KIT | KIT-Bibliothek | Impressum | Datenschutz

Hybrid Two‐Step Inkjet‐Printed Perovskite Solar Cells

Pesch, Raphael ORCID iD icon 1; Diercks, Alexander 2; Petry, Julian 1; Welle, Alexander ORCID iD icon 3; Pappenberger, Ronja 1; Schackmar, Fabian 2; Eggers, Helge 2; Sutter, Johannes 1; Lemmer, Ulrich 2; Paetzold, Ulrich W. ORCID iD icon 1
1 Institut für Mikrostrukturtechnik (IMT), Karlsruher Institut für Technologie (KIT)
2 Lichttechnisches Institut (LTI), Karlsruher Institut für Technologie (KIT)
3 Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Perovskite photovoltaics are on their way to commercialization, but crucial advancements are still required to realize scalable and reliable fabrication processes. Concerning solution-processing of perovskite top solar cells, the hybrid two-step process offers an auspicious combination of good thin film formation control, even on textures, and high power conversion efficiencies (PCEs). Here, we address a scalable fabrication process that consists of a hybrid two-step process and combines evaporated PbI2 with inkjet-printed organic precursor materials. We show that optimizing the printing parameters enables high PCEs, high reproducibility, and the potential for conformal growth on textured silicon. The perovskite films are free of macroscopic drying effects and omit the use of toxic solvents. To achieve optimal conversion, the morphology of the PbI2 thin film and the selected resolution in the printing process are decisive. To facilitate intermixing and enable stoichiometry we introduce a DMSO vapor treatment to increase the PbI2 porosity. We demonstrate reproducible PCEs with champion devices showing 18.2% which are on par with spin-coated counterparts. ... mehr


Postprint §
DOI: 10.5445/IR/1000170051
Frei zugänglich ab 16.04.2025
Zugehörige Institution(en) am KIT Institut für Funktionelle Grenzflächen (IFG)
Institut für Mikrostrukturtechnik (IMT)
Lichttechnisches Institut (LTI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 2367-198X
KITopen-ID: 1000170051
Erschienen in Solar RRL
Verlag John Wiley and Sons
Vorab online veröffentlicht am 15.04.2024
Schlagwörter 2023-031-031864 ToF-SIMS
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page