
Algorithmica
https://doi.org/10.1007/s00453-024-01216-5

Extending Partial Representations of Circle Graphs in
Near-Linear Time

Guido Brückner2 · Ignaz Rutter3 · Peter Stumpf1,3

Received: 17 May 2023 / Accepted: 7 February 2024
© The Author(s) 2024

Abstract
The partial representation extension problem generalizes the recognition problem for
geometric intersection graphs. The input consists of a graphG, a subgraph H ⊆ G and
a representationR′ of H . The question is whether G admits a representationRwhose
restriction to H isR′. We study this question for circle graphs, which are intersection
graphs of chords of a circle. Their representations are called chord diagrams. We
show that for a graph with n vertices and m edges the partial representation extension
problem can be solved in O((n + m)α(n + m)) time, thereby improving over an
O(n3)-time algorithm by Chaplick et al. (J Graph Theory 91(4), 365–394, 2019). The
main technical contributions are a canonical way of orienting chord diagrams and a
novel compact representation of the set of all canonically oriented chord diagrams that
represent a given circle graph G, which is of independent interest.

Keywords Circle graphs · Simultaneous representation · Geometric intersection
graphs · Recognition

Guido Brückner, Ignaz Rutter and Peter Stumpf have contributed equally to this work.

B Peter Stumpf
stumpf@kam.mff.cuni.cz

Guido Brückner
guido.brueckner@gmail.com

Ignaz Rutter
rutter@fim.uni-passau.de

1 Department of Applied Mathematics (KAM), Charles University, Prague, Czech Republic

2 Department of Informatics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

3 Faculty of Computer Science and Mathematics, University of Passau, Passau, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-024-01216-5&domain=pdf
http://orcid.org/0000-0002-8867-2244
http://orcid.org/0000-0002-3794-4406
http://orcid.org/0000-0003-0531-9769

Algorithmica

1 Introduction

Geometric intersection representations of graphs are an important concept that
establishes a strong tie between geometry, combinatorics, and graph theory. In an
intersection representation of a graph G = (V , E) each vertex v ∈ V is represented
by a geometric object R(v)whose intersections encode the edges ofG, i.e., {u, v} ∈ E
if and only if R(u) and R(v) intersect. Different classes of graphs can be obtained
by restricting the types of geometric objects used for the representation. For exam-
ple interval graphs are intersection representations of intervals of the real line, string
graphs are intersection graphs of curves in the plane and circle graphs are intersection
graphs of chords of a circle.

For a fixed class C of intersection graphs, a natural question is the recognition
problem, which asks whether a given G belongs to C. For circle graphs the recognition
problem has been studied for a long time, and has culminated in an algorithm with
running time O((n +m)α(n +m)) [1], where n and m denote the number of vertices
and edges of the input graph, respectively, and α denotes the slowly growing inverse
of the Ackermann function. There is also an O(n2) time algorithm which is faster for
very dense graphs [2].

A generalization of the basic recognition problem has attracted considerable
attention: the partial representation extension problem. In the partial representation
extension problem, the input consists of a triplet (G, H ,R′), where G is a graph,
H ⊆ G is an induced subgraph of G, and R′ is an intersection representation of H .
The question is whether there exists a representation R of G that extends R′, i.e., its
restriction to H coincides with R′. Note that for such an extension to exist, it is nec-
essary that H is an induced subgraph of G. Following the notation of Chaplick, Fulek
andKlavík [3], for a class C of intersection graphs, we denote the partial representation
extension problem for C by RepExt(C).

Related Work. The recognition problem can be solved efficiently for a wide range
of classes of intersection graphs. The partial representation extension problem was
introduced by Klavík et al. [4], who gave an efficient algorithm for RepExt(Int),
where Int denotes the class of interval graphs, which they improved to linear running
time in their full version [5]. Angelini et al. [6] give a linear-time algorithm for planar
topological graph drawings and Patrignani shows NP-hardness for planar straight-line
drawings [7]. Recently, the problem has also been considered for simple topological
and 1-planar drawings [8, 9]. In themeantime efficient algorithms are known for proper
and unit interval graphs [10], permutation graphs and function graphs [11], as well as
for trapezoid graphs [12]. Concerning the class Circle of circle graphs, Chaplick et
al. [3] gave the first efficient algorithm forRepExt(Circle)with running time O(n3).

For other forms of graph representations, there are compact descriptions of all
representations of a graph G, e.g. SPQR-trees [13] for planar graphs and modular
decomposition trees [14] for comparability graphs. Both descriptions express a repre-
sentation of G by choosing representations for small graphs that are associated to the
nodes of a tree in such a way that a bijection is obtained between the representations
of G and these choices. For circle graphs, Gioan et al. introduced split-trees [15] that
decompose a graph along its splits into smaller graphs fromwhichG is assembled in a

123

Algorithmica

tree structure. They observe that all possible chord diagrams of G can be obtained by
choosing a chord diagram for each of the small graphs associated to the nodes of the
split-tree of G and combining them suitably with each other. This has the downside
that different choices can lead to the same chord diagram of G.
Contribution and Outline. We strengthen this connection by introducing a canon-
ical orientation of chord diagrams so that we indeed obtain a bijection between the
canonically oriented chord diagrams of G and choices of canonically oriented chord
diagrams for the nodes of the (canonical) split-tree of Gioan et al.We call such a choice
for each node a configuration. We develop the theory and linear-time algorithms for
transforming a canonically oriented chord diagram to a corresponding configuration
and vice versa.

We emphasize the importance of the properties that (i) the correspondence between
configurations and diagrams is a bijection and (ii) the representation is canonical,
i.e., it depends only on the choice of a single root vertex. The former is essential, as
it allows us to compare diagrams by comparing configurations. The latter is crucial
since in our applications we sometimes work with different split-trees (non-canonical
split-trees can be used to represent subsets of all representations, e.g., ruling out some
that do certainly not extend a given partial representation). The orientations are used to
determine themapping fromconfigurations to diagrams, i.e., theway the representation
combines the diagrams of the graphs associated with the individual nodes of the tree.
If this information were specified by additional, external information, it would not be
possible to stably compare configurations across different split-trees of the same graph
in such a way that equal configurations imply equal diagrams. Due to the canonical
orientations, it suffices to root the split-trees at the same vertex.

To illustrate the usefulness of our representation, we show how to extend partial
chord diagrams in near-linear time O((n +m)α(n +m)), improving over the O(n3)-
time algorithm of Chaplick et al. [3]. In fact, Chaplick et al. [3] and also Kalisz et al.
[16] ask specifically whether such a representation of all chord diagrams exists and
whether it can be used to solve RepExt(Circle) faster as open questions. We note
that, given the data structure computed by the fastest known recognition algorithm [1]
for G, our algorithm runs in linear time.

We introduce notation and preliminary definitions in Sect. 2. In Sect. 3 we develop
the compact description of representations. Section4 shows how these results can be
used to obtain an almost-linear time algorithm for RepExt(Circle).

2 Preliminaries

In this section we introduce important concepts that we use throughout the paper.
In particular, we recall the concepts of circle graphs and chord diagrams, and we
introduce a way to canonically orient them. Moreover, we also recall the notion of
splits and split decompositions, which are a classic tool in circle graph recognition
algorithms.

123

Algorithmica

Fig. 1 a A graph G b an undirected chord diagram of G c an oriented chord diagram of G with reference
chord r and starting point at the top

2.1 Circle Graphs and Chord Diagrams

An (undirected) chord diagram D consists of a set C of chords of the unit circle,
i.e., undirected straight-line segments that connect pairwise distinct points on the unit
circle. A chord diagram D naturally defines an intersection graph G(D) = (C, E) of
its chords, where {c, c′} ∈ E if and only if the chords c and c′ intersect in D, i.e., if
and only if their endpoints alternate around the unit circle. A graph G is a circle graph
if it is an intersection graph of the chords of a chord diagram (Fig. 1).

While chord diagrams are geometric objects, we are most interested in their com-
binatorial structure. To break certain symmetries we usually consider oriented chord
diagrams, which additionally have a chord end as a starting point. Then an oriented
chord diagram D can be encoded as the word over the set of chords C obtained by
starting at the starting point and walking around the unit circle in clockwise direction
and recording the encountered chords. For c ∈ C , we refer to the first end of c that we
encounter with c̊ and to the second end with ĉ. We consider the chord c as directed
from c̊ to ĉ in the geometric interpretation; see Fig. 2 (reference). Unless mentioned
otherwise, chord diagrams are always considered oriented and they are usually treated
as their encodings.

We call the chord with the starting point the reference chord of D. We never change
the reference chord. In the following, we consider changes that can be applied to every
chord diagram without changing the represented graph or the reference chord. For a
wordw we writewrev for the word obtained by readingw backwards. The reverse of a
chord diagram aρaσ is rev(aρaσ) = aσ revaρrev. Geometrically, this corresponds to
mirroring the chord diagram at the reference chord a; see Fig. 2 (reversed). The turn
of a chord diagram aρaσ is turn(aρaσ) = aσaρ. Geometrically, this corresponds to
choosing â as the new starting point. In a sense, this turns the chord diagram by 180
degrees; see Fig. 2 (turned). Note that turn(turn(aρaσ)) = aρaσ , rev(rev(aρaσ)) =
aρaσ and turn(rev(aρaσ)) = turn(aσ revaρrev) = aρrevaσ rev = rev(aσaρ) =
rev(turn(aρaσ)), i.e., turn and rev are selfinverse and commute.

123

Algorithmica

Fig. 2 The turn and rev operation on a chord diagram with reference chord a

Fig. 3 a split ({a, b}, {c, d, e, f , g, r}) with boundary ({a, b}, {c, r}), split ({c, d, e}, {a, b, f , g, r}) with
boundary ({c}, {a, b, f }) b split ({c, d}, {a, b, e, f , g, r}) with boundary ({c}, {a, b, e, f }) and split
({c, e}, {a, b, d, f , g, r}) with boundary ({c}, {a, b, d, f }). The splits in a are good while the splits in
b overlap and are not good

2.2 Splits and Split Trees

Let G = (V , E) be a graph. Consider a bipartition (VA, VB) of V with ∅ � VA, VB �

V and let A ⊆ VA denote the subset of vertices of VA that are adjacent to a vertex
in VB and let B ⊆ VB denote the subset of vertices of VB that are adjacent to a
vertex in VA. The bipartition (VA, VB) is called a split if all possible edges between
A and B exist in G, i.e., {{a, b} | a ∈ A, b ∈ B} ⊆ E . Then (A, B) is called the
split boundary; see Fig. 3. Observe that if VA and VB are not connected, then A, B
are empty. A split (VA, VB) is trivial if one among VA and VB consists of a single
vertex. Following Courcelle [17], we call a split (VA, VB) good if it does not overlap
any other split, in the sense that for any other split (VC , VD) at least one of VA ∩ VC ,
VA ∩ VD , VB ∩ VC , VB ∩ VD is empty. A graph is prime if all its splits are trivial,
and it is degenerate if every bipartition of the vertices yields a split. It is well known
that the connected degenerate graphs are precisely cliques and stars [18]. An example
for a prime graph is Cn , the cycle on n vertices, for any n ≥ 5. Suppose there was
a non-trivial split (VA, VB) in Cn . Since Cn is 2-connected, both A and B contain
at least two vertices each. This implies the complete bipartite graph K2,2 between A
and B (with two vertices on each side), which is not subgraph of Cn , a contradiction.
Hence,Cn is prime for n ≥ 5. Bouchet [19] showed that the undirected chord diagram
of a connected prime circle graph is unique up to reversal.

Next, we define split trees as introduced by Gioan et al. [15]. To avoid confusion
with the vertices and edges of our graphs, we refer to the vertices and edges of split

123

Algorithmica

Fig. 4 Split trees of the graph from Fig. 1a. a shows the base case, in b the node λ from (a) is decomposed
into μ and ν along the split ({a, b}, {c, d, e, r , g, f }). In (c) the node μ from (b) is further decomposed
along the split that has {c, d, e} on one side

trees as nodes and arcs, respectively. A split tree T is a tree where each inner node μ

has a skeleton graph skel(μ) and a bijection corrμ from V (skel(μ)) to the nodes of T
adjacent to μ; see Fig. 4. Given an inner node μ and a neighbor ν of μ, we often need
to refer to the vertex v of skel(μ) that represents ν. For convenience, we define vμ(ν)

as the vertex v of skel(μ) with corrμ(v) = ν.
Let G = (V , E) be a graph. In the base case, see Fig. 4a, a split tree T of G consists

of one inner node λ and one leaf for each vertex v ∈ V that is adjacent to λ.We identify
the leaves of T with the vertices in V . Define the skeleton of λ as skel(λ) = G. For
every vertex v ∈ V (skel(λ)), we define corrλ(v) as the leaf node v of T .

We can further decompose such a split tree. Let λ be an inner node and let (VA, VB)

be a non-trivial split of skel(λ). Let GA denote the graph obtained from skel(λ) by
contracting VB into a single vertex b. Symmetrically, letGB denote the graph obtained
from skel(λ) by contractingVA into a single vertex a. Thenλ can be split into two nodes
μ, ν connected by an arc {μ, ν}; see Fig. 4b. Define skel(μ) = GA and skel(ν) = GB .
Observe that b in GA represents the graph GB and a in GB represents the graph
GA. We define corrμ(b) = ν and corrν(a) = μ. For any vertex v ∈ V (skel(λ)) we
replace the arc {λ, corrλ(v)} with {μ, corrλ(v)} if v ∈ VA or {ν, corrλ(v)} if v ∈ VB .
Finally, for each inner node κ adjacent to λ consider the unique vertex v ∈ skel(κ)

with corrκ(v) = λ. We redefine corrκ(v) = μ if vλ(κ) ∈ VA and corrκ(v) = ν if
vλ(κ) ∈ VB . Observe that the result is still a tree and corrξ is well defined for each
inner node ξ . Hence, the inner nodes may be decomposed again. The split trees of G
are the split trees that can be obtained in this way.

The inverse of a decomposition is a join. LetG1,G2 be two (vertex-disjoint) graphs
with v2 ∈ G1, v1 ∈ G2. Then we define their join at v2,v1 as the graph obtained from
G1 ∪ G2 by connecting all neighbors of v2 in G1 with all neighbors of v1 in G2 and
removing the vertices v1, v2.We denote the resulting graph byG1⊕v2,v1G2 = (V , E).
For a split tree T with an arc {μ, ν} let b = vμ(ν), a = vν(μ). The nodes μ, ν can
be joined into a single node λ with skel(λ) = skel(μ) ⊕b,a skel(ν). Moreover, for

123

Algorithmica

any inner node κ adjacent to μ or ν and the unique vertex v ∈ V (skel(κ)) with
corrκ(v) ∈ {μ, ν} we redefine corrκ(v) = λ.

Let T denote a split tree and let {μ, ν} be an arc of T . Removing {μ, ν} separates
T into two trees Tμ and Tν where Tμ contains the node μ and Tν contains the node
ν. Let L(Tμ) ⊆ V or simply L(μ) denote the set of leaves of Tμ. By construction
of the split-tree, (L(Tμ), L(Tν)) is a split of G, which we call induced by the arc
{μ, ν}. For example, the blue split from Fig. 3a is induced by the arc {κ, ξ} in Fig. 4c.
Let (VA, VB) be a non-trivial split of skel(μ). This split represents the split (LA, LB)

of G with LA = ⋃
v∈VA

L(Tcorrμ(v)) and LB = ⋃
v∈VB

L(Tcorrμ(v)). An example of
this is the red split from Fig. 3b that is represented by a non-trivial split inside node ξ

of Fig. 4c. We call an inner node of a split tree degnerate and prime, if its skeleton
graph is degenerate and prime, respectively. Observe that in the split tree in Fig. 4c,
the node κ is prime, and ν, ξ are degenerate.

In a good-split tree every inner arc {μ, ν} of T induces a good split. For a connected
graphG, a canonical split tree is a good-split tree such that no skeleton has a non-trivial
good split, no inner arc induces a trivial split, and any two arcs induce different splits.
A canonical split tree is obtained by decomposing G (in arbitrary order) along all its
good splits. This is possible since the good splits form a laminar set. The resulting
canonical split tree is denoted by ST(G). It was first defined by Gioan et al. [15],
who proved several useful statements about it in the case where G is connected. In
particular, it is unique, and nodes have connected skeletons that are either prime or
degenerate. Moreover, if two adjacent nodes μ, ν are both degenerate, then either one
of them is a star and one is a clique, or they are both stars and the vertices vμ(ν)

and vν(μ) are either both leaves or both the star centers of their respective skeletons.
The following useful property states that ST(G) represents all splits of G.

Proposition 1 ([18], [15][Theorem 2.18]) A partition (VA, VB) of the vertex set of a
connected graph G is a split of G if and only if it is induced by an arc of ST(G) or
represented by a non-trivial split of a (skeleton of a) degenerate node of ST(G).

3 Compact Representation of all Chord Diagrams

Let G = (V , E) be a circle graph. In Sect. 3.1 we establish a correspondence between
the chord diagrams of G and assignments of chord diagrams to the inner nodes of a
split tree ofG. For canonical split trees, this correspondence turns out to be a bijection;
this gives the claimed compact representation for connected circle graphs, answering
the open question by Chaplick et al. [3] and Kalisz et al. [16].We further show that this
bijection can be computed in both directions in linear time. In Sect. 3.2 we analyse the
possible choices for the chord diagrams. Altogether, this gives the claimed compact
representation for connected circle graphs.

3.1 Configurations of Split Trees

Let G = (V , E) be a circle graph, let r ∈ V be the reference chord of G and let T be
a split tree of G. We root T at r and direct all arcs away from the root. For each inner

123

Algorithmica

Fig. 5 a, b, c, show configurations of the corresponding split trees in Fig. 4 that yield the same chord
diagram. We have c′(λ) = r f gdcd f baecerbag = r f gdcd f vecervg ⊕v,rν rνbarνba = c(μ) ⊕v,rν c(ν),
where v = vμ(ν)

node ν of T , we define the reference chord rν as the chord vν(μ) associated with the
parent node μ. A configuration c of T is a mapping that assigns to each inner node
μ of T a chord diagram c(μ) of skel(μ) with reference chord rμ; see Fig. 5. We also
refer to c(μ) as the configuration of μ. Recall that a split decomposition can be used
to split a node λ of T into two nodes μ, ν connected by a (directed) arc (μ, ν). In the
reverse direction, a join composition can be used to join two nodes μ, ν connected by
an arc (μ, ν) into a single node λ. The join operation extends to configurations.

The configurations of μ and ν induce a unique configuration of λ as follows. Let
a = vμ(ν) and let c(ν) = rνρrνσ . The induced configuration c′(λ) = c(μ)⊕a,rν c(ν)

of λ is obtained from c(μ) by replacing å with ρ and â with σ ; see Fig. 5b.

Lemma 2 Let T be a split tree of a graph G. Then applying a set of joins in two
different orders on T results in the same split tree T ′. Further, given a configuration
c for T , the resulting configuration of T ′ is also the same.

Proof It suffices to prove the statement for a set of two joins. Consider two pairs μ, ν

and λ, κ of two vertices in T with {μ, ν}, {λ, κ} ∈ E(T), whereμ, λ are the parents of
ν, κ . Let a = vν(μ), b = vμ(ν)„ e = vλ(κ), d = vκ(λ). Let, in each of the following
cases, ζ be the vertex resulting from joining at a,b and let η be the vertex resulting
from joining at e, d.

We consider the results T1, c1 of joining first at a, b and then at e, d and the results T2,
c2 of joiningfirst at c, d and then ata, b (where T1, T2 are the split-trees and c1,c2 are the
configurations). First assume the four nodes μ, ν, λ, κ are pairwise distinct. Then we
have c(μ) = α1bα2bα3, c(ν) = aβ1aβ2, c(λ) = δ1eδ2eδ3, c(κ) = dγ1dγ2. In both,
T1 and T2,weobtain skel(ζ) = skel(μ)⊕b,askel(ν) and skel(η) = skel(λ)⊕e,d skel(κ)

as well as c1(ζ) = c2(ζ) = α1β1α2β2α3 and c1(η) = c2(η) = δ1γ1δ2γ2δ3.
Next assume μ = λ. Then we have b, d ∈ c(μ), c(ν) = aβ1aβ2, c(κ) = dγ1dγ2.

For the vertex ξ resulting from both joins, we have that b̊, b̂, d̊, d̂ have been replaced
by β1, β2, γ1, γ2 independently in c1(ξ) and c2(ξ) which implies c1(ξ) = c2(ξ) and
thus (skel(μ) ⊕b,a skel(ν)) ⊕e,d skel(κ) = (skel(μ) ⊕e,d (skel(κ)) ⊕b,a skel(ν)).

Finally assume ν = λ. Then we have c(μ) = α1bα2bα3, e ∈ c(ν) = aβ1aβ2,
c(κ) = dγ1dγ2. Let β ′

1, β
′
2 be the words obtained by replacing c̊, ĉ in β1, β2 by γ1, γ2.

If we first join at a, b, thenwe have e ∈ c(ζ) = α1β1α2β2α3 and after joining at e, d we

123

Algorithmica

obtain c(η) = α1β
′
1α2β

′
2α3. If we first join at e, d, then we have c(η) = aβ ′

1aβ ′
2 and

after joining at a, b we obtain c(ζ) = α1β
′
1α2β

′
2α3. Therefore, the resulting vertex ξ

has in both cases the same assigned chord diagram c1(ξ) = c2(ξ) and thus, we obtain
(skel(μ)⊕b,a skel(ν))⊕e,d skel(κ) = skel(μ)⊕b,a (skel(ν)⊕e,d skel(κ)). for μ = κ

the statement holds by symmetry.
�
It follows that any configuration c of a split tree T of a circle graph G uniquely

defines a chord diagram D(c) for G, which is obtained by joining all internal nodes
of T in arbitrary order. For connected graphs, two different configurations yield two
different chord diagrams.

Lemma 3 Let G be a connected circle graph and let T be a split tree. Then themapping
D that maps configurations of T to chord diagrams of G is injective.

Proof The proof is by induction on the number k of internal nodes of the split tree. If
k = 1, then the skeleton of the sole internal node μ is isomorphic to G. Therefore a
configuration directly corresponds to a chord diagram of G, and the statement holds
trivially.

Nowassume k > 1 and let c1, c2 be distinct configurations of T . Since c1 �= c2 there
is an internal node μ of T such that c1(μ) �= c2(μ). Since k > 1, μ has an adjacent
internal node ν. We join μ and ν into a single node λ and we let c′

1 and c′
2 be the

corresponding joined configurations on the resulting tree T ′. If c′
1 and c

′
2 are different,

then by the inductive hypothesis, we have that D(c1) = D(c′
1) �= D(c′

2) = D(c2). It
suffices to show c′

1(λ) �= c′
2(λ).

If ν is the parent ofμ, then let v = vν(μ) and let c1(μ) = aβ1aβ2, c2(μ) = aβ ′
1aβ ′

2.
This implies β1 �= β ′

1 or β2 �= β ′
2. We obtain c′

1(λ), c′
2(λ) by replacing v̊, v̂ by β1, β2

or β ′
1, β

′
2, respectively. Since skel(λ) is connected, there is at least one chord end

between v̊, v̂ and we obtain c′
1(λ) �= c′

2(λ).
Otherwise, μ is the parent of ν. Let u = vμ(ν) and let c1(ν) = bα1bα2, c2(μ) =

bα′
1bα

′
2. Since c1(μ) �= c2(μ), there are two chords x , y with different order in c1(μ),

c2(μ). If x, y �= u, then they also have different order in c′
1(λ), c′

2(λ). If x = u, note
that V (ν), V (μ) are disjoint and α, α′

1 are not empty. Thus there is a chord in V (ν)

before y in c′
1(λ) if and only if ů comes before ẙ in c1(μ). The same holds for c′

2, c2
which implies c′

1(λ) �= c′
2(λ).
�

In general, not every chord diagram D of G can be obtained from a configuration
of T since D cannot necessarily be decomposed along an arbitrary split (VA, VB). If
G is connected, a diagram D can be decomposed only if the endpoints of the chords
in VA and VB appear suitably in D. We say that D respects the split (VA, VB) if we
have D = ρ1σ1ρ2σ2ρ3 where ρ2, (ρ3ρ1) are words over VA and σ1, σ2 are words over
VB .

Let D be a chord diagram of G. Let T denote the split tree that consists of a single
inner node λ with skel(λ) = G and a configuration c with c(λ) = D. Now consider
a split (VA, VB) of skel(λ) that is respected by D. This split decomposes λ into two
nodes μ, ν such that—without loss of generality—μ is the parent of ν. Let further
a = vμ(ν). Because c(λ) respects (VA, VB), it is of the form c(λ) = ρ1σ1ρ2σ2ρ3
such that ρ1, ρ2, ρ3 contain only chords in VA and similarly, σ1, σ2 contain only

123

Algorithmica

chords in VB . We define the configurations of μ, ν by setting c(μ) = ρ1aρ2aρ3 and
c(ν) = rνσ1rνσ2. The reference chord rλ is the reference chord of skel(μ) and rν is
the reference chord of skel(ν).

Observe that splitting a chord diagram along such a split and joining the resulting
two chord diagrams are inverse operations. Let c(λ) respect another split(V ′

A, V ′
B)

with V ′
A ⊆ VA. Then (V ′

A, VA\V ′
A ∪ {a}) is a split in skel(μ) and c(μ) respects it. A

similar observation holds for splits (V ′
A, V ′

B) with V ′
B ⊇ VB and c(ν). Therefore we

can recursively decompose a chord diagram along several splits if it respects each of
them.

Lemma 4 Let G be a (not necessarily connected) circle graph and let T be a split tree
of G rooted at some reference chord r. Then the mapping D that maps configurations
of T to chord diagrams of G is surjective on the set of chord diagrams of G with
reference chord r that respect all splits induced by arcs of T .

Proof We use induction on the number k of internal nodes of T . If k = 1, then skel(μ)

for the sole internal node μ of T is isomorphic to G, and the claim holds.
Assume k > 1. Let D be a chord diagram of G with reference chord r that respects

all splits induced by arcs of T . Let T ′ be the split tree obtained from T by joining
two adjacent internal nodes μ, ν into a single node λ. Clearly T ′ is a split tree with
k − 1 internal nodes, and by the inductive hypothesis there exists a configuration c′
of T ′ with D(c′) = D. Because D respects the split induced by {μ, ν}, c′(λ) respects
the corresponding split in skel(λ). Therefore c′(λ) can be split into configurations
c(μ), c(ν). For all other nodes κ of T we set c(κ) = c′(κ). Note that first joining the
nodes μ and ν yields the configuration c′, and therefore D(c) = D(c′) = D.
�

Note that, for any configuration c of T , the chord diagram D(c) respects all splits
induced by arcs of T . For good splits the situation is particularly simple.

Proposition 5 ([17][Proposition 9]) Let G = (V , E) be a connected circle graph,
let D be a chord diagram of G. Then D respects every good split of G.

We can conclude the following.

Theorem 6 Let T be a good-split tree of a connected circle graph G rooted at some
reference chord r ∈ V (G). Then the mapping D that maps configurations of T to
chord diagrams of G with reference chord r is a bijection.

Proof Direct consequence of Lemmas 3 and 4 with Proposition 5.
�
We can translate between configuration and chord diagram in linear time, which

allows us to use this result algorithmically.

Theorem 7 Let T be a split tree of a connected circle graph G rooted at some reference
chord r ∈ V (G). Then themapping D thatmaps configurations of T to chord diagrams
of G can be computed in linear time. Conversely, given a chord diagram D of G with
reference chord r, it can be tested in linear time whether there exists a configuration
c of T with D(c) = D. If it exists, the configuration c can also be computed in linear
time.

123

Algorithmica

Proof We store chord diagrams as circular doubly linked lists of endpoints of chords
in clockwise order. We assume that each chord endpoint is equipped with a pointer
to the corresponding vertex and each vertex has pointers to the two endpoints of its
chord.

Let c be a configuration of T . We first store for each chord u in a chord diagram
which of its ends is ů. We then process the tree T in bottom-up order. If c contains only
a single inner node, then the configuration of this node is the desired diagram D(c).
Otherwise let μ be an inner node of T whose children are all leaves and let ν be its
parent. Let T ′ be the split tree obtained by replacing in T the node μ together with all
its leaves by a single leaf v and let c′ be the configuration of T ′ that coincides with c for
all nodes of T ′. Clearly, c′ and T ′ can be computed from c and T in O(1) time.We now
recursively compute D(c′) in time linear in the size of T ′. To obtain D(c), we replace in
D(c′) the endpoints v̊, v̂ of v by the sequences π, σ , respectively, where c(μ) = rπrσ
and r is the reference chord ofμ. Sincewemaintain the order of the endpoints in doubly
linked lists, this can be done in O(1) time. Therefore we only spend O(1) time per
node of T .

Conversely assume that D is a chord diagram of G with reference chord r . We
again process the tree T in bottom-up order. As before, if T contains only a single
inner node μ, then c(μ) = D is the desired configuration. Otherwise let μ be an inner
node whose children are all leaves. We denote the set of leaves of μ by L . Note that
(L, V \ L) is a split of G. Let T ′ be the tree obtained from T by replacing μ and
its leaves by a single leaf v. Using simple flags, we can decide for an endpoint of a
chord of D in constant time whether it belongs to a vertex of L and if so, whether it
has already been processed. We now treat the endpoints of the vertices in L one by
one. For the first endpoint e we obtain in this way, we scan to the left and right in the
doubly linked list of D starting at e. In this way we determine a sublist [e1, e2] of D
such that all endpoints that lie clockwise between e1, e2 belong to vertices of L and
the predecessor of e1 and the successor of e2 do not. We mark all endpoints that we
encounter in this way as processed. We then scan further the leaves of L . We do find
another endpoint f that is not yet processed since otherwise G is not connected. We
similarly determine a sublist [f1, f2] around f so that all endpoints that lie clockwise
between f1, f2 belong to vertices of L and the predecessor of f1 and the successor
of f2 do not. If there is an unprocessed endpoint left, this means D does not respect
split (L, V \ L) and we can reject. Hence, assume no unprocessed endpoint remains.

We thus have partitioned the endpoints of the chords of L into two disjoint sub-
lists [e1, e2] and [f1, f2] of D. Then let D′ be the diagram obtained from D by
replacing the sublists [e1, e2], [f1, f2] each with v. We recursively compute a config-
uration c′ of T ′ with D(c′) = D′ where for each chord u the end ů is stored. If this
succeeds, we obtain the desired configuration c as follows. For each inner node ν �= μ

we set c(ν) = c′(ν). Since we know from each predecessor and successor u of v̊ and
v̂ whether it is ů, we can set c(μ) = r [e1, e2]r [f1, f2] or c(μ) = r [f1, f2]r [e1, e2]
according to these predecessors and successors, where r is the reference chord of
skel(μ). By construction it is D(c) = D. Note that any other choice of c(μ) or
D(c|T−μ) results in a chord diagram different from D, since [e1, e2] and [f1, f2] are
non-empty and separated by chords not in L . We can then first iterate through the list
of [e1, e2], [f1, f2] that replaces v̊ and then other one to store each endpoint ů.

123

Algorithmica

The time spent to compute T ′, D′ as well to modify c′ into c is proportional to |L|.
Therefore the algorithm runs in linear time.
�

3.2 Configurations of Canonical Split Trees

In this section we describe the (oriented) chord diagrams for degenerate and prime
connected circle graphs. This provides a compact way to describe all chord diagrams
of a connected circle graph with a canonical split tree where we associate each inner
node with the necessary information. We can describe a chord diagram of a connected
degenerate circle graph G = (V , E) with reference chord r ∈ V with a cyclic permu-
tation of V using the following mapping φG,r to chord diagrams of G with reference
chord r . If G is a clique, we set φG,r (rρ) = rρrρ. If G is a star with center x , we set
φG,r (xρσ) = ρrevxρσ xσ rev where ρ ends with r or is empty if x = r .

Lemma 8 For a connected degenerate circle graph G = (V , E) with r ∈ V the map
φG,r is a bijection.

Proof Two chords cross in a chord diagram if and only if their ends are alternating.
Therefore, φG,r actually maps to chord diagrams ofG with reference chord r . Observe
that given a cyclic permutation π of VG , we can consider the corresponding permu-
tation π ′ of VG starting with r or x respectively and find it as a subword of φG,r (π).
Namely, for cliques the first half of φG,r is π ′ and for stars the word starting at x̊ and
ending right before x̂ isπ ′. This impliesφG,r is injective.We further obtain surjectivity
since each chord diagram for a clique or a star is of the corresponding form.
�

For each type of connected degenerate circle graphs one of the operations turn, rev
and turn ◦ rev has no effect, while the other ones have the same effect as reversing the
corresponding permutation. For non-degenerate inner nodes id, turn, rev, turn ◦ rev
yield pairwise distinct results.

Lemma 9 Let G be a connected degenerate circle graph, r ∈ VG, and let σ be a cyclic
permutation of VG.

1. If G is a clique, we have φG,r (σ) = turn(φG,r (σ)) and φG,r (σ
rev) =

rev(φG,r (σ)) = turn(rev(φG,r (σ))).
2. If G is a starwith center x = r ,wehaveφG,r (σ) = rev(φG,r (σ))andφG,r (σ

rev) =
turn(φG,r (σ)) = turn(rev(φG,r (σ))).

3. If G is a star with center x �= r , we have φG,r (σ) = turn(rev(φG,r (σ))) and
φG,r (σ

rev) = turn(φG,r (σ)) = rev(φG,r (σ)).

Proof Let σ = rρ.

1. If G is a clique, we have φG,r (rρ) = rρrρ = turn(rρrρ) = turn(φG,r (rρ)) and
φG,r (rρrev) = rρrevrρrev = rev(rρrρ) = rev(φG,r (rρ)).

2. If G is a star with center x = r , we have φG,r (rρ) = rρrρrev = rev(rρrρrev) =
rev(φG,r (rρ)) and φG,r (rρrev) = rρrevrρ = rev(rρrρrev) = rev(φG,r (rρ)).

3. If G is a star with center x �= r , let ρ = αxβ. We have φG,r (rαxβ)

= rβrevxβrαxαrev = turn(rev(rβrevxβrαxαrev)) = turn(rev(φG,r (rαxβ)))

123

Algorithmica

and further φG,r (rβrevxαrev) = rαxαrevrβrevxβ = turn(rβrevxβrαxαrev) =
turn(φG,r (rαxβ)).

Since turn and rev commute and are self-inverse, the remaining equations are implied.

�

Lemma 10 Let G be a connected circle graph, and let D be a chord diagram of G
with reference chord r ∈ V (G).

1. G is a clique ⇔ turn(D) = D ⇔ turn(rev(D)) = rev(D).
2. G is a star with center r ⇔ rev(D) = D ⇔ turn(rev(D)) = turn(D).
3. G is a star with center x �= r ⇔ turn(rev(D)) = D ⇔ turn(D) = rev(D).
4. G is not degenerate ⇔ D, turn(D), rev(D), turn(rev(D)) are pairwise distinct.

Proof Let D = rαrβ. If turn(D) = D, then we have rβrα = turn(D) = D =
rαrβ. This implies α = β and thus D = rαrα. Hence, we have that H is a clique.
If rev(D) = D, then we have rβrevrαrev = rev(D) = D = rαrβ. This implies
α = βrev and thus D = rαrαrev. Hence, we have that H is a star with center r . If
turn(rev(D)) = D, then we have rαrevrβrev = turn(rev(D)) = D = rαrβ. This
implies α = αrev and β = βrev. Since G is connected, α and β must share a symbol
x . Since this symbol occurs only once in α and in β, it is unique. Hence, we have
that G is a star with center x �= r . Since φG,r is a bijection, we obtain the remaining
statements from Lemma 9 and the fact that turn and rev are self-inverse.
�

Recall that Bouchet [19] showed that the undirected chord diagram of a connected
prime circle graph is unique up to reversal. We can additionally choose the orientation
of the reference chord. As a shorthand, we set tr = {id, turn, rev, turn(rev)} and for
any chord diagram D we set tr(D) = {D, turn(D), rev(D), turn(rev(D))}.
Lemma 11 Let G be a connected non-degenerate prime circle graph, r ∈ V (G), and
D a chord diagram with reference chord r. Then | tr(D)| = 4 and tr(D) is the set of
chord diagrams of G with reference chord r.

Proof By Lemma 10 we have | tr(D)| = 4. Let D = rαrβ and let D′ be the corre-
sponding undirected chord diagram. Then turn(D) = rβrα is the only other chord
diagram corresponding to Dwith reference chord r . Let D′ = rev D = rβrevrαrev and
let D′ be the corresponding undirected chord diagram. We obtain that the only other
chord diagram corresponding to D′ with reference chord r is rαrevrβrev = turn(D′).
As stated above, Bouchet showed that the undirected chord diagram of a connected
prime circle graph is unique up to reversal. This means D and D′ are the only undi-
rected chord diagrams of G and D, turn(D), rev(D), turn(rev(D)) are the only chord
diagrams of G with reference chord r .
�

The following theorem summarizes the discussion. Recall that non-degenerate
nodes of canonical split trees are prime.

Theorem 12 Let G be a connected circle graph and let T be the canonical split tree
of G with reference chord r ∈ V (G). Let each non-degenerate node μ be equipped
with a chord diagram of skel(μ) with reference chord rμ. There is a bijection between
the chord diagrams of G with reference chord r and the choices of (i) applying an
operation τμ ∈ tr to each non-degenerate nodeμ and (i) choosing a cyclic permutation
of V (skel(μ)) for each degenerate node μ.

123

Algorithmica

Fig. 6 a configuration of a canonical split tree T . Leaves in V (H) are colored blue. b split tree TH with
the corresponding configuration. Node μ is degenerate in TH while μ′ is prime in T . skel(κ) is an isolated
set while skel(κ ′) is a star

4 Partial Representation Extension

In this section, we solve RepExt(Circle) for a circle graph G = (V , E) and a
chord diagram DH of an induced subgraph H ⊆ G in near-linear time. The idea is
the following. Assume G is connected and let T be the canonical split tree of G. We
consider a split tree TH of H that is obtained as a projection of T . Likewise, we project
configurations of T to configurations of TH . By Theorem 6, all chord diagrams of G
are represented by T . We show that the extendable chord diagrams of H are exactly
the chord diagrams that correspond to projections of configurations of T on TH . We
observe that the projection onto H commuteswith all relevant operations. The possible
choices for T described by Theorem 12 can therefore be passed to TH . This yields
a restricted split tree (TH , c′

H) of H that describes all configurations of H that can
be extended to G. We then just check whether (TH , c′

H) represents the given chord
diagram DH .

Chaplick et al. [3] argue that, if G is disconnected and there are distinct connected
components C , C ′ whose prerepresented chord ends alternate in DH , then there is no
extension of DH to G. Otherwise an extension exists if and only if each connected
component of G admits an extension. Testing this requirement as well as combining
representation extensions of the different components can be done in linear time.
Hence, we assume in the following that G is connected. Note that H may still be
disconnected.

We start with a canonical split tree T of G rooted at a reference chord r ∈ V (H),
which by Theorem 6 represents all chord diagrams of G. For a chord diagram D of
G let D|H denote the chord diagram for H induced by D (i.e., the chords of H are
placed as in D with the same starting point). Let TH be the subtree of T whose leaves
are the vertices of H and whose inner nodes are the inner nodes of T that lie on a path
from r to some leaf in V (H). For each inner node of TH , we define skelTH (μ) as the
subgraph of skelT (μ) induced by the vertices vμ(V (TH)), i.e., we keep exactly those
chords that represent nodes that lead to at least one vertex of H (see Fig. 6). Finally,
we suppress nodes with K2 as skeleton in TH by (iteratively) joining them with one
of their neighbors. Note that TH is a split tree of H rooted at r , and each inner node
μ of TH stems from exactly one inner node μ′ of T . We call TH the projection of T
onto H .

123

Algorithmica

Let now c be a configuration of T . We define its projection cH by setting cH (μ) =
c(μ′)|skelTH (μ) for each nodeμof TH , i.e., it is the restriction of the chord diagram c(μ′)
to skelTH (μ). Observe that the reference chord is not removed, and therefore cH (μ)

has the same reference chord as c(μ′), i.e., cH is a configuration of TH . The following
lemma shows that the projection (T , c) �→ (TH , cH) commutes with all relevant
operations.

Lemma 13 We have (i) D(c)|H = D(cH) and (ii) for every inner node μ of TH ,
turn(cH (μ)) = turn(c(μ′))|skelTH (μ) and rev(cH (μ)) = rev(c(μ′))|skelTH (μ).

Proof For Property (i) observe that it suffices to show that joining two diagrams com-
mutes with the projection to a subgraph H . It then follows that D(c)|H , where the join
is projected to H , is the same as D(cH), where the skeletons are projected before the
join, coincide.

More formally, let H1, H2 be two induced subgraphs of graphsG1,G2, respectively,
and let H = H1 ⊕v2,v1 H2 and G = G1 ⊕v2,v1 G2. We show that for any chord
diagrams D1, D2 ofG1,G2, respectively, it is (D1⊕v2,v1D2)|H = D1|H1⊕v2,v1D2|H2 .
To see this, let D1 = αv2βv2γ and D2 = v1ρv1σ and letα′, β ′, γ ′, ρ′, σ ′ be thewords
obtained from α, β, γ, ρ, σ by removing all symbols for chords that are not in V (H).
Then we have (D1 ⊕v2,v1 D2)|H = (αρβσγ)|H = α′ρ′β ′σ ′γ ′. On the other hand, it
is D1|H1 ⊕v2,v1 D2|H2 = α′v2β ′v2γ ′ ⊕v2,v1 v1ρ

′v1σ ′ = α′ρ′β ′σ ′γ ′.
For Property (ii), let H be an induced subgraph of G. Let D = rρrσ be a

chord diagram for G with reference chord r and let ρ′, σ ′ be the restrictions of ρ, σ

to H , respectively. Then turn(D)|H = turn(rρrσ)|H = (rσrρ)|H = rσ ′rρ′ =
turn(rρ′rσ ′) = turn((rρrσ)|H) = turn(D|H) and rev(D)|H = rev(rρrσ)|H =
(rσ revrρrev)|H = rσ revrρrev|H = rσ ′revrρ′rev = rev(rρ′rσ ′) = rev(D|H).
�

Let DH be a chord diagram of H . By Theorem 6 there exists a chord diagram of G
that extends DH if and only if there exists a configuration c of T with D(c)|H = DH .
By Lemma 13(i) this holds if and only if there exists a configuration c of T whose
projection cH satisfies D(cH) = D(c)|H = DH . We aim to find such a configuration
c. To do this, we make use of the property from Lemma 13(ii) as follows. Let c′ be an
arbitrary configuration of T . By Theorem 12, c is obtained from c′ by (i) arbitrarily
choosing a configuration for each degenerate node of T and (ii) by choosing for each
non-degenerate node μ one of the diagrams c(μ) ∈ tr(c′(μ)). Note that induced
subgraphs of cliques are themselves cliques and an induced subgraph of a star is either
a star or an independent set. In the latter case an induced chord diagram has the form
ρrevρσσ rev where the center of the original star has one end betweenρrev andρ and one
end between σ and σ rev. By Lemma 13(ii) it follows that cH is obtained from c′

H by (i)
arbitrarily choosing a configuration for each node of TH that stems from a degenerate
node of T and is connected, (ii) choosing a configuration of the form ρrevρσσ rev for
each node of TH that stems from a degenerate node of T and is an independent set
and (iii) by choosing for each node μ of TH that stems from a non-degenerate node
in T one of the diagrams cH (μ) ∈ tr(c′

H (μ)).
We condense these rules as follows. We label the nodes of TH as degenerate if they

stem froma degenerate node in T and as prime if they stem froma non-degenerate node
of T . We call two configuration cH , c′

H of TH equivalent if for each prime-labeled

123

Algorithmica

node μ we have cH (μ) ∈ tr(c′
H (μ)) and for each degenerate-labeled node ν where

skel(ν) is an independent set cH (ν) is of the form ρrevρσσ rev. We call (TH , c′
H) the

restricted split tree of H with respect to G and say that (TH , c′
H) represents a diagram

DH of H if DH = D(cH) for some configuration cH that is equivalent to c′
H . By

the above observations, DH can be extended to a diagram of G if and only if DH is
represented by (TH , c′

H), where c′
H is the projection of a configuration of T .

If H is connected, we can compute in linear time the unique configuration cH of
TH with D(cH) = DH using Theorem 7 and then check whether it is equivalent to
c′
H . If it is not equivalent to c

′
H , then no such configuration exists since cH is unique.

In the next section we show how to find a configuration cH represented by (TH , c′
H)

with D(CH) = DH in the case that H is not connected.

4.1 Representation Test in Restricted Split Trees

Let G be a connected circle graph with canonical split tree T and a configuration
c′ and let (TH , c′

H) be the restricted split tree of a subgraph H in G. Given a chord
diagram DH for H , we aim to find a configuration cH of TH with D(cH) = DH that
is equivalent to c′

H . To this end, we proceed similarly as in the proof of Theorem 7.
However, H might be disconnected. We can therefore have that when processing a
node μ, the two ends of the chord v representing μ in its parent κ are contiguous. For
example, this happens if κ is a star node in T that lost its center in TH and vκ(μ) is
the leftmost leaf. If, additionally, μ is a node where all chords are at the same side
of the reference chord, configuration cH is not unique. Further, we only find a single
sequence [e1, e2] of leaves of μ. This also occurs, if all chords are on the same side
of the reference chord in μ. Without the second sequence [f1, f2], it is too expensive
to find the correct place in the new chord diagram D′ for the second end of the leaf
chord v that replacesμ. For that reason, we instead work with relaxed chord diagrams,
where not necessarily all ends are placed. More precisely, a relaxed chord diagram
D of a graph G with reference chord r is a word D = rα over V (G) where each
v ∈ V (G) appears exactly once or twice in rα and for any two chords x , y with two
ends in D we have that x and y alternate in D if and only if xy ∈ E(G). We say that
a chord diagram D′ realizes D if we can obtain D from D′ by removing chord ends.
For nodes in a restricted split tree it is easy to find configurations that realize a relaxed
chord diagram.

Lemma 14 Let μ be an inner node of a restricted split tree (TH , c′
H) and let DH be a

relaxed chord diagram of skel(μ) with the same reference chord rμ as c′
H (μ). Then it

can be tested in O(|V (skel(μ))|) time whether there exists a configuration cH of TH
with cH (μ) = DH that is equivalent to c′

H . If it exists, cH (μ) can be computed in the
same time.

Proof If μ is a prime-labeled node, we do for each D′
H ∈ tr(c′

H (μ)) the following.
We traverse D′

H and DH starting at the starting point. Whenever we do not encounter
an end of a chord v in DH that we do encounter in D′

H , we insert that end in DH .
If both ends of v are already contained in DH , D′

H does not realize DH . If we finish
the traversal, D′

H realizes DH by definition and we can choose cH (μ) = D′
H . If no

123

Algorithmica

D′
H ∈ tr(c′

H (μ)) realizes DH , then reject. Note that the placements of all added chord
ends are necessary and thus this approach is correct.

If μ is a degenerate-labeled node that stems from a clique, then skel(μ) is itself a
clique. If DH contains no chord end twice, we just set cH (μ) = DH DH . Otherwise,
we iteratively choose a maximal sequence [e1, e2] of chord ends where all chords
have only one end (the one in [e1, e2]). First consider the case where there exists a
predecessor f of [e1, e2], then since [e1, e2] is maximal, chord f has two ends in DH .
Insert a copy of [e1, e2] after the other end of f . Thereby all chords in [e1, e2] intersect
f and each other, and further all other chords with two ends also intersect the chords
in [e1, e2] since they intersect f . If [e1, e2] has no predecessor, then it has a successor
g since there is a chord with two ends. In that case we can argue similarly that a copy
of [e1, e2] can be inserted in front of the other end of g. Hence, in the end we obtain
a chord diagram cH (μ) of clique skel(μ) that realizes DH .

If μ is a degenerate-labeled node and skel(μ) is a star with center x , we start at an
end of x in DH and traverse simultaneously in both directions (eventually going from
the end of the word to the start or the other way around, respectively) until all ends
are traversed (except possibly the second end of x). At each end of a chord v with no
second end, insert that second end where the other traversal is at that moment. When a
chord with two ends is reached, wait in front of that chord until the other traversal also
reaches that chord and then skip that chord in both traversals. If the traversals wait at
different chords we reject. In that case DH induces the subword xaabb or xabab (or
some cyclic shifted version of these words) which cannot be realized by a star with
center x . If x has a second end, the traversals meet and end there. Otherwise, add the
second end of x where the traversals meet. Thereby, all chords for leaves intersect x
and no other intersection occurs. By construction we obtain a chord diagram cH (μ)

that realizes DH .
Ifμ is a degenerate-labeled node and skel(μ) is an independent set, then we choose

a place that – ignoring ends of chordswith only one end in DH – is not neighboring two
different chords. We then place there a chord end of an artificial center and proceed as
for stars above. Note that if both traversals wait at different chords, then DH induces
the subword aabbcc or aabcbc (or some cyclic shifted version of that word) with the
chord bordering x and the two chords where the traversals wait as a, b and c. Hence,
DH can in that case not be extended to the form ρrevρσσ rev. If the process finishes,
we remove the artificial center and obtain cH (μ) in the desired form.

Sinceweessentially onlydo traversals, the running time is clearly inO(|V (skel(μ))|).

�

Lemma 15 Let (TH , c′
H) be a restricted split tree of a graph H with respect to a

connected graph G and let DH be a chord diagram of H with the root r of TH as
reference chord. Then it can be tested in linear timewhether there exists a configuration
cH of TH with D(cH) = DH. If it exists, such a configuration cH can also be computed
in linear time.

Proof We actually prove a stronger statement where DH can be a relaxed chord dia-
gram with reference chord r and D(cH) realizes DH . We proceed similar as in the
proof of Theorem 7.

123

Algorithmica

Weprocess the tree TH in bottom-uporder. If TH contains only a single inner nodeμ,
then Lemma 14 provides the result. Otherwise let μ be an inner node whose children
are all leaves. We denote the set of leaves of μ by L . Note that (L, V \ L) is a split of
H . Let (T ′

H , c′′
H) be the restricted split tree obtained from (TH , c′

H) by replacingμ and
its leaves by a single leaf v with c′′

H (ν) = c′
H (ν) for every node ν of T ′

H . Using simple
flags, we can decide for an endpoint of a chord of DH in constant time whether it
belongs to a vertex of L and if so, whether it has already been processed. We now treat
the endpoints of the vertices in L one by one. For the first endpoint e we obtain in this
way, we scan to the left and right in the doubly linked list of DH starting at e. In this
way we determine a sublist [e1, e2] of DH such that all endpoints that lie clockwise
between e1, e2 belong to vertices of L and the predecessor of e1 and the successor of
e2 do not. We mark all endpoints that we encounter in this way as processed. We then
scan further the leaves of L . If we find another endpoint f that is not yet processed, we
similarly determine a sublist [f1, f2] around f so that all endpoints that lie clockwise
between f1, f2 belong to vertices of L and the predecessor of f1 and the successor
of f2 do not. If there is an unprocessed endpoint left, this means DH does not respect
split (L, V \ L) and we can reject. Hence, assume no unprocessed endpoint remains.

If we found f , we thus have partitioned the endpoints of the chords of L into two
disjoint sublists [e1, e2] and [f1, f2] of DH . Then let D′ be the relaxed chord diagram
obtained from DH by replacing the sublists [e1, e2], [f1, f2] each with v.

Note that D(cH |T−μ) must realize D′, since [e1, e2] and [f1, f2] are non-empty
and separated by chords not in L in DH . We recursively compute a configuration c′
of T ′

H equivalent to c′′
H such that D(c′) realizes D′ and for each chord u the end ů is

stored. If this succeeds, we obtain the desired configuration cH as follows. For each
inner node ν �= μ we set cH (ν) = c′(ν). Since we know from each predecessor and
successor u of v̊, v̂ whether it is ů, we can define a relaxed chord diagram D′

μ =
r [e1, e2]r [f1, f2] or D′

μ = r [f1, f2]r [e1, e2] depending on whether v̊ is at the place
of [e1, e2] or [f1, f2]. Note that cH (μ) must realize D′

μ since at the places of v̊

and v̂ correpsonding words must be inserted. Hence, we obtain cH (μ) from D′
μ by

Lemma 14. By construction D(cH) realizes DH .
In the case where f was not found, we have that [e1, e2] contains all chord ends

of L . Since this might only determine one end of v in D′, we have to proceed more
carefully. Namely, we first check whether it suffices to fix one end of v in D′ by
checking whether μ admits a diagram where the endpoints are in different spots, or
whether they have to be in the same position. Depending on that outcome we then
replace [e1, e2] by one or two ends of v for the recursive call. Finally, we adapt cH (μ).
In detail we do this as follows.We first check whether wemay choose a chord diagram
Dμ that realizes D′

μ = r [e1, e2]r with Lemma 14. In that case, we may instead also
choose turn(Dμ), which realizes rr [e1, e2]. We then define D′ as the relaxed diagram
obtained from DH by replacing [e1, e2] with a single end of v and not fixing the
second end of v. Note that D(cH |TH−μ) must realize D′, since [e1, e2] is non-empty
and to have these chord ends in the corresponding position, at least one end of v has
to be placed there in D(cH |TH−μ). Again, we recursively compute a configuration c′
of T ′

H equivalent to c′′
H such that D(c′) realizes D′ where for each chord u the end ů

is stored. As argued above, such a configuration c′ must exist, or we can reject. If this
succeeds, we obtain the desired configuration c as follows. For each inner node ν �= μ

123

Algorithmica

Fig. 7 Example where replacing [e1, e2] by a single v may result in providing a false configuration cH . We
have [e1, e2] = cddc. Setting cH = c′H provides DH . If we replace cddc by a single v in D′, then ν can
be reversed resulting in chord diagram to the right (turning μ does not help) while D(cH |{κ,ν}) realizes D′
and cH (μ) = rcdrdc

we set cH (ν) = c′(ν). We further set cH (μ) = Dμ if [e1, e2] was replaced by v̊

and we set cH (μ) = turn(Dμ) if [e1, e2] was replaced by v̂. By construction, D(cH)

realizes DH .
�
In the case that we may not choose a chord diagram for μ that realizes D′

μ =
r [e1, e2]r (or rr [e1, e2]), the only way to obtain [e1, e2] as a sequence in D(cH) is if
both ends of v are contiguous in D(cH |TH−μ) (where they then have to be replaced
by [e1, e2]). Thus, define D′ as the relaxed diagram obtained from DH by replacing
[e1, e2] with both ends of v. Note that replacing [e1, e2] by just one end of v would
allow the other end to be non-contiguous in D(cH |TH−μ); see Fig. 7 for an example.

This further means that any diagram cH (μ) that realizes r [e1, e2] provides DH

when joined with D(cH |TH−μ). Hence, we recursively compute a configuration c′
of T ′

H equivalent to c′′
H such that D(c′) realizes D′ where for each chord u the end

ů is stored. We further use Lemma 14 to find an allowed chord diagram Dμ for μ

that realizes D′
μ. If this succeeds, we obtain the desired configuration c by setting

c(ν) = c′(ν) for each inner node ν �= μ and cH (μ) = Dμ. By construction, D(cH)

realizes DH .
We can either way iterate through cH (μ) to store each endpoint ů. The time spent to

compute (T ′
H , D

′, D′
μ) as well as to modify c′ into cH is proportional to |L|. Therefore

the algorithm runs in linear time.

4.2 The Actual Extension

We can conclude with the following theorem using a straightforward extension.

Theorem 16 Given T = ST(G) and a chord diagram D of G, RepExt(Circle) can
be solved in linear time. In the positive case a representation of G that extends the
given diagram DH of H can be computed in the same running time.

123

Algorithmica

Proof From Dwe compute in linear time a configuration c′ of T with D(c′) = D using
Theorem 7. From T and c′, we compute in linear time the projection to the restricted
split-tree (TH , c′

H) of H . With Lemma 15, we test whether it represents the given
diagram DH of H and obtain a configuration cH equivalent to c′

H with D(cH) = DH .
We now define a configuration c of T as follows. For each prime-labeled node μ

of TH , we define c(μ′) = τ(c′(μ′)) where τ ∈ tr such that cH (μ) = τ(c′
H (μ)).

For each degenerate-labeled node μ of TH , we choose a configuration as follows. If
skelH (μ) is connected, we have by Lemma 8 that cH (μ) = φskelH (μ),r (σ) for some
cyclic permutation σ of V (skelTH (μ)). We create a permutation σ ′ of V (skelT (μ)) by
appending the elements of V (skelT (μ′))\V (skelTH (μ)) to σ in an arbitrary order. We
then set c(μ′) = φH ,r (σ

′). If skelTH (μ) is not connected, then skelT (μ′) is a starwhere
the reference chord rμ′ is not the center x and skelTH (μ) does not contain x . In that
case cH (μ) is of the form cH (μ) = ρrevρσσ rev. Then set c(μ′) = ρrevxρσαxαrev,
where α are the elements of V (skelT (μ))\V (skelTH (μ)). Finally, for each nodeμ′ of
T that is not contained in TH , we set c(μ′) = c′(μ′). By construction, we have that cH
is the projection of c, and therefore D(c)|H = D(cH) = DH , i.e., D(c) is the desired
representation of G. Clearly the amount of work per skeleton is linear, and therefore
the overall running time is linear.
�

If the canonical split tree of G or a chord diagram of G are not yet available, we
compute them in O((n + m)α(n + m)) time using the algorithm of Gioan et al. [1,
15].

5 Conclusion

We have developed a data structure that compactly represents all chord diagrams for
a connected circle graph. As an application, we have shown how to solve the partial
representation extension problem for circle graphs in almost linear time, improving
over the O(n3) algorithm of Chaplick et al. [3]. Using a reduction of Chaplick et
al. this also solves the extension problem for permutation graphs in near linear time,
improving over the O(n3) algorithms of Chaplick et al. [3] and Klavík et al. [11]. By
now Münch et al. provided a linear-time algorithm [20]. Our data structure may also
be useful when seeking restricted chord diagrams that satisfy additional constraints.
For example, we believe that it is possible to significantly simplify the circular-arc
graph recognition of Hsu et al. [21].

Author Contributions All authorswrote themainmanuscript text and prepared figures. All authors reviewed
the manuscript.

Funding Open access publishing supported by the National Technical Library in Prague. This work was
funded by Grant RU 1903/3-1 of the German Research Foundation (DFG). The authors have no competing
interests to declare that are relevant to the content of this article.

123

Algorithmica

Data availibility Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.

Declarations

Competing interests The authors declare no competing interests.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Gioan, E., Paul, C., Tedder, M., Corneil, D.: Practical and efficient circle graph recognition. Algorith-
mica 69(4), 759–788 (2014). https://doi.org/10.1007/s00453-013-9745-8

2. Spinrad, J.: Recognition of circle graphs. J. Algorithms 16(2), 264–282 (1994)
3. Chaplick, S., Fulek, R., Klavík, P.: Extending partial representations of circle graphs. J. Graph Theory

91(4), 365–394 (2019)
4. Klavík, P., Kratochvíl, J., Vyskočil, T.: Extending partial representations of interval graphs. In: Ogihara,

M., Tarui, J. (eds.) Theory andApplications ofModels of Computation: 8thAnnual Conference, TAMC
2011, Tokyo. Proceedings, pp. 276–285. Springer, Cham. (2011). https://doi.org/10.1007/978-3-642-
20877-5_28

5. Klavík, P., Kratochvíl, J., Otachi, Y., Saitoh, T., Vyskočil, T.: Extending partial representations of
interval graphs. Algorithmica 78(3), 945–967 (2017)

6. Angelini, P., Di Battista, G., Frati, F., Jelínek, V., Kratochvíl, J., Patrignani, M., Rutter, I.: Testing
planarity of partially embedded graphs. ACM Trans. Algorithms 11(4), 32–13242 (2015). https://doi.
org/10.1145/2629341

7. Patrignani, M.: On extending a partial straight-line drawing. Int. J. Found. Comput. Sci. 17(5), 1061–
1070 (2006). https://doi.org/10.1142/S0129054106004261

8. Arroyo, A., Derka, M., Parada, I.: Extending simple drawings. In: Archambault, D., Tóth, C.D. (eds.)
Proceedings of the 27th International Symposium on Graph Drawing and Network Visualization
(GD’19). Lecture Notes in Computer Science, vol. 11904, pp. 230–243. Springer, Cham. (2019).
https://doi.org/10.1007/978-3-030-35802-0_18

9. Eiben, E., Ganian, R., Hamm, T., Klute, F., Nöllenburg, M.: Extending partial 1-planar drawings.
In: Czumaj, A., Dawar, A., Merelli, E. (eds.) Proceedings of the 47th International Colloquium
on Automata, Languages, and Programming (ICALP’20). LIPIcs, vol. 168, pp. 43–14319. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, Germany (2020). https://doi.org/10.4230/LIPIcs.ICALP.
2020.43

10. Klavík, P., Kratochvíl, J., Otachi, Y., Rutter, I., Saitoh, T., Saumell, M., Vyskočil, T.: Extending partial
representations of proper and unit interval graphs. In: Algorithm Theory–SWAT 2014, pp. 253–264.
Springer, Cham. (2014)

11. Klavík, P., Kratochvíl, J., Krawczyk, T., Walczak, B.: Extending partial representations of function
graphs and permutation graphs. In: Epstein, L., Ferragina, P. (eds.) Proceedings of the 20th Annual
European Symposium on Algorithms (ESA’12). Lecture Notes in Computer Science, vol. 7501, pp.
671–682. Springer, Cham. (2012). https://doi.org/10.1007/978-3-642-33090-2_58

12. Krawczyk, T.,Walczak, B.: Extending partial representations of trapezoid graphs. In: Bodlaender, H.L.,
Woeginger, G.J. (eds.) Proceedings of the 43rd International Workshop on Graph-Theoretic Concepts
in Computer Science. Lecture Notes in Computer Science, vol. 10520, pp. 358–371. Springer, Cham.
(2017). https://doi.org/10.1007/978-3-319-68705-6_27

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00453-013-9745-8
https://doi.org/10.1007/978-3-642-20877-5_28
https://doi.org/10.1007/978-3-642-20877-5_28
https://doi.org/10.1145/2629341
https://doi.org/10.1145/2629341
https://doi.org/10.1142/S0129054106004261
https://doi.org/10.1007/978-3-030-35802-0_18
https://doi.org/10.4230/LIPIcs.ICALP.2020.43
https://doi.org/10.4230/LIPIcs.ICALP.2020.43
https://doi.org/10.1007/978-3-642-33090-2_58
https://doi.org/10.1007/978-3-319-68705-6_27

Algorithmica

13. Battista, G.D., Tamassia, R.: On-line graph algorithms with SPQR-trees. In: Paterson, M.S. (ed.)
Proceedings of the 17th International ColloquiumonAutomata, Languages, and Programming. Lecture
Notes in Computer Science, vol. 443, pp. 598–611. Springer, Cham. (1990)

14. Gallai, T.: Transitiv orientierbare Graphen. Acta Mathematica Academiae Scientiarum Hungarica 18,
25–66 (1967)

15. Gioan, E., Paul, C., Tedder, M., Corneil, D.: Practical and efficient split decomposition via graph-
labelled trees. Algorithmica 69(4), 789–843 (2014). https://doi.org/10.1007/s00453-013-9752-9

16. Kalisz, V., Klavík, P., Zeman, P.: Circle graph isomorphism in almost linear time. In: Du, D., Du, D.,
Wu, C., Xu, D. (eds.) Theory and Applications of Models of Computation - 17th Annual Conference,
TAMC 2022. Lecture Notes in Computer Science, vol. 13571, pp. 176–188. Springer, Cham. (2022).
https://doi.org/10.1007/978-3-031-20350-3_15

17. Courcelle, B.: Circle graphs and monadic second-order logic. J. Appl. Log. 6(3), 416–442 (2008).
https://doi.org/10.1016/j.jal.2007.05.001

18. Cunningham, W.H.: Decomposition of directed graphs. SIAM J. Algebraic Discrete Methods 3(2),
214–228 (1982). https://doi.org/10.1137/0603021

19. Bouchet, A.: Reducing prime graphs and recognizing circle graphs. Combinatorica 7(3), 243–254
(1987)

20. Münch, M., Rutter, I., Stumpf, P.: Partial and simultaneous transitive orientations via modular decom-
positions. In: Bae, S.W., Park,H. (eds.) 33rd International SymposiumonAlgorithms andComputation,
ISAAC. LIPIcs, vol. 248, pp. 51–15116. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
(2022). https://doi.org/10.4230/LIPIcs.ISAAC.2022.51

21. Hsu, W.L.: O(m · n) algorithms for the recognition and isomorphism problems on circular-arc graphs.
SIAM J. Comput. 24(3), 411–439 (1995). https://doi.org/10.1137/S0097539793260726

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/s00453-013-9752-9
https://doi.org/10.1007/978-3-031-20350-3_15
https://doi.org/10.1016/j.jal.2007.05.001
https://doi.org/10.1137/0603021
https://doi.org/10.4230/LIPIcs.ISAAC.2022.51
https://doi.org/10.1137/S0097539793260726

	Extending Partial Representations of Circle Graphs in Near-Linear Time
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Circle Graphs and Chord Diagrams
	2.2 Splits and Split Trees

	3 Compact Representation of all Chord Diagrams
	3.1 Configurations of Split Trees
	3.2 Configurations of Canonical Split Trees

	4 Partial Representation Extension
	4.1 Representation Test in Restricted Split Trees
	4.2 The Actual Extension

	5 Conclusion
	References

