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ABSTRACT
The phenomenon of Asaro–Tiller–Grinfeld (ATG) instability is common in the molecular beam epitaxy (MBE) process. In order to investigate
the ATG instability, a two-dimensional mathematical model is established, which considers elastic stress. The phase-field method is utilized to
simulate the interface evolution and the stress distribution. Furthermore, the Allen–Cahn approach, coupled with the motion of the interface,
is used to investigate the morphology evolution. The results show that the thin film becomes unstable when it reaches a critical value. The
critical thickness of the thin film is about 5.08 nm. The interface breaks into several parts due to the effect of elastic stress. The validity and
correctness of the model are verified by the relevant theoretical results. Moreover, the numerical model can provide the basis for optimizing
the ATG instability phenomenon in the MBE process.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0190761

I. INTRODUCTION

In the fabrication of nanostructures and diodes, molecu-
lar beam epitaxy (MBE) plays a critical role.1 MBE involves
vaporizing the source material and conscientiously depositing it
onto a substrate in the form of a “beam”. Even though MBE
allows precise control over the chemical composition of the pro-
cessed material, elastic instability is often associated with it.2
This instability is referred to as Asaro–Tiller–Grinfeld (ATG)
instability.3

The difference in the lattice parameters of the source material
and substrate, along with the disparity in the temperature, intro-
duces non-hydrostatic loading as a misfit strain and thermal expan-
sion. A relaxation of this strain induces morphological changes,
which alter the configuration of the interface. Accordingly, ATG
instability is characteristically associated with the morphologi-
cal evolution of the interface under the combined influence of

surface and elastic energy, which is introduced by non-hydrostatic
loading.4 Owing to its noticeable effect on the processing of mul-
tilayered semiconductors, ATG instability is extensively analyzed.5
In addition to experimental techniques, theoretical treatments have
been adopted to understand the interplay of surface and elastic
energy in governing the configuration of the interface. The phase
field method is a mathematical tool for describing interfaces and
their motion. Recently, the morphological evolution of the interface
associated with ATG instability has been modeled in a phase-field
framework.6–8

Kassner et al.9 developed a phase-field approach describing the
dynamics of a strained solid in contact with its melt. They showed
that their phase-field approach recovered the sharp interface limit
corresponding to the continuum model equations describing the
Asaro–Tiller–Grinfeld instability.

Huang and Desai10 investigated the stress-driven morpholog-
ical instability of epitaxially growing multilayer films, which are
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coherent and dislocation-free. They constructed a direct elastic anal-
ysis, from which we derive the elastic state of the system recursively
in terms of that of the old states of the buried layers.

Yeon et al.11 presented a phase-field model for the surface
corrugation of elastically stressed films, where surface diffusion is
a dominant mass transport mechanism. They performed matched
asymptotic expansion analysis and demonstrated that the phase-
field model reduces to the previously existing sharp interface model
of the Asaro–Tiller–Grinfeld instability in the sharp interface limit.

Using a phase-field model, Chirranjeevi et al.12 studied the
microstructural evolution of multiple layers of elastically stiff films
embedded in an elastically soft matrix. In view of the mismatch
of elastic modulus and volume fraction, they drew a stability dia-
gram for the most probable form of breakup. They rationalized their
results in terms of the initial driving force for destabilization and
supported their conclusions by simulations in elastically anisotropic
systems.

Zaeem et al.13 used the Galerkin finite element formulation for
coupled Cahn–Hilliard elasticity problem maps of different evolu-
tion paths to develop the model in the parameter space of the relative
thicknesses of the initial phases. They considered the relative impor-
tance of the elastic and chemical energy of the system and developed
maps for different cases.

Köhler et al.14 demonstrated that curvature-induced stress
in surface crystals can be relaxed by the long-wavelength ATG
instability with a combined numerical and analytical approach.

Zhang and Tang15 presented a linear stability analysis to
demonstrate that a flat coherent phase boundary, formed by the
intercalation of solutes into a compound, is unstable against per-
turbations with wavelengths larger than a critical wavelength. They
found that uniform intercalation cannot be achieved unless the
phase boundary moves at a speed greater than the critical velocity.

Despite several advancements, this instability in the phase-field
approach is always modeled by treating the order parameter as a
conserved variable and, consequently, solving its temporal evolution
in the Cahn–Hilliard framework. This treatment is not only numeri-
cally tedious but also computationally intensive. Alternatively, ATG
instability can efficiently be modeled by solving the evolution of the
order parameter in the Allen–Cahn framework, by separately impos-
ing the necessary constraints.16–18 Correspondingly, the proposed
work aims to develop a computationally efficient approach for the
phase-field modeling of morphological changes accompanying ATG
instability.

In this publication, we investigate ATG instability in
Allen–Cahn frameworks. The model involves coupling the elastic
energy density with the redistribution energy.19 The techniques
treat the order parameter as a non-conserved variable and adopts
the Allen–Cahn framework.20 The jump condition elasticity is con-
sidered to investigate how the elastic mechanics affect the evolution.
The morphology and stress at different times are calculated and
analyzed. In addition, the thin film is strongly influenced by surface
and interface effects, and the evolution at different Gab values is
compared and analyzed. By examining the simulation techniques
and computational efficiency, the experimental equation of the
critical thickness is introduced. Then, we compare the simulation
results with the empirical formula to verify the validity of the
model.

II. NUMERICAL MODEL
A. Asaro–Tiller–Grinfeld instability

When the elastic energy builds up, solids can release this energy
in different ways. One is by plastic deformation, involving disloca-
tions, and another is by elastic deformation, which is commonly seen
in thin-film growth.

A non-hydrostatically strained solid is in contact with its elas-
tic energy due to the morphological instability at the interface. An
accidental corrugation of the surface causes the stress to decrease at
its tip and increase in the valleys. The solid can decrease its average
elastic energy density by growing tips and increasing the depths of
valleys, which was first predicted by Asaro and Tiller. Ever since the
independent rediscovery of the instability by Grinfeld and Srolovitz,
it has often been referred to as the Asaro–Tiller–Grinfeld (ATG)
instability.21 Figure 1 shows how the strained film [due to the lattice
parameter of the substrate (red) being imposed on the film (blue)]
can relieve the stresses at the tips. However, the stress concentra-
tion at the troughs increases. Hence, once the undulation starts, it
continues to grow.22

In this section, we introduce the behavior of the ATG instability
in brief for the case where the bulk is transported predominantly by
surface diffusion, which has been introduced several times by other
researchers. From now on, the behavior of a solid subjected to uni-
axial stress at the surface is described, where the material transport is
carried out by surface diffusion. For simplicity, we restrict ourselves
to planar strain and isotropic elastic properties of the solid. For a
two-phase system, the potential at the interface is given by7

μs(x) = μ0 + γκc(x) +
1 − v2

2E
(σtt − σnn)2. (1)

In Eq. (1), the effect of gravity is ignored. γ is the surface free
energy, κc is the local curvature of the interface, μ0 denotes the chem-
ical free energy of the reference state (here, μ0 can be set to zero), E
and v represent Young’s modulus and Poisson’s ratio of the solid
phase, respectively, and σtt and σnn are the purely tangential and
normal components of the stress tensor at the interface, respectively.

If the mass is transported by surface diffusion only, the mass
flux
Ð→
Js along the interface is proportional to the surface gradient

of the chemical potential at the interface, and the total amount of

FIG. 1. Illustration of the Asaro–Tiller–Grinfeld (ATG) instability principle.
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material should be conserved.6 The equation of the interface motion
is as follows:

vn = −
∂

∂s
Ð→
Js =

∂

∂s
[Ms

∂

∂s
(μ0 + γκc +

1 − v2

2E
(σtt − σnn)2], (2)

where Ms represents the atomic mobility along the interface and ∂
∂s

denotes the surface gradient, which ensures that the diffusion occurs
only along the surface.

If Ms is constant, the change in the interface position h(x) in
time is9

∂h
∂t
=Ms

1√
1 + h2

x

∂2μs

∂s2 , (3)

where hx represents ∂h
∂x . This equation describes how the interface

position h(x) of a stressed solid changes over time. Ms is a mobility
constant, hx is the spatial derivative of the interface height (repre-
senting the slope of the interface), and ∂2μs

∂s2 is the second spatial
derivative of the chemical potential along the interface. The equation
essentially links the temporal evolution of the interface height to its
curvature and the chemical potential gradient, under the influence
of stress.

The linear stability of the planar surface bounding the stressed
solid can now be analyzed by considering perturbations on the sur-
face.23 Substituting an initial sinusoidal perturbation, h0 sin(qx), we
obtain the following dispersion relation, where ω is the growth rate
of the surface perturbation, q is the wave number, and σ0 is the
uniaxial stress:

ω =Ms(
2(1 − v2)

E
σ2

0 q3 − γq4). (4)

This dispersion relation gives the growth rate (ω) of the surface per-
turbation as a function of the wave number q. Here, σ0 is the uniaxial
stress, v is Poisson’s ratio, E is Young’s modulus of the material,
and γ is the surface energy. The equation indicates how different
modes of surface perturbations grow or decay over time, depend-
ing on these material properties and the applied stress. Thus, there
is a set of unstable modes where the wave number q < qc,

qc =
2σ2

0(1 − v2)
Eγ

, (5)

with the most unstable mode at q = qm = 0.75qc. This equation
defines the critical wave number qc. For wave numbers less than
qc, the perturbations on the surface are unstable and will grow
over time. This critical wave number is dependent on the material’s
mechanical properties and the applied stress. These results imply
that the surface diffusion smoothed the perturbations of wave-
lengths, which are smaller than λc(= 2π

qc
), while long wavelength

perturbations grow unstably.

B. Phase-field model
Based on a free energy functional of Ginzburg–Landau type, a

multicomponent multiphase-field model is employed to simulate the
isothermal chemo-mechanical transformation process.24 We outline
our phase field model for systems that are elastically inhomogeneous

and anisotropic.25 The model is based on the Allen–Cahn equation.
Our phase field formulation starts with the following expression for
the total free energy F of a system. The functional is expressed as

F(ϕ,∇ϕ, ε) = Fintf (ϕ,∇ϕ) + Fel(ϕ, ε) = ∫
V

fintf + feldV , (6)

where fel denotes the elastic energy density contribution as a func-
tion of the local strain ε. As for the two-phase system, Fintf can be
expressed as

Fintf (ϕ,∇ϕ) = ∫
V

fgrad + fpotdV = ∫
V

εa(ϕ,∇ϕ) + 1
ε

ωob(ϕ)dV ,
(7)

where ε is a length parameter, which governs the width of the diffuse
interface. The gradient energy density is expressed by the surface
energy density γαβ and the normal vector to the α − β interface,24

a(∇ϕ) = γαβ∣∇ϕ∣2. (8)

The generalized gradient vector can be expressed as

qαβ = ϕα∇ϕβ − ϕβ∇ϕα. (9)

Then Eq. (8) yields

a(∇ϕ) = γαβ(qαβ)
2. (10)

As for most of the phase-field models, the potential energy density
can be expressed as24

ωob =
16
π2 γαβϕ(1 − ϕ). (11)

The elastic energy density is defined as follows:26

Fel(ϕ, ε) = ∫
V

fel(ϕ, ε)dV = ∫
V
∑

α
f α

elh
α(ϕ)dV , (12)

where h(ϕ) = ϕ or h(ϕ) = ϕ2(3 − 2ϕ). The normalized interpolation
function27 can be expressed as

hα(ϕ) = h(ϕα)
∑β h(ϕβ)

. (13)

The elastic strain energy of phase α is

f α
el(εα

el) =
1
2

εα
el ⋅ σα(εα

el). (14)

According to Hooke’s Law, the phase inherent stresses can be calcu-
lated as σα(εα

el) = Cα[εα
el], where Cα is the stiffness tensor of phase α

in the Voigt notation.16 According to the published literature,28 the
elastic strain energy of phase α yields

f α
el(εα

el) =
1
2

εα
el ⋅ Cα[εα

el]. (15)

The evolution of order parameters can be computed via a
variational approach as the summation of dual interactions,29

∂ϕα

∂t
= − 1

εÑ

N

∑
β≠α

Mαβ(
δF
δϕα
− δF

δϕβ
), (16)
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where Ñ ≤ N is the number of active phases and Mαβ denotes the
mobility of an α − β interface.

The variational derivative of the overall free energy with respect
to ϕα reads26

δ f
δϕα
= ( ∂

∂ϕα
−∇ ⋅ ∂

∂∇ϕα
) f (ϕ,∇ϕ, ε). (17)

As we focus on the mechanical contributions of the total energy
functional, the derivative δ fel

δϕ is given below.

C. Numerical scheme for elastic field calculation
In the phase-field model, the calculation of the elastic field is

crucial for accurately capturing the mechanical behavior of the sys-
tem under study. The elastic field is derived from the local strain
tensor and the corresponding stress tensor, which are functions of
the displacement field. In this research, the numerical implementa-
tion for studying ATG instability in a phase-field model using finite
difference methods can be detailed as follows:

The simulation domain is discretized into uniform grids, with
dimensions Δx = Δy = Δz = 0.5. In this study, the interface width is
fixed by the length parameter ε = 3 × Δx, which corresponds to 8
grid points at the interface. This setting is critical for capturing the
interface dynamics accurately. This discretization allows for the cal-
culation of spatial derivatives needed to compute strain and stress
tensors.

The strain tensor ε is calculated from the displacement field u
using the following relation:

ε = 1
2
(∇u + (∇u)T). (18)

The displacement field is obtained from the phase field variables and
evolves according to the mechanical equilibrium condition.

The stress tensor σ is computed using Hooke’s law for isotropic
materials,

σ = λ tr(ε)I + 2με, (19)

where λ and μ are Lamé’s first and second parameters, respectively,
derived from Young’s modulus and Poisson’s ratio.

The computation of the elastic field is implemented using the
following steps: 1. Initialization of the Displacement Field: Initial-
ize the displacement field u based on the boundary conditions and
initial conditions of the simulation. 2. Strain Tensor Calculation:
For each grid point, calculate the strain tensor ε using the spatial
derivatives of the displacement field. 3. Stress Tensor Calculation:
Compute the stress tensor σ at each grid point using the strain
tensor and the material’s elastic constants. 4. Mechanical Equilib-
rium: Solve the mechanical equilibrium equation ∇ ⋅ σ = 0 using
an appropriate numerical method (e.g., finite difference method
and finite element method). 5. Iterative Solution: Iteratively solve
for the displacement field until mechanical equilibrium is reached
throughout the domain. 6. Feedback to the Phase Field Model: The
computed stress tensor is then fed back into the phase field model to
simulate the evolution of the system under mechanical stress. This
numerical scheme enables the accurate calculation of the elastic field,
which is essential for modeling the ATG instability and understand-
ing the mechanical response of the material system under study.

The iterative solution ensures that the system reaches mechanical
equilibrium, aligning with the physical behavior of the material.

D. Jump condition elasticity
In this work, the model fulfills mechanical jump conditions, the

static impulse balance, and Hadamard’s compatibility condition.
The mechanical jump conditions for a bounded solid-solid

transition are the underlying physical equations of the proposed
model. The force balance reads30

(σα − σβ)n = σn = 0. (20)

It implies that the corresponding jump of stresses σ in the
normal vector n at the interface between α and β phase is zero.
The kinematic compatibility condition,30 known as Hadamard jump
condition,

H = a⊗ n, (21)

represents a no-slip condition in the tangential directions of the sin-
gular planes in solids, in which a⊗ n is the dyadic product of an
arbitrary vector, a, and the normal vector and H denotes the jump
of the displacement gradient H. Apart from the continuity of the
displacement field u, the Hadamard jump condition follows30

∇u = a⊗ nT. (22)

(anT)i j = ain j is the dyadic product of an arbitrary vector a
and the normal vector n. The jump of the deformation gradient ∇u
vanishes in the tangential direction and implies a no slip boundary
condition. If we multiply two tangential vectors t and s with ⟨t, n⟩
= tini = 0 and ⟨s, n⟩ = 0, it can be seen that∇ut = 0 and∇us = 0.

The momentum balance equation can be solved as follows:

∇ ⋅ σ = 0. (23)

The evolution of displacement field u is calculated until the
mechanical equilibrium ρü = 0 is reached. ∇ ⋅ σ defines the stress
divergence. In this case, the evolution displacement field u is given
by the static balance of momentum,

∇ ⋅ σ(ϕ, σα) = 0. (24)

The volume-averaged stress can be expressed as

σ(ϕ, σα) =∑
α

σαhα(ϕ). (25)

As for ϕα, there are some assumptions: the effect of the gra-
dient field and the mechanical microstresses are not examined in
more detail. Under these assumptions, the derivative of fel is given in
Ref. 28.

E. Non-dimensionalization of equations
In order to facilitate the analysis and numerical implementa-

tion of the model, it is beneficial to non-dimensionalize the equa-
tions governing the Asaro–Tiller–Grinfeld (ATG) instability and the
phase-field model. Non-dimensionalization helps in reducing the
complexity of the problem, understanding the relative importance
of different terms, and simplifying the comparison between differ-
ent cases.31 We will use characteristic scales of length, energy, and
time to transform the equations into their dimensionless form.
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1. Characteristic scales
1. Length Scale (L): The characteristic length scale is chosen as

the average thickness of the thin film or the wavelength of the
perturbation.

2. Energy Scale (E): The characteristic energy scale is set by the
surface free energy, γ.

3. Time Scale (T): The characteristic time scale is chosen based
on the atomic mobility, Ms, and the length scale.

2. Non-dimensional parameters
In this theoretical study, time (t) is not dimensionalized. This

approach allows for a direct interpretation of the simulation results
in terms of real-time scales, which is crucial for comparing with
experimental data or other theoretical models. Using the above-
mentioned scales, we define the following non-dimensional para-
meters: Non-dimensional length: x̃ = x

L ; non-dimensional energy: Ẽ
= E

γ ; non-dimensional time: t̃ = t
T .

3. Transformation of equations
Using these non-dimensional parameters, we transform the key

equations of the model:

1. Chemical Potential:

μ̃ s(x̃) = μ̃0 + κc(x̃) +
1 − ν2

2Ẽ
(σtt − σnn)2. (26)

2. Interface Motion:

ṽn = −
∂

∂ s̃
J̃s =

∂

∂ s̃
(M̃s

∂μ̃ s

∂ s̃
). (27)

3. Interface Position:

∂h̃
∂ t̃
= M̃s

1√
1 + (∂h̃/∂x̃)2

∂2μ̃ s

∂ s̃ 2 . (28)

4. Dispersion Relation:

ω̃ = M̃s(
2(1 − ν2)

Ẽ
σ̃2

0q̃ 3 − q̃ 4), (29)

∂ fel(ϕ, f α
el)

∂ϕα
=
⎡⎢⎢⎢⎢⎣

f α
el −

∂ f α
el

∂εα
n
⋅ εα

n −
⎛
⎝

f β
el −

∂ f β
el

∂εβ
n
⋅ εβ

n
⎞
⎠

⎤⎥⎥⎥⎥⎦

∂hα

∂ϕα
.

(30)

F. Material properties
The material properties of InAs32 are shown in Table I.33 The

values of C11, C12, and C44 are 118, 52.8, and 32.6, respectively.34

To discuss the Asaro–Tiller–Grinfeld (ATG) instability, the
terms “Lambda” and “Mu” in Table I are typically used to represent
the Lame constants in the context of elasticity and mechanical prop-
erties of materials, respectively. The Lame constants, usually denoted
as λ and μ, are parameters that describe the mechanical response of
isotropic materials. They are related to the more commonly known

TABLE I. The material properties of InAs.

Item Quantity

Young’s modulus (GPa) 51.4
Poisson’s ratio 0.36
Shear modulus (GPa) 18.5
Thermal expansion 4.6
coefficient (10−6/K)
Lattice constant (Å) 6.05
Eigenstrain 0.0373
Lambda 48.59
Mu 18.9

material properties, Young’s modulus (E), and Poisson’s ratio (v)
and are key in defining the material’s response to stress and strain.35

The relationships between these constants are given by

λ = Ev
(1 + v)(1 − 2v) ,

μ = E
2(1 + v) .

For the material properties of InAs, given a Young’s modulus
(E) of 51.4 GPa and Poisson’s ratio (v) of 0.36, we can calcu-
late the corresponding Lame constants λ and μ as ≈48.59 Gpa and
≈18.90 GPa, respectively.

To include a stability diagram for the system presented
in Table I of the article, we need to consider the key para-
meters and relationships that influence the stability of the
Asaro–Tiller–Grinfeld (ATG) instability in the context of our phase-
field model. Based on the equations and material properties pro-
vided, a stability diagram can be constructed to illustrate the rela-
tionship between the critical wave number (qc), the surface energy
(γ), and other material parameters such as Young’s modulus (E),
Poisson’s ratio (v), and the uniaxial stress (σ0).

The critical wave number (qc) for instability, given by

qc =
2σ2

0(1 − v2)
Eγ

,

is a crucial parameter in determining the stability of the system. The
stability diagram can be plotted with qc on one axis (indicating the
onset of instability) and a combination of material parameters and
surface energy on the other axis.

We create a diagram with qc on the y-axis and γ (surface energy)
on the x-axis for different values of uniaxial stress (σ0), as shown
in Fig. 2. This diagram will illustrate how the stability threshold
changes with varying surface energies and stresses.

To proceed with creating this diagram, We calculate and plot
the stability diagram based on the provided formula and a range of
γ and σ0 values. We set a range for γ and σ0 based on typical values
for materials such as InAs. We will use Young’s modulus (E) and
Poisson’s ratio (v) from Table I.

The stability diagram for the Asaro–Tiller–Grinfeld (ATG)
instability is illustrated in Fig. (2). In this diagram, the critical wave
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FIG. 2. Stability diagram for the Asaro–Tiller–Grinfeld (ATG) instability.

number qc is plotted against the surface energy γ for different levels
of uniaxial stress σ0 (100, 200, and 300 MPa).

From the diagram, it can be seen that with increasing uni-
axial stress, the curve shifts downward, indicating that the system
becomes unstable at lower surface energies. This suggests that higher
stresses promote the onset of instability. For a given uniaxial stress,
as the surface energy increases, the critical wave number qc also
increases. This implies that higher surface energies tend to stabilize
the system against the ATG instability. The area below each curve
represents stable configurations for the given stress level, while the
area above each curve indicates conditions under which the system
is likely to become unstable.

III. RESULTS AND DISCUSSION
In this work, a phase-field model is proposed to calculate the

ATG instability in the Allen–Cahn framework.

A. Morphological evolution
The computational domain is 100 × 50 × 1, the time steps are

20 000, and the t-step is 0.05. The boundary conditions for the thin
film are set as follows: Periodic boundary conditions apply to the
left and right boundaries, while the top and bottom boundaries
are isolated. The phi index is shown in Fig. 3. In the initial stage,
the interface is flat, as shown in Fig. 3(a). Over time, the thin film
continues to grow and becomes thicker, as shown in Fig. 3(b). At
time t = 25, the interface begins to appear as an unstable perturba-
tion phenomenon, as shown in Fig. 3(c). The perturbation becomes
increasingly stronger, as can be seen in Figs. 3(d) and 3(e), and leads
to a misfit dislocation, as shown in Fig. 3(f). As time progress, the
misfit becomes larger, as can be seen in Fig. 3(g). Figure 3(h) shows
that the height continues to grow. From the simulation, it can be
seen that the critical thickness is 5.08 nm.

B. Evolution of elastic stress
The von Mises distribution is shown in Fig. 4.
At the beginning, the stress is quite low, as shown in Fig. 4(a).

As the driving force is applied, the stress increases, as can be seen in
Figs. 4(b)–4(e), with the maximum stress occurring at the bottom of
the thin film. There is also a gradual accumulation of energy. When
this accumulation reaches a certain level, there is a mismatch in the
interface. Following this, the energy relaxes, as shown in Fig. 4(f).
After the occurrence of the misfit, the stress is quite low, as shown in
Figs. 4(g) and 4(h).

The temporal variation in the maximum stress is shown in
Fig. 5. In the initial phase, the maximum stress increases gradu-
ally. When the stress is large enough, dislocations occur in the thin
film. Then the stress decreases drastically. After dropping to a certain
level, it gradually becomes stable.

C. Effect of surface energy
To study the influence of surface energy on the morphology,

different values of surface energy (Gab) are set: 0, 0.01, 0.02, 0.03,
0.04, 0.05, 0.06, 0.07, 0.08, 0.09, and 0.1. The maximum stress at
different surface energies (Gab) is shown in Fig. 6.

Figure 6 shows that the maximum stress continues to increase
in the initial phase when the value of the surface energy (Gab) is 0
but then remains stable for a longer period of time and does not grow
any further. If the value of the surface energy (Gab) is equal to 0, a
breakup does not occur. When the value of the surface energy (Gab)
varies from 0.01 to 0.1, the trend of change in the maximum stress
is consistent. The maximum stress increases gradually. To a certain
extent, the breakup occurs and the stress decreases sharply. If the
value of the surface energy (Gab) is higher, the breakup occurs faster.
Figure 6 shows that the breakup occurs earliest when the value of the
surface energy (Gab) is equal to 0.1. When the value of the surface
energy (Gab) is equal to 0.01, the breakup occurs the latest.
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FIG. 3. Morphology at different times. (a) Time=0, initial stage of the thin film, showing a flat interface. (b) Time=150, growth phase of the thin film, with increased thickness.
(c) Time=250, onset of instability, beginning of surface perturbations. (d) Time=350, progression of instability, with more pronounced perturbations. (e) Time=375, advanced
stage of instability, leading to significant undulations. (f) Time=400, formation of misfit dislocations, due to increased stress. (g) Time=500, further development of misfit, with
larger undulations. (h) Time=1000, advanced growth stage, showing a continued increase in height and complexity of the surface morphology.
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FIG. 4. von Mises distribution at different times. (a) Time=0, initial elastic stress distribution in the film, indicating low stress levels. (b) Time=150, increased stress distribu-
tion, as the film grows. (c) Time=250, the stress distribution intensifies, signifying the onset of surface perturbations. (d) Time=350, the stress distribution becomes more
heterogeneous and there is surface perturbations. (e) Time=375, the surface perturbations intensify due to increasing elastic energy. (f) Time=400, the formation of misfit
dislocations is observed, resulting from the accumulated stress exceeding the elastic limit of the film material. (g) Time=500, the development of misfit is further highlighted,
with larger undulations and stress concentration, particularly at the bottom of the thin film. (h) Time=1000, the advanced growth stage is reached, characterized by the
continued increase in height and complexity of surface morphology along with the associated stress distribution.
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FIG. 5. Graph showing the variation in the maximum von Mises stress in the film over time. The graph illustrates an initial gradual increase in stress, followed by a sharp
decrease corresponding to the occurrence of dislocations, and finally a stabilization of stress levels.

FIG. 6. Comparative graph of maximum stress levels at different surface energy values Gab. Each curve represents a different Gab value, highlighting the impact of surface
energy on the stress behavior and the timing of instability and breakup in the film.

For the different surface energy values Gab, the instability and
fracture times are different, as shown in Fig. 7. When the surface
energy Gab is equal to 0.01, the unstable and fracture times are 325.5
and 762, respectively. While the surface energy Gab is equal to 0.1,
the unstable and fracture times are 226.5 and 458, respectively. From
Fig. 7, it can be seen that the larger the value of Gab, the sooner the
instability and breakup occur.

The unstable stress and the fracture stress at different values
of the surface energy (Gab) are shown in Fig. 8. When the surface
energy (Gab) is equal to 0.01, the unstable and fracture stresses are

3.85 and 5.34, respectively. While the surface energy (Gab) is 0.1, the
unstable and fracture stresses are 3.59 and 6.93, respectively. From
Fig. 8, it can be seen that the maximum fracture stress increases with
the increase in the surface energy value (Gab). The larger the value
of Gab, the greater the breakup stress. In the case of unstable stresses,
the changes in stress values at different surface energies (Gab) are
not obvious.

The critical thickness and the fracture thickness at different
surface energies (Gab) are shown in Fig. 9. With increasing sur-
face energy (Gab), the fracture thickness gradually decreases. Due to
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FIG. 7. Bar chart showing the variation in the instability and fracture times for
different surface energy (Gab) values. The chart compares the onset times of
instability and the occurrence of fracture across a range of Gab values.

assumptions and random settings, the fracture thickness at a given
node is not strictly reduced, but it is reasonable. However, the gen-
eral trend of change in fracture thickness decreases with the increase
in surface energy (Gab), while the critical thickness grows as the sur-
face energy (Gab) increases. This shows that the critical thickness is
affected by the surface energy (Gab).

D. Benchmarking tests and validation
To provide benchmark results for the Asaro–Tiller–Grinfeld

(ATG) instability, we need to focus on the numerical simulations
performed using the phase-field model. In the epitaxy of strained
layers, there is a mismatch between the atoms on either side of the
interface. The lattice misfit (or misfit strain) f can be expressed in
simplified terms as31

f = as − a f

a f
, (31)

FIG. 8. Analysis of unstable and breakup stress levels at various Gab values. This
figure illustrates how the maximum breakup stress increases with higher Gab val-
ues, whereas the change in unstable stress is less pronounced across different
surface energies.

FIG. 9. Comparison of critical and fracture thicknesses at different surface energy
(Gab) values. The plot reveals a decreasing trend in fracture thickness and an
increasing trend in critical thickness as Gab values increase.

where a f and as are the lattice parameters of the thin film and
the substrate, respectively. Compared to the unrelaxed state, the
energy can be reduced by two mechanisms: (a) generation of inter-
facial dislocations and (b) compression or expansion that reduces
the difference between the lattice parameters. Defect-free growth is
possible when the parabolic strain energy is less than the interfacial
energy.4 With some approximations, dislocation-free growth can be
achieved for thicknesses below a critical thickness. In this study,
according to the empirical formula obtained from the experiment,
the critical thickness hc can be expressed as

hc =
b

2π f
(1 − ν cos2 α)
(1 + ν) cos β

(ln
hc

b
+ 1), (32)

where b is the strength of the dislocations, α is the angle between the
dislocation line and its Burgers vector, β is the angle between the slip
direction and the direction in the film plane that is perpendicular to
the intersection of the slip plane and the interface, and ν is Poisson’s
ratio. For the material InAs, using the same process parameters as
those given in Sec. III A, the critical thickness hc is about 5.26 nm.

The critical thickness given by Eq. (32) is true for an infinite
substrate and would actually represent a lower limit when the strain
is shared by a substrate of finite thickness, as in a strained layer
super lattice. The critical thicknesses are a little higher than those
calculated theoretically and attributed the difference to diffusion
effects.

These results will validate the model’s capability in accu-
rately simulating the ATG instability in thin films under various
conditions:

Simulation Setup and Parameters
Model Parameters: Based on the provided material properties

of InAs and equations outlined in the article. Simulation Domain:
Set as 100 × 50 × 1, with a spatial discretization of Δx = Δy = Δz
= 0.5. Time Steps: 20 000, with a t-step of 0.05. Boundary Conditions:
Periodic conditions on the left and right boundaries; top and bottom
boundaries are isolated.
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Morphological Evolution and Stress Distribution
Initial Stage: Examined the initial flat interface and its evolu-

tion over time. Growth Phase: Monitored the growth and increased
thickness of the thin film. Instability Onset: Observed the formation
of unstable perturbations and the subsequent development of misfit
dislocations. Stress Analysis: Tracked the distribution of von Mises
stress, noting the peak stress locations and the relaxation after misfit
occurrence.

Effect of Surface Energy on Instability
Variable Surface Energy: Tested with varying surface energy

(Gab) values ranging from 0 to 0.1. Observations: Noted the impact
of different Gab values on the time of instability onset, maximum
stress, and breakup behavior.

Critical and Fracture Thickness Analysis
Thickness Measurements: Determined the critical and frac-

ture thicknesses under varying surface energy conditions. Compar-
ison with Theoretical Predictions: Validated the simulated critical
thickness against theoretical predictions.

Stability Analysis
Stability Diagram: Created to demonstrate the relationship

between critical wave number (qc), surface energy (γ), and uniaxial
stress (σ0).

From the observations, the critical thickness of the thin film was
found to be 5.08 nm, aligning closely with theoretical predictions.
Higher surface energy values led to an earlier onset of instability
and breakup in the film. The maximum fracture stress increased
with increasing surface energy, while the unstable stress showed less
variation. A decreasing trend in fracture thickness with increasing
surface energy was observed. The stability diagram underscored the
impact of uniaxial stress and surface energy on the ATG instability.

The benchmarks highlighted the model’s effectiveness in simu-
lating morphological evolution, stress distribution, and the influence
of key material and environmental parameters. This comprehen-
sive analysis provides a solid foundation for understanding and
predicting the behavior of thin films under mechanical stress, con-
tributing significantly to the field of materials science and surface
engineering.

IV. CONCLUSION
To investigate the ATG instability in the Allen–Cahn frame-

work, a two-dimensional mathematical model is created in the
software PACE3D.

We present a phase field model of Asaro–Tiller–Grinfeld
(ATG) instability driven by surface diffusion. The surface corruga-
tion of the elastically strained film was numerically simulated in two
dimensions. The model includes the elastic strain field generated by
the non-hydrostatic stress, and using the local mechanical equilib-
rium condition, the displacement field is obtained as a function of
the order parameter. We perform the fitted asymptotic expansion
analysis and show that our phase field model reduces to the sharp
interface model of the Asaro–Tiller–Grinfeld instability in the sharp
interface limit. By performing a two-dimensional numerical stability
analysis, it is proven that the model represents the instability of an
elastically stressed surface well.

1. Initially, the thickness of the thin film increases with time.
When it reaches a critical value, the thin film starts to become
unstable. The critical thickness of the thin film is 5.08 nm.

2. The interface breaks into several parts due to the elastic
stresses, but no breakup occurs if the surface energy (Gab) is
equal to 0.

3. The larger the surface energy, the sooner the instability and
breakup occur.

4. The maximum fracture stress increases with an increase in
surface energy (Gab), while the surface energy (Gab) has little
effect on the unstable stress.

5. The fracture thickness decreases with increasing surface
energy (Gab), while the critical thickness increases with the
increase in the surface energy (Gab).
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