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Abstract Confining dark sectors with pseudo-conformal dynamics can produce Soft Unclustered Energy Patterns (SUEP), at the
Large Hadron Collider: the production of dark quarks in proton–proton collisions leading to a dark shower and the high-multiplicity
production of dark hadrons. The final experimental signature is spherically symmetric energy deposits by an anomalously large
number of soft Standard Model particles with a transverse energy of O(100) MeV. Assuming Yukawa-like couplings of the scalar
portal state, the dominant production mode is gluon fusion, and the dominant background comes from multi-jet QCD events. We
have developed a deep learning-based Anomaly Detection technique to reject QCD jets and identify any anomalous signature,
including SUEP, in real-time in the High-Level Trigger system of experiments like the Compact Muon Solenoid at the Large Hadron
Collider. A deep convolutional neural autoencoder network has been trained using QCD events by taking transverse energy deposits
in the inner tracker, electromagnetic calorimeter, and hadron calorimeter sub-detectors as 3-channel image data. Due to the sparse
nature of the data, only ∼0.5% of the total ∼ 300 k image pixels have nonzero values. To tackle this challenge, a nonstandard loss
function, the inverse of the so-called Dice Loss, is exploited. The trained autoencoder with learned spatial features of QCD jets can
detect 40% of the SUEP events, with a QCD event mistagging rate as low as 2%. The model inference time has been measured using
the Intel® CoreTM i5-9600KF processor and found to be ∼ 20ms, which perfectly satisfies the High-Level Trigger system’s
latency of O(102) ms. Given the virtue of the unsupervised learning of the autoencoders, the trained model can be applied to any
new physics model that predicts an experimental signature anomalous to QCD jets.

1 Introduction

Hidden valleys, referring to hidden sectors with a confining gauge group, can produce dark quarks in proton–proton collisions at the
Large Hadron Collider (LHC), leading to a dark shower and the production of a large number of dark hadrons (φD), analogous to
QCD jets [1–3]. Depending on the details of the theory, the dark showers can follow large-angle emission, and dark hadrons do not
arrange in narrow QCD-like jets. The decay of dark hadrons results in dark photons (ZD), which further decay to low-energy Standard
Model particles with transverse energy (ET) ofO(102) MeV, with the final experimental signature being high-multiplicity spherically
symmetric Soft Unclustered Energy Patterns, or SUEPs. We focus on a well-motivated scenario, where SUEP is produced in exotic
Higgs (H) boson decays via gluon–gluon fusion and all dark hadrons decay promptly and exclusively to pions and leptons—an
experimental nightmare scenario because of an overwhelming multi-jet QCD background.

We have developed an Anomaly Detection (AD) technique [4, 5] exploiting unsupervised deep learning for real-time SUEP
detection in the High-Level Trigger (HLT) system [6] of the Compact Muon Solenoid (CMS) experiment [7] at the LHC.1 Most
AD techniques developed for high-energy physics applications rely on the online or offline reconstruction of collision events, which
could be ineffective for reconstructing new physics signatures. We utilize raw quantities reconstructed in the HLT system, i.e.,
energy deposits in different sub-detectors (input for the online particle reconstruction). We have trained a deep convolutional neural
autoencoder network (ConvAE) using QCD events, which is designed to detect events significantly different from the training data
without prior knowledge of the signal characteristics. The data are three-channel images: two-dimensional (in the η-φ plane, where
η is the pseudorapidity) ET deposits in the inner tracker, electromagnetic calorimeter (ECAL), and hadron calorimeter (HCAL)

1 The CMS trigger system is a two-tiered system. The first level (L1) triggers, implemented on custom electronics, process information from the calorimeters
and muon system and select 100 kHz events of physics interest from 40 MHz collision events within a time interval of 4μs. The second level (HLT) triggers
run an optimized version of full-event reconstruction software on a farm of processors and further reduce the event rate to 1 kHz with a latency of O(102) ms.
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sub-detectors of CMS. Even though our work targets SUEP event tagging, the trained model could identify any other non-QCD-like
signature, such as semi-visible jets [8] and emerging jets [9], spanning a large part of the landscape of the hidden valley. We plan
on covering those new physics signals in our next paper.

This paper is structured as follows: Sect. 2 contains all the information about the QCD and SUEP event generation, simulation,
and reconstruction. The event preselection is highlighted in the same section. The details about the ConvAE architecture and training
are provided in Sect. 3. The trained ConvAE is applied to the QCD background and SUEP signal considering several Higgs boson
mediator mass scenarios, and the performance results are given in Sect. 4. Section 5 concludes the paper.

2 Datasets

2.1 Generation, simulation, and reconstruction

Both multi-jet QCD and SUEP events are generated using pythia 8.244 [10]. Detector effects are simulated and events are recon-
structed with delphes 3.5 [11] using the CMS detector configuration. Proton–proton collisions at the LHC Run 3 center-of-mass
energy of 13.6 TeV are considered, with approximately 50 collisions per bunch crossing (pileup). A pileup reduction is applied to
the reconstructed tracks: the ET deposits in the inner tracker by the pileup tracks are removed. No pileup reduction is applied for
calorimeters, as per the HLT system’s configuration during Run 3 [6].

The model parameters for the QCD event generation are identical to those in [12]. For SUEP event generation, we used the
SUEP_Generator plugin [13], and the following parameter settings have been used:

• mediator masses (mH ) � 125 GeV, 400 GeV, 700 GeV, and 1000 GeV
• dark meson mass (mφD ) � 2 GeV
• branching ratio of φD → 2ZD � 100%
• dark photon mass (mZD ) � 0.7 GeV
• branching ratios of ZD → π+π−, e+e−, μ+μ− � 70%, 15%, 15%
• dark temperature (TD) � 2 GeV [2]

Please note that we denote SUEP with a mediator mass of mH GeV as SUEP(mH GeV) in the rest of the paper.

2.2 Event preselection

A preselection criterion is applied to both QCD and SUEP events based on the detector geometry and the typical characteristics
of QCD events. The |η| of ET deposits is required to be less than 2.5, as defined by the inner tracker coverage. The scalar sum of
ET of reconstructed electrons, muons, photons, and jets (denoted as HT) in an event is required to be >500 GeV, which is a typical
HT requirement at the HLT after L1 trigger selection during Run 3. The event preselection efficiency is found to be ∼85% for
QCD and ∼2.1%, ∼10.4%, ∼18.4%, and ∼22.7% for SUEP(125 GeV), SUEP(400 GeV), SUEP(700 GeV), and SUEP(1000 GeV),
respectively.

The plots showing the ET deposits for a QCD event and a SUEP(1000 GeV) event, which satisfy the preselection criterion, in the
inner tracker, ECAL, and HCAL are given in Figs. 1 and 2, respectively. The ECAL is 25 times more granular (0.0174×0.0174 rad2

in η-φ) than the HCAL (0.087×0.087 rad2 in η-φ). Hence, each HCAL pixel is divided into 25 equal pixels to match the ECAL
granularity. The final shape of the images is (288, 360, 3). For this particular QCD event, we can appreciate the typical signature of
two jets in the η-φ plane. Also, we can acknowledge the sparse nature of the data—only ∼ 15k pixels out of a total of 3,11,040 image
pixels have nonzero values. This observation is valid in general for all QCD events. On the other hand, for the SUEP(1000 GeV)
event, there is a clear spherically symmetric signature of a large number of low-ET particles in φ. We normalized the ET values
such that they are of O(1), which facilitates more stable and faster ConvAE training.

3 Autoencoders

Our ultimate target is to reject QCD jets and identify anomalous signatures. The unsupervised learning nature of autoencoders (AEs)
perfectly serves the purpose [14]. In its simplest form, an AE is a neural network (NN) that maps the input (ground truth) to a latent
compressed representation (encoding), the so-called bottleneck, and then back to the input dimensionality (decoding), providing the
output (reconstruction) as an approximation of the input. The quality of the AE training is measured in terms of a distance metric, the
so-called reconstruction loss; e.g., for images, the loss function can be defined as the pixel-wise summed mean-squared difference
between input and output. Once the AE is trained using background events with the objective of minimizing the reconstruction loss,
the model is expected to poorly reconstruct anomalous signatures and result in large reconstruction loss values. A threshold on the
reconstruction loss can be imposed to tag anomalies.

123



Eur. Phys. J. Plus         (2024) 139:281 Page 3 of 8   281 

Fig. 1 ET deposits for a QCD event in the inner tracker (left), ECAL (middle), and HCAL (right)

Fig. 2 ET deposits for a SUEP(1000 GeV) event in the inner tracker (left), ECAL (middle), and HCAL (right)

3.1 Architecture and training

The ConvAE architecture is detailed in Table 1. For encoding, there are five two-dimensional Convolutional NN (CNN) [15] layers
with a kernel_size of (3, 3) and strides of (3, 3), (2, 2), or (2, 3). Up to the bottleneck, the input shape of (288, 360, 3)
compresses to (6, 5, 8). The decoder part, which is exactly the mirror image of the encoder part, is composed of five two-dimensional
Transposed CNN [16] layers with the same kernel_size and exactly opposite strides. The padding is set to ‘same’.
After each (Transposed) CNN layer, a BatchNormalization layer is introduced, which facilitates a more stable and faster
training by bringing the mean of the output close to zero and the output standard deviation close to unity. The Parametric Rectified
Linear Unit (PReLU) and Rectified Linear Unit (ReLU) [17] activation functions are used for all the hidden layers and the output
layer, respectively. This model architecture results in a total number of trainable hyperparameters equal to 3,574,065. The model was
implemented in Keras/TensorFlow [18, 19], and it was trained for 100 epochs (with early stopping enabled) with a batch_size
of 128. The learning rate was set to 10−2, and the optimizer found to yield the best performance was Adam [20]. The training
was performed using the NVIDIA® Tesla® V100 PCIe 32 GB Graphics Processing Unit [21], and ∼25 min per epoch were
consumed while model training.

The biggest challenge we faced in accomplishing the task was data sparsity, as mentioned in Sect. 2.2. The model had a huge
tendency to learn the zeros rather than the nonzero values. The standard loss functions, such as Mean Squared Error [22] and
Cross-Entropy [23], did not work well. We exploited the inverse of the so-called Dice Loss [24] as the loss function, as given by
Eq. 1. The xi and x ′

i denote the ith-pixel values for the input and output, respectively. The N is the total number of pixels. The
denominator term contains the pixel-wise product of input and output, which forces the output to have the same nonzero pixels as
the input to minimize the reconstruction loss. On the other hand, the numerator term and minus 1 ensure that the loss function gets
its minimum at zero if the output becomes equal to the input.

L(x , x
′
) �

∑N
i x2

i +
∑N

i x2
i′

2
∑N

i xix ′
i

− 1 (1)

We used two independent sets of 50k QCD events for the model training and validation. During the model training, no overfitting
was observed, and the loss minimization was smooth and saturated after 57 epochs.
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Table 1 The ConvAE architecture Layer(kernel_size,
strides)

Shape BatchNormalization Activation function

Input (288, 360, 3)

Conv2D((3, 3), (3, 3)) (96, 120, 128) Yes PReLU

Conv2D((3, 3), (2, 2)) (48, 60, 64) Yes PReLU

Conv2D((3, 3), (2, 2)) (24, 30, 32) Yes PReLU

Conv2D((3, 3), (2, 2)) (12, 15, 16) Yes PReLU

Conv2D((3, 3), (2, 3)) (6, 5, 8) Yes PReLU

Conv2DTranspose((3, 3),
(2, 3))

(12, 15, 16) Yes PReLU

Conv2DTranspose((3, 3),
(2, 2))

(24, 30, 32) Yes PReLU

Conv2DTranspose((3, 3),
(2, 2))

(48, 60, 64) Yes PReLU

Conv2DTranspose((3, 3),
(2, 2))

(96, 120, 128) Yes PReLU

Conv2DTranspose((3, 3),
(3, 3))

(288, 360, 3) Yes ReLU

Fig. 3 Comparisons of true ET (left) and reconstructed ET (right) (sum over all the pixels) between QCD and SUEP(1000 GeV)

4 Results

4.1 Autoencoder reconstruction

The trained ConvAE is tested using 4k QCD and SUEP events each, which satisfy the event preselection criterion detailed in
Sect. 2.2. Figure 3 represents a comparison of true ET (left) and reconstructed ET (right)—sum over all the pixels—between
QCD and SUEP(1000 GeV). It can be noted that the model reconstructs the ET for QCD events quite well but struggles for
SUEP(1000 GeV) ET reconstruction.

The combined true ET for a QCD event in the inner tracker, ECAL, and HCAL is given in the left plot of Fig. 4 (same as Fig. 1
but combined now). The reconstructed ET for the same event is shown in the right plot of Fig. 4. The model is able to reconstruct the
nonzero input pixels quite well. Similar plots for a SUEP(1000 GeV) event are given in Fig. 5. In this case, the model reconstructed
only the large ET clusters (in the top left quadrant) but failed to reconstruct the whole spherically symmetric signature of a large
number of particles in φ.

4.2 Autoencoder performance

The comparisons of ConvAE reconstruction loss for QCD background and SUEP signal with the considered mediator mass scenarios
are given in Fig. 6. The corresponding Receiver Operating Characteristic (ROC) curves are given in Fig. 7. The ConvAE reconstruction
loss provides decent discrimination power. The areas under ROC curves (AUCs) are ∼70%, and they barely depend on the mediator
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Fig. 4 Combined true ET (left)
and reconstructed ET (right) for a
QCD event in the inner tracker,
ECAL, and HCAL

Fig. 5 Combined true ET (left)
and reconstructed ET (right) for a
SUEP(1000 GeV) event in the
inner tracker, ECAL, and HCAL

mass. For a target of 40% signal-selection efficiency, the QCD event mistagging rate ranges from 10.3% for SUEP(1000 GeV) to
16% for SUEP(125 GeV).

We investigated other ConvAE reconstruction parameters to see if they could be used to further enhance the performance. We
observed a parameter, the inverse of reconstructed ET, which provides much better discrimination power. The comparisons of the
inverse of the reconstructed ET for QCD background and SUEP signal with the considered mediator mass scenarios are given in
Fig. 8, and the corresponding ROC curves are given in Fig. 9. The AUCs range from 75.6% for SUEP(125 GeV) to 86.9% for
SUEP(1000 GeV). For a target of 40% signal-selection efficiency, the QCD mistagging rate ranges from 2% for SUEP(1000 GeV)
to 11.9% for SUEP(125 GeV).

The model inference time has been quantified using a CPU device, an Intel® CoreTM i5-9600KF processor [25], and found
to be ∼ 20 ms, which is very well within the processing-time limits of the HLT system (O(102) ms).

5 Conclusions

A deep convolutional neural autoencoder network, trained using background events by taking their signatures in different sub-
detectors of an experiment at the Large Hadron Collider as n-channel image data, is highly effective as an Anomaly Detection (AD)
technique. The training of the autoencoder using unlabeled background events makes this technique highly model-agnostic. We
have developed an autoencoder for AD with the Compact Muon Solenoid experiment, which can easily be adapted for other Large
Hadron Collider experiments. We have exploited the raw reconstructed signature in the High-Level Trigger system, with the clear
benefit of not relying on online particle reconstruction, which could fail to reconstruct new physics signatures.

The autoencoder has been trained using QCD events by taking transverse energy deposits in the inner tracker, electromagnetic
calorimeter, and hadron calorimeter sub-detectors as 3-channel image data. The biggest challenge was the sparsity of the data:
only ∼0.5% of the total ∼ 300k pixels per image had nonzero values. The model had a high tendency to learn zeros rather than
nonzero values. We explored several loss functions, and ultimately, a nonstandard loss function served the purpose—the inverse of
the so-called Dice Loss, which contains the pixel-wise multiplication of input and output that forces the output images to have the
same nonzero pixels as the input.
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Fig. 6 Comparisons of ConvAE reconstruction loss for QCD and SUEP(125 GeV) (top left), SUEP(400 GeV) (top right), SUEP(700 GeV) (bottom left),
and SUEP(1000 GeV) (bottom right)

Fig. 7 ROC curves for ConvAE reconstruction loss as an AD proxy. The right plot is the same as the left plot but with a logarithmic y-scale

The trained model has been tested for Soft Unclustered Energy Patterns (or SUEPs) detection—a new physics signal with an
experimental signature of high-multiplicity spherically symmetric Standard Model particles, anomalous to QCD jets. To check the
robustness of the autoencoder, we considered several signal scenarios depending on the new physics model. It has been observed
that the model can detect 40% of the SUEP events at the expense of a QCD event mistagging rate as low as 2%. The model inference
time using the Intel® CoreTM i5-9600KF processor is measured to be ∼ 20ms, which perfectly satisfies the HLT system’s
latency requirements.
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Fig. 8 Comparisons of the inverse of reconstructed ET for QCD and SUEP(125 GeV) (top left), SUEP(400 GeV) (top right), SUEP(700 GeV) (bottom
left), and SUEP(1000 GeV) (bottom right)

Fig. 9 ROC curves for the inverse of reconstructed ET as an AD proxy. The right plot is the same as the left plot but with a logarithmic y-scale
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