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A B S T R A C T 

Dark matter self-interactions may have the capability to solve or at least mitigate small-scale problems of the cosmological 
standard model, Lambda cold dark matter. There are a variety of self-interacting dark matter models that lead to distinguishable 
astrophysical predictions and hence varying success in explaining observations. Studies of dark matter (DM) density cores 
on various mass scales suggest a velocity-dependent scattering cross-section. In this work, we investigate how a velocity 

dependence alters the evolution of the DM distribution for frequent DM scatterings and compare to the velocity-independent 
case. We demonstrate that these cases are qualitati vely dif ferent using a test problem. Moreo v er, we study the evolution of the 
density profile of idealized DM haloes and find that a velocity dependence can lead to larger core sizes and different time-scales 
of core formation and core collapse. In cosmological simulations, we investigate the effect of velocity-dependent self-interaction 

on haloes and satellites in the mass range of ≈10 

11 –10 

14 M �. We study the abundance of satellites, density, and shape profiles and 

try to infer qualitative differences between velocity-dependent and velocity-independent scatterings as well as between frequent 
and rare self-interactions. We find that a strongly velocity-dependent cross-section can significantly amplify the diversity of 
rotation curves, independent of the angular dependence of the differential cross-section. We further find that the abundance of 
satellites in general depends on both the velocity dependence and the scattering angle, although the latter is less important for 
strongly velocity-dependent cross-sections. 

Key words: astroparticle physics – methods: numerical – galaxies: haloes – dark matter. 
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 I N T RO D U C T I O N  

istorically, dark matter (DM) self-interactions have been moti v ated 
o solve problems on small, i.e. galactic scales. It was found 
hat cosmological DM-only simulations can explain the large-scale 
tructure of the universe quite well. But on smaller scales, deviations 
etween the observations and simulations were encountered (e.g. 
oore et al. 1998 ). Spergel & Steinhardt ( 2000 ) proposed self-

nteracting dark matter (SIDM) as a solution to two problems on 
mall scales. Namely, SIDM can reduce the abundance of satellites 
nd the central density of haloes. As the self-interactions lead to 
eat flow into the central region of a Navarro–Frenk–White (NFW; 
avarro, Frenk & White 1996 ) halo, they reduce the central density

nd can form density cores. The first N -body simulation using a
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onte Carlo scheme of this core formation has been performed by
urkert ( 2000 ). Since then SIDM has been found to be capable of

olving or at least mitigating further small-scale problems of cold 
ark matter (CDM; for a re vie w see Tulin & Yu 2018 ; Adhikari
t al. 2022 ). This does not only include the core-cusp problem (e.g.
av ́e et al. 2001 ), but also diverse rotation curves (e.g. Creasey et al.
017 ; Kamada et al. 2017 ; Robertson et al. 2018 ; Correa et al. 2022 )
nd the too-big-to-fail problem (e.g. Zavala, Vogelsberger & Walker 
013 ; Elbert et al. 2015 ; Kaplinghat, Valli & Yu 2019 ). For a re vie w
f small-scale problems in Lambda cold dark matter ( � CDM), we
efer the reader to Bullock & Boylan-Kolchin ( 2017 ). 

Meanwhile, it has also emerged that there are other avenues to
olve these small-scale problems. On the one hand, it was found that
ncluding the baryonic physics, in particular, feedback mechanisms 
rom supernovae (e.g. Read & Gilmore 2005 ; Governato et al. 2012 ;
ontzen & Go v ernato 2012 ) and black holes can form density cores
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e.g. Martizzi, Teyssier & Moore 2013 ; Peirani et al. 2017 ; Silk
017 ). On the other hand, researchers have become more cautious
bout inferring density profiles from rotation curves (e.g. Pineda
t al. 2016 ; Read et al. 2016b ; Genina et al. 2018 ; Oman et al. 2019 ;
owning & Oman 2023 ; Roper et al. 2023 ). Beyond SIDM, other DM
odels have been investigated, including warm DM (Dodelson &
idrow 1994 ) and fuzzy DM (Hu, Barkana & Gruzinov 2000 ). 
Although SIDM has initially been mainly moti v ated by small-scale

ssues, it provides DM candidates worth investigating, independent of
he state of the small-scale crisis. The nature of DM is still unknown
nd could have properties which we can only infer indirectly via
stronomical observations. This is true for models of SIDM, and
tudying them is essentially constraining particle physics properties
f DM. Particle candidates that fall into the class of SIDM can have
arious characteristics. The scattering may be elastic or inelastic,
t may involve multiple states and can feature different angular
ependencies. Another aspect is how the cross-section depends on
he relative velocity of the scattering particles. 

Velocity-dependent self-interactions have been recently studied by
arious authors (e.g. Colin et al. 2002 ; Nadler et al. 2020 ; Yang & Yu
022 ; Outmezguine et al. 2023 ; Yang et al. 2023b ). Such studies were
erformed not only with DM-only (DMO) simulations but also within
ydrodynamical cosmological simulations (e.g. Vogelsberger et al.
014 ; Robertson et al. 2019 , 2020 ; Rose et al. 2022 ; Mastromarino
t al. 2023 ; Rahimi et al. 2023 ). They are well-moti v ated for
ifferent angular dependencies, including forward-enhanced cross-
ections from light mediator models (e.g. Buckley & Fox 2010 ;
oeb & Weiner 2011 ; Bringmann et al. 2017 ). But also models of

esonant scattering (e.g. Chu, Garcia-Cely & Murayama 2019 ; Tsai,
cGehee & Murayama 2022 ) can explain a velocity dependence
hile featuring an isotropic cross-section. 
From an astronomical perspectiv e, v elocity-dependent self-

nteractions are well moti v ated (e.g. Kaplinghat, Tulin & Yu 2016 ;
orrea 2021 ; Gilman et al. 2021 ; Sagunski et al. 2021 ; Silverman
t al. 2022 ; Lo v ell & Zavala 2023 ). The y would allow fulfilling
tringent constraints from galaxy clusters while having a fairly
arge effect on low-mass haloes. When the self-interaction cross-
ection decreases with velocity, it has a weaker effect in galaxy
lusters because their typical relative DM velocities are larger than
n galaxies. Furthermore, they can lead to a qualitative different
volution of systems that involve multiple velocity scales. For
nstance, this is true for the evolution of the satellite distribution
e.g. Zeng et al. 2022 ) and could lead to an increase in the diversity
f density profiles and rotation curves (e.g. Nadler, Yang & Yu 2023 ;
ang, Nadler & Yu 2023c ). 
The aim of this study is to explore qualitative differences arising

rom the velocity dependence of the self-interactions and to under-
tand their implications on constraining the angular dependence of
he cross-section. In this paper, we consider two different angular
ependencies. First, isotropic scattering, to which we refer as rare
elf-interactions (rSIDM). Secondly, a cross-section with typical
cattering angles that are very small. In consequence, frequent
nteractions are needed to significantly alter the DM distribution.
ence, we call it frequent self-interactions (fSIDM). 
In contrast to previous studies of anisotropic cross-sections (e.g.

obertson, Massey & Eke 2017b ; Banerjee et al. 2020 ; Correa et al.
022 ; Yang & Yu 2022 ), we study a limit where the momentum trans-
er is kept constant, but the typical scattering angle is approaching
ero, while the scattering rate increases. 

Frequent self-interactions show a drag-like behaviour (Kahlhoefer
t al. 2014 ) and are known for being capable of producing large
ffsets between the galaxies and the DM component in merging
NRAS 529, 2327–2348 (2024) 
alaxy clusters (e.g. Fischer et al. 2021a , 2023 ). In addition, it has
een found that they are more efficient in suppressing the abundance
f satellites compared to an isotropic cross-section Fischer et al.
 2022 ) and may alter the morphology of satellite galaxies (Secco
t al. 2018 ; Pardo, Desmond & Ferreira 2019 ). These signatures
ould potentially allow to constrain the angular dependence of DM
elf-interactions. Ho we ver, fSIDM is mainly moti v ated by light
ediator models which have velocity-dependent cross-sections. But

he aforementioned results are from studies of velocity-independent
odels. In consequence, it is crucial to extend them to models

eaturing a velocity dependence – an aim of this paper. 
We explore rSIDM and fSIDM models with several velocity de-

endencies to study qualitative differences arising from the velocity
nd angular dependence. The scattering of all SIDM models we
onsider is elastic. For our study, we employ idealized N -body
imulations of a test problem and DM haloes as well as cosmological
imulations. Unlike velocity-independent models (Fischer et al.
022 ), fSIDM with a velocity-dependent interaction has not been
tudied in a cosmological context. Finally, all our simulations are
M-only, i.e. we ignore the effects of baryons. In a companion paper

Sabarish et al. 2024 ), velocity-dependent fSIDM is studied in the
ontext of merging galaxy clusters. 

This paper is structured as follows. In Section 2 , we describe the
umerical set-up of our simulations including a no v el time-stepping
riterion. A presentation of the simulations and our results follows for
he idealized set-ups in Section 3 and the cosmological simulations
n Section 4 . Shortcomings and directions for further research are
iscussed in Section 5 . Finally, in Section 6 we conclude. Additional
nformation can be found in the appendices. 

 N U M E R I C A L  SET-UP  

n this section, we describe our numerical set-up. First, we begin
y describing the simulation code and the SIDM implementation.
e continue with the parametrization for the velocity-dependent

ross-section. Next, we introduce a novel time-step criterion for
he velocity-dependent self-interaction. Lastly, the simulations with
heir initial conditions and the identification of the substructure are
escribed. In addition, a description of our impro v ed parallelization
cheme for SIDM can be found in Appendix A . 

.1 SIDM implementation and simulations 

or our simulations, we use the cosmological hydrodynamical N -
ody code OPENGADGET3 . The predecessor GADGET-2 has been
escribed in Springel ( 2005 ). Various additional modules have
een developed for the OPENGADGET3 version that we are using.
he implementation of DM self-interactions has been described by
ischer et al. ( 2021a , b , 2022 ). 
The SIDM module in OPENGADGET3 is capable of modelling very

nisotropic cross-sections. Precisely speaking, we model the limit
here the momentum transfer is kept constant, but the size of the

cattering angles is approaching zero. In this limit, the number of scat-
ering events becomes infinite, which is why we call it frequent self-
nteractions. F or v ery anisotropic cross-sections the self-interactions
an be ef fecti vely described as a drag force (Kahlhoefer et al.
014 ). The numerical scheme computes the interactions between
he numerical particles in a pairwise manner. We use the drag force
nd apply it to each pair of close particles to model the frequent self-
nteractions. To conserve energy, we add momentum in a random
irection but perpendicular to the direction of motion of the particles
or each pair. In consequence, our scheme is a Monte-Carlo scheme
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ike other state-of-the-art schemes for SIDM. The fSIDM scheme 
odels only the limit of an extremely anisotropic cross-section and 

annot reproduce arbitrary angular dependencies. To date, this is the 
nly implementation for simulating fSIDM. 
The code is also able to simulate isotropic cross-sections. Given 

hat the scattering rate of physical particles is very infrequent for
omentum transfer cross-sections allowed in astrophysical systems, 
e refer to it as rare scattering. Interactions between numerical 
articles are modelled in a pairwise manner too. For close particles, 
n interaction probability is computed and by drawing a random 

umber one decides whether two particles interact. Given that they 
nteract, they are treated analogously to physical particles scattering 
bout each other. The employed scheme (described by Fischer et al. 
021a ) is very similar to the one introduced by Rocha et al. ( 2013 ),
xcept that we use an adaptive kernel size set by the 64 next
eighbours and a different time-step criterion. Another advantage 
f our SIDM module is that it conserves energy explicitly. Energy 
on-conservation typically arises when a numerical particle scatters 
t the same time with multiple partners using the same velocity. 
voiding this is particularly challenging for parallel computations. 
n alternative to our approach to overcome this problem has been 

ecently presented by Valdarnini ( 2024 ). 
We have run several simulations of CDM, rSIDM, and fSIDM 

or idealized set-ups with individual haloes as well as cosmological 
imulations. For all simulations, we used the cosmological N -body 
ode OPENGADGET3 . The details of the simulations can be found in
he corresponding Sections 3 and 4 . In addition, we ran simulations
o test the code, they can be found in the Appendices C and D . 

.2 Velocity-dependent cross-section 

here are numerous studies in the literature considering a cross- 
ection, σ , that depends on the scattering velocity, v. A typical choice
that we employ as well – is a cross-section that scales as σ ∝ v −4 

n the limit of high v. This dependence may be moti v ated by particle
hysics (e.g. Ibe & Yu 2010 ; Tulin, Yu & Zurek 2013 ) and has
een employed in numerous studies (e.g. Kaplinghat et al. 2016 ; 
obertson et al. 2017b ). 
Following Kahlhoefer, Schmidt-Hoberg & Wild ( 2017 ) and 

obertson et al. ( 2017b ), we consider the momentum transfer cross-
ection 

T = 2 π
∫ 1 

−1 

d σ

d �cms 
( 1 − | cos θcms | ) d cos θcms . (1) 

e parametrize the velocity dependence of the momentum transfer 
ross-section as 

σT 

m 

= 

σ0 

m 

(
1 + 

( v 

w 

)β
)α/β

. (2) 

ere, σ 0 corresponds to the cross-section in the velocity-independent 
egime, w denotes the velocity cutoff, α sets the decline at high 
elocities and β describes the transition from the constant cross- 
ection at low velocities to the decreasing cross-section at high 
elocities. In this study, we al w ays set α = −4 and β = 2. This choice
s moti v ated by the fact that in the limit of the Born-approximation,
he velocity dependence of the total and the transfer cross-section are 
ery similar (Ibe & Yu 2010 ). More details on the transfer cross-
ection and the possible connections to the underlying particle 
hysics can be found in the companion paper (Sabarish et al. 2024 ).
In most physically moti v ated cases, a velocity dependence also 

mplies an angular dependence of the differential scattering cross- 
ection. N -body simulations had been limited in simulating frequent 
catterings about small angles until the work by Fischer et al. 
 2021a ). Here, we go beyond the common large-angle scattering
nd investigate small-angle as well as isotropic scattering combined 
ith a velocity dependence. 
In order to probe different v elocity re gimes, we use several

ombinations of σ 0 and w. These are described together with the 
etails of the simulations in Sections 3 and 4 . Each parameter set
s simulated with fSIDM and rSIDM, the latter corresponding to 
sotropic scattering. Note that we use the momentum transfer cross- 
ection (equation 1 ) to match fSIDM and rSIDM. In the case of
sotropic scattering, the total cross-section is twice as large as the
omentum transfer cross-section. 

.3 Time-step criterion 

 or v elocity-dependent self-interactions, a separate time-step cri- 
erion can become more important than for velocity-independent 
catterings because cross-sections can become large at low velocities. 
epending on the cross-section this can give more stringent limita- 

ions on the time-step than imposed by the gravity scheme. We found
hat the time-step criterion introduced by Fischer et al. ( 2021b ) for
elocity-independent self-interactions is not al w ays well-suited for a 
elocity-dependent cross-section (this has been previously described 
y Kasselmann 2021 ). The difficulty arises from estimating the 
cattering velocity for which the effect from the self-interactions 
s strongest and thus requires the smallest time-step. Concerning the 
alue range of scattering velocities a particle may see. For a velocity-
ndependent cross-section, this is simply the maximal scattering 
elocity. But for a velocity-dependent cross-section, it is typically 
maller and the estimate using the criterion of Fischer et al. ( 2021b )
ould be more noisy and unnecessarily complicated. 
Here, we introduce a new time-step criterion for velocity- 

ependent scattering that has a velocity-dependence as described by 
quation ( 2 ). In more general terms, our time-step criterion requires
hat there is a finite velocity for which the fractional velocity change
ue to the drag force becomes maximal and finite. This means we are
nterested in the velocity at which v σT ( v) is maximal. We remind
he reader that the ef fecti ve drag force for fSIDM was introduced
y Kahlhoefer et al. ( 2014 ) and employed to develop a numerical
cheme by Fischer et al. ( 2021a ). It is given as 

 drag = 

1 

2 

σT ( v) 

m 

v 2 m 

2 
n � . (3) 

he relative particle velocity is denoted by v, m n is the numerical
article mass, and � is the kernel o v erlap, a geometrical factor (for
etails, see Fischer et al. 2021a ). 
Assuming the parametrization according to equation ( 2 ) the 

ractional velocity change ( 	v / v ) due to the drag force becomes
aximal for the velocity 

 e = 

w 

( −1 − α) 1 /β
. (4) 

ote that this is only applicable if α < −1 and β > 0. For our choice
f α = −4 and β = 2, this implies v e = w/ 

√ 

3 . 
Using the maximum allowed fractional velocity change τ , we can 

xpress the time-step criterion for particle i as 

t i < τ
2 

v e 

1 

m n � ii 

(
σT ( v e ) 

m 

)−1 

. (5) 

ere, � ii gives the maximal possible kernel overlap by calculating it
ith the particle itself. 
It is worth pointing out that this time-step depends on the chosen

umber of neighbours, N ngb . With a larger number of neighbours
 ii becomes smaller and thus the time-step is larger and vice versa.
MNRAS 529, 2327–2348 (2024) 
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M

Table 1. The table shows the different cross-sections that we used for the 
thermalization problem. The first column gives the name that we use in the 
paper to abbreviate the cross-section. It follows the type of self-interaction. 
Here, ‘rare’ corresponds to isotropic scattering. The third column gives σ 0 / m 

and the last one w (see also equation 2 ). 

Name Type σ 0 / m w 

[ cm 

2 g −1 ] [ km s −1 ] 

f10 Frequent 10 –
r10 Rare 10 –
f4.5e6w0.1 Frequent 4.5 × 10 6 0.1 
r4.5e6w0.1 Rare 4.5 × 10 6 0.1 
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Figure 1. The variance for the distribution of absolute velocities of the 
thermalization problem introduced by Fischer et al. ( 2021a ) is shown. We 
display the results for different SIDM models as a function of time. In black 
we indicated the variance of the final Maxwell–Boltzmann distribution. 

Table 2. The cross-sections that we employed for simulating a Hernquist 
halo are shown. The columns are the same as in Table 1 . 

Name Type σ 0 / m w 

[ cm 

2 g −1 ] [ km s −1 ] 

c0 Collisionless 0.0 –
f0.8 Frequent 0.8 –
r0.8 Rare 0.8 –
f1e5w100 Frequent 10 5 100 
r1e5w100 Rare 10 5 100 
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inally, we note that this time-step criterion also applies to rSIDM
hen using the total cross-section, σ , instead of σ T . For rSIDM, the

cattering probability reaches a maximum at v e (see equation 4 ) too.
In Appendix B , we provide further discussion on issues related to

he formulation of a time-step criterion. 

 IDEALIZED  SIMULATIONS  

n this section, we present and analyse our idealized simulations and
how the results we obtain. First, we start with a simple test problem
n Section 3.1 . Secondly, the evolution of the core size for isolated
aloes is shown (Section 3.2 ) for both initial Hernquist and NFW
rofiles. 

.1 Thermalization problem 

o learn about the differences between a constant and a velocity-
ependent cross-section, we first consider the thermalization problem
reviously studied by Fischer et al. ( 2021a ). This has the advantage
hat we study the pure effect of DM self-interactions without the
nfluence of gravity. Hence, it is well suited for the goal of learning
bout qualitative differences arising from the velocity-dependence. 

The numerical set-up consists of a periodic box with a constant
ensity of 10 7 M � kpc −3 sampled by 10 4 particles. The cubic box has
 side length of 10 kpc and its particles have a velocity of 2 km s −1 

hich points into a random direction. In Table 1 , we describe the
mployed cross-sections. For the velocity-dependent cross-sections,
e choose a value for w that is small to have the scattering velocities

n the regime where the cross-section decreases strongly with
elocity. The aim is to enhance the qualitative difference between
 constant and velocity-dependent cross-section. While choosing a
mall value for w we pick a large value for σ 0 / m to prohibit a drastic
ncrease in the time on which the system evolves compared to the
elocity-independent cross-section. 

The scattering broadens the velocity distribution such that it
 volves to wards a Maxwell–Boltzmann distribution. We can char-
cterize the width of the distribution of the absolute velocities by
omputing its variance. 

In Fig. 1 , we show the results as a function of time. For frequent
elf-interactions, this has been previously studied by Kasselmann
 2021 ). In line with his results, we find that the evolution of the
hermalization rate evolves qualitatively differently for velocity-
ependent self-interactions compared to a constant cross-section.
he thermalization process evolves faster at early times and slower
t late times for the velocity-dependent self-interactions. For the
sotropic cross-section, we find the same. Initially, the system evolves
aster for the velocity-dependent cross-sections, because the cross-
ection e v aluated at the typically relati v e v elocity of the particles is
arger compared to the velocity-independent cross-section. The lower
NRAS 529, 2327–2348 (2024) 
hermalization rate at late times, i.e. when the velocity distribution is
lready close to the Maxwell–Boltzmann distribution, stems mainly
rom a deviation at the high-velocity tail. The decrease of the cross-
ection with velocity makes velocity-dependent self-interactions less
fficient in scattering particles to high velocities. In consequence, the
hermalization rate in a late stage is reduced. 

.2 Isolated haloes 

ere, we study the evolution of isolated haloes subject to velocity-
ependent self-interactions. Firstly, we investigate the density profile
f an isolated halo with a density following a Hernquist profile
Hernquist 1990 ) and secondly, we do the same for a halo with
n NFW profile (Navarro et al. 1996 ). For the two haloes, we also
ompare rare and frequent self-interactions. 

.2.1 Hernquist Halo 

e simulate the same Hernquist halo as first described by Robertson
t al. ( 2017b ). It has a mass of M = 2 . 46 × 10 14 M � and a scale ra-
ius of r s = 279 kpc . We generate the initial conditions by sampling
he halo up to r = 400 r s using N = 10 7 particles. For the gravitational
oftening length we employ ε = 0 . 56 kpc . The simulations include
 elocity-independent and v elocity-dependent cross-sections both for
SIDM and rSIDM. In detail, the cross-sections are shown in Table
 . With this choice, we partially follow Kasselmann ( 2021 ). It is
orth noting that for the velocity-dependent simulations, the SIDM

ime-step constraint was tighter than the one from gravity, at least
or a fraction of the particles. This led to a significant increase in
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Figure 2. The size of the density core for a Hernquist halo as a function 
of time is shown when evolved with different DM models. We indicate 
the cross-section in the legend. The first number refers to σ 0 / m in units of 
cm 

2 g −1 and the second one to w in units of km s −1 (see Table 2 ). The first 
two SIDM simulations are for a velocity-independent cross-section and the 
number gives σT / m . 
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omputational costs. We determine the core size, r core , as previously 
one by Robertson, Massey & Eke ( 2017a ) and Fischer et al. ( 2021a )
y fitting a cored Hernquist profile. It is given as 

( r ) = 

M 

2 π

r s 

( r 4 + r 4 core ) 
1 / 4 

1 

( r + r s ) 3 
. (6) 

s in the original Hernquist profile, M denotes the halo mass and
 s the scale radius. To fit the parameters of the density profile we
aximize a likelihood based on Poisson statistics, 

 = 

∏ 

i 

λ
N i 
i e −λi 

N i ! 
with λi = 

4 π

m 

∫ r i+ 1 

r i 

r 2 ρ( r) d r . (7) 

ere, N i specifies the number of simulation particles in the radial bin
 , with the boundaries r i and r i + 1 . This number is compared to the
xpected value, λi , from the analytic expression of the cored density 
rofile. For the fit we leave, the core radius, r core , the scale radius,
 s , and the mass, M , as free parameters. Note, this is the same as
n Fischer et al. ( 2021a ). The evolution of the core size is shown in
ig. 2 for the different DM models. 1 

In the early stages, the density core grows due to self-interactions
hose effect can be described as heat transfer (e.g. Lynden-Bell & 

ggleton 1980 ; Balberg, Shapiro & Inagaki 2002 ) that follows
he gradient of the velocity dispersion. As a result, the central 
egion of the halo heats up and its density is decreasing. For the
ollisionless DM, we find a small core caused by gravitational two- 
ody interactions, a process known as numerical core formation (e.g. 
ehnen 2001 ). At later stages, the core size is decreasing and the
alo enters the collapse phase. In this phase, heat is only transported
utward, as the central region cools it also contracts. Gravitational 
 We found the exact core size to be sensitive to details of the optimization 
rocedure, which might be caused by a noisy likelihood. This might be 
he main source of different core sizes for the same halo in the literature 
Robertson et al. 2017b ; Fischer et al. 2021a ; Correa et al. 2022 ). Note that 
ochanek & White ( 2000 ) studied the core-size evolution of a Hernquist 
alo as well, but they employed a different definition of the core size limiting 
omparability. 

κ

T
l
e

κ

H

ound systems are characterized by a ne gativ e heat capacity. This
s for example well known from star clusters but also applies to the
aloes we study here. In consequence, the velocity dispersion at the
entral region of the halo is increasing and leads to a runaway process
alled the gra v othermal catastrophe. 

In previous studies, it was found that the maximum core size that
s reached during the haloes evolution is roughly independent of 
he strength of the cross-section (e.g. Kochanek & White 2000 ), but
lso its angular dependence (e.g. Robertson et al. 2017a ; Fischer
t al. 2021a ). In contrast, we find that the velocity-dependent cross-
ections give a larger maximum core size. Ho we v er, we hav e to note
hat this only occurs for sufficiently small values of w. For the initial
ernquist halo heat is flowing inwards for radii smaller than the

adius of the maximal velocity dispersion, r( ν2 
max ), this should set

he core formation time. In contrast, for radii larger than r( ν2 
max ),

eat is flowing outwards, determining the core collapse time. The 
aximum core size should be a result of the ratio of the total heat in

nd outflow. In consequence, a DM candidate that is more efficient
n transporting heat inwards than outwards compared to other DM 

odels would produce a larger maximum core size. We discuss this
urther in Section 3.2.3 , after we have shown the results for the
solated NFW halo. 

Ho we ver, to gain further insights into the halo following initially
 Hernquist profile, we first plot various quantities at the time of
aximum core expansion in Fig. 3 . The upper panel shows the

ensity and velocity dispersion profile, and the bottom panel displays 
uantities related to heat conductivity. 
In the following, we describe how we compute the quantities of

he bottom panel. Assuming identical particles, the viscosity cross- 
ection is given by 

v = 4 π
∫ 1 

0 

d σ

d �
sin 2 θ d cos θ . (8) 

ased on this we can express the ef fecti ve cross-section of Yang &
u ( 2022 ) as 

eff = 

3 

2 

〈 v 5 σv ( v) 〉 
〈 v 5 〉 . (9) 

hey introduced the ef fecti ve cross-section with the aim of matching
ifferential cross-sections with various angular and velocity de- 
endencies. It thus allows transferring constraints on the strength 
f self-interactions to various SIDM models. Here, the average is 
omputed assuming the velocities are well described by a Maxwell–
oltzmann distribution. Next, we give the heat conductivity using 
eff . Strictly speaking, we do not specify the heat conductivity κ , but
se κ ′ = m /k B κ , with m the DM particle mass and k B the Boltzmann
onstant. This is commonly used in the gra v othermal fluid model
e.g. Koda & Shapiro 2011 ). Note, Kummer et al. ( 2019 ) took the
ngular dependence into account by expressing the heat conductivity 
n terms of the viscosity cross-section. Here, we go further and use
he ef fecti ve cross-section for κ ′ . For the short-mean-free-path (smfp)
egime it is given as 

′ 
smfp = 

9 b ν

4 

(σeff 

m 

)−1 
with b = 

25 
√ 

π

32 
. (10) 

he one-dimensional velocity dispersion is expressed by ν2 . In the 
ong-mean-free-path (lmfp) regime, the heat conductivity can be 
xpressed as 

′ 
lmfp = ˆ a C 

ν3 ρ

4 πG 

(σeff 

m 

)
with ˆ a = 

√ 

16 

π
, C ≈ 0 . 75 . (11) 

ere, ρ denotes the density and G is the gravitational constant. 
MNRAS 529, 2327–2348 (2024) 
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M

Figure 3. Various properties of the halo following initially a Hernquist profile 
are shown at the evolution stage when its density core is the largest. In the 
upper panel, we show the density (black) and the velocity dispersion (blue) 
as a function of radius. Moreo v er, the scale radius, r s , and the radius at 
which the velocity dispersion of the initial profile reaches its maximum, 
r( ν2 

max ), are indicated. The lower panel gives κ ′ for the smfp (grey) and lmfp 
(black) regime (see equations 10 and 11 ) as well as the Knudsen number 
(see equation 12 ). These quantities are computed based on the ef fecti ve 
cross-section, σ eff / m . In addition, the maximum core sizes are shown for the 
runs with the frequent self-interactions, i.e. for the velocity-independent and 
velocity-dependent cross-sections. To compute the quantities that are shown 
as a function of radius, we used the simulation with frequent self-interactions 
and without velocity dependence. 
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Table 3. The cross-sections that we employed for simulating an NFW halo 
are shown. The columns are the same as in Table 1 . 

Name Type σ 0 / m w 

[ cm 

2 g −1 ] [ km s −1 ] 

c0 Collisionless 0 –
f10 Frequent 10 –
r10 Rare 10 –
f5e3w720 Frequent 5 × 10 3 720 
r5e3w720 Rare 5 × 10 3 720 
f2.5e5w180 Frequent 2.5 × 10 5 180 
r2.5e5w180 Rare 2.5 × 10 5 180 
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2 In the literature also other descriptions of a cored NFW profile exist (e.g. 
Read, Agertz & Collins 2016a ; Read et al. 2016b ; Ray, Sarkar & Shaw 2022 ). 
The one we use corresponds to the one employed by Yang et al. ( 2023a ) for 
their parametric model of the evolution of a halo following initially an NFW 

profile. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/529/3/2327/7624679 by Karlsruher Institut fur Technologie - KIT user on 18 April 2024
The Knudsen number, Kn, is usually used to distinguish between
he lmfp and smfp regime and is defined as 

n = 

3 

2 

√ 

4 πG 

ρν2 

(σeff 

m 

)−1 
. (12) 

umerically Kn > 1 corresponds to the lmfp regime and Kn < 1 to
he smfp regime. 

From the upper panel of Fig. 3 , we can see that the velocity
ispersion at the time of maximum core expansion is roughly constant
or radii smaller than r( ν2 

max ). Ho we ver, the density core itself is much
maller, resulting in a steep density gradient at r( ν2 

max ). 
The bottom panel shows the maximum core sizes for the velocity-

ependent and velocity-independent cross-sections. It is visible that
he maximum core size is smaller than r( v 2 max ). Moreo v er, we can see
NRAS 529, 2327–2348 (2024) 
hat the Knudsen number is increasing as a function of radius and is
l w ays much larger than unity. Implying that the halo is al w ays in the
mfp re gime. F or radii smaller than r s , the corresponding heat con-
uctivity ( κ ′ 

lmfp ) is larger for the velocity-independent cross-section.
n contrast, κ ′ 

smfp is larger for the velocity-dependent cross-section.
f the cross-section is decreasing as a function of velocity, smaller
cattering velocities may play a more important role compared to
arge velocities in the heat conduction than for velocity-independent
ross-sections (see also Section 3.1 ). 

Ho we ver, using the ef fecti ve cross-section may eventually be
roblematic for extreme velocity dependencies. Depending on the
elocity of a DM particle, it sees different distributions of relative
elocities and thus has a mean free path that depends on its velocity.
nfortunately, it is not understood how the evolution in the lmfp

egime could be derived from first principles. This complicates a
recise description of the heat conduction in the halo. 

.2.2 NFW Halo 

e studied the core formation in an isolated NFW halo using
arious DM models. These include velocity-independent cross-
ections for fSIDM and rSIDM each with σT /m = 10 . 0 cm 

2 g −1 and
elocity-dependent fSIDM and rSIDM cross-section with σ/m =
000 . 0 cm 

2 g −1 , w = 720 km s −1 and σ/m = 2 . 5 × 10 5 cm 

2 g −1 ,
 = 180 km s −1 . The cross-sections and the abbreviations we use

or them are also shown in Table 3 . 
For the NFW halo, we use the same initial conditions as used by

ischer et al. ( 2021a ) for their fig. 5. Our halo has a virial mass
f 10 15 M �, a scale radius of 300 kpc and a density parameter of
0 ≡ 4 ρ( r s ) = 2 . 9 × 10 6 M � kpc −3 . The halo is sampled up to the
irial radius ( r vir = 1626 kpc ) and resolved by N = 10 6 particles.
or the simulations, we employ a gravitational softening length of
= 0 . 56 kpc . 
We measure the core size by fitting a cored NFW profile. 2 It is

iven by 

( r ) = 

ρ0 

( r 4 + r 4 core ) 1 / 4 
r s 

( 1 + r/r s ) 
2 . (13) 

or the fitting procedure, we have ρ0 , r s , and r core as free parameters.
e maximize a likelihood based on Poisson statistics (equation 13 )

s described in section 4 of Fischer et al. ( 2021a ). 
The core sizes for different DM models are shown in Fig. 4 . First,
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Figure 4. We display the core size for an NFW halo, which we simulated with 
different DM models. The abbreviations for the cross-sections are explained 
in Table 3 . 
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e consider the cross-sections, f10, r10, f5e3w720, and r5e3w720. 
or the phase of the core formation and the onset of core collapse up to

4 Gyr , the core sizes are very similar. Only the velocity-dependent 
SIDM cross-section yields slightly larger core sizes. Hence, the 
omentum transfer cross-section provides a good match between 

SIDM and rSIDM in the given case. Only at later stages of the halo
volution do differences between the models occur. When the core 
ize is almost zero, it seems that small-angle scattering slows down 
he core collapse compared to isotropic scattering. These results are 
artially in line with previous work. Yang & Yu ( 2022 ) found that a
onstant and velocity-dependent cross-section behave qualitatively 
ery similarly for most of the halo evolution but differ at the late
tages of the collapse phase. They also found that the viscosity
ross-section provides a better match between different angular 
ependencies than the momentum transfer cross-section. In the 
ompanion paper (Sabarish et al. 2024 ), it is found that the viscosity
ross-section can indeed provide a reasonable, but not perfect match 
etween isotropic scattering and a very anisotropic cross-section in 
he fSIDM limit. In contrast, for our set-up with a much stronger
ross-section the momentum transfer cross-section provides a very 
ood match regardless of the velocity dependence. Ho we ver, we 
hould point out that the quality of the match depends on the halo
roperties and the strength of the self-interactions (see e.g. fig. 9 of
ischer et al. 2022 ; we show this result again in Section 4.2.2 ). Here,
ne can see for the larger cross-section that the momentum transfer
ross-section match yields a larger effect of fSIDM on the central 
ensities of DM haloes at the high-mass end compared to rSIDM.
or lower-mass haloes, it changes and rSIDM has a stronger effect 
n the central halo density. As Yang & Yu ( 2022 ) simulated NFW
aloes with a mass of M 200 ≈ 10 7 M � and a concentration of c 200 

20 (for details see their table 1), they probed a different regime
han we do here. Hence, the quality of a matching procedure for
he angular dependence could depend on the halo properties and the 
trength of the self-interactions. It is also important to note that the
nner regions of our NFW halo are in the smfp regime or close to
t (Kn < 1) and not in the lmfp regime for the velocity-independent
ross-sections. 

For the strongly velocity-dependent cross-section, i.e. the one 
ith w = 180 km s −1 , we find that the e volution dif fers qualitati vely

rom the ones with a weaker velocity dependence. The results are 
omewhat similar to the results for the Hernquist halo, the maximum
ore size becomes larger and the collapse time longer compared 
o the core formation time. Ho we ver, the increase in the maximum
ore size is weaker compared to the Hernquist halo. This could be
ecause the cross-section we have simulated is not as extremely 
elocity-dependent as for the Hernquist halo ( w = 100 km s −1 for
he Hernquist halo and w = 180 km s −1 for the NFW halo). Note
hat the NFW halo has a larger total mass and hence a larger velocity
ispersion than the Hernquist halo, such that the two simulations 
annot be directly compared. But when w is compared to the typical
cattering velocity of the halo, the velocity dependence appears to be
imilar. In consequence, it is plausible that the difference in maximum 

ore size stems primarily from a different reason such as the details
f the density profile. 
Analogous to the Hernquist halo we have computed the same 

uantities as in Fig. 3 , but for the NFW halo and show them in Fig. 5 .
n contrast to the Hernqusit halo, we find that the central region of the
alo has a Knudsen number smaller than unity when simulated with
he velocity-independent cross-section and thus would be considered 
o be in the smfp regime. In addition, the heat conductivity in the
wo regimes is more similar. But the Knudsen number varies strongly
ith velocity dependence. As for the Hernquist halo κ ′ 

smfp has a larger
alue in the case of the velocity-dependent cross-section and κ ′ 

lmfp is 
arger for the velocity-independent cross-section. 
MNRAS 529, 2327–2348 (2024) 
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Table 4. The table shows the different cross-sections that we used for the 
cosmological simulations. Analogously to Table 1 , we use the same columns. 
Note, that the simulations of the first five DM models have been presented by 
Fischer et al. ( 2022 ). 

Name Type σ 0 / m w 

[ cm 

2 g −1 ] [ km s −1 ] 

c0 Collisonless 0 .0 –
f0.1 Frequent 0 .1 –
r0.1 Rare 0 .1 –
f1 Frequent 1 .0 –
r1 Rare 1 .0 –
f10w180 Frequent 10 .0 180 
r10w180 Rare 10 .0 180 
f100w180 Frequent 100 .0 180 
r100w180 Rare 100 .0 180 
f0.3w560 Frequent 0 .3 560 
r0.3w560 Rare 0 .3 560 
f3w560 Frequent 3 .0 560 
r3w560 Rare 3 .0 560 
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3 Magneticum: http://www.magneticum.org 
4 A description of the friends-of-friends algorithm can, for example, be found 
in the work by More et al. ( 2011 ). 
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.2.3 Discussion of isolated halo evolution 

n this last part on isolated haloes, we discuss the physics driving
heir evolution. During the evolution of the halo, the central velocity
ispersion is increasing and the ef fecti ve strength of the self-
nteractions may change according to the velocity dependence of
he cross-section. An increasing velocity dispersion implies higher
elativ e v elocities of the DM particles and for a cross-section that
ecreases with velocity this leads to fewer scatterings. 
The halo may reach its maximum core size when the gradient of

he velocity dispersion has become zero. Afterwards, heat is only
owing outwards, which leads to a shrinking density core and the
ra v othermal collapse of the halo. While the density core is shrinking
he central velocity dispersion is increasing. Given this increase in
elocity dispersion, one would expect that the collapse is slowing
own for a velocity-dependent cross-section compared to a velocity-
ndependent one. Ho we ver, in our simulations, we do not find an
ndication that the rate at which the density core is shrinking changes
ue to the velocity dependence (see Fig. 4 ). Instead, we only found
hat the core collapse time scale relative to the core formation time
cale changes. 

The evolution of the halo may not only be determined by the central
egion but also by larger radii, at least radii up to r( ν2 

max ) and a bit
eyond may play a crucial role. A core-collapse rate that is insensitive
o the velocity dependence might be caused by the rele v ant velocity
ispersion staying roughly constant. Indeed the velocity dispersion
t larger radii is less affected during the evolution and may play a
rucial role in the core collapse. Right from the beginning of the
imulation, during core formation, heat flows outward at radii larger
han r( ν2 

max ). This heat flow takes place at velocities that are larger
han in the central region of the halo. In consequence, the ratio of
eat inflow and outflow depends on the velocity dependence of the
cattering. F or e xample, this is visible in the core formation and core
ollapse times. They are set by heat inflow and outflow. 

The cross-sections we have simulated lead to roughly the same
ore formation time. For strongly velocity-dependent cross-sections,
ess heat outflow takes place during that time. This can result in
 larger maximum core size as we found for the Hernquist halo
see Fig. 2 ). The maximum core size depends on the transition radius
etween heat inflow and outflow . Initially , this radius is set by r( ν2 

max )
 ut ev olves according to the ratio of heat in and outflow. As we found,
his evolution is only significantly affected by strongly velocity-
ependent cross-sections. 
Overall it becomes clear that if the scattering is velocity dependent,

he evolution of an isolated halo can change qualitati vely. Ho we ver,
e do not have a precise understanding of the physical mechanisms
ri ving this dif ference. Ho w ef fecti ve the heat outflow taking place
n the lmfp regime could depend on the gradient of the gravitational
otential and the ability to scatter particles to large velocities. It
ould be mainly the high-velocity particles exceeding the escape
elocity and carrying energy away that drive the core collapse. In
his context, the exact density profile may eventually matter. For
xample, the Hernquist and NFW profiles that we have investigated,
ave a different slope in the outskirts. Implying a different gradient
f the gravitational potential. Further investigation is needed to fully
nderstand the evolution of isolated haloes. 

 C O S M O L O G I C A L  SIMULATIONS  

e present our cosmological simulations in this section and show
he results we obtain. First, we describe the simulations, followed
y the analysis of the data. This includes many aspects such as the
NRAS 529, 2327–2348 (2024) 
ensity and shape profiles of the DM haloes and the abundance of
atellites. 

.1 Simulations 

e have run several simulations of CDM, rSIDM, and fSIDM.
or the SIDM models, we use two different velocity dependencies,
amely w = 180 km s −1 and w = 560 km s −1 . For each of them
e have models that differ in σ 0 by one order of magnitude. Our

imulations are run with fSIDM and a momentum transfer matched
sotropic cross-section. The details of the DM models are given in
able 4 and their velocity-dependence is plotted in Fig. 6 . Here,
e also show the scattering velocities inside the centres of haloes

rom three different mass bins, which we use in Section 4.2 . The
elocities are indicated with a Maxwell–Boltzmann distribution that
uns logarithmically in velocity: 

 log ( v scat ) = 

√ 

2 

π

v 3 scat 

a 3 
e −

v 2 scat 
2 a 2 with a = 

√ 

2 ν2 . (14) 

he distribution of scattering velocities, v scat , depends on the one-
imensional velocity dispersion, ν2 , of the halo. In Appendix G ,
e put those DM models in the context of current observational

onstraints on the strength of DM self-interactions. 
For the full box cosmological simulations, we use the same

Cs as by Fischer et al. ( 2022 ). They are similar to box 4 of
he Magneticum simulations 3 and have a comoving side length of
8 Mpc h 

−1 . The employed cosmological model is described by the
ollowing parameters: �M 

= 0.272, �� 

= 0.728, h = 0.704, n s =
.963, and σ 8 = 0.809 (WMAP7; Komatsu et al. 2011 ). Further
roperties can be found in Table 5 . 
The DM haloes are identified using the friends-of-friends algo-

ithm, 4 which is implemented in OPENGADGET3 . The mass of a halo,
 , is computed as the sum of the gravitationally bound particles. The

irial radius, r vir , and the virial mass, M vir , are measured with the
pherical-o v erdensity approach based on the o v erdensity predicted
y the generalized spherical top-hat collapse model (e.g. Eke, Cole &
renk 1996 ). Here, r vir is defined as the radius at which the mean

http://www.magneticum.org
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Figure 6. In the upper panel, we illustrate the cross-sections used for our 
cosmological simulations. In blue, we show the velocity-independent cross- 
sections from Fischer et al. ( 2022 ). The velocity-dependent cross-sections are 
displayed in orange ( w = 180 km s −1 ) and purple ( w = 560 km s −1 ). In the 
lower panel, we indicate in green typical scattering velocities. The Maxwell- 
Boltzmann distributions (see equation 14 ) correspond to the scattering 
velocities in the centres of the haloes from the three halo mass bins that 
we use in Section 4.2 . 

Table 5. The table gives the different simulations we run. The first column 
denotes the name, the second one the box size, the third one the number 
of numerical DM particles and the last one the mass of the numerical DM 

particles. Each set-up was run with eight different velocity-dependent cross- 
sections as described in Table 4 . 

Name l box N DM 

m DM 

( cMpc h −1 ) ( M � h −1 ) 

hr 48 216 3 8.28 × 10 8 

uhr 48 576 3 4.37 × 10 7 

d
a

 

i
t  

p
b
h
t

4

I  

t  

b  

S
S

i  

d  

i  

s

4

I  

d  

9  

o
p  

h  

e  

c  

M  

t  

s
o  

i  

d
t
c

4

A  

h  

c  

C  

s  

m  

e  

s
 

c
p  

w  

c  

s  

t  

s  

a
B  

t  

b  

a  

w
(

b  

a  

f  

a  

s  

c
g  

b
 

f
s  

h

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/529/3/2327/7624679 by Karlsruher Institut fur Technologie - KIT user on 18 April 2024
ensity becomes larger than the one of the top-hat collapse model 
nd M vir is the mass inside r vir . 

We use SUBFIND (Springel et al. 2001 ; Dolag et al. 2009 ), which is
mplemented as part of OPENGADGET3 , to identify the substructure in 
he simulation. Every halo contains at least one subhalo, which is the
rimary subhalo located at the same position as the halo (determined 
y the location of the most gravitationally bound particle of the 
alo). The primary subhalo typically contains most of the particles 
hat belong to the halo, but this is not necessarily the case. 

.2 Results 

n the following, we show the results of our cosmological simula-
ions. The simulation set-up we used is described in Section 4.1 . We
egin with the surface density of a massive halo (Section 4.2.1 ).
ubsequently, we discuss the density profiles of the haloes in 
ection 4.2.2 and continue with their shapes (Section 4.2.3 ). We 
nvestigate the abundance of satellites (Section 4.2.4 ) as well as their
iversity in terms of the circular velocity (Section 4.2.5 ). Finally,
n Section 4.2.6 , we study differences between frequent and rare
elf-interactions in the context of velocity-dependent scattering. 

.2.1 Surface Density 

n Fig. 7 , we show the surface density of the same halo but in
ifferent DM models. It is the fourth most massive halo ( M =
 . 3 × 10 13 M �h 

−1 ) in our simulation and nicely illustrates the effects
f SIDM. They are most pronounced when comparing the two 
anels on the left-hand side, as the fSIDM simulation of the two
as relatively strong self-interactions ( σT /m = 1 . 0 cm 

2 g −1 ). Typical
ffects of SIDM that can be seen here are the formation of a density
ore, the rounder shape of haloes and the suppression of substructure.
any of the satellites visible in the CDM run do not exist in

he fSIDM run. Ho we ver, in the other SIDM runs sho wn here the
uppression of the satellite abundance is weaker. There exist even 
bjects for which no counterpart in the CDM simulation can be
dentified by eye. This is in particular the case for the velocity-
ependent cross-section shown in the right-hand side panels. In 
he following sections, we quantify these self-interaction-induced 
hanges in the DM distribution. 

.2.2 Density Profiles 

 quantity commonly measured for SIDM is the density profile of
aloes. In particular, the formation of a central density core that is
haracterized by a shallow gradient and a lower density compared to
DM (except O’Neil et al. 2023 ). We have studied this in an idealized

et-up in Section 3 . Within the cosmological context this has been
easured by various authors (e.g. Stafford et al. 2020 ; Eckert, D.

t al. 2022 ; Mastromarino et al. 2023 ) and used to constrain the
trength of DM self-interactions (see Appendix G ). 

We investigate the DM density profile for the haloes of our
osmological simulations. In particular, we study the median density 
rofile within three halo mass bins. This is shown in Fig. 8 , where
e indicated the median virial mass and virial radius of the haloes

ontained in the three mass bins. We show all cross-sections we have
imulated the ones with w = 180 km s −1 are shown in orange and
he ones with w = 560 km s −1 are shown in purple. The small cross-
ections, i.e. the one with the smaller σ 0 / m for each w show hardly
ny core formation for the most massive haloes (left-hand panel). 
ut for the less massive haloes, the core size is increasing in terms of

he virial radius, r vir . This is a consequence of the relative velocities
etween the DM particles being smaller for less massive systems. As
 result, the particles typically scatter at smaller relativ e v elocities for
hich the interaction strength is larger compared to high velocities 

see also Fig. 6 ). 
While two cross-sections with a different velocity dependence can 

ehave similarly at a specific mass scale they may v astly dif fer at
nother mass scale. Ho we ver, their qualitati ve behaviour is similar
or relaxed systems, i.e. in our model it would be possible to find
 different value for σ 0 / m that resembles the behaviour of a cross-
ection with a vastly different value for w. This allows transferring
onstraints between models of different velocity dependencies and 
ave rise to the ef fecti ve cross-section (see equation 9 ) introduced
y Yang & Yu ( 2022 ). 
In Fig. 9 , we show the central density of the DM haloes as a

unction of their virial mass. For the velocity-independent cross- 
ection (left-hand panel), we find that it is decreasing as a function of
alo mass when self-interactions are present. When considering the 
MNRAS 529, 2327–2348 (2024) 
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Figure 7. The surface density of the fourth most massive system in our simulation is shown. We cross-identified it among all simulations and show it from the 
same perspective. We rotate the system such that for CDM the semimajor axis is parallel to the x -axis and the semiminor axis parallel to the y -axis. We scale the 
axes in terms of r 1/2 , the half mass radius of the primary subhalo in the CDM simulation. The surface density is indicated with a logarithmic colour scaling. We 
use the same for each panel. The abbreviation of the cross-section is given in the lower left corner of each panel and the detailed parameters can be looked up in 
Table 4 . 

Figure 8. We show the median density profile for haloes from three different mass bins. The results for the velocity-independent and velocity-dependent 
cross-sections are displayed together. Ho we ver, we sho w the results only for fSIDM as the rSIDM results are similar. The density is plotted as a function of the 
radius in units of the virial radius. The shaded regions indicate the scatter among the haloes, and the range between the 25th and 75th percentiles is displayed. 
The virial mass and the virial radius given in the panels indicate the median of the corresponding mass bin from the CDM simulation. All plots show the profiles 
for a redshift of z = 0 and are produced from the full cosmological box with the highest resolution. Note, we have used all particles, not only those that belong 
to the halo as identified by SUBFIND . 
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Figure 9. The central density of the DM haloes is shown as a function of their virial mass. We measure the central density as the mean density within a radius 
of 0.01 r vir . In the left-hand panel, the simulations with a velocity-independent cross-section are shown (reprint of fig. 9 of Fischer et al. 2022 ). The middle panel 
giv es the v elocity-dependent scattering with w = 560 km s −1 and the right-hand panel displays the self-interactions with w = 180 km s −1 . Individual systems 
are indicated by ‘ + ’ when evolved with the smaller cross-section. For the larger cross-section, we use ‘ ×’ and the CDM case is marked by ‘Y’. In addition, 
we computed the mean of the distribution as a function of virial mass, shown by the lines. The shaded regions give the corresponding standard deviation. 
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elocity-dependent runs it becomes clear that the gradient with halo 
ass depends on the velocity-dependence of the self-interactions. 
or w = 560 km s −1 there is no or only a weak trend with halo mass
middle panel). But for the w = 180 km s −1 cross-section (right-hand
anel), the central density is increasing with halo mass and thus the
rend is opposite to the simulations with a constant cross-section. 

Note that we used the momentum transfer cross-section to match 
SIDM and fSIDM. If we would have used the viscosity cross-
ection, the fSIDM cross-section would only have 2/3 of its value to
orrespond to the simulated rSIDM cross-section. A detailed deri v a- 
ion of this factor has been presented by (Sabarish et al. 2024 ). This
ould imply larger central densities for the fSIDM cross-sections. 

n consequence, it probably would often provide a better matching. 
xcept for haloes with masses lower than M vir ≈ 10 13 M � and simu-

ated with the strong and velocity-independent scattering. Here, the 
atching would become worse. It should be noted, that not all haloes

sed in Fig. 9 are relaxed which makes the picture more complicated.

.2.3 Shapes 

 commonly studied property of DM haloes is their shape. This
as for SIDM been investigated by several authors (e.g. Peter et al.
013 ; Sameie et al. 2018 ; Robertson et al. 2019 ; Banerjee et al.
020 ; Chua et al. 2020 ; Harv e y et al. 2021 ; Despali et al. 2022 ; Shen
t al. 2022 ). DM self-interactions significantly affect the shape of the
aloes up to larger radii than the density profile (Fischer et al. 2022 ).
urthermore, how large the affected radii are depends on the strength 
f the self-interactions (Vargya et al. 2022 ). 
To compute the shapes of our simulated DM haloes we proceed as

reviously described by Fischer et al. ( 2022 ). We compute the mass
ensor of particles within an ellipsoidal selection volume using their 

ass, m , and position, r : 

 ij = 

∑ 

k 

m k r k,i r k,j . (15) 

ere, k denotes a particle and i , j are the coordinate indices.
he selection volume for the next iteration is determined by the 
igenvalues and eigenvectors of the mass tensor. We iterate until the 
hape of the selection volume converges against the one inferred 
rom the mass tensor. It is important to note that shapes close to the
entre of the haloes cannot be measured accurately. The vanishing 
ensity gradient within the density core of SIDM haloes renders the 
hape undefined (Fischer & Valenzuela 2023 ). 
In Fig. 10 , we plot s = c / a as a function of the semimajor axis,
 , in units of the virial radius. The semi-minor axis is denoted by
 . In general, we find that SIDM makes the haloes more round, as
ne would expect, and that fSIDM and rSIDM are qualitatively very
imilar. 

Moreo v er, we show the shape of the haloes as a function of
ass in Fig. 11 . Here, we compute the shape from the innermost

articles within a volume equal to a sphere of radius 0.078 r vir . For
DM, we find that haloes become more ellipsoidal with increasing 
ass. This trend is well known in the literature (e.g. Jing & Suto

002 ; Allgood et al. 2006 ; Mu ̃ noz-Cuartas et al. 2011 ; Despali,
ormen & Sheth 2013 ; Despali, Giocoli & Tormen 2014 ). This can
hange when including self-interactions, especially for a velocity- 
ndependent cross-section. Here, the effect of the self-interactions 
s increasing with halo mass (see the left-hand panel of Fig. 11 ).
o we ver, for the most massive systems in our simulation we find the
aloes to become more elliptical even with SIDM. This might be due
o few objects which on average might be less relaxed than the ones
t lo wer masses. Gi v en a v elocity dependent cross-section haloes
ecome more elliptical with mass at the high-mass end. But the
radient is steeper compared to CDM as self-interactions lead to 
ounder haloes at lower masses and at the high-mass end the shape
ecomes similar to CDM (middle and right-hand panels). 

Overall, we reproduce the same trends as in previous SIDM 

imulations. As far as we can compare, our results are in broad
greement with the shapes reported in other studies (e.g. Peter et al.
013 ). 

.2.4 Satellites 

he properties of satellite systems are a promising probe for studies
f DM. Depending on the DM model, fewer or more satellites are
redicted, and they may differ in their density profiles. This has been
tudied in the context of multiple DM models, including SIDM (e.g.
anerjee et al. 2020 ; Nadler et al. 2020 , 2021 ; Bhattacharyya et al.
022 ). 
In Fig. 12 , we show the number of satellites per logarithmic mass

s a function of their mass in units of the virial mass of their host
ystem. We find that DM self-interactions can reduce the abundance 
f satellites, and the number of less massive subhaloes is stronger
ffected than the more massive satellites. Moreover, the momentum- 
ransfer-matched frequent self-interactions lead to a stronger sup- 
ression than the isotropic scattering (as previously described for a 
MNRAS 529, 2327–2348 (2024) 
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Figure 10. We show the median shape, s = c / a , of the DM haloes within three mass bins as a function of the major semiaxis, a . Each panel displays a different 
mass bin with its median mass being indicated. This figure is built analogously to the density profiles in Fig. 8 . The shaded regions indicate the scatter among 
the haloes, and the range between the 25th and 75th percentiles is displayed. We show it only for the collisionless DM and the strongest fSIDM model of each 
velocity-dependence. In addition, we indicate at which radius the shape sensitivity (Fischer & Valenzuela 2023 ) for the 25th percentile drops below a value of 
25. This is indicative of a radius above which the shape measurements are reliable. Note, in particular for CDM the presence of satellites reduces the shape 
sensitivity. 

Figure 11. The shape of the DM haloes is shown as a function of their virial mass. The left-hand panel gives the results for the velocity-independent cross- 
sections (pre viously sho wn in fig. 14 by Fischer et al. 2022 ). In the middle panel, we display the results for the velocity-dependent scattering with w = 560 km s −1 

and in the right-hand panel for w = 180 km s −1 . This figure is built analogously to Fig. 9 . 
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onstant cross-section in Fischer et al. 2022 ). All this seems to be
ndependent of the velocity dependence. Interestingly, the difference
etween fSIDM and rSIDM is shrinking for the strong velocity
ependence. For the velocity-independent simulations (left-hand
anel) and the mildly velocity-dependent runs ( w = 560 km s −1 ,
iddle panel), the stronger rSIDM cross-section has a similar effect

o the weak fSIDM cross-section. But for the strongly velocity-
ependent run ( w = 180 km s −1 , right-hand panel), the strong rSIDM
ross-section is no longer similar to the weak fSIDM one but closer to
he strong fSIDM one. Hence, we find a strong velocity dependence to
educe the differences between cross-sections with different angular
ependencies. 
The difference between rSIDM and fSIDM may mainly arise

rom host-satellite scattering as those interactions take place with
 preferred direction and thus are far from an equilibrium state. Also,
hese interactions significantly contribute to the suppression of the
atellite abundance (e.g. Zeng et al. 2022 ). To understand the reduced
ifference between rSIDM and fSIDM, it is important to note that
he host–satellite interactions take place at higher velocities than the
catterings within the satellite between its particles. Consequently,
 velocity-dependent cross-section can reduce the host-satellite
cattering compared to the satellite-satellite interactions and thus
educe the difference between rSIDM and fSIDM. 

In addition, we find that the suppression of the satellite abundance
or the mildly velocity-dependent cross-sections (middle panel) is
ess strong than for the other two velocity dependencies. We would
NRAS 529, 2327–2348 (2024) 
ot hav e e xpected this difference in strength from the density profiles
hat we show in Section 4.2.2 . Though, there is a velocity scale at
hich the mildly velocity-dependent cross-sections are weaker than

he corresponding ones with a different velocity-dependence (see
ig. 6 ). Interestingly, this becomes even more pronounced when
omputing the ef fecti ve cross-section introduced by Yang & Yu
 2022 , see Appendix G ). Given that the host-satellite scattering,
hich drives the suppression of the satellite abundance, takes
referentially place in this velocity regime, it could explain the
ifferent strengths of the satellite suppression. 
In Fig. 13 , we display the number of satellites as a function of

he distance to their host in units of the host’s virial radius. The
pper panels show the cumulative number of satellites and the lower
anels display the ratio to CDM. We note that the ratios at small
istances are subject to a considerable amount of noise as they are
omputed from a small number of satellites. Here, we find again that
elf-interactions can suppress the number of satellites. The inner
nes are more affected than the distant ones and frequent self-
nteractions lead to a stronger suppression than rare scattering if the
ame momentum transfer cross-sections are compared. This is well
isible for the velocity-independent cross-sections in the left-hand
anel. The simulations with frequent self-interactions show roughly
 reduction in the number of satellites twice as large as for the
orresponding simulations with rare self-interactions. As in Fig. 12 ,
e find that the difference between rSIDM and fSIDM becomes less

or the strongest velocity-dependence ( w = 180 km s −1 ). 
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Figure 12. We show the number of satellites per logarithmic mass as a function of their total mass relative to the virial mass of their host (upper panels). In 
the lower panels, we display the ratio of the DM models to CDM. All panels give the result of the 100 most massive groups in our full cosmological box. The 
left-hand panels show the results for the velocity-independent cross-sections (previously shown in fig. 6 of Fischer et al. 2022 ). The middle panels gives the 
velocity-dependent self-interactions with w = 560 km s −1 and the right-hand side panels for w = 180 km s −1 . All subhaloes, except for the primary one, within 
a radius of 5 r vir were considered. The results are for a redshift of z = 0. Note that the least resolved satellites used here contain about 100 particles. 

Figure 13. For the 100 most massive haloes of our simulations, we show the cumulative number of satellites per halo as a function of radius (upper panels). 
We also give the ratio of the DM models to CDM (lower panels). The left-hand panel shows the results for the velocity-independent cross-sections (previously 
shown in fig. 7 of Fischer et al. 2022 ). The middle panel giv es the v elocity-dependent self-interactions with w = 560 km s −1 and the right-hand side panel for 
w = 180 km s −1 . The results are shown for z = 0 and subhaloes were only considered if they are less massive than the primary subhalo and more massive than 
M > 9 . 6 × 10 10 M � h −1 . 
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.2.5 Diversity of satellites 

ne of the small-scale issues is the diversity problem. It usually 
efers to the variation between the rotation curves of galaxies (e.g. 
amada et al. 2017 ; Ren et al. 2019 ; Zentner et al. 2022 ). To

tudy their diversity, we focus on the circular velocity at a radius of
 . 5 kpc instead of looking at the full profile. The velocity at 3 . 5 kpc
s sensitive to the core formation or core collapse. In Fig. 14 , we
how the circular velocity at that radius for satellites more massive 
han ≈ 4 . 9 × 10 10 M � h 

−1 as a function of their mass. Note that we
onsider all subhaloes identified by SUBFIND satellites if they are not 
 primary subhalo (see Section 2.1 ). 

F or the v elocity-independent cross-sections (the left-hand panel of 
ig. 14 ), we find that self-interactions decrease the circular velocity 
t 3 . 5 kpc . This corresponds to the formation of a density core. For
he larger cross-sections the circular velocity is lower, i.e. the density
ore is larger. Basically, the same applies for the cross-sections with
 = 560 km s −1 (the middle panel of Fig. 14 ). But it is noticeable

hat the most massive subhaloes experience less suppression of v circ 

n the inner region. This is simply a consequence of the velocity
ependence, as the DM particles in the more massive subhaloes 
ave higher typical relative velocities. For the cross-section with the 
trong velocity dependence ( w = 180 km s −1 ), we find qualitatively
ifferent results. For the more massive subhaloes, we find the 
uppression of the circular velocity as for the other simulations. But
n average, the least massive objects show an increase in circular
elocity for the stronger cross-sections compared to CDM. The 
MNRAS 529, 2327–2348 (2024) 
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Figure 14. We show the circular velocity at 3 . 5 kpc for satellites with a mass of at least ≈ 4 . 9 × 10 10 M � h −1 . We consider all satellites that are not the primary 
subhalo. The lines indicate the mean and the shaded regions the standard deviation for the corresponding DM models. This is analogous to Fig. 9 , as well as the 
markers. 
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atellites with larger circular velocities are more compact, i.e. they
ontain more mass within r = 3 . 5 kpc . Moreo v er, we also found that
he inner density gradients are steeper (see Appendix E ). This is
n indication that the y hav e entered the collapse phase. Moreo v er,
he distribution of values for the circular velocity is broader at low

asses compared to CDM. The other cross-sections do not show
uch a significant increase in diversity. 

When comparing the results for rSIDM and fSIDM, we do not
nd a clear qualitative difference arising from the typical scattering
ngle of the self-interactions. In contrast, the momentum transfer
ross-section provides a matching that is not far off but surprisingly
ccurate for the velocity-dependent cross-sections. 

The diversity of rotation curves has been studied a lot with SIDM,
nd it has been shown that self-interactions can create more diverse
ensity profiles. In particular, low-mass objects have been studied.
here are several papers that studied MW-like satellites and dwarf
alaxies (e.g. Creasey et al. 2017 ; Zavala et al. 2019 ; Correa et al.
022 ; Lo v ell & Zavala 2023 ). It has been found in DMO simulations
hat cross-sections with a strong velocity dependence can even trigger
ore collapse within satellites (e.g. Turner et al. 2021 ; Nadler et al.
023 ; Yang et al. 2023c ). Especially for satellites the core collapse
an be enhanced by tidal stripping (e.g. Kahlhoefer et al. 2019 ;
ishikawa, Boddy & Kaplinghat 2020 ). This is in line with our
nding of more compact objects at low masses for our strongly
elocity-dependent cross-sections. 

.2.6 Frequent versus rare self-interactions 

inally, we want to investigate how the different DM models affect
he satellites of our most massi ve haloes. Pre viously, we found that
SIDM can lead to a stronger suppression of the number of satellites
han rSIDM does (Fischer et al. 2022 ). Identifying such differences is
rucial to constrain the angular dependence of DM self-interactions.
n contrast to our previous work, we investigate the maximum circular
elocity in the satellites here. But show the number of satellites in
ppendix F . 
We cross-identify the haloes and their satellites among the sim-

lations based on their particles. As we start from the same initial
onditions, we can match the haloes with the same particles identified
ased on their unique identification numbers. To e v aluate ho w well
wo haloes match we make use of the gravitational potential at the
article’s location. Particles at a lower gravitational potential are
tronger weighted to find the best matching analogue. Given a list
f the halo particles sorted according to how deep they sit in the
ravitational potential, starting with the one at the lowest potential,
NRAS 529, 2327–2348 (2024) 
e compute weights for them. These weights are given as 

 i = 

(
1 

i + 1 

)α

. (16) 

ote, here we assume the first list index to be i = 0. The parameter
allows for different weightings, we use α = 0.8. In practice, we

ompute the weight for the CDM run only. This is because we use
he CDM haloes as a benchmark and ask how well the SIDM haloes
atch them. The quality of a potential match is given by the sum of

he weights w i for the particles that the CDM halo and the SIDM
alo have in common. 
For the analysis, we do not consider all haloes but apply different

election criteria. Firstly, the hosts and their satellites should be well-
esolved. We consider only the 13th most massive haloes and limit
he selection further by requiring that we are able to match at least
ve satellites with a minimum mass of 9 . 6 × 10 10 M � h 

−1 (2200
articles). Furthermore, we require the haloes to be relaxed. Here,
e assume a halo to be relaxed if the centre of mass and the most
ound particle of the primary subhalo are separated by not more
han 10 per cent of the virial radius. In addition, we tested a further
imitation by excluding haloes based on the ratio of the halo and
rimary subhalo mass. Ho we ver, in practice, this did not exclude any
alo. At least when we have required that the primary subhalo does
ot contain less than 75 per cent of the halo mass. 
In Fig. 15 , we display our results for how the central halo densities

orrelate with the relative change of the maximum circular velocity
n the satellites. We show the average relative change multiplied by
he average maximum circular velocity in the CDM satellites. Here,
e use the maximum velocity as computed by SUBFIND . It is given
y the maximum of the circular velocity, v circ = 

√ 

G M ( < r ) /r , in
adial distance, r , from the centre of the subhalo. 

We find the maximum circular velocity in the satellites altered by
he DM self-interactions. For the velocity-independent scattering it
ypically decreases with increasing cross-section. This implies that
he satellites are less concentrated. In contrast, a velocity-dependent
ross-section can also lead to a larger value for the maximum circular
elocity. Whether this is the case or not depends in our model on the
arameter w, i.e. how strongly velocity-dependent the scattering is.
t is worth pointing out that our selection criterion of subhaloes abo v e
 mass threshold that we can match might fa v ourably pick subhaloes
hat have become more concentrated due to the velocity-dependent
elf-interactions. Thus, the increase in maximum circular velocity
ay not be representative of all the subhaloes. 
We find that frequent self-interactions tend to lead to a smaller
aximum circular velocity than rare scattering. For the larger cross-
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Figure 15. We show how the DM model affects the maximum circular velocity in the satellites and the host’s central density. We have cross-identified the 
haloes in the different DM runs. The lines connect the same halo, i.e. indicated how the properties of a halo change when varying the cross-section. The shown 
haloes are among the most massive ones, the details of the selection criterion are explained in the text. 
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ections we have simulated, we find that the maximum circular 
elocity for rare self-interactions compared to frequent ones is 
ncreased for the typical system (median) by ≈ 8 per cent (velocity- 
ndependent), ≈ 2 per cent ( w = 560 km s −1 ), and ≈ 1 per cent
 w = 180 km s −1 ). This means that the difference between fSIDM
nd rSIDM decreases for our simulations with stronger velocity 
ependence. Hence, this is in line with our finding of a qualitative
ifference for the abundance of satellites in Section 4.2.4 . Ho we ver,
he difference we find here might also largely be due to the fact
hat the stronger velocity-dependent cross-section we study has a 
eaker effect on massive haloes. For example, this becomes visible 
hen comparing the central densities. In consequence, the reduced 
ualitati ve dif ference between large- and small-angle scattering 
ight be better visible from Fig. 12 . But here we can see that not

nly for a constant cross-section the angular dependence matters 
ut also for strongly velocity-dependent self-interactions even if the 
ubhaloes are becoming more compact on average. 

We note that the analysis abo v e is not based on a larger statistical
ample and thus the exact numbers may change. But we expect the
ualitative trend to be the same. It is also worth pointing out that the
ess massive satellites might be affected more strongly by the self-
nteractions (see Fig. 12 ) and thus differences between models are 
arger for them. Hence, this should be followed up with simulations
ith a much higher spatial resolution. 

 DISCUSSION  

n this section, we discuss the assumptions and limitations of our 
imulations as well as the implications of our results. We begin with
echnical considerations and end by discussing what the next steps 
or a follow-up study may look like. 

In contrast to our previous work (Fischer et al. 2022 ), we explored
elocity-dependent cross-sections. We found that simulating those 
nteractions requires a separate time-step criterion (i.e. different from 

he one of Fischer et al. 2021b ). Especially cross-section with a
trong velocity-dependence, i.e. a small value for w (see equation 
 ), can be computationally very expensive compared to a velocity- 
ndependent cross-section with a similar ef fecti ve cross-section. A 

ore detailed discussion of building a time-step criterion can be 
ound in Appendix B . 

When measuring the core sizes in Section 3.2 , we found that
he resulting fit is surprisingly sensitive to the optimization method. 
his may limit the comparability of core sizes inferred by different 
uthors. In particular, Correa et al. ( 2022 ) describe in their appendix B
hat results on the evolution of the core size differ in terms of the

aximum cores size in the literature. 
2
The results of our cosmological simulations depend on the al- 
orithms employed to identify haloes and their substructure. For 
his task, we used the build-in module SUBFIND (Springel et al.
001 ; Dolag et al. 2009 ). There exist a number of codes that are
apable of identifying substructure (e.g. Knollmann & Knebe 2009 ; 
aciejewski et al. 2009 ; Tweed et al. 2009 ; Behroozi, Wechsler &
u 2012 ; Han et al. 2017 ; Elahi et al. 2019 ). These codes use different

lgorithms and are known to give somewhat different results Knebe 
t al. ( 2013 ). In consequence, our results could change a bit when
mploying a different substructure finder. 

In this paper, we aimed to understand how a velocity dependence 
f the self-interactions af fects dif ferences arising from the angular
ependence of the cross-section. Very anisotropic cross-sections are 
ypically expected to be velocity-dependent (e.g. Buckley & Fox 
010 ; Loeb & Weiner 2011 ; Bringmann et al. 2017 ). It is known
hat fSIDM and rSIDM differ mainly in systems that are far from
quilibrium, such as mergers (Fischer et al. 2021a ) and the abundance
f satellites Fischer et al. ( 2022 ). The evolution of those systems
s go v erned by multiple velocity scales, where typically the larger
elocity scale is the one that is mainly responsible for differences
rising from the angular dependence of the self-interactions. Con- 
equently, the difference becomes less when the self-interactions at 
arge velocities are suppressed due to velocity-dependent scattering. 

e found this for the abundance of satellites. In consequence, it
ould be interesting to probe less massive systems for distinguishing 
SIDM and fSIDM as the velocity dependence could be weaker. 
t least in the model employed in our study, a system with typical
elocities smaller than w would only experience a weak velocity 
ependence (see equation 2 ). The rele v ant mass scales for the cross-
ections we simulated are visible from the ef fecti ve cross-section as
 function of mass shown in Appendix G . 

Despite our studies of satellites, it is worth mentioning that very
nisotropic cross-sections have been mainly studied in the context 
f merging galaxy clusters (e.g. Kahlhoefer et al. 2014 ; Harv e y
t al. 2015 ; Fischer et al. 2023 ; Wittman et al. 2023 ). At about
he pericentre passage, such cross-sections can give rise to an 
f fecti ve drag force decelerating the DM component and creating
n offset between the galaxies and the DM. Cross-sections that 
re velocity dependent and strongly anisotropic, have not been 
tudied in the context of such mergers yet. Only a Bullet Cluster-
ike system has been simulated by Robertson et al. ( 2017b ) using
 velocity-dependent anisotropic cross-section, but it does not fall 
ithin the limit of fSIDM. Studying merging systems with velocity- 
ependent fSIDM is crucial to understand their power to constrain 
uch models and is the subject of a companion paper (Sabarish et al.
024 ). 
MNRAS 529, 2327–2348 (2024) 
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Our simulations are all DM-only. On the one hand, it allows us
o understand the qualitative differences between DM models better
ompared to simulations including further physical processes. But
n the other hand, it limits the possibility to compare the results
o observations and derive constraints on the cross-section. Conse-
uently, the next step would be to include baryonic physics, i.e. run
ydrodynamical simulations. Several authors have found that taking
aryons into account can reduce the differences between collisonless
nd self-interacting DM and thus would mitigates constraints derived
rom DM-only studies (e.g. Fry et al. 2015 ; Despali et al. 2022 ; Sirks
t al. 2022 ; Mastromarino et al. 2023 ). SIDM can be more responsive
o the baryon distribution than CDM in Milky Way-mass galaxies
e.g. Sameie et al. 2018 , 2021 ). In the presence of baryons, effects
rom SIDM can even be reversed – at least for a fraction of the
aloes. It has been shown that for galaxies with Milky Way-like
asses and abo v e the interplay of baryons and self-interactions can

ead to cuspier density profiles than in CDM (e.g. Despali et al. 2019 ;
ose et al. 2022 ). In principle, baryons could also affect the ability

o constrain the angular dependence with the abundance of satellites.
Aside from constraining the angular dependence, one would like

o have a procedure to compare the effect of SIDM with different
ngular dependencies. This would allow to transfer constraints
etween models that differ in their typical scattering angle. Yang &
u ( 2022 ) introduced the ef fecti ve cross-section for this purpose,
here the angular matching is based on the viscosity cross-section.
o we ver, the quality of the matching may depend on the physical

ystem, i.e. how relaxed the system is. But not only on this, as
e found the momentum transfer cross-section can at least for

ome set-ups provide an excellent match (see Fig. 4 ) excluding
hat the viscosity cross-section does as well. Ho we ver, this does
ot contradict the viscosity cross-section providing a better match
sually. But it implies that the matching is more complicated and
ay depend on the properties of the astrophysical system. It may
atter how strong the self-interactions are and whether the system

volves in the smfp or lmfp regime. In the latter, one gravity plays an
mportant role between two consecutive scattering events (assuming
n isotropic cross-section) and thus may make the evolution of the
alo and the matching of different angular dependencies sensitive to
he details of the density profile. 

 C O N C L U S I O N S  

n this paper, we have studied SIDM with velocity-dependent
cattering, considering isotropic cross-sections and strongly forward-
nhanced ones. For accurate modelling of velocity-dependent self-
nteractions, we introduced a new time-step criterion and enhanced
he performance with an impro v ed parallelization scheme. To learn
bout qualitati ve dif ferences arising from the velocity dependence,
e first simulated the thermalization problem, a simple test problem
ithout gravity . Secondly , we studied the evolution of the density pro-
le of isolated haloes including Hernquist and NFW profiles. For the
emainder of the paper, we focused on cosmological simulations and
nvestigated the qualitative differences between the DM models con-
erning the velocity and angular dependence of the self-interactions.
ur most important results can be summarized as follows: 

(i) We found that velocity-dependent self-interactions lead to a
lower population of the high-velocity tail of the Maxwell-Boltzmann
istribution during thermalization due to the suppressed cross-
ection at high velocities. 

(ii) The evolution of the density profile of isolated haloes is
ualitati vely af fected by the velocity dependence, i.e. it is not self-
NRAS 529, 2327–2348 (2024) 
imilar. This can lead to a longer collapse time relative to the core
ormation time and a larger maximum core size. Ho we ver, we found
 significant difference between velocity-independent and velocity-
ependent cross-sections only for strong velocity dependencies, i.e.
hen w is much smaller than the typical scattering velocity. 
(iii) The velocity dependence of the self-interactions controls

hether the central density of haloes is increasing or decreasing
s a function of halo mass. 

(iv) Given a strong velocity dependence (small w), frequent self-
nteractions can diversify the density profile similar to an isotropic
ross-section. We found that the two angular dependencies can create
aloes that are less compact as well as haloes that are more compact
t the same subhalo mass. This makes SIDM, regardless of its angular
ependence, promising to explain the observed diversity. 

(v) A strong velocity dependence of the cross-section, i.e. a small
alue of w can reduce the differences between fSIDM and rSIDM
egarding the abundance of satellites. 

The simulations we conducted were DM-only and allowed us to
nderstand phenomenological differences arising from the velocity
ependence of DM scattering. Our results may be instructive for
ore detailed studies of qualitative differences between SIDM
odels and helpful in designing more sophisticated simulations that

nclude baryonic matter and additional physics such as cooling, star
ormation, AGN, and associated feedback mechanisms. Undertaking
uch a study to learn about the chances to discriminate between
SIDM and fSIDM when baryonic physics is taken into account, is
he subject of forthcoming work. 
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Figure A1. We show the e x ecution time as a function of simulated time for 
the Magneticum Box 4 with high resolution (hr) and ultra-high resolution 
(uhr). The simulations are DMO. We also show the time spend on the 
fSIDM-related computations, which make up the majority of the compu- 
tational costs. Note, that we do not use adaptive gravitational softening. 
Consequently, the computation of the kernel sizes is counted as fSIDM- 
related. In grey, we show the ratio of execution time between the old and new 

parallelization. 
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PPENDIX  A :  PARALLELIZATION  

he impro v ed MPI parallelization orders communication with
he aim to reduce waiting time. Therefore, a separate
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ommunication list is computed at the cost of additional
 v erhead. 
The communication list is computed in seven steps: 

(i) Every MPI rank already kno ws ho w many particles it will
eceive from and send to other processes. It creates a list with all its
ommunications to other processes; here, the sum of the particles that
re exchanged with each process (sum of send and receive) is stored.
his number will later be used to assign individual communications
 priority. 

(ii) Each process sorts the previously created list according to
riority. 
(iii) All processes exchange their communications list. In turn,

very process has all communication lists. We note that the length of
hese lists does scale with less than N 

2 ( N being the number of MPI
anks) if no communication between all processes is required (this is
ypically the case). 

(iv) Every process builds a single list with all communications.
tarting with the highest priority elements of all individual lists. 
(v) The list from the previous step is sorted according to priority. 
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(vi) The o v erall communication plan is built by every process to
 v oid additional communication. It contains several communication 
teps. At each step, several pairs do their communication and also 
he scattering computations of the exchanged particles. One process 
an be assigned only one pairwise communication per step. The plan 
s built by trying to fulfil the highest priorities first. We start with the
rst communication step and try to fill in the communications sorted
fter priority. If a communication does not fit in a step because
 corresponding process is already busy, it is queued and retried 
or the next step. We turn to the next step when the queue for the
ommunication that should be assigned for the current step is empty 
r when all processes are already assigned a communication for the 
urrent step. 

(vii) Each process extracts its communication schedule from the 
 v erall communication plan. 

For each pair of processes we consider, the first sends the particles
nd the second receives them and does the computation. When the 
omputation has finished, the particles are sent back. Subsequently, 
he communication is done in the other direction, i.e. the other task
ill compute the scattering of the particles. 
We have run a performance test for Box 4 of the Magneticum

imulations with DM only using the high-resolution (hr) and ultra- 
igh-resolution (uhr) initial conditions (the same as in Fischer et al. 
022 ). The results using 32 and 128 MPI ranks are displayed in
ig. A1 . For this test, we used only the MPI parallelization and did
ot make use of an OpenMP parallelization that exists for other parts
f the code. Clearly, the impro v ed parallelization leads to a significant 
peed-up. It is visible that we save with the improvements more than
5 per cent of the computational costs This parallelization has been 
sed for some of the simulations described in this paper. 

PPENDIX  B:  TIME-STEP  C R I T E R I O N  

ISCUSSION  

n the following, we discuss the thoughts behind the construction of a
ime-step criterion for SIDM in further detail. Here, we aim to build a
ime-step criterion that ensures that all or almost all interactions take 
lace at a sufficiently small time-step. This differs from the approach 
aken by Vogelsberger, Zavala & Loeb ( 2012 ), which considered the
ocal velocity dispersion. Instead, we are concerned about the full 
elocity distribution, i.e. which relative velocities a particle actually 
ees. 

Previously, we introduced a time-step criterion for velocity- 
ndependent self-interactions (Fischer et al. 2021b ). That time-step 
riterion estimates the time-step based on the maximum velocity that 
 particle experienced in the previous time-step 5 and the maximal 
ossible kernel o v erlap, � ii 

6 Giv en that the neighbour number,
 ngb , is sufficiently large, the velocities that a particle has seen in

he previous time-step allow us to roughly estimate the maximum 

elocity it may experience in the next time-step. In contrast, for
 velocity-dependent cross-section, the rele v ant velocity is not the 
aximal velocity that a particle may see but how close it gets to the

elocity for which the interaction probability, or generally speaking, 
T /m 	v, becomes maximal. Actually, this is also what the time-step 
riterion by Fischer et al. ( 2021b ) tries to estimate when used for a
 Strictly speaking, we use σT /m 	v, but for a velocity-independent cross- 
ection σT / m is a constant and thus the same for all interactions. 
 Actually, we did not directly compute � ii , but used h −3 

i as an estimate ( h 
enotes the kernel size). 

c
i  

i

w
v

elocity-dependent cross-section. But in contrast to a constant cross- 
ection, it is much harder to estimate this for a velocity-dependent 
ross-section based on the velocities a particle has seen, as the
robability of seeing a relative velocity close to v e (see equation 4 )
ight be small. Our tests showed that we would often o v erestimate

he time-step. This problem can be circumvented by directly using v e ,
nstead of making estimates based on what a particle has seen in the
revious time-step as described in Section 2.3 . Hence, it is possible
o build a time-step criterion that guarantees for each particle pair
he interaction probability or drag force is sufficiently small. 

Lastly, we want to explain why one should not directly use the
nteraction probabilities a particle has encountered in the previous 
ime-step. The disadvantage is that large interaction probabilities 
re less likely to be seen by a numerical particle than the rele v ant
elocities (for a constant cross-section this would be the maximum 

elocity). This is because in most cases the kernel overlap, � ij ,
s small. Or in other words, the probability of having a numerical
article pair with a relative velocity close to the rele v ant velocity and
 large kernel o v erlap is smaller than having only a relative velocity
lose to the rele v ant velocity. 

PPENDI X  C :  C O M OV I N G  I N T E G R AT I O N  

EST  

or testing the implementation of velocity-dependent self- 
nteractions, we introduce and use a new test problem in this
ppendix. The test problem is very similar to the one we have used
y Fischer et al. ( 2022 ). A single particle is travelling within an
xpanding space through a background density. This background is 
t rest (zero canonical momentum) and has no density gradient. For
his test problem, we only consider the drag force which decelerates
he particle but do not re-add the energy as described in section 2.2 of
ischer et al. ( 2021a ). We do not take any further physics into account,

.e. run the test problem without gravity. Hence, we expect the test
article to be decelerated o v er time. We calculate semi-analytically
ow the canonical momentum of the test particle evolves over time
nd compare the results from the simulation to it. This is shown
n Fig. C1 . Note, in the absence of self-interactions the canonical
omentum would stay constant o v er the cosmic expansion. 
Further, we want to point out that this test problem is more

usceptible to numerical errors than a typically fSIDM simulation. 
he interaction between a pair of numerical particles does not change

heir relativ e v elocity. This makes the pairwise interaction in some
ense time-implicit and more stable. Ho we ver, if we compute the drag 
orce only and do not re-add the energy, as done for the test problem,
e break this. This is true for the test problem when conducted with a
elocity-independent cross-section (see appendix A by Fischer et al. 
022 ) too. But in contrast, the velocity dependence makes it even
ore unstable. Assuming that the test particle is slightly faster than

t is supposed to be, one would expect the drag force to be stronger
velocity-independent cross-section) or weaker (velocity-dependent 
ross-section) than it is supposed to experience. The first case would
uppress the deviation but the second enhances it. In the opposite case
here the particle is slower than supposed, one finds again that the
elocity-dependent cross-section tends to increase the deviation. In 
onsequence, the test problem we show is quite unstable. However, 
n general, this depends on how strong the velocity dependence is,
n our model specified by α. 

Overall, we find that the test simulation agrees sufficiently enough 
ith the prediction and we can conclude the implementation of 
elocity-dependent self-interactions works as supposed. 
MNRAS 529, 2327–2348 (2024) 
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M

Figure C1. The cosmic deceleration problem in terms of canonical momen- 
tum is shown. The simulation runs from a = 0.5 to a = 1.0 with 122500 
particles in a cubic box with a comoving side length of 1400 kpc h −1 . The 
total mass is 22 . 8465 × 10 10 M � h −1 , corresponding to a comoving density 
of 83 . 26 M � kpc −3 h 2 . The initial snapshot velocity of the test particle 
is 100 kpc Gyr −1 , which corresponds to an initial canonical momentum 

of 35 . 35534 kpc Gyr −1 . The particles are evolved with a cross-section of 
σ0 /m χ = 7 × 10 7 cm 

2 g −1 , w = 10 . 0 km s −1 and the SIDM kernel sizes are 
computed using N ngb = 64. 
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Table D1. The properties of the zoom-in simulations we use for the 
convergence test are given. We provide the name of the simulation, the 
number of particles in the highly resolved region ( N high res ) and the mass 
of the high-resolution particles ( m DM 

). All simulations share the same initial 
conditions but with different resolutions. 

name N high res m DM 

[ M � h −1 ]

1x ∼4.51 × 10 4 8.3 × 10 8 

10x ∼4.52 × 10 5 8.3 × 10 7 

25x ∼1.13 × 10 6 3.3 × 10 7 

250x ∼1.13 × 10 7 3.3 × 10 6 

2500x ∼1.13 × 10 8 3.3 × 10 5 
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PPENDIX  D :  C O N V E R G E N C E  O F  DENSITY  

ROFILE  

n this Appendix, we study the convergence of our simulations
ith velocity-dependent self-interactions. To do so we run zoom-

n simulations of the same object but with varying resolutions. The
oom-in region is selected from a large box with a comoving side
ength of 1 Gpc h 

−1 and its most massive halo has a virial mass
f ∼ 8 . 8 × 10 11 M � h 

−1 . Several publications (e.g. Planelles et al.
013 ; Rasia et al. 2015 ) made use of this box for zoom-in initial
onditions and it was first described by Bonafede et al. ( 2011 ).
e run the simulation with two cross-sections, σ0 /m = 1 . 0 cm 

2 g −1 ,
 = 360 . 0 km s −1 and σ0 /m = 5 . 0 cm 

2 g −1 , w = 360 . 0 km s −1 . The
ifferent resolutions we simulated are described in Table D1 . 
NRAS 529, 2327–2348 (2024) 

igure D1. We show the density profile of the most massive subhalo of our zoom
hich is the same as given by Fischer et al. ( 2022 ). The other two panels show the re
ifferent resolutions. This allows us to see that the profiles are converging for incr
2.3 × 10 6 particles. 
In Fig. D1 , we show the density profile for the most massive halo of
he zoom-in simulations. We can see that the density profile converges
or collisionless DM (upper panel), but also when velocity-dependent
elf-interactions are present (middle and lower panel). 

PPENDI X  E:  C E N T R A L  DENSITY  G R A D I E N T  

F  SATELLITES  

n Fig. E1 , we show the density gradient in the centre of satellites
ore massive than ≈ 4 . 9 × 10 10 M � h 

−1 as a function of their mass.
e consider all subhaloes identified by SUBFIND satellites if they

re not a primary subhalo (see Section 2.1 ). Note this figure is built
nalogously to Fig. 14 . The density gradient is computed using the
ean density of the innermost 200 particles and the corresponding

adius compared to the radius within which the average density drops
y 50 per cent. 
Similar to the circular velocity shown in Fig. 14 , we find

hat for the strongly velocity-dependent cross-section (the right-
and panel of Fig. E1 ) the density gradient is on average steeper
han for CDM at small satellite masses when the cross-section is
ufficiently large. This indicates that the corresponding satellites
re collapsing. In contrast, we do not find these steep density
radients for the other cross-section with no (left-hand panel) or
 weaker (middle panel) velocity dependence. Moreover, the simu-
ations for those cross-sections show density gradients that are on
verage flatter compared to CDM, i.e. those satellites host a density
ore. 
-in simulations. We give the profile for a CDM simulation (left-hand panel), 
sult of velocity-dependent fSIDM simulations. The different colours indicate 
easing resolution. In the highest resolved run, the subhalo is represented by 
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Figure E1. The central density gradient is shown for satellites with a mass of at least ≈ 4 . 9 × 10 10 M � h −1 . We consider all satellites that are not the primary 
subhalo. The lines indicate the mean and the shaded regions the standard deviation for the corresponding DM models. This is analogous to Fig. 14 , as well as 
the markers. 
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PPENDIX  F:  FREQUENT  VERSUS  R A R E  

E LF-INTERAC TIONS  

ere, we show the central density of the host halo as a function of
he number of satellites (Fig. F1 ). The three most massive haloes are
isplayed as previously done in fig. 16 by Fischer et al. ( 2022 ). We
nd that the frequent self-interactions independent of w reduce the 
umber of satellites stronger than rare scattering when comparing 
hem at levels of the same central host density (upper panels) or the
oundness of the host’s shape (lower panels). However, one halo for
he w = 180 km s −1 poses an exception. 
f  

igure F1. We show the central density (upper panels) and the shape (lower panel
M models. The velocity-independent cross-sections are shown in the left-hand pa
iddle panels give the results for the models with w = 560 km s −1 . And cross-sect

n the right-hand side panels. 

3/232
PPENDI X  G :  SI DM  C O N S T R A I N T S  

n Fig. G1 , we show constraints on the strength of DM self-
nteractions together with our SIDM models. Here, we compute 
he ef fecti ve cross-section as introduced by Yang & Yu ( 2022 )
see also equation 9 ). This requires an estimate of an ef fecti ve
elocity dispersion, which we compute from a given virial mass, 
 vir . To do so, we use the halo mass-concentration relation given by
utton & Macci ̀o ( 2014 ). With the obtained concentration parameter,
 , we infer the maximum velocity dispersion, ν2 

max . For the ef fecti ve
elocity dispersion we employ σ eff 

1D = 0 . 9 × νmax . We choose the
actor of 0.9 as it provides a good match for our isolated NFW
MNRAS 529, 2327–2348 (2024) 

s) of the host halo as a function of the number of their satellites for different 
nels (this has previously been shown in fig. 16 by Fischer et al. 2022 ). The 

ions with the strongest velocity dependence ( w = 180 km s −1 ) are displayed 
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igure G1. We show constraints for a velocity-independent cross-section to-
ether with the fSIDM models that we simulated. This is given in terms of the
f fecti ve cross-section, σ eff (Yang & Yu 2022 ) as a function of the virial DM
alo mass. Constraints on the self-interaction strength obtained by various
uthors are shown. The colours of our SIDM models correspond to the ones
hown in Fig. 6 . Note, our rSIDM models are 1/3 weaker than the fSIDM
ross-sections when compared in terms of σ eff . 
NRAS 529, 2327–2348 (2024) 

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an 
( https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reus
imulation shown in Section 3.2.2 . This concerns the match of the
elocity-independent cross-sections with the ones that are described
y w = 720 km s −1 and σ0 /m = 5 × 10 3 cm 

2 g −1 . Ho we v er, we hav e
o note that the viscosity cross-section-like matching for the angular
ependence in σ eff does not provide a match as good as the one
rom the momentum transfer cross-section in this particular case. If
e would have used the viscosity cross-section for the matching the

sotropic cross-section would have 3/2 of the strength we obtained
rom the momentum transfer matching while leaving the fSIDM
ross-section unchanged. 

The constraints shown in Fig. G1 stem from measures of different
ffects that SIDM has on the distribution of DM. This includes
he formation of a density core (Andrade et al. 2021 ; Correa 2021 ;
agunski et al. 2021 ; Shi et al. 2021 ; Eckert, D. et al. 2022 ; Gopika &
esai 2023 ), oscillations of the brightest cluster galaxy (Harv e y et al.
019 ), and the shapes of the haloes (Peter et al. 2013 ; Despali et al.
022 ). 
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