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Abstract
We discuss regularity statements for equidistant decompositions of Riemannian manifolds
and for the corresponding quotient spaces. We show that any stratum of the quotient space
has curvature locally bounded from both sides.
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1 Introduction

A submetry is a map P : X → Y between metric spaces which sends balls in X onto balls
of the same radius in Y . Submetries as metric generalization of Riemannian submersions
have been introduced by Berestovskii [4]. Berestovksii and Guijarro verified that a submetry
between smooth complete Riemannian manifolds always is a C1,1 Riemannian submersion,
but it does not need to be C2 [6]. Another example of a submetry is provided by a distance
function P : Rn → R to a convex nowhere dense subset C ⊂ R

n .
Submetries P : X → Y with given total space X are in one-to-one correspondence with

equidistant decompositions of X . The correspondence assigns to P the decomposition of X
into fibers of P [16, Section 2.2]. Seen this way, submetries generalize quotient maps for
isometric group actions and decompositions of a complete smooth Riemannian manifold into
leaves of a singular Riemannian foliation with closed leaves [1, 22, 29].

Recent appearances of submetries inmany unrelated settings, [5, 10, 11, 14, 14, 20, 27, 30,
31, 34, 36, 37], make investigations of the properties of submetries a natural task, especially
if the total space is a Riemannian manifold. A systematic study of submetries P : M → Y
with total space a sufficiently smooth Riemannian manifold has been initiated in [16]. The
present paper continues the investigations of [16] and improves some regularity statements
provided there.
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If the total space X is a connected (sufficiently smooth) complete Riemannian manifold
M , the following structural results on the base space Y of a submetry P : M → Y have been
derived in [16].

The quotient space Y locally has curvature bounded from below, [16, Proposition 3.1],
see also [7, Section 4.6]. There is a canonical stratification Y = ∪m

l=0Y
l , where m is the

dimension of Y and Y l consists of all points y ∈ Y such that the tangent space TyY has Rl

as a direct factor, [16, Theorem 1.6]. The subset Y l is locally convex in Y , for any l, and it is
an l-dimensional manifold. The maximal-dimensional stratum Ym , the set of regular points
of Y , is open, dense and convex in Y .

For any point y ∈ Y , there exists some r > 0, such that exponential map expy is a
well-defined homeomorphism expy : Br (0) → Br (y) between the open r -ball Br (0) in the
tangent cone TyY around the origin 0 and the open r -ball in Y around y, [16, Theorem 1.3].
This injectivity radius is locally bounded from below on each stratum Y l , but it goes to 0,
when points on Y l converge to a lower-dimensional stratum.

Our first result improves the regularity of the exponential map:

Theorem 1.1 Let Y be a base of a submetry P : M → Y of a Riemannian manifold with
locally bounded curvature. Then, for any y ∈ Y , there exist r0,C > 0, such that for all
r < r0 the exponential map expy : Br (0) → Br (y) is (1 + Cr2)-biLipschitz.

Here and below, we use the notion of a Riemannian manifold with locally bounded curva-
ture to describe a manifold without boundary with a continuous Riemannian metric, which
has curvature bounded locally from above and below in the sense of Alexandrov see [9, 15].
Any sufficiently smooth Riemannian manifold is in this class and any C1,1-submanifold of
a Riemannian manifold with locally bounded curvature has locally bounded curvature, [15,
Proposition 1.7].

Theorem 1.1 can be informally understood as the existence of a pointwise both-sided
curvature bound at any point y ∈ Y . Indeed, for a smooth Riemannian manifold M = Y ,
the optimal number C in the statement of Theorem 1.1 is equivalent (up to a factor) to the
optimal bound on the norm of the sectional curvatures at y.

In Theorem 1.1, the constant r0(y) always goes to 0 and C(y) usually goes to infinity,
when y converges to a lower stratum, [16, Proposition 8.9], [22, Theorem 1.1]. But both
constants can be chosen locally uniformly on any stratum, Proposition 6.1 below. This has
the following consequence, which answers [16, Question 1.12]:

Corollary 1.2 Let M be a Riemannian manifold with locally bounded curvature and let P :
M → Y be a submetry. Then, any stratum Y l of Y is a Riemannian manifold with locally
bounded curvature.

For smooth Riemannian manifolds M , the result will be strengthened in the continuation
[23]. If M is analytic, the analyticity of the maximal stratum Ym has been verified in [18].

In general, fibers of a submetry P : M → Y can be arbitrary subsets of positive reach in
M (this is a common generalization of convex subsets and C1,1 submanifolds [12, 25, 35]).
However,most fibers areC1,1-submanifolds and anyfiber L of P contains aC1,1-submanifold,
open and dense in L . A by-product of the proof of Theorem 1.1 is the following result saying
that for any submetry P : M → Y , the projections from nearby P-fibers onto any manifold
P-fiber is almost a submetry. We formulate it as a global result for compact fibers and refer
to Theorem 5.2 for a more general local version.

Proposition 1.3 Let P : M → Y be a submetry, where M has locally bounded curvature. Let
L be a fiber of P which is a compact manifold. Then there exist constants C, r0 > 0 such that
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for all fibers L ′ of P at distance r < r0 from L, the closest point projection �L : L ′ → L is
(1 + Cr)-Lipschitz and locally (1 + Cr)-open.

Recall that a map f : X → Y between metric spaces is locally C-open, (other terms used
are Lipschitz open and co-Lipschitz) if for any z ∈ X there exists r0 > 0, such that, for any
r < r0 and any x ∈ Br0(z),

Br ( f (x)) ⊂ f (BCr (x)).

A submetry P : M → Y is called transnormal if all fibers of P are C1,1-submanifolds.
Thus, for transnormal submetries with compact fibers the conclusion of Proposition 1.3 is
true for all fibers. Moreover, for transnormal submetries, the constants C, r0 appearing in
Proposition 1.3 and in Theorem 1.1 depend only on the following data: A bound on the
curvature and the injectivity radius of M , a bound on the injectivity radius of Y at y = P(L)

and a lower volume bound of Y around y, see Corollary 7.4 below. This seems to be useful
for applications to the theory of Laplacian algebras developed by RicardoMendes andMarco
Radeschi, [19].

Theorem 1.1 implies that the local decomposition of the base space Y in strata around a
point y corresponds to the decomposition in strata of the tangent space at y, see Corollary
6.3 below. This has the following consequence for transnormal submetries:

Corollary 1.4 Let P : M → Y be a transnormal submetry, where M has locally bounded
curvature. Let γ : I → M be a horizontal geodesic. Then, up to discretely many values
ti ∈ I , the connected component of the fiber of P through γ (t) has the same dimension
k = k(γ ) and P(γ (t)) is contained in the stratum Y l , with l = l(γ ).

As a related consequence of Proposition 1.3, we prove that all holonomy maps between
fibers of transnormal submetries are Lipschitz open, see Proposition 7.2 below.

We mention that all results stated here and below do not require completeness of M and
are valid for local submetries, see Sect. 3.1.

2 Preliminaries: manifolds with bounded curvature

2.1 Notation

By d , we denote the distance in metric spaces. For a subset A of a metric space X , we denote
by dA : X → R the distance function to A. A geodesicwill denote an isometric (i.e., globally
distance preserving) embedding of an interval. A local geodesic γ : I → X is a curve whose
restrictions to small sub-intervals are geodesics.

2.2 Curvature bounds and bounds of geometry

We assume some familiarity with spaces with curvature bounded in the sense of Alexandrov.
We refer the reader to [2, 9].

By a manifold with locally bounded curvature M , we mean a length metric space home-
omorphic to a manifold without boundary, such that any point x ∈ M has a convex
neighborhood in M , which is a CAT(κ) space and an Alexandrov space of curvature bounded
from below by −κ , for some κ ∈ R. We allow the manifold M to be non-complete and the
value κ to be not globally bounded on M .
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The distance coordinates define a C1,1-atlas on any such manifold M and the Riemannian
metric is Lipschitz continuous in these coordinates, [9]. Any C1,1-submanifold N ⊂ M also
has locally bounded curvature in its intrinsic metric [15, Proposition 1.7].

In any manifold M with locally bounded curvature, there is a notion of parallel translation
along any Lipschitz curve [9, Section 13].

Let x be a point in a manifold M with locally bounded curvature and let ρ > 0 be given.
We say that the the geometry is bounded by ρ at x if the following conditions hold true:

The ball B = B̄ 10
ρ
(x) is compact, convex and uniquely geodesic and the curvature in B is

bounded from below and above by ± ρ2

100 .
If the geometry of M at x is bounded by ρ, then the metric space λ · M rescaled by λ > 0

has at x geometry bounded by ρ
λ
.

Let the geometry of M at x be bounded by ρ and consider the ball B = B 1
ρ
(x). Consider

some distance coordinates on B and the Lipschitz continuous metric tensor g defining the
metric of B in these coordinates. Then, there exist a sequence of smooth, uniquely geodesic

metrics gn on B such that the sectional curvatures of gn are bounded in norm by ρ2

100 , with
the following properties [9, Section 15]: The metric tensors gn converge to g in C0,1 and the
parallel transport for gn uniformly converges to the parallel transport for g.

This approximation result allows us to prove metric statements in the smooth case first
and then to obtain the general case by a limiting procedure. Mostly, a more direct but techni-
cal explanation is available without using the approximation theorem. The main additional
tool available in the smooth situation are Jacobi-fields, which only have almost everywhere
analogs in the general case. Readers not acquainted with the theory of [9] may always assume
the total manifold M to be smooth.We prefer to stick to the more general setting of manifolds
with locally bounded curvature, since this setting seems to be appropriate for the study of
submetries, see [16].

2.3 Comparison of tangent vectors at different points

Let M be a Riemannian manifold with locally bounded curvature. Let O ⊂ M be open,
uniquely geodesic and convex. Given x, z ∈ O and vectors v ∈ Tx O, w ∈ TzO , we define
|v − w| to be the distance in Tx O between v and the parallel transport w′ of w to Tx O along
the geodesic zx .

This "quasi-distance" is symmetric but satisfies the triangle inequality only up to a defect
depending on the geometry of O , see (2.2) below.

For linear subspaces Wx ⊂ Tx O and Wz ⊂ TzO with dim(Wx ) = dim(Wz), we denote
by |Wx − Wz | the symmetric "quasi-distance":

|Wz − Wx | := sup{d(Wx , w
′)}.

Here, the distance d(Wx , w
′) to the subspace Wx is measured in Tx O , and the supremum is

taken over all parallel translates w′ ∈ Wx of unit vectors w ∈ Wz along the geodesic zx .

2.4 Almost flat domains

We fix ε = 10−4 for the rest of the paper.
We say that M is almost flat at x ∈ M if the geometry of M at x is bounded by ε.
If M has geometry bounded by ρ at x then, for any λ ≥ ρ

ε
, the rescaled manifold λ · M

is almost flat at x .
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Let M be almost flat at x and consider the open ball O = B10(x). Thus, O is convex and

uniquely geodesic and the curvature in O is bounded from both sides by ± ε2

100 = ±10−10.
We refer to [8, Section 6] for the estimates stated below.
For any ball Br (x) ⊂ O , the exponential map expx : Br (0) → Br (x) is (1 + ε2 · r2)-

biLipschitz on Br (0) ⊂ Tx O , [8, Proposition 6.4].
For a triangle � = xyz ⊂ O with two sides of length l1, l2, the holonomy along � of any

v ∈ Tx O satisfies [8, Section 6.2.1]

||Hol�(v) − v|| ≤ ε2 · l1 · l2 · ||v||. (2.1)

For such� and arbitrary vx ∈ Tx O, vy ∈ TyO, vz ∈ TzO , set a := min{||vx ||, ||vy ||, ||vz ||}.
Then the holonomy bound (2.1) implies a triangle inequality with a defect:

|vx − vz | ≤ |vx − vy | + |vy − vz | + ε2 · l1 · l2 · a. (2.2)

The next result is a direct consequence of [8, Proposition 6.6].

Lemma 2.1 Assume B4(x) ⊂ O and u, w ∈ Tx O with ||u||, ||w|| < 2. Set z = expx (w) and
p = expx (u) and q = expx (w + u). Let ũ be the parallel translation of u to z along xz and
q ′ := expz(ũ). Then

d(q, q ′) ≤ ε2 · (||u|| + ||w||) · ||u|| · ||w||. (2.3)

Therefore,

∠qpq ′ ≤ 2 · ε2 · ||u|| · (||u|| + ||w||). (2.4)

And

|w − exp−1
p (q ′)| ≤ 2 · ε2 · (||u|| + ||w||) · ||u|| · ||w||. (2.5)

The estimate (2.3) implies:

Corollary 2.2 Letw, u ∈ Tx O be given with ||w|| = 1. Consider the curve η(t) := expx (u+
tw). Then, for all sufficiently small t , the starting direction w j of the geodesic connecting
η(0) and η(t) satisfies

|w j − w| ≤ 2 · ε2 · ||u||2.
We will need the following (definitely not optimal) lemma:

Lemma 2.3 Let η, γ : [0, 1] → O be geodesics. Set xt := η(t), zt := γ (t) and at =
d(xt , zt ). Finally, set vt := exp−1

xt (zt ) ∈ Txt M.
If 2 > 2a0 > a1 then, for any 1 ≥ t > 0,

|vt − v0| ≤ 5 · a0 · t . (2.6)

Proof Let h ∈ Tx0O be the starting direction of γ . Let h̃ be the parallel translation of h to
z0. Set z̃t = expz0(t · h̃) and ṽt = exp−1

xt (z̃t ). From (2.4), we deduce

d(x1, z̃1) ≤ a0 + 2ε2(1 + a0) · a0 < 2a0

Thus, d(z1, z̃1) < 4a0. The biLipschitz property of expz0 implies

d(z̃t , zt ) ≤ (4 + ε) · a0 · t . (2.7)

Applying (2.4) again, we deduce

|ṽt − v0| ≤ 2ε2 · (a0 + t) · t · a0 < 4ε2 · a0 · t .
Together with (2.7) this implies |vt − v0| < 5a0 · t . 	
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2.5 Subsets of positive reach

Let M be a Riemannian manifold with locally bounded curvature. A locally closed subset
L ⊂ M has positive reach in M if the closest point projection �L is uniquely defined on
a neighborhood U of L in M . In this case, �L is locally Lipschitz on U and the distance
function dL is C1,1 on U\L [15].

A subset L of positive reach in M is a topological manifold if and only if L is a C1,1 sub-
manifold of M , [25, Proposition 1.4]. On the other hand, any set L of positive reach contains
a subset L ′ open and dense in L , which is a C1,1-submanifold, possibly with components of
different dimensions [35, Theorem 7.5].

The following result is essentially contained in [25, Theorem 1.6, Theorem 1.2]. It for-
malizes the following observation: For a C1,1 submanifold a lower bound on the reach is
equivalent to an upper bound of the second fundamental form, as well as to a C1,1-bound of
the submanifold. The proof consists just of a few citations.

Lemma 2.4 There exists c > 0 with the following properties.
Let the geometry of M at p be bounded by ρ. Let L be a closed subset containing p, such

that the closest point projection � = �L onto L is uniquely defined in B 10
ρ
(p).

Then, for r ≤ 3
ρ
, the Lipschitz constant of � on Br (p) is at most

Lip(�L : Br (p) → L) ≤ 1 + c · ρ · r . (2.8)

If, in addition, L is a C1,1-submanifold then, for all q ∈ L ∩ Br (p),

|TpL − Tq L| ≤ c · ρ · r . (2.9)

Proof Upon rescaling, it suffices to prove the statement just for ρ = 1.
The distance function dL to L is semiconvex on B10(p), see [15, Proposition 1.1, Theorem

1.8]. Moreover, as shown in [17], see also the proof of [15, Proposition 1.1, Proposition 1.3],
the semiconvexity constant depends only on the curvature bound and the reach. Thus, there
is a universal constant C such that dL is C-semiconvex on B9(0).

The gradient flow (x, t) → 
(x, t) of −dL retracts B4(p) along the shortest geodesics
to L . The C-semiconcavity of −dL implies that the map x → 
(x, t) is eC ·t -Lipschitz
continuous [33, Lemma 2.1.4].

We find a constant c = c(C) with eCt ≤ 1+ c · t , for all |t | ≤ 4. Since 
(x, r) = �L(x),
for d(L, x) ≤ r , we obtain (2.8), for all 0 < r ≤ 4.

We turn now to (2.9). The existence of some constant c = c(L, M) satisfying (2.9) is
equivalent to the property that L is a C1,1-submanifold. The claim is that c can be chosen
independently of L and M

We fix a sufficiently small (but universally chosen) 1 >> δ > 0 to be determined later. It
is sufficient to prove (2.9) for all r < δ.

We fix B := B 1
10

(p) and some distance coordinates � : B → U ⊂ R
n . The distance

coordinates are uniform C1,1 in the following sense, [9, Theorem 13.2], [15, Section 3]. For
some constant C1 = C1(C):

• The map � is C1-biLipschitz.
• For any v1, v2 in the tangent bundle T B

1

C1
· |v1 − v2| ≤ ||d
(v1) − d
(v2)|| ≤ C1 · |v1 − v2|.
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• The function dL ◦ �−1 : U → R is C1-semiconvex.

The first two properties imply that it suffices to prove the estimate (2.9) on L ′ := �(L) ⊂
U instead of L ⊂ M . The third property implies by [3, Lemma] that the closest point
projection onto L ′ ⊂ U is uniquely defined on Bδ′(p′) ⊂ U with p′ = �(p), once δ′ =
δ′(C1) is small enough.

Then for some δ1 = δ1(δ
′), the intersection K of L ′ with the closed ball B ′ := B̄δ1(p

′)
is a compact set of reach ≥ δ1 in the Euclidean space R

n , [35, Lemma 3.4]. Thus, it is a
CAT(κ) space with respect to its intrinsic metric, for some κ = κ(δ1) [24].

Since L ′ is a manifold, local geodesics in K starting in p′ are extendable as local geodesics
until the relative boundary of K in L ′ [21, Theorem 1.5]. Moreover, these local geodesics
are minimizing in K on intervals of length δ = δ(κ), due to the CAT(κ) property. Now a
uniform Lipschitz estimate for the map x → Tx L ′ in L ′ ∩ Bδ(p′) is a direct consequence of
[28, Proposition 2.4]. 	


3 Basics on submetries

3.1 (Local) submetries

Recall that P : X → Y is a submetry if for any x ∈ X and any r > 0 the equality
P(Br (x)) = Br (P(x)) holds.

Remark 3.1 In [4], submetries have been introduced using closed balls and not the open balls
as here and in [16]. For our considerations here, this distinction does not matter, cf. [16,
Remark 2.2].

The map P is called a local submetry if for any x ∈ X there exists some s > 0 such that the
condition P(Br (z)) = Br (P(z)) holds true for any z ∈ Bs(x) and any r < s. We call X the
total space and Y the base of the local submetry P .

P is a local submetry if and only if it is locally 1-Lipschitz and locally 1-open. A restriction
of a (local) submetry P : X → Y to an open subset O ⊂ X is a local submetry P : O → Y .
A local submetry P : X → Y is a global submetry, if X and Y are length spaces and X is
proper [16, Corollary 2.9].

Let P : X → Y be a local submetry and let X be a length space. Replacing Y by P(X),
we may assume that the local submetries are surjective. Replacing the metric on Y by the
induced lengthmetric, P remains a local submetry [16, Corollary 2.10]. Thus,wemay assume
without loss of generality that the base space Y is a length space.

For a local submetry P : X → Y , a rectifiable curve γ : I → X is horizontal (with
respect to P) if (γ ) = (P ◦ γ ).

3.2 Structure of the base

From now on let M denote a manifold with locally bounded curvature. Let P : M → Y be
a surjective local submetry. Let y ∈ Y be arbitrary.

There exists some r = r(y) > 0, such that any geodesic γ : [0, t] → Y starting in y can
be extended to a geodesic γ : [0, r ] → Y up to the distance sphere ∂Br (y) [16, Theorem
1.3]. In this case, we will say that the injectivity radius at y is at least r . Under the above
assumptions, any point y′ ∈ Br (y) is connected to y by a unique geodesic.
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Set m = dim(Y ). Then, Y admits a canonical decomposition Y = ∪m
l=0Y

l into strata
Y l . Here, Y l is the set of all points y ∈ Y , for which the tangent space TyY splits off Rl

but not Rl+1 as a direct factor. Y l is an l-dimensional manifold with a canonical C1,1-atlas,
which is locally convex in Y , [16, Theorem 1.6]. The metric on Y l is given by a Lipschitz
continuous Riemannian metric; the tangent space TyY l is the maximal Euclidean factor of
TyY [16, Theorem 11.1].

For any point y ∈ Y l , there exists some r0 = r0(y) > 0 with the following properties [16,
Lemma 10.1, Theorem 11.1]: The open ball B2r0(y) does not contain points in ∪l−1

i=0Y
i and,

for any y′ ∈ Br0(y) ∩ Y l , the injectivity radius at y′ is at least r0.

3.3 Fibers

Let P : M → Y be a surjective local submetry. Let y ∈ Y l ⊂ Y . Then the fiber L = P−1(y)
and the preimage S = P−1(Y l) are subsets of positive reach in M [16, Theorems 1.1, 1.7].

Neither L nor S have to bemanifolds.However, for every y ∈ Y\∂Y , the fiber L = P−1(y)
is a C1,1-submanifold of M [16, Theorem 1.8]. In particular, this applies to all y ∈ Ym with
m = dim(Y ).

3.4 Infinitesimal structure

Let P : M → Y be a local submetry, let x ∈ M be arbitrary, y = P(x) and denote by L the
fiber P−1(y).

There exists a differential Dx P : TxM → TyY , which is itself a submetry. The tangent
space Tx L is the preimage Dx P−1(0) and it is a convex cone in TxM [16, Proposition 3.3,
Corollary 3.4]. We call Tx L the vertical space at x and denote it by V x .

The horizontal space Hx is the dual cone of Tx L in TxM . The cone Hx consists of all
h ∈ TxM such that ||h|| = |Dx P(h)|, where | · | on the right side denotes the distance to the
origin of TyY .

A Lipschitz curve γ : I → M is horizontal if and only if the vector γ ′(t) is horizontal,
for almost all t ∈ I .

4 P-almost flatness

4.1 A single point

Let P : M → Y be a local submetry, where M has locally bounded curvature. Fix y ∈ Y and
consider L = P−1(y). Let x ∈ L be such that a neighborhood of x in L is a C1,1-submanifold.

For any sequence z j → x in M , any Gromov–Hausdorff limit of (any subsequence of)
the vertical spaces V z j contains V x , [16, Corollary 8.4]. Thus, we find some r1 > 0 such
that Br1 ∩ L is a C1,1-submanifold and such that the following holds true: For any z ∈ Br1(x)
and any unit vector v ∈ V x , there exists some v′ ∈ V z with

|v − v′| ≤ ε. (4.1)

We call r1 as above the vertical semicontinuity radius of P at x .

Lemma 4.1 There exists λ > 0 with the following property.
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Let r1 > 0 be given. Let M be a manifold with geometry bounded at x by 1
r1
. Let P :

M → Y be a local submetry, y = P(x) and L = P−1(y). Let the vertical semicontinuity
radius of P at x and the injectivity radius of Y at y be at least r1.

Then, upon rescaling M and Y by the constant λ
r1
, we have

• M is almost flat at x.
• If r ≤ 10, the closed ball B̄r (y) is strictly convex in Y .
• If r ≤ 10, the projection �L : Br (x) → L has Lipschitz constant:

Lip(�L : Br (x) → L) ≤ 1 + ε · r . (4.2)

• For all x1, x2 in the C1,1-manifold B10(x) ∩ L, we have

|V x1 − V x2 | ≤ ε · d(x1, x2). (4.3)

• For any z ∈ B10(x) and any unit v ∈ V x , there is v′ ∈ V z with

|v − v′| ≤ ε. (4.4)

Proof We may assume that the constant c appearing in Lemma 2.4 is at least 1. We set
λ := 10·c

ε
and rescale M and Y with λ

r1
.

Upon this rescaling, the geometry of M is bounded at x by 1
λ

< ε. Hence, the rescaled M
is almost flat at x .

The injectivity radius of the rescaled Y at y is at least λ. Therefore, the closest point
projection onto L (in the rescaled M) is uniquely defined in Bλ(x). Applying Lemma 2.4,
we deduce (4.2) and (4.3).

The last point (4.4) follows from the definition of the vertical semicontinuity radius and
λ > 10.

Finally, the statement that for some r0 and all r < r0 the balls B̄r (y) are strictly convex is
exactly [16, Theorem 9.2]. Moreover, the proof actually shows that in the present situation,
one can take r0 = 10. 	


For a local submetry P : M → Y , we say that x is a P-almost flat point if the conclusions
of Lemma 4.1 hold true without rescaling. Due to Lemma 4.1, for any local submetry P :
M → Y and any point x ∈ M , such that a neighborhood of x in the fiber L := P−1(P(x))
is a manifold, M becomes P-almost flat at x upon some rescaling.

4.2 Stability along strata

The bound r1 appearing in Lemma 4.1 can be chosen locally uniformly along strata:

Lemma 4.2 Let P : M → Y be a local submetry. Let L be a fiber P−1(y) and let x ∈ L be
a point, such that a neighborhood of x in L is a manifold. Let Y l be the stratum through y
and S = P−1(Y ). Then upon rescaling by some μ = μ(M, Y , P, x, y) > 0 the following
holds:

Any z ∈ B10(x) ∩ S is a P-almost flat point.

Proof The curvature and injectivity radii of M are bounded in a fixed ball around x . The
injectivity radius of Y is uniformly bounded from below in a neighborhood of y in Y l [16,
Theorem 11.1].

Applying Lemma 4.1, it remains to obtain a uniform lower bound on the vertical semi-
continuity radii in a neighborhood of x in S.
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For some choice of a neighborhood U of x in M , the restriction P : U ∩ S → Y l is a
fiber bundle [16, Proposition 11.3]. Thus, U ∩ S and L ′ := U ∩ P−1(y′) for any y′ ∈ Y l

are topological manifolds. Since S and L ′ are subsets of positive reach [16, Theorem 1.1,
Theorem 1.7], both subsets U ∩ S and U ∩ L ′ are C1,1-submanifolds of M .

The submanifold S∩U in its intrinsic metric is a manifold with locally bounded curvature
[15, Proposition 1.7]. The restriction P : S ∩ U → Y l is a local submetry with all fibers
being regular. Thus, this restriction is a C1,1-Riemannian submersion [16, Theorem 1.2].

In particular the distribution z → V z is continuous on U ∩ S. Thus, the semicontinuity
of vertical spaces in M around x implies the following. For a sufficiently small 2δ > 0, any
point x1 ∈ B2δ(x) ∩ S, any z1 ∈ B2δ(x) and any unit vector v ∈ V x1 there exists some
v′ ∈ V z1 such that (4.1) holds true.

Thus, δ is the required uniform bound on the vertical semicontinuity radii in a neighbor-
hood of x in S. This finishes the proof. 	


5 Projection onto a fiber

We aim to strengthen (4.2), (4.3), (4.4).

Lemma 5.1 Let P : M → Y be a local submetry, let L be a fiber of P. Assume x0 ∈ L is a
P-almost flat point. Then, �L : L ′ ∩ B2(x0) → L is locally 2-open, for any fiber L ′ of P.

Proof Consider any z′ ∈ L ′ ∩ B2(x0). Set r = d(L, z′) < 2. Consider some δ < ε = 10−4,
so that B10δr (z′) ⊂ B2(x0).

Consider an arbitrary q ′ ∈ Bδr (z′) ∩ L ′. Set q = �L(q ′). Consider any p ∈ L with
t := d(p, q) < δr . It is sufficient to find p′ ∈ L ′ with �L(p′) = p and d(p′, q ′) ≤ 2t .

Consider the ball B = B3(0) in the horizontal space H p and the subset K =
expp(B3(0)) ⊂ M . Note that �L(K ) = p. Consider the distance function f = dK :
B2(x0) → R. We are looking for a point p′ ∈ L ′ with f (p′) = 0 and d(p′, q ′) ≤ 2t .

By the open map theorem [26, Lemma 4.1], it suffices to prove

f (q ′) ≤ 5

4
· t (5.1)

and that the absolute gradient of the restriction − f : L ′ → R satisfies

|∇q ′′(− f )| ≥ 4

5
(5.2)

at every point q ′′ ∈ L ′ ∩ B2t (q ′).
Consider h = exp−1

q (q ′) ∈ Hq . By (4.3), we find some h̃ ∈ H p with

|h̃ − h| ≤ ε · t · r .
Then, expp(h̃) ∈ K and from Lemma 2.1 we deduce

f (q ′) ≤ d(q ′, expp(h̃)) ≤ t + 4ε2 · t · r + 2 · ε · t · r <
5

4
t .

This proves (5.1).
In order to prove (5.2), we fix a point q ′′ ∈ L ′ ∩ B2t (q ′). Consider a point p̂ ∈ K with

f (q ′′) = dK (q ′′) = d(q ′′, p̂).
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Denote by w ∈ Tq ′′M the starting direction of the geodesic q ′′ p̂.
If there exists a vertical unit vector v ∈ Vq ′′ = Tq ′′(L ′) which encloses an angle less than

arccos( 45 ) with w, then the first variation formula would imply (5.2).

Assume on the contrary, that such a vertical vector v ∈ Vq ′′
does not exist. Then, there

exists a unit horizontal vector u ∈ Hq ′′
which encloses with w an angle at most

∠(u, w) ≤ π

2
− arccos(

4

5
) < 1.

Since x0 is a P-almost flat point, we apply (4.4) and (4.3) and find a unit horizontal vector
u′ ∈ H p with |u′ − u| ≤ 2ε. Then, the angle between the parallel translate ŵ of w to p̂ and
û of u′ to p̂ is at most

∠(û, ŵ) ≤ 1 + 3ε.

Note, that ŵ is just the starting direction at p̂ of the geodesic p̂q ′′.
Consider the vector ĥ = exp−1

p ( p̂) ∈ H p and the curve η(t) := expp(ĥ+ t ·u′) contained
in K and starting at p̂. By Corollary 2.2, the curve η encloses with vector û an angle less
than ε.

Thus, the angle between η and ŵ at p̂ is less than 1 + 4ε < π
2 . Now the first formula of

variation implies that d(q ′′, η(t)) < d(q ′′, p̂) for all sufficiently small t .
This contradicts the choice of p̂. The contradiction finishes the proof of (5.2) and of the

Lemma. 	

Using a combination of Lemmas 5.1 and 2.3, we now provide:

Theorem 5.2 P : M → Y a local submetry. Let x0 ∈ M be such that a neighborhood of
x0 in L = P−1(P(x0)) is a C1,1-submanifold. Then, there exist r0 > 0,C > 0 with the
following properties, for any 0 < r < r0 and any z ∈ Br (x0).

(1) For any v ∈ V x0 , there exists v′ ∈ V z with |v − v′| ≤ C · r · ||v||.
(2) For any h ∈ Hz, there exists h′ ∈ Hx0 with |h − h′| ≤ C · r · ||h||.
(3) For Lz = P−1(P(z)), the closest point projection �L : Lz ∩ Br (x0) → L is (1 + Cr)-

Lipschitz and locally (1 + Cr)-open.

The numbers r0,C depend only on a bound of the geometry of M at x0, a bound on the
injectivity radius of Y at P(x0) and the vertical semicontinuity radius of P at x0.

Proof After rescaling, we may assume that x0 is a P-almost flat point. Due to Lemma 4.1,
the rescaling constant depends only on a bound of the geometry of M at x0, a bound on the
injectivity radius of Y at P(x0) and the vertical semicontinuity radius of P at x0.

Thus, it suffices to find universal constants C, r0 > 0 satisfying (1), (2), (3), under the
assumption that x0 is a P-almost flat point.

We are going to prove (3) first. By the definition of P-almost flat points, the projection
�L is (1+ε ·r)-Lipschitz on the whole ball Br (x0), for any r < 10. Thus, also the restriction
of �L to L ′ ∩ Br (x0) has the same Lipschitz constant. It suffices to improve the openness
constant of �L on L ′ provided by Lemma 5.1.

Set r0 := 1
5 . Let r ≤ r0 and z ∈ Br (x0) be arbitrary. Set x = �L(z) and let p be a point

on L with a0 := d(x, p) < ε · r .
We are going to find a point q ∈ Lz satisfying �L(q) = p and

d(q, z) ≤ (1 + 5 · r) · a0. (5.3)
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Extend the geodesic xz to a point z̃ with d(x, z̃) = 1. Lemma 5.1 provides a point q̃ on
the fiber L̃ through z̃ such that d(q̃, z̃) ≤ 2a0 and �L(q̃) = p. The geodesics γ := x z̃ and
η := pq̃ are horizontal and P ◦ γ = P ◦ η.

Consider the point q on the η with d(p, q) = d(x, z). Then P(q) = P(z), hence q ∈ Lz .
From Lemma 2.3, we deduce (5.3), finishing the proof of (3).

In order to prove (1), we fix r ≤ 1
5 and z ∈ Br (x0). Set again x = �L(z). Due to (2.9),

we have |V x − V x0 | ≤ 2εr .
Consider an arbitrary unit vector v ∈ V x0 .We find a unit vector v̂ ∈ V x with |v̂−v| ≤ 3εr .
For any sufficiently small δ > 0 consider a point pδ ∈ L with d(x, pδ) = δ, such that the

geodesic xpδ starts in a direction vδ ∈ TxM with |vδ − v̂| ≤ εr .
Extend as above the geodesic xz until a point z̃ with d(x, z̃) = 1. Due to Lemma 5.1, we

find a point q̃δ in the fiber Lz̃ of z̃ with d(q̃, z̃) ≤ 2δ. Let qδ be the point on the geodesic
pδ q̃δ with d(pδ, qδ) = d(x, z).

Then, qδ ∈ Lz . From Lemma 2.3, we deduce that the starting direction vδ of the geodesic
zqδ satisfies

|vδ − ṽ| ≤ 5 · r .
The directions vδ subconverge to a vertical direction v′ ∈ V z such that |v′ −v| ≤ 6r . This

proves (1).
By duality of horizontal and vertical cones, (1) implies (2). 	

We now easily deduce:

Proof of Proposition 1.3 We cover the compact manifold fiber L by finitely many balls as
provided by Theorem 5.2. Choosing a tubular neighborhood Br0(L) of L contained in the
union of these balls, we obtain the conclusion directly from Theorem 5.2(3). 	


6 Exponential map in the base

6.1 Exponential map in the base

The following result is a localization of Theorem 1.1.

Proposition 6.1 There exists someμ > 1with the following properties. Let P : M → Y , x ∈
M, y = P(x) and r1 be as in Lemma 4.1. Then for r0 := r1

μ
andC := μ·r21 and all r < r0, the

exponential map expy : Br (0) → Br (y) is (1 + Cr2)-biLipschitz on the ball Br (0) ⊂ TyY .

Proof The statement is invariant under rescalings. Upon a rescaling, we may assume that x
is a P-almost flat point. Let C, r0 be as provided by Theorem 5.2. Upon a further rescaling,
depending only on C and r0, we may assume that the constants satisfy r0 = 1 and C = 1

10 . It
suffices to prove that, for any r < 1

10 , themap expy : Br (0) → Br (y) is (1+2·r2)-biLipschitz
on the ball Br (0) ⊂ TyY . We fix r < 1

10 .
The ball B̄r (y) ⊂ Y inherits the lower curvature bound − 1

100ε
2 from the ball B̄r (x), [16,

Proposition 3.1]. By Toponogov’s theorem, the exponential map expy is (1+ε2r2)-Lipschitz
on Br (0) ⊂ TyY . It remains to bound the Lipschitz constant of exp−1

y on Br (y).
Since M is almost flat at x , the exponential map expx : Br (0) → Br (x) is (1 + ε2r2)-

biLipschitz on the ball Br (0) ⊂ TxM , for any r ≤ 1.
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We consider the ball Q = Br (0) ⊂ Hx in the horizontal space at x and its exponential
image Z = expx (Q) ⊂ M . For all h ∈ Q ⊂ Hx we have, [16, Proposition 7.3]:

expy ◦Dx P(h) = P ◦ expx (h).

Thus, the map P : Z → Y can be written as

P = expy ◦Dx P ◦ exp−1
x .

Themap exp−1
x : Z → Q is locally (1+ε2r2)-biLipschitz and themap Dx P : Hx → TyY

is a local submetry. If we knew that P : Z → Y is locally (1+ r2)-open, we would infer that
expy is locally (1+2 ·r2)-open. Since expy is a homeomorphism and (1+ε2 ·r2)-Lipschitz,
this would prove that expy is locally (1 + 2 · r2)-biLipschitz.

It remains to prove that P : Z → Y is locally (1 + r2)-open.
Thus, consider any h ∈ Q and z = expx (h) ∈ Z . Set t0 := ε · (r − |h|). Let z1 =

expx (h1) ∈ Z with d(z, z1) < t0 be given. Set y1 = P(z1) and let y2 ∈ Y be such that t :=
d(y1, y2) < t0. We need to find a point z2 ∈ Z ∩ P−1(y2), such that d(z1, z2) ≤ (1+ r2) · t .

We set L ′ := P−1(y2) and denote by f the distance function f := dL ′ . We are looking
for z2 ∈ Z with f (z2) = 0 and d(z1, z2) ≤ (1 + r2) · t .

Since P : M → Y is a local submetry, we have

f (z1) = d(L ′, z1) = d(y1, y2) = t .

Due to the open map theorem [26, Lemma 4.1], it suffices to prove that the absolute gradient
of − f on Z at every point p ∈ Z \ L ′ is at least 1 − 1

2r
2.

We fix a point p ∈ Z \L ′ and a shortest geodesic from p to L ′. This geodesic is horizontal,
since L ′ is a fiber of P . Let u ∈ H p be the starting direction of this geodesic.

Due to Theorem 5.2 and the rescaling chosen above, we find some unit vector u′ ∈ Hx

with |u − u′| ≤ 1
5 · r . Consider w := exp−1

x (p) and the curve η : [0, t0] → Z starting at p:

η(s) := expx (w + s · u′) ⊂ Z .

Due to Corollary 2.2, any starting direction ũ of η at p satisfies

|ũ − u| ≤ 1

4
· r .

Therefore, by the first formula of variation, we deduce that − f grows at p at least with
velocity

cos
(1
4
r
) ≥ 1 − 1

2
r2.

This provides the right estimate for the absolute gradient of the function − f : Z → R at p
and finishes the proof. 	


6.2 Applications

As a consequence of Proposition 6.1, we derive a local generalization of Corollary 1.2:

Corollary 6.2 Let P : M → Y be a surjective local submetry. Then, any stratum Y l of Y is
a manifold with locally bounded curvature.

123



15 Page 14 of 19 Annals of Global Analysis and Geometry (2024) 65 :15

Proof Let y0 ∈ Y l be arbitrary. Consider a point x0 ∈ L = P−1(y0) such that a neighborhood
of y0 in L is a C1,1-submanifold.

Due to Proposition 6.1 and Lemma 4.2, we find some r0 > 0 and C > 0 such that
the following holds true. For any y ∈ Br0(y0) ∩ Y l and any r < r0, the exponential map
expy : Br (0) → Br (y) is (1 + C · r2)-biLipschitz from the ball in the tangent space
Br (0) ⊂ TyY .

Upon rescaling, we may assume that M is almost flat at x0, that r0 = 10 and C = ε.
Due to Lemmas 4.1, 4.2, the ball B̄10(y0) ∩ Y l is compact and convex in Y l . It inherits the
lower curvature bound −ε2 from B := B10(x0). It remains to prove that the convex subset
Z := B̄1(y0) ∩ Y l is CAT(1).

Consider 3 points y, p, q in this Z . Choose ȳ, p̄, q̄ in the round sphere Sl of dimension
l, such that d(y, p) = d(ȳ, p̄), d(y, q) = d(ȳ, q̄) and ∠pyq = ∠ p̄ ȳq̄ . We need to prove
d(p, q) ≥ d( p̄, q̄).

Identify the tangent spaces TyY l and TȳSl through an isometry I , which sends the starting
directions of yp and yq to the starting directions of ȳ p̄ and ȳq̄, respectively. It suffices to
prove that the map

f := expȳ ◦I ◦ exp−1
y : B1(y) → B1(ȳ)

on the ball B1(y) ⊂ Y l is 1-Lipschitz.
Due to Proposition 6.1, the map f is biLipschitz. By construction, f sends geodesics

starting at y to geodesics starting at ȳ. Hence, f sends spheres around y onto spheres around
ȳ of the same radius.

The restriction of expȳ to the concentric sphere ∂Bs(0) in TȳSn is (1 − 1
10 s

2)-Lipschitz,
if we equip this sphere with its intrinsic metric. Thus, the restriction f : ∂Bs(y) → ∂Bs(ȳ)
is 1-Lipschitz, if both spheres are equipped with their intrinsic metrics.

The biLipschitz map f is differentiable almost everywhere with linear differential, by
Rademacher’s theorem. By above, at any point z at which f is differentiable, the differential
Dz f is 1-Lipschitz. We claim that this is enough to conclude that f is 1-Lipschitz.

Indeed, the ball B1(y0) can be considered as a Euclidean subset O ⊂ R
l with a Lipschitz

continuous Riemannian metric. For any vector v in R
l , Fubini’s theorem implies that for

almost every segment γ in O in direction of v, the length of γ in Y is not less than the length
of f ◦ γ in S

n . On segments parallel to v in O ⊂ Y , the length functional is continuous
with respect to uniform convergence. On the other hand, the length of the images f ◦ γ is
(as always) lower semi-continuous. Thus, by a limiting procedure, the length of f ◦ γ is not
larger than the length of γ for every segment γ in the direction of v. Therefore, the map f
is 1-Lipschitz and B1(y0) has curvature at most 1. 	


Another consequence of Proposition 6.1 is the following:

Corollary 6.3 Let P : M → Y be a surjective local submetry as above. Let y ∈ Y be an
arbitrary point, let r be smaller than the injectivity radius of y and let v ∈ TyY be a vector
with |v| < r . Then, the tangent cones Tv(TyY ) and Texpy(v)Y are isometric.

In particular, if expy(v) is contained in the l-dimensional stratum Y l then v is contained

in the l-dimensional stratum (TyY )l .

Proof Consider the geodesic γv : [0, r) → Y in the direction of v parametrized by arc length.
For t ∈ (0, r), the tangent spaces at γv(t) do not depend on t , [32]. Moreover, the tangent
space Tv(TyY ) in the Euclidean cone TyY is isometric Ts·v(TyY ), for all s > 0.

Due to Proposition 6.1, for small s > 0, a neighborhood of (s · v) in TyY is (1 + Cs2)-
biLipschitz to a neighborhood of expy(s · v) in Y , for some C independent of s. Rescaling,
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letting s go to 0 and using that the tangent cones at s · v, respectively, at expy(s · v) do not
depend on s, we deduce the claim. 	


7 Transnormal submetries

7.1 Horizontal geodesics

Recall that a local submetry P : M → Y is transnormal if all fibers of P are C1,1-submanifold
of M . A local submetry P : M → Y is transnormal if and only if any local geodesic
γ : I → M is horizontal once γ ′(t) is horizontal for some t ∈ I , [16, Proposition 12.5]. In
this case, for any horizontal local geodesic γ : I → M , the projection γ̄ := P ◦ γ : I → Y
is a discrete concatenation of geodesics in Y , [16, Corollary 7.2].

The following Lemma is stated as [16, Proposition 12.7] for global submetries, but the
proof remains unchanged in the local case:

Lemma 7.1 Let P : M → Y be a transnormal local submetry. Let γ1, γ2 : I → M
be horizontal local geodesics. Set γ̄i := P ◦ γi . Assume that, for some t ∈ I , we have
γ̄1(t) = γ̄2(t) and γ̄ ′

1(t) = γ̄ ′
2(t). Then, γ̄1 and γ̄2 coincide on I .

We can now provide

Proof of Corollary 1.4 The statement is local. We may assume that I is a compact interval
[a, b]. The projection γ̄ : [a, b] → Y is a finite concatenation of geodesics γ̄ : [si , si+1] →
Y , for a = s0 < ... < sk = b.

For all t ∈ (si , si+1), the tangent spaces Tγ̄ (t)Y are pairwise isometric [32, Theorem 1.1].
By Corollary 6.3, they are also isometric to Tγ̄ +(si )(Tγ̄ (si )Y ) and to Tγ̄ −(si+1)(Tγ̄ (si+1)Y ). Here
and below γ̄ ±(s) denotes the outgoing and the incoming direction of γ̄ in Tγ̄ (s)Y .

On the other hand, for any t ∈ (si , si+1), the incoming and the outgoing directions γ̄ ±(t)

are contained in the line factor of Tγ̄ (t)Y . Hence, Tγ̄ ′(t)(Tγ̄ (t)Y ) is isometric to Tγ̄ (t)Y , for
any such t .

It only remains to prove that for any s = s1, . . . , sk−1, the two tangent cones
Tγ̄ ±(s)(Tγ̄ (s)Y ) are isometric two each other. In order to prove this, it suffices to find, for
any such s, an isometry I : Tγ̄ (s)Y → Tγ̄ (s)Y which sends γ̄ + to γ̄ −.

In order to find such I , we consider x := γ (s) ∈ M and the differential Dx P : TxM →
TyY . The restriction of Dx P to the unit sphere K in the horizontal space Hx is a transnormal
submetry Dx P : K → �yY , onto the space of directions at y [16, Proposition 12.5].

The incoming and the outgoing directions γ ±(t) ∈ K satisfy γ +(t) = −γ −(t) and
Dx P(γ ±(t)) = γ̄ ±(t).

Due to [16, Proposition 12.7], the decomposition of K into the fibers of the submetry
Dx P is equivariant under the multiplication of K with −1. Thus, −I d : K → K induces
an isometry −I d : �yY → �yY . The cone over this isometry −I d is the required isometry
I : TyY → TyY , which satisfies I (γ̄ +) = γ̄ −.

This proves the claim and implies that the spaces Tγ̄ ′(t)(Tγ̄ (t))Y are pairwise isometric.
Let now l denote the dimension of the maximal Euclidean factor of the pairwise isometric

spaces Tγ̄ ′(t)(Tγ̄ (t)Y ). Then, for all t �= s0, s1, . . . , sk as above, the iterated tangent cone
Tγ̄ ′(t)(Tγ̄ (t)Y ) is isometric to Tγ̄ (t)Y . By definition, γ (t) is contained in Y l , for all such t . 	
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7.2 Holonomymap along a horizontal geodesic

Let P : M → Y be a transnormal local submetry. Let γ : [a, b] → M be a horizontal local
geodesic with projection γ̄ = P ◦ γ . Due to Corollary 1.4, there exist some 1 ≤ l ≤ m, such
that γ̄ (t) ∈ Y l , for all but finitely many times t ∈ [a, b]. For t ∈ [a, b], consider the fiber

Lt := Lγ (t) = P−1(P(γ (t))).

Set S = P−1(Y l). Let t ∈ [a, b] be such that γ̄ (t) ∈ Y l . Set x = γ (t) ∈ Lt ⊂ S.
Then, S is a C1,1-submanifold of M and the restriction P : S → Y l is a C1,1 Riemannian
submersion. Therefore, the normal vector γ ′(t) ∈ Tx S to Lt extends to a unique locally
Lipschitz continuous normal field z → νz ∈ Tz S along Lt , such that

Dz P(νz) = Dx P(νx ) = Dx P(γ ′(t)).

Denote by Qt the set of all z ∈ Lt such that the geodesic γ z : [a, b] → M with
(γ z)′(t) = νz is defined. Then, Qt is an open subset of Lt and, if M is complete, Qt = Lt .
Due to Lemma 7.1, for all z ∈ Qt

P ◦ γ z = P ◦ γ = γ̄ .

For all s ∈ [a, b], we obtain a map Holγt,s : Qt → Ls , the holonomy along γ , given as

Holγt,s(z) := γ z(s).

Since ν and the exponential map on M are locally Lipschitz, the map Holγt,s is locally
Lipschitz.

If γ (s) ∈ Y l , then Holγt,s(Q
t ) = Qs and Holγt,s and Holγs,t are inverse to each other.

Thus, Holγt,s is locally biLipschitz in this case.
Let now r ∈ [a, b] be arbitrary. Find some s ∈ [a, b] such that γ̄ (s) ∈ Y l and |s − r | is

smaller than the injectivity radius at γ̄ (r). Then,

Holγs,r ◦ Holγt,s = Holγt,r .

Themap Holγt,s is locally biLipschitz, aswehave seen above.And themap Holγs,r : Qs → Lr

is the closest point projection to Lr . Once s has been chosen close enough to r , we can apply
Theorem 5.2 and deduce that the map Holγs,r : Qs → Lr is locally Lipschitz open.

Altogether we have verified the following

Proposition 7.2 In the notation above, the holonomy map along γ Holγt,r : Qt → Lr is
locally Lipschitz continuous and locally Lipschitz open. If γ̄ (r) ∈ Y l , then Holγt,r is locally
biLipschitz.

7.3 A uniform bound in terms of the volume

We finally prove:

Lemma 7.3 For any n, k, ρ, ν > 0, there exists r = r(n, k, ρ, ν) > 0 with the following
property. Let M be a manifold with locally bounded curvature and let P : M → Y be a
transnormal local submetry. Let n = dim(M) and k = dim(Y ). Let the geometry of M at x
be bounded by 1

ρ
and let the injectivity radius of Y at y = P(x) be at least ρ. Let, finally, the

volume of the ball Bρ(y) be at least Hk(Bρ(y)) ≥ ν · ρk . Then, the vertical semicontinuity
radius of P at x is at least r .
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Proof of Lemma 7.3 Assume the contrary and let Pj : (Mj , x j ) → (Y j , y j ) be a contradicting
sequence. Thus, the vertical semicontinuity radii r j of Pj at x j converge to 0. Hence, there
exist z j ∈ Mj with s j = d(z j , x j ) → 0 and unit vectors v j ∈ V x j such that d(v j , V z j ) > ε.

Hence, there exists a unit horizontal vector h j ∈ Hz j such that

∠(h j , ṽ j ) <
π

2
− ε,

where ṽ j is the parallel translation of v j to z j .
Upon rescalingwemay assume thatρ = ε. In particular,Mj are almost flat at x j . Choosing

a subsequence we may assume that B̄10(x j ) converge to a space M∞ which is a closed ball
of radius 10 around the limit point x of the sequence x j . Moreover, we may assume that the
balls B̄10(y j ) converge to an Alexandrov space Z and that the restrictions of Pj converge to a
1-Lipschitz map P : M∞ → Z . The open ball B = B10(x) is again a manifold with locally
bounded curvature and the restriction of P to B is a local submetry onto the ball B10(y) ⊂ Z .

Consider the geodesic γ j : [0, 1] → Mj starting in z j in the direction of h j . Then γ j is a
horizontal curve, by the definition of transnormality. The images Pj (γ j ) are quasi-geodesics
in Y j , [16, Proposition 3.2]. Since the convergence B̄10(y j ) → Z is non-collapsed by the
volume assumption, the limit of the curves Pj (γ j ) is a quasigeodesic in Z [33, Section
5.1(6)]. Therefore, the limit geodesic γ∞ : [0, 1] → M∞ starting in x is horizontal. Thus,
its starting direction h ∈ TxM∞ is horizontal.

On the other hand, the fibers L j := P−1
j (y j ) converge to L = P−1

j (y), [16, Lemma 2.4].

Since the manifolds L j are uniformly C1,1 in distance coordinates by (2.9), the tangent space
Tx j L j converge to Tx L . Thus, any limit vector v of v j is contained in Tx L . By assumptions
on h j and v j , the angle between the vertical vector v and the horizontal vector h is at most
π
2 − ε. This contradiction finishes the proof. 	


As a direct consequence, we obtain:

Corollary 7.4 For transnormal submetries P : M → Y , the constants C, r0 appearing in
Theorems 1.1, 5.2, Propositions 6.1 and 1.3 depend only on a bound of the geometry of M
around L, the injectivity radius of Y at y := P(L) and a lower volume bound of a ball in Y
around y.
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