KIT | KIT-Bibliothek | Impressum | Datenschutz

Using strain to uncover the interplay between two- and three-dimensional charge density waves in high-temperature superconducting YBa$_2$Cu$_3$O$_y$

Vinograd, I. 1; Souliou, S. M. 1; Haghighirad, A.-A. 1; Lacmann, T. ORCID iD icon 1; Caplan, Y.; Frachet, M. 1; Merz, M. 1,2; Garbarino, G.; Liu, Y.; Nakata, S.; Ishida, K.; Noad, H. M. L.; Minola, M.; Keimer, B.; Orgad, D.; Hicks, C. W.; Le Tacon, M. ORCID iD icon 1
1 Institut für QuantenMaterialien und Technologien (IQMT), Karlsruher Institut für Technologie (KIT)
2 Karlsruhe Nano Micro Facility (KNMF), Karlsruher Institut für Technologie (KIT)

Abstract:

Uniaxial pressure provides an efficient approach to control charge density waves in YBa$_2$Cu$_3$O$_y$. It can enhance the correlation volume of ubiquitous short-range two-dimensional charge-density-wave correlations, and induces a long-range three-dimensional charge density wave, otherwise only accessible at large magnetic fields. Here, we use x-ray diffraction to study the strain dependence of these charge density waves and uncover direct evidence for a form of competition between them. We show that this interplay is qualitatively described by including strain effects in a nonlinear sigma model of competing superconducting and charge-density-wave orders. Our analysis suggests that strain stabilizes the 3D charge density wave in the regions between disorder-pinned domains of 2D charge density waves, and that the two orders compete at the boundaries of these domains. No signatures of discommensurations nor of pair density waves are observed. From a broader perspective, our results underscore the potential of strain tuning as a powerful tool for probing competing orders in quantum materials.


Verlagsausgabe §
DOI: 10.5445/IR/1000170044
Veröffentlicht am 17.04.2024
Originalveröffentlichung
DOI: 10.1038/s41467-024-47540-w
Scopus
Zitationen: 2
Web of Science
Zitationen: 2
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für QuantenMaterialien und Technologien (IQMT)
Karlsruhe Nano Micro Facility (KNMF)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 04.2024
Sprache Englisch
Identifikator ISSN: 2041-1723
KITopen-ID: 1000170044
HGF-Programm 47.11.02 (POF IV, LK 01) Emergent Quantum Phenomena
Erschienen in Nature Communications
Verlag Nature Research
Band 15
Heft 1
Seiten Art.-Nr.: 3277
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Vorab online veröffentlicht am 16.04.2024
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page