KIT | KIT-Bibliothek | Impressum | Datenschutz

Modelling atomic and nanoscale structure in the silicon–oxygen system through active machine learning

Erhard, Linus C. 1; Rohrer, Jochen ; Albe, Karsten 1; Deringer, Volker L.
1 Graduiertenkolleg 2561: Materials Compounds from Composite Materials (GRK 2561), Karlsruher Institut für Technologie (KIT)

Abstract:

Silicon–oxygen compounds are among the most important ones in the natural sciences, occurring as building blocks in minerals and being used in semi-conductors and catalysis. Beyond the well-known silicon dioxide, there are phases with different stoichiometric composition and nanostructured composites. One of the key challenges in understanding the Si–O system is therefore to accurately account for its nanoscale heterogeneity beyond the length scale of individual atoms. Here we show that a unified computational description of the full Si–O system is indeed possible, based on atomistic machine learning coupled to an active-learning workflow. We showcase applications to very-high-pressure silica, to surfaces and aerogels, and to the structure of amorphous silicon monoxide. In a wider context, our work illus-
trates how structural complexity in functional materials beyond the atomic and few-nanometre length scales can be captured with active machine learning.


Verlagsausgabe §
DOI: 10.5445/IR/1000170042
Veröffentlicht am 17.04.2024
Originalveröffentlichung
DOI: 10.1038/s41467-024-45840-9
Scopus
Zitationen: 14
Web of Science
Zitationen: 10
Dimensions
Zitationen: 19
Cover der Publikation
Zugehörige Institution(en) am KIT Graduiertenkolleg 2561: Materials Compounds from Composite Materials (GRK 2561)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 2041-1723
KITopen-ID: 1000170042
Erschienen in Nature Communications
Verlag Nature Research
Band 15
Heft 1
Seiten Art.-Nr.: 1927
Vorab online veröffentlicht am 02.03.2024
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page