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Abstract: The crucial parameters influencing drilling operations, reservoir production behavior, and
well completion are lithology and reservoir rock. This study identified optimal reservoir rocks and
facies in 280 core samples from a drilled well in the Asmari reservoir of the Mansouri field in SW
Iran to determine the number of hydraulic flow units. Reservoir samples were prepared, and their
porosity and permeability were determined by measuring devices. The flow zone index (FZI) was
calculated for each sample using MATLAB software; then, a histogram analysis was performed
on the logarithmic data of the FZI, and the number of hydraulic flow units was determined based
on the obtained normal distributions. Electrical facies were determined based on artificial neural
network (ANN) and multi-resolution graph-based clustering (MRGC) approaches. Five electrical
facies with dissimilar reservoir conditions and lithological compositions were ultimately specified.
Based on described lithofacies, shale and sandstone in zones three and five demonstrated elevated
reservoir quality. This study aimed to determine the Asmari reservoir’s porous medium’s flowing
fluid according to the C-mean fuzzy logic method. Furthermore, the third and fourth flow units
in the Asmari Formation have the best flow units with high reservoir quality and permeability
due to determining the siliceous–clastic facies of the rock units and log data. Outcomes could be
corresponded to the flow unit determination in further nearby wellbores without cores.

Keywords: Asmari sandstone reservoir; litho–electrical facies; MRGC and ANN clustering; hydraulic
flow units; optimal reservoir rocks; FZI and FCM clustering

1. Introduction

The petroleum industry uses the hydraulic flow unit implication to improve perme-
ability prediction for wells with coreless intervals [1]. A hydraulic unit (geometrical shape
of the hole) is defined as the main volume of the entire reservoir rock, in which the petro-
physical and geological properties affecting the fluid flow are constant and normally varied
in different hydraulic units [2–6]. The change in the characteristics of the cavity geometry
determines the existence of separate regions (flow units) with fluid flow characteristics. The
classical separation of rock formations is based on geological observations and empirical
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relationships between permeability and porosity logs [1,7–9]. However, a rock formation
determined for each permeability and porosity may show different values, indicating the
presence of several flowing units. The concept of fluid flow units is a powerful and unique
tool for dividing the reservoir into units that estimate the internal structure of the reservoir
at a scale compatible with reservoir simulation modeling [4,10–14]. Geological texture,
mineralogy, sedimentary structures, facies, layered contact surface, nature of permeable
barriers, and petrophysical properties of porosity, permeability, and capillary pressure
often define flow units [2,13–19]. In clustering, the goal is to achieve a criterion for the most
suitable classification of variables or samples based on the most significant similarity within
the intergroup and the most remarkable difference between the groups. This characteristic
helps us classify variables and samples in clusters with the maximum possible similarity
within themselves and the maximum difference between them [10,20–26].

Hossain, et al. [27] utilized fuzzy C-mean in subsurface electrofacies lithological clas-
sification. Temizel, et al. [28] classified facies as 3D digital reservoir images, employing
the classification of different facies with various unsupervised and supervised learning
algorithms. Hussain, et al. [21] identified reservoir rocks for lithofacies prediction by ma-
chine learning techniques. Zhang, et al. [29] utilized a 2D training image of the multi-point
geostatistics (MPG) method to model the facies of a tight sandstone reservoir. Liu, et al. [30]
analyzed influencing reservoir electrical parameters in a Quaternary mudstone reservoir
containing biogas. Xing, et al. [31] employed machine learning of core and log data for
reservoir rock classification. Krivoshchekov, et al. [32] characterized complex carbonate
reservoirs employing reservoir rock groups. Mehmood, et al. [33] studied Quaternary
sedimentary facies, including the depositional environment and architectural elements.
Xie, et al. [34] discovered diagenetic facies in a developed mixed shale reservoir. Vukadin,
et al. [35] employed synthetic wellbore machine learning to present a high-porosity sand-
stone reservoir’s lithology distribution model. Wang, et al. [36] investigated the coupled
relationships between tectonic fracture characteristics, sand bodies, and sedimentary mi-
crofacies in a braided river delta. Kumar, et al. [37] employed fuzzy C-means clustering
as an unsupervised machine learning algorithm for a multi-scale geological mapping of
potential field data under sediment litho-units [37,38].

In addition, in recent years, other clustering methods such as fractal geometry have
been used in petroleum exploration, employing the results of seismic geophysics, ex-
ploratory geochemical prospecting, and geomechanical studies [4,8,13,19,26,39]. Some
recent work by Kianoush, et al. [4] used velocity–volume (V–V) cube fractal models to
assess the seismic inversion velocity data of the South Azadegan field in SW Iran. Further-
more, in 2022–2023, Kianoush, et al. [25] used the results of seismic velocity investigations
and geophysical and petrophysical studies to present a pressure–volume (P–V) cube fractal
model including pore pressure, fracture pressure, and other formation pressures. Also, Hos-
seini, et al. [17] utilized hybrid fractal models for geochemical and geophysical prospecting
studies in NE Iran.

This research employs the fuzzy C-mean clustering technique to determine reservoir
rock groups in the Mansouri field as a case study. Considering that the flow zone index
(FZI) and the number of hydraulic flow unit methods depend on the user (this number
changes according to the user’s opinion and experience), the possibility of making errors
in the calculations is high. For this purpose, to reduce the errors, the sum of square errors
parameter was employed to define the number of hydraulic flow units. Then, linear
regression analysis was performed on the data, and the squared error’s sum was calculated.
A similar method for the number of other categories was used, and eventually, a graph of
the sum of squared errors against the number of categories was drawn. In these graphs,
from one value to the next, the changes in the sum of squared errors are not noticeable
and can be ignored. This value is the optimal number of hydraulic flow units. Then,
considering that one of the most critical parameters in determining reservoir rock is porosity
and permeability, the definition of optimal reservoir rock based on these two parameters
employs the fuzzy c-mean clustering method in the MATLAB R2021a software environment.



Minerals 2024, 14, 233 3 of 23

Thus, each cluster produced during the clustering process represents a reservoir rock. In
the clustering process of this method, each reservoir rock has characteristics related to
the range, standard deviation, median, mean, maximum, and minimum of porosity and
permeability changes, which separates it from other groups. In addition, in the cross-plots
of porosity versus permeability, each group is well separated from the other groups, and
there is no overlap. It is evident that, in this case, any reservoir rock represents a facies with
a specific range in terms of porosity and permeability.

2. Geological Setting of the Case Study Area

The Mansouri field in the southernmost part of the north Dezful zone, about 45
km south of Ahwaz, is located approximately on the border of the Arabian Plate, and
Quaternary alluviums represent the Zagros Plate and its surface outcrop. The Mansouri
field is located north of the Ahwaz field, in the west, in the vicinity of the Abteymur
and Susangerd fields, and northeast of the Shadegan field [40–42]. The Asmari carbonate
Formation is an Oligocene and Miocene period hydrocarbon reservoir in western Zagros
mountain that primarily consists of marly limestone, dolomite, dolomitic limestone, and
limestone [25,41,43,44].

Furthermore, there are smaller amounts of limey sandstone, lithic sandstone, and
anhydrite. It has been producing oil since the 1930s. It also forms a significant aquifer,
discharging at various springs in the Zagros region. The Asmari Formation’s basic bio-
stratigraphy was established in the 1950s and was formally described in 1965. It contains
carbonate platforms that were formed in six distinct stages [42,45,46].

It is named after the Asmari Mountains SE of Masjed-i-Soleiman (MIS), and its type
sample was taken from the Tang-e-Gel Torsh in these mountains [47]. The Asmari Formation
was deposited when the Tethys Ocean finally closed. The Zagros Mountains were first
rising. The area was a shallow ocean, gradually less profound during this period. This
process culminated in the sea shrinking to lagoons by the time of the succeeding Gachsaran
Formation [43,48].

In SW Zagros, the Oligo-Miocene Asmari Formation sits atop the Paleocene Pabdeh
Formation. In the Luristan and Fars regions, the Asmari Formation sits atop the Jahrum
and Shahbazan Formations. The Asmari Formation is thickest in the NE part of the
Dezful Embayment [13,23,24,40,43,46]. The location, stratigraphic column, and reservoir
zonation of the Mansouri oil field are presented in Figure 1A,B for one of the drilled wells.
The Bangestan reservoir was subdivided into nine zones in the studied field based on
petrography, petrophysical parameters, and well-logging data.
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Figure 1. (A) The geographical location of the Mansouri oilfield in the Dezful embayment, SW of 
Iran, and (B) a general stratigraphic column of the Mansouri oilfield [23,40,43]. 

3. Materials and Methods 
Determination of facies is one of the main elements of oil exploration and reservoir 

property determination. Electrical facies or electrofacies are specified employing petro-
physical logs such as resistivity, gamma ray, neutron-density, and acoustic logs and can 
be attributed to one or more lithofacies. Electrofacies and lithofacies are utilized in reser-
voir characterization, but they have some key differences. Electrofacies use wireline log-
ging technology and artificial intelligence (AI) to categorize reservoir rocks. They are em-
ployed to study reservoir zonation and can help identify high-quality reservoir zones. On 
the other hand, lithofacies refer to the classification of reservoirs based on their physical 

Figure 1. (A) The geographical location of the Mansouri oilfield in the Dezful embayment, SW of
Iran, and (B) a general stratigraphic column of the Mansouri oilfield [23,40,43].

3. Materials and Methods

Determination of facies is one of the main elements of oil exploration and reservoir
property determination. Electrical facies or electrofacies are specified employing petro-
physical logs such as resistivity, gamma ray, neutron-density, and acoustic logs and can be
attributed to one or more lithofacies. Electrofacies and lithofacies are utilized in reservoir
characterization, but they have some key differences. Electrofacies use wireline logging
technology and artificial intelligence (AI) to categorize reservoir rocks. They are employed
to study reservoir zonation and can help identify high-quality reservoir zones. On the other
hand, lithofacies refer to the classification of reservoirs based on their physical properties
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and depositional environment. This method involves the analysis of core samples and
thin sections to characterize the lithology of the rocks. While electrofacies can be derived
from well logs, lithofacies require additional detailed analysis and examination of the
rocks. Electrofacies can provide a broader understanding of reservoir characteristics, while
lithofacies provide more specific information about the composition and distribution of
different rocks within the reservoir [7,14,22,40,49]. In this study, 280 core samples (acquired
from one of the wells of the Mansouri oilfield) were selected to determine hydraulic flow
units. Furthermore, information on permeability, porosity, and structural properties was
recorded. The general flowchart of this study is presented in Figure 2.
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Figure 2. General flowchart of the study according to log and core data in the well.

3.1. Determination of the Number of Hydraulic Flow Units

The methods of determining the number of hydraulic flow units include histogram
analysis, normal probability analysis, and sum of squared errors (SSE). All three meth-
ods are studied on core data. Based on Figure 3A, a histogram analysis is performed
on the logarithmic data of the flow area index. The first hydraulic flow unit includes
24 members, the second hydraulic flow unit includes 109 members, the third hydraulic flow
unit includes 117 members, and the fourth hydraulic flow unit includes 30 members. In the
normal probability analysis method for assessing the data of the logarithm of the flow area
index, four linear distributions are obtained, which indicate four units of hydraulic flow
(Figure 3B). According to Figure 3C, in the method of sum of squares of errors calculated
according to the number of hydraulic flow units, the value of SSE in the presence of one
hydraulic flow unit is equal to 0.92 to check the behavior of insufficient hydraulic flow
and by increasing the number of hydraulic flows to four, the lowest value of SSE is 0.002;
adding more to the value of HFUs causes insignificant changes in the value of SSE (Table 1).
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Figure 3. (A) Logarithmic data histogram analysis of the flow zone index (four hydraulic flow unit),
(B) normal probability analysis of the flow zone index. The blue crosses indicate the overall data of
the hydraulic flow units, the light gray line indicates the general linear fit of the data, and the four
bold black lines indicate the best linear fit for each hydraulic flow unit, and (C) optimum hydraulic
flow unit no. (HFU) based on the sum of squared errors (SSE).

Table 1. The value of the error calculated for the number of hydraulic flow units.

Hydraulic Flow Unit (HFU) No. Sum of Squared Errors (SSE)

1 0.92131
2 0.14451
3 0.0846
4 0.02171
5 0.01331
6 0.00299

According to the results obtained from these three methods, the sum of squared
errors method is the optimal method for determining the number of hydraulic flow units
because it is independent of the user and has higher accuracy in determining the number
of categories.

3.2. Determining Optimal Reservoir Rocks (Groups)

After determining the number of hydraulic flow units, we used two methods to
determine optimal reservoir rocks, which include:
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3.2.1. Flow Zone Index (FZI) Method Per Flow Unit

Ideally, if the values of the reservoir quality index and the porosity ratio are drawn on
a log–log scale, the data that have the same values of the flow zone index are placed on a
line with a single slope, and samples with different flow zone index values are placed on
parallel lines. The samples that are on the same line have the same pore throat properties
and therefore make a hydraulic flow unit. Each line defines a unique HFU and the width
from the origin of the lines at Φz = 1 shows the average value for that unit [1,3,20].

To obtain an equivalent value of FZI for each group, when we plot RQI in terms of Φz
in a logarithmic graph, we must obtain a line with a constant slope of 45 degrees, which is
at Φ = 50% (that is, Φ = 1) of the value Log Φz becomes zero, as a result, Log RQI becomes
equal to Log FZI. Using this method, the FZI equivalent to each unit of hydraulic flow can
be obtained. In order to obtain a line with an angle of 45 degrees, where the scattering of
points to draw this line is volumetric, the deviation formula can be used (Equation (1)).
Results for each HFU is presented in Table 2 and Figure 4.

LogRQI = Logφz + LogFZI (1)

where: Φz is the ratio of pore volume to grain volume, FZI is considered an indicator of the
flow zone, and RQI is the Reservoir Quality Index (in micrometers) [8,50–52].

Table 2. FZI values for each hydraulic flow unit.

Hydraulic Flow Unit Flow Zone Index (FZI)

1 0.1899
2 0.3117
3 0.6345
4 1.4459
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By using this method, the FZI equivalent for each unit of hydraulic flow can be
obtained. In order to obtain a line with an angle of 45 degrees, where the scattering of
points to draw this line is volumetric, the deviation formula can be used (Equation (2)).

∑ Err = ∑ (Y − y)2 = S (2)

where: Err is the error (deviation), Y is the actual RQI of each sample, and y is the estimated
RQI of each sample [21,51–53]. Classification of samples for HFUs 1 to 4 are presented in
Tables S1–S4.

Porosity and permeability data have different dimensions, so they should be normal-
ized between 0 and 1 before correlation; the normalized J-function for porosity data has
been used.

3.2.2. Fuzzy C-Mean Method (FCM)

The fuzzy c-mean clustering method is proposed to solve the problem that each data
point is assigned to a specific cluster in each iteration. In the FCM clustering algorithm,
the number and centers of clusters are determined by the user at first. The quality of this
algorithm strongly depends on the initial number of clusters and the initial location of
the cluster centers [11,24,37,54]. The objective function describes the distance from any
provided data point to a cluster center weighted as the data point’s membership grade
(Equation (3)):

Obj·Func =
c
∑

i=1

n
∑

j=1
um

ij ∥xj − ci∥2

1 ≤ i ≤ c
1 ≤ j ≤ n

(3)

where uij denotes the membership of pixel xj in the jth cluster, vi is the ith cluster center, ∥.∥
is a norm metric, and m is a constant [24,37]. The parameter m handles the fuzziness of the
resulting partition, and m = 2 is utilized in this study (Table 3).

Table 3. Evaluation function (Jm) values for consecutive iterations.

Iteration Count Obj. Function

1 8.8759
2 6.9395
3 6.6943
4 5.8739
5 4.9493
6 4.3072
7 3.8888
8 3.7368
9 3.6962
10 3.6846
11 3.6806

As seen in Figure 5, the fuzzy c-mean algorithm divides the data set into 4 similar
fuzzy clusters, which have different numbers of members. In this diagram, each cluster is
displayed with a separate color, and the centers of each cluster are marked with a black
square. The first cluster with blue color has 77 members, the second cluster with red color
has 42 members, the third cluster with green color has 87 members and the fourth cluster
with pink color has 74 members.
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3.3. Determining the Lithological and Electrical (Litho–Electrical) Facies Number by
Clustering Algorithms

Electrical facies numbers depend on employed well logs and the spatial statistical
distribution nature of the data [22,40,55]. Additional clustering algorithms with a trial-and-
error process could identify and separate sedimentary facies to study thin sections prepared
from core samples (lithofacies). One geological strategy is explaining and preparing the
reservoir rock with this restricted information [45,55–57]. Moreover, four depositional
sedimentary environments deposited on a platform with a low slope are distinguished
based on thin section and lithofacies study in the Asmari Formation of Mansouri oilfield.
Furthermore, this study employs an electrical facies model utilizing well logs and two
clustering methods in a drilled well with coring to present the optimal reservoir rocks of
the studied field.

This research used multi-resolution graph base and artificial neural network (MRGC
and ANN) clustering methods to determine electrical facies. The MRGC is one of the
few non-parametric and very suitable methods for studying and analyzing data clusters
obtained from well logs and drilling cores. This clustering method divided facies with com-
mon geological/reservoir conditions into categories by reading gamma, neutron, density,
acoustic, and resistivity logs.

Data clustering is the basis of modeling and classification algorithms. In this method,
the data of the graphs are determined by two indices: neighborhood index (NI) and Kernel
representative index (KRI). NI determines the proximity of each point in a data set to the
peak or trough of the possible density function of the data. KRI is an index to choose the
data points for representation defined as the core or center of the cluster. KRI is estimated
by employing the Equation (4).

KRI(x) = NI(x)·M(x, y)·D(x, y) (4)

where M(x, y) = m, when y is the mth neighbor of x, and D(x, y) is the x and
y distance [7,22,32,58,59].



Minerals 2024, 14, 233 10 of 23

Also, in the present study, which was based on the ANN clustering method, assuming
eight optimal facies in the previous stage, an estimate for the facies in the entire well was
made by building an ANN model between the petrophysical logs and the facies log of
the last step. The Levenberg–Marquardt (L–M) algorithm trains the data to construct the
neural network model. This network has three layers (input, hidden, and output). The
number of neurons was also calculated through trial and error and response optimization.
The artificial neuron has a P input and an output [31,49,60].

The inputs are xi (i = 1, . . ., p), and the output is yj. The relationship between inputs
and outputs can be set as follows (Equation (5)):{

Sj = ∑
p
i=1 wij·xi − θj

yj = f
(
Sj
) (5)

Here θ is the threshold. Wij is the weight of the connection from signal i to neuron j.
Sj is pure activation, and f (Sj) is the activation function. The Feed-Forward Back Propa-
gation Artificial Neural Network (FFBPANN) is employed as a famous ANN applicable
in petroleum engineering [26,35]. The structure or topology of the employed MRGC and
ANN is shown in Figure 6A,B.
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Detailed comparative explanations about the specific advantages and limitations of
these two methods are presented in Table 4.
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Table 4. Advantages and limitations of MRGC and ANN clustering in determining electrofacies
[1,5,22,24,26,27].

MRGC Clustering ANN Clustering
Advantages Limitations Advantages Limitations

Capability of identifying
natural patterns in the logs
with no need for prior
knowledge about the data

Time complexity of the
algorithm, which can be
time-consuming

Can enhance clustering
performance by leveraging
the representational power of
neural networks

Number of clusters to be
distinguished by the
algorithm must be known

An automatic suggestion of
the best number of clusters

One-way irreversibility of
the algorithm

Trained network can produce
the desired output for
new inputs

Highly sensitive to initial
conditions and distinctions
among data points

Lowest parameters and
insensitivity to their changes

Once clusters are merged, they
cannot be separated again

An intelligent analysis with
simple mathematical methods
addressing nonlinear, fuzzy,
and complex relationships

Can be computationally and
memory intensive

No restrictions on the type or
number of data and clusters

Requires the final cluster
number, which is often
unknown in advance

Can be used in
real-time applications

Often limited by the graph
constructed on the
original features

Allows for results under
different resolutions without
the need for a predetermined
number of clusters

May struggle with handling
clusters of varying densities
and scalability

Can be used to approximate
centralized clustering schemes
in distributed
decision-making processes

Challenges in scenarios where
the graph is unavailable

4. Results

Outcomes of hydraulic flow units were made based on 280 core samples and well logs
acquired from one of the exploratory wells in the Mansouri field. Moreover, determining
facies is one of the main components of oil exploration and determination of reservoir
properties. To overcome the issue of limited data, integrated analysis of FCM and FZI
clustering techniques is helpful for developing the porosity correlation to predict the
optimal reservoir rocks without core wells. Based on the general results of the determination
of reservoir rocks (groups), the total continuity number of the fuzzy c-mean method is
higher than the flow zone index at depth and shows more excellent continuity.

4.1. Stratigraphy and Zoning

Employing Geolog software (7.v2011.1, Paradigm, Milan, Italy), the lithology is eval-
uated and estimated for each stratigraphic column using corrected logs and lithology
cross-sections (neutron-density, Rho-U, MID, and MN plots). Finally, employing the proba-
bilistic method, the petrophysical parameters are calculated for the whole sequence, and
the average of these parameters is calculated for the whole well and each zone.

According to petrophysical outcomes, the Asmari Formation is divided into five zones
with identifying production zones.

Zone 1 exists in all drilled wells and consists of anhydrite, dolomite, and a thick layer
of limestone. Zone 2 is also present in all wells, mainly dolomite and sandstone. Zone 3’s
dominant lithology includes shale, limestone, and sandstone. Zone 4 also exists in all wells,
containing sandstone and shale with a barrier/beach ridge, and is likely to be associated
with the Ahwaz sand dunes. Eventually, Zone 5’s lithology is shale, sandstone, and
limestone, which cannot be identified in all wells due to a lack of logging data (Figure 7).

The average calculated petrophysical parameters of the investigated zones in well A
are indicated in Table 5 to compare shale volume, porosity, saturation water, and oil volume
in all five investigation zones. When evaluating the quality of sandstone reservoirs based
on petrophysical data, it is essential to check the connection between the shale volume
(Vsh), oil volume (Uoil), porosity (PHIE), and water saturation (SWE) parameters. In this
way, the shale volume, porosity, and oil volume parameters should be increased, and
water saturation should be reduced in each zone in a dependent manner. Therefore, with
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the preliminary analysis of zones 1 and 2, which simultaneously have water saturation
of 91.8–99%, low porosity of 2.4–3.9%, shale volume of 2.7–18.1%, and worse conditions
overall, the shallow volumes of oil are 0.001–0.1%, and they are excluded from the studies
in terms of reservoir quality.
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As represented in Table 5, a maximum in the shale volume (27.4% and 29.4%), porosity
(13.1% and 12.9%), oil volume (7.4% and 6.3%), and minimum water saturation (46.5% and
63%) demonstrates the clear distinction between these two zones and other zones in terms
of the reservoir capacity of the sandstone and shale in them. The main reservoir zones with
dominant shaley sandstone lithology are in zones three and five, respectively.

Table 5. The Asmari Formation’s average petrophysical parameters in different zones.

Interval (m) Zone
Shale Volume Porosity Water Saturation Oil Volume

Vsh (%) PHIE (%) SWE (%) Uoil (%)

3427.5–3444.5 1 2.7 2.4 99 0.01
3444.5–3560.5 2 18.1 3.9 91.8 0.055
3560.5–3570.5 3 27.4 13.1 46.5 7.4
3570.5–3585 4 11.5 8.9 76.7 2.9
3585–3630 5 29.5 12.9 63 6.3
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4.2. Determining Electrofacies by Clustering Methods

To determine the electrofacies with the MRGC and ANN clustering methods, first in
the FACIMAGE™ section of the Geolog software, among the petrophysical logs, those logs
that are most related to the results target, which include the gamma ray log (CGR_COR),
sonic log (DT.CO), density log (RHO_COR), neutron log (NPHI), and water saturation log
(SW_CT), are selected. Facies with common geological/reservoir properties are classified
employing the mentioned log readings. Figure 8A,B show the frequency diagrams of the
input logs of the model and cross diagrams of these logs, respectively.
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relative to each other, (C) facies produced by the MRGC method.

Based on the MRGC and ANN clustering methods, the upper and lower limits of
the optimal data and models are determined. Finally, applying these models produced
two optimal models with eight facies, respectively. An ANN model between petrophysical
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logs and pre-facies logs is constructed based on the ANN clustering method. In constructing
the neural network model, the Levenberg–Marquardt (L–M) algorithm is used to train the
data. This network has three layers (input, hidden, and output). The number of neurons
is calculated through trial and error and response optimization as 2-5-1 (Figure 6B). The
results of categorized facies are presented in Figure 8C, which shows the readings of each
model input log in the separated facies with their weight.

5. Discussion
5.1. MRGC and ANN Clustering Description

Electrofacies are compared to the lithofacies produced by the lithological column and
the saturated and hydrocarbon columns. Comparing lithological columns in sandstone
and carbonate lithologies and facies columns is clearly illustrated.

Figure 9 shows the correlation and comparison of the zoning results of all three Geolog
software calculations, MRGC, and ANN clustering techniques. However, the number of
MRGC and ANN electrical facies classifications and lithofacies of the Geolog is different;
similar results for the correct separation of anhydrite, limestone, and sandstone are noticed,
especially in zones three and five with dominant sandstone lithology.
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5.2. Comparing Optimal Reservoir Rock Methods

In this research, the integration of two flow zone index (FZI) and fuzzy C-mean
(FCM) methods has been utilized to define the proper reservoir rocks in the studied well.
HFU lateral continuity of reservoir units with consistent geological properties utilizing the
Testerman method is used to control the behavior of fluid flow in pore media laterally. FZI
and FCM results showed four hydraulic flow units. Suppose each unit has a maximum
continuity number of 1; in that case, their total continuity number becomes 4, and if each of
these four units has no continuity between their data, their total continuity becomes zero.

Implementing the FZI data at depth, the continuity numbers for the first to fourth
hydraulic flow unit are 0.67, 0.80, 0.77, and 0.53, respectively. Summing up the continuity
numbers of these four units, the total continuity number is 2.77 (Table 6). Accordingly, for
the FCM technique, the continuity numbers for the first to fourth hydraulic flow units are
0.87, 0.62, 0.90, and 0.73, and the total continuity number is 3.12 (Table 6).

Table 6. Continuity numbers for the hydraulic flow units according to the a) flow zone index (FZI),
and fuzzy C-mean (FCM) techniques.

Continuity Flow Unit 1 Flow Unit 2 Flow Unit 3 Flow Unit 4 Total Cohesion

Flow zone index
(FZI) 0.6666 0.7981 0.7692 0.5333 2.7672

Fuzzy C-mean
(FCM) 0.8701 0.619 0.8965 0.7297 3.1153

As discussed in the results, the total continuity number of the flow zone index (FZI)
method is less than that of the fuzzy c-mean (FCM) technique and demonstrates better
continuity at depth. Figure 10 shows the implementation of HFU continuity according
to depth.
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to depth.

As depicted in Figure 10A,B, apart from the upper depths of the Asmari Formation,
where it was impossible to drill cores due to mud circulation loss (formation loss), the HFU
continuity of units 4 and 1 was lower for the FZI method than for similar cases according
to the FCM method. Units 3 and 4 are almost the same in terms of HFU continuity.

5.3. Changes in the Porosity Diagram According to Permeability

Permeability–porosity diagrams in heterogeneous carbonate reservoirs are usually
scattered with poor correlation but correlate with the classification and arrangement of data
regarding hydraulic flow units [60]. Employing the hydraulic flow unit (HFU) techniques in
this research demonstrates better scattering correlations between permeability and porosity
diagrams in heterogeneous carbonate reservoirs.
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Samples of permeability are observed in hydraulic flow unit Nos. 3 and 4 (Figure 11A–D).
Also, Table 7 indicates the correlation coefficients of porosity with permeability for all samples
and four HFUs in the studied well.
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Figure 11. Samples of porosity vs. permeability relationship for each flow unit using the FZI method
for (A) unit No. 3 and (B) unit No. 4 and using the FCM method for (C) unit No. 3 and (D) unit No. 4.

Table 7. Correlation coefficients of porosity with permeability according to the flow zone index and
fuzzy c-mean methods.

Porosity and
Permeability

Correlation (r)
Flow Unit 1 Flow Unit 2 Flow Unit 3 Flow Unit 4 All Samples

FZI method 0.809 0.939 0.845 0.94
0.552

FCM method 0.195 0.094 0.171 0.00008

The correlation coefficient for all samples is obtained at 0.552, while with the flow
zone index (FZI) method, the first to last HFUs are 0.809, 0.939, 0.845, and 0.94, respectively.
It denotes the improvement in the relationship between permeability and porosity in all
hydraulic flow units corresponding to the unrestricted state for total samples.

Correspondingly, for the fuzzy c-mean (FCM) method, the first to last HFUs are 0.195,
0.094, 0.171, and 0.00008, respectively. These outcomes indicate that the acquired correlation
coefficients of the FCM method in all four HFUs are lower than in the general case.

Based on these results, the flow zone index method improved the correlation co-
efficients between permeability and porosity in all hydraulic flow units relative to the
correlation coefficients in the general states for all samples. However, the fuzzy c-mean
method not only did not improve the relationship between the petrophysical parameters of
the reservoir in all hydraulic flow units relative to the general states but also reduced the
porosity–permeability relationship. Furthermore, according to the results, the total fidelity
of the fuzzy c-means method is greater than the total fidelity of the flow zone index at
depth and shows greater consistency at depth.



Minerals 2024, 14, 233 17 of 23

In the FZI clustering results, data with more spatial statistical likenesses are placed into
one group, and necessarily, there is no exact relationship between porosity and permeability
in each cluster. The hydraulic flow unit with higher FZI values will have a better quality to
flow the fluids through its pore spaces in the reservoir rock. The data are well classified,
and a satisfactory relationship exists between porosity and permeability for each hydraulic
flow unit obtained through FZI curves. As per previous studies, some individual fuzzy
models could be developed for each flow unit. A field application confirms that the
method can be applied to permeability prediction using well data from various depositional
environments. The fuzzy logic technique is instrumental in predicting permeability and
identifying permeable and non-permeable zones employing well-log data. As a new
strategy for employing core data, an FCM clustering method was helpful in reservoir rock
definition in the Asmari Formation for the at-depth HFU continuity. As the correlation
between porosity and permeability in this field is not improving, more studies should be
conducted to evaluate limitations in the FCM.

Figure 12 shows the optimal reservoir rocks, hydraulic flow unit (HFU), and per-
meability vs. porosity variations as a petrophysical log in the studied formation in the
Mansouri oilfield. At 3560–3444.5 m and 3585–35,705 m intervals (stratigraphy zones 2 and
4), coring was not possible because of the lost circulation, and only the data of the drilling
cuttings, and log were used. The dispersion of rock samples in reservoir rock 2 was more
than that of others.
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5.4. Validating Results Employing Petrographic Analysis Description

This research identifies eleven general petrographic analyses by studying the thin
sections of the Asmari Formation in well A. Two general petrofacies and microfacies in
this well are siliceous–clastic petrofacies and carbonate–evaporitic, examined by clastic and
carbonate components.

The siliceous petrofacies data are employed to validate the results with the presump-
tion that the electrofacies are not necessarily coupled to the lithofacies and that different
facies can be placed inside a precise clustering zone. Moreover, another assumption is
that the FZIs are not necessarily related to the facies and that different facies can be placed
inside a specific flow unit.

Siliceous–clastic petrofacies are described as:

Quartz Arenite: This microfacies includes more than 95% quartz. Quartz particles are
frequently angular with proper welding. In this field, sandstones are usually seen as loose
sand and sandstones with carbonate or sulfate cement. Due to the texture maturity and
appropriate particle melting, these facies can be attributed to a coastal environment with
high energy by appropriate particle melting and texture maturity (Figure 13A,B).
Sublitharenite: These facies include carbonate and clastic particles with skeletal grains
(Figure 13C).
Siltstone: In the Asmari Formation, this petrofacies is generally deposited in low-energy
environments and mainly noticed in the lower parts, and its amount decreases towards the
top of the formation (Figure 13D).
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A, Mansouri oilfield.
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As discussed, the porosity and permeability in the determined flow units show a
good correlation coefficient. Therefore, in this way, different cavity systems with different
petrophysical characteristics can be separated in the studied well, and the facies with the
best reservoir conditions can be determined.

The third and fourth HFUs have the best flow units with high reservoir quality and
permeability among the appointed flow units. Thus, the depth of the Asmari Formation in
the Mansouri oilfield predominantly contains dolomite and sandstone in their facies. The
sedimentary environment and its diagenesis process are critical factors affecting them.

Approaches such as cement dolomitization, hydrocarbon migration to the reservoir
before sandstone cementation, and dissolution have improved the quality of the reser-
voir in the Ahwaz sandstone section, which can be noticed in the assessed thin section
(Figure 14 A–D). Generally, the determined flow units are influenced by diagenesis pro-
cesses and the type of porosity created by these processes.
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6. Conclusions

Litho–electrical facies are valuable approaches for recognizing and determining in-
tervals with comparable petrophysical log responses and roughly equivalent lithologies
within a formation almost homogeneous in composition and empty of bio-stratigraphic
indicators or marker beds. Consequently, the confined lithofacies are influenced by dia-
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genesis approaches and the process of porosity type. Based on a petrophysical study of
280 core samples from one of the exploratory wellbores drilled in the Asmari reservoir
located in the Mansouri field, the following results are summarized:

• Four hydraulic flow units were determined for the studied data after classifying the
flow zone index amount by the normal probability analysis, histogram analysis, and
the sum of squares errors (SSE) procedures.

• Flow zone index (FZI) and fuzzy c-means (FCM) techniques were used to determine
optimal reservoir rocks in the study well. Although the FCM method delivers more
consistency with depth than the FZI method, the FZI technique enhances the corre-
lation coefficients (r) of porosity relation with permeability in each hydraulic flow
unit (HFU).

• The potential zones with high oil accumulation are identified by employing shear limits
of shale volume, effective porosity, and water saturation in the Asmari Formation.

• Hydraulic flow units (HFUs) 3 and 4, determined by the FZI method, are more com-
patible with dolomite and sandstone facies due to the migration time of hydrocarbons
being before cementation.

• The MRGC method is more accurate and successful than ANN in determining mea-
sured and estimated parameters in the wellbores. Furthermore, it is not limited to data
size, numbers, or high operation speed.

• Comparing lithofacies and ANN and MRGC electrofacies demonstrates comparable
outcomes of proper separation of anhydrite, limestone, and sandstone, particularly in
zones three and five with prevailing sandstone lithology.

• Siliceous lithofacies are utilized to validate data, assuming that the electrofacies are
not necessarily coupled to the lithofacies and that different facies can be positioned
inside a distinct clustering zone. Consequently, most of the facies at the depths of
zones 3 and 5, including sandstone and dolomite facies, demonstrate similar results
with electrofacies clustering.

It is recommended that core and log data from nearby wells in the Asmari Formation
be employed to assess and inspect the precision of reservoir rock determination more
accurately utilizing FZI and FCM. Likewise, it is achievable to employ MRGC and ANN
clustering zones to determine sandstone reservoirs in nearby drilled wells and generalize
the results to coreless wells in the Asmari Formation of the Mansouri oilfield. Correspond-
ingly, sonic, density, and neutron logs reveal sound reservoir quality at depths where the
superb flow units extend. Accordingly, it is possible to utilize hydraulic flow units to define
reservoir rocks in cored wells and generalize the outcomes to coreless wells.

Furthermore, as another suggestion, the results obtained from FCM and FZI methods
can be compared with clustering methods such as K-means and hierarchy. Additionally,
considering the positive results of velocity–volume and pressure–volume fractal methods
in recent years, the presentation of electrofacies–volume and hydraulic flow unit–volume
fractal approaches can also be evaluated in future studies.

Moreover, regarding potential impacts on petroleum exploration and reservoir man-
agement, discussing the practical applicability and feasibility of the results for future similar
works is recommended.
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