(iv) Repeat the previous step with different values of σB 
0 m 

until 
B 
c ( t 

B ) matches ρQ 

c ( t 
Q ). 

Thus, we have obtained the CD-matched σB 
0 m 

for the given w. 
To make a guess for the value of σA 

0 m 

for one of our chosen values
f w, we solve, 

eff ( σ
A 
0 m 

, w) = σ
Q 

eff . (14) 
o this end, we need a value for σ 1D . In Yang & Yu ( 2022 ), they
ropose to use the velocity dispersion in the central region of the
alo at the maximal core expansion stage for the characteristic 
ispersion σ 1D . Using semi-analytic modelling, Outmezguine et al. 
 2023 ) show that the 1D velocity dispersion is 0.64 V max at the
aximal core expansion phase. Using V max ≈ 1 . 65 r s 

√ 

Gρ0 for our
FW parameters, we find σ1D ≈ 980 km s −1 . On the other hand, 
e observe σ1D ≈ 1000 km s −1 in our simulations. Thus, we find 

onsistency between our simulations and the semi-analytic result. 
We calculate the initial guess σA 

0 m 

for rare self-interactions and use 
he same for frequent self-interactions. For this calculation, we use 
he differential cross-section given in Section 2.3 . 

We choose the target set Q to correspond to the values quoted
n Sagunski et al. ( 2021 ). They quoted a 95 per cent upper limit on
/ m χ of 0.35 cm 

2 g −1 , assuming isotropy and velocity independence.
herefore, this value translates to σ 0 m = 0.175 cm 

2 g −1 for rare self-
nteractions (because σ = 2 σ T ). In other words, we choose the target
et Q = { 0.175 cm 

2 g −1 , ∞ } . In Fig. 6 , we show an example for
he matching procedure in detail. The black band corresponds to 
he target central density of constant σ T with σ 0 m = 0.175 cm 

2 g −1 .
MNRAS 529, 2032–2046 (2024) 



2040 V. M. Sabarish et al. 

M

Figure 6. Evolution of central density of an isolated halo of virial mass 
10 15 M �. There are three bands in the plot corresponing to, (i) simulation 
with rare self-interactions with constant σ T of σ 0 m = 0.175 (ii) simulation 
for w = 2000 km s -1 with an initial guess of σ 0 m = 2.72 cm 

2 g −1 (iii) the 
same simulation as the earlier one , but rescaled to σ 0 m = 1.2 cm 

2 g −1 . The 
width of the band corresponds to the uncertainty in the estimation of central 
density, and it is proportional to 1 / 

√ 

N . 

Figure 7. The plot contains viscosity cross-section e v aluated at v = 0, for 
dif ferent v alues of w . At each w , the inferred value of σ 0 m is used to compute 
σV . The triangles and stars represent σV calculated using the σ 0 m inferred 
from N -body simulations for fSIDM and rSIDM, respectively. The solid line 
corresponds to σ 0 m inferred by solving σ eff = 0.35 cm 

2 g −1 . 
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he orange band corresponds to a simulation with { 2.72 cm 

2 g −1 ,
000 km s −1 } . This value for σ 0 m is our initial guess calculated using
quation ( 14 ). After rescaling by trial and error, the desired value
f σ 0 m is found to be 1.2 cm 

2 g −1 . This procedure can be extended
o all chosen values of w and the obtained results are tabulated in
able 5 . The inferred values of σ 0 m at different values of w can then
e used to calculate the corresponding viscosity cross-section σ V .
his is shown in Fig. 7 . The orange triangles and blue stars represent

he values of σ V obtained using the inferred values of σ 0 m from N -
ody simulations for rare and frequent self-interactions, respectively.
imilarly, the solid line corresponds to the σ V calculated from the
alues of σ 0 m inferred by solving equation ( 14 ). The fact that the
esults obtained from σ eff and N -body simulations are different can
e attributed to the fact that the isolated halo is in the long-mean-
ree-path regime. This was already noted in Yang & Yu ( 2022 ). 
NRAS 529, 2032–2046 (2024) 
The evolution of an isolated halo has a feature that, as long as it
s in the core e xpansion phase, at an y giv en time the central density
s monotonically decreasing with σ eff . This implies that for a given
alue of w, and at a given time in the evolution of the halo, core-size is
arger for larger values of σ 0 m . Andrade et al. ( 2021 ), Sagunski et al.
 2021 ), and Eckert et al. ( 2022 ) constrain σ 0 m using the observed
ore-size in clusters. Hence, for every value of w, there is a value
f σ 0 m that produces core sizes, or central densities, similar to the
urrent upper bound. Increasing σ 0 m any further would increase the
ore size to values larger than what is observed. Thus, this matching
rocedure can be used to extend the bounds from constant σ T to
if ferent v alues of w. 
When matched using σ eff or central density evolution, we observe

hat the ratio between the σ 0 m ’s of rare and frequent is approximately
.64 at every chosen values of w. This can be understood from the
efinition of σ eff . From equation ( 11 ), we have for any w, for rare
elf-interactions, 

eff = Cσ0 m 

∫ 
d θ sin 3 θ

∫ 
d v v 7 exp 

( −v 2 

4 σ 2 
1D 

)(
1 + 

v 2 

w 

2 

)−2 

(15) 

= C 

4 

3 
σ0 m 

f ( w) . (16) 

ere, C = 1 / (512 σ 8 
1D ). Now from equation ( 6 ), for rare self-

nteractions we have σ T = σ 0 m g ( w, v), which implies that 

eff = 

4 

3 
σT Cf /g. (17) 

or frequent self-interactions, we consider a differential cross-
ection of the form given in equation ( 8 ) with the function  ( θ )
aving support only for values of θ close to 0. A simple choice for
 ( θ ) is a step-function that is non-zero in the interval [0, ε], where
is some small number. Therefore, σ eff is given as 

eff = CN σ0 m 

∫ 
d θ sin 3 θ ( θ ) 

∫ 
d v v 7 exp 

( −v 2 

4 σ 2 
1D 

)
g ( w, v ) (18) 

≈ CN σ0 m 

∫ 
d θθ3  ( θ ) f ( w) = CN σ0 m 

f ( w) ε4 / 4 , (19) 

here in the second equality we ha ve Taylor -expanded and retained
nly the leading order in θ in the angular integrand. Similarly, for
he momentum transfer cross-section we have 

T = Nσ0 m 

g ( w, v ) 
∫ 

d θ sin θ (1 − | cos θ | )  ( θ ) (20) 

≈ Nσ0 m 

g ( w, v ) ε4 / 8 . (21) 

hus for frequent self-interactions, we have 

eff = 2 σT Cf /g. (22) 

ow for matching with σ eff or the central density we require
eff (Rare) = σ eff (Freq.). Upon using equation ( 17 ) and equation ( 22 ),

his requirement leads to the matching condition σ T (Freq.) =
2/3) σ T (Rare) ⇒ σ 0 m (Freq.) = (2/3) σ 0 m (Rare) as seen in Table 5 . 

.1 Central density matched simulations – qualitati v e features 

n this subsection, we look at the qualitative differences in mergers
hen parameters are chosen according to the central density match-

ng procedure. Again, as in Section 3 , we only simulate frequent
elf-interactions. In Section 3 , we investigated the effects arising
rom changing the value of w. To ensure that the effects of self-
nteraction are not negligible for w = 1000 km s −1 , we used a large
alue for σ 0 m of 5.0 cm 

2 g −1 . On the other hand, in this section the
ross-section parameters are CD-matched for which we choose the
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Table 4. This table contains labels and cross-section parameters matched to 
constant cross-section, σ 0 m = 1.0 cm 

2 g −1 of frequent self-interactions using 
central density matching scheme. 

w σ 0 m Label 
( km s −1 ) ( cm 

2 g −1 ) 

1000 70.0 Fw1000s70p0 
2000 8.67 Fw2000s8p67 
3000 3.67 Fw3000s3p67 
4000 2.33 Fw4000s2p33 
∞ 1.0 FC1p0 

Figure 8. BCG positions of the subhalo against time. The upper panel 
corresponds to equal mass merger, while the lower one corresponds to unequal 
mass merger. 
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Table 5. This table contains the conserv ati ve upper bound on σ 0 m for 
dif ferent v alues of w gi ven in the first column. The second column contains 
σ 0 m the value for frequent self-interactions, and the third for rare self- 
interactions. 

w Frequent Rare 
σ 0 m Label σ 0 m Label 

( km s −1 ) ( cm 

2 g −1 ) ( cm 

2 g −1 ) 

1000 5.6 Fw1000s5p6 9.0 Rw1000s9p0 
2000 0.78 Fw2000s0p78 1.25 Rw2000s1p25 
3000 0.36 Fw3000s0p36 0.57 Rw3000s0p57 
4000 0.25 Fw4000s0p25 0.39 Rw4000s0p39 
∞ 0.11 FC0p11 0.175 RC0p175 
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arget set to be Q = { 1.0 cm 

2 g −1 , ∞ } . The matched parameters
re given in Table 4 . We have chosen a value for σ 0 m such that
he effects of self-interaction are observable, but not as large as the
re vious v alue 5.0 cm 

2 g −1 . 
For bre vity, we sho w only the BCG oscillations in Fig. 8 . We see

hat the BCG oscillations of velocity-dependent simulations all have 
imilar amplitudes at early stages. Only at a later stages they start
o deviate. This similarity stems from the fact that the parameters 
re CD-matched. Similar to what was explained in Section 3.2 , at
arly times the DM particles have a large relative velocity. As a
esult, most of the velocity-dependent cross-sections have a small 
f fecti ve self-interaction strength. At later stages, the system slows
own and v � w and the ef fecti ve self-interaction strength increases.
n addition, the internal evolution around a DM peak is similar for
ll the cross-section parameters chosen, since they are CD-matched. 
ee appendix C for the evolution of the central density of the main
alo. 

.2 Central density matched upper bound simulations 

n Section 4 , the conserv ati ve upper bounds were obtained using the
entral density matching scheme. Values are tabulated in Table 5 .
e run merger simulations for this set of parameters and estimate

he offsets d DM-BCG . For velocity-independent cross-sections up to 
.5 cm 

2 g −1 , Fischer et al. ( 2021 ) found that the DM-BCG and
M-Galaxy offsets increase with increasing values of σ 0 m . By 

unning merger simulations at the upper bound values of the cross-
ection parameters, we estimate the order of magnitude of the largest
ossible offsets allowed by current bounds. 
In Fig. 9 , we show the DM-BCG offset at the first pericentre

assage for the equal mass merger. The offset is O(1) kpc , while the
ffsets after the third pericentre passage ( t ∼ 4 billion years) start
ncreasing and is seen to be O(10) kpc . The ef fecti ve self-interaction
trength is not large enough to produce an observable offset at the
rst pericentre. Hence, it might be difficult to find such an offset

n real observations. We do not show the offsets for unequal mass
erger because, the offsets just after the first pericentre are smaller

han the ones of equal mass merger. In addition, at later stages due
o the e v aporation of halo, we do not have reliable peak positions.

e can also see from Fig. 9 that the offsets produced by fSIDM are
arger than that of rSIDM, and this is due to the fact that mergers are
ensitive to the angular dependence. 

 C O N C L U S I O N S  

e first discuss the assumptions made in the paper before we
onclude. The first assumption that we make is that we use idealized
nitial conditions. Yet, it is informative to study them to find the
ppropriate features to look out for in more realistic simulations 
nd observations. One example is the amplitude of BCG oscillation 
t late stages, which is seen to depend on the velocity-dependent 
ross-section parameters. Therefore, it is instructive to simulate 
osmological boxes with velocity-dependent cross-section at higher 
esolution in order to estimate the distribution of DM-BCG offsets. 
ater, this could be compared to observations (e.g. Lauer et al. 2014 ;
ross et al. 2023 ). F or e xample, Harv e y et al. ( 2019 ) studied the
M-BCG offsets in the BAHAMAS–SIDM suite of cosmological 

imulations and placed constraints on σ / m χ assuming velocity- 
ndependent isotropic SIDM. 

In addition, we have modelled the BCG and galaxies as collision-
ess point particles. A more realistic treatment of BCG’s and galaxies
MNRAS 529, 2032–2046 (2024) 
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M

Figure 9. DM–BCG offsets in the equal-mass merger. Upper panel corre- 
sponds to fSIDM, while bottom panel to rSIDM. The plot labels are described 
in Table 5 . The vertical dashed lines correspond to the time of the first 
pericentre passage. 
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s necessary for better comparison with observations. Furthermore,
e neglect the effect of galaxies having their own DM halo (Kummer,
ahlhoefer & Schmidt-Hoberg 2018 ). In reality, approximately
0 per cent of the mass of clusters is made up by the intracluster
edium (ICM), which is not included in our simulations. Merger

tudies that include the ICM, such as Robertson, Massey & Eke
 2017a ), find that the DM-galaxy offset is not significantly affected
y the presence of the ICM. Fischer et al. ( 2023 ) also finds similar
esults. Therefore, we argue that the absence of an ICM component
oes not significantly affect our conclusions. We leave the study of
hese systems with hydrodynamic simulations to a future study. 

As mentioned in Section 2.3 , we have assumed that the angular
nd velocity dependence of the differential cross-sections can be
eparated into two functions. This assumption has to be dropped
hen dealing with realistic SIDM models (Feng et al. 2009 ; Tulin,
u & Zurek 2013 ). There are other SIDM models leading to different
ffects that are not included in our studies. For example, in addition
o elastic scattering, inelastic scattering could be included (O’Neil
t al. 2023 ). We leave the study of such models to future work. 
NRAS 529, 2032–2046 (2024) 
On the observation side, all observed DM-BCG offsets are inferred
o be just after pericentre passage and have uncertainties that make
hem consistent with zero (Brada ̌c et al. 2008 ; Dawson et al. 2012 ;
awson 2013 ; Jee et al. 2014 , 2015 ). Similarly, estimating DM-
alaxy offsets are difficult due to shot noise arising from the smaller
alaxy count. In our simulations we had 10 6 galaxy particles, but in
eality we observe at most ∼10 3 of them. On the other hand, Lauer
t al. ( 2014 ) find a median offset of ∼10 kpc, with the offset measured
etween BCG and cluster centre, the latter being identified by X-ray
bservations. Their sample comprised 433 BCGs that are located
n Abell galaxy clusters. The DM-BCG offset distribution could be
ompared to predictions of cosmological simulations. Overall, the
ituation with observations is expected to improve with forthcoming
urv e ys, such as SuperBIT (Romualdez et al. 2016 ) and Euclid
Laureijs et al. 2011 ). 

We have simulated idealized, isolated haloes and galaxy cluster
ergers with equal and unequal merger mass ratios with velocity-

ependent, frequent, and rare self-interactions. Mergers are inter-
sting astrophysical probes since the system is sensitive to self-
nteraction cross-sections with both angular and velocity dependen-
ies. Therefore, we focused on understanding the qualitative effects
hat arise from velocity dependence in mergers. On the quantitative
ide, we also investigate the maximum offsets that can be observed
iven the current bounds on σ / m χ . 

(i) Independent of the matching procedure used in the paper,
he effects of velocity-dependent cross-sections can be observed
n galaxy cluster mergers by comparing the early time and late
ime oscillations of BCG. In particular, the de generac y in the cross-
ection parameters when studying the evolution of central density in
solated haloes is broken when studying mergers. This is due to the
act that the relative velocities of the merging clusters change with
ime. 

(ii) The evolution of central densities of isolated haloes are similar
etween rare and frequent self-interaction, when the momentum
ransfer cross-section σ T ( v) of fSIDM is chosen to be 2/3 σ T ( v)
f rSIDM. The factor 2/3 follows from matching the angular
ependence of fSIDM and rSIDM with viscosity cross-section, as
een in Fig. 7 . 

(iii) We extend the existing upper bounds on the constant cross-
ection σ 0 m to the parameter space { σ 0 m , w} of velocity-dependent,
are, and frequent self-interactions. 

(iv) In the equal-mass merger simulations with upper-bound cross-
ection parameters, we find that the offsets after the first pericentre
s approximately O(1) kpc . In particular, the offsets are the largest in
he constant cross-section simulation. As the system evolves further,
f fsets gro w. After the third pericentre passage, due to the oscillations
f BCG, and the galactic component the offsets are O(10) kpc . Thus,
ergers in their late stages are interesting to test and constrain SIDM.

In conclusion, we have studied the qualitative effects of velocity-
ependent SIDM cross-sections in galaxy cluster mergers. Our
odels do not have the realism required for a direct comparison
ith astronomical data, owing to the neglection of baryonic effects.
o we v er, the y offer insights into the physical processes that gov-

rn the phenomenology of SIDM. More realistic predictions can
e obtained by performing full hydrodynamical simulations that
nclude stars, cooling, and feedback effects. The significantly larger
omplexity of such models with additional degrees of freedom render
he interpretation much harder. Clearly, this is an avenue for future
ork. 



Velocity-dependent SIDM merg er s 2043 

A

W
i  

t
i
R
2
S
G
0

D

T
t

R

A  

A

A  

B
B

B  

B  

B
C
C
C  

D
D
D
E  

E  

E  

F  

F  

F  

F  

F  

G  

H  

H  

J  

J
K  

K  

K
K  

K  

L  

L

N
O
O  

R  

R
R
R
R  

R  

S  

S  

S
T
T
Y
Y  

A
R

I  

a
s
N  

o  

r
1  

g  

s
s  

t
r

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/529/3/2032/7625100 by Inst F Entscheidungstheorie and U
nternehm

ensforschung user on 11 April 2024
C K N OW L E D G E M E N T S  

e want to thank the anonymous referee for helpful comments that 
mpro v ed the paper. We would also like to thank all participants of
he Darkium SIDM Journal Club for helpful discussions. This work 
s funded by the Deutsche Forschungsgemeinschaft (DFG, German 
esearch Foundation) under Germany’s Excellence Strategy – EXC 

121 ‘Quantum Universe’ – 390833306, Germany’s Excellence 
trategy – EXC-2094 ‘Origins’ – 390783311, and the Emmy Noether 
rant No. KA 4662/1-2. Preprint numbers: DESY-23-153, TTP23- 
43. 

ATA  AVAILABILITY  

he data underlying this article will be shared on reasonable request 
o the corresponding author. 

EFERENCES  

ckerman L. , Buckley M. R., Carroll S. M., Kamionkowski M., 2009, Phys.
Rev. D , 79, 023519 

dhikari S. et al., 2022, Astrophysical Tests of Dark Matter Self-Interactions. 
preprint ( arXiv:2207.10638 ) 

ndrade K. E. , Fuson J., Gad-Nasr S., Kong D., Minor Q., Roberts M. G.,
Kaplinghat M., 2021, MNRAS , 510, 54 

alberg S. , Shapiro S. L., Inagaki S., 2002, ApJ , 568, 475 
inney J. , Tremaine S., 2008, Galactic Dynamics: Second Edition. Princeton 

Univ. Press, Princeton 
oddy K. K. , Feng J. L., Kaplinghat M., Tait T. M. P., 2014, Phys. Rev. D ,

89, 115017 
rada ̌c M. , Allen S. W., Treu T., Ebeling H., Massey R., Morris R. G., von

der Linden A., Applegate D., 2008, ApJ , 687, 959 
ullock J. S. , Boylan-Kolchin M., 2017, ARA&A , 55, 343 
line J. M. , Liu Z., Moore G. D., Xue W., 2014, Phys. Rev. D , 89, 043514 
orrea C. A. , 2021, MNRAS , 503, 920 
ross D. et al., 2023, Examining the Self-Interaction of Dark Matter through

Central Cluster Galaxy Offsets. preprint ( arXiv:2304.10128 ) 
awson W. A. , 2013, PhD thesis, University of California, Davis 
awson W. A. et al., 2012, ApJ , 747, L42 
utton A. A. , Macci ̀o A. V., 2014, MNRAS , 441, 3359 
ckert D. , Ettori S., Robertson A., Massey R., Pointecouteau E., Harv e y D.,

McCarthy I. G., 2022, A&A , 666, A41 
lbert O. D. , Bullock J. S., Garrison-Kimmel S., Rocha M., O ̃ norbe J., Peter

A. H. G., 2015, MNRAS , 453, 29 
ssig R. , McDermott S. D., Yu H.-B., Zhong Y.-M., 2019, Phys. Rev. Lett. ,

123, 121102 
eng J. L. , Kaplinghat M., Tu H., Yu H.-B., 2009, J. Cosmol. Astropart. Phys. ,

2009, 004 
ischer M. S. , Br ̈uggen M., Schmidt-Hoberg K., Dolag K., Kahlhoefer F.,

Ragagnin A., Robertson A., 2021, MNRAS , 505, 851 
ischer M. S. , Br ̈uggen M., Schmidt-Hoberg K., Dolag K., Ragagnin A.,

Robertson A., 2022, MNRAS , 510, 4080 
ischer M. S. , Kasselmann L., Br ̈uggen M., Dolag K., Kahlhoefer

F., Ragagnin A., Robertson A., Schmidt-Hoberg K., 2024, preprint 
( arXiv:2310.07750 ) 

ischer M. S. , Durke N.-H., Hollingshausen K., Hammer C., Br ̈uggen M.,
Dolag K., 2023, MNRAS , 523, 5915 

ilman D. , Bovy J., Treu T., Nierenberg A., Birrer S., Benson A., Sameie O.,
2021, MNRAS , 507, 2432 
arv e y D. , Masse y R., Kitching T., Taylor A., Tittley E., 2015, Science , 347,
1462 

arv e y D. , Robertson A., Massey R., McCarthy I. G., 2019, MNRAS , 488,
1572 

ee M. J. , Hughes J. P., Menanteau F., Sif ́on C., Mandelbaum R., Barrientos
L. F., Infante L., Ng K. Y., 2014, ApJ , 785, 20 

ee M. J. et al., 2015, ApJ , 802, 46 
ahlhoefer F. , Schmidt-Hoberg K., Frandsen M. T., Sarkar S., 2014, MNRAS ,

437, 2865 
ahlhoefer F. , Schmidt-Hoberg K., Wild S., 2017, J. Cosmol. Astropart.

Phys. , 2017, 003 
im S. Y. , Peter A. H. G., Wittman D., 2017, MNRAS , 469, 1414 
ummer J. , Kahlhoefer F., Schmidt-Hoberg K., 2018, MNRAS , 474,

388 
ummer J. , Br ̈uggen M., Dolag K., Kahlhoefer F., Schmidt-Hoberg K., 2019,

MNRAS , 487, 354 
auer T. R. , Postman M., Strauss M. A., Graves G. J., Chisari N. E., 2014,

ApJ , 797, 82 
aureijs R. et al., 2011, Euclid Definition Study Report. preprint 

( arXiv:1110.3193 ) 
avarro J. F. , Frenk C. S., White S. D. M., 1996, ApJ , 462, 563 
’Neil S. et al., 2023, MNRAS , 524, 288 
utmezguine N. J. , Boddy K. K., Gad-Nasr S., Kaplinghat M., Sagunski L.,

2023, MNRAS , 523, 4786 
andall S. W. , Markevitch M., Clowe D., Gonzalez A. H., Brada ̌c M., 2008,

ApJ , 679, 1173 
en T. , Kwa A., Kaplinghat M., Yu H.-B., 2019, Phys. Rev. X , 9, 031020 
obertson A. , Massey R., Eke V., 2017a, MNRAS , 465, 569 
obertson A. , Massey R., Eke V., 2017b, MNRAS , 467, 4719 
ocha M. , Peter A. H. G., Bullock J. S., Kaplinghat M., Garrison-Kimmel

S., O ̃ norbe J., Moustakas L. A., 2013, MNRAS , 430, 81 
omualdez L. J. et al., 2016, The Design and Development of a High-

Resolution Visible-to-near-UV Telescope for Balloon-Borne Astronomy: 
SuperBIT. preprint( arXiv:1608.02502) 

agunski L. , Gad-Nasr S., Colquhoun B., Robertson A., Tulin S., 2021, J.
Cosmol. Astropart. Phys. , 2021, 024 

ankar Ray T. , Sarkar S., K umar Sha w A., 2022, J. Cosmol. Astropart. Phys. ,
2022, 011 

pergel D. N. , Steinhardt P. J., 2000, Phys. Rev. Lett. , 84, 3760 
ulin S. , Yu H.-B., 2018, Phys. Rev. , 730, 1 
ulin S. , Yu H.-B., Zurek K. M., 2013, Phys. Rev. D , 87, 115007 
ang D. , Yu H.-B., 2022, J. Cosmol. Astropart. Phys. , 2022, 077 
ang S. , Du X., Zeng Z. C., Benson A., Jiang F., Nadler E. O., Peter A. H.

G., 2023, ApJ , 946, 47 

PPENDI X  A :  VA LI DATI NG  LOWER  

ESOLUTI ON  SI MULATI ONS  

n this section, we compare the peak positions of DM, galaxy,
nd BCG components between low resolution and high resolution 
imulations. The low- and the high-resolution simulation use the 
FW parameters given in Table 1 for generating the haloes. The
nly difference being that the DM and galaxy particles in the high-
esolution simulation have a resolution of 10 7 particles instead of 
0 6 particles. Both of them also use the same initial conditions as
iven in Table 2 . The DM component is simulated with and without
elf-interactions. For the SIDM case, we simulate with frequent 
elf-interactions with a constant σ T of 0.5 cm 

2 g −1 . We observe
hat the peak positions evolve almost identically independent of the 
esolution up until 5 billion years. See Figs A1 and A2 . 
MNRAS 529, 2032–2046 (2024) 
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Figure A1. Comparison of peaks positions of different components between 
low and high resolutions for both CDM and SIDM simulations in the equal 
mass merger. Top, middle, and bottom panels correspond DM, galaxy, and 
BCG components. The dashed lines correspond to low resolution and solid 
lines correspond to high resolution. The SIDM case corresponds to the 
frequent self-interactions with σ 0 m = 0.5 m 

2 g −1 . 

Figure A2. Comparison of peaks positions of different components between 
low and high resolutions for CDM and SIDM simulations in the unequal mass 
merger. Top, middle, and bottom panels correspond to DM, galaxy, and BCG 

components. The dashed lines correspond to low resolution and solid lines 
correspond to high resolution. The SIDM case corresponds to the frequent 
self-interactions with σ 0 m = 0.5 m 

2 g −1 . 
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PPENDIX  B:  TESTING  RESCALING  

e test the rescaling by σ 0 m for a given w with rare self-interactions.
ig. B1 shows the evolution of central density of an isolated halo for

wo values of w – 2000 km s −1 and 3000 km s −1 – in the left and right
anel, respectiv ely. F or e xample, in the left panel, after rescaling t
f σ 0 m = 20 cm 

2 g −1 simulation by a factor 20/13, the evolution is
imilar to the simulation with σ 0 m = 13 cm 

2 g −1 . 

igure B1. Evolution of central density for two values of w, 2000 and
000 km s −1 in the top and bottom panel, respectively. 

PPENDIX  C :  C E N T R A L  DENSITY  

VO L U T I O N  IN  M E R G E R  

n Fig. C1 , we show the evolution of the central density around the
M peak of the main halo in the equal mass merger. The curves
orrespond to simulations where the cross-section parameters are 
D-matched. Similarly, in Fig. C2 we show the central densities for
ases when the cross-section parameters have the same σ 0 m , but with
arying w. 

igure C1. Evolution of the central density measured within 100 kpc around
he DM peak of main halo. The parameters are CD-matched and the labels
re explained in Table 4 . 

igure C2. Evolution of the central density measured within 100 kpc, around
he DM peak of main halo in the equal mass merger. The parameters have the
ame value of σ 0 m = 5 cm 

2 g −1 , but with varying values of w. The labels are
xplained in Table 3 . 

PPENDI X  D :  C E N T R A L  V E L O C I T Y  

I SPERSI ON  E VO L U T I O N  IN  M E R G E R  

he relativ e v elocity dispersion around the DM peak within 100 kpc
n the equal mass merger is shown as a function of time in
igs D1 and D2 . The earlier figure corresponds to simulations
ith cross-section parameters that are CD-matched, while the latter 
gure corresponds to cross-section parameters with fixed σ 0 m and 
arying w. The relativ e v elocity dispersion is calculated from the 1D
elocity dispersion, i.e. σrel = 

√ 

2 σ1 D 

. 
MNRAS 529, 2032–2046 (2024) 
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Figure E1. Momentum transfer cross-section as a function of velocity for 
the parameters given in Table 4 . The vertical dashed lines are explained in 
the captions of Fig. 1 . 

Figure E2. Momentum transfer cross-section as a function of velocity for 
the parameters given in Table 5 .The vertical dashed lines are explained in the 
captions of Fig. 1 . 
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igure D1. Evolution of the central relative velocity dispersion measured
ithin 100 kpc around the DM peak of main halo. The parameters are CD-
atched and the labels are explained in Table 4 . 

igure D2. Evolution of the central relative velocity dispersion within
00 kpc around the DM peak of the main halo. The parameters have the
ame value of σ 0 m = 5 cm 

2 g −1 , but with varying values of w. The labels are
xplained in Table 3 . 

PPENDIX  E:  M O M E N T U M  TRANSFER  

ROSS-SECTION  O F  C D - M AT C H E D  

A R A M E T E R S  

lots similar to Fig. 1 but with CD-matched parameters are provided.
igs E1 and E2 correspond to the parameters in Tables 4 and 5 ,
espectively. 
NRAS 529, 2032–2046 (2024) 
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