
Received 31 January 2024, accepted 7 March 2024, date of publication 18 March 2024, date of current version 22 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3376441

A Comprehensive Survey of Convolutions in
Deep Learning: Applications, Challenges,
and Future Trends
ABOLFAZL YOUNESI 1, MOHSEN ANSARI 1, MOHAMMADAMIN FAZLI 1,
ALIREZA EJLALI 1, MUHAMMAD SHAFIQUE 2, (Senior Member, IEEE),
AND JÖRG HENKEL 3, (Fellow, IEEE)
1Department of Computer Science and Engineering, Sharif University of Technology, Tehran 11365-11155, Iran
2eBrainLab, Division of Engineering, New York University (NYU) Abu Dhabi, Abu Dhabi, United Arab Emirates
3Department of Computer Science, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany

Corresponding author: Mohsen Ansari (ansari@sharif.edu)

This work was supported in part by New York University Abu Dhabi (NYUAD) Center for Artificial Intelligence and Robotics (CAIR)
funded by Tamkeen under the NYUAD Research Institute under Award CG010, and in part by the Project ‘‘eDLAuto: An Automated
Framework for Energy-Efficient Embedded Deep Learning in Autonomous Systems’’ funded by the NYUAD Research Enhancement
Fund (REF).

ABSTRACT In today’s digital age, Convolutional Neural Networks (CNNs), a subset of Deep Learning
(DL), are widely used for various computer vision tasks such as image classification, object detection, and
image segmentation. There are numerous types of CNNs designed to meet specific needs and requirements,
including 1D, 2D, and 3D CNNs, as well as dilated, grouped, attention, depthwise convolutions, and NAS,
among others. Each type of CNN has its unique structure and characteristics, making it suitable for specific
tasks. It’s crucial to gain a thorough understanding and perform a comparative analysis of these different CNN
types to understand their strengths and weaknesses. Furthermore, studying the performance, limitations, and
practical applications of each type of CNN can aid in the development of new and improved architectures
in the future. We also dive into the platforms and frameworks that researchers utilize for their research or
development from various perspectives. Additionally, we explore the main research fields of CNN like 6D
vision, generative models, and meta-learning. This survey paper provides a comprehensive examination and
comparison of various CNN architectures, highlighting their architectural differences and emphasizing their
respective advantages, disadvantages, applications, challenges, and future trends.

INDEX TERMS Deep learning, DNN, CNN, machine learning, vision transformers, GAN, attention,
computer vision, LLM, large languagemodel, transformer, dilated convolution, depthwise, NAS,NAT, object
detection, 6D vision, vision language model.

I. INTRODUCTION
IN today’s world, as technology continues to evolve, deep
learning (DL) has become an integral part of our lives [1].
From voice assistants like Siri and Alexa to personalized
recommendations on social media platforms, DL algorithms
are constantly working behind the scenes to understand our
preferences andmake our lives easier [2].With advancements
in technology, DL is also being used in various fields such
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as healthcare, finance, and transportation, revolutionizing the
way we approach these industries [3], [4], [5]. As research
and development in the field of DL continue to progress,
even more innovative applications that will further enhance
our daily lives can be expected. DL has ushered in a
transformative era in artificial intelligence, empowering
machines to assimilate vast datasets and make informed
predictions [6], [8]. The development of CNNs has received
attention among deep learning’s significant advancements.
Their impact has been felt in some areas, including generative
AI, examining medical images, identifying objects [9], and
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finding anomalies [10]. CNNs, constituting a feedforward
neural network, integrate convolution operations into their
architecture [7], [11]. These operations enable CNNs to
adeptly capture intricate spatial and hierarchical patterns,
rendering them exceptionally well-suited for image analysis
tasks [12].

However, CNNs are often burdened by their computational
complexity during training and deployment, particularly
when operating on resource-constrained devices like mobile
phones and wearables [12], [13].

Two principal avenues have emerged to reinforce the
energy efficiency of CNNs: Employing Lightweight CNN
Architectures: These architectures are deliberately engi-
neered to achieve computational efficiency without compro-
mising accuracy. For instance, theMobileNet family of CNNs
has been meticulously tailored for mobile devices and has
demonstrated state-of-the-art accuracy across various image
classification Applications [13].

Embracing Compression Techniques: Thesemethods facil-
itate the reduction of CNN model size and consequently
diminish the volume of data transfers between devices.
A noteworthy example is the TensorFlow Lite framework,
which offers a suite of compression techniques tailored for
compressing CNN models for mobile devices [14].
The fusion of lightweight CNN architectures and com-

pression techniques yields a substantial boost in the
energy efficiency of CNNs. Training and deploying CNNs
on resource-constrained devices become feasible, thereby
unlocking novel opportunities for employingCNNs in diverse
applications like healthcare, agriculture, and environmental
monitoring [12], [16].

How different convolutional techniques cater to various
AI applications. Convolutions play a fundamental role in
contemporary DL architectures and are especially crucial
when dealing with data organized in grid-like structures,
such as images, audio signals, and sequential data [23].
The convolutional operation entails moving a small filter,
also known as a kernel, across the input data, performing
element-wise multiplications and aggregations. This process
extracts essential features from the input data [24]. The main
significance of convolutions lies in their capability to effi-
ciently capture local patterns and spatial relationships within
the data. This localization property makes convolutions
highly suitable for tasks like image recognition, as objects
can be identified based on their local structures. Additionally,
convolutions introduce parameter sharing, which results in a
significant reduction in the number of trainable parameters,
leading to more efficient and scalable models [25].

A. EXISTING SURVEYS
Previous survey papers on CNN architectures such as [118]
and [120] provided good overviews of popular architectures
from a certain period. However, they lacked a clear Research
question and objective, evaluation, and challenges based on
their design patterns. They mostly discussed architectures
chronologically.

Earlier surveys like [119] and [120] focused on explaining
core CNN components and popular architectures up to a cer-
tain year. they also lacked research questions and objectives,
analysis of datasets, and special types of taxonomy that were
not considered complete overviews like large vision models,
and large language models, and lack of multipoint of view for
challenges.

Previous work discussed the challenges in some specific
concepts and applications of CNNs but did not extensively
cover the intrinsic taxonomy present in newer CNN architec-
tures. So this caused us to write a survey paper that aims to
address the gaps in previous work by proposing a taxonomy
to clearly classify CNN architectures based on their intrinsic
design patterns rather than release year.

We focus on architectural innovations from 2012 onwards
and discuss the recent developments in greater depth than
earlier surveys. Discussing the latest trends and challenges
provides an updated perspective for researchers.
This comprehensive survey of CNN’s history, taxonomy,

applications, and challenges is needed to accelerate research
progress in this domain further.

In this paper, the key questions we seek to address include:
• How do state-of-the-art CNN models like ResNet,
Inception, and MobileNet perform on the target hard-
ware compared to constrained baselines? What are the
impacts on accuracy, latency, and memory usage?

• What techniques like pruning, quantization, distillation,
and architecture design can help reduce the model size
and computational complexity the most while retaining
prediction quality?

• How do multi-stage optimization approaches that com-
bine different techniques compare to single methods?
Can we achieve better trade-offs between accuracy,
latency, and memory?

• For a target application like embedded vision, what
are the best practices for benchmarking, tuning, and
deploying optimized CNN models considering their
unique constraints and specifications?

• Which pruning and quantization techniques work best
for our target application and hardware? How does this
compare to baselines?

Our overview makes several key contributions to the DL
and CV communities:

• Analyzing multiple types of existing CNNs: The
survey provides a comprehensive and detailed analysis
of various DL models and algorithms used in CV
Applications.

• Comparing the CNN models with various parame-
ters and architectures: The overview offers insights
into the performance and efficiency trade-offs.

• Identifying the strengths and weaknesses of different
CNN models: Aiding researchers in selecting the most
suitable model for their specific applications.

• The overview highlights the challenges and future
directions for further improvement in the fields of DL
and computer vision.
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TABLE 1. Comparison of existing surveys; +* means conditional cosideration.

FIGURE 1. Represents the section-by-section structure of the paper that provides a clear and organized framework for presenting the research findings.

FIGURE 2. A text-based visual reading map that helps individuals
navigate and comprehend the paper.

• Exploring the trends in neural network architecture:
This emphasizes the practical application and exciting
nature of the advancements.

• Comprehensive overview of theMain research fields:
This covers the primary fields of research that are
actively pursued by researchers.

The rest of our review paper follows (See Fig. 1): Section II
of the paper will delve into the fundamentals of convolu-
tions, elucidating their mathematical formulation, operational
mechanics, and the role they play in the architecture of neural
networks. Section III describes the basic parts of CNNs.
In Section IV, The exploration will cover 2D convolutions,
1D convolutions for sequential data, and 3D convolutions
for volumetric data. Section V of the research paper will
investigate advanced convolutional techniques that have
emerged in recent years. This will encompass topics such as
transposed convolutions for upsampling, depthwise separable
convolutions for efficiency, spatial pyramid pooling, and
attention mechanisms within convolutions. Section VI of
the paper will highlight the real-world applications of
different convolution types, showcasing their utility in image
recognition, object detection, NLP, audio processing, and
medical image analysis. In section VII we discuss future
trends and some open questions about CNNs. Section VIII is
about the performance consideration of CNNs. In Section IX,
we are going to talk about the platforms that are mostly
used by researchers and developers, and in Section X about
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research fields that are popular or trending, then we have
a discussion in Section XI. By the end of this research in
Section VIII, readers will gain a profound understanding of
the importance of convolutions in DL and Fig. 2 represents
a reader map to visualize the flow of information within
a text. It shows the connections between various sections,
assisting readers in comprehending the overall structure of
their preferred section following their needs.

II. FUNDAMENTALS OF CONVOLUTIONS
Convolutions form the foundation of crucial mathematical
operations used to process data structured in grids, such
as images, videos, and time series data [26]. Originally
used in signal processing, convolutions were used for
analyzing and manipulating signals [27]. In deep learning,
convolutions serve as powerful feature extractors, enabling
neural networks to efficiently learn from raw data [26],
[27]. The essence of a convolution involves the sliding of
a small filter, commonly known as a kernel, over the input
data. At each position of this sliding operation, the kernel
performs element-wise multiplication with the corresponding
input values [28]. Through this process, local patterns and
relationships within the data are captured, enabling the model
to acquire essential features like edges, textures, and shapes.

A. MATHEMATICAL FORMULATION OF CONVOLUTIONS
Mathematically, a 2D convolution between an input matrix
(often representing an image) and a kernel can be represented
as follows:

Output(i, j) =

∑
(x,y)

Input(x, y) · Kernel(i− x, j− y) (1)

Here, Output denotes the resulting feature map, and Input
represents the input matrix. The kernel, usually a small
square matrix, defines the convolutional filter’s weights. The
convolution operation is performed by sliding the kernel
over the input matrix, and at each position, the element-wise
multiplication and summation are computed as described in
the formula [29]. For 1D convolutions, the mathematical
formulation is similar, with the kernel sliding along a one-
dimensional sequence, such as a time series or text data [30].

B. CONVOLUTIONAL OPERATIONS IN DL
Convolutional operations form the core of CNNs, a highly
prominent class of DL models widely utilized for various
CV applications. Within a CNN, convolutions are typically
integrated into specific layers referred to as convolutional
layers [31]. These layers are composed of multiple filters,
each responsible for detecting distinct patterns in the input
data [138], [139], [140], [141], [142], [143], [144], [145].
During the training phase, the model goes through the
process of backpropagation and gradient descent to learn the
optimal weights of the convolutional filters. This enables
the model to automatically discern meaningful patterns
within the data. Moreover, CNN architectures (See Fig. 3
and Fig. 4) often incorporate pooling layers following the

FIGURE 3. A graphical representation of CNN architectures
from 1998 to 2023.

convolutional layers. As a result of pooling layers, feature
maps generated by convolutions are downsampled, reducing
computational complexity. Common pooling techniques
include max-pooling and average pooling, which we will
discuss about them in Section III.B.

C. WAVELETS
Wavelets are an important mathematical tool that has
numerous applications in fields such as signal processing
and computer graphics. At their core, wavelets rely on
convolution to analyze functions or continuous-time sig-
nals [104]. By convolving the target function with wavelet
basis functions at different scales, wavelets are capable of
representing data with varying degrees of resolution [109].
Wavelet analysis uses small waves, called wavelets,

as basis functions instead of the sine and cosine functions
used in Fourier analysis [105]. Wavelets have the advantage
of analyzing properties of data locally in time and frequency
instead of globally. This makes them well-suited for tasks
such as edge detection, noise removal, and texture identifica-
tion. The wavelet basis can also be adapted to the input signal
or data being analyzed [105], [106].

CNNs naturally lend themselves to wavelet analysis due
to their intrinsic use of convolution operations [107], [108].
During training, the convolutional filters within CNNs can
learn wavelet-like basis functions tailored to meaningfully
represent the given input data distribution at multiple resolu-
tions. By adopting the wavelet bases through gradient descent
and backpropagation, CNNs gain an efficient multi-scale
representation of patterns in the data [108], [109].
A key characteristic of wavelets is their ability to

decompose a signal into different frequency components,
with high frequencies corresponding to detailed information
and low frequencies corresponding to overall trends [108].
A single-level wavelet decomposition breaks down the
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FIGURE 4. The flow of CNN architectures from 1998-2020 with their pros and cons represents that each CNN model is efficient for a specific application.

original signal into approximation and detail coefficients.
The approximation contains lower frequency information,
while the detail contains higher frequency or detailed
information [109].

CNNs can utilize this multi-resolution decomposition
property of wavelets by using convolutions to learn wavelet
filters at each level [108], [109], [110]. The output of
each level becomes the input to the next, with the filters
extracting more detailed features at higher levels after the
removal of coarse information. This convolutional learning
of adapted wavelet bases enables CNNs to hierarchically
capture patterns across different scales for improved data
representation [110].

In various image processing and computer vision tasks,
the use of convolutional wavelets within CNNs has shown
promising results. For applications like denoising, super-
resolution, and texture synthesis, CNNs equipped with
learned wavelet filters have achieved state-of-the-art perfor-
mance by effectively representing key multi-scale character-
istics of visual data [110], [111], [112], [113]. Convolutional
wavelets also benefit segmentation, detection, and classifi-
cation when combined with traditional convolutional filters
within CNNs [109]. In summary, wavelets provide a powerful
tool for multi-scale analysis that CNNs can leverage through
their inherent ability to learn localized basis functions via
convolution operations.

III. BASIC CONVOLUTIONAL NEURAL NETWORKS
The CNN architecture typically consists of an initial input
layer, followed by several critical components, including

FIGURE 5. A graphical representation of Section III.

convolutional layers, pooling layers, and fully connected
layers. This organized structure allows for the systematic
processing of raw data, such as images, through a series
of layers, which in turn enables the extraction of relevant
features and facilitates making predictions.

The convolutional layers hold a central position in this
architecture, as they employ learnable filters to process the
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input data. This operation is instrumental in detecting diverse
patterns and features, thereby enhancing the network’s
ability to understand the underlying data. Following the
convolutional layers, the pooling layers come into play,
downsampling the output from the previous layers. This
downsampling process reduces the spatial dimensions while
retaining crucial information. By focusing on the most
significant details, these layers contribute to translational
invariance, a valuable aspect in applications like image
recognition where object positions may vary.

In Table 2, a comprehensive overview of the core
components of basic CNNs is presented (also See Fig. 5),
encompassing convolutional layers, pooling layers, and
activation functions. The table provides insights into their
individual purposes, functionalities, dependencies on input
size, parameters, feature maps, translational invariance,
computational efficiency, output size, roles in the CNN
architecture, and impact on model performance. Analyzing
these aspects provides profound insights into the elements
that contribute to the effectiveness and performance of
CNNs, making it a valuable reference for researchers and
practitioners in the field.

A. BACKGROUND OF DEEP LEARNING
Deep learning, a prominent form of machine learning,
encompasses the use of neural networks composed of multi-
ple layers to acquire hierarchical representations of data [17].
Taking inspiration from the intricate workings of the human
brain, where neurons engage in processing and transmitting
information to forge elaborate depictions of the world,
DL models, also known as deep neural networks, showcase
remarkable prowess in assimilating hierarchical features
from raw data. This exceptional ability enables them to
discern intricate patterns and achieve remarkable precision in
predictions [18].

The roots of DL can be traced back to the nascent
endeavors surrounding artificial neural networks in the
1940s. However, the true resurgence and substantial remark-
able materialized in the 1980s and 1990s, paving the way
for its remarkable revival in the 21st century [19]. Key
catalysts driving this resurgence were the strides made in
computational power, the vast availability of datasets, and the
advent of efficient training algorithms, most notably back-
propagation, which played a pivotal role [20]. By harnessing
these advancements, DL models attained the ability to
process and analyze vast repositories of data, thus acquiring
an aptitude for deciphering intricate patterns and making
precise predictions.

The convergence of powerful hardware and sophisticated
algorithms ushered in an era of remarkable accomplishments
across diverse domains. Computer Vision (CV), natural
language processing (NLP), and speech recognition (SR),
among others, have witnessed remarkable strides through the
transformative power of DL [73]. This dynamic discipline’s
capacity to overcome more difficult problems and promote

innovation across various industries is becoming more and
more clear as it develops and advances.

B. INTRODUCTION TO CONVOLUTIONAL NEURAL
NETWORKS
CNNs, an influential category of DL models, have emerged
as a preeminent and extensively utilized algorithm within
the realm of DL [21]. Distinctive to CNNs is their
capacity to engage in convolution calculations and operate
proficiently on intricate structures. This characteristic has
propelled CNNs to achieve remarkable breakthroughs in
image analysis and feature extraction, bestowing upon them
the ability to discern and efficiently classify features in
images. Moreover, CNNs are renowned as shift-invariant
artificial neural networks, a nomenclature that accentuates
their capability to classify input information based on its
hierarchical arrangement [22].

The hierarchical architecture of CNNs empowers them
to process and extract features from input data in a shift-
invariant manner [22]. This implies that CNNs can adeptly
recognize and classify objects within images, irrespective
of their position or orientation. The realization of this
shift-invariant attribute is accomplished through the appli-
cation of convolutional layers, which employ filters in a
sliding window fashion. These filters acquire the ability to
detect specific patterns or features at various spatial scales,
thereby enabling the network to encapsulate both local and
global information. Consequently, CNNs exhibit profound
proficiency in extracting meaningful features from images,
facilitating a wide array of applications encompassing object
detection, image recognition, and even image generation [74].

C. CONVOLUTIONAL LAYERS AND THEIR FUNCTIONALITY
Each convolutional layer comprises multiple filters, also
referred to as kernels, which are small windows that slide over
the input data [32]. During the training phase, the weights
of these filters are learned, and they function as feature
extractors, identifying specific patterns, edges, and textures
present in the input [33]. When the filters move across the
input, they create featuremaps that emphasize important parts
of the data as regions of interest (ROI). These maps show
where specific patterns in the input become active, helping
the CNN recognize significant features crucial for later tasks
like classification or detection [34].
For example, in a CNN trained to identify cats in images,

the filters may learn to recognize the patterns of fur, whiskers,
and ears. As the filters convolve across an image of a cat, they
generate feature maps that highlight these specific regions of
interest. These feature maps indicate the activation of these
cat-specific patterns and aid in accurately classifying the
image as containing a cat.

D. POOLING LAYERS AND FEATURE REDUCTION
Pooling layers are incorporated following convolutional
layers to decrease the spatial dimensions of the feature maps,
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TABLE 2. The different aspects of the basic convolutional neural networks.

thereby reducing the computational complexity of the net-
work [35]. The most frequently utilized pooling techniques
in CNNs are max-pooling and average-pooling [37].
Max-pooling entails selecting the maximum value from

a small region of the feature map, while average-pooling
computes the average value. Pooling offers two primary
advantages: first, it effectively reduces the number of param-
eters in the network, resulting in improved computational
efficiency. Second, it introduces a level of translational
invariance, signifying that minor spatial translations in the
input data do not substantially impact the pooled outputs. This
property enhances the CNN’s ability to generalize better to
variations in the input data.

For example, in image classification applications, after
several convolutional and activation layers, a pooling layer
can be used to downsample the feature map. This down-
sampling reduces the spatial resolution of the features,
making it more computationally efficient to process and
reducing the risk of overfitting. Additionally, because pooling
computes either maximum or average values, it can capture
the dominant features in an image regardless of their exact
location, making the network more robust to slight variations
in object position or orientation.

E. ACTIVATION FUNCTIONS IN CNNS
Activation functions play a vital role in CNNs as they are
applied to the output of each neuron, introducing nonlinearity
to the network and facilitating the learning of complex
relationships between input data and their corresponding
features. Within CNNs, several commonly used activation
functions include Rectified Linear Units (ReLU) [36], which
set negative values to zero while preserving positive values

unchanged. Variants like Leaky ReLU [36] and Parametric
ReLU [39] are also widely employed. The selection of
the activation function is of great importance as it directly
impacts the network’s capacity to learn and make accurate
predictions. By introducing nonlinearity, activation functions
allow CNN to model intricate patterns and decision bound-
aries, thereby enhancing its performance across a range of
tasks.

For example, in image classification applications, the
ReLU activation function has been shown to effectively
remove negative pixel values and emphasize positive pixel
values, allowing CNN to identify important features and
learn discriminative patterns. This enables the CNN to
accurately classify different objects in images, such as
correctly identifyingwhether an image contains a cat or a dog.

F. BATCH NORMALIZATION IN CNNS
Batch Normalization is a technique that helps stabilize
and accelerate the training of CNNs [78]. It normalizes
the activations of each layer by centering and scaling the
values using the mean and variance of each mini-batch
during training. This process reduces internal covariate shifts,
making the optimization process smoother and enabling the
use of higher learning rates.

By normalizing activations, Batch Normalization allows
for more aggressive learning rates, which leads to faster
convergence and improved model generalization. Addition-
ally, it acts as a regularizer, reducing the need for other
regularization techniques like dropout.

Overall, Batch Normalization has become a standard
component in CNN architectures, contributing to faster
training, improved model performance, and increased ease
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FIGURE 6. An overview of Section IV structure.

FIGURE 7. The Basic structure of CNN. a) represents CNN without
Padding which causes the output image to become smaller. b) represents
CNN without Padding which the output image is the same size as the
input image.

of hyperparameter tuning. Its widespread adoption has
significantly contributed to the success of modern CNNs in
various CV and NLP applications. For example, in image
classification applications, Batch Normalization helps reduce
overfitting by normalizing the input for each mini-batch
during training. This ensures that the network learns robust
features and avoids relying on specific pixel values or noise
in the input data. As a result, the model becomes more
generalized and performs better on unseen data.

IV. TYPES OF CONVOLUTION IN DEEP LEARNING
In this section, our goal is to comprehensively explore the
different convolution methods (See Fig. 6) commonly used in
deep learning models. Table 3 presents a condensed overview
of these convolution types, providing important information
such as input data type, dimensionality, receptive field,
computational cost, primary use case, memory consumption,
parallelization capability, consideration of temporal informa-
tion, and computational efficiency.

It is important to highlight that selecting the appropriate
convolutional type relies on the particular task and dataset
under consideration. For instance, when working with diverse
data types, such as images or text, it may be necessary to
employ distinct convolutional types to effectively capture
relevant features. Moreover, considering the computational
efficiency of each convolutional type becomes important for
real-time applications or settings with limited resources.

A. 2D CONVOLUTIONS
2D convolutions (See Fig. 7) serve as the foundational
elements in CNNs, particularly for applications related to
CV. They are predominantly utilized for processing two-
dimensional data, such as images, which can be represented
as a grid of pixels. During this convolutional operation, a
2D kernel slides over the input image, enabling the capture
of local patterns and the extraction of relevant features [27].
The primary application of 2D convolutions lies in image
recognition, wherein the model learns to identify essential
patterns, including edges, textures, and object components,
thereby facilitating high-level recognition applications [40].

2D convolutions have found use in a variety of fields,
including signal processing, CV, and NLP in addition to
image recognition. CNNs have completely changed CV
processes like object detection, image segmentation, and
facial recognition. CNNs can more accurately and efficiently
analyze the spatial relationships and hierarchical structures
present in images by using 2D convolutions. When learned
filters slide across the input image, a CNN can learn to
find and locate different objects in images, such as in
object detection tasks. This helps the network accurately
detect objects even in complicated scenes, as it can identify
important patterns of various sizes.

Moreover, CNNs can also be learned to categorize
and compare faces by analyzing facial features using 2D
convolutions in facial recognition. This makes it possible to
create systems like access control and identity verification.

B. 1D CONVOLUTIONS FOR SEQUENTIAL DATA
One-dimensional (1D) convolutions (See Fig. 8) are specially
designed for working with sequential data like time series,
audio signals, and natural language. Unlike their two-
dimensional counterparts, 1D convolutions operate on a
single line, allowing them to detect patterns that develop
over time [41]. In the field of natural language processing,
1D convolutions are widely used in tasks such as classifying
text and analyzing sentiments. They help the model identify
complex patterns in sequences of words and understand how
these words are related to each other [42]. 1D convolutions
have also been successfully applied to audio signal processing
applications such as SR and music analysis. By analyzing the
temporal patterns of audio signals, these models can extract
meaningful features that capture the underlying structure and
characteristics of the sound. This has proven to be particularly
useful in applications like speaker identification and emotion
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TABLE 3. The comparison provides an overview of the characteristics and functionalities of different convolution types.

FIGURE 8. An overview to simple one-dimensional (1D) convolution
neural network with two convolution layer.

recognition, where the sequential nature of the audio data is
sequential.

For example, in speaker identification, 1D convolution
can analyze the sequential patterns of an individual’s voice
and learn to associate certain patterns with specific speakers.
This allows the model to accurately identify and differentiate
between different speakers in an audio recording. In emotion
recognition, 1D convolutions can analyze the temporal
changes in pitch, tone, and intensity of an audio signal to
classify the emotional state of the speaker, such as happiness,
sadness, or anger. This helps in detecting and understanding
the underlying emotions conveyed through speech, which
can be useful in various applications like customer sentiment
analysis, virtual assistants, and mental health monitoring.

C. 3D CONVOLUTIONS FOR VOLUMETRIC DATA
Three-dimensional (3D) convolutions are specifically
designed to handle volumetric data, such as 3D medical
images or video data [43]. 3D convolutions possess the
capability to simultaneously process spatial and temporal
dimensions, thereby capturing intricate patterns and distinc-
tive features across all three dimensions. In medical imaging,
3D convolutions are vital in jobs like finding where tumors

are. The model uses 3D medical scans to figure out where the
important spatial and surrounding details are, which helps
accurately locate and describe tumors [44], [45].

The use of 3D convolutions has gone beyond just tumors
and is used in various medical imaging tasks like picking out
different parts of the body, spotting issues, and classifying
diseases. This method lets the model see the whole volume of
a medical scan, rather than just individual parts, and consider
how different slices are related in space. This comprehensive
approach allows the model to effectively capture the overall
structure of the target organ or an anomaly, resulting in
improved diagnostic accuracy and better patient outcomes.

For instance, in tumor segmentation, 3D convolutions can
be used to analyze a series of consecutive medical scans to
identify the size and location of tumors over time, allowing
doctors to track their growth and plan targeted treatments.
This helps improve the accuracy and efficiency of tumor
identification, leading to better patient outcomes.

In addition to operating on rawmedical images and videos,
3D convolutions can be applied to process point cloud data
through voxelization [101]. As point clouds represent 3D
geometry as an unordered set of points without connectivity,
a common approach is to first discretize the continuous 3D
space into regular volumetric grids called voxels. Each voxel
is assigned a feature vector, such as the number of points or
aggregated point properties within its volume.

Voxelizing the point cloud allows existing 3D convolu-
tional kernel operations to be directly applied. Early works
divided the spatial domain into coarse voxels and maxpooled
point features inside each voxel [101]. More advanced
methods utilize sparse convolutions over fine-grained voxels
or use dilated kernels with gaps to control the receptive field
size. Multi-scale voxels have also been explored to capture
both local and global point features [125], [126].

After 3D convolution and pooling, the extracted voxel
features can be decoded back to the original point cloud
domain for subsequent 3D fully connected or Transformer
layers [129]. Voxel representation serves as an efficient
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FIGURE 9. Dilation Convolution with multiple dilation rate with
3 × 3 kernel size [74].

intermediary that not only maintains the spatial structure
required by CNNs but also allows points of variable density
[127], [128] [129]. This two-stage voxel-based approach
enables end-to-end training of 3D CNNs for point clouds.

D. DILATED CONVOLUTIONS AND THEIR ADVANTAGES
Dilated convolutions (See Fig. 9), also known as atrous
convolutions, are a variant of traditional convolutions that
introduce gaps (dilation) between kernel elements. This gap
enables for an increased receptive field without increasing
the number of parameters, making dilated convolutions more
computationally efficient [46]. Dilated convolutions find
application in applications like semantic segmentation, where
they enable the model to capture broader contextual informa-
tion without compromising computational efficiency [47].

In semantic segmentation applications, dilated convolu-
tions are particularly useful because they enable the model to
capture broader contextual information. By introducing gaps
between kernel elements, dilated convolutions increase the
receptive field without adding more parameters. This means
that themodel can understand the surrounding context of each
pixel or object in the image without sacrificing computational
efficiency. This value is important in applications like
semantic segmentation, where accurately identifying and
classifying objects within an image is essential.

E. GROUPED CONVOLUTIONS FOR EFFICIENCY
Grouped convolutions (See Fig. 10) involve dividing the input
and output channels of a convolutional layer into groups.
Within each group, separate convolutions are performed,
which are then concatenated to produce the final output. This
technique significantly reduces computational cost and mem-
ory consumption while promoting model parallelism [48].
Grouped convolutions are commonly used in large-scale

FIGURE 10. Grouped convolution involves dividing the channels of a
convolutional layer into 3 groups.

CNN architectures to reduce training time and enhance the
scalability of DL models [49].

In addition to reducing computational cost and mem-
ory consumption, grouped convolutions also offer other
advantages. One of the main benefits is improved model
parallelism, which provides for better utilization of par-
allel computing resources. This is especially important in
large-scale CNN architectures where training time can be
a bottleneck. By dividing the input and output channels
into groups, the convolutions can be performed in parallel,
speeding up the entire training process. Furthermore, the scal-
ability of DL models is enhanced with grouped convolutions,
making it easier to deal with larger datasets andmore complex
applications.

For example, in image classification applications, a large-
scale CNN architecture such as ResNet can benefit from
model parallelism using grouped convolutions. By dividing
the input and output channels into groups, different subsets
of the model can be trained in parallel on multiple GPUs
or distributed systems. This not only reduces the training
time but also allows for better resource utilization, eventually
improving the scalability of the DL model to handle larger
datasets and more complex image recognition applications.

In conclusion, DL offers a diverse range of convolu-
tional techniques to accommodate different data types and
applications. From 2D convolutions for image recognition
to 1D convolutions for sequential data and 3D convo-
lutions for volumetric data, each convolution type has
its unique advantages. Additionally, dilated convolutions
and grouped convolutions serve as efficient alternatives,
addressing specific challenges in DL models. Understanding
the characteristics and applications of these convolution types
empowers researchers and practitioners to design efficient
and effective models for a wide array of applications.

F. EVOLUTION OF CNN ARCHITECTURES
Since the early origins of CNNs, there has been a rapid
evolution in CNN architectures (See Fig. 11) [49] over the
past decade to enhance performance and efficiency [51].
Some key developments include:
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FIGURE 11. The detailed overview of advanced convolutions techniques.

• Inception modules (2014) - The Inception architecture
introduced convolutional blocks with multiple filter
sizes to capture features at various scales [52]. This
improves both accuracy and computational efficiency.

• ResNets (2015) - Residual networks allow the training
of much deeper CNNs through shortcut connections that
bypass multiple layers [53]. They reduce degradation in
very deep models.

• DenseNets (2016) - These connect each layer to all
subsequent layers for maximum information flow and
feature reuse. This reduces the number of parame-
ters [54].

• MobileNets (2017) - Designed specifically for mobile
applications, they use depthwise separable convolutions
to minimize model size and latency [55].

• EfficientNets (2019) - By systematically scaling net-
work dimensions, these achieve much better efficiency-
accuracy trade-offs [55].

The evolution of CNN architectures (See Fig. 11) has
been crucial to their widespread adoption across vision
applications.

V. ADVANCED CONVOLUTIONAL TECHNIQUES
This section provides a detailed overview of advanced
convolutional techniques (See Fig. 12). A clear and infor-
mative summary of these techniques is available in Table 4.
By reviewing this table, readers can gain a better understand-
ing of the state-of-the-art convolutional techniques and their
potential uses.

A. TRANSPOSED CONVOLUTIONS AND UPSAMPLING
Transposed convolutions–also referred to as deconvolu-
tions or fractionally stridden convolutions–are sophisticated
methods for upsampling feature maps [57]. Transposed
convolutions, as opposed to conventional convolutions,
increase the feature map size, enabling the model to

FIGURE 12. The trend of CNNs over time based on the released year and
amount of parameters and their types.

reconstruct higher-resolution representations from lower-
resolution inputs [58]. Traditional convolutions reduce spatial
dimensions. In processes like image segmentation [59],
image creation [60], and image-to-image translation [61],
they are essential. Transposed convolutions employ padding
and stride values to regulate the upsampling process and
learnable parameters to choose the output size.

Transposed convolution can create artifacts or checker-
board patterns in generated feature maps, due to overlapping
receptive fields. To prevent this, stride, padding, and dilation
are used to control the output resolution and reduce these
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FIGURE 13. The box with purple color represents the depthwise
convolution and the box with red color represents pointwise convolution
(in pointwise a 1 × 1 convolution is used).

artifacts. In the field of image generation, transposed
convolutions are used to upscale low-resolution images into
high-resolution ones. To ensure the generated images are
free of artifacts or checkerboard patterns, stride, padding,
and dilation are adjusted to control the output resolution and
enhance the quality of the generated images.

B. DEPTHWISE SEPARABLE CONVOLUTIONS (DSC)
Depthwise separable convolutions (See the purple box in
Fig. 13) are an efficient alternative to traditional convolutions,
particularly in resource-constrained environments [62], [63].
They split the convolution process into two steps (See Fig. 13)
depthwise convolutions [64] and pointwise convolutions [65],
[273], [274], [275], [276]. Depthwise convolutions apply
a separate kernel to each input channel, capturing spatial
patterns independently for each channel. Pointwise convo-
lutions then use 1 × 1 convolutions to combine the output
channels from the depthwise step, effectively aggregating the
information [66]. Depthwise separable convolutions signif-
icantly reduce the number of parameters and computation
while maintaining model performance, making them popular
in mobile and embedded applications [67].
By decoupling spatial filtering from cross-channel fil-

tering, depthwise convolution achieves higher computa-
tional efficiency and is well-suited for resource-constrained
environments. MobileNet and Xception are popular CNN
architectures that use depthwise convolution to reduce model
size and improve inference speed without compromising
performance significantly.

C. SPATIAL PYRAMID POOLING (SPP)
Spatial pyramid pooling (SPP) is a technique used to handle
inputs of varying sizes and aspect ratios in CNNs [68],
[277], [278], [279], [280], [281], [282]. It divides the input
feature maps into different regions of interest and applies

max-pooling or average-pooling to each region indepen-
dently. The resulting pooled features are then concatenated
to form a fixed-length representation, which is fed into fully
connected layers for further processing. SPP enables the
CNN to accept input images of different sizes and produces
consistent feature maps, making it useful in object detection
and image segmentation applications [69].

D. ATTENTION MECHANISMS IN CONVOLUTIONS
Attention mechanisms in convolutions allow the model to
focus on relevant parts of the input, emphasizing specific
regions during feature extraction [70]. These mechanisms
assign weights to different spatial locations based on their
importance. Self-attention mechanisms [70], like those used
in transformers, have been adapted for use in convolutions.
They enable the network to capture long-range dependencies
and context, improving the model’s ability to recognize
complex patterns and relationships.

E. SHIFT-INVARIANT AND STEERABLE CONVOLUTIONS
Shift-invariant convolutions are designed to be insensitive
to small translations in the input data [71], [283], [284],
[285]. They ensure that the learned features remain consistent
regardless of the object’s position within the input image.
This property is crucial for object detection applications,
where the object’s location might vary within the image [27].
Steerable convolutions are filters that can be rotated to differ-
ent angles, allowing the model to learn orientation-sensitive
features in an orientation-invariant manner [286], [287],
[288]. These convolutions are often used in applications like
text recognition, where the orientation of text can vary.

F. RECENT ADVANCEMENTS AND INNOVATIONS
1) CAPSULE NETWORKS
Capsule Networks, introduced by Geoffrey Hinton and his
team, is a revolutionary advancement in CNNs [75]. They aim
to address the limitations of traditional CNNs, particularly in
handling spatial hierarchies and viewpoint variations [289],
[290], [291], [292], [293], [294], [295]. Capsule Networks
use capsules as fundamental units, which are groups of
neurons that represent various properties of an entity, such
as its pose, deformation, and parts.

Capsule Networks offer dynamic routing mechanisms to
route information between capsules, allowing them to model
complex hierarchical relationships more effectively. This
enables the network to recognize objects with various poses
and appearances, making Capsule Networks more robust to
transformations and occlusions.

2) NEURAL ARCHITECTURE SEARCH FOR CONVOLUTIONS
Neural Architecture Search (NAS) is an automated approach
to designing CNN architectures [76], [81]. Instead of relying
on human-designed architectures, NAS employs search
algorithms and neural networks to discover architectures that
perform well on specific applications [76]. This technique
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TABLE 4. The comparison provides an overview of the characteristics and functionalities of different convolution types - part 1.

TABLE 5. The comparison provides an overview of the characteristics and functionalities of different convolution types - part 2.

has led to the development of state-of-the-art CNNs that
outperform hand-crafted models [296], [297], [298], [299],
[300], [301], [302], [303], [304], [305], [306].
NAS for convolutions involves exploring various con-

volutional designs, including different kernel sizes, depths,
and connectivity patterns [82]. It evaluates each architecture
on a validation set, and through a process of evolution or
optimization, identifies the best-performing architecture.

In the scenario of self-autonomous vehicle navigation,
NAS for convolutions could be used to design an optimal
convolutional neural network architecture specifically tai-
lored for processing and analyzing various types of visual
data collected by the vehicle’s sensors. By exploring different
convolutional designs, such as varying kernel sizes, depths,
and connectivity patterns, NAS could identify the most
effective architecture for accurately detecting objects and
recognizing road signs in real-time. This would ultimately

improve the vehicle’s ability to navigate autonomously and
make informed decisions based on its visual perception.

3) GENERATIVE ADVERSARIAL NETWORKS
Generative Adversarial Networks (GANs) are a class of
DL models used for generative applications, such as image
synthesis, style transfer, and data augmentation [307], [308],
[309], [310], [311], [312], [313]. GANs utilize CNNs as
key components to model the generator and discriminator
(See Fig. 14) [77], [83], [84]. The generator is a CNN
that generates new samples, such as realistic images, while
the discriminator is another CNN that aims to distinguish
between real and fake samples [77]. These networks are
trained adversarially, where the generator’s goal is to
produce samples that deceive the discriminator, and the
discriminator’s goal is to become better at distinguishing real
from fake [71], [84].
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FIGURE 14. A simple GAN architecture represented to detect real and
fake data which generator has generated.

GANs with convolution have revolutionized the field of
image generation and have produced impressive results in
generating high-quality images and realistic textures [263],
[264], [265], [266], [267], [268], [269], [270], [271], [272].
They have also been extended to other domains like NLP,
audio generation, and video synthesis. This technology has
also been applied to other areas such as medical imaging,
where GANs have been used to generate high-resolution
and accurate images for diagnostic purposes. Additionally,
GANs have shown promising results in the field of data
augmentation, where they can generate synthetic data to
increase the size and diversity of training datasets, improving
the performance of machine learning models.

For example, in the field of image generation, GANs with
convolutional networks have been used to create realistic
images of non-existent landscapes. The generator network
creates visually convincing images, while the discriminator
network learns to identify any flaws or inconsistencies in
these generated images, pushing the generator to improve its
output. This adversarial training process ultimately leads to
the creation of high-quality and believable images that are
indistinguishable from real photographs.

G. VISION TRANSFORMERS AND SELF-ATTENTION
MECHANISMS
Through the use of self-attention mechanisms [85], Vision
Transformers [242], [243], [244], [245], [246], [247], [248],
[249], [250], [251], [252], [253], [254], [255], [256], [257],
[258], [259], [260], [261], [262] represent an important
evolutionary step away from traditional computer vision
architectures [86], [87]. Rather than solely relying on convo-
lutional filters to process visual inputs, as has predominantly
been the case, they segment images into distinct finite parts
known as patches [87]. Each patch focuses on and extracts
features from a different localized region of the photographic
scene. This division of images into discrete patches is a major
conceptual divergence from how most previous approaches
operate.

In conclusion, advanced convolutional techniques have
significantly expanded the capabilities of CNNs and rev-
olutionized various fields like CV, image synthesis, and

FIGURE 15. The applications of CNN techniques which we have discussed
in Section VI.

NLP. From transposed convolution for upsampling to capsule
networks for handling spatial hierarchies, these innovations
have enhanced the efficiency, robustness, and expressiveness
of CNNs, making them powerful tools for a wide range of
applications. Moreover, recent advancements, such as NAS
and GANs, continue to drive progress in the field of DL and
hold promise for further breakthroughs in the future.

VI. APPLICATIONS OF DIFFERENT CONVOLUTION TYPE
We provide a thorough overview of the numerous appli-
cations of different convolutional types in this section
(See Fig. 15). Table 6 provides a brief but comprehensive
overview of these applications. Convolutions of various types
are used in a variety of contexts, demonstrating the flexibility
and strength of CNNs. Convolutional techniques enable
machines to understand and interact with complex data,
facilitating advancements in a variety of fields and enhancing
our daily lives. Examples include image recognition, object
detection, NLP, and medical image analysis.

A. IMAGE RECOGNITION AND CLASSIFICATION
There are many uses for CNNs, including image recognition
and classification. Traditional 2D convolutions are especially
useful in these applications. They make it possible for
deep learning models to accurately classify images into
various groups and learn crucial features from images. The
network’s convolutional layers recognize edges, textures, and
shapes. The pooling layers reduce the size of the image
while preserving the data needed for classification. Image
recognition and classification are used for various tasks,
including optical character recognition (OCR) [88], [202],
[203], [204], [205], [206], [207], [208], [209], classify-
ing different animal species, and recognizing handwritten
numbers [88]. In competitions like ImageNet, CNNs have
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displayed impressive results, showcasing their abilities for
handling wide image classification [89].

B. OBJECT DETECTION AND LOCALIZATION
Multiple objects within an image must be located and
identified during object detection [90]. In this application,
both conventional 2D convolutions and 3D convolutions
are crucial [177], [178], [179], [180], [181], [182], [183],
[184], [185], [186], [187], [188], [189], [190]. While
3D convolutions are used for video object detection, 2D
convolutions are used to process individual image frames.
CNNs can detect objects at different scales and aspect ratios
thanks to their region proposal mechanisms and anchor-based
methods [191], [192], [193], [194], [195], [196], [197], [198],
[199], [200], [201].
Accurate localization of object bounding boxes is made

possible by the use of pooling layers and convolutional
sliding windows. Robotics, surveillance technology, and
autonomous vehicles all use object detection to better
understand and interact with their surroundings [91], [92].

C. NATURAL LANGUAGE PROCESSING
For sequential data, such as text processing and sentiment
analysis, NLP uses 1D convolutions. 1D convolutions are
used in NLP applications to extract pertinent patterns and
relationships from sentences, enabling models to understand
semantic meaning and context [210], [211], [212], [213],
[214]. Sentiment analysis for understanding customer opin-
ions, named entity recognition to extract specific information
from text, and text classification to classify news articles or
product reviews are examples of NLP applications using 1D
convolutions. Applications like machine translation and text
summarization have benefited from the successful integration
of CNNs and recurrent neural networks (RNNs).

D. AUDIO PROCESSING AND SPEECH RECOGNITION
Audio Processing and Speech Recognition (APSR) benefit
from 1D convolutions, which analyze and process sequential
audio data such as speech signals or audio waveforms [215],
[216], [217], [218], [219], [220], [221]. By extracting
temporal patterns and acoustic features, CNNs can learn
to recognize spoken words and transcribe audio into text.
SR systems, often built upon convolutional and recurrent
neural networks, enable voice assistants like Siri and Google
Assistant to understand and respond to user commands.

E. MEDICAL IMAGE ANALYSIS
Medical image analysis involves the examination and inter-
pretation of medical images, such as MRI scans, CT scans,
and X-rays [92], [222], [223], [224], [225], [226], [227],
[228], [229], [230], [231], [232], [233], [234], [235], [236],
[237], [238], [239]. In this domain, 3D convolutions and
dilated convolutions are frequently used. 3D convolutions
process volumetric medical data, allowing CNNs to extract
spatial and contextual information for applications like

tumor segmentation, organ localization, and disease clas-
sification [92], [93]. Dilated convolutions enhance feature
extraction and semantic segmentation in medical images,
enabling precise identification of abnormal tissues and
structures. The applications of convolution types in medical
image analysis have led to significant advancements in
healthcare, assisting doctors in diagnosis and treatment
planning.

VII. FUTURE TRENDS IN CNN
CNNs continue to be a hot topic of research and have
achieved remarkable success in various CV applications.
Future trends and open research questions in the field
of CNNs are emerging as technology develops and DL
techniques become increasingly complex.

The investigation of more effective architectures that
can achieve comparable performance with fewer parameters
and computational resources is one future trend in CNN
research. How to make CNNs more interpretable is another
unanswered research question, as the reasoning behind CNN
decisions is frequently difficult to comprehend due to the
internal complexity of these systems. Another crucial area for
future research is finding ways to strengthen CNNs and make
them less vulnerable to hostile attacks.

One active area of research looks at designing efficient
CNN architectures optimized for edge andmobile computing.
As CV moves from data centers to cameras, smartphones,
and IoT at the network’s edge, models need to operate within
strict constraints on latency, memory, and power. Techniques
including network pruning, compact operators, knowledge
distillation, and adaptive quantization help derive lightweight
CNN variants suitable for these low-resource scenarios [121].
This focus on efficiency ties into work on improving CNN
interpretability.

While today’s complex CNNs achieve top accuracy,
their decision-making remains poorly understood. Work on
saliency mapping, activation clustering, modular CNNs,
and other explanatory methods aims to shine light into
the ‘‘black box’’ and address concerns around reliability,
bias, and accountability - important considerations for
safety-critical domains like healthcare. New types of CNN
modules also aim to expand what these models can represent
by incorporating flexible self-attention and capturing non-
Euclidean structures.

A particularly compelling avenue involves tackling
large-scale vision multimodal (LVM) challenges, which
builds upon this work on expanding CNN capabilities.
Vast datasets merging diverse visual media with language,
audio, and other inputs present unprecedented complexity.
However, they also offer unprecedented opportunities to
develop general, comprehensive models of multisensory
scene understanding.

A. INTERPRETABILITY AND EXPLAINABILITY OF CNNS
The interpretability and explainability of CNNs is a
significant open research question. Understanding the

41194 VOLUME 12, 2024



A. Younesi et al.: Comprehensive Survey of Convolutions in DL

TABLE 6. The compact table highlights the main applications of each convolution type.

decision-making process of these models gets harder as
CNNs get deeper and more complex. Particularly in crit-
ical applications like healthcare and autonomous systems,
researchers are investigating ways to interpret and explain
CNN predictions. To increase trust and reliability in CNN-
based systems, methods such as attention visualization,
saliency maps, and attribution methods seek to reveal which
areas of the input contribute most to the model’s conclusion.

B. INCORPORATING DOMAIN KNOWLEDGE
Incorporating domain knowledge into CNN architectures
is another important research direction. While CNNs have
shown exceptional generalization abilities, they may not fully
exploit domain-specific characteristics. Research focuses on
developing architectures that can efficiently utilize domain
knowledge or constraints, such as physics-based priors
in medical imaging or geometric constraints in robotics,
to improve performance and reduce data requirements.

C. ROBUSTNESS AND ADVERSARIAL DEFENSE
Enhancing the robustness of CNNs against adversarial attacks
remains a significant challenge. Adversarial attacks involve
adding carefully crafted perturbations to inputs, leading to
incorrect predictions by the CNN model. Researchers are
investigating techniques for adversarial defense, such as
adversarial training, robust optimization, and input transfor-
mations, to make CNNs more resilient against these attacks.

D. EFFICIENT MODEL DESIGN
When using CNNs on devices with limited resources, such as
smartphones and edge devices, efficiency in terms of compu-
tation, memory, and power consumption is important [240],
[241]. Creating lightweight architectures, knowledge distil-
lation methods, and effective model compression techniques
will be future trends in CNN research to decrease the model
size and increase inference speedwhilemaintaining accuracy.

Model compression techniques play a crucial role in
designing efficient DL models suitable for deployment on
resource-constrained edge devices. Several methods (See
Table 7) have been proposed to reduce model size and
computations without significantly impacting predictive

performance. Network pruning and quantization are two
widely used compression approaches [102], [103].

Pruning techniques aim to sparsify neural networks by
removing redundant connections with minimal impact on
functionality [121]. Early methods relied on unstructured
pruning where connections were simply set to zero based
on their magnitude or importance ranking. However, such
arbitrary pruning leads to non-standard sparse matrices
thereby preventing hardware acceleration. More recent struc-
tured pruning techniques induce channel-wise, filter-wise,
or block-wise sparsity to yield compact models amendable
to efficient implementations [102], [121], [122], [123].
Filter pruning refers to removing entire convolutional

filters, thereby achieving channel-wise sparsity [116], [122].
It has been shown that up to 90% of filters can be removed
from VGG16 without accuracy degradation. One method,
termed ‘‘Pruning-at-Initialization’’ prunes filters with the
lowest sum values at the start of training itself. Alternatively,
‘‘One-Shot’’ prunes filters once based on their first-order
Taylor expansion. These filter-level pruning methods lead to
uniform sparsity across layers and reduce computation by 5̃x.

Another structured approach is to prune blocks of con-
nections rather than individual weights [123]. For example,
in ‘‘Block Level Pruning’’, a number of convolution blocks
are removed from blocks 1, 2, and 3 of ResNet50, reducing
computations without retraining. The block structure ensures
layout sparsity, maintaining original convolution block
shapes for hardware friendliness. Network slimming is a
channel-pruning method that enforces L1-norm regulariza-
tion during training itself to gradually remove channels with
low importance scores.

In unstructured variants, magnitude-based pruning removes
weights below a threshold while iterative magnitude pruning
alternates between weight updates and pruning based
on a dynamic threshold [121], [124]. These maintain
sparsity throughout the architecture but induce non-zero
filler weights. Lottery ticket hypothesis experiments have
demonstrated that dense, randomly-initialized, sub-networks
can achieve the accuracy of their original networks if trained
in isolation.

Apart from pruning, quantization is another effective
technique to compress models (See Table 8). Weight and
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TABLE 7. Comparison of pruning technique.

TABLE 8. Comparison of quantization technique.

activation quantization methods map weights/activations to
a small set of discrete values, reducing the number of bits
required for representation [114], [115]. For example, 8-bit
quantization reduces model size by 4x without accuracy
loss for many architectures. Tensor decomposition-based
quantization further compresses models by decomposing
weight tensors into low-rank approximations.

Some recent works have combined multiple compression
approaches in a multi-stage pipeline. One example jointly
employs weight quantization, pruning, and Huffman coding
on ResNet50, achieving over 10x compression with a minor
accuracy drop. Another uses a two-phase pipeline consisting
of filtering-based pruning followed by quantization to
design efficientMobileNet variants. Such composite methods
achieve better accuracy-efficiency tradeoffs than individual
techniques alone.

In conclusion, network pruning and quantization offer
promising avenues to design compact models for edge
and mobile applications. While early methods relied on
unstructured sparsing, recent techniques induce structure for
hardware friendliness. Looking ahead, continued research
on model compression holds the key to facilitating the
adoption of deep learning acrossmyriad resource-constrained
environments.

E. MULTI-TASK LEARNING AND TRANSFER LEARNING
CNNs are well suited for multi-task learning, in which a sin-
gle model is trained to carry out several related applications
concurrently [161], [162], [163], [164], [165], [166], [167],
[168], [169], [170], [171], [172], [173], [174], [175], [176].
The need for large amounts of labeled data for each individual

task is being reduced as researchers investigate ways to take
advantage of shared representations across applications and
enhance generalization by transferring knowledge learned
from one task to another [146], [147], [148], [149], [150],
[151], [152], [153], [154], [155], [156], [157], [158], [159],
[160].

F. INTEGRATION WITH UNCERTAINTY ESTIMATION
Understanding model uncertainty is essential for safety-
critical applications. Integrating uncertainty estimation into
CNNs would allow models to quantify their confidence
in predictions and prevent costly errors, which is an area
of open research. To improve the uncertainty measures
in CNNs, researchers are investigating Bayesian neural
networks (BNNs), dropout-based uncertainty estimation, and
Bayesian optimization techniques.

G. GENERALIZATION TO SMALL DATA REGIMES
A constant problem in the CNN research area is the
generalization to small data regimes, where labeled training
data are hard to come by. Essentially using data from related
applications or domains, techniques like transfer learning,
few-shot learning, andmeta-learning work to increase CNNs’
capacity to learn from sparse data.

H. EVOLUTION OF LANGUAGE MODELS AND
MULTIMODAL LLMS
In recent epochs, the domain of large language models
(LLMs) for natural language processing has witnessed a pre-
cipitous progression. Prototypes such as BERT, GPT-3, and
PaLM have demonstrated exceptional aptitude in language
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apprehension and generation, courtesy of self-supervised
pretraining on voluminous text corpora [85]. As LLMs
expand in magnitude and range, incorporating additional
modalities beyond text is a burgeoning field of study.
Multimodal LLMs strive to amalgamate language, vision, and
other sensory inputs within a singular model architecture.
They hold the potential to attain amore holistic understanding
of the world by concurrently learning representations across
diverse data types [96]. A significant hurdle is the effective
fusion of the strengths of CNNs for computer vision and
transformer architectures for language modeling.

One strategy involves employing a dual-stream architec-
ture with distinct CNN and transformer encoders interact-
ing via co-attentional transformer layers [97]. The CNN
extracts visual features from images, providing contex-
tual information that can guide language generation and
comprehension. The transformer architecture models the
semantics and syntax of text. Their interaction enables
the generation of captions based on image content or the
retrieval of pertinent images for textual queries. Alternative
methods directly incorporate CNNs within the transformer
architecture as visual token encoders that operate with
text token encoders [98]. The CNN projections of image
patches are appended to text token embeddings as inputs
to the transformer layers. This unified architecture allows
for end-to-end optimization of parameters for both vision
and language tasks. Self-supervised pretraining continues
to be vital for multimodal LLMs to learn effective joint
representations before downstream task tuning. Contrastive
learning objectives that predict associations between modali-
ties have proven highly effective [99]. Models pre-trained on
large datasets of image-text pairs have demonstrated robust
zero-shot transfer performance on multimodal tasks.

As multimodal LLMs increase in scale, the efficient
combination of diverse convolution types and attentionmech-
anisms will be crucial. Compact CNN architectures could
help to reduce the cost of computing. Sparse attention and
memory compression techniques can assist with scalability.

VIII. PERFORMANCE AND EFFICIENCY CONSIDERATION
Considerations for performance and efficiency (See Figs. 17-
20) in CNNs are critical in developing high-performing and
resource-efficient models. Researchers can make informed
decisions about optimizing their CNN architectures for
various applications and deployment scenarios by analyzing
computational complexity, trade-offs between accuracy and
speed, memory requirements, and benchmarking on standard
datasets. For our experiments on the CIFAR-10 dataset,
we used an AMD Ryzen 7 4800H processor, 16GB of RAM,
and an NVIDIA GeForce GTX 1660 Ti graphics card.

A. COMPUTATIONAL COMPLEXITY OF DIFFERENT
CONVOLUTIONS
The computational complexity of different convolutional
techniques (See Table 9) is a critical aspect to consider when
designing CNNs. It refers to the amount of computation

FIGURE 16. The trade-off curve between accuracy and speed of a deep
learning model [75].

required to perform a convolution operation on input data.
The computational complexity is influenced by various
factors, including the size of the input data, the size of
the convolutional filters, and the number of channels in the
feature maps.

Traditional convolutional layers, such as the standard
convolution and depthwise separable convolution, generally
have higher computational complexity compared to other
techniques. This is because they involve a large number
of convolution operations, especially when dealing with
high-resolution images or complex data. On the other
hand, techniques like pointwise convolution and transposed
convolution tend to have lower computational complexity,
making them more suitable for certain resource-constrained
applications.

Understanding the computational complexity of different
convolution types is crucial for optimizing the performance
of CNNs. By selecting convolution techniques that align
with the available computational resources, researchers can
build efficient models that achieve a good balance between
accuracy and speed.

As illustrated in Figs. 17 to 19 the Adam optimizer
performed well, as evidenced by key observations 1⃝ through
6⃝, in both accuracy and loss metrics. Overall, the use of
CNN techniques such as VGG, ResNet, and LeNet resulted
in improved accuracy and reduced loss.

Also, as depicted in Figure 20, and based on key
observation 1⃝, 2⃝, and 3⃝, it is evident that the Adam
optimizer exhibits less CPU usage in comparison to five other
optimizers - RMSprop, Adamax, Adagrad, SGD, and Nadam.
This observation holds true when using LeNet-5, VGG16,
and ResNet-50. Additionally, the memory usage of the Adam
optimizer is among the lowest (See key observation 4⃝).

B. TRADE-OFFS BETWEEN ACCURACY AND SPEED
One of the key challenging aspects of designing CNNs is bal-
ancing model accuracy and inference speed (see Fig. 16). The
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TABLE 9. Comparison on LeNet-5, VGG16, and ResNet-50 with 7 types of
optimizers on Cifar-10 dataset, CU: CPU utilization, MU: Memory
utilization.

inference time increases as the complexity of convolutional
layers increases to capture more complex features. Using
simpler convolutional techniques, on the other hand, may
result in lower accuracy. The depth and width of the network,
the number of parameters, the choice of convolutional
techniques, and the hardware on which the model is deployed
all have an impact on the trade-offs between accuracy and
speed. For real-time applications or resource-constrained
environments, sacrificing some accuracy to achieve faster
inference may be necessary.

Model pruning, quantization, and low-rank approxima-
tions are commonly used by researchers to reduce the model
size (See Section VII -> Subsection D) and improve inference
speed without significantly compromising accuracy. Further-
more, attention-based convolutions and other techniques that
prioritize important regions of the input can be used to focus
computational efforts where they are most needed, improving
the balance between accuracy and speed even further.

C. MEMORY AND STORAGE REQUIREMENTS
Memory and storage requirements are crucial considerations
in DL, especially when deploying models on edge devices or
in cloud environments with limited resources. Convolutional
models, particularly those with a large number of layers
and parameters, can demand substantial memory and storage
resources during training and inference.

Traditional convolutional layers often have higher memory
requirements due to the need to store intermediate feature
maps and gradients during backpropagation. Depthwise sep-
arable convolutions and pointwise convolutions can reduce
memory usage by reducing the number of parameters and
intermediate feature maps. Memory-efficient CNN design
involves strategies like using smaller batch sizes, employing
mixed-precision training, and optimizing memory usage dur-
ing inference. Additionally, model compression techniques,
such as knowledge distillation and model quantization, can
significantly reduce the size of the model without significant
loss in performance.

FIGURE 17. Comparison of various optimizers on LeNet-5 with Cifar-10
dataset. a) represents the accuracy of LeNet-5 architecture, b) represents
loss of LeNet-5 architecture.

D. BENCHMARKING ON STANDARD DATASETS
Benchmarking convolutional techniques on standard datasets
is a crucial step in evaluating their performance and
efficiency. Standard datasets, such as ImageNet [95] for
image recognition or COCO [94] for object detection, provide
a common ground for fair comparison of different models
and techniques. By benchmarking convolutional techniques,
researchers can objectively assess their effectiveness in
various applications and compare their performance with
state-of-the-art models. The benchmarks consider metrics
like accuracy, inference speed, memory usage, and energy
efficiency, allowing for a comprehensive evaluation of the
models.

Benchmarking helps the DL community identify the
strengths and weaknesses of different convolutional tech-
niques, paving the way for improvements and advancements.
It also aids practitioners in selecting the most suitable
convolutional techniques for their specific use cases and
desired trade-offs between performance and efficiency.

IX. FRAMEWORKS AND LIBRARIES
This section will provide an overview of some of the
popular platforms (See Table 10) available for developing
deep learning applications. We will compare the frameworks
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FIGURE 18. Comparison of various optimizers on VGG16 with Cifar-10
dataset. a) represents the accuracy of VGG16 architecture, b) represents
loss of VGG16 architecture with various range of optimizers.

from aspects like their architecture, programming models,
supported hardware, and key features. Choosing the right tool
is crucial for deep learning success. That’s why exploring
framework capabilities is key for researchers and engineers

Table 10 provides a comparison of several popular frame-
works and libraries used in deep learning. It evaluates key
aspects such as the year of release, programming languages
supported, license type, model definition approaches, ease of
use, speed, and focus or strength of each framework.

A. CAFFE
Caffe was one of the earliest and most influential deep learn-
ing frameworks developed specifically for CV tasks [130].
Released in 2013 by the Berkeley Vision and Learning
Center (BVLC), Caffe made training convolutional neural
networks much faster and more accessible. It has an easy-
to-use C++/Python interface and was designed for speed
and modularity. Caffe adopted a layered structure that greatly
simplified model definition and training. This helped drive
wider adoption and enabled researchers to rapidly iterate on
visionmodels.While development has slowed in recent years,
Caffe laid important groundwork and is still used for CV
research.

B. TENSORFLOW
TensorFlow is an end-to-end open-source machine learning
platform developed by Google [131]. While not strictly a

FIGURE 19. Comparison of various optimizers on ResNet-50 with Cifar-10
dataset. a) represents the accuracy of ResNet-50 architecture, b)
represents loss of ResNet -50 architecture.

FIGURE 20. The CPU and memory utilization used by each model. a) The
average CPU utilization of LeNet-5, VGG16, and ResNet-50 with six types
of optimizer (better value recognition depends on use-case), b) The
average memory utilization of LeNet-5, VGG16, and ResNet-50 with six
types of optimizer (better value recognition depends on usecase).

CV library, it has become one of the most popular and
full-featured frameworks for building and training complex
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TABLE 10. Comparison of existing popular frameworks and libraries.

DLmodels. TensorFlow has excellent support for CV includ-
ing pre-trained models, image loading and preprocessing
utilities, object detection APIs, and more. Its flexibility has
led to it being used for a very wide range of applications from
image classification to semantic segmentation. TensorFlow
also works seamlessly across CPUs and GPUs and can be
easily deployed to production.

C. KERAS
Keras is a high-level deep learning API that runs on top of
popular frameworks like TensorFlow and CNTK [132]. Keras
was developed with a focus on user-friendliness, modularity
and extensibility. It provides excellent abstractions and
tools for developing and evaluating deep learning models
quickly. For CV, Keras ships with the ImageDataGenertator
for real-time data augmentation as well as pre-defined
models like VGG16. It also supports popular CV tasks like
image segmentation, object detection, and feature extraction
through convenient APIs. Keras’ simplicity has made it very
approachable for developers.

D. PYTORCH
PyTorch is an open-source deep learning platform developed
by Facebook’s AI Research Lab (FAIR) [133]. In recent
years it has emerged as a leading alternative to TensorFlow
especially for CV andNLP applications. PyTorch has a strong
focus on dynamic neural networks and shares similarities
to MATLAB and Numpy. This makes for an intuitive,
Pythonic interface that is well-suited to CV prototyping
and experimentation. PyTorch also supports GPU/TPU
training along with production deployment. It has a growing
ecosystem of 3rd party libraries and community support. Like
Keras, PyTorch integrates tightly with common CV tasks and
datasets.

E. OPENCV
OpenCV (Open Source Computer Vision Library) is a pop-
ular CV and machine learning software library [134]. While
not specifically designed for deep learning, OpenCV contains
many traditional CV algorithms and an extensive collection
of image processing functions. These include capabilities like
image filtering, morphological operations, feature detection
and extraction, object segmentation, and face and gesture
recognition among others. OpenCV integrates with deep
learning frameworks and is frequently used for simpler CV
tasks or as a pre-processing step before feeding data into
neural networks.

F. MXNET
MXNet is a flexible, efficient, and scalable deep learning
framework [135]. Similar to TensorFlow, it supports a
wide variety of programming languages and hardware
environments. MXNet excels at distributed training and
supports training models containing billions of parameters
across hundreds of GPUs. It also includes algorithms for
CV like image recognition, object detection, and semantic
segmentation. Overall, MXNet strikes a good balance
between flexibility, performance, and ease of use making it
suitable for large-scale CV problems.

G. CHAINER
Chainer is an open-source deep learning framework cre-
ated by preferred networks in Japan [136]. It provides
straightforward neural network abstraction similar to Keras
with imperative and declarative model definitions. Chainer
focuses on intuitive high-level APIs combined with low-level
performance. It includes CV functionality like image loading,
augmentation, pre-trainedmodels, andmodel export. Chainer
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supports GPU and multi-GPU training and deployment.
Overall it provides a performant and productive environment
for CV development.

H. DEEPLEARNING4J
Deeplearning4j (Dl4j) was launched in 2014 as an
open-source deep learning library for Java and Scala on
the JVM [137]. It enables large-scale distributed training
on GPUs and CPUs. For CV tasks, Deeplearning4j offers
tools like image loading, pre-trained models, model import
from Keras and ONNX, and the samediff for dynamic model
construction. Deeplearning4j focuses on production-ready
deployment with capabilities like model serving, online
prediction, and on-device inference via Android or
iOS apps.

Overall, these libraries and frameworks represent the
forefront of open-source tools transforming CV through
deep learning. Each offers different strengths and tradeoffs
between flexibility, performance, ease of use, and supported
features. As CV tasks continue advancing, we can expect
these projects to further incorporate state-of-the-art research
while also lowering the barrier to development through
improved tools and abstractions. CV is sure to remain a
major application domain for deep learning innovation in
both research and industry.

X. MAIN RESEARCH FIELDS
A. IMAGE CLASSIFICATION
Image classification was one of the earliest successes
of CNNs. The seminal AlexNet achieved record-breaking
results on the ImageNet challenge in 2012 by drastically
improving upon prior techniques. Today, state-of-the-art
CNNs for image classification routinely achieve human-level
or better accuracy on standardized datasets. Architectures
like ResNet, Inception, Xception, and EfficientNets optimize
parameters, layer connectivity, and computation to classify
thousands of object categories at superhuman performance
levels [52], [53], [56], [273]. Beyond static images, video
classification CNNs also extract spatial-temporal features to
recognize complex activities and events.

B. OBJECT DETECTION
Object detection is another major CV application that relies
heavily on convolutional modeling. Two-stage detectors like
Faster R-CNN and one-stage detectors like YOLO leverage
region proposal networks and anchor boxes trained via
priors to simultaneously localize and classify objects within
images [314], [315], [316], [317], [318], [319], [320], [321],
[322], [323], [324], [325], [326], [327], [328]. Recent works
further optimize speed and accuracy, enabling real-time
object detection on billions of parameter models. Techniques
like mobile object detection address embedded constraints by
designing lightweight CNN backbones and feature extractors
optimized for on-device inference [329].

C. IMAGE SEGMENTATION
Semantic segmentation tasks require dense pixel-level label-
ing of image content. FCN and U-Net CNNs employ
skip connections and encoder-decoder mirrors to preserve
spatial information across resolutions [330], [331], [332],
[333], [334], [335], [336], [337], [338], [339], [340], [341],
[342], [343], [344], [345]. PSPNet and DeepLab introduce
pyramid spatial pooling modules to capture multi-scale
contextual cues [346]. GANs and conditional random fields
further refine coarse segmentations from CNNs. Advances
in medical imaging also apply segmentation CNNs to
understand organ structures, localize pathologies, and aid
diagnosis.

D. VISION TRANSFORMERS
Vision transformers have also emerged as a compelling
alternative to traditional CNNs for CV tasks. Inspired
by the success of language models, vision transformers
divide images into discrete patches which are embedded
and processed with self-attention. This allows them to
capture long-range dependencies and multi-scale contextual
information more effectively than CNNs. Models like ViT,
DeiT, and Visual BERT demonstrate state-of-the-art results
in tasks like image classification when pre-trained on large
datasets [347], [348], [349], [350], [351], [352], [353], [354].
Research now focuses on optimizing transformer efficiency
for real-time CV applications.

E. ONE-SHOT/FEW-SHOT/ZERO-SHOT LEARNING
One-shot and few-shot learning aim to address challenges
posed by limited labeled training examples. Through metric
learning and prototypical networks that learn robust represen-
tations from extensive base classes, models can effectively
recognize new concepts from just one or a handful of
examples without catastrophic forgetting [355], [356], [357],
[358], [359], [360], [361], [362], [363], [364], [365], [366],
[367], [368], [369]. This opens up CV to new long-tailed
and incremental learning paradigms. Matching networks and
prototypical networks efficiently compare test samples to
prototype representations of base classes to generalize from
limited exposures.

Zero-shot learning emerges as a promising area where
CNNs imagine possibilities beyond the limitations of labeled
data [370], [371], [372], [373], [374]. Descriptors like
attributes or semantic relationships introduce inductive biases
facilitating generalization without example. SAE, DeViSE,
and contemporary models transfer knowledge by aligning
embeddings between seen and unseen categories connected
through auxiliary descriptors. Knowledge graphs also pro-
vide structural inductive biases through entity and relation
modeling.

F. WEAKLY-SUPERVISED LEARNING
Weakly supervised learning techniques also help alleviate
dependence on labor-intensive annotations [375], [376],
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[377], [378], [379], [380]. Models can be trained end-to-
end from weaker input signals like image-level tags or
bounding box object locations instead of explicit pixel-level
segmentation maps. Multi-instance learning approaches clus-
ter image regions corresponding to each label to iteratively
refine local predictions. Expectation-maximization (EM) and
multiple instance learning jointly infer labels and recognize
discriminative regions, enabling training from cheaper forms
of weak supervision.

G. SELF-SUPERVISED/UNSUPERVISED LEARNING
Self-supervised learning has also gained vast attention in CV
by enabling pre-training from sheer ubiquity of unlabeled
visual data [381], [382], [383], [384], [385], [386], [387],
[388], [389], [390]. Pretext tasks like predicting image
rotations, solving jigsaw puzzles, or counting pixel colors
allowmodels to learn rich visual representations applicable to
downstream tasks. Recent contrastive self-supervised models
like SimCLR, SwAV, and MoCo demonstrate that unlabeled
pre-training rivals or exceeds supervised pre-training in
various vision benchmarks, enablingmore data-efficient fine-
tuning or transfer to new problems.

H. LIFELONG/CONTINUAL LEARNING
Lifelong and continual learning aim to simulate open-world
scenarios where models learn lifelong with non-stationary
data distributions [51]. Models must avoid catastrophic for-
getting when presented with new classes or shifts in existing
class definitions without revisiting historical data [391],
[392], [393], [394], [395], [396], [397], [398], [399], [400].
Elastic weight consolidation and incremental moment match-
ing regularization preserve knowledge while accommodating
new tasks. Research now explores task-aware architectures,
dual-memory systems, and replay buffers that emulate
memory reconsolidation to model lifelong visual learning.

I. VISION LANGUAGE MODEL
Vision-language models (VLMs) have also emerged at the
intersection of NLP and CV by grounding language in
visual contexts. Models fuse multimodal inputs through
attention and generate captions conditioned on images,
or localize and describe visual entities based on linguistic
context. Large pre-trained models such as CLIP, ALIGN, and
Oscar demonstrate exciting capabilities like zero-shot clas-
sification, question-answering (QA), and visual dialog with
potential applications in education, assistive technologies,
and more.

J. MEDICAL IMAGE ANALYSIS
Medical imaging epitomizes the necessity of collaboration
between deep learning and domain experts. Segmenting
organs in volumetric scans, localizing anomalies across
imaging modalities, and tracking patients longitudinally all
leverage 3D/2D CNNs [225], [227], [228], [230], [401],
[402], [403], [404], [405], [406], [407], [408], [409],

[410], [411]. Advanced models exploit anatomical priors by
enforcing smoothness, and preservation of edges and surfaces
in predictions. Self-supervision further enables pre-training
from non-private data before fine-tuning target tasks. Model
interpretation especially matters here to ensure trust among
clinicians [407], [408], [409], [410]. Beyond diagnosis,
CNNs can also simulate novel views to aid surgical planning.
Efficiency additionally matters for on-device deployment and
assisting underserved populations lacking infrastructure.

K. VIDEO UNDERSTANDING
Beyond images, video understanding presents unique chal-
lenges in modeling spatial-temporal relationships across
consecutive frames. C3D and I3D CNNs introduce 3D con-
volutions directly learning from video volumes. Advanced
techniques in video captioning and action recognition fuse
language models and attention to jointly reason about visual
content and linguistic semantics over time. Self-supervised
learning from large unlabeled video repositories also emerges
as a promising pretraining paradigm before fine-tuning
downstream tasks.

L. MULTI-TASK LEARNING
Multi-task learning aims to improve generalization by jointly
training CNNs on multiple related tasks using shared
representations. This has proven successful across numerous
applications by leveraging commonalities while mitigating
overfitting individual tasks’ limited data [412], [413], [414],
[415]. For example, YOLO trains object detection alongside
other auxiliary predictions like segmentation and counting.

Multi-task CNNs outperform independent models in
low-data regimes (See Section VII -> Sub-section G.)
by borrowing statistical strength across related problems.
Dense captioning localizes objects and describes scenes
simultaneously. A single network predicts keypoints, nor-
mals, and semantic part segmentation. Deeper tasks benefit
substantially from representations learned for more general
shallow tasks.

Progressively growing into new problem spaces via related
auxiliary objectives also prevents catastrophic forgetting.
Self-supervised pre-training establishes features broadly
useful across downstream tasks, including those without
annotations. Measuring and maximizing modularity in
multi-task architectures additionally reduces interference
between domains.

Techniques like multi-granularity, multi-level, and hetero-
geneous multi-task learning further craft diverse objectives
to progressively refine semantics captured at differing levels
of granularity [416], [417], [418], [419]. Task relations range
from independent, and cooperative where tasks improve each
other, to completely shared exploiting identical represen-
tations. Properly designed, multi-task CNNs deliver state-
of-the-art performance while improving generalizability,
efficiency, and real-world applicability.
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Multi-task models combine CNNs with other modalities
like language. For captioning, CNN-RNN fusion grounds
generated text within visual contexts. For retrieval, ranking
loss trains CNN-LSTM encoders to map semantically aligned
vision-text pairs to nearby embeddings. Multi-modal pre-
training on enormous unlabeled multimedia collections has
proven highly beneficial via self-supervised alignment of
domains.

M. 6D VISION
6D vision aims to recover the full 6D pose (3D position,
3D orientation) of objects directly from monocular RGB
images. This is a challenging problem due to the loss
of depth information when projecting 3D scenes onto 2D
images [420], [421], [422], [423], [424], [425]. Early works
relied on CAD models and rendered synthetic data which
lacked photorealism, while more recent approaches leverage
large amounts of real training data.

CNN-based regression networks are commonly used
which take images as input and directly predict the 6D
pose values. PoseCNN showed this can achieve competitive
accuracy to model-based regression if trained end-to-end on
real data. Due to the complex,multi-modal nature of the target
distribution, losses that ensure consistent predictions under
different poses like reprojection or angular are beneficial.

Iterative refinement approaches first detect the object,
then iteratively update the pose estimate based on 2D-3D
correspondences. DeepIM predicts shape coefficients and
refines using PnP. DPOD leverages deep features combined
with geometric constraints in a RANSAC framework. Dense
representations also help by reasoning about object parts
independently.

Multi-view and RGB-D sensors provide additional cues
to leverage. MVD helps constrain the problem by training
separate networks for each view and fusing results. Using
both RGB and depth as input allows Depth-PoseNet to lift
2D predictions to 3D space. Multitask models predicting
bounding boxes, keypoints, and poses jointly demonstrate
accuracies approaching marker-based motion capture.

N. NEURAL ARCHITECTURE SEARCH
Neural architecture search (NAS) aims to automate the design
of neural networks leveraging the power of evolution and
reinforcement learning. Rather than relying on human experts
to laboriously craft CNN architectures, NAS approaches
evolve architectures directly on target datasets and tasks. This
has led to state-of-the-art vision models developed without
human design choices [426], [427], [428], [429], [430], [431],
[432], [433].
Early NAS works explored various search spaces defined

by units, operations, and connections between them. Com-
bining concepts like pruning, sharing weights across child
models during evolution helped scaling search to larger
spaces [292], [296]. Performance predictors further reduced
costs by guiding search towards promising regions. Novel

methods evolved filters, activation functions, and batch
normalization layers for particular domains.

Recent efforts evolve entire sections or blocks, expanding
applicable search spaces. Single-path one-shot approaches
drastically sped up search without compromising quality.
ProxylessNAS found efficient mobile architectures directly
on target devices. NAS approaches also discover non-CNN
models suiting problems beyond CV.

Once identified, the best architectures can be trained from
scratch to further improve upon proxy accuracies predicted
during the search. Late phase evolution also enhances
architectures initially identified, while architecture param-
eters themselves may evolve. Overall, NAS technologies
continuously push forward state-of-the-art for vision tasks
given diverse data, constraints, or objectives.

O. NEURAL ARCHITECTURE TRANSFORMER
Neural architecture transformers (NAT) replace CNNs’ fixed
topology with self-attention, replacing convolutional filtering
with axial self-attention [429], [434]. This increased flexibil-
ity allows modeling long-range pixel dependencies crucial
for vision tasks like segmentation. Vil-BERT introduced a
multi-stage training procedure enabling pre-trainedmodels to
learn visual representations as well as natural language tasks.

Early works divided input images into uniform patches
processed independently by attention layers. More sophisti-
cated designs aim to capture visual locality through hierar-
chical patch divisions better. Rotary positional embeddings
and attention patterns help encode translation equivariance.
Architectures like CoAtNet cascade blocks with increased
resolution, improving accuracy and interpretability.

Multi-scale vision transformers (MViT) incorporate prior
convolutional inductive biases in hybrid models jointly
benefiting from attention and translation equivariance. Com-
bining vision transformers with convolutional networks
particularly benefits medical image segmentation leveraging
anatomical priors. Swin Transformers introduces a shifted
window mechanism to focus computation locally across
higher-resolution feature maps.

Though still an emerging direction, neural architecture
transformers open new pathways for CV by bringing the full
generality of self-attention to bear on visual problems. Their
continued development will surely impact future CV research
by unlocking novel representational abilities. Alongside
NAS, they hold promise for pushing boundaries through
data-driven discovery operating directly within much broader
algorithmic search spaces.

P. GENERATIVE MODELS
Generative models have made large strides in the area of CV
through techniques like GANs and diffusion models [435],
[436], [437]. GANs pair a generator network against a
discriminator network in an adversarial training procedure.
This drives the generator to synthesize increasingly realistic
fake images that can fool the discriminator.
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GANs have produced impressive results generating photos
that are near-indistinguishable from real images. Applica-
tions include image-to-image translation, super-resolution,
and manipulating image attributes like style [437], [438],
[439]. However, GAN training remains tricky to stabilize.
Issues like mode collapse require careful architecture and
hyperparameter choices.

Diffusion models provide an alternative generative frame-
work gaining popularity. They utilize denoising diffusion
probabilistic models (DDPMs) which gradually corrupt data
withGaussian noise before reversing the process [435], [436],
[437], [439], [440], [441]. During generation, the model adds
noise to a blank canvas and then predicts the noise-reduced
output iteratively. This diffusion process proves more stable
than adversarial training.

Sampling from DDPMs follows an ancestral sampling
approach regressing the noise at each step conditioned
on the previous denoised output. Advanced techniques
like score-based sampling further improve sample quality
by maximizing the model’s density rather than following
ancestral noise. Generative diffusion models (GDMs) also
maximize a denoising score objective specifically for a
generation [441].
Diffusion models have proven highly effective at syn-

thesizing crisp, detailed images across varied datasets.
Large-scale vision diffusion models (LVMs) like DALL-E
2 and DALL-E 3 demonstrate unparalleled capabilities of
generating images from text prompts, and can even fuse
language and vision to answer trivia questions about synthetic
images.

By generating synthetic training data, generative mod-
els also benefit downstream classification, detection, and
segmentation tasks through data augmentation. As gen-
erative diffusion models continue advancing, they will
surely establish new frontiers in CV domains ranging from
image editing to scientific discovery through computational
experimentation.

Q. META LEARNING
Meta-learning, also known as learning to learn, aims to
develop models that can rapidly adapt to new tasks and
environments using only a few training examples. This is
achieved by learning inductive biases about learning itself
on a variety of related tasks during a meta-training phase.
These biases are then leveraged during meta-test time on
novel tasks [442], [443].
In CV, meta-learning enables CNNs to generalize beyond

the restrictions of limited labeled examples through fast
adaptation. Model-agnostic meta-learning (MAML) trains
initial model parameters such that a few gradient steps
fine-tune into new tasks. This learns efficient parameter
initialization rather than solutions for any specific task [442],
[443], [444], [445], [446], [447], [448], [449].
Metric-based approaches represent classes using proto-

types that summarize inter/intra-class relationships

independent of tasks [442], [443], [444]. Matching networks
compare new examples to prototypes, providing fast
adaptation through learned metric space similarities. Meta-
Dataset consolidates many few-shot image classification
datasets, advancing state-of-the-art and evaluation protocols
in this challenging zero/few-shot regime [442], [443], [444],
[449].

Self-supervised auxiliary tasks like prediction, rotation,
and context modeling further enhance generalization when
used alongside supervised meta-learning objectives. Tempo-
ral ensemble models aggregate diverse predictions over time
from a generator network, improving robustness to noise
and outliers. Reinforcement meta-learning successfully trains
visuomotor policies for robotic control from only a handful
of demonstrations.

R. FEDERATED LEARNING
Federated learning (FL) enables distributed training across
decentralized edge devices without exchanging private user
data like images, videos, or medical scans [81]. It aims
to collaboratively learn a shared global model tailored to
non-IID user distributions through coordinated local updates.
This paradigm attracts increased interest due to growing
concerns around data privacy and security.

FL trains a centralized CNN model through an iterative
process where devices download the latest parameters,
contribute updates computed over shards of local data, and
then push weights back. A parameter server aggregates
updates to globally improve themodel. A key challenge arises
from heterogeneity in non-IID data distributions, devices,
and unreliable network connectivity. FedVision applies FL to
object detection directly over fragmented client videos.

Techniques like personalized, multi-task, and meta-
learning help address statistical heterogeneity in FL. Con-
tinual learning aspects prevent catastrophic forgetting when
populations change over disseminated rounds. Differentially
private algorithms and secure aggregation schemes ensure
strong privacy in collaborative updates, advancing FL under
stringent privacy constraints beyond vision to sensitive
domains like healthcare.

XI. DISCUSSION
We have methodically explored the various CNN variations
that have become more and more popular in recent years
across a wide range of application sectors through this thor-
ough survey. Our goal in this discussion part is to summarize
the most significant findings from our evaluation of the
literature and offer an analytical viewpoint on significant
problems regarding the development and prospects of this
area of study.

Convolutional layers are well-suited for grid-like data
types, like images because they have proven highly capable
of capturing spatial relationships and extracting hierarchi-
cal patterns. At the core of CNNs, commonly used for
computer vision tasks such as object identification and
image classification, remain traditional 2D convolutions.
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However, as the field has evolved, additional specialized
convolution approaches have emerged to handle different data
modalities more effectively. One notable application of 1D
convolutions is in sequential data domains including time
series analysis and natural language processing. Their ability
to capture temporal dependencies has enabled state-of-the-art
accuracy on various language and audio processing problems.
Likewise, 3D convolutions allow CNNs to effectively model
volumetric medical images and video inputs by accounting
for both spatial and temporal dimensions.

While basic convolution varieties such as 2D and 3D con-
tinue poweringmany topmodels, more efficient variants have
also been developed. Dilated convolutions utilize dilations
to widen receptive fields without loss of resolution, aiding
high-level semantic tasks such as segmentation. Grouped
convolutions offer a means of factorizing convolutions
to dramatically reduce computation and memory usage,
enabling large, deep architectures. However, their represen-
tational abilities may remain limited compared to standard
convolutions for advanced analysis. Depthwise separable
convolutions, as used in MobileNets, have achieved tremen-
dous success in deploying efficient CNNs on embedded and
mobile devices via their channel-wise decomposition.

In addition to novel convolution designs, the field is
witnessing increasingly innovative integration of concepts
from parallel research areas. For example, vision trans-
former models incorporate attention mechanisms to replace
convolutional building blocks entirely, achieving strong
results, especially on large datasets. Techniques like capsule
networks aim to overcome CNN limitations through dynamic
routing between feature vectors. Generative models such
as Pix2Pix employ convolutional decoders to generate
high-fidelity images from semantic maps or sketches.
Advances in self-supervised learning provide alternative
pretraining paradigms bypassing the need for vast annotated
datasets.

Further combining of deep learning techniques seems
poised to yield fruitful synergies. For instance, incorporating
attention into convolutional pipelines could endow them
with the benefits of both approaches. Moreover, self-
supervised mechanisms may help the unsupervised discovery
of interpretable convolutional filters well-suited to specific
domains. Despite remarkable achievements, open challenges
remain regarding robustness, sparse data scenarios, model
interpretability, and trustworthiness. Future progress relies on
close collaboration between academia and industry to define
real-world needs and expand deep learning’s positive societal
impact.

Some convolution types have proven more enduring than
others based on their flexibility and ability to adaptively
fit diverse applications. While LeNet certainly played an
instrumental pioneering role, more recent architectures better
capture inherent data properties through principled network
designs and optimizations. Meanwhile, innovation continues
on all fronts, suggesting no single solution has emerged as
definitive. Success hinges on judiciously combining inno-

vations tailored to particular contexts rather than wholesale
replacement of existing paradigms.

A promising outlook envisions continued refinement of
core CNN building blocks and their harmonious integration
with new algorithmic concepts from self-supervised learning,
attention mechanisms, and generative models. In conclusion,
this survey highlights both the remarkable advances of con-
volutional neural networks to date and their vast unrealized
potential through the future intersection of ideas across deep
learning’s constantly evolving landscape.

XII. CONCLUSION
In this comprehensive study of different convolution types in
deep learning, we have gained valuable insights into these
techniques’ diverse applications and strengths. CNNs have
proven to be highly effective in various domains, ranging
from image recognition to natural language processing.
We compared various types of CNNS in various aspects,
allowing us to understand their unique characteristics and
advantages for specific tasks. Overall, this study emphasizes
the importance of convolution in deep learning and its
potential for future advances and improvements in artificial
intelligence. Furthermore, the findings suggest that CNNs’
versatility makes them suitable for various applications
beyond traditional computer vision tasks. Furthermore, the
study emphasizes the importance of additional research and
development to optimize and refine these techniques for
specific domains and tasks.
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