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S U M M A R Y 

In near-surface surv e ys, shallow-seismic and ground-penetrating radar (GPR) full-waveform 

inversions (FWIs) have received increasing attention because of their ability to reconstruct 
high-resolution subsurface models. Ho wever , they have different sensitivities to the same 
targets and thus may yield conflicting geophysical parameter models. To solve this issue, we 
hav e dev eloped an indirect joint petrophysical inv ersion (JPI) inte grating shallow-seismic and 

multi-offset GPR data. These data are used to reconstruct porosity and saturation whereby we 
use only strong sensitivities between petrophysical and geophysical parameters. To promote its 
field application, we proposed an input strategy to avoid measuring rock matrix parameters and 

make indirect JPI more robust. We apply indirect JPI to the field data acquired in Rheinstetten, 
Germany and find that it reveals the mechanical, electrical and petrophysical properties more 
reliably than individual inversions. The reconstructed models are assessed by direct-push 

technology, borehole sample measurements and migrated GPR image. Indirect JPI can fit 
seismic and GPR observed data simultaneously and provide consistent multiparameter models, 
which are hard to achieve by FWIs and individual petrophysical inversions. We also find that 
the method is robust when there are uncertainties in petrophysical a priori information. 
Ov erall, the field e xample prov es the great potential of using indirect JPI to solv e real-world 

problems. 

Key words: Ground penetrating radar; Inverse theory; Joint inversion; Surface waves and 

free oscillations; Waveform inversion. 
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1  I N T RO D U C T I O N  

The near-surface area, a few tens of metres below free surface, are 
closely related to social development and life safety. A detailed 
characterization of this area is essential for urban construction, 
engineering exploration, environmental assessment, archaeological 
investigation, hydrological monitoring, polar research and so on 
(Everett 2013 ; Romero-Ruiz et al. 2018 ; Killingbeck et al. 2020 ). 
In near-surface surv e ys, geophysical techniques such as shallow- 
seismic and ground-penetrating radar (GPR) methods are widely 
used (Doetsch et al. 2020 ; Leong & Zhu 2021 ; Liu et al. 2022a , 
b ). Shallow-seismic data are sensitive to the mechanical parame- 
ters in the subsurface but cannot identify the moisture distribution 
(Gassmann 1951 ). GPR data are highl y sensiti ve to the water con- 
tent, but the depth of penetration is limited by the electrical conduc- 
tivity (Annan 2005 ; Bradford & Deeds 2006 ). Individual inversions 
of these data may lead to inconsistent interpretations and not fully 
exploit their advantages. Combining the two data via joint inver- 
sion can provide complementary information for each inversion, 
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reducing uncertainty and avoiding ambiguity (Linde et al. 2008 ; 
Domenzain et al. 2022 ; Moorkamp 2022 ; Huang et al. 2023 ). 

The joint inversion methods can be divided into two main classes: 
joint structural inversion (JSI) and joint petrophysical inversion 
(JPI) (Abubakar et al. 2012 ; Linde & Doetsch 2016 ; Lan et al. 
2018 ). JSI assumes that different geophysical parameters have sim- 
ilar spatial distributions (Gallardo & Meju 2011 ; Feng et al. 2017 ). 
The cross-gradient function is one of the most commonly used meth- 
ods to quantify structural similarity (Gallardo & Meju 2003 ; Jordi 
et al. 2020 ). On the other hand, JPI supposes that different geophys- 
ical parameters are connected via petrophysical relations (Ghose & 

Slob 2006 ; Wagner et al. 2019 ). In general, JSI has a broader appli- 
cation than JPI because it does not strictly require accurate a priori 
petrophysical relations. Fur ther more, one can make petrophysical 
inferences based on JSI using methods like the scatter plot (Linde 
et al. 2006 ; Doetsch et al. 2010 ; Linde & Doetsch 2010 ). Ho wever , 
the structural constraint (soft link) is weaker than the petrophysi- 
cal constraint (solid link) (Wagner & Uhlemann 2021 ). Therefore, 
JPI is also frequently used, especially in estimating petrophysical 
ress on behalf of The Royal Astronomical Society. This is an Open Access 
s Attribution License ( https://creati vecommons.org/licenses/b y/4.0/ ), which 
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Figure 1. The w orkflo ws of indirect joint petrophysical inversion (JPI) 
with an input strategy. The implementation steps of indirect petrophysical 
parametrization are indicated by numbers one to four. 
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roperties such as porosity, saturation and water content (Heincke
t al. 2017 ; Wagner et al. 2019 ; Mollaret et al. 2020 ). 

JPI is a valuable technique that links all geophysical parameters
hrough their petrophysical relations. Ho wever , the applicability of
PI is limited by the accuracy of a priori information, including
he assumed petrophysical relations and the rock matrix properties.
o address this problem, we analysed the sensitivity of shallow-
eismic and GPR data to petrophysical parameters and proposed an
ndirect JPI method (Qin et al. 2022 ). The method indirectly uses
etrophysical parametrization so that shallow-seismic and GPR data
ontribute to porosity and saturation updates, respecti vel y. Com-
ared to the conventional JPI (Abubakar et al. 2012 ), indirect JPI
ncreases the robustness of the inversion under imprecise a priori
nformation and thus improves the applicability of the algorithm.

e have validated the feasibility and robustness of the algorithm by
ynthetic examples with different acquisition geometries and wave
ypes (Qin et al. 2022 ), but as of now it has not been used in real
ases. 

Indirect JPI w as de veloped from full-w av eform inv ersion (FWI)
f shallow-seismic and GPR data. FWI is a multiparameter re-
onstruction technique that exploits the full information content
f signals and provides high-resolution multiparameter subsurface
odels of geological interest (Tarantola 1984 ). FWI has been exten-

i vel y de veloped to solve problems at different scales, in different
bservation systems, and with different types of waves (Gao et al.
021 ; Wang et al. 2021 ; Sun et al. 2023 ; Xu et al. 2023 ). In near-
urface scale, shallow-seismic wavefield is dominated by Love or
a yleigh wa ves, which are the result of the interference of SH or
 –SV w aves, respecti vel y. Unlike Rayleigh w av e FWI, Lov e wav e
WI has fewer model parameters, lower computational cost and

ess trade-offs between multiple parameters (Dokter et al. 2017 ;
ittkamp et al. 2019 ). Here, we apply indirect JPI for the first time

o Lov e wav e and multi-offset surface GPR field data acquired in
he Rheinstetten test site, Germany. We propose an input strategy to
ake the field application more operational. We compare indirect

PI with single inversions and assess our results with direct-push
echnology (DPT), borehole sample measurements and GPR migra-
ion result. The main goal of this paper is to e v aluate the applicability
f indirect JPI to solve real-world problems. 

 M E T H O D O L O G Y  

.1 Indirect JPI 

ndirect JPI is a combination of shallow-seismic and GPR FWIs,
here we use the traditional least-squares objective function to
uantify the waveform misfit between the observed and synthetic
ata: 

 S ( m S ) = 

1 

2 
|| d 

syn 
S ( m S ) − d 

obs 
S || 2 , m S = [ V P , V S , ρ] T , 

s.t. f S ( m S , m P ) = 0 , m P = [ φ, S w ] 
T , (1) 

nd 

 EM 

( m EM 

) = 

1 

2 
|| d 

syn 
EM 

( m EM 

) − d 

obs 
EM 

|| 2 , m EM 

= [ ε r , σ ] T , 

s.t. f EM 

( m EM 

, m P ) = 0 , (2) 

here � S and � EM 

are the objective functions of shallow-seismic
nd GPR FWIs, respecti vel y; d 

obs 
S is the observed seismo gram and

 

obs 
EM 

the observed radargram; d 

syn 
S is the synthetic seismogram ac-

uired from the seismic models m S , and d 

syn 
EM 

is the synthetic radar-
ram acquired from the electromagnetic (EM) models m EM 

; m S are
he P -wav e v elocity V P , S -wav e v elocity V S and density ρ; m EM 

are
he relative dielectric permittivity ε r and electrical conductivity σ
the magnetic permeability is constant to the value in vacuum and
hus is not included). The petrophysical model parameters m P are
orosity φ and saturation S w . The seismic objective function � S is
ubject to the seismic petrophysical relation f S , and the GPR objec-
ive function � EM 

is subject to the EM petrophysical relation f EM 

.
n this study, the seismic petrophysical relation f S is Gassmann’s
quations (Gassmann 1951 ), and the EM petrophysical relation f EM 

s the complex refractive index model (CRIM) and Archie’s equa-
ion (Archie et al. 1942 ; Birchak et al. 1974 ). 

Indirect JPI attempts to integrate shallow-seismic and GPR data
ia separate objective functions (eqs 1 and 2 ). Like individual FWIs,
ndirect JPI iterati vel y updates the model parameters by minimiz-
ng the objective functions, for example using the preconditioned
onjugate-gradient method (Qin 2022 ). We implement indirect JPI
n each iteration through the following four steps, which we refer to
s indirect petrophysical parametrization (Fig. 1 ). 

In step 1, we use Gassmann’s equations to calculate the P -wave
 elocity V P , S -wav e v elocity V S and density ρ from the petrophysical
arameters (Gassmann 1951 ; Abubakar et al. 2012 ): 

V P = 

√ 

K + 4 / 3 μ

ρ
, V S = 

√ 

μ

ρ
, 

ρ = 

( 1 − φ) ρma + φ [ S w ρw + 

( 1 − S w ) ρa ] , (3) 

art/ggae086_f1.eps
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with 

K = 

( 1 − β) K ma + β2 M , μ = 

( 1 − β) μma , 

1 

M 

= 

β − φ

K ma 
+ 

φ

K f 
, 

1 

K f 
= 

S w 
K w 

+ 

1 − S w 
K a 

, 

K ma = ρma V 

2 
P ma − 4 / 3 μma , μma = ρma V 

2 
S ma , 

β = φ/φc with 0 ≤ φ < φc , (4) 

where K and μ are the bulk and shear moduli of fluid-saturated rock, 
respecti vel y; ρma , ρw and ρa are the densities of the rock matrix, wa- 
ter and air, respecti vel y ( ρw = 1000 kg m 

−3 , ρa = 1.29 kg m 

−3 ); K ma ,
K f , K w and K a are the bulk moduli of the rock matrix, pore fluid, wa- 
ter and air, respecti vel y ( K w = 2.17 × 10 9 Pa, K a = 1.49 × 10 5 Pa); 
M is the resulting average modulus and μma the shear modulus of 
the rock matrix; V P ma and V S ma are the P -wave velocity and S -wave 
velocity of the rock matrix, respecti vel y; β is the Biot’s coefficient 
and φc the critical porosity. We fix φc to 0.4, above which the solid 
becomes a suspension (Nur 1992 ). Thus the range of values for the 
petrophysical parameters is 0 < φ < φc and 0 < S w < 1. 

In step 2, we use the seismic velocity parametrization in shallow- 
seismic FWI to compute the gradients and update the models of V S 

and ρ (K öhn et al. 2012 ). The φ model is then transformed from 

the updated V S and ρ models by using Gassmann’s equations as 
follows: 

φ = φc ( 1 − μ/μma ) , μ = ρV 

2 
S . (5) 

In step 3, we make φ the same size as the GPR models and then 
use it to calculate the relative dielectric permittivity ε r and electrical 
conducti vity σ b y CRIM and Archie’s equation (Archie et al. 1942 ; 
Birchak et al. 1974 ; Day-Lewis et al. 2005 ; Bradford et al. 2009 ): 

ε r = 

{
( 1 − φ) 

√ 

ε rma + φ
[
S w 

√ 

ε rw + 

( 1 − S w ) 
√ 

ε ra 
]}2 

, 

σ = 

1 

a 
σw φ

m S n w , (6) 

where ε rma , ε rw and ε ra are the relative permittivities of the rock 
matrix, water and air, respectively ( ε rw = 81, ε ra = 1). σ w is the 
electrical conductivity of the groundwater, m is the cementation 
exponent and n is the saturation exponent. a is the tortuosity factor, 
and is used in practice to correct for data errors or poor petrophysical 
models, for example using Archie’s equation when there is surface 
electrical conductivity (Linde et al. 2006 ; Revil 2013 ). Note that in 
eq. ( 6 ), if we fix σ w / a as a constant, dif ferent v alues of a can lead to
the same model transformation and thus the same inversion result. 
In this study, we simply set a to 1. 

In step 4, we use the logarithmic parametrization in GPR FWI 
to compute the ε r gradient and update the ε r model (Meles et al. 
2010 ). We then estimate S w by the well-reconstructed GPR model 
parameter ( ε r ) through eq. ( 7 ), which is another form of CRIM 

(Birchak et al. 1974 ): 

S w = 

{[√ 

ε r − ( 1 − φ) 
√ 

ε rma 

]
/φ − √ 

ε ra 
}
/ 
(√ 

ε rw − √ 

ε ra 
)

. (7) 

Finally, we make S w the same size as the seismic models and then 
use it in step 1 in the next iteration. 

The main differences of indirect JPI compared to conventional 
JPI (Abubakar et al. 2012 ) are summarized as below: 

(i) We apply non-petrophysical parametrizations (seismic veloc- 
ity parametrization and logarithmic parametrization) to compute 
the gradients and update the models of seismic and GPR parame- 
ters using their ‘natural’ model parameters. These parametrizations 
hav e prov en to be v ery efficient for shallow-seismic and GPR FWIs 
(Meles et al. 2010 ; K öhn et al. 2012 ). In contrast, conventional JPI 
uses petrophysical parametrizations where the gradients of porosity 
and saturation are given by the chain rule and include the gradi- 
ents of P -wave velocity and electrical conductivity that are in low 

reliability and may lead to compromised reconstruction. 
(ii) We take the sensitivity of data to seismic and GPR parame- 

ters into consideration. Previous studies have shown that shallow- 
seismic FWI allows high-quality reconstruction of S -wave velocity 
(Pan et al. 2019 ), and permittivity is the parameter that can be most 
ef fecti vel y estimated by GPR FWI (Klotzsche et al. 2019 ). There- 
fore, w e update S -wa v e v elocity and density (density is required to 
calculate the shear modulus in eq. 5 ) by shallow-seismic FWI and 
ignore P -wave velocity, and update permittivity by GPR FWI and 
ignore electrical conductivity. 

(iii) We take into account the sensitivity of seismic and GPR pa- 
rameters to petrophysical parameters. The sensitivity analysis in Qin 
et al. ( 2022 ) suggests that the S -wav e v elocity and density are mainly 
af fected b y porosity, and the permitti vity has a relati vel y strong sen- 
sitivity to porosity and saturation (see Fig. 2 ). Thus we transform 

the S -wave velocity and density into porosity and transform the per- 
mittivity into saturation for efficient information exchange. Note 
that the last panel in Fig. 2 is a correction to figure 1 in Qin et al. 
( 2022 ), where we forgot to transpose the model matrix when we 
plotted the electrical conductivity panel. Ho wever , this error does 
not affect the conclusions we have drawn in Qin et al. ( 2022 ) and 
in this paper. 

(iv) For these hard-to-recover parameters (the P -wave velocity, 
density and electrical conductivity), we calculate them by petro- 
physical relations. Since porosity and saturation contain only the 
most reliable information from shallow-seismic and GPR data, the 
reconstruction of the P -wave velocity, density and electrical con- 
ductivity can be improved, which in turn helps to estimate petro- 
physical parameters and other seismic and GPR parameters. Thus, 
we construct a robust joint inversion framework for multiparameter 
reconstruction. 

(v) We use separate objective functions rather than a combined 
objective function in the joint inversion to avoid calculating the data 
weighting matrix and the scaling factor (Heincke et al. 2017 ). In 
indirect JPI, the contribution of shallow-seismic and GPR data is 
automaticall y balanced b y the sensiti vity of the geophysical data to 
petrophysical parameters. This not only ensures that each data does 
its job but also reduces the trade-offs of multiparameter inversions. 
Additionally, this requires as little modification as possible from the 
individual FWIs to indirect JPI, making the programming of the 
joint inversion much easier. 

In the implementation steps 2 and 4, we consider the sensitivity 
of shallow-seismic and GPR data to seismic and EM parameters 
and the sensitivity of seismic and EM parameters to petrophysical 
parameters. The combination of these sensitivities ensures that the 
information exchange between the two inversions is not disturbed 
by the weak-sensitive parameters and thus makes the joint inversion 
robust. 

2.2 Input strategy 

In petrophysical inversion, the seismic and EM petrophysical pa- 
rameters of the rock matrix ( V P ma , V S ma , ρma , ε rma and σ w ) are 
normally assumed to be known, that is a priori information (For 
convenience, we treat the groundwater electrical conductivity σ w 

also as a rock matrix parameter). Ho wever , it is difficult to mea- 
sure these parameters in the field or in the laboratory. Even more 
problematic, these parameters are often site-dependent, limiting the 
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Figure 2. The seismic model parameters ( V P , V S and ρ) and electromagnetic (EM) model parameters ( ε r and σ ) as functions of porosity φ and saturation S w . 
The rock matrix parameters and Archie’s coefficients are the same as Qin et al. ( 2022 ). Note that the last panel (electrical conductivity) is a correction to figure 
1 in Qin et al. ( 2022 ). 
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pplication of petrophysical inversion. To address these issues, we
ropose an input strategy to calculate the rock matrix parameters at
he beginning of JPI (Fig. 1 ): 

V P ma = 

√ 

K ma + 4 / 3 μma 

ρma 
, V S ma = 

√ 

μma 

ρma 
, 

ρma = { ρ − φ [ S w ρw + 

( 1 − S w ) ρa ] } / ( 1 − φ) , (8) 

 rma = 

{√ 

ε r − φ
[
S w 

√ 

ε rw + 

( 1 − S w ) 
√ 

ε ra 
]}2 

/ ( 1 − φ) 2 , 

σw = aσφ−m S −n 
w . (9) 

ith 

K ma = 

(
−b + 

√ 

b 2 − 4 dc 
)

/ ( 2 d ) , μma = μ/ ( 1 − β) , 

b = 1 /φc − 1 + β − K/K f , c = 

( 1 − 1 /φc ) K , 

d = 

( 1 − β) /K f , K = ρV 

2 
P − 4 / 3 μ , μ = ρV 

2 
S . (10) 

Eqs ( 8 ) and ( 9 ) are another form of the petrophysical relations f S 
nd f EM 

when 0 < φ < φc and 0 < S w < 1. This input strategy has
hree advantages: 

(i) It avoids measurements of rock matrix parameters and makes
ndirect JPI more operational in solving practical problems. Using
his input strategy, the rock matrix parameters ( V P ma , V S ma , ρma , ε rma 

nd σ w ) are implicitly included in the initial models ( V P , V S , ρ, ε r , σ ,
and S w , see Fig. 1 ). To build these initial models, many classical
ethods can be used, such as body-wave refraction tomography

 V P ), dispersion curve inversion ( V S and ρ), velocity analysis ( ε r ),
mplitude attenuation estimate ( σ ), measuring the water content of
oil samples ( φ and S w ; Xia et al. 1999 ; Annan 2005 ; Booth et al.
010 ; Boiero & Socco 2014 ). Once the initial models are obtained,
e use this input strategy to compute the rock matrix parameters
nd start the iteration of indirect JPI (Fig. 1 ). 

(ii) It makes indirect JPI more robust (see details in Section 3.5 ).
ince shallow-seismic and GPR FWIs rely heavily on seismic and
PR initial models ( V P , V S , ρ, ε r and σ ), it can be expected that

ndirect JPI can still yield similar results as long as the seismic
nd GPR models are credible. With this input strategy, empirical
stimates based on field conditions can even be used for parameters
hat have no direct role in shallow-seismic and GPR FWIs, such as
orosity, saturation, and Archie coefficients. Thus, indirect JPI can
e applied like a single FWI with little limitation of petrophysical
 priori information. 
(iii) It makes indirect JPI also applicable for viscoelastic and dis-

ersive EM media, which are closer to the reality. If the forward
olver used to link d 

syn 
S and m S is viscoelastic equation (Bohlen

002 ) or if the forward solver used to link d 

syn 
EM 

and m EM 

is
axwell’s equation in dispersive media (Bergmann et al. 1998 ),
 S and m EM 

correspond to their values at the reference frequency
Fabien-Ouellet et al. 2017 ; Qin et al. 2023 ) and can be directly
sed to calculate the rock matrix parameters via eqs ( 8 ) and ( 9 ). 

Note the input strategy also applies to the individual petrophysical
nversions (IPIs). For seismic IPI, the rock matrix parameters ( V P ma ,
 S ma and ρma ) can be derived from the initial models ( V P , V S , ρ, φ
nd S w ) by eqs ( 8 ) and ( 10 ). For GPR IPI, the rock matrix parameters
 ε rma and σ w ) can be calculated from the initial models ( ε r , σ , φ and
 w ) via eq. ( 9 ). 

 A P P L I C AT I O N  T O  N E A R - S U R FA C E  

M A G I N G  

.1 Test site and data acquisition 

he data have been acquired at the Rheinstetten test site, Germany,
here a V-shaped trench called the Ettlinger Line was excavated in
 sedimentary plain covered with gravel and sand from the Rhine
iver. This trench was refilled with sand a few decades ago and
ecame invisible from the surface at the test site, which is a corner
f the glider airfield (Fig. 3 a). The current ground layer is composed
f partially saturated soil, and the groundwater table is below 6 m
epth (Wittkamp et al. 2019 ). From the outcrop in the forest we

art/ggae086_f2.eps
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Figure 3. (a) Map of the Rheinstetten test site, where the translucent grey area shows a target trench, the Ettlinger Line, and the black line shows the 
ground-penetrating radar (GPR) and shallow-seismic surv e y lines. (b) GPR field data acquisition with the receiver mounted on a sled and tracked by a real-time 
kinematic (RTK) positioning. (c) Observation geometry of 18 multi-offset GPR data and 12 fixed-spread shallow-seismic data, where the translucent grey area 
shows the trench location. (d) Shallow-seismic data acquisition using a hammer source and fixed geophone locations. 

Table 1. Shallow-seismic wave and multi-offset surface GPR data pre- 
processing steps. 

1. Data resampling in the frequency domain 
2. Interpolation of clipped direct-arri v al amplitudes 
3. DC-shift removal and dew o w 

4. Bandpass filtering 
5. Bad traces removal and offset limitation 
6. Data gridding in the time-offset domain 
7. 3-D-to-2-D transformation 
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southeast. We therefore carried out a 2-D investigation with seismic 
and GPR profiles perpendicular to the Ettlinger Line (Fig. 3 a). 

To record the Love wa ves, w e deployed 48 geophones (horizon- 
tal crossline component) from −3.5 to 43.5 m in the horizontal 
direction and used a hammer to blow on a steel beam source in 
the crossline direction (Figs 3 c and d). We acquired 12 seismo- 
grams with a shot spacing of 4 m and a fixed geophone spread. Our 
GPR data were recorded using a single channel GPR system with 
antennas of 200 MHz nominal centre frequency (Figs 3 b and c). 
We deployed the transmitter-receiver orientation in HH mode and 
acquired 18 radargrams with a transmitter spacing of 2 m. Unlike 
seismic data acquisition, we used a wide-angle reflection and re- 
fraction (WARR) method to acquire the GPR data where we fixed 
the transmitter and moved the receiver (mounted on a sled) toward 
or away from the transmitter. To track the receiver coordinates with 
centimetre-lev el accurac y, we used a real-time kinematic (RTK) 
positioning with a self-tracking total station (Boniger & Tronicke 
2010 ). 

3.2 Data preprocessing and inversion setup 

We pre-process the raw data before using them in the inversion 
(Table 1 ). 

(i) Since we use the 2-D finite-difference time-domain (FDTD) 
method to simulate seismic and EM wave propagation (Bohlen 
2002 ; Irving & Knight 2006 ), we first resample the data to meet 
the time step requirements of the FDTD methods. This is done by 
transforming the data to the frequency domain, filling zeros and 
transforming back to the time domain. After resampling, the time 
window of the seismogram is 500 ms with a time step of 0.2 ms, 
and the time window of the radargram is 163.84 ns with a time step 
of 0.08 ns. 

(ii) We use a 1-D spline interpolation to recover the clipped 
amplitudes of high-energy direct arri v als that exceed the dynamic 
range of the acquisition unit (Benedetto et al. 2017 ). 

(iii) We eliminate low-frequency noise and non-stationary ‘w o w’ 
noise by mean value removal and dew o w operation (Battista et al. 
2009 ). 

(iv) We apply a Butterworth bandpass filter to remove low- 
and high-frequency noise. The frequency bandwidth for shallow- 
seismic data is between 2 and 200 Hz, and for GPR data is between 
2 and 400 MHz. 

(v) We delete the traces of waveform distortion and remove GPR 

traces with offsets greater than 8 m because the amplitude of this 
part is less than two orders of magnitude of the maximum amplitude. 
For shallow-seismic data, there is no offset limitation because the 
data are dominated by Lov e wav es and have a high signal-to-noise 
ratio (SNR). 

art/ggae086_f3.eps


Indirect JPI of seismic and GPR field data 979 

 

s  

w  

o  

i  

p  

d  

s  

s
 

t  

w  

w  

t  

D  

s  

o  

l  

o

 

W  

d  

v  

c  

u  

f  

(  

w  

b  

S  

s  

v  

i  

t  

w  

s  

E  

I  

g  

×  

m  

f  

a  

n  

(
 

v  

s  

fi  

4  

f  

b  

w  

t  

i  

t  

b  

n  

h  

t

3

T  

d  

s  

h  

s  

o  

s  

p  

a  

o  

s  

(  

e  

t  

t  

h  

f  

t  

t
 

F  

s  

t  

c  

s  

a  

m  

c  

s  

p  

a  

i  

u  

t  

s
 

e  

p  

t  

r  

v  

a  

t  

w  

i  

b  

r  

o  

a  

t  

m  

t  

i  

c  

p  

i  

t  

t
 

m  

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/237/2/974/7623607 by KIT Library user on 22 April 2024
(vi) After removing bad traces, the data may have irregular trace
pacing. Fur ther more, in multi-offset GPR data acquisition, the
orker moved the sled at an une ven w alking speed, which is an-
ther reason for the different trace spacing. To ensure a balanced
llumination in the measurement area, we apply a 2-D spline inter-
olation in the time-offset domain with regular trace spacing. After
ata g ridding, seismog rams have 46–48 traces with a 1 m trace
pacing, and radargrams have 131–192 traces with a 0.04 m trace
pacing (Fig. 3 c). 

(vii) The last preprocessing step before inversion is 3-D-to-2-D
ransformation which can transform the data recorded in the real
orld (3-D case) to the 2-D case. This step is important because
e implement a 2-D inversion in this study. Based on the wave

ypes contributing to the reconstruction, we use a hybrid 3-D-to-2-
 transformation of the direct wave and single wave for shallow-

eismic data (Sch äfer et al. 2014 ), and a 3-D-to-2-D transformation
f the reflected wave for GPR data (Forbriger et al. 2014 ). Note the
atter may lead to some errors because the surface GPR data are
ften dominated by the direct waves (air wave and ground wave). 

After preprocessing, the data are ready for the 2-D inversion.
e then build initial models based on some data features such as

ispersion, travel time and attenuation factor (Fig. 4 ). The S -wave
elocity and density initial models are an average of dispersive
urv e inv ersion results (Xia et al. 2012 ), and the near-ground val-
es of the permittivity and electrical conductivity are estimated
rom the velocity and amplitude attenuation of the ground wave
Annan 2005 ). We assume that the porosity initial model decreases
ith depth and saturation is a homogeneous half-space (Fig. 5 )
ased on the water content measurement from soil samples (see
ection 3.4 ). We use the cementation exponent m = 1.4, and the
aturation exponent n = 1.13 in Archie’s equation where the low
alues of m and n are chosen for the possible existence of clay, a typ-
cal near-surface sediment (Abubakar et al. 2012 ). To account for
he attenuation of the S -wav e v elocity, we use a viscoelastic solver
ith one relaxation mechanism of 40 Hz relaxation frequency and

et the attenuation level Q S ≈ 13.3. The viscoelastic waves and
M waves are modelled by the 2-D FDTD method (Bohlen 2002 ;

rving & Knight 2006 ). We use similar model space but different
rid sizes for seismic (0.12 m × 0.12 m) and GPR models (0.04 m
0.04 m) to simulate them accurately. The convolutional perfectly
atched layer (CPML) is included at the model boundaries, except

or the free surface of seismic models where an imaging method is
pplied (Le v ander 1988 ). In GPR models, the air layer of 1 m thick-
ess remains constant during the inversion and thus is not displayed
Fig. 4 b). 

We use a multiscale strategy to avoid cycle skipping in the in-
ersion (Bunks et al. 1995 ). We choose five inversion stages to
equentially use data with ever decreasing wavelength. From the
rst stage to the fifth stage, frequency bands vary from 5 to 20, 35,
5, 60 and 80 Hz for seismic inversion, and frequency bands vary
rom 5 to 30, 40, 50, 70 and 100 MHz for GPR inversion. At the
eginning of each inversion stage, we estimate the source wavelets
ith a Wiener filter (Groos et al. 2014 ). The abort criterion is that

he relative data misfit change is less than 1 per cent, and the max-
mum number of iterations per stage is 15. In the joint inversion,
he program can switch to the next stage if the abort criteria of
oth individual inversions are satisfied or if the maximum iteration
umber is reached. In addition, we apply a 1-D Gaussian filter in the
orizontal direction to the gradient to suppress the artefacts shorter
han the dominant wavelength. 
.3 Inversion results 

he seismic, GPR and petrophysical models reconstructed by in-
irect JPI successfully reveal the presence of the Ettlinger Line,
hown as a triangle anomaly with low S -wave velocity, low density,
igh permittivity and high electrical conductivity values (Fig. 4 ), re-
ulting from the high porosity and saturation values (Fig. 5 ). On the
ne hand, the S -wave velocity result is comparable to that of the 3-D
hallow-seismic FWIs of Pan et al. ( 2021 ). On the other hand, the
ermittivity result is in high agreement with the GPR migration im-
ge of Wittkamp et al. ( 2019 ) and Qin ( 2022 ). Due to the constraint
f petrophysical relations, the density model also reveals the exact
hape of the trench, which is difficult to see from past investigations
Wittkamp et al. 2019 ; Pan et al. 2021 ). For the same reason, the
lectrical conductivity model has a similar structure to the permit-
ivity model. Note that in the GPR models, the boundaries of the
rench become less visible compared to the high permittivity and
igh electrical conductivity anomalies in the interior. It may result
rom the high electrical conductivity environment near the surface
hat degrades the penetration depth of the GPR signal, especially at
he bottom of the trench. 

Indirect JPI outperforms individual FWIs (Fig. 4 ). Individual
WIs use the same objective functions (eqs 1 and 2 ) but are not
ubject to petrophysical relations. In the seismic model reconstruc-
ion, the S -wave velocity models estimated by all inversions are very
omparab le, w hile the density models reconstructed by seismic FWI
how a high-density anomaly inside the trench and a low-density
nomaly to the left. Based on the latter DPT and borehole measure-
ents in Section 3.4 , these density anomalies could be artefacts

aused by the crosstalk from the S -wav e v elocity or by the low sen-
itivity of Lov e wav e data to density. In comparison, indirect JPI
rovides significant improvements where there is a low-density tri-
ngle anomaly in the middle. When reconstructing the GPR models,
ndividual GPR FWI outlines the shape of the trench, but the model
pdate focuses mainly on the near-surface region (depth shallower
han 2 m depth, Fig. 4 b). Indirect JPI can update deeper areas and
how clearer interfaces. 

We compare indirect JPI with IPIs where seismic IPI follows
q. ( 1 ), and GPR IPI follows eqs ( 2 ). IPIs use petrophysical
arametrization to directly update the petrophysical models and
hen calculate the geophysical models based on the petrophysical
elations. Seismic IPI and seismic FWI reconstruct similar S -wave
elocity models, which implies that Gassmann’s equations we used
re close to the reality (Fig. 4 a). The density model benefits from
he petrophysical constraint and shows structures similar to the S -
av e v elocity model. Howev er, the resolution of the density model

n seismic IPI is lower than in indirect JPI as the latter is improved
y higher resolution GPR data. In terms of GPR IPI (Fig. 4 b), the
econstructed models present similar subsurface structures to that
f GPR FWI, meaning that CRIM and Archie’s equation are also
pplicable to this test site. Since surface GPR data are dominated by
he shor t-wavelength infor mation, the long-wavelength backg round

odels are difficult to update by GPR FWI or IPI alone. To overcome
his dra wback, joint in versions attempt to use the complementary
nformation from Love wave data. In indirect JPI, seismic data suc-
essfull y of fers the needed information for GPR FWI through the
orosity model, thus allowing reconstruction of the low permittiv-
ty and low electrical conductivity background. Hence, compared
o individual inversions, indirect JPI using more data can constrain
he reconstruction process better. 

Indirect JPI provides consistent petrophysical models in seis-
ic and GPR in versions. P etrophysical parametrization used in IPIs
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Figure 4. (a) Seismic models ( S -wave velocity V S and density ρ) and (b) GPR models (relative permittivity ε r and electrical conductivity σ ). The four columns 
are the initial models, the reconstructed models of full-waveform inversion (FWI), the reconstructed models of individual petrophysical inversion (IPI), and 
the reconstructed models of indirect JPI, respecti vel y. In the initial models, the red stars are the sources and the dashed triangle outlines the cross-section of the 
Ettlinger Line. The borehole histograms overlaid on the density model are the direct-push technology (DPT) results (Figs 7 a and b), where the transparent and 
translucent areas present the unconsolidated and consolidated soil, respecti vel y. 

Figur e 5. Petroph ysical models (porosity φ and saturation S w ) and volumetric water content model θv . The four columns are the initial models, the reconstructed 
models of seismic IPI, the reconstructed models of GPR IPI and the reconstructed models of indirect JPI, respecti vel y. The borehole histo grams overlaid on the 
water content model are the gravimetric water content θg given by borehole soil samples (Figs 7 c and d), where the transparent and translucent areas exhibit 
high and low water content, respectively. 
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contains weak sensitivity information, for example electrical con- 
ductivity gradient in GPR IPI. Consequently, seismic IPI and GPR 

IPI generate conflicting results at 0.5–1.5 m depth on the right side 
of the trench (Fig. 5 ). Seismic IPI describes this region as high 
porosity and high saturation anomalies, while GPR IPI interprets it 
as low porosity and low saturation anomalies. However, indirect JPI 
characterizes this region as a water-poor layer consisting of high 
porosity and low saturation anomalies, which proves to be more re- 
liable because in this case we can match both shallow-seismic and 
GPR data (see Fig. 6 ). 

The seismic and GPR objective functions converge at 35 itera- 
tions in indirect JPI. For convenience, we use in the following the 
relative data misfit, that is dividing the data misfit by that obtained 
from the initial models (the relative data misfit of the initial models 
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Figure 6. Comparison of the observed data and the synthetic data corresponding to the results of IPI and indirect JPI. (a) The horizontal velocity seismogram 

of the 1st shot, shown once every six traces. (b) The horizontal electric field radargram of the 16th GPR transmitter , sho wn once every twenty traces. The 
rectangular windows display the zoomed waveforms. For better visualization, the data are normalized trace by trace. 
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s one). To calculate the data misfit of the initial models, we simu-
ate the synthetic data on the initial models with the source wavelet
stimated at the last inversion stage and apply the last frequency
andpass filter to the observed data. The GPR data misfit (the rel-
tive data misfit is 0.9208) is higher than seismic data misfit (the
elative data misfit is 0.8017) due to four reasons. (1) EM waves
ttenuate much more than seismic waves at the same propagation
istance (see figure A2 in Qin et al. 2022 ), thus GPR inversion
ainl y fits near-of fset data, where errors may be greater since the

-D-to-2-D transformation uses a far-field approximation (Forbriger
t al. 2014 ). (2) It is difficult to fit the direct waves in GPR inver-
ions because we use the 3-D-to-2-D transformation of the reflected
av e. (3) Our 2-D solv er cannot simulate the radiation patterns and

ntenna-ground coupling well. (4) GPR initial models are quite sim-
le and estimated from the ground wave only, while seismic initial
odels reference previous studies, which have proven to be useful

Pan et al. 2019 ; Wittkamp et al. 2019 ; Gao et al. 2020 ; Irnaka
t al. 2022 ). Overall, the field data fitting could not reach the same
ood level as the synthetic examples in Qin et al. ( 2022 ). On the
ne hand, this is due to the complexity of the field data, lower SNR,
igher attenuation, and the influence of the test site, equipment
nd operators; on the other hand, it is a result of data preprocess-
ng errors, simple initial models and limitations of our forward
olvers. 

The seismogram fitting of seismic IPI (the relative data misfit is
.7912) is slightly better than that of indirect JPI (Fig. 6 a), and the
adargram fitting of GPR IPI (the relative data misfit is 0.9163) and
ndirect JPI are comparable (Fig. 6 b). Overall, the data misfits of
ndirect JPI are slightly higher than that of seismic and GPR IPIs
about 1 and 0.4 per cent, respecti vel y) because of the interaction of
eismic and GPR data and the additional petrophysical constraint.
o wever , neither seismic IPI nor GPR IPI can minimize the two
ata misfits simultaneously. For example, we use the petrophysical
odels reconstructed by seismic IPI to derive GPR models (eq. 6 )

nd perform a GPR forward modelling on them; we then use the
imulated GPR data to calculate the data misfit and find that it is
uch higher than that of indirect JPI, and vice versa. From this
erspective, indirect JPI is a better way to fit seismogram and radar-
ram at the same time, leading the seismic and GPR model update
n an acceptable direction for both. 

.4 Assessment 

o e v aluate our interpretations of the density model, we compare
he inversion results with two independent DPT measurements (see
igs 4 a, 7 a and b). In DPT measurements, a metal pile was hit
y a free-falling slide hammer (10 kg) and thus pushed into the
round. By recording the number of hits per 0.1 m depth pushed
n, we measured the consolidation degree in the subsurface. The
igher the number, the more compact the soil. We have one DPT
easurement outside the trench (DPT1) and another one inside the

rench (DPT2). These DPT measurements reveal a change from
oose topsoil (lower density) to compacted subsoil (higher density)
t 1 m depth at the DPT1 position and an interface between refilled
and (lower density) and underlying soil (higher density) at 3 m
epth at the DPT2 location, which corresponds to the bottom of
he trench (Figs 7 a and b). These findings agree with the density
odel of seismic IPI and indirect JPI and prove that petrophysical

onstraint improves the density reconstruction. 
To assess the water content given by petrophysical inversions, we

rilled two boreholes (BH1 and BH2) close to the DPT locations
nd collected soil samples every 0.5 m depth (Fig. 5 ). We then
easured the gravimetric water content θ g of the soil samples by

rying them in the laboratory. The borehole measurements show a
hange in water content at similar depths to the DPT results. For
on venience, we con vert the petrophysical inversion result to the
ravimetric water content by θ g = θ /(1 − θ ), where θ = θ v / ρ and
he volumetric water content θ v = φS w . In GPR IPI, we use the
ensity of seismic IPI to calculate θ g . Note that the uncertainties
resent in the density may affect the conversion from θ v to θ g . We
nd that indirect JPI fits well with the BH1 measurement in both
igh and low water content area (Figs 5 and 7 c). For BH2, seismic
PI overestimates the water content in the trench, and GPR IPI
nderestimates it and shows result very close to the initial model
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Figure 7. Comparison of inversion results, DPT, and borehole measurements. The black lines in (a) and (b) are the number of hits measured by DPT, and the 
black lines in (c) and (d) are the gravimetric water contents ( θg ) of borehole soil samples. The colourful lines are the inversion results, that is density in (a) 
and (b) and θg in (c) and (d). The gray dashed lines mark the interfaces between transparent and translucent areas of the borehole histograms shown in Figs 4 
and 5 . 

Figure 8. Comparison between (a) the migration result of common-offset 
GPR data, (b) the porosity and (c) saturation results of indirect JPI. The 
colour scale of (a) is clipped to 20 per cent of the highest amplitude for 
better visualization. In (b) and (c) we overlay the migration image on the 
petrophysical models. 
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(Figs 5 and 7 d). Indirect JPI’s result is better than seismic IPI’s 
result, although further improvements are needed. 

We compare the indirect JPI results with the GPR migration 
result along the same profile (Fig. 8 ). After performing a classi- 
cal GPR processing including bandpass filtering (50–400 MHz), 
zero-time correction, time-dependent scaling, we apply a Kirchhoff 
migration routine (Moran et al. 2000 ) to the common-offset data 
(offset = 0.5 m) using a constant subsurface velocity of 0.1 m ns −1 . 
The migrated GPR image shows the trench in the centre and the dip- 
ping high amplitude reflector on the right-hand side of the trench 
(Fig. 8 a). The migrated data on the left-hand side of the trench 
appear more chaotic, with a lower penetration depth. For better 
comparison, w e overla y the migration image on the indirect JPI re- 
sults (Figs 8 b and c). We find that the migration image agrees well 
with the porosity and saturation images in terms of the location and 
structures of the Ettlinger Line and the right-hand reflector. There- 
fore, we conclude that indirect JPI is capable of reconstructing the 
petrophysical models with high reliability, especially for shallow 

subsurface structures. 

3.5 Robustness tests 

It is well known that the performance of petrophysical inversions 
tends to depend on a priori information, that is the rock matrix pa- 
rameters and Archie’s coefficients in this study. To e v aluate the in- 
version robustness, we take the mean structural similarity (MSSIM) 
index to measure the fidelity of the reconstructed models of indi- 
rect JPI using different petrophysical initial models and Archie’s 
coef ficients relati ve to the reference. We adopt the same settings 
as Boniger & Tronicke ( 2010 ) to compute the MSSIM index. The 
closer the MSSIM index is to one, the more similar the two com- 
pared objects are. Instead of giving the rock matrix parameters 
explicitly, we compute them from the initial models via the input 
strategy (eqs 8 and 9 ). Therefore if we fix seismic and GPR ini- 
tial models, the rock matrix parameters can be changed either by 
petrophysical initial models (porosity and saturation) or by Archie’s 
coefficients. 

We take the indirect JPI shown in Fig. 5 as the reference and other 
four indirect JPIs using homogeneous petrophysical initial models 
in half-space for comparison (Fig. 9 ). When we change petrophys- 
ical initial models to different values ( φ = 0.2 or 0.3 and S w = 0.5 
or 0.7), the reconstructed seismic and GPR models present a high 
deg ree of str uctural similarity to the reference (see MSSIM index 
in Fig. 9 ). Compared to the GPR models, the seismic models are re- 
constr ucted ver y stably (all MSSIM indices are greater than 0.985) 
because they are influenced only by porosity, whereas the GPR 
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Figure 9. (a) Seismic models ( S -wave velocity V S and density ρ), (b) GPR models (relative permittivity ε r and electrical conductivity σ ) and (c) petrophysical 
models (porosity φ and saturation S w ). The five columns are the indirect JPI results with different petrophysical initial models (see the title of each row). These 
five JPIs have the same seismic and GPR initial models as in Fig. 4 . The referenced petrophysical initial models are the same as in Fig. 5 . The values overlaid 
on the models in (a) and (b) are the mean structural similarity (MSSIM) index relative the reference. 
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odels are affected by both porosity and saturation. The results of
= 0.3 generally have higher structural similarity than those of
= 0.2 because the near-ground values of the reference porosity
odel are close to 0.3 and shallow-seismic and GPR data are more

ensitive to shallow than deep zones. With φ = 0.2 and S w = 0.7, we
bserve the largest differences in permittivity (MSSIM = 0.9355)
nd electrical conductivity (MSSIM = 0.8552). Ho wever , even in
his case, all models can delineate consistent subsurface structures
nd provide a meaningful geological interpretation. Note that there
re significant differences between the petrophysical models recon-
tructed with different petrophysical initial models. Among them,
he reference model best matches the gravimetric water content
f the borehole soil samples (Figs 7 c and d) because its initial
odel allows for the trend of decreasing water content with depth

Fig. 5 ). Therefore, we recommend building the petrophysical ini-
ial models based on the borehole data if they are available. If
ot available, an empirical guess of the petrophysical initial mod-
ls is acceptable for indirect JPI, but the geological interpretation
hould be based primarily on the reconstructed seismic and GPR
odels. 
We test indirect JPI with the same initial electrical conductivity

odel (Fig. 4 b) but different Archie’s coefficients, corresponding
o dif ferent groundw ater electrical conducti vities (eq. 9 ). The range
f m between 0.4 and 2.4 and n between 1.13 and 3.00 gives al-
ost identical results (MSSIM > 0.99, see Fig. 10 ). In other words,

he choice of Archie’s coefficients has a negligible impact on in-
irect JPI’s performance. This should be attributed to the aban-
onment of weakly sensitive electrical conductivity information in
ndirect petrophysical parametrization and to the indirect calcula-
ion of the groundwater electrical conductivity in the input strategy
Fig. 1 ). 

Ov erall, these e xamples demonstrate that indirect JPI does not
eed to know accurate a priori information. With suitable seis-
ic and GPR initial models, any petrophysical initial models and
rchie’s coefficients in a reasonable range can produce similar

esults. This strength makes indirect JPI a robust and promising
echnique that could be easily applied to other field environments
ith as few assumptions about petrophysical relations as possible. 

 D I S C U S S I O N  

.1 New scientific findings 

his is a follo w-up w ork to Qin et al. ( 2022 ) that performed the
heoretical study and synthetic test on indirect JPI. The major nov-
lty of this work is that we assessed the feasibility of our algorithm
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Figur e 10. Petroph ysical models ( φ and S w ). The five columns are the indirect JPI results with different Archie’s coefficients (cementation exponent m and 
saturation exponent n ). The initial models of five JPIs are the same as the reference in Fig. 9 . The values overlaid on the models are the MSSIM index relative 
to the reference ( m = 1.4 and n = 1.13). 
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in solving practical problems. To facilitate the field application, 
we combined indirect JPI with an input strategy that avoids the 
measurement of the rock matrix parameters, making the algorithm 

more robust and suitable for complicated environments. Compar- 
ison with the three third-party methods showed that the results of 
indirect JPI are of higher quality than those of FWI and IPI. Note 
that the robustness tests are different from those in Qin et al. ( 2022 ), 
where we keep the petrophysical initial models unchanged and per- 
turb the rock matrix parameters (or Archie’s coefficients), causing 
changes in the seismic and GPR initial models and thus having a 
greater impact on the reconstruction results. In this study, we leave 
the seismic and GPR initial models fixed, but adopt the input strat- 
egy to change the rock matrix parameters by petrophysical initial 
models or by Archie’s coefficients. Shallow-seismic and GPR FWI 
mainly depend on the seismic and GPR initial models, so indirect 
JPI in this study suffers less from inaccurate petrophysical a priori 
information than in the previous study. 

Indirect JPI is an algorithm different from conventional JPI. Con- 
ventional JPI is a combination of two IPIs in which the petrophysical 
parameters are reconstructed by the chain rule based on petrophys- 
ical relations (Abubakar et al. 2012 ). Conventional JPI merges all 
the information from two geophysical data and tends to obtain a 
compromise between the two IPIs. In contrast, indirect JPI inte- 
grates two FWIs to update seismic and GPR parameters, and then 
indirectly transforms the results into petrophysical parameters us- 
ing petrophysical relations. This is why we call it indirect petro- 
physical parametrization. The stable performance of the algorithm 

should be attributed to the rational use of petrophysical sensitivity, 
non-petrophysical parametrizations and the input strategy (Fig. 1 ). 
Taking into account the sensiti vity dif ferences of geophysical data 
to petrophysical parameters ensures a highly efficient exchange of 
information between two geophysical inversions. Seismic velocity 
parametrization and logarithmic parametrization fully exploit the 
reconstruction potential of shallow-seismic and GPR FWI, respec- 
ti vel y. The input strategy reduces the difficulty of using petrophys- 
ical inversion and makes indirect JPI less dependent on petrophys- 
ical initial models and petrophysical relations. The integration of 
the above three parties makes indirect JPI a robust algorithm that 
may be applied to the field data. Hence, indirect JPI overcomes 
the bottleneck of conventional JPI and provides a new way for JPI 
development. 

The moti v ation of this study is to answer the questions about 
geophysical inversion: Can we use JPI to improve the reconstruc- 
tion result and avoid conflicting interpretations? Is it possible to 
easil y appl y JPI to field data? The first question is a basic re- 
quirement for all joint inversion studies, and our answer is yes. 
The field example revealed that indirect JPI can better use the 
strengths of shallow-seismic and GPR data and produce results 
much better than individual inversions. The second question is 
challenging for petrophysical inversion because the assumed petro- 
physical relations and a priori information may be site-dependent 
and hard to obtain. Ho wever , our study indicated that indirect JPI 
still has a stable performance when there are uncertainties in a 
priori information. Indirect petrophysical parallelization, in com- 
bination with the input strategy, makes the field data application 
of JPI possible and promising. Therefore, our answer to the sec- 
ond question is yes, and we believe indirect JPI deserves more 
attention. 

4.2 Limitations of indirect JPI 

The petrophysical parameters we consider in this study are porosity 
and saturation (water content is their product), which are the objects 
of most petrophysical inversions. In some cases, it may be necessary 
to include other petrophysical parameters, for example clay content. 
Clay content is a key factor affecting seismic and EM properties. 
For instance, electrical conductivity is controlled by clay content 
and groundwater electrical conductivity. Although we attempted to 
use low values of m and n to account for the presence of clay, the 
adopted Archie’s equations may not be the best choice because it 
w as deri ved from a clay-free matrix (Archie et al. 1942 ). A possible 
solution is to use petrophysical relations that can consider the effect 
of clay content on seismic and EM parameters, such as the Voigt–
Reuss–Hill (VRH) boundary model and Linde’s modification of 
Archie’s equation (Linde et al. 2006 ; Hu et al. 2021 ). Additionally, 
electrical resistivity data are sensitive to electrical conductivity and 
may be introduced into the joint inversion to reconstruct the clay 
content model. In this way, indirect JPI can be extended from two 
to three geophysical data based on the sensitivity links between 
shallow-seismic data and porosity, GPR data and saturation, and 
electrical resistivity data and clay content. 

Non-petrophysical parametrizations is another key factor affect- 
ing indirect JPI’s performance. Seismic velocity parametrization 
has proven to be very beneficial for seismic multiparameter imag- 
ing, mainly due to the similarity in magnitude of seismic veloc- 
ity and density (K öhn et al. 2012 ). Nevertheless, seismic modulus 
parametrization may also be worth a try since we actually use the 
shear modulus to calculate porosity (eq. 5 ). In seismic velocity 
parametrization, the shear modulus is calculated from the S -wave 
velocity and density, and may be contaminated by less reliable 
density information. Whereas, in seismic modulus parametrization, 
the shear modulus is updated onl y b y the shear modulus gradient 
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ithout any interferences, and thus may be more reliable. There-
ore, indirect JPI with seismic modulus parametrization instead of
eismic velocity parametrization may yield better results, which is
ubject to further validation. 

As the first step, we e v aluated our algorithm via Lov e wav e and
ulti-offset surface GPR field data. As shown in table 2 in Qin

t al. ( 2022 ), there are 12 combinations of geometries (crosshole
nd surface) and wave types ( P –SV, SH, TE and TM) in the 2-D
ase. Therefore, other combinations need to be tested in the next
tudies. What we can expect is that indirect JPI with P –SV wave
Ra yleigh wa ve) will be more challenging since more parameters
ave to be reconstructed, and the crosshole geometry will illuminate
etter in deeper area than surface geometry. Applying indirect JPI
n the 3-D case will be the next step. 

The current version of indirect JPI does not include model reg-
larization. Model regularization is an ef fecti ve w ay to stabilize
he inversion process and improve the imaging results (Tikhonov &
rsenin 1977 ). For example, the maximum smoothness regulariza-

ion (Constable et al. 1987 ) may constrain the horizontal roughness
nd suppress artefacts in the near-surface GPR models (Fig. 4 b);
he total variation regularization (Feng et al. 2019 ) may make the
rench boundaries and other subsurface interfaces in the seismic

odels sharper (Fig. 4 a). Therefore, indirect JPI combined with
odel regularization is worth further investigation. 

.3 Implications of the work 

he w orkflo w we propose in Fig. 1 can be regarded as a gen-
ral framework of joint inversion. It is a way to stabilize the re-
onstruction process and exchange the most reliable information
rom each data. Our study moti v ates the consideration of sensitiv-
ty difference and the use of non-petrophysical parametrization in
he joint inversion. In near-surface survey, indirect JPI of shallow-
eismic and electrical resistivity data can be developed similarly
y replacing GPR FWI with electrical resistivity inversion and cal-
ulating saturation from electrical conductivity based on Archie’s
quation (Wagner et al. 2019 ). GPR and electrical resistivity data
an be integrated by indirect JPI as well (Domenzain et al. 2020 ),
here the frequency difference in the electrical conductivity recon-

tructed by two inversions should be taken into account (Qin et al.
023 ). In oil exploration, one can perform indirect JPI of seismic
nd controlled-source electromagnetic measurements (CSEM) data,
amely, replacing GPR FWI with CSEM inversion and comput-
ng saturation from electrical conductivity (Abubakar et al. 2012 ).
ote that it is possible to calculate porosity from P -wave velocity

ince seismic FWI uses mainly reflected waves and is also sensi-
ive to P -wave velocity in oil exploration. Fur ther more, JPI is not
imited to the traditional framework of using only petrophysical
arametrizations. Our study indicates that using non-petrophysical
arametrization in JPI can better exploit the reconstruction poten-
ial of FWI. Thus, indirect JPI holds great promise as a generalized
ramework that may be applied to a wide range of joint inversion
tudies. 

The approach presented is not limited to the empirical models
i ven b y Gassmann’ s equations, CRIM and Archie’ s equation. It
s also applicable to other petrophysical relations. For example, the
ime-averaging equation can be used for the seismic petrophysical
elation f S (Wagner et al. 2019 ), and Topp’s equation and Ewing’s
odification of Archie’s equation can be taken as the EM petro-

hysical relation f EM 

(Topp et al. 1980 ; Ewing & Hunt 2006 ). Some
etrophysical relations reveal similar sensitivity trend as Fig. 2 , for
xample the permittivity increases with porosity and saturation in
RIM and Topp’s equations. Indirect JPI using these petrophys-

cal relations is expected to give similar results as in this study.
or petrophysical relations with different sensitivity trends, such
s Gassmann’s equations and the time-averaging equation, indirect
PI ma y ha ve a stable performance but different results. How ever,
ow to judge whether the adopted relations are valid for the test
ite is an open question. As an attempt, we suggest to implement
WI and IPI first. If their results are similar (e.g. S -wave velocity

n Fig. 4 ), the petrophysical relations are close to the real situation
n the test site, and then we can run indirect JPI using these petro-
hysical relations. If the results of FWI and IPI are far apart, other
etrophysical relations should be tested until the most suitable one
s found. An alternative is to use JSI to derive possible petrophysi-
al relations from a scatter plot of multiple geophysical parameters
Linde & Doetsch 2010 ), for example S -wave velocity and permit-
i vity reconstructed b y seismic and GPR FWIs. This deser ves fur ther
nvestigation. 

The computational cost of the joint inversion is the sum of two
ndividual inversions. In this paper, we run our algorithm on a 36-
ore computer cluster. Shallow-seismic FWI has 12 seismograms
2500 sampling rate) and model space 412 × 50 grids, simulated
ith 12 source parallelization and three model domain paralleliza-

ion (one model decomposed into three subvolumes) (Bohlen 2002 ).
PR FWI has 18 radargrams (2048 sampling rate) and model space
130 × 175 grids, simulated with 18 source parallelization and
wo model domain parallelization. We use a subset FWI (SFWI)
ethod to speed up GPR FWI by a factor of five and reduce the
emory usage to 20 per cent (Qin 2022 ). As a result, the total

omputational time of indirect JPI is about nine minutes. The com-
utational cost can be further reduced by applying the source en-
oding method to shallow-seismic FWI and GPR FWI (Krebs et al.
009 ; Feng et al. 2023 ). Ho wever , GPR data acquisition requires
pecial attention because each data has an unfixed geometry spread.
o make source encoding applicable to GPR data acquisition and

o eliminate the crosstalk of uncorrelated wav efields, frequenc y-
ivision encoding method may be considered (Huang & Schuster
012 ). 

 C O N C LU S I O N  

n this paper, we applied indirect JPI to shallow-seismic and multi-
ffset surface GPR field data for consistent imaging of the near-
urface targets. Indirect JPI exploits only highly sensitive rela-
ions between geophysical and petrophysical parameters. In this
ase these relations are S -wav e v elocity ∝ porosity and permittiv-
ty ∝ saturation. We proposed an input strategy to make indirect
PI more operational and robust in solving practical problems. The
pplication at the Rheinstetten test site showed that this approach
ot only outperforms FWIs and IPIs in reconstructing seismic and
PR parameters, but also provides more consistent petrophysical
odels than IPIs. Indirect JPI presented significant improvements

n estimating saturation, density, and electrical conductivity, there-
ore reducing the ambiguity and uncertainty of single geophysical
echniques and facilitating the final geological interpretations, such
s determining groundwater distribution and facies stratification.
his study also suggested that, due to the use of indirect petrophysi-
al parametrization, this approach can ef ficientl y exchange the high
onfidence information given by each inversion. Thanks to the sep-
rate contributions of seismic and GPR data, indirect JPI reduced
he reliance on a priori information and exhibited great potential for
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real-world applications. Our observations are in agreement with the 
DPT, borehole measurements and GPR migration image. To sum 

up, this study is the first application of indirect JPI to field data and 
the results are promising. 
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