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ABSTRACT:

In this paper, we present a novel framework for the semantic labeling of airborne laser scanning data on a per-point basis. Our framework
uses collections of spherical and cylindrical neighborhoods for deriving a multi-scale representation for each point of the point cloud.
Additionally, spatial bins are used to approximate the topography of the considered scene and thus obtain normalized heights. As the
derived features are related with different units and a different range of values, they are first normalized and then provided as input
to a standard Random Forest classifier. To demonstrate the performance of our framework, we present the results achieved on two
commonly used benchmark datasets, namely the Vaihingen Dataset and the GML Dataset A, and we compare the results to the ones
presented in related investigations. The derived results clearly reveal that our framework excells in classifying the different classes in
terms of pointwise classification and thus also represents a significant achievement for a subsequent spatial regularization.

1. INTRODUCTION

Automated scene interpretation has become a topic of major in-
terest in photogrammetry, remote sensing, and computer vision.
Focusing on the analysis of urban areas, data acquisition is mean-
while typically performed in terms of acquiring data in the form
of sampled point clouds via laser scanning. To reason about spe-
cific objects in the scene and use the respective information for
modeling or planning processes, many applications rely on a se-
mantic labeling of the acquired point clouds as an initial step.
Such a semantic labeling is typically achieved via point cloud
classification (Chehata et al., 2009; Shapovalov et al., 2010; Mal-
let et al., 2011; Niemeyer et al., 2014; Hackel et al., 2016; Wein-
mann, 2016; Grilli et al., 2017), where the objective is to assign a
semantic label to each point of the point cloud.

To foster research on the automated analysis of large urban ar-
eas acquired via airborne laser scanning and thus represented in
the form of point clouds, the ISPRS Benchmark on 3D Seman-
tic Labeling (Rottensteiner et al., 2012; Cramer, 2010) has been
released. However, only few approaches have been evaluated on
the provided dataset so far (Niemeyer et al., 2014; Blomley et
al., 2016a; Steinsiek et al., 2017), and correctly classifying the
dataset turned out to be rather challenging as several classes re-
veal a quite similar geometric behavior (e.g. the classes Low Veg-
etation, Fence | Hedge and Shrub), while others combine sub-
groups of different appearance (e.g. the class Roof, which com-
bines both pitched and terrace roofs) as indicated in Figure 1.

In this paper, we focus on the classification of airborne laser scan-
ning data. We present a novel classification framework using
collections of spherical and cylindrical neighborhoods as well as
spatial bins as the basis for a multi-scale geometric representation
of the surrounding of each point in the point cloud. In contrast
to a single-scale representation, this allows describing how the
local 3D structure behaves across scales. While the spherical
and cylindrical neighborhoods serve for deriving metrical fea-
tures and distribution features, the spatial bins are exploited in

order to approximate the topography of the considered scene and
thus obtain normalized heights. To address the fact that the de-
rived features are represented in different units and span a differ-
ent range of values, we use a normalization to map each entry of
the feature vector onto the interval [0, 1]. The normalized feature
vectors are provided as input to a Random Forest classifier which
establishes the assignment to semantic class labels on a per-point
basis. In summary, our main contributions are

e the use of a rich diversity of neighborhoods of different
scale, type and entity in order to appropriately describe local
point cloud characteristics,

o the use of different feature types extracted from the defined
neighborhoods,

o the use of a normalized height feature only considering the
heights of objects above ground and removing effects aris-
ing from the topography of the scene,

e a performance evaluation on two commonly used bench-
mark datasets, and

e new baseline results for the ISPRS Benchmark on 3D Se-
mantic Labeling.

After briefly summarizing related work (Section 2), we present
our framework for classifying airborne laser scanning point
clouds in detail (Section 3). To demonstrate our framework’s
performance, we provide the results obtained for different bench-
mark datasets (Section 4), and we subsequently discuss the de-
rived results in detail (Section 5). Finally, we provide concluding
remarks as well as suggestions for future work (Section 6).

2. RELATED WORK

In this section, we summarize recent efforts addressing the defi-
nition of local neighborhoods (Section 2.1), the extraction of suit-
able geometric features (Section 2.2) and the classification strat-
egy (Section 2.3).

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-1V-2-W4-43-2017 | © Authors 2017. CC BY 4.0 License. 43



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W4, 2017
ISPRS Geospatial Week 2017, 18-22 September 2017, Wuhan, China

Figure 1. Point cloud colored with respect to nine semantic classes (Roof: red; Facade: white; Impervious Surfaces: gray; Car: blue;
Tree: dark green; Low Vegetation: bright green; Shrub: yellow; Fence / Hedge: cyan; Powerline: black).

2.1 Neighborhood Definition

Many investigations focus on the representation of local point
cloud characteristics at a single scale. For such a single-scale rep-
resentation, a cylindrical neighborhood (Filin and Pfeifer, 2005)
or a spherical neighborhood (Lee and Schenk, 2002; Linsen and
Prautzsch, 2001) is commonly used. Thereby, the scale parameter
to describe such a neighborhood is represented by either a radius
(Filin and Pfeifer, 2005; Lee and Schenk, 2002) or the number
of nearest neighbors (Linsen and Prautzsch, 2001). The value
of the scale parameter is typically selected heuristically based on
knowledge about the scene and data. To automatically select a
suitable value in a data-driven approach, it has for instance been
proposed to select the optimal scale parameter for each individual
point via dimensionality-based scale selection (Demantké et al.,
2011), where a highly dominant behavior of one of the dimen-
sionality features (i.e. linearity, planarity, and sphericity) is fa-
vored. A similar approach has been presented with eigenentropy-
based scale selection (Weinmann et al., 2015), where the minimal
disorder of 3D points is favored.

In contrast to a representation of local point cloud characteristics
at a single scale, a multi-scale representation allows a description
of geometric properties at different scales and thereby implicitly
accounts for the way in which these properties change across
scales. To describe local point cloud characteristics at multiple
scales, Niemeyer et al. (2014) and Schmidt et al. (2014) used a
collection of cylindrical neighborhoods with infinite extent in the
vertical direction and radii of 1 m, 2m, 3 m and 5 m, respectively.
In addition to these neighborhoods, Blomley et al. (2016a,b) also
used a spherical neighborhood of locally-adaptive size for each
individual 3D point. Thereby, the local adaptation is achieved
via eigenentropy-based scale selection (Weinmann et al., 2015),
where the optimal scale parameter is directly related to the min-
imal disorder of 3D points within a local neighborhood. In con-
trast to these neighborhood types, it has also been proposed to use
a multi-scale voxel representation (Hackel et al., 2016) or even
different entities in the form of voxels, blocks and pillars (Hu
et al., 2013), in the form of points, planar segments and mean
shift segments (Xu et al., 2014), or in the form of spatial bins,

planar segments and local neighborhoods (Gevaert et al., 2016).
Recently, Yang et al. (2017) considered local point cloud charac-
teristics on the basis of points, segments and objects as well as
local context for analyzing point clouds.

We argue that cylindrical and spherical neighborhoods have the
benefit that they rely only on one scale parameter independent of
the local point distribution, but we also advocate that in this case
of neighborhoods with fixed scale parameters multiple sizes for
both of them should be considered. In addition to the cylindrical
neighborhoods proposed by Niemeyer et al. (2014) and Schmidt
et al. (2014), we hence also use a collection of spherical neigh-
borhoods as proposed by Brodu and Lague (2012) in the scope of
an investigation focusing on terrestrial laser scanning data. As we
focus on ALS data with a significantly lower point density, we do
not consider neighborhoods with radii in the centimeter scale. In-
stead, we select the same radii as used by Niemeyer et al. (2014)
and Schmidt et al. (2014) for cylindrical neighborhoods. Con-
sequently, we consider a collection of spherical neighborhoods
with radii of 1 m, 2m, 3m and 5 m, respectively. Moreover, we
consider one spherical neighborhood of adaptive size, chosen via
eigenentropy-based scale selection (Weinmann et al., 2015).

2.2 Feature Extraction

The defined neighborhoods serve as the basis for feature extrac-
tion. Thereby, different feature types may be considered and the
considered features are typically concatenated to a feature vector:

e Parametric features are defined as the estimated parameters
when fitting geometric primitives such as planes, spheres or
cylinders to the given data (Vosselman et al., 2004).

e Metrical features describe local point cloud characteristics
by evaluating certain geometric measures within a local
neighborhood. Among such features, shape measures in
particular are often used as they are rather intuitive and rep-
resent one single property of the local neighborhood by a
single value (West et al., 2004; Jutzi and Gross, 2009; Mal-
let et al., 2011; Weinmann et al., 2015; Guo et al., 2015).
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e Sampled features focus on a sampling of specific proper-
ties within a local neighborhood. In this regard, distribution
features are typically used which describe local point cloud
characteristics by sampling the distribution of a certain met-
ric e.g. in the form of histograms (Osada et al., 2002; Rusu
et al., 2009; Tombari et al., 2010; Blomley et al., 2016a,b).

As our framework should be applicable for the analysis of gen-
eral scenes, we do not want to involve strong assumptions on spe-
cific geometric primitives to be present in the considered scene.
Consequently, we do not take into account parametric features.
Instead, we focus on the use of metrical features and distribution
features which are widely but typically separately used for a va-
riety of applications.

Furthermore, we take into account that the height above ground
can be a useful feature to distinguish between some classes of
otherwise identical geometry (e.g. Terraced Roof vs. Impervi-
ous Surface). As the scene’s landscape is not necessarily flat,
we have to estimate the local topography of the scene in order to
derive the normalized height feature. However, instead of an ac-
curate ground filtering of lidar data for automatically generating a
Digital Terrain Model (DTM) (Mongus and Zalik, 2012; Sithole
and Vosselman, 2004; Kraus and Pfeifer, 1998), we assume that a
rough approximation of the local topography is already sufficient
to derive the normalized height of each point.

2.3 Classification

The derived feature vectors are provided as input to a classifier
which, after being trained on representative training data, can as-
sign the respective class labels. In this regard, the straightforward
solution consists in selecting a standard approach for supervised
classification, e.g. a Support Vector Machine classifier (Mal-
let et al., 2011; Lodha et al., 2006), a Random Forest classifier
(Chehata et al., 2009; Guo et al., 2011; Steinsiek et al., 2017), an
AdaBoost(-like) classifier (Lodha et al., 2007; Guo et al., 2015)
or a Bayesian Discriminant Analysis classifier (Khoshelham and
Oude Elberink, 2012). However, as these classifiers treat each
point of the point cloud individually, they do not take into account
a spatial regularity of the derived labeling, i.e. a visualization of
the classified point cloud might reveal a “noisy” behavior.

To enforce spatial regularity, local context information can be
taken into account. This means that, instead of treating each
point individually by considering only its corresponding feature
vector, the feature vectors and labels of neighboring points are
taken into account as well. In many cases, such a contextual clas-
sification involves a statistical model of context, where particu-
lar attention has been paid to the use of a Conditional Random
Field (Niemeyer et al., 2014; Schmidt et al., 2014; Steinsiek et
al., 2017; Landrieu et al., 2017).

In our work, we focus on standard approaches for supervised clas-
sification, as respective classifiers are meanwhile available in nu-
merous software tools and rather easy-to-use by non-expert users.

3. METHODOLOGY

Our framework consists of different components. As input, the
framework only receives the spatial coordinates of 3D points,
while other information such as radiometric data or a Digital Ter-
rain Model (DTM) are not considered in the scope of our work as
they are not consistently or not at all provided for the commonly

used benchmark datasets. Based on the available spatial informa-
tion, our framework uses suitable neighborhoods (Section 3.1)
for appropriately describing each 3D point with a feature vec-
tor (Section 3.2) which, in turn, is first normalized (Section 3.3)
and then classified with a standard classifier trained on represen-
tative training data (Section 3.4). The main scientific novelty is
given by (1) the use of an advanced multi-scale neighborhood and
(2) the use of normalized height features.

3.1 Neighborhood Definition

To appropriately describe local point cloud characteristics, we fo-
cus on a consideration on point-level and the use of multi-scale
neighborhoods as motivated in (Niemeyer et al., 2014; Brodu and
Lague, 2012; Blomley et al., 2016a,b). To derive suitable neigh-
borhoods serving as the basis for feature extraction, we follow
the strategy of selecting multiple neighborhoods of different scale
and type (Blomley et al., 2016a,b). In contrast to existing work,
we use a rich diversity of neighborhoods to obtain a better de-
scription of local point cloud characteristics, and we also consider
a neighborhood at a different entity represented by spatial bins:

e As proposed by Niemeyer et al. (2014), we consider a
collection of four cylindrical neighborhoods (Ncy1), which
(1) are aligned along the vertical direction, (2) have infinite
extent in the vertical direction and (3) have a radius of 1 m,
2m, 3m and 5 m, respectively.

o As cylindrical neighborhoods with infinite extent in the ver-
tical direction do not take into account that points at different
height levels might belong to different classes, we also con-
sider a collection of five spherical neighborhoods (Nspn).
Four of them have a radius of 1 m, 2m, 3m and 5 m, which
is in analogy to the used cylindrical neighborhoods. In addi-
tion, we use a spherical neighborhood relying on the k near-
est neighbors (NVph, kopt), Whereby the optimal value for k
is selected for each 3D point individually via eigenentropy-
based scale selection (Weinmann et al., 2015).

e In addition to cylindrical and spherical neighborhoods, we
consider spatial bins as the basis for approximating the to-
pography of the considered scene. This neighborhood type
is derived by partitioning the scene with respect to a horizon-
tally oriented plane into quadratic bins with a side length of
20m. In contrast to the other neighborhoods, this neighbor-
hood is only used to derive normalized height features.

Thus, 10 different neighborhoods are used as the basis for feature
extraction, and our framework allows for both a separate and a
combined consideration of the different neighborhoods.

3.2 Feature Extraction

In our framework, we use geometric features that can be catego-
rized with respect to four different feature types:

e The covariance features are derived from the normalized
eigenvalues of the 3D structure tensor calculated from the
3D coordinates of all points within the considered cylin-
drical or spherical neighborhood. These features are given
by linearity, planarity, sphericity, omnivariance, anisotropy,
eigenentropy, sum of eigenvalues and change of curvature
(West et al., 2004; Pauly et al., 2003).

o The geometric 3D properties proposed by Weinmann et al.
(2015) are derived from the spatial arrangement of points
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within the considered cylindrical or spherical neighborhood.
The respective features are represented by the local point
density, the verticality, and the maximum difference as well
as the standard deviation of the height values corresponding
to those points within the local neighborhood. For the spher-
ical neighborhood determined via eigenentropy-based scale
selection (Nsph kopt), the radius of the local neighborhood
is considered as an additional feature.

e The shape distributions have originally been proposed to de-
scribe the shape of complete objects (Osada et al., 2002) and
later been adapted to describe characteristics within a cylin-
drical or spherical neighborhood (Blomley et al., 2016a,b).
Generally, shape distributions are histograms of shape val-
ues, which may be derived from random point samples
by applying (distance or angular) metrics such as the an-
gle between any three random points (A3), the distance of
one random point from the centroid of all points within
the neighborhood (D1), the distance between two random
points (D2), the square root of the area spanned by a trian-
gle between three random points (D3) or the cubic root of
the volume spanned by a tetrahedron between four random
points (D4). For each of these metrics, we randomly se-
lect 255 minimal point samples from the considered neigh-
borhood, evaluate the respective metric for each point sam-
ple and finally consider the distribution of histogram counts.
Thereby, we use histograms consisting of 10 histogram bins
and binning thresholds which are estimated in an adaptive
histogram binning procedure based on 500 exemplary local
neighborhoods as proposed in (Blomley et al., 2016a,b).

o The normalized height feature is derived from an approxi-
mation of the scene topography and estimated from the point
cloud itself as shown in Figure 2. First, absolute height min-
ima are determined on a large grid with a sampling distance
of 20m. Afterwards, a linear interpolation is performed
among those coarsely gridded minimum values and evalu-
ated on a fine grid of 0.5 m sampling distance. Finally, a
normalized height value is assigned to each 3D point by cal-
culating the difference of the points’ height value and the
topographic height value of the corresponding grid cell.

This yields 62 features per neighborhood parameterized by a
fixed radius, 63 features for a neighborhood determined via
eigenentropy-based scale selection, and the normalized height
feature that is used in addition to each of these neighborhoods.

3.3 Feature Normalization

It is obvious that — by definition — the considered features address
different quantities and may therefore be associated with differ-
ent units as well as a different range of values. This, in turn,
might have a negative impact on the classification results as the
distribution of single classes in the feature space might be sub-
optimal. Accordingly, it is desirable to introduce a normalization
which allows to transfer the given feature vectors to a new feature
space where each feature contributes approximately the same, in-
dependent of its unit and its range of values. For this purpose,
we conduct a normalization of all features. For the covariance
features, the geometric 3D properties and the normalized height
feature, we use a linear mapping to the interval [0, 1]. To reduce
the effect of outliers, the range of the data is determined by the
1st-percentile and the 99th-percentile of the training data (Blom-
ley et al., 2016a,b). For the shape distributions, the normalization
is achieved by dividing each histogram count by the total number
of pulls from the local neighborhood (i.e. by 255 in our case).

3.4 Classification

To classify the derived feature vectors, we employ a Random
Forest (RF) classifier (Breiman, 2001) which is a representative
of modern discriminative methods (Schindler, 2012) and a good
trade-off between classification accuracy and computational ef-
fort (Weinmann et al., 2015). The RF classifier relies on ensem-
ble learning in terms of strategically combining the hypotheses of
a set of weak learners represented by decision trees. The train-
ing of such a classifier consists in selecting random subsets of the
training data and training one decision tree per subset. Thus, the
class label for an unseen feature vector can robustly be predicted
by considering the majority vote across the individual hypotheses
of single decision trees. The internal settings of the RF classifier
are determined based on the training data via optimization on a
suitable search space.

4. EXPERIMENTAL RESULTS

To evaluate the performance of our framework, we use differ-
ent benchmark datasets (Section 4.1), and we consider commonly
used evaluation metrics (Section 4.2) to quantitatively assess the
quality of the derived classification results (Section 4.3).

4.1 Datasets

To allow for both an objective performance evaluation and an im-
pression about how our methodology is able to deal with ALS
data of different characteristics, we test our framework on two
labeled benchmark datasets which are publicly available and for
which no information on the DTM is provided. One dataset is
given with the Vaihingen Dataset (Section 4.1.1) and the other
dataset is given with the GML Dataset A (Section 4.1.2).

4.1.1 Vaihingen Dataset: The Vaihingen Dataset (Cramer,
2010; Rottensteiner et al., 2012) is provided by the German So-
ciety for Photogrammetry, Remote Sensing and Geoinformation
(DGPF) and freely available upon request'. This dataset has been
acquired with a Leica ALS50 system over Vaihingen, a small vil-
lage in Germany, and corresponds to a scene with small multi-
story buildings and many detached buildings surrounded by trees.
In the scope of the ISPRS Benchmark on 3D Semantic Labeling,
a reference labeling has been performed with respect to nine se-
mantic classes represented by Powerline, Low Vegetation, Imper-
vious Surfaces, Car, Fence | Hedge, Roof, Facade, Shrub and
Tree. Thereby, the pointwise reference labels have been deter-
mined based on (Niemeyer et al., 2014). For this dataset con-
taining about 1.166M points in total, a split into a training scene
(about 754k points) and a test scene (about 412k points) is pro-
vided as indicated in Table 1. As the reference labels are only
provided for the training data and missing for the test data, the
results derived with our framework have been submitted to the
organizers of the ISPRS Benchmark on 3D Semantic Labeling
who performed the evaluation externally.

4.1.2 GML Dataset A: The GML Dataset A (Shapovalov et
al., 2010) is provided by the Graphics & Media Lab, Moscow
State University, and publicly available?. This dataset has been
acquired with an ALTM 2050 system (Optech Inc.) and contains
about 2.077M labeled 3D points, whereby the reference labeling

Lhttp://www2.isprs.org/commissions/comm3/wg4/3d-semantic-
labeling.html (visited in April 2017)

2http://graphics.cs.msu.ru/en/science/research/3dpoint/classification
(visited in April 2017)
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Class Training Data Test Data
Powerline 546 N/A
Low Vegetation 180,850 N/A
Impervious Surfaces 193,723 N/A
Car 4,614 N/A
Fence | Hedge 12,070 N/A
Roof 152,045 N/A
Fagade 27,250 N/A
Shrub 47,605 N/A
Tree 135,173 N/A
P 753,876 411,722

Table 1. Number of 3D points per class for the Vaihingen Dataset.
Note that the reference labels are only provided for the training
data and not available for the test data.

Class Training Data Test Data
Ground 557,142 439,989
Building 98,244 19,592
Car 1,833 3,235
Tree 381,677 531,852
Low Vegetation 35,093 7,758
2 1,074,569 1,002,668

Table 2. Number of 3D points per class for the GML Dataset A.
Note that the reference labels are provided for both the training
data and the test data.

has been performed with respect to five semantic classes repre-
sented by Ground, Building, Car, Tree and Low Vegetation. For
this dataset, a split into a training scene and a test scene is pro-
vided as indicated in Table 2.

4.2 Evaluation Metrics

To evaluate the performance of our framework, we consider com-
monly used evaluation metrics that allow quantifying the quality
of derived classification results on a per-point basis. On the one
hand, we consider global evaluation metrics represented by over-
all accuracy OA and the unweighted average of the Fi-scores

100 5 20
50 “
0 T 0

Figure 2. Effects of the scene topography. The point clouds’ height minima on a 0.5 m grid are shown on the left, the approximation of
the scene topography is plotted in the middle, and the normalized minima are shown on the right. The top row depicts the test area of
the Vaihingen Dataset, while the bottom row shows the test area of the GML Dataset A.

200
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across all classes (F). As an imbalanced distribution of the oc-
currence of single classes might introduce a bias in the global
evaluation metrics, we also consider the classwise evaluation
metrics represented by recall R, precision P and F-score, where
the latter is a compound metric combining precision and recall
with equal weights.

4.3 Results

When training the RF classifier, we take into account that an
unbalanced distribution of training examples across all classes
might have a detrimental effect on the training process. To avoid
this, we randomly sample an identical number of 10,000 training
examples per class for the training phase. Note that this results
in a duplication of training examples for those classes for which
less training examples are available.

In the testing phase, we focus on the RF-based classification re-
lying on geometric features extracted from single neighborhoods
and combined neighborhoods. The achieved values for the global
evaluation metrics represented by OA and F} are provided in Ta-
ble 3 for the Vaihingen Dataset and the GML Dataset A. It can
be observed that the combination of features extracted from all
neighborhoods yields the best classification results. For the com-
bined cylindrical neighborhoods (NVai,cy1), the combined spheri-
cal neighborhoods (Nai,spn) and the combination of all defined
neighborhoods (NV.n), the classwise evaluation metrics of recall
R, precision P and F1-score are provided in Table 4 for the Vai-
hingen Dataset and in Table 5 for the GML Dataset A. For the
Vaihingen Dataset, it can be observed that the classes Impervious
Surfaces, Roof and Tree can be well-detected, whereas particu-
larly the classes Powerline and Fence / Hedge are not appropri-
ately identified. For the GML Dataset A, the classes Ground and
Tree can be well-detected, whereas particularly the classes Car
and Low Vegetation are not appropriately identified. The classi-
fication results relying on the use of all defined neighborhoods
(Nan) are visualized in Figure 3 for the Vaihingen Dataset and in
Figure 4 for the GML Dataset A.
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Figure 3. Classified point cloud for the Vaihingen Dataset with nine classes (Roof: red; Facade: white; Impervious Surfaces: gray;
Car: blue; Tree: dark green; Low Vegetation: bright green; Shrub: yellow; Fence | Hedge: cyan; Powerline: black).

Figure 4. Classified point cloud for the GML Dataset A with five classes (Ground: gray; Building: red; Car: blue; Tree: dark green;
Low Vegetation: bright green).

Vaihingen Dataset = GML Dataset A

Neighborhood  OA F1 OA F
Neylim 56.5 40.3 81.0 454
Neyl2m 57.9 41.3 82.7  46.8
Neyl,3m 54.4 37.3 84.3 47.7
Neyl5m 52.9 34.9 86.6  49.3
Neph,1m 60.4 42.8 78.4 45.2
Neph,2m 62.4 44.5 81.5 48.3
Nsph,3m 60.3 42.9 84.4 50.5
Neph,5m 55.9 37.5 86.7 51.7

sph.kopt 61.7 43.2 83.0  49.1
Nall, eyl 62.2 45.2 87.7  53.3
Nall,sph 67.4 51.9 88.3 57.1
Nan 68.1 52.6 90.5 58.5

Table 3. OA and F; (in %) achieved for different neighborhood
definitions on the Vaihingen Dataset and the GML Dataset A.

5. DISCUSSION

The derived classification results reveal that the GML Dataset A
with five semantic classes is not too challenging, as an overall
accuracy of about 87-91% can be achieved when using the com-
bined neighborhoods. This is due to the fact that the dominant

classes Ground and Tree can be accurately classified, whereas the
problematic classes Car and Low Vegetation do not occur that of-
ten. In contrast, the Vaihingen Dataset with nine semantic classes
is much more challenging which can be verified by an overall ac-
curacy of about 62-69%. The reason for the lower numbers is that
the defined classes are characterized by a higher geometric simi-
larity. Particularly the classes Low Vegetation, Shrub and Fence /
Hedge exhibit a similar geometric behavior and misclassifications
among these classes therefore occur quite often. However, this is
in accordance with other investigations involving the Vaihingen
Dataset (Blomley et al., 2016a; Steinsiek et al., 2017). Further-
more, the classes Powerline and Car reveal lower detection rates,
which is also due to the fact that these classes are not covered
representatively in the training data, where they are represented
by 546 and 4614 examples, respectively.

A comparison of the derived classification results with the ones of
related investigations reveals a gain with respect to different crite-
ria. On the one hand, we can observe an improvement > 10% in
OA which results from using a collection of multiple cylindrical
neighborhoods and multiple spherical neighborhoods instead of
only a collection of multiple cylindrical neighborhoods and one
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Vaihingen Dataset GML Dataset A
Class R P Fy OA Fy Class R P P OA F1
Powerline 68.7 3.7 7.1 Ground 84.0 94.8 &89.1
Low Vegetation 49.2 62.0 54.9 Building 58.1 36.7 45.0
Imp. Surfaces 724 83.0 774 Nan’cyl Car 714 127 215 876 53.3
Car 51.2 27.2 355 Tree 92.0 98.4 95.1
Nall,cyl Fence | Hedge 234 127 165 622 452 Low Vegetation — 73.8 8.9 15.9
Roof 66.2 84.5 74.2 Ground 84.0 98.6 90.7
Fagade 49.2 320 38.7 Building 749 478 584
Shrub 51.7 279 36.2 Nallsph ~ Car 82.6 158 26.5 883 57.1
Tree 72.0 61.0 66.1 Tree 92.4 98.6 954
Powerline 88.5 225 358 Low Vegetation — 82.1 8.0 14.6
Low Vegetation  52.6 68.9  59.7 Ground 86.3 97.5 91.6
Imp. Surfaces 78.2 845 81.2 Building 73.7 472 57.5
Car 58.0 33.1 42.1 Nan Car 76.2 172 28.1 90.5 58.5
Nall,sph Fence | Hedge 23.9 152 186 674 51.9 Tree 94.9 98.7 96.8
Roof 73.8 86.4 79.6 Low Vegetation  76.0 10.8 18.8
Fagade 59.0 28.6 38.5
Shrub 59.3 327 42.2 Table 5. Classwise recall (R), precision (P) and Fy-score (in %)
Tree _ 731 658 693 as well as OA and Fy (in %) for the GML Dataset A.
Powerline 92.0 195 32.1
Low Vegetation  50.7 67.5 57.9 I I >
Imp. Surfaces  77.6  82.7  80.0 Class RF* CRF  RF
Car 57.5 35.7 44.1 Powerline 14.3 69.8 32.1
Nan Fence | Hedge  23.0 141 175 68.1 52.6 Low Vegetation 658 738 579
Roof 778 86.3 81.8 Impervious Surfaces — 86.1 91.5 80.0
Fagade 53.6 39.9 475 Car 249 582 441
Shrub 58.4 322 415 Fence | Hedge 19.8 29.9 17.5
Tree 75.4  66.9 70.9 Roof 84.8 916 8138
Fagade 43.9 54.7 47.5
Table 4. Classwise recall (R), precision () and F'-score (in %) ‘;hrub gg? ggg ‘7%;
as well as OA and F (in %) for the Vaihingen Dataset. O}Xe 71:0 80: B 68:1
I3 50.0 66.4 52.6

spherical neighborhood (Blomley et al., 2016a,b). On the other
hand, the results of a pointwise classification are comparable to
the ones presented in (Steinsiek et al., 2017) for RF-based classi-
fication. While our results are 2.9% lower in OA, they are 2.6%
higher in Fy. The latter indicates that our framework allows for
a better classification of the different classes, while the approach
presented by Steinsiek et al. (2017) allows for a better classifica-
tion of the dominant classes as shown in Table 6. To further im-
prove the classification results, spatial regularization is required
(Landrieu et al., 2017), which has also been taken into account in
(Steinsiek et al., 2017; Niemeyer et al., 2014) by using a Condi-
tional Random Field (CRF). However, since our framework for
pointwise classification allows for a better classification of differ-
ent classes, the initial labeling which serves as input to the CRF
via the association potentials might be improved which, in turn,
is likely to allow the CRF to further increase the quality of the
classification results.

6. CONCLUSIONS

In this paper, we have presented a novel framework for semanti-
cally labeling 3D point clouds acquired via airborne laser scan-
ning. The framework uses a combination of multiple cylindrical
and multiple spherical neighborhoods to extract geometric fea-
tures in the form of both metrical features and distribution fea-
tures at different scales. Furthermore, we used neighborhoods
in the form of spatial bins to approximate the topography of the
considered scene and thus obtain normalized heights. All fea-
tures have been normalized and provided as input to a Random
Forest classifier. The results achieved for two commonly used
benchmark datasets clearly revealed the potential of the proposed
methodology for pointwise classification. The improvement with
respect to related investigations on pointwise semantic labeling
also represents an important prerequisite for a subsequent spa-

Table 6. Classwise F}-scores (in %) as well as OA and Fy (in %)
for the Vaihingen Dataset (* result presented by Steinsiek et al.
(2017); 2 result achieved with the proposed framework).

tial regularization. In future work, it would be desirable to inte-
grate spatial regularization techniques such as the ones presented
in (Landrieu et al., 2017; Niemeyer et al., 2014; Steinsiek et al.,
2017). This would impose spatial regularity on the derived classi-
fication results and thus improve them significantly. Furthermore,
the step from a classification on a per-point basis to the detection
of individual objects in the scene would be interesting as this fa-
cilitates an object-based scene analysis.
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