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When estimating misspecified linear factor models for the cross-section of expected returns using GMM, the 
explanatory power of these models can be spuriously high when the estimated factor means are allowed to 
deviate substantially from the sample averages. In fact, by shifting the weights on the moment conditions, any 
level of cross-sectional fit can be attained. The mathematically correct global minimum of the GMM objective 
function can be obtained at a parameter vector that is far from the true parameters of the data-generating 
process. This property is not restricted to small samples, but rather holds in population. It is a feature of the 
GMM estimation design and applies to both strong and weak factors, as well as to all types of test assets.
1. Introduction

A multitude of tools have been devised to assess factor models’ 
ability to explain cross-sectional variation in expected asset returns. 
Besides the Fama-MacBeth two-pass regression approach and its exten-

sions, tests of factor models using the generalized method of moments 
(GMM) are popular, especially in the presence of nontradable factors 
motivated from macrofinancial equilibrium asset pricing models. In this 
paper, we show that a prominent GMM estimator is extremely sensitive 
to the choice of the weighting matrix if the tested asset pricing model is 
misspecified. It can produce biased parameter estimates and strongly 
inflated model performance statistics, leading applied researchers to 
falsely conclude that their model is helpful in understanding asset re-

turns. As a consequence, we recommend against using this estimator. 
Researchers should instead rely on alternative misspecification-robust 
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inference procedures. If they still wish to use the approach criticized 
here, we discuss several ways to detect and alleviate the problem within 
the presented framework in Section 4.

The estimator was proposed by Cochrane (2005), first prominently 
used by Yogo (2006), and afterwards adopted by many researchers, for 
example Darrat et al. (2011), Grammig et al. (2009), Maio and Santa-

Clara (2012), Maio (2013a,b), Lioui and Maio (2014), Tedongap (2015), 
Da et al. (2016), and Chen and Lu (2017). It also features as a bench-

mark estimator in Penaranda and Sentana (2015) and Manresa et al. 
(2023) and in the literature on currency excess returns and carry trades 
(see, e.g., Menkhoff et al. (2012), Menkhoff et al. (2013), Della Corte et 
al. (2016a), Della Corte et al. (2016b), Bekaert and Panayotov (2020), 
Della Corte et al. (2022)). The estimator employs two sets of moment 
conditions: The first is given by the pricing errors of the test assets, for-

mally 0 = 𝐸 [𝑅𝑒 −𝑅𝑒(𝐹 − 𝜇)𝜆] = 𝐸 [𝑅𝑒{1 − (𝐹 − 𝜇)𝜆}]. Since the term 
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in curly brackets can be interpreted as a (normalized) stochastic dis-

count factor, the estimator is sometimes referred to as the centered SDF 
approach. These moment conditions imply that expected excess returns 
must be linear in the covariance between excess returns 𝑅𝑒 and can-

didate factors 𝐹 . However, the market price of risk (MPR) 𝜆 is not 
identifiable from this condition alone. Instead, it can only be identified 
jointly with the set of factor means 𝜇. A second set of moment condi-

tions of the form 0 =𝐸[𝐹 −𝜇] is added, recognizing sampling variation 
from estimating factor means.

Within the GMM framework, a common approach is to minimize 
the quadratic form 𝑔′

𝑇
𝑊 𝑔𝑇 , where 𝑔𝑇 denotes the vector of sample 

averages of the moment conditions and 𝑊 is a weighting matrix, as-

signing relative importance to (combinations of) the different moment 
conditions. We show that too low a weight on the second set of the 
above moment conditions leads to a weakly identified model, resulting 
in an overall incorrect inference. The wedge between the parameters 
minimizing the GMM objective function and those governing the true 
data-generating process can be substantial, even for standard choices of 
the weighting matrix. Consequently, many results in the papers men-

tioned above are contaminated by this bias. Intuitively, minimizing the 
quadratic form 𝑔′

𝑇
𝑊 𝑔𝑇 leads to a situation in which 𝜇 is not identified 

by the moment condition 0 = 𝐸[𝐹 − 𝜇] alone, but the estimator also 
seeks to minimize the pricing errors through the choice of 𝜇. When esti-

mating a misspecified model, the cost of not matching 0 =𝐸[𝐹 −𝜇] can 
be lower in relative terms than the cost of having high pricing errors.

It is important to precisely pinpoint the extent of the problem. 
Specifically, a related, but different approach is presented by Burnside 
(2011). He discusses solutions of 𝑎𝑇 𝑔𝑇 = 0 for generalized weighting 
schemes 𝑎𝑇 , which are more flexible than the common “least squares” 
approach. The particular scheme 𝑎𝑇 that he favors fixes the estimate of 
𝜇 to the sample average of the factor and thus avoids the bias that we 
describe. Many papers in the literature that report GMM estimates for 
factor models only outline the moment conditions and do not explicitly 
state whether they use the least squares weighting scheme (which is 
susceptible to the bias) or the generalized Burnside (2011) scheme. For 
instance, the literature on currency excess returns and carry trades cited 
above employs a range of variations of these approaches, also in com-

bination with (what seem to be) ad hoc fixes to the problem outlined in 
our paper, e.g., exogenously specified extreme weighting matrices.

In theory, the choice of the weighting scheme is innocuous, as long 
as the model is correctly specified. In applications, however, researchers 
always have to deal with misspecified models. In light of this, they do 
not make any statement as to whether a model is correct, i.e., whether 
the factor exposures fully explain the cross-sectional variation in ex-

pected returns. Instead, they analyze what fraction of this variation 
is explained by the model. In more technical terms, with a misspeci-

fied model there is no vector of parameters that sets all GMM moment 
conditions identically equal to zero. This means that Assumption 2.4 in 
Hansen (1982) is violated in the sense that not even in population are 
all moment conditions equal to zero. The minimum of the GMM objec-

tive function 𝑔′
𝑇
𝑊 𝑔𝑇 is greater than zero and obtained at a parameter 

vector that can be far from the parameters of the true data-generating 
process. We show in a controlled simulation environment that the es-

timator misestimates the factor means in favor of matching the Euler 
equations.

The resulting bias can materialize in two ways: First, unpriced fac-

tors can appear priced, i.e., the estimated market price of risk (MPR) can 
be large (and significant) despite the true MPR being close to zero. The 
corresponding estimated pricing performance can be heavily overstated 
in the sense that pricing errors are small and cross-sectional 𝑅2’s are 
large. We show that the estimated 𝑅2 can take on any value between the 
true cross-sectional 𝑅2 and 1, depending on the choice of the weighting 
matrix. Importantly, the bias is substantial even for strong factors, i.e., 
factors that are strongly correlated with the returns of the test assets 
in the time series. Second, when estimating a linear factor model with 
2

multiple factors, relatively weaker and unpriced factors can “drive out” 
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stronger priced factors. More precisely, MPR estimates of weaker fac-

tors can be large and significant, while those of stronger priced factors 
are biased downwards, i.e., small and insignificant.

Importantly, “relatively weaker” does not mean that any of the fac-

tors are necessarily weak or useless. There is a large amount of literature 
dealing with the econometric details of cross-sectional asset pricing 
with weak factors, e.g., Kan and Zhang (1999a,b), Stock and Wright 
(2000), Kleibergen (2009), Gospodinov et al. (2014), Kleibergen and 
Zhan (2015, 2020), Bryzgalova (2016), Gospodinov et al. (2019) or 
Burnside (2016). However, this literature is unrelated to the problem 
documented in our work, which applies to all factors irrespective of 
their strength.

Some papers argue that broadening the set of test portfolios miti-

gates some econometric issues of asset pricing tests (see, e.g., Lewellen 
et al., 2010). Interestingly, the problem discussed in our paper is exac-

erbated when the number of test assets is increased. If we add more test 
assets, ceteris paribus the overall weight on the Euler equation moment 
conditions in the GMM objective function increases relative to the mo-

ment conditions identifying the factor means (whose number does not 
change). Therefore, the estimator prioritizes the matching of the Euler 
equations more strongly at the cost of not matching the factor means.

Generally, parameter identification in GMM settings is not just a 
feature of the factor (Kan and Zhang, 1999a) or of weakly correlated 
test assets (Giglio et al., 2022), but also of the weighting matrix applied 
in the estimation. This general point has not been a particular point of 
focus in the literature. An exception is the application to continuously 
updated estimators in Gospodinov et al. (2017). We start our analysis 
with prespecified weighting matrices but show that the problem also 
carries over to endogenous ways of selecting the weights.

Finally, what is the practical relevance of the issue highlighted in 
this paper? Essentially, all prominent cross-sectional asset pricing tests 
have been subject to critique, highlighting shortcomings in particu-

lar situations. As a consequence, empirical asset pricing papers rarely 
show results from only one cross-sectional test to make a case for their 
preferred factor model. Clearly, running several tests – be it two-pass 
regressions, GMM, or portfolio sorts – makes biases in one of these 
methods more easily detectable. Still, the GMM estimator discussed 
here represents a popular choice, as recently highlighted by Manresa 
et al. (2023). Browsing through the literature, we find that it is often 
applied – even in isolation – in papers that empirically investigate equi-

librium asset pricing models (or linearized versions thereof) featuring 
nontraded factors.

The popularity of the GMM estimator in this strand of the literature 
may result from the fact that it is very lean, compared to, for example, 
Fama-MacBeth regressions. It prescribes one moment condition per fac-

tor to identify the factor means 𝜇 and one moment condition per test 
asset to identify the factor risk premia 𝜆. To give an example, when 
estimating a three factor model with 25 test assets, the approach dis-

cussed in our paper employs 28 moment conditions to estimate six 
parameters. In particular, it does not require the separate identifica-

tion of factor exposures (“betas”). In the above example, the Fama 
and MacBeth (1973) or Cochrane (2005) approach would estimate 103 
parameters (25 “alphas”, 3 × 25 “betas”, and three “lambdas”) with 
125 moment conditions (100 exogeneity conditions corresponding to 
OLS time series regressions and 25 conditions corresponding to cross-

sectional regressions (see Cochrane (2005), Section 12.2)). Keeping the 
number of moment conditions small, relative to the sample size, is cru-

cial to obtain reliable estimates in GMM settings (see, e.g., Newey and 
Windmeijer, 1994). Moreover, Fama-MacBeth regressions come with 
several other empirical challenges, which have been discussed exten-

sively in the literature.

Our paper is structured as follows. Section 2 explains the bias of the 
estimator and also points out why it is different from the approach dis-

cussed in Burnside (2011). We then analyze the extent of the bias in a 
controlled environment using simulated data. Section 3 considers sev-
eral examples with real data. We start by considering the Fama and 
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French (1993) three-factor model and augment it with an obviously 
meaningless factor. We then study prominent examples from the as-

set pricing literature: the models of Yogo (2006), Parker and Julliard 
(2005), Kroencke (2017), He et al. (2017), and Maio and Santa-Clara 
(2012). Some papers (rather indirectly) point towards the issue dis-

cussed in our paper, e.g., Parker and Julliard (2005), Savov (2011), or 
Delikouras and Kostakis (2019). Instead of providing an in-depth anal-

ysis of the fundamental problem that we are focusing on, they suggest 
ad hoc procedures to robustify their empirical findings, such as fixing 
betas to their OLS counterparts. Other papers do not seem to be aware 
of the problem. The most prominent example is Yogo (2006), which we 
investigate in greater detail.1

Finally, Section 4 provides suggestions for applied researchers on 
how to address the issue discussed here. As emphasized above, we 
recommend avoiding the use of the estimator discussed here and in-

stead relying on alternatives. Kroencke and Thimme (2023) discuss 
several such alternative estimators and their properties in small sam-

ples. Should researchers still wish to use the GMM estimator discussed 
here, we elaborate on how they can diagnose and mitigate the bias. In 
short, one should always report point estimates for the factor means 
and compare them to estimates from other methods. For traded factors, 
it is crucial to consider that the MPR and the factor means are identical 
in theory.

Our paper is accompanied by an online appendix. Section A of this 
appendix discusses and illustrates the bias theoretically for several con-

figurations of factors and test assets. Section B provides details on the 
simulation study, while Section C discusses papers in the literature that 
use the estimation approach we criticize. We do not provide replica-

tions of these papers because replication code is not available. Still, the 
results in these papers should be interpreted with caution in light of our 
findings. Section D provides further information regarding the results 
of Yogo (2006). The replication files for our paper can be downloaded 
from www .julianthimme .de /code.

2. Cross-sectional regressions with GMM

2.1. The problem

Unconditional linear asset pricing models imply that the expected 
excess return on asset 𝑖 = 1, ..., 𝑛 is proportional to the covariances of its 
excess return with a group of risk factors 𝐹𝑗 (𝑗 = 1, ..., 𝑘):

𝐸[𝑅𝑒
𝑖 ] =

𝑘∑
𝑗=1

𝐶𝑜𝑣(𝑅𝑒
𝑖 ,𝐹𝑗 )𝜆∗𝑗 ⟺ 0 =𝐸

[
𝑅𝑒

𝑖 −
𝑘∑

𝑗=1
𝑅𝑒

𝑖 (𝐹𝑗 −𝐸[𝐹𝑗 ])𝜆∗𝑗

]
.

(1)

Since the true factor means 𝐸[𝐹𝑗 ] are typically unknown, a common 
approach is to estimate the (normalized) MPRs 𝜆∗𝑗 and the factor means 
jointly using a GMM estimator with the moment conditions2

𝑔𝑇 (𝜆,𝜇) =𝐸𝑇

[
𝑅𝑒

𝑖 −
∑𝑘

𝑗=1𝑅
𝑒
𝑖 (𝐹𝑗 − 𝜇𝑗 )𝜆𝑗 , 𝑖 = 1,… , 𝑛

𝐹𝑗 − 𝜇𝑗, 𝑗 = 1,… , 𝑘

]
. (2)

In the first 𝑛 moment conditions, the returns can be factored out. The 
conditions are thus equivalent to 𝐸𝑇 [𝑅𝑒

𝑖 (1 −
∑𝑘

𝑗=1(𝐹𝑗 − 𝜇𝑗 )𝜆𝑗 )] = 0, 
which represents an Euler equation with stochastic discount factor 

1 Yogo (2006) also contains a non-linear model from which the linear model 
is derived by log-linearization. The non-linear model was recently criticized by 
Borri and Ragusa (2017). They find that the model in general has a hard time 
explaining the interest rate and the equity premium simultaneously. This result, 
however, is completely independent of the failure of the linear factor model that 
we document.

2 Throughout the paper, we use the notation of Hansen (1982) in which a 
3

subscript 𝑇 denotes the sample equivalent of a given moment.
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(1 −
∑𝑘

𝑗=1(𝐹𝑗 − 𝜇𝑗 )𝜆𝑗 ). Therefore, this estimator is sometimes referred 
to as the centered SDF approach (see Penaranda and Sentana, 2015).

Whenever we have more test assets than factors, i.e. 𝑛 > 𝑘, the sys-

tem is overidentified and we have to select a weighting scheme, which 
is specified as a 2𝑘 × (𝑛 + 𝑘) matrix 𝑎𝑇 . The parameter estimates are 
then given by the solution of 𝑎𝑇 𝑔𝑇 (𝜆, 𝜇) = 0. The most common weight-

ing schemes are of the type 𝑎𝑇 =
𝜕𝑔′

𝑇

𝜕𝜃
𝑊 , where 𝜃 = (𝜆, 𝜇)′ is the vector 

of parameters, and 𝑊 is referred to as the weighting matrix. With this 
weighting scheme, the GMM estimation boils down to minimizing the 
quadratic form 𝑔′

𝑇
𝑊 𝑔𝑇 .

Our paper is concerned with the impact of the weighting matrix 
𝑊 on the point estimates of 𝜆 and 𝜇 in the context of this least 
squares GMM approach. We discuss an alternative choice of the weight-

ing scheme 𝑎𝑇 , not corresponding to least squares, in Section 2.2. 
Importantly, in the knife-edge case where the model is correctly spec-

ified (which is obviously never true in empirical applications), i.e., 
when 𝑔𝑇 (𝜆, 𝜇) → 0 as 𝑇 →∞ for the unique parameter vector (𝜆, 𝜇) =
(𝜆∗, 𝐸[𝐹 ]), the choice of the weighting scheme does not matter for the 
point estimates.

Assume now that the tested factor model is misspecified, such that 
expected returns are not proportional to the factor exposures, i.e., there 
are pricing errors 𝑒𝑖 (𝑖 = 1, ..., 𝑛), given as

𝑒𝑖 =𝐸

[
𝑅𝑒

𝑖 −
𝑘∑

𝑗=1
𝑅𝑒

𝑖 (𝐹𝑗 −𝐸[𝐹𝑗 ])𝜆∗𝑗

]
, (3)

which is nonzero for at least one test asset. For example, there could be 
an omitted factor 𝐹𝑜𝑚 and 𝑒𝑖 = 𝐸[𝑅𝑒

𝑖 (𝐹𝑜𝑚 − 𝐸[𝐹𝑜𝑚])𝜆∗𝑜𝑚] with 𝜆∗𝑜𝑚 ≠ 0. 
Then there is no parameter vector (𝜆, 𝜇) setting all moment condi-

tions in (2) equal to zero. In such situations, the parameter estimates 
depend on the weights assigned to the conditions in the estimation. 
Still, our goal is to estimate the parameters 𝜆 = 𝜆∗ and 𝜇 = 𝐸[𝐹 ]
and report informative model performance statistics, for example 𝑅2 =
1 −

∑
𝑖 𝑒

2
𝑖 ∕ 

∑
𝑖 𝐸[𝑅𝑒

𝑖 ]
2 or 𝑅𝑀𝑆𝐸 =

√
1
𝑛

∑
𝑖 𝑒

2
𝑖 .

To illustrate the impact of the weighting matrix on estimates and 
model performance statistics, consider the extreme case where the 
weights on the moment conditions 𝐸𝑇 [𝐹𝑗 − 𝜇𝑗 ] are equal to zero, i.e., 
the lower right submatrix of 𝑊 is equal to 0𝑘×𝑘. The two sample mo-

ment conditions in Equation (2) then effectively reduce to only one:

𝑔𝑇 (𝜆,𝜇) =𝐸𝑇 [𝑅𝑒
𝑖 −

𝑘∑
𝑗=1

𝑅𝑒
𝑖 (𝐹𝑗 − 𝜇𝑗 )𝜆𝑗 ]

=𝐸𝑇 [𝑅𝑒
𝑖 ] −

𝑘∑
𝑗=1

𝐸𝑇 [𝑅𝑒
𝑖 (𝐹𝑗 −𝐸𝑇 [𝐹𝑗 ])]𝜆𝑗

−𝐸𝑇 [𝑅𝑒
𝑖 ]

𝑘∑
𝑗=1

(𝐸𝑇 [𝐹𝑗 ] − 𝜇𝑗 )𝜆𝑗 . (4)

The reformulation in Equation (4) illustrates a simple way of minimiz-

ing the moment condition. The estimator can single out one factor 𝑗∗, 
set 𝜇𝑗∗ = 𝐸[𝐹𝑗∗ ] − 𝜆−1

𝑗∗ and let 𝜆𝑗∗ become very small (basically equal 
to 0). Setting 𝜆𝑗 = 0 and 𝜇𝑗 to any arbitrary value for all other 𝑗 ≠ 𝑗∗

then makes 𝑔𝑇 (𝜆, 𝜇) approach zero, corresponding to the minimum of 
the GMM objective function. This is true for any choice of 𝑗∗: The sec-

ond term on the right-hand side of Equation (4) goes to zero since all 
summands except one are equal to zero, and the summand for 𝑗∗ is ar-

bitrarily close to zero as 𝜆𝑗∗ becomes very small. Similarly, the third 
term converges to 𝐸𝑇 [𝑅𝑒

𝑖 ]. As a consequence, the moment condition (4)

converges to zero for all test assets.

In the following, we label such parameter estimates as trivial solu-

tions. They are solutions of the optimization problem because they are 
global minima (one per candidate factor) of the GMM objective func-

tion. They are trivial in the sense that they set all moment conditions to 

zero, irrespective of the properties of the factors. The above argument 

http://www.julianthimme.de/code
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holds irrespective of the strength of the factors (referring to the strength 
of the time series correlation of the factor with the test asset returns) 
and for priced and unpriced factors (referring to the cross-sectional cor-

relation between expected returns and time series covariances).

Assigning a positive weight to the moment conditions 𝐸𝑇 [𝐹𝑗 − 𝜇𝑗 ]
makes trivial solutions “costly”, since 𝜇𝑗∗ = 𝐸[𝐹𝑗∗ ] − 𝜆−1

𝑗∗ with 𝜆𝑗∗ → 0
drives 𝜇𝑗∗ far from 𝐸[𝐹𝑗∗ ]. If the weight goes to infinity, the estimates of 
𝜇𝑗 are fixed to 𝐸𝑇 [𝐹𝑗 ].3 We refer to this solution as the desired solution. 
It is desired in the sense that we want 𝜇𝑗 to be close to 𝐸𝑇 [𝐹𝑗 ] and to 
not give the estimator the additional degree of freedom to just match 
Euler equations and produce a trivial solution.

2.2. Finite weights

As a simple starting point, we analyze weighting matrices 𝑊𝑥 of the 
form

𝑊𝑥 =
(

𝐼𝑛 0
0 10𝑥 𝐼𝑘

)
= diag(1,… ,1,10𝑥,… ,10𝑥). (5)

The two extreme cases 𝑥 → −∞ and 𝑥 → ∞, which lead to trivial 
and desired solutions, respectively, have been discussed in Section 2.1

above. For simplicity, assume that there is a single factor 𝐹 . All for-

mulas presented in the following naturally generalize to the case of 
multiple factors. The gradient 𝜕𝑔𝑇

𝜕𝜃
with 𝜃 = (𝜆, 𝜇) is given by

𝜕𝑔′
𝑇

𝜕𝜃
=
(
𝐸𝑇 [𝑅𝑒

1(𝜇 − 𝐹 )] … 𝐸𝑇 [𝑅𝑒
𝑛(𝜇 − 𝐹 )] 0

𝐸[𝑅𝑒
1]𝜆 … 𝐸𝑇 [𝑅𝑒

𝑛]𝜆 −1

)
. (6)

Given the choice of the weighting matrix 𝑊𝑥 in (5), the estimator thus 
solves the two non-linear equations

𝑛∑
𝑖=1

𝐸𝑇 [𝑅𝑒
𝑖 (𝐹 − 𝜇)] ⋅𝐸𝑇 [𝑅𝑒

𝑖 −𝑅𝑒
𝑖 (𝐹 − 𝜇)𝜆)] = 0 (7)

[
𝑛∑

𝑖=1
𝐸𝑇 [𝑅𝑒

𝑖 ]𝜆 ⋅𝐸𝑇 [𝑅𝑒
𝑖 (1 − (𝐹 − 𝜇)𝜆)]

]
− 10𝑥(𝐸𝑇 [𝐹 ] − 𝜇) = 0 (8)

for 𝜆 and 𝜇. For the two scenarios 𝑥 → ±∞, the solutions were already 
discussed in Section 2.1 above. The solutions for finite weights 𝑥 lie 
in between these two extreme cases. We will analyze them in detail in 
Section 2.3.

An alternative to the least squares weighting scheme 𝑎𝑇 =
𝜕𝑔′

𝑇

𝜕𝜃
𝑊 is 

discussed by Burnside (2011, Section 2.2 of the online appendix). He 
suggests to use

𝑎𝑇 =
(
𝐸𝑇 [𝑅𝑒

1(𝜇 − 𝐹 )] … 𝐸𝑇 [𝑅𝑒
𝑛(𝜇 − 𝐹 )] 0

0 … 0 −1

)
.

This boils down to setting the lower left submatrix of (6) equal to zero. 
With this choice, Equation (8) simplifies to 𝐸𝑇 [𝐹 ] − 𝜇 = 0. The esti-

mator thus effectively estimates 𝜇 separately from 𝜆. It sets 𝜇̂ = 𝐸𝑇 [𝐹 ]
and then selects the value of 𝜆 that solves Equation (7), given 𝜇̂. In this 
sense, it can be interpreted as a two-stage approach and, indeed, Burn-

side (2011) shows that the point estimates are identical to those of a 
classic Fama and MacBeth (1973) two-stage regression.

In contrast, the least squares GMM approach that we analyze takes 
the pricing errors into account when estimating 𝜇. It is this decisive 
feature that creates the tension between minimizing pricing errors and 
estimating factor means. The GMM estimator searches for parameters 
that minimize all moment conditions jointly, and the pricing errors can 
also provide information about the factor means. The weighting ma-

trix 𝑊 , which determines the relative importance of pricing errors and 

3 This choice of 𝜇 is equivalent to using the moment condition 0 =
𝐸
[
𝑅𝑒

𝑖 −𝑅𝑒
𝑖 (𝐹 − 𝐹 )𝜆

]
, where 𝐹 denotes the time series average of the factor. 

This alternative GMM estimator has also been suggested in the literature; see, 
4

e.g., the detailed discussion in Ferson (2019), p. 180, p. 220, or pp. 224ff.
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factor means, then determines whether the solution is closer to a triv-

ial or to a desired solution. The literature on currency excess returns 
and carry trades applies the moment conditions outlined in this paper 
extensively. However, some authors in this literature do not state ex-

plicitly whether they use the standard least squares weighting scheme 
or the enhanced weighting scheme of Burnside (2011). Our paper tries 
to clear up the resulting confusion and shows what can go wrong when 
the least squares approach is not applied carefully. As we document in 
detail in Section 2.3 below, even for seemingly innocuous choices of the 
weighting matrix, the estimator yields point estimates that can be far 
from the parameters of the true data-generating process.

2.3. Controlled environment

To analyze the behavior of the estimator for positive and finite 
weights on the moment conditions 𝐹𝑗 −𝜇𝑗 , we specify a data-generating 
process and draw finite samples of factors and test asset returns. The fac-

tors 𝐹1, … , 𝐹𝑘 are drawn independently from normal distributions with 
means and standard deviations that are all set to 1 percent per quarter. 
The data generating process for excess returns is given as

𝑅𝑒
𝑖,𝑡 =𝐸[𝑅𝑒

𝑖,𝑡] +
𝑘∑

𝑗=1
𝛽𝑖,𝑗 (𝐹𝑗,𝑡 −𝐸[𝐹𝑗,𝑡]) + 𝜎𝑖 𝜀𝑖,𝑡, (9)

where the 𝜀’s are independent from one another and from the factors 
and are also i.i.d. normally distributed with means of 0 and standard 
deviations (𝜎𝑖) of 1 percent.

Unless stated otherwise, we simulate 25 return time series with 600 
observations each. The sample size corresponds to a standard monthly 
post-war sample, but we also analyze the impact of the sample size in 
Section 2.5. Even though both the factor time series and the 𝜀’s are 
sampled from independent distributions, we subsequently orthogonal-

ize them to ensure that they are perfectly orthogonal even in our small 
sample. Since we are not interested in standard error estimates or small 
sample properties, we draw only one single sample and then rescale this 
one sample to make sure that the sampled data have the same in-sample 
moments as the data in population.4

The cross-sectional variation in expected returns 𝐸[𝑅𝑒
𝑖,𝑡] is modeled 

as follows. We first draw a true factor exposure 𝑏𝑖,𝑗 of the return of asset 
𝑖 to factor 𝑗 from a normal distribution with a mean and standard de-

viation of 1 percent. Importantly, the true exposures are assumed to be 
constant over time, i.e., they are only drawn once before we simulate 
the factor and return time series. The vectors of true factor exposures 
(𝑏𝑖,𝑗 )𝑖=1,…,𝑛 for the different factors 𝑗 are supposed to be orthogonal. Af-

ter drawing the vectors of factor exposures and orthogonalizing them, 
we again rescale them, such that they all have a mean and standard 
deviation of 1 percent in sample. Finally, to allow for model misspecifi-

cation and varying degrees of explanatory power of the factor exposures 
in our setup, we set

𝐸[𝑅𝑒
𝑖,𝑡] =

𝑘∑
𝑗=1

(𝑟𝑗𝑏𝑖,𝑗 +
√

1 − 𝑟2𝑗 𝑒𝑖,𝑗 ), (10)

where the parameters 𝑟𝑗 are chosen between 0 and 1 and the 𝑒𝑖,𝑗 have 
exactly the same properties as the 𝑏𝑖,𝑗 , but are orthogonal to them and 
have a cross-sectional mean of zero. Appendix B.1 shows that the true 
cross-sectional 𝑅2 is then given by 1

𝑘

∑𝑘
𝑗=1 𝑟

2
𝑗 . Our design allows us to 

analyze perfectly priced factors (by setting 𝑟 = 1), perfectly unpriced 
factors (by setting 𝑟 = 0), and everything in between.

We also want to distinguish between weak and strong factors. To this 
end, we introduce parameters 𝑠𝑗 ∈ [0, 1] that control the time series cor-

relation between factors and returns. Appendix B.1 provides details on 

4 We refrain from labeling this as a Monte Carlo simulation because, in such 
an experiment, one would draw a large number of small samples with sampling 

errors to study the small sample properties of estimators.
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Fig. 1. A single strong and perfectly unpriced factor. We apply a GMM estimation with the moment conditions in Equation (2) and the weighting matrix in 
Equation (5). The figure shows estimated 𝑅2 and RMSE and the point estimates of 𝜆 and 𝜇, together with 95% confidence bounds as functions of 𝑥, the log weight 

on the moment condition that identifies the factor mean.

how we set these parameters and how the true MPRs can be calculated 
as functions of 𝑠𝑗 , 𝑟𝑗 , and 𝑏𝑖,𝑗 . Our parameterization guarantees that the 
volatility of excess returns is equal to 0.06 for all assets. This implies an 
annual return volatility of 20.78% for all test assets.

In the following, we analyze the behavior of the GMM estimator 
using data generated by the time series and cross-sectional model in-

troduced above. We keep all parameters fixed, with the exception of 
𝑠𝑗 , 𝑟𝑗 and the GMM weighting matrix 𝑊 . The resulting framework is 
very flexible and allows us to vary the strength of the factor (strong 
vs. weak), the true cross-sectional 𝑅2 (priced vs. unpriced factors), and 
the sample size along all three dimensions (length of time series, num-

ber of test assets, and number of factors).

2.4. Prespecified diagonal weighting matrices

Single factor models: We start our analysis with weighting matrices of 
the form 𝑊𝑥 = diag(1, … , 1, 10𝑥, … , 10𝑥), as introduced in Equation (5), 
and assuming that there is a single factor that is strong and perfectly un-

priced. The latter means that expected test asset returns are orthogonal 
to the factor exposures, with the result that the true cross-sectional 𝑅2

is equal to zero. The true MPR 𝜆 is thus equal to zero as well.

We vary the log weight 𝑥 on the moment condition identifying the 
factor mean, and we study the effects of this variation on the point 
estimates (i.e., the solutions to Equations (7) and (8)), the estimated 
𝑅2, RMSE, and 95% confidence bands. Fig. 1 shows these quantities for 
values of 𝑥 between -5 and 5 for the case of a single strong and unpriced 
factor.

The figures confirm what was surmised in Section 2.1. We find that, 
once 𝑥 exceeds a critical value (in this case around 0.45), the estimates 
are in line with the true values, i.e., an 𝑅2 of almost zero, an RMSE that 
is equal to the cross-sectional standard deviation of expected returns, 
and point estimates 𝜆̂ = 0 and 𝜇̂ = 0.01. This is in line with what we 
had labeled a desired solution in Section 2.1.

For 𝑥 → −∞, the figure suggests that the estimated 𝑅2 goes to 1, the 
RMSE goes to 0, and 𝜆̂ and 𝜇̂ go to 0 and −∞, respectively. This is in 
line with what we label as a trivial solution in Section 2.1.

For intermediate values of 𝑥 below 0.45, we observe an estimated 
5

𝑅2 between 0 and 1 and large and significant 𝜆 estimates. For example, 
when using the identity matrix for weighting (i.e., 𝑥 = 0), we estimate 
an 𝑅2 of 0.53 and a 𝜆 of 16.67 with a 𝑡-statistic of 5.16.

To sum up, our analysis shows that low values of 𝑥 lead to inflated 
𝑅2 ’s and biased parameter estimates. Even seemingly innocuous choices 
of the weighting matrix, such as the identity matrix, can lead to such a 
result.

In the online appendix, we present and discuss results of further 
cases. Overall, the patterns are qualitatively very similar to those in 
Fig. 1. In Section B.2, we consider a factor that is strong and (imper-

fectly) priced (with a true cross-sectional 𝑅2 of 0.5). In Section B.3, we 
then turn to the analysis of a weak factor.

Multifactor models: Our flexible setup allows us to analyze multifac-

tor models with arbitrary combinations of weak, strong, priced and 
unpriced factors. Recall that there is always at least one factor 𝑗∗ for 
which 𝜇𝑗∗ = 𝐸[𝐹𝑗∗ ] − 𝜆−1

𝑗∗ and 𝜆𝑗∗ → 0, i.e., the MPR is biased down-

wards when the estimator runs into a trivial solution (see Section 2.1). 
It is interesting to analyze which factor plays that role in situations with 
several factors. We exemplify the intuition in a case with one strong 
and priced factor (setting 𝑟1 = 1 and 𝑠1 =

√
0.9) and one rather weak 

and perfectly unpriced factor (setting 𝑟2 = 0 and 𝑠2 =
√
0.01). The true 

cross-sectional 𝑅2 is equal to 0.5 = 1
2 (𝑟

2
1 + 𝑟22). Fig. 2 shows the usual 

statistics for this scenario.

The figure documents that, as before, the estimated 𝑅2 and RMSE 
move to the true values as 𝑥 increases. For log weights 𝑥 above a cer-

tain threshold (in this case 𝑥 = 2.6), deviations of 𝜇̂ from the sample 
averages of the factors are so costly that the minimum of the GMM ob-

jective function is attained at the true parameter values. For values of 𝑥
below that threshold, it is again cheaper to reduce the pricing errors at 
the cost of not matching the moment condition 𝐸𝑇 [𝐹𝑗 − 𝜇𝑗 ].

Moreover, we observe that the relatively weak and unpriced fac-

tor (in this case 𝐹2) is selected as 𝑗∗. The term 𝐸𝑇 [𝑅𝑒
𝑖 (𝐹2 − 𝐸𝑇 [𝐹2])]

as part of the second term on the right-hand side of Equation (4) is 
closer to zero anyway, relative to 𝐹1. Thus, the objective function can 
be minimized with 𝜆2 being far from zero and the moment condition 
𝐸𝑇 [𝜇2 −𝐹2] being effectively satisfied. With these choices of 𝜆2 and 𝜇2, 

the strong and priced factor 𝐹1 is not needed to reduce the pricing er-
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Fig. 2. One strong and priced and one weak and unpriced factor. We apply a GMM estimation with the moment conditions in Equation (2) and the weighting 
matrix in Equation (5). The figure shows estimated 𝑅2 and RMSE and the point estimates of 𝜆1 , 𝜆2, 𝜇1, and 𝜇2, together with 95% confidence bounds as functions 
of 𝑥, the log weight on the moment condition that identifies the factor mean. Returns are simulated according to Equations (9)-(10) with 𝑟1 = 1, 𝑟2 = 0, 𝑠1 =

√
0.9, 

and 𝑠 =
√
0.01.
2

rors any further, so the impact of the covariances of returns with this 
factor is nullified by setting 𝜆1 to zero.

In numbers, when weighting the moment conditions with the iden-

tity matrix, the MPR 𝜆1 of the strong and priced factor 𝐹1 is estimated 
at −2.03 (true value is 50) with a 𝑡-statistic of −0.32. The MPR 𝜆2 of 
the weaker and perfectly unpriced factor 𝐹2 is estimated at 88.69 (true 
value is 0) with a 𝑡-statistic of 6.51. The estimated cross-sectional 𝑅2

is equal to 97.96% (true value is 50%) and the estimated root mean 
squared pricing error is 0.22% (true value is 1%).

Taken together, we see that relatively weaker unpriced factors can 
drive out relatively stronger priced factors. More precisely, the MPR 
estimates of relatively weaker factors can be large and significant, while 
those of stronger priced factors become small and insignificant. As in 
the single factor case, the estimated cross-sectional 𝑅2 can be inflated 
heavily, and we again observe this pattern even for innocuous choices 
of weights like the identity matrix.

Apart from this basic insight concerning the different roles of weak 
and strong factors, many other patterns are qualitatively similar to those 
in Fig. 1. A detailed discussion of the various cases is provided in Ap-

pendix B.5. There we also discuss the case of two equally strong factors. 
In contrast to the analysis presented in Fig. 2 showing that weaker fac-

tors drive out stronger factors, we cannot conclude that unpriced factors 
6

drive out priced factors if they are comparable in strength. Still, param-
eter estimates are biased and 𝑅2 ’s are inflated when the weight on the 
moment conditions for the factor means is low.

2.5. The impact of sample size

The results presented above refer to 25 test assets simulated for 600 
months, corresponding to the post-war samples that have long been 
widely used in asset pricing. Some papers warn that using too few test 
assets can lead to problems with cross-sectional tests. Lewellen et al. 
(2010) argue that the strong factor structure in size and book-to-market 
sorted portfolios makes spurious factors appear to be priced if they hap-

pen to be correlated with one of the Fama and French (1993) factors. 
They recommend using a broader set of equity portfolios. Ang et al. 
(2020) argue that portfolio construction destroys information by re-

ducing the cross-sectional variation in betas and recommend the use 
of individual stocks instead. In contrast, Bekaert and De Santis (2021)

warn that asset or portfolio returns can be highly correlated (especially 
in the case of corporate bond returns, which they consider), which 
can lead to extreme portfolio weights when testing mean-variance effi-

ciency.

Interestingly, increasing the number of test assets makes the prob-

lem discussed in our paper even more severe. When we add more test 

assets but keep the parameter 𝑥 in the weighting matrix (5) fixed, the 
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Fig. 3. Using the inverse of the estimated covariance matrix for weighting. We apply an iterated GMM estimation with the moment conditions in Equation (2)

and use the inverse of the covariance matrix of the moment conditions, estimated using the point estimates from the previous stage, as the weighting matrix. In the 
first stage GMM estimation, we use a diagonal matrix of the form 𝑊 = diag(1, … , 1, 10𝑥) for weighting. The figure shows the point estimates of 𝜆 and 𝜇, together 
with 95% confidence bounds as functions of 𝑥, the log weight on the moment condition that identifies the factor mean in the first stage.
overall weight on the Euler equation moment conditions in the GMM 
objective function increases relative to the moment conditions identi-

fying the factor means (whose number does not change). Appendix B.4 
provides simulation results for different sample sizes. With the exact 
setting from Section 2.3 and 𝑊 = 𝐼𝑛+𝑘, we show that our estimates 
equal the true data-generating parameters if the number of test assets 
is equal to only 5. In contrast, when the number of test assets exceeds 
200, the estimator produces biased point estimates and highly inflated 
model performance statistics, with a cross-sectional 𝑅2 close to 1. To 
circumvent this issue, one would have to rescale the weight on the mo-

ment conditions 𝐸𝑇 [𝐹 − 𝜇] in such a way that the relative importance 
of these moment conditions is kept constant across sample sizes.

For completeness, we also consider the impact of the length of the 
time series 𝑇 . Not surprisingly, the length of the time series does not 
matter at all, since the bias we document is not a small sample property.

2.6. Endogenous weighting matrices

In applications, weighting matrices are often chosen endogenously, 
for instance by inverting a prior estimate of the covariance matrix of 
error terms, to account for the fact that less volatile moments provide 
more information on the parameters to be estimated. With that in mind, 
we now analyze the behavior of the GMM estimator for alternative en-

dogenous specifications of 𝑊 .

As a starting point, we stick to the diagonal structure of 𝑊 but use 
the inverses of the variances of the moment conditions as weights, as is 
done, e.g., by Yogo (2006). Following Equation (2), these variances are 
simply given by the variances of the test asset returns and of the factor. 
When the true 𝜆 is equal to zero, the corresponding diagonal weighting 
matrix boils down to diag(𝑉 𝑎𝑟(𝑅𝑒

1)
−1, … , 𝑉 𝑎𝑟(𝑅𝑒

𝑛)
−1, 𝑉 𝑎𝑟(𝐹 )−1). When 

the true 𝜆 is different from zero, the variances of the pricing errors 
increase only slightly.

The extent of the problem discussed here thus essentially depends 
on the volatility differential between factors and test asset returns. If 
the pricing factor 𝐹 is about as volatile as the test asset returns (e.g., if 
the factor is traded or a factor-mimicking portfolio), we basically once 
again find ourselves with the case of an identity matrix as weighting 
matrix with all the consequences described in Section 2.4. To assess the 
severity when the pricing factor and the test asset returns have very 
different volatilities (e.g., when analyzing low-volatility macro factors), 
we can simply scale the weight on the pricing factor up or down. The 
true pricing performance of linear factor models is invariant to affine 
linear transformations of the factors. But for the GMM estimation, multi-

plying a factor 𝐹𝑗 by a scalar 𝑚 is tantamount to multiplying the weight 
on the moment condition 𝜇𝑗 − 𝐹𝑗 by 1∕𝑚2. The quantitative analysis 
presented above gives an idea of how strongly such a scaling can af-

fect the estimation results. Specifically, when the weighting matrix is 
7

based on inverses of variances of moment conditions, estimates for low-
volatility macro factors (like consumption growth) should be affected 
less than those for traded factors.

Instead of imposing a prespecified (diagonal) structure on the 
weighting matrix, researchers often try to estimate the covariance ma-

trix of the moment conditions using an iterated approach. Parameter 
estimates in the current stage allow us to estimate the covariance matrix 
whose inverse then serves as the weighting matrix for the next stage. 
The algorithm either runs through a prespecified number of iterations 
or until the parameter estimates show signs of “convergence”.

We use the same simulated strong and perfectly unpriced factor as 
in Section 2.4 and run an iterated GMM estimation. In the first step of 
the iteration, we use the weighting matrix 𝑊 = diag(1, … , 1, 10𝑥). Us-

ing the point estimates from this first stage, we estimate the covariance 
matrix of the moment conditions. We calculate the inverse of this esti-

mated covariance matrix and use it as the weighting matrix in the next 
stage. We iterate the procedure until convergence, i.e., until the point 
estimates from the current iteration stage are very close to those of the 
previous stage.5

Fig. 3 shows the point estimates of 𝜆 and 𝜇, together with 95% 
confidence intervals, as functions of the log weight 𝑥 on the moment 
condition identifying the factor means in the first stage GMM estima-

tion. If the iteration always converged to the true parameters, the point 
estimates would be independent of the weight 𝑥 in the first stage.

The figure shows that this is not the case. In fact, the pattern in 
point estimates is remarkably similar to the one from Fig. 1. Note that 
the results in Fig. 1 are, by construction, equal to the results in the 
first stage of the estimation analyzed here. We again find that there is a 
critical value for 𝑥, which is slightly greater than zero. For log weights 
above that critical value, the point estimates of 𝜆 are equal to zero, the 
true value. Starting with a log weight below the critical value leads to 
biased parameter estimates. For these values, the 𝜇 estimates are biased 
as well.

Fig. 3 suggests that biased first stage estimates carry over to later 
stages in the iteration. This is not surprising. Suppose the log weight 𝑥
in the first stage is very low. As argued in Section 2.1 above, we then 
end up with parameter estimates in this case that are close to a trivial 

5 As an alternative to iterated GMM, we also investigate the variant known 
as “continuously updating GMM” (CUGMM) proposed by Hansen et al. (1996). 
Instead of estimating the covariance matrix in an iterated fashion and hop-

ing that it converges to the true covariance matrix, this procedure considers 
the estimated covariance matrix as a function of the true parameters and di-

rectly minimizes the GMM objective function 𝑔𝑇 (𝜆, 𝜇)′𝑊 (𝜆, 𝜇) 𝑔𝑇 (𝜆, 𝜇), where 
𝑊 (𝜆, 𝜇) is the inverse of ̂𝐶𝑜𝑣(𝑔(𝜆,𝜇)). We run CUGMM estimations on our sim-

ulated data. We find that the algorithm runs into areas of the parameter space 
where the estimated covariance matrix of the moment conditions cannot be in-

verted and the algorithm does not converge to a solution. The global infimum 
of the modified GMM objective function is at the trivial solution, where the 

estimated covariance matrix of the moment conditions is singular.
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solution in the first stage estimation, meaning that 𝜇̂ ≈ 𝐸𝑇 [𝐹 ] − 1
𝜆̂

and 
𝜆̂ ≈ 0. With these parameters, the first 𝑛 moment conditions of the form 
𝑅𝑒

𝑖 −𝑅𝑒
𝑖 (𝐹 − 𝜇)𝜆 approximately simplify to 𝑅𝑒

𝑖 −𝑅𝑒
𝑖 . So not only is the 

sample average of these moment conditions virtually equal to zero, so 
too is each single observation. Thus, the variances of the first 𝑛 moment 
conditions and their covariances with the factors are close to zero. The 
covariance matrix of the moment conditions after the first stage can be 
approximately written as

𝐶𝑜𝑣(𝑔) ≈
(
0𝑛×𝑛 0𝑛×1
01×𝑛 𝑉 𝑎𝑟(𝐹 )

)
,

i.e., 𝐶𝑜𝑣(𝑔) is (close to) singular. The estimated variance of the pricing 
errors is close to zero, and this makes these moments appear much more 
informative about the parameters to be estimated than the moment con-

ditions identifying the factor means. This leads to biased parameter 
estimates, and, consequently, biased estimates of the covariance ma-

trix, in the subsequent stages.

3. Examples

We now turn to a set of popular empirical examples that highlight 
the practical relevance of the bias outlined in our paper. Section 3.1

considers the CAPM, the Fama and French (1993) three-factor model, 
and the number of Asian elephants kept in zoos worldwide (as an ex-

ample of a weak factor). In Section 3.2, we apply the estimation design 
to a set of macroeconomic factors: durable consumption growth (Yogo, 
2006), long-run consumption growth (Parker and Julliard, 2005), unfil-

tered consumption growth (Kroencke, 2017), intermediary leverage (He 
et al., 2017), and term and default spread (Maio and Santa-Clara, 2012). 
In these two subsections, we employ a one-stage GMM estimation with 
a fixed diagonal weighting matrix for the purpose of exposition.

Importantly, although we choose the factor models of Parker and 
Julliard (2005), Kroencke (2017), and He et al. (2017) for illustrative 
purposes here, we wish to emphasize that we are not leveling any criti-

cism at the original papers, since these authors do not use the estimation 
design that we discuss here. This is not the case, however, for the model 
of Yogo (2006). In Section 3.3, we reconsider the two-stage GMM ap-

proach of Yogo (2006) in great detail. We start from the weighting 
matrix used in the original paper and then study several variations of 
it.

3.1. The Fama-French factors and Asian elephants

To exemplify the bias described in the previous sections, we use a 
quarterly post war sample comprising the standard 25 size and book-to-

market sorted portfolios as test assets and the following set of factors: (i) 
the market factor, a strong but basically unpriced factor for this cross-

section (see Fama and French, 1992), (ii) SMB and HML, which are 
strong and priced,6 and (iii) an obviously economically meaningless 
factor, namely the log growth rate of the number of captive Asian ele-

phants living in zoos around the world.7 The elephant factor is a weak 
factor, as its time series correlation with returns is close to zero for all 
test assets.

Table 1 shows MPR estimates and model performance statistics for 
three factor models obtained with three different GMM weighting ma-

trices. For the first column of each panel, we assign a high weight to 
the moment conditions identifying the factor means to make sure they 

6 Both these factors and the test asset returns were downloaded from Ken-

neth French’s webpage; see http://mba .tuck .dartmouth .edu /pages /faculty /ken .
french /data _library .html.

7 The data are available at http://www .asianelephant .net /database .htm. We 
thank the creators of this website, Jonas Livet and Torsten Jahn, for making 
8

these data publicly available.
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are correctly estimated. The second column shows the analogous quan-

tities, estimated using an identity matrix for weighting the moment 
conditions, and the respective third column shows them assigning a 
low weight to the moment conditions identifying the factor means.8

For the one-factor model (Panel A), a high weight on 𝜇 leads to 
a negative 𝑅2 (the GMM estimation corresponds to a cross-sectional 
regression without intercept). The market factor has a significant MPR, 
but does not explain cross-sectional return variation. With a low weight 
on the condition for 𝜇, however, the one-factor model exhibits the bias 
described in Section 2.4, namely an estimated cross-sectional 𝑅2 close 
to one, pricing errors close to zero, and an MPR estimate statistically 
significantly different from zero with a 𝑡-statistic of 5.85.

The numbers in square brackets show test statistics for 𝑡-tests of the 
hypotheses 𝜆 = 0 and 𝜇 = 𝐹 . As expected, 𝜇MKT is significantly different 
from the sample average of the market factor for low values of 𝑥. Note 
that this 𝑡-test is equivalent to testing if the moment condition identi-

fying the factor mean is equal to zero. In terms of Fig. 1, it is again 
equivalent to checking whether the confidence interval around the 𝜇-

estimate contains the sample average of the factor. This can serve as an 
important plausibility check.

The results for the Fama-French three-factor model are similar, ex-

cept for overall pricing performance being high already with a high 
weight on the factor mean moments. Going from a high to a unit 
weight improves pricing performance only slightly. Further lowering 
the weight again increases the 𝑅2 to almost 1 and decreases the pricing 
errors. At the same time, the coefficient estimates shrink towards zero.

For the multi-factor model featuring the elephant factor, we see a 
similar pattern for the cross-sectional 𝑅2, but an additional effect for the 
MPR estimates. Not only does the elephant factor become significant, 
it also drives out all three Fama-French factors, suggesting that just 
the elephant factor is enough to explain the cross-section of expected 
returns when the weight on 𝜇 is set low enough. At the same time, 
the estimated 𝜇 significantly differs from the sample average of the 
elephant factor, while the other factor mean estimates are still close to 
their respective sample averages. This pattern is perfectly in line with 
the findings presented in Section 2.4 above. Weak and unpriced factors 
can drive out strong and priced factors when the weight on the moment 
conditions identifying the factor means is (too) low.

3.2. Macroeconomic factors

We now look at five prominent macroeconomic factor models from 
the more recent literature. In a departure from the approach taken 
in the original papers, we standardize the representations and the es-

timation technique for the sake of comparability. More precisely, we 
consider linear factor models (i.e., we linearize the stochastic discount 
factors from the original papers), do not impose any constraints on 
the parameters, and, of course, always use the estimation technique 
discussed here. Consequently, the findings in this subsection do not 
overturn any of the results from the original papers, and the numbers 
reported below should not be compared to them. In this subsection, we 
always impose a diagonal weighting matrix with varying weights on the 
moments identifying the factor means.

Table 2 reports point estimates, standard errors, and model perfor-

mance statistics (mean absolute errors and cross-sectional 𝑅2). Panel 
A shows results for the three-factor model suggested by Yogo (2006), 
featuring the log growth rate of consumption of nondurable goods and 
services (hereinafter denoted by 𝐹1), the log growth rate of consump-

tion of durable goods (𝐹2), and the log return on the aggregate stock 
market (𝐹3) as factors. For Panel B, we linearize the stochastic discount 
factor representation introduced by Parker and Julliard (2005). The fac-

tors are the log growth rate of consumption of nondurables and services 

8 Here and in the following subsection, “high”, “unit” and “low” mean 𝑥 = 5, 

𝑥 = 0, and 𝑥 = −5 in the notation of Equation (5) in Section 2.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://www.asianelephant.net/database.htm
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Table 1

Market prices of risks for strong and weak factors.

A: CAPM B: Fama French 3 C: FF3 + elephants

Weight on 𝜇 Weight on 𝜇 Weight on 𝜇

High Unit Low High Unit Low High Unit Low

𝜆MKT 3.10 3.07 0.50 3.43 3.37 0.48 3.43 0.38 −0.00
(0.94) (0.92) (0.09) (1.18) (1.15) (0.13) (1.19) (0.82) (0.05)
[3.29] [3.34] [5.85] [2.91] [2.94] [3.52] [2.88] [0.46] [−0.09]

𝜆SMB 0.32 0.31 −0.01 0.32 −1.72 −0.10
(1.62) (1.60) (0.22) (1.74) (1.44) (0.08)
[0.20] [0.19] [−0.03] [0.18] [−1.19] [−1.25]

𝜆HML 5.76 5.69 0.93 5.76 −0.47 −0.07
(1.68) (1.63) (0.15) (1.64) (1.21) (0.07)
[3.42] [3.49] [6.34] [3.52] [−0.39] [−1.05]

𝜆Elephants 0.01 128.50 7.64
(47.58) (22.11) (1.30)
[0.00] [5.81] [5.87]

𝜇MKT 1.47 1.04 −169.15 1.47 1.34 −36.45 1.47 1.47 1.48
(0.55) (0.56) (27.98) (0.55) (0.55) (5.75) (0.54) (0.54) (0.54)

[−0.00] [−0.77] [−6.10] [−0.00] [−0.24] [−6.60] [−0.00] [−0.00] [0.01]

𝜇SMB 0.41 0.40 0.96 0.41 0.42 0.59
(0.34) (0.34) (0.37) (0.34) (0.36) (0.37)

[−0.00] [−0.04] [1.46] [−0.00] [0.03] [0.49]

𝜇HML 0.98 0.75 −73.21 0.98 0.98 1.10
(0.36) (0.37) (11.08) (0.36) (0.36) (0.36)

[−0.00] [−0.61] [−6.70] [−0.00] [0.01] [0.34]

𝜇Elephants 0.48 −0.25 −12.65
(0.06) (0.13) (2.24)

[−0.00] [−5.41] [−5.86]

RMSE (%) 3.81 3.78 1.71 2.02 2.00 0.83 2.02 1.04 0.13
𝑅2 (%) −52.96 −49.04 96.46 56.64 58.12 99.15 56.64 94.00 99.98

The table reports estimates of 𝜆 and 𝜇 from a GMM estimation using the moment conditions 𝐸[𝑅𝑒
𝑖 −

𝑅𝑒
𝑖 (𝐹 − 𝜇)𝜆] = 0 and 𝐸[𝐹 − 𝜇] = 0 along with three different weighting matrices. Heteroskedasticity and 

autocorrelation-consistent (HAC) standard errors (in parentheses) are calculated using a Bartlett kernel. Test 
statistics of 𝑡-tests of the hypotheses 𝜆 = 0 and 𝜇 = 𝐹 are shown in brackets.
over the following 12 quarters (𝐹1), downloaded from the NIPA tables, 
and the log risk-free rate between time 𝑡 +1 and 𝑡 +12 (𝐹2). The model 
of Kroencke (2017) is presented in Panel C. Factor 𝐹1 in the linearized 
model we consider here is the log growth rate of unfiltered consump-

tion, using the definition provided in Kroencke (2017).9 For the results 
in Panels A-C, we use quarterly excess returns of the standard 25 size 
and book-to-market-sorted portfolios from 1951:Q1 to 2001:Q4 as test 
assets.10 Panel D refers to the intermediary asset pricing model pro-

posed by He et al. (2017). Factor 𝐹1 is the intermediary capital risk 
factor, and factor 𝐹2 is the market factor.11 Panel E refers to a model 
suggested by Hahn and Lee (2006) and studied by Maio and Santa-Clara 
(2012). Factor 𝐹1 is the default spread, 𝐹2 is the term spread, and 𝐹3 is 
again the market factor.12 The data for Panels D and E are monthly and 
range from 1970 to November 2018.

The results are very similar across all panels. With a high weight on 
the moment conditions identifying the factor means, we find that the 

9 The unfiltered consumption factor is downloaded from Tim Kroencke’s web-

site at https://sites .google .com /site /kroencketim/.
10 Both the test asset returns and the consumption data are taken from the 
supplementary material to Yogo (2006), kindly provided on Motohiro Yogo’s 
website at https://sites .google .com /site /motohiroyogo/.
11 The intermediary factor is downloaded from Asaf Manela’s website at 
https://apps .olin .wustl .edu /faculty /manela /data .html.
12 The default spread is defined as the spread between Moody’s Seasoned Baa 
Corporate Bond Yield and the Federal Funds Rate. The term spread is defined as 
the spread between the 10-year US Treasury yield and the Federal Funds Rate. 
Both time series are downloaded from the Federal Reserve Bank of St. Louis: 
9

https://fred .stlouisfed .org.
pricing performances are moderate (the cross-sectional 𝑅2 is sometimes 
even negative), while the factor means are matched very well. Only 
very few MPR estimates are significantly different from zero in this sit-
uation, e.g., the one for the consumption factor in Kroencke (2017) and 
the intermediary factor proposed by He et al. (2017). With decreasing 
weights on the factor means, pricing performances increase at the cost 
of not matching the moments identifying the factor means. For instance, 
the results in Panel A suggest that 𝐹2, the growth in durable consump-

tion, explains the cross-section of expected returns almost entirely. At 
the same time, we find that the factor means of the two consumption-

based factors are significantly different from their sample averages. This 
pattern is evident for the unit weighting matrix (with an 𝑅2 of 95.26%, 
close to the value reported in the original paper of Yogo (2006)), and 
even more so when the weight on the factor means is low.

3.3. The optimal weighting matrix

Finally, we explore the model of Yogo (2006) in more detail by fol-

lowing the approach from the original paper regarding the estimation 
of the weighting matrix in a two-stage GMM approach. The sample, the 
factors, and the test assets are exactly as described above in Section 3.2.

Yogo performs a two-stage GMM estimation, where the weighting 
matrix in the second stage is the inverse of the covariance matrix es-

timated in the first stage (Section D of the online appendix provides 
details). The weighting matrix 𝑊 (1) in the first stage is obtained using 
some initial values for the parameters 𝜆 and 𝜇. More specifically, 𝑊 (1)
is chosen as

https://sites.google.com/site/kroencketim/
https://sites.google.com/site/motohiroyogo/
https://apps.olin.wustl.edu/faculty/manela/data.html
https://fred.stlouisfed.org
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E: Maio/Santa-Clara

n 𝜇 Weight on 𝜇

Low High Unit Low

1.71 −116.80 −97.64 −6.84
) (0.23) (97.77) (41.98) (1.90)
] [7.61] [−1.19] [−2.33] [−3.60]

−1.60 191.68 139.35 9.17
) (0.32) (126.50) (46.36) (2.19)
] [−5.03] [1.52] [3.01] [4.18]

−1.38 −1.28 −0.09
(2.86) (1.56) (0.09)

[−0.48] [−0.82] [−1.00]

−28.22 3.42 3.61 8.54
) (4.25) (0.14) (0.16) (1.25)
] [−6.66] [0.00] [1.24] [4.11]

26.92 1.20 0.92 −5.68
) (4.01) (0.12) (0.14) (1.64)
] [6.58] [−0.00] [−2.00] [−4.20]

0.55 0.055 0.62
0.19) (0.19) (0.19)
0.00] [0.01] [0.37

0.02 0.13 0.07 0.00
98.29 17.08 79.65 99.92

ighting matrices. Heteroskedasticity and autocorrelation-

brackets.
Table 2

GMM — various models.

A: Yogo B: Parker/Julliard C: Kroencke D: He/Kelly/Manela

Weight on 𝜇 Weight on 𝜇 Weight on 𝜇 Weight o

High Unit Low High Unit Low High Unit Low High Unit

𝜆1 335.15 −49.08 −16.50 75.43 45.03 3.13 106.79 45.64 2.90 8.39 8.42
(212.11) (69.09) (21.05) (47.85) (13.78) (0.51) (63.18) (14.32) (0.72) (3.58) (3.51
[1.58] [−0.71] [−0.78] [1.58] [3.27] [6.15] [1.69] [3.19] [4.05] [2.34] [2.51

𝜆2 −177.56 154.18 44.02 −9.50 −4.99 −0.29 −6.08 −6.14
(165.86) (26.27) (15.69) (10.30) (6.84) (0.51) (4.29) (4.23
[−1.07] [5.87] [2.81] [−0.92] [−0.73] [−0.56] [−1.42] [−1.51

𝜆3 −4.96 2.10 0.61
(5.17) (1.24) (0.45)

[−0.96] [1.69] [1.37]

𝜇1 0.51 0.71 0.51 6.20 5.27 −24.23 0.54 −0.79 −33.07 0.09 0.42
(0.05) (0.06) (0.29) (0.32) (0.40) (4.88) (0.07) (0.30) (8.15) (0.29) (0.51

[−0.01] [2.99] [−0.02] [−0.00] [−2.33] [−6.23] [−0.00] [−4.36] [−4.12] [−0.00] [−0.51

𝜇2 0.92 0.31 −1.38 15.81 15.92 18.61 0.55 0.14
(0.06) (0.16) (0.76) (0.93) (0.93) (1.02) (0.19) (0.23
[0.00] [−3.87] [−3.00] [0.00] [0.11] [2.75] [0.00] [0.51

𝜇3 1.88 1.87 0.56
(0.56) (0.56) (0.56)
[0.00] [−0.01] [−2.35]

MAE (%) 0.41 0.10 0.03 0.39 0.23 0.02 0.68 0.26 0.02 0.15 0.14
𝑅2 (%) 1.17 95.26 99.62 16.47 71.77 99.87 −110.27 65.68 99.86 10.16 11.80

The table reports estimates of 𝜆 from a GMM estimation using the moment conditions 𝐸
[
𝑅𝑒

𝑖 −𝑅𝑒
𝑖 (𝐹 − 𝜇)𝜆

]
= 0 and 𝐸[𝐹 − 𝜇] = 0 along with three different we

consistent (HAC) standard errors (in parentheses) are calculated using a Bartlett kernel. Test statistics of 𝑡-tests of the hypotheses 𝜆 = 0 and 𝜇 = 𝐹 are shown in 
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Table 3

Parameter estimates for different weighting matrices.

First stage results Second stage results

𝑥 = −4 𝑥 = 0 𝑥 = 4 FMB 𝑥 = −4 𝑥 = 0 𝑥 = 4

𝜆1 −5.45 15.54 335.58 278.74 𝜆1 −5.29 17.90 140.03
(26.05) (113.72) (234.99) (76.00) (3.27) (31.28) (43.22)
[−0.21] [0.14] [1.43] [3.67] [−1.62] [0.57] [3.24]

𝜆2 17.79 152.41 −181.43 −103.76 𝜆2 19.20 170.57 −137.94
(43.87) (39.41) (272.88) (64.47) (1.79) (15.56) (53.54)
[0.41] [3.87] [−0.66] [−1.61] [10.74] [10.96] [−2.58]

𝜆3 0.23 1.00 −5.00 3.13 𝜆3 0.20 0.66 −2.08
(1.35) (2.70) (6.63) (0.96) (0.08) (0.85) (1.31)
[0.17] [0.37] [−0.75] [3.26] [2.54] [0.78] [−1.58]

𝜇1 0.25 0.48 0.51 0.51 𝜇1 0.40 0.53 0.56
(0.36) (0.05) (0.05) (0.05) (0.03) (0.04) (0.04)

[−0.71] [−0.65] [0.00] [−3.40] [0.50] [1.00]

𝜇2 −4.78 0.30 0.92 0.92 𝜇2 −4.29 0.28 0.94
(15.71) (0.25) (0.12) (0.07) (0.49) (0.10) (0.08)
[−0.36] [−2.42] [0.01] [−10.56] [−6.12] [0.27]

𝜇3 −0.74 1.60 1.88 1.88 𝜇3 0.86 1.64 1.59
(3.79) (0.56) (0.56) (0.55) (0.44) (0.47) (0.45)

[−0.69] [−0.51] [0.00] [−2.30] [−0.51] [−0.64]

MAE (%) 0.01 0.12 0.42 0.42 𝐽 7.83 23.17 29.11
𝑅2 (%) 99.94 93.46 1.25 0.95 𝑝-val 1.00 0.39 0.14

The table presents the results for the durable consumption model of Yogo (2006) for different 
choices of the pre-estimation weighting matrix. The sub-block related to the three factor means is 
multiplied by 𝑤. “FMB” denotes a standard Fama-MacBeth two-stage regressions. The 𝜇𝑖 in this last 
column are the sample averages of the three factors and not part of the regressions. Heteroskedas-

ticity and autocorrelation-consistent (HAC) standard errors (in parentheses) are calculated using a 
Bartlett kernel. Test statistics of 𝑡-tests of the hypotheses 𝜆 = 0 and 𝜇 = 𝐹 are shown in brackets. 
Details regarding the estimation of the model are presented in Section D of the online appendix.
𝑊 (1) =

(
det(Ω̂(1)

1,…,25)
− 1

25 𝐼25 0
0 (Ω̂(1)

26,…,28)
−1

)
,

where Ω̂(1) is the estimate of the 28 × 28-covariance matrix of the 
moment conditions, given these initial values. Ω̂(1)

𝑖,…,𝑗 denotes block sub-

matrices of Ω̂(1) and 𝐼25 is the 25-dimensional identity matrix. To study 
the impact of the weights for the factor mean moment conditions on the 
estimation results, we multiply the lower block (Ω̂(1)

26,…,28)
−1 in 𝑊 (1) by 

a factor 10𝑥, varying 𝑥 between −4 and 4.

The results are shown in Table 3. Just as in the cases discussed 
above, the pricing performance of the model varies dramatically with 
𝑥. With 𝑥 = −4, the pricing error is only 0.012% and the 𝑅2 is 0.999. 
Moreover, the first stage estimates of the factor means differ dramati-

cally from the sample averages 𝐹1 = 0.513, 𝐹2 = 0.915, and 𝐹3 = 1.880, 
because the weights on these moment conditions are very low. Increas-

ing 𝑥 leads to an increase in mean absolute pricing errors and a decrease 
in 𝑅2. The second column (𝑥 = 0) is identical to the results reported in 
Yogo (2006). It is also identical to the first column in Table D.1 in the 
appendix, which shows the results for several further specifications. For 
𝑥 = 4, the 𝑅2 is down to 0.013. At the same time, the factor mean es-

timates are basically equal to the sample averages, at least in the first 
stage regression. Overall, the results are qualitatively remarkably simi-

lar to the ones reported in Panel A of Table 2, although the construction 
of the weighting matrix is much more convoluted.

We also compare the point estimates and the cross-sectional 𝑅2 to 
the results of a standard Fama-MacBeth two-pass regression in the col-

umn labeled “FMB” in Table 3. The 𝑅2 there is very close to the one 
for 𝑥 = 4. There are no degrees of freedom for the factor means in a 
Fama-MacBeth regression (the values for 𝜇1, 𝜇2, 𝜇3 reported in this col-

umn are just the sample averages of the factors). It is thus similar to the 
case 𝑥 = 4 in which the additional parameters 𝜇𝑖 are also basically fixed 
11

to the sample averages of the factors.
Finally, it is also interesting to look at the point estimates from the 
second stage of the GMM estimation in order to assess the difference 
between a prespecified and an “efficient” weighting matrix. The estima-

tion using the latter can be interpreted as a GLS approach, in contrast to 
using a prespecified and diagonal weighting matrix, which would cor-

respond to OLS. Comparing the point estimates to those from the first 
stage, we see that the imprecision in the factor means estimation carries 
over from the first to the second stage. The estimated mean growth rate 
of durable consumption in our replication of Yogo (2006) is only 0.28, 
which is very low compared to the sample average of 0.92, and even 
further away from this value than the estimate of 0.30 in the first stage. 
However, as pricing performance diminishes with our adjustments to 
the procedure, the estimate of the mean growth rate of durable con-

sumption comes closer to its sample average in the second stage as 
well. As already pointed out, this suggests that the weight on the mo-

ment condition that pins down the factor mean of durable consumption 
growth is too small in the original implementation by Yogo (2006).

The wide range of estimates in Table 3, particularly when compared 
to the Fama-MacBeth results, suggests that the estimates with 𝑥 = 4 may 
be regarded as close to the true parameters, while those obtained with 
𝑥 = 0 should be regarded as suspicious. However, in contrast to the con-

trolled simulation exercise in Section 2, we do not know the true factor 
means. The 𝑅2 of the durable goods model may in fact be close to 1. 
However, this would require the true mean growth rate of durable con-

sumption to be 0.3 percentage points, while the sample average equals 
0.915 percentage points. Such a discrepancy would in turn imply that 
the true covariance of durable consumption growth with test asset re-

turns is much higher than the sample covariance, i.e., that the factor 
is in fact much more important than it seems in sample. The appeal of 
GMM is that it trades off information from different moment conditions, 
so one is tempted to justify the high 𝑅2 by arguing that this outcome 

is the most likely, given that the pricing error time series seem more 



N. Laurinaityte, C. Meinerding, C. Schlag, J. Thimme

informative (including about the factor means) than the factor time se-

ries.

On the other hand, our extensive analysis in Section 2 shows that 
the GMM estimator tends to favor low pricing errors and thus produces 
biased estimates. From this point of view, imagine that the true mean 
growth rate of durable consumption was exactly equal to the sample 
average. In this case, our analysis predicts exactly the pattern that we 
find in Table 3, and this pattern strongly suggests that the durable goods 
model does not do a very good job of explaining the cross-section of 
expected returns.

4. Discussion and conclusion

Cross-sectional asset pricing tests using GMM can generate spuri-

ously high explanatory power for linear factor models as well as biased 
estimates for the market prices of factor risks. Tests based on simulated 
data show that any desired level of cross-sectional fit can be obtained 
by shifting the weights on the moment conditions. Our findings apply 
to all sample sizes, and we find that the larger the number of test assets, 
the more severe the problem. The only condition that needs to be met 
(and is always met in applications) is that the model is not perfectly 
specified, i.e., the true cross-sectional 𝑅2 is less than one.

We revisit a number of macroeconomic factors suggested in the 
empirical asset pricing literature and find patterns that are strikingly 
similar to those from our simulation study. The prime example is the 
model of Yogo (2006), suggesting that growth in durable consumption 
is an important asset pricing factor. However, Yogo estimates a factor 
mean of around 0.3 percent per quarter, while the sample average factor 
mean is greater than 0.9 percent per quarter. This allows the estimator 
to spuriously match the Euler equations and heavily inflate model per-

formance statistics. The same is likely true for other papers in the asset 
pricing literature, which we do not replicate, but which use the same 
estimation approach. A list of the papers we could identify is provided 
in Section C of the appendix.

How can we diagnose if the results in these and other papers are bi-

ased and pricing performance is spuriously high? A few straightforward 
suggestions can be made based on our analysis. Most easily, as men-

tioned by Parker and Julliard (2005), one can perform several GMM 
estimations with varying weights on the moment conditions that iden-

tify the factor means. The figures in our paper suggest that, if the point 
estimates are stable across weights in the neighborhood of a particular 
benchmark weight, we are either at the desired solution (which means 
that the parameter estimates are unbiased) or at a trivial solution. In the 
latter case, the estimated cross-sectional 𝑅2 is close to one and there is 
one factor for which the estimated factor mean is close to its sample 
average minus the inverse of the estimated MPR.

Alternatively, we suggest straightforward hypothesis tests of the fac-

tor mean estimates like the ones discussed in Section 3.1. Typically, the 
estimates will be far from the sample averages of the factors if the pric-

ing performance of the factors is inflated, and the hypothesis that the 
mean estimate is equal to the sample average will be rejected.

Estimating the factor means and the MPRs sequentially can serve as 
another plausibility check. One can demean the factors in a first step 
and then perform the GMM estimation with pricing error conditions 
only. The point estimates resulting from this procedure would equal the 
ones from the joint GMM estimation with a high enough weight on the 
factor mean conditions. The standard errors, however, would obviously 
be different, since the standard errors for the MPRs would disregard any 
estimation uncertainty about the factor means. Still, such a sequential 
procedure may serve as a benchmark for gaining a better understanding 
of the point estimates, irrespective of their significance.

Another way of checking the plausibility of the model performance 
statistics is to compare the results of the GMM estimation to the cross-

sectional 𝑅2 and the pricing errors from a Fama and MacBeth (1973)

regression. Moreover, the point estimates of the MPRs should be com-
12
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effectively pin down the factor mean estimates to the sample averages 
of the factors and do not allow the pricing errors to have an impact on 
the estimate of the factor means. Alternatively, a GMM estimation with 
the weighting scheme discussed by Burnside (2011) and in Section 2.2

above produces the same point estimates as two-stage Fama-MacBeth 
regressions and, additionally, gives standard errors that account for the 
usual errors-in-variables problem of two-stage regressions.

In the case of a traded factor, the estimate of 𝜆 should not only be 
tested for being significantly different from zero. Instead, researchers 
should also check whether it is close to the sample average of the factor 
(divided by the factor variance).
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