
J
H
E
P
0
2
(
2
0
2
4
)
1
7
0

Published for SISSA by Springer

Received: February 8, 2024
Accepted: February 13, 2024
Published: February 22, 2024

Addendum: Constraints on the quartic Higgs
self-coupling from double-Higgs production at future
hadron colliders

Wojciech Bizoń,a,b,e,1 Ulrich Haisch,c,e,f,2 Luca Rottoli,d,e,3 Zach Gillis,g,h,4

Brian Moseri,4 and Philipp Windischhoferg,h,j,4

aInstitut für Theoretische Teilchenphysik (TTP), KIT,
76128 Karlsruhe, Germany

bInstitut für Kernphysik (IKP), KIT,
76344 Eggenstein-Leopoldshafen, Germany

cMax Planck Institute for Physics,
Föhringer Ring 6, 80805 München, Germany

dDipartimento di Fisica G. Occhialini, U2, Università degli Studi di Milano-Bicocca,
Piazza della Scienza, 3, 20126 Milano, Italy

eRudolf Peierls Centre for Theoretical Physics, University of Oxford,
OX1 3NP Oxford, U.K.

fCERN, Theoretical Physics Department,
CH-1211 Geneva 23, Switzerland

gDepartment of Physics, University of Chicago,
Chicago, IL 60637, U.S.A.

hEnrico Fermi Institute, University of Chicago,
Chicago, IL 60637, U.S.A.

iEP Department, CERN,
1211 Geneva 23, Switzerland

jKavli Institute for Cosmological Physics, University of Chicago,
Chicago, IL 60637, U.S.A.

E-mail: wojciech.bizon@kit.edu, haisch@mpp.mpg.de, luca.rottoli@unimib.it,
zachgillis@uchicago.edu, brian.moser@cern.ch,
philipp.windischhofer@cern.ch

Addendum to: JHEP10(2019)267
1Now at: Krakow, Poland.
2Now at: Max Planck Institute for Physics, Föhringer Ring 6, 80805 München, Germany.
3Now at: Physik Institut, Universität Zürich, CH-8057 Zürich, Switzerland.
4Author contributed to this addendum only.

Open Access, © The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP02(2024)170

mailto:wojciech.bizon@kit.edu
mailto:haisch@mpp.mpg.de
mailto:luca.rottoli@unimib.it
mailto:zachgillis@uchicago.edu
mailto:brian.moser@cern.ch
mailto:philipp.windischhofer@cern.ch
https://doi.org/10.1007/JHEP10(2019)267
https://doi.org/10.1007/JHEP02(2024)170


J
H
E
P
0
2
(
2
0
2
4
)
1
7
0

Abstract: We study inclusive double-Higgs boson production at the LHC and at the HL-
LHC including variations of the trilinear and of the quartic Higgs boson self-couplings at
next-to-leading order (NLO) in QCD with full top quark mass dependence. Our results
include the two-loop contributions to the gg → HH amplitudes that involve a modified h4
vertex calculated in ref. [1]. We present results at 13, 13.6 and 14TeV centre-of-mass energies.
The implementation of the calculation is made publicly available in the POWHEG-BOX-V2
Monte Carlo framework.
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1 Introduction

The Higgs potential in the Standard Model (SM) of particle physics is at present still largely
unexplored. At hadron colliders, the shape of the Higgs potential can be determined only
by measuring the Higgs boson self-couplings, which is particularly challenging due to the
smallness of the cross-sections for double- and triple-Higgs boson production. Recent searches
at ATLAS [2] and CMS [3] for double-Higgs boson production with the full LHC Run 2
luminosity of ∼ 140 fb−1 provide upper limits on the measured σHH cross section of order 3
times the SM value, mainly by combining the bb̄γγ, bb̄τ+τ− and bb̄bb̄ decay channels. These
results translate into constraints on the observed coupling modifiers of the trilinear Higgs
boson self-coupling modifier of −0.4 < κ3 < 6.3, −1.2 < κ3 < 6.5 at ATLAS and CMS,
respectively. Although these constraints will improve during the High Luminosity phase of
the LHC (HL-LHC) it is not yet certain whether double-Higgs boson production in the SM
could be unequivocally observed. Current estimates indicate that a 4σ significance could be
achieved for L ∼ 3000 fb−1 when combining both experiments and all decay channels [4]. The
possibility to obtain direct bounds on the quartic Higgs boson self-coupling modifier κ4 from
triple-Higgs boson production are even more uncertain due to its very small cross-section.
Although loose bounds on κ4 may be obtained at the HL-LHC [5], even a 100TeV hadron
collider could only determine the SM rate to an accuracy of order one [6–11].

In this context, it becomes important to explore complementary approaches to constrain
the Higgs potential. An alternative strategy is to determine the Higgs boson self-couplings
indirectly. This approach was initially proposed to constrain κ3 via precise measurement
of differential distribution of single Higgs boson production [12–14] and was later used to
constrain the quartic Higgs boson self-coupling in refs. [1, 15].

In this Addendum we use the calculation of ref. [1], originally used to compute predictions
for inclusive double-Higgs production at future hadron-hadron colliders, at the centre-of-mass
energies relevant for the LHC and the HL-LHC. Our results include the relevant electroweak
(EW) two-loop amplitudes that involve a modified h4 vertex whose calculation was presented
in ref. [1]. Our predictions are supplemented by the next-to-leading order (NLO) QCD
corrections with variations of the trilinear Higgs boson self-coupling with the full top quark
mass dependence [16–19]. The implementation of the above calculation, which allows for
arbitrary variations of the trilinear and of the quartic Higgs boson self-couplings, is made
publicly available in the POWHEG-BOX [20] Monte Carlo framework.
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2 Inclusive double-Higgs production at the LHC and the HL-LHC

In this section we report results for the inclusive production cross sections at the LHC and at
the HL-LHC, considering centre-of-mass energies of 13TeV, 13.6TeV and 14TeV. The formulæ
have been obtained with the aforementioned POWHEG-BOX implementation of double-Higgs
production at NLO QCD, using PDF4LHC15 NLO parton distribution functions [21] through
the LHAPDF interface [22]. The implementation of the NLO QCD corrections is based on the
latest version of the ggHH code that fixed an error in the two-loop amplitude which affected
the results for κ3 6= 1 (see refs. [23, 24]). Our NLO predictions are obtained in the full theory
using mtop = 173GeV that corresponds to the value hard-coded in the virtual matrix element
computed in ref. [16]. We display results for our central predictions and for the upper and lower
values of the scale uncertainty envelope. The central renormalisation and the factorisation
scales are set to µR = µF = mHH/2. The scale uncertainty is calculated via a canonical
7-scale variation envelope by varying µR and µF by a factor 2 with 1/2 ≤ µR/µF ≤ 2.

With ∆κ3 = κ3−1 and ∆κ4 = κ4−1, the inclusive production cross-sections take the form,

σ(pp→ hh)central
13 TeV = 27.8 fb× [1− 0.874(∆κ3) + 1.46 · 10−3(∆κ4) + 0.333(∆κ3)2

+ 7.91 · 10−4(∆κ3∆κ4) + 2.71 · 10−5(∆κ4)2 − 1.60 · 10−3(∆κ3)2(∆κ4)
− 1.89 · 10−5(∆κ3)(∆κ4)2 + 9.82 · 10−6(∆κ3)2(∆κ4)2] , (2.1)

σ(pp→ hh)up
13 TeV = 31.6 fb× [1− 0.889(∆κ3) + 1.42 · 10−3(∆κ4) + 0.345(∆κ3)2

+ 7.83 · 10−4(∆κ3∆κ4) + 2.66 · 10−5(∆κ4)2 − 1.59 · 10−3(∆κ3)2(∆κ4)
− 1.86 · 10−5(∆κ3)(∆κ4)2 + 9.72 · 10−6(∆κ3)2(∆κ4)2] , (2.2)

σ(pp→ hh)low
13 TeV = 24.2 fb× [1− 0.864(∆κ3) + 1.48 · 10−3(∆κ4) + 0.326(∆κ3)2

+ 8.02 · 10−4(∆κ3∆κ4) + 2.75 · 10−5(∆κ4)2 − 1.62 · 10−3(∆κ3)2(∆κ4)
− 1.92 · 10−5(∆κ3)(∆κ4)2 + 9.95 · 10−6(∆κ3)2(∆κ4)2] , (2.3)

σ(pp→ hh)central
13.6 TeV = 30.8 fb× [1− 0.870(∆κ3) + 1.47 · 10−3(∆κ4) + 0.330(∆κ3)2

+ 7.84 · 10−4(∆κ3∆κ4) + 2.72 · 10−5(∆κ4)2 − 1.58 · 10−3(∆κ3)2(∆κ4)
− 1.90 · 10−5(∆κ3)(∆κ4)2 + 9.77 · 10−6(∆κ3)2(∆κ4)2] , (2.4)

σ(pp→ hh)up
13.6 TeV = 35.0 fb× [1− 0.885(∆κ3) + 1.44 · 10−3(∆κ4) + 0.342(∆κ3)2

+ 7.78 · 10−4(∆κ3∆κ4) + 2.68 · 10−5(∆κ4)2 − 1.58 · 10−3(∆κ3)2(∆κ4)
− 1.87 · 10−5(∆κ3)(∆κ4)2 + 9.69 · 10−6(∆κ3)2(∆κ4)2] , (2.5)

σ(pp→ hh)low
13.6 TeV = 26.9 fb× [1− 0.861(∆κ3) + 1.49 · 10−3(∆κ4) + 0.323(∆κ3)2

+ 7.95 · 10−4(∆κ3∆κ4) + 2.76 · 10−5(∆κ4)2 − 1.60 · 10−3(∆κ3)2(∆κ4)
− 1.92 · 10−5(∆κ3)(∆κ4)2 + 9.89 · 10−6(∆κ3)2(∆κ4)2] , (2.6)

σ(pp→ hh)central
14 TeV = 32.9 fb× [1− 0.867(∆κ3) + 1.48 · 10−3(∆κ4) + 0.329(∆κ3)2

+ 7.80 · 10−4(∆κ3∆κ4) + 2.73 · 10−5(∆κ4)2 − 1.57 · 10−3(∆κ3)2(∆κ4)
− 1.90 · 10−5(∆κ3)(∆κ4)2 + 9.74 · 10−6(∆κ3)2(∆κ4)2] , (2.7)
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Figure 1. Signal strength as a function of κ3 (left panel) for κ4 = 1 and as a function of κ4 (right
panel) for κ3 = 1 at NLO accuracy in the full theory (green, solid). In the left panel we also show
the FTapprox NNLO result for comparison (blue, dashed). The SM cross-sections are displayed in the
inset, where also the LO result is included. The shaded uncertainty bands correspond to the 7-point
QCD scale variation. For the FTapprox NNLO calculation, a component arising from the uncertainty
in the choice of renormalisation scheme and of mtop is additionally included.

σ(pp→ hh)up
14 TeV = 37.3 fb× [1− 0.882(∆κ3) + 1.45 · 10−3(∆κ4) + 0.341(∆κ3)2

+ 7.74 · 10−4(∆κ3∆κ4) + 2.68 · 10−5(∆κ4)2 − 1.57 · 10−3(∆κ3)2(∆κ4)
− 1.87 · 10−5(∆κ3)(∆κ4)2 + 9.67 · 10−6(∆κ3)2(∆κ4)2] , (2.8)

σ(pp→ hh)low
14 TeV = 28.8 fb× [1− 0.859(∆κ3) + 1.50 · 10−3(∆κ4) + 0.321(∆κ3)2

+ 7.90 · 10−4(∆κ3∆κ4) + 2.76 · 10−5(∆κ4)2 − 1.59 · 10−3(∆κ3)2(∆κ4)
− 1.92 · 10−5(∆κ3)(∆κ4)2 + 9.84 · 10−6(∆κ3)2(∆κ4)2] . (2.9)

In figure 1 we plot the signal strength for 13TeV as a function of κ3 for κ4 = 1 (left
panel) and as a function of κ4 for κ3 = 1 (right panel). The signal strength depends rather
weakly on the value of κ4, as one may expect since double Higgs production probes the
quartic Higgs self-coupling only indirectly. The scale uncertainties of the NLO result in the
full theory are at the 15% level as evident from the two lower panels. In the left panel we
also display the current recommendation of the Higgs cross section working group for the
HH cross-section as a function of κ3. These predictions were obtained at NNLO accuracy in
the so-called Full Theory (FT) approximation by rescaling them to the SM FTapprox NNLO
result [25], see ref. [26] for additional details. The uncertainties are computed by probing
three relative variations of µR = µF ∈ {(1/2, 1/2), (1, 1), (2, 2)} and rescaled to match the
conservative prescription of ref. [27] for the SM result, which combines the uncertainties
arising from the choice of renormalisation scheme and scale of the top-quark mass with the

– 3 –
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Figure 2. Hypothetical constraints in the κ3 − κ4 plane arising from inclusive double- (red) and
triple- (green) Higgs production for HL-LHC at 14TeV. The constraints are obtained assuming a 50%
uncertainty on the signal strength for double-Higgs production and an upper limit of 20 times the SM
value for triple Higgs production.

µR, µF scale uncertainties. We observe that the NLO predictions in the full theory nicely
overlap with the FTapprox NNLO ones, both for the SM result and for values of κ3 6= 1. For
reference, we also show the LO and the NLO cross section in the full theory alongside the
NNLO FTapprox cross section in the inset of the left panel. Also in this case we observe that
the NLO result overlaps with the NNLO FTapprox cross section.

Finally, in figure 2 we display hypothetical constraints on κ3 and κ4 at the HL-LHC
at 14TeV arising from double-Higgs production assuming a 50% uncertainty on the value
of the signal strength µHH . We also display hypothetical limits arising from triple-Higgs
production, by assuming that the HL-LHC could set an O(20) bound on the triple-Higgs
signal strength µHHH . The predictions for triple-Higgs production have been obtained at
LO using a private version of MadGraph5_aMC@NLO [28].

In conclusion, in this Addendum we have presented results for double-Higgs production
at the LHC and at the HL-LHC including variations of the trilinear and of the quartic Higgs
boson self-couplings. We have performed a first exploratory study by considering constraints
on κ4 arising solely from inclusive double-Higgs production. A more refined analysis that
includes also complementary constraints from of kinematic distribution would be necessary
to assess the full potential of the HL-LHC to provide first bounds on the quartic Higgs
self-coupling. Our calculation is implemented in the POWHEG-BOX framework and is
publicly available at the POWHEG-BOX webpage [29]. We expect this implementation to
be useful for the LHC experiments in conducting detailed sensitivity studies.
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