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1 | Introduction

Making accurate forecasts is of wide practical relevance in a large number of fields.
With the growing share of renewable energy sources in Germany, for instance, accu-
rate solar and wind forecasts are of increasing importance to balance the power grid.
The power output of photovoltaic cells and wind farms exhibits large fluctuations due
to current weather conditions, and accurate forecasting reduces the risk of negative
impacts on the grid and improves unit commitment optimization (Ren et al., 2015).
Another illustrative example is the insurance industry, where accurate forecasting is
crucial to ensure rigorous risk assessment, pricing precision, and strategic financial
planning. In this context, shortcomings in adequate forecasting carry a high finan-
cial risk which can ultimately lead to an insurance bankruptcy or low financial rating
(Van Gestel et al., 2007). In a similar line of reasoning, correct forecasting is essen-
tial for various business divisions such as finance and personnel but also in broader
contexts such as our economic and political systems.
As argued in Petropoulos et al. (2022), this wide range of forecast applications has led
to the development of an enormous variety of methods, principles, and tools. With
the advances in computing power, more sophisticated models detecting complex re-
lationships within the data could be implemented. This progress led to a strong im-
provement of machine learning (ML) models, and consequently, ML approaches have
gained strong popularity for all kinds of forecasting problems. Combining the available
tools from classical statistics and machine learning yields a large toolbox, summarized
in an encyclopedic (non-exhaustive) overview in Petropoulos et al. (2022). A specific
method is usually selected based on the type of data involved and the problem that
needs to be solved.
In this thesis, the focus is on continuous forecasting problems, where the target or re-
sponse is real-valued and the corresponding forecasts are probabilistic taking the form
of predictive densities or predictive cumulative distribution functions. While there ex-
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1. Introduction
ist a wide range of methods for binary problems and probability forecasts the number
of suitable analogs for real-valued problems is considerable smaller. The contributions
in this paper, reduce this gap by presenting three newly developed approaches for
probabilistic forecasts of real-valued outcomes which have been motivated by binary
or deterministic counterparts.
Against this background, this thesis is structured in the following way: After provid-
ing an introduction to the fundamentals and key concepts of statistical forecasting
in Chapters 2 and 3, the main part of this work focuses on the presentation of the
newly developed approaches. To provide a clear structure and research focus for these
methods, the forecasting cycle framework introduced by Hyndman and Athanasopou-
los (2021) was utilized. This framework divides the general forecasting task into five
essential steps: (I) Problem definition, (II) Information gathering, (III) Preliminary (ex-
ploratory) data analysis, (IV) Choosing and fitting models, and finally (V) Evaluation.
Since the preparation steps (I) and (II) do not require the usage of statistical or ML ap-
proaches, this thesis has developed new approaches for real-valued outcomes within
the scope and context of the process steps (III) to (V):

• Preliminary (exploratory) data analysis
• Choosing and fitting models
• Evaluation

For each of these three steps, a new method is developed to apply the forecasting
cycle for real-valued forecasting problems.
Chapter 4 presents the coefficient of predictive ability (CPA) measure, a new tool to
assess asymmetric relationships between variables. It can be used to perform feature
screening or variable selection and, thus, can be applied in the data analysis step (III).
In Chapter 5, Easy Uncertainty Quantification (EasyUQ) is introduced, a method that
transforms deterministic forecasts for real-valued response variables into probabilis-
tic forecasts and conducts a detailed comparison between EasyUQ and state-of-the
art alternative approaches. This method supports the choosing and fitting models
step (IV). To complete the process steps of the forecasting cycle, Chapter 6 develops
a decomposition of the continuous ranked probability score (CRPS) into three infor-
mative components which allows for a more detailed comparison between different
forecasts and, hence, can be applied in the evaluation step (V). Finally, this thesis illus-
trates and motivates the usage of the newly developed tools by applying the relevant
2



1. Introduction
steps of the forecasting cycle to a challenging weather forecasting task in Chapter 7.
Specifically, this chapter investigates the issue of producing probabilistic forecasts for
accumulated precipitation over northern tropical Africa. In chapter 8, this thesis con-
cludes by consolidating themain contributions, highlighting key results and presenting
potential avenues for future research.

1.1 Relation to published work

This thesis compriseswork that has beendeveloped in collaborationwith several other
authors. In the following paragraph, the amount and type of individual contributions
are defined.
Gneiting and Walz (2022) Gneiting, T. and Walz, E.-M. (2022). Receiver operating

characteristic (ROC) movies, universal ROC (UROC) curves, and coefficient of
predictive ability (CPA).Machine Learning, 111, 2769-2797.

This research article was originally developed in my master thesis and has been ex-
tended by providing amore detailed investigation of theCPAmeasure (Section 4.4.2),
a comparison to other relevant measures (Section 4.4.4), and by including real world
data examples (Section 4.5). Both authors contributed to equal parts to this publica-
tion. Chapter 4 is almost identical to this research article.
Walz et al. (2024) Walz, E.-M., Henzi, A., Gneiting, T. and Ziegel, J. (2024). Easy Uncer-

tainty Quantification (EasyUQ): Generating predictive distributions from single-
valued model output. SIAM Review. In press, arXiv:2212.08376

The new approach in this paper was developed jointly by all authors. Chapter 5 is al-
most identical to this research article. In addition small parts of the paper contributed
to Chapter 2 and Chapter 3.
Arnold et al. (2023b) Arnold, S., Walz, E.-M., Gneiting T. and Ziegel, J. (2023). Decom-

positions of the mean continuous ranked probability score. Preprint,
arXiv:2311.14122

The new approach in this paper was developed jointly by all authors. The first two au-
thors contributed to equal parts. Chapter 6 is almost identical to this research article.

3



1. Introduction
In addition small parts of the paper contributed to Chapter 2.
The work presented in Chapter 7 is based on joint, ongoing research with Gregor Köh-
ler, Andreas H. Fink, Peter Knippertz, and Tilmann Gneiting.
During the work on this thesis, I developed an R package for the implementation of
ROC movies, UROC curves, and CPA:

https://github.com/evwalz/urocc,
and an R package for isotonic distributional regression (IDR) with probabilistic input
and the CRPS decomposition:

https://github.com/evwalz/isodisregSD.
Moreover, I developed a python package for IDR:

https://github.com/evwalz/isodisreg.

4
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2 | Basics of forecast verification

For the study of statistical forecasts with a primary emphasis on probabilistic forecasts
which are the main focus in this thesis, we review theoretical fundamentals and de-
scribe the concepts of a prediction space (Gneiting and Ranjan, 2013), calibration and
sharpness (Gneiting et al., 2007), and scoring rules and scoring functions (Gneiting
and Raftery, 2007; Gneiting, 2011).

2.1 Prediction space

A general framework considering the joint distribution of point forecast and observa-
tion was introduced inMurphy andWinkler (1987) and extended by Gneiting and Ran-
jan (2013) to potentiallymultiple probabilistic forecasts and observations taking values
in just any space. Consider a prediction space, i.e., a probability space (Ω,A,P)where
the elements of the sample space Ω correspond to realizations of random tuples

(F1, . . . , Fk, Y, U)

where Y is a real-valued outcome, F1, . . . , Fk are probability measures on the real
line, which are identified with their associated cumulative distribution function (CDF)
F or corresponding probability density function (PDF) f , andU is uniformly distributed
on the unit interval. Let A0 ⊂ A denote a forecaster’s information basis, i.e., a sub
σ-algebra A0 such that F is measurable with respect to A0. Then F is ideal relative
toA0 if

F (y) = P(Y ≤ y|A0) almost surely, for all y ∈ R.

Note that P(Y ≤ y|X) generate the conditional law of Y givenA0 = σ(X), which in
short we denote by PY |X . In a prediction space setting with deterministic forecasts,
the probabilistic forecasts F1, . . . , Fk are replaced by point forecastsX1, . . . , Xk.

5



2. Basics of forecast verification

2.2 Calibration and sharpness

As argued in Gneiting et al. (2007) probabilistic forecasts should be as sharp as pos-
sible subject to calibration. Informally, predictive distributions are calibrated if they
provide a statistically coherent explanation of the outcomes. Sharpness, on the other
hand, quantifies how well one can discriminate different scenarios for future events
according to the forecast and is a property of the forecast only. The next section de-
fines several notions of calibration. A comprehensive (non-exhaustive) overview of
the main types of calibration and their properties can be found in Gneiting and Resin
(2023).

2.2.1 Notions of calibration

A strong notion of calibration is auto-calibration, which formalizes the idea that the
outcome is indistinguishable from a random draw from the posited distribution F .
Specifically, the random forecast F is auto-calibrated (Tsyplakov, 2013) if PY |F = F ,
or equivalently

F (x) = P(Y ≤ x | F ) almost surely for all x ∈ R. (2.1)
For any threshold value x ∈ R, we may condition on the random variable F (x) in-
stead of the random distribution F in (2.1), to obtain the weaker notion of threshold
calibration. Specifically, the forecastF is called threshold calibrated (Henzi et al., 2021)
if

F (x) = P(Y ≤ x | F (x)) almost surely for all x ∈ R.

Essentially, for a threshold calibrated forecast F , we can take F (x) at face value for
any x ∈ R. In a slight adaptation of the definition in Gneiting and Resin (2023), we
call the forecast F quantile calibrated if

F−1(α) = qα(Y | F−1(α)) almost surely for all α ∈ (0, 1),

where for any α ∈ (0, 1), qα(Y | F−1(α)) denotes the lower-α-quantile of the condi-
tional law of Y given F−1(α).
In a recent publication, Arnold and Ziegel (2023) introduce isotonic calibration. The
definition of this new notion of calibration and an overview of relevant concepts is de-
ferred to Section 6.4.2. By Proposition 5.3 of Arnold and Ziegel (2023), auto-calibration
6



2. Basics of forecast verification
AC
⇓
IC

⇒ ⇒

TC QC
↪→

←↩PC
Figure 2.1: Implications between auto-calibration (AC), isotonic calibration (IC), thresh-
old calibration (TC), and quantile calibration (QC). Implications with respect to prob-
abilistic calibration (PC) are indicated by hooked arrows and hold under Assumption
2.15 of Gneiting and Resin (2023).
implies isotonic calibration, and isotonic calibration implies threshold calibration and
quantile calibration. The probability integral transform (PIT) of the CDF-valued ran-
dom quantity F is the random variable ZF = F (Y−) + U(F (Y ) − F (Y−)), where
F (y−) = limx↑y F (x) denotes the left-hand limit of F at y ∈ R, with a random vari-
able U that is standard uniform and independent of F and Y . The PIT of a continuous
CDF F simplifies to ZF = F (Y ). The forecast F is probabilistically calibrated if ZFis uniformly distributed on the unit interval (Gneiting and Ranjan, 2013). Originally
suggested by Dawid (1984), checks for probabilistic calibration, and for the uniformity
of the closely related rank histogram, constitute a cornerstone of forecast evaluation
(Diebold et al., 1998; Hamill, 2001; Gneiting et al., 2007). Under regularity conditions,
a threshold calibrated or quantile calibrated forecast is probabilistically calibrated; de-
tails and a direct implication from isotonic calibration to a weak form of probabilis-
tic calibration are available in Gneiting and Resin (2023, Section 3.3) and Arnold and
Ziegel (2023, Appendix D), respectively. Figure 2.1 summarizes relationships between
the notions of calibration discussed in this section and in Chapter 6.

2.3 Scoring functions

A performance criterion to evaluate point forecasts x1, . . . , xn ∈ R for corresponding
observations y1, . . . , yn ∈ R typically takes the form

sn =
1

n

n∑
i=1

s(xi, yi),

7



2. Basics of forecast verification
where s : R × R → [0,∞) is denoted as scoring function. To avoid misguided infer-
ences, the forecasted functional and the scoring function must be matched carefully
(Gneiting, 2011). A scoring function is consistent for a target functional T , which for
simplicity we assume to be single-valued, relative to the classP of predictive distribu-
tions at hand if

EY∼P s(T (P ), Y ) ≤ EY∼P s(x, Y ) (2.2)
for all x ∈ R and P ∈ P . It is strictly consistent if equality in (2.2) implies x = T (P ).
Popular scoring functions are the squared error

se(x, y) = (x− y)2, (2.3)
which is consistent for themean functional relative to the class of probabilitymeasures
with finite first moment and the absolute error

ae(x, y) = |x− y| (2.4)
which is consistent for the median functional. A scoring function strictly consistent for
an α-quantile, α ∈ (0, 1), relative to any class of probability measures with finite first
moment is the piecewise linear quantile score

qsα(x, y) = (1{y ≤ x} − α)(x− y). (2.5)

2.4 Scoring rules

A widely accepted principle in the generation of predictive distributions is that sharp-
ness ought to be maximized subject to calibration (Gneiting et al., 2007). Maximizing
sharpness requires forecasters to provide informative, concentrated predictive distri-
butions, and calibration posits that probabilities derived from these distributions con-
formwith actual observed frequencies. This is in line with and generalizes the classical
goal of prediction intervals being as narrow as possible while attaining nominal cover-
age.
A key tool for evaluating and comparing predictive distributions under this principle is
that of proper scoring rules (Gneiting and Raftery, 2007;Matheson andWinkler, 1976)
which are functions S : P × R → R̄ = R ∪ {∞} mapping a predictive distribution
P ∈ P and the outcome y to a numerical score such that

EY∼P [S(P, Y )] ≤ EY∼P [S(Q, Y )] (2.6)
8



2. Basics of forecast verification
for all distributions P,Q in a given class P of probability measures on R. A scoring
rule is strictly proper if (2.6) holds with equality only if P = Q. Here EY∼P [·] denotesthe expected value of the quantity in parentheses when Y follows the distribution
P . From a decision-theoretic point of view, proper scoring rules encourage truthful
forecasting, since forecasters minimize their expected score if they issue predictive
distributions that correspond to their true beliefs.
Arguably the most widely used strictly proper scoring rules for real-valued observa-
tions are the logarithmic score for a predictive CDF F with density f ,

LogS(F, y) = − log(f(y)). (2.7)
and the continuous ranked probability score (CRPS)

CRPS(F, y) = E|Y − y| − 1

2
E|Y − Y ′|

=

∫ ∞

−∞
(F (z)− 1{y ≤ z})2 dz (2.8)

= 2

∫ 1

0

(1{y < F−1(α)} − α)(F−1(α)− y)dα,

where Y and Y ′ are independent random variables with distribution F and finite first
moment and F−1 denotes the quantile function, defined as F−1(α) = inf{z ∈ R |
F (z) ≥ α} for α ∈ (0, 1) (Matheson and Winkler, 1976; Gneiting and Raftery, 2007;
Laio and Tamea, 2007). The popularity of the CRPS is due to the facts that it allows
arbitrary types of predictive distributions (e.g., discrete, continuous, mixed discrete-
continuous), is reported in the same unit as the outcome, and reduces to the absolute
error if F assigns probability one to a point x ∈ R. The LogS is (save for a change
of sign) the ubiquitous loss function in maximum likelihood estimation. Closed form
expressions for the CRPS and LogS are available for the most commonly used para-
metric distributions and have been implemented in software packages (Jordan et al.,
2019).
In practice, forecast methods are compared in terms of their average score over a
collection (Fj, yj) for j = 1, . . . , n,

S̄ =
1

n

n∑
j=1

S(Fj, yj), (2.9)
and the method achieving the lowest average score is considered superior. For ex-
ample, a popular strictly proper scoring rule for binary observation y ∈ {0, 1} and

9



2. Basics of forecast verification
corresponding predictive probability p ∈ [0, 1] for the outcome y = 1, is the Brier
score (BS)

BS(p, y) = (p− y)2. (2.10)
The empirical averageBS for a sequenceof forecast–observation pairs (p1, y1), . . . , (pn, yn),where pi ∈ [0, 1] and yi ∈ {0, 1}, equals

BS =
1

n

n∑
1=1

(pi − yi)2 . (2.11)

10



3 | Regression models

Regression models are used to model the relation between a response variable Y and
one or more explanatory variablesX1, . . . , Xm by approximating the conditional dis-
tribution of Y , or certain characteristics of it, givenX1, . . . , Xm. The relation betweenthe response and the covariates is described by a suitable class of regression functions
which follow specific shape or order restrictions. A regression function is fitted bymin-
imizing a suitable loss function based on training data

{(xi1, . . . , xim, yi) : i = 1, . . . , n},

with covariate values (explanatory variables) xi1, . . . , xim and corresponding observa-
tion yi for i = 1, . . . , n.

3.1 Linear regression

In linear regression, the regression function f : Rm → R is assumed to be a linear
function of the covariates,

f(x1, . . . , xm) = β0 + β1x1 + · · ·+ βmxm.

Based on the functional that one wants to estimate, a suitable scoring function needs
to be selected to estimate the regression coefficients β0, β1, . . . , βm. The most com-
mon regressionmodel is ordinary least squares regression where one seeks the condi-
tional expectation of a general real-valued response variable given the predictor vari-
ables, namely

E(Y |X1 = x1, . . . , Xm = xm) = f(x1, . . . , xm),

11



3. Regression models
Since the squared error scoring function at (2.3) is consistent for the mean functional,
the parameters are estimated by

argmin
β0,β1,...,βm

1

n

n∑
i=1

(yi − (β0 + β1xi1 + · · ·+ βmxim))
2.

Instead of modeling the conditional expectation, quantile regression seeks to model
the α-quantile qα for some fixed level α ∈ (0, 1) of a real-valued response variable
conditional on the explanatory variables with

qα(Y |X1 = x1, . . . , Xm = xm) = β0 + β1x1 + · · ·+ βmxm.

To estimate the regression coefficients any consistent scoring function for theα-quantile
can be used. In practice, one uses the asymmetric piecewise linear scoring function at
(2.5) leading to the estimate
argmin
β0,β1,...,βm

n∑
i=1

(1{yi ≤ β0 + β1xi1 + · · ·+ βmxim} − α)(β0 + β1xi1 + · · ·+ βmxim − yi),

which can be rewritten to a linear programming problemand thus be solved efficiently.

3.2 Logistic regression

If the response variable Y is binary, then the conditional expectation equals the con-
ditional event probability p which is constrained to the unit interval:

p = E(Y |X1 = x1, . . . , Xm = xm) = P(Y = 1|X1 = x1, . . . , Xm = xm)

Since the linear combination of the explanatory variables can attain any value on the
real line, one employs a suitable transformation function such as in logistic regression
which models the relation

logit(p) = log
p

1− p
= β0 + β1x1 + · · · βmxm

or equivalently
p =

exp(β0 + β1x1 + · · · βmxm)
1 + exp(β0 + β1x1 + · · · βmxm)

.

To estimate the regression coefficients, any scoring function consistent for the expec-
tation functional can be used or any proper scoring rule for probability forecasts for
12



3. Regression models
binary events. In practice, one typically uses the logarithmic scoring rule, which yields
optimal score estimates

argmax
β0,β1,...,βm

n∑
i=1

[
yi log

(
exp(β0 + β1xi1 + · · · βmxim)

1 + exp(β0 + β1xi1 + · · · βmxim)

)
+ (1− yi) log

(
1

1 + exp(β0 + β1xi1 + · · · βmxim)

)]
.

Typically, the optimization needs to be performed numerically.

3.3 Isotonic regression

For isotonic regression, one assumes that the regression functions satisfies certain or-
der constraints; i.e., inequality restrictions that constrain the values of these functions.
To this end, the covariate space X = Rm is equipped with a partial order⪯, e.g.,

xi ⪯ xj if xik ≤ xjk, for all k = 1, . . . ,m,

where i, j = 1, . . . , n. The isotonic regression problem can be stated as
min

β1,...,βn

n∑
i=1

h(yi, βi)

with the constraint
βi ≤ βj if xi ⪯ xj,

where h is a convex loss function. For
h(y, β) = |y − β|p

and p = 2 or p = 1, we obtain the least squares problem and the least absolute values
problem of isotonic regression. A consistent estimator for isotonic quantile regression
for a general quantile qα at level α ∈ (0, 1) is obtained using the loss function

h(y, β) = αmax(y − β, 0) + (1− α)max(β − y, 0).

The different optimization problems can be solved via the generalized pool adjacent
violator (PAV) algorithm (de Leeuw et al., 2009).
Figure 3.1 illustrates the difference between linear and isotonic regression and the
usage of different objective functionals such as the mean versus different quantiles at
level α based on simulated data (X, Y ), whereX is uniform on (0, 10) and

Y |X ∼ Gamma(shape =
√
X, scale = min{max{X, 1}, 6}) (3.1)

as defined in equation (1) of Henzi et al. (2021) with a sample of size n = 400.
13
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Figure 3.1: Illustration of linear regression (solid line) and isotonic regression (dashed
line) for data in 3.1. The fitted functionals are the mean, the median, the 5%-quantile,
and the 95%-quantile.

3.4 Distributional regression

Thus far, the focus was on regression models that estimate certain functionals of the
conditional distribution of Y given X1, . . . , Xm, such as the conditional expectation,
median or other specific quantiles. As argued in Henzi et al. (2021): "The reduction of
a conditional distribution to a single-valued functional results in tremendous loss of
information. Therefore, from a perspective of both estimation and prediction, regres-
sion analysis ought to be distributional". To this end, Henzi et al. (2021) introduce iso-
tonic distributional regression (IDR), a non-parametric technique to estimate the con-
ditional distribution PY |X of Y given a covariate vectorX under isotonic constraints.
Just like for isotonic regression, the covariate spaceX is equipped with a partial order
⪯. The notion of isotonicity for distributional regression is understood in the following
way. Formally, IDR assumes that the conditional distributions of outcome Y given the
covariate vectorX , identified with the CDFs Fx(y) = P(Y ≤ y | X = x), are increas-
ing in stochastic order, namely, Fx ≤st Fx′ , i.e., Fx(y) ≥ Fx′(y) for all y ∈ R, if x ⪯ x′.
As introduced in Section 2.4, proper scoring rules S are summary measures to eval-
14



3. Regression models
uate probabilistic forecasts and thus serve as suitable loss functions in distributional
regression. The IDR solution is a minimizer of empirical loss

1

n

n∑
i=1

S(Fi, yi)

with the constraint
Fi ≤st Fj if xi ⪯ xj, i, j = 1, . . . , n.

Henzi et al. (2021) show that there exists a unique CRPS-based solution, denoted as
IDR solution, which is simultaneously optimal with respect to broad classes of proper
scoring rules including relevant choices in the extant literature. Theorem 2.2 in Henzi
et al. (2021) implies that the IDR solution F̂ = (F̂x1 , . . . , F̂xn) satisfies

(F̂x1(y), . . . F̂xn(y)) = argmin
θ∈Rn:θi≥θj if xi⪯xj

n∑
i=1

(θi − 1{yi ≤ y})2

at every threshold y ∈ R. Thus, finding the IDR solution reduces to solving a quadratic
programming problem by computing IDR CDFs at any fixed threshold value. Moreover,
it suffices to compute the IDR CDFs at the unique values of the response only, as the
optimal solution remains constant in between. Alternatively, the IDR solution, also
being optimal with respect to quantile loss, can be recovered by performing isotonic
quantile regression at allα-levels (see Section 3.3) and piecing the conditional quantile
functions together. While solving a minimization problem at all quantile levels l/k
where k = 1, . . . , n and l = 1, . . . , k − 1 is computationally challenging, the quantile
representation offers a valuable interpretation of IDR, illustrated in Figure 3.2, which
is a replication of Figure 1 in Henzi et al. (2021) based on data defined in (3.1).
In the case of a total order the IDR solution is computed using a recursive adaption of
the PAV algorithm for a considerable reduction of computing time (Henzi et al., 2022).
For general partial orders see de Leeuw et al. (2009) and their active set solutions.
Thus far, the IDR solution F̂ = (F̂x1 , . . . , F̂xn) is defined at the covariate values
x1, . . . , xn ∈ X only. To make a prediction at a new covariate value x /∈ {x1, . . . , xn},Henzi et al. (2021) introduce an approach for general covariate spaces which simplifies
in the special caseX = R of a single real-valued covariate to the following procedure:
Suppose that x1 ≤ · · · ≤ xn. If x < x1, we may let F = Fx1 and if x > xn, thenlet F = Fxn . If x ∈ (xi, xi+1) for some i ∈ {1, . . . , n − 1} linear interpolation is
performed, namely,

F (z) =
x− xi
xi+1 − xi

Fxi
(z) +

xi+1 − x
xi+1 − xi

Fxi+1
(z)

15



3. Regression models

0 2 4 6 8 10

0
1
0

2
0

3
0

4
0

Y

X

0 10 20 30 40 50

0
.0

0
.4

0
.8

C
D
F

Thresholds

b)

a)

b)

Figure 3.2: Simulated data from 3.1 of size n = 400 with shaded bands corresponding
to central intervals (a) and true conditional CDFs and IDR estimates for selected values
ofX (b) which corresponding to vertical stripes displayed in (a).
for z ∈ R. For details of the procedure in general covariate spaces see Henzi et al.
(2021). For the choice of partial order, Henzi et al. (2021) argue that for X ⊆ Rd

the componentwise order may be suitable for many applications whereas for ordinal
covariates a lexicographic order may be more appropriate. In case of covariates that
are exchangeable the empirical stochastic order and the empirical increasing convex
order are suggested.
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4 | ROC movies, UROC curve and CPA

Throughout science and technology, receiver operating characteristic (ROC) curves
and associated area under the curve (AUC) measures constitute powerful tools for
assessing the predictive abilities of features, markers and tests in binary classification
problems. Despite its immense popularity, ROC analysis has been subject to a fun-
damental restriction, in that it applies to dichotomous (yes or no) outcomes only. In
this chapter, ROC movies and universal ROC (UROC) curves that apply to just any lin-
early ordered outcome, alongwith an associated coefficient of predictive ability (CPA)
measure are introduced. Their usage is illustrated in data examples from biomedicine
andmeteorology. In addition,CPAmeasure is used for feature analysis in the precipi-
tation forecasting problemdiscussed in Chapter 7 of thiswork. This highlights the prac-
tical usefulness ofCPAmeasure in properly performing the preliminary (exploratory)
data analysis step of the forecasting cycle introduced in Section 1.

4.1 Introduction

Originating from signal processing and psychology, popularized in the 1980s (Hanley
and McNeil, 1982; Swets, 1998), and witnessing a surge of usage in machine learning
(Bradley, 1997; Huang and Ling, 2005; Fawcett, 2006; Flach, 2016), receiver operating
characteristic or relative operating characteristic (ROC) curves and area under the ROC
curve (AUC) measures belong to the most widely used quantitative tools in science
and technology. Strikingly, a Web of Science topic search for the terms “receiver oper-
ating characteristic” or “ROC” yieldswell over 15,000 scientific papers published in cal-
endar year 2019 alone. In a nutshell, the ROC curve quantifies the potential value of a
real-valued classifier score, feature, marker, or test as a predictor of a binary outcome.
To give a classical example, Figure 4.1 illustrates the initial levels of two biomedical
markers, serum albumin and serum bilirubin, in a Mayo Clinic trial on primary biliary
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Figure 4.1: Traditional ROC curves for two biomedical markers, serum albumin and
serum bilirubin, as predictors of patient survival beyond a threshold value of 1462
days (four years) in a Mayo Clinic trial. (a, c) Bar plots of marker levels conditional on
survival or non-survival. The stronger shading results from overlap. For bilirubin, we
reverse orientation, as is customary in the biomedical literature. (b) ROC curves and
AUC values. The crosses correspond to binary classifiers at the feature thresholds
indicated in the bar plots.

cirrhosis (PBC), a chronic fatal disease of the liver (Dickson et al., 1989). While patient
records specify the duration of survival in days, traditional ROC analysis mandates the
reduction of the outcome to a binary event, which here we take as survival beyond
four years. Assuming that higher marker values are more indicative of survival, we
can take any threshold value to predict survival if the marker exceeds the threshold,
and non-survival otherwise. This type of binary classifier yields true positives, false
positives (erroneous predictions of survival), true negatives, and false negatives (erro-
neous predictions of non-survival). The ROC curve is the piecewise linear curve that
plots the true positive rate, or sensitivity, versus the false positive rate, or one minus
the specificity, as the threshold for the classifier moves through all possible values.
Despite its popularity, ROC analysis has been subject to a fundamental shortcoming,
namely, the restriction to binary outcomes. Real-valued outcomes are ubiquitous in
scientific practice, and investigators have been forced to artificiallymake thembinary if
the tools of ROC analysis are to be applied. In this light, researchers have been seeking
generalizations of ROC analysis that apply to just any type of ordinal or real-valued
outcomes in natural ways (Etzioni et al., 1999; Heagerty et al., 2000; Bi and Bennett,
2003; Pencina and D’Agostino, 2004; Heagerty and Zheng, 2005; Rosset et al., 2005;
Mason and Weigel, 2009; Hernández-Orallo, 2013). Still, notwithstanding decades of
scientific endeavor, a fully satisfactory generalization has been elusive.
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4. ROC movies, UROC curve and CPA
In this chapter, we propose a powerful generalization of ROC analysis, which over-
comes extant shortcomings, and introduce data science tools in the form of the ROC
movie, the universal ROC (UROC) curve, and an associated, rank based coefficient of
(potential) predictive ability (CPA) measure — tools that apply to just any linearly
ordered outcome, including both binary, ordinal, mixed discrete-continuous, and con-
tinuous variables. The ROC movie comprises the sequence of the traditional, static
ROC curves as the linearly ordered outcome is converted to a binary variable at suc-
cessively higher thresholds. The UROC curve is a weighted average of the individual
ROC curves that constitute the ROCmovie, with weights that depend on the class con-
figuration, as induced by the unique values of the outcome, in judiciously predicated,
well-definedways. CPA is aweighted average of the individualAUC values in the very
sameway that the UROC curve is a weighted average of the individual ROC curves that
constitute the ROC movie. Hence, CPA equals the area under the UROC curve. This
set of generalized tools reduces to the standard ROC curve and AUC when applied
to binary outcomes. Moreover, key properties and relations from conventional ROC
theory extend to ROCmovies, UROC curves, andCPA in meaningful ways, to result in
a coherent toolbox that properly extends the standard ROC concept. For a graphical
preview, we return to the survival data example from Section 4.1, where the outcome
was artificially made binary. Equipped with the new set of tools we no longer need
to transform survival time into a specific dichotomous outcome. Figure 4.2 shows the
ROC movie, the UROC curve, and CPA for the survival dataset.
The remainder of the chapter is organized as follows. Section 4.2 provides a brief
review of conventional ROC analysis for dichotomous outcomes. The key technical
development is in Sections 4.3 and 4.4, where we introduce and study ROC movies,
UROC curves, and the rank basedCPAmeasure. To illustrate practical usage and rele-
vance, real data examples from survival analysis andweather prediction are presented
in Section 4.5. We monitor recent progress in numerical weather prediction (NWP)
and shed new light on a recent comparison of the predictive abilities of convolutional
neural networks (CNNs) vs. traditional NWPmodels. A final discussion is found in Sec-
tion 4.6.
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Figure 4.2: ROC movies, UROC curves, and CPA for two biomedical markers, serum
albumin and serum bilirubin, as predictors of patient survival (in days) in aMayo Clinic
trial. The ROC movies show the traditional ROC curves for binary events that cor-
respond to patient survival beyond successively higher thresholds. The numbers at
upper left show the current value of the threshold in days, at upper middle the re-
spective relative weight, and at bottom right the AUC values. The threshold value of
1462 days recovers the traditional ROC curves in Figure 4.1. The video ends in a static
screen with the UROC curves and CPA values for the two markers.

4.2 Receiver operating characteristic (ROC) curves andarea
under the curve (AUC) for binary outcomes

Before we introduce ROC movies, UROC curves, and CPA, it is essential that we es-
tablish notation and review the classical case of ROC analysis for binary outcomes,
as described in review articles and monographs by Hanley and McNeil (1982), Swets
(1998), Bradley (1997), Pepe (2003), Fawcett (2006), and Flach (2016), among others.

4.2.1 Binary setting

Throughout this section we consider bivariate data of the form
(x1, y1), . . . , (xn, yn) ∈ R× {0, 1}, (4.1)
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4. ROC movies, UROC curve and CPA
where xi ∈ R is a real-valued classifier score, feature, marker, or covariate value, and
yi ∈ {0, 1} is a binary outcome, for i = 1, . . . , n. Following the extant literature,
we refer to y = 1 as the positive outcome and to y = 0 as the negative outcome,
and we assume that higher values of the feature are indicative of stronger support
for the positive outcome. Throughout we assume that there is at least one index i ∈
{1, . . . , n} with yi = 0, and a further index j ∈ {1, . . . , n} with yj = 1.

4.2.2 Receiver operating characteristic (ROC) curves

We can use any threshold value x ∈ R to obtain a hard classifier, by predicting a posi-
tive outcome for a feature value> x, and predicting a negative outcome for a feature
value≤ x. If we compare to the actual outcome, four possibilities arise. True positive
and true negative cases correspond to correctly classified instances from class 1 and
class 0, respectively. Similarly, false positive and false negative cases are misclassified
instances from class 1 and class 0, respectively.
Considering the data (4.1), we obtain the respective true positive rate, hit rate or sen-
sitivity (se),

se(x) =
1
n

∑n
i=1 1{xi > x, yi = 1}
1
n

∑n
i=1 1{yi = 1}

,

and the false negative rate, false alarm rate or one minus the specificity (sp),
1− sp(x) =

1
n

∑n
i=1 1{xi > x, yi = 0}
1
n

∑n
i=1 1{yi = 0}

,

at the threshold value x ∈ R, where the indicator 1{A} equals one if the event A is
true and zero otherwise.
Evidently, it suffices to consider threshold values x equal to any of the unique values
of x1, . . . , xn or some x0 < x1. For every x of this form, we obtain a point

(1− sp(x), se(x))

in the unit square. Linear interpolation of the respective discrete point set results
in a piecewise linear curve from (0, 0) to (1, 1) that is called the receiver operating
characteristic (ROC) curve. For a mathematically oriented, detailed discussion of the
construction see Section 2 of Gneiting and Vogel (2022).
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4.2.3 Area under the curve AUC

The area under the ROC curve is a widely used measure of the predictive potential of
a feature and generally referred to as the area under the curve (AUC).
In what follows, a well-known interpretation of AUC in terms of probabilities will be
useful. To this end, we define the function

s(x, x′) = 1{x < x′}+ 1

2
1{x = x′}, (4.2)

where x, x′ ∈ R. For subsequent use, note that if x and x′ are ranked within a list,
and ties are resolved by assigning equal ranks within tied groups, then s(x, x′) =

s(rk(x), rk(x′)), where rk(x) and rk(x′) are the ranks of x and x′.
We now change notation and refer to the feature values in class i ∈ {0, 1} as xik for
k = 1, . . . , ni, where n0 =

∑n
i=1 1{yi = 0} and n1 =

∑n
i=1 1{yi = 1}, respectively.

Thus, we have rewritten (4.1) as
(x01, 0), . . . , (x0n0 , 0), (x11, 1), . . . , (x1n1 , 1) ∈ R× {0, 1}. (4.3)

Using the new notation, Result 4.10 of Pepe (2003) states that
AUC =

1

n0n1

n0∑
i=1

n1∑
j=1

s(x0i, x1j). (4.4)

In words, AUC equals the probability that under random sampling a feature value
from a positive instance is greater than a feature value from a negative instance, with
any ties resolved at random. Expressed differently,AUC equals the tie-adjusted prob-
ability of concordance in feature–outcome pairs, where we define instances (x, y) ∈
R2 and (x′, y′) ∈ R2 with y ̸= y′ to be concordant if either x > x′ and y > y′, or
x < x′ and y < y′. Similarly, instances (x, y) and (x′, y′) with y ̸= y′ are discordant if
either x > x′ and y < y′, or x < x′ and y > y′.
Further investigation reveals a close connection to Somers’ D, a classical measure of
ordinal association (Somers, 1962). This measure is defined as

D =
nc − nd

n0n1

,

where n0n1 is the total number of pairs with distinct outcomes that arise from the
data in (4.3), nc is the number of concordant pairs, and nd is the number of discordant
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4. ROC movies, UROC curve and CPA
pairs. Finally, let ne be the number of pairs for which the feature values are equal. The
relationship (4.4) yields

AUC =
nc

n0n1

+
1

2

ne

n0n1

,

and as n0n1 = nc + nd + ne, it follows that
AUC =

1

2
(D + 1) (4.5)

relates linearly to Somers’D.
To give an example, suppose that the real-valued outcome Y and the features X ,
X ′ and X ′′ are jointly Gaussian. Specifically, we assume that the joint distribution of
(Y,X,X ′, X ′′) is multivariate normal with covariance matrix

1 0.8 0.5 0.2

0.8 1 0.8 0.5

0.5 0.8 1 0.8

0.2 0.5 0.8 1

 . (4.6)

In order to apply classical ROC analysis, the real-valued outcome Y needs to be con-
verted to a binary variable, namely, an event of the type Yθ = 1{Y ≥ θ} of Y being
greater than or equal to a threshold value θ. Figure 4.3 shows ROC curves for the fea-
turesX ,X ′ andX ′′ as a predictor of the binary variable Y1, based on a sample of size
n = 400. The AUC values for X , X ′ and X ′′ as a predictor of Y1 are .91, .72 and .61,
respectively.

4.2.4 Key properties

A key requirement for a persuasive generalization of classical ROC analysis is the re-
duction to ROC curves and AUC if the outcomes are binary. Furthermore, well es-
tablished desirable properties from ROC analysis ought to be retained. To facilitate
judging whether the generalization in Sections 4.3 and 4.4 satisfies these desiderata,
we summarize key properties of ROC curves and AUC in the following (slightly infor-
mal) listing.
(1) The ROC curve and AUC are straightforward to compute and interpret, in the

(rough) sense of the larger the better.
(2) AUC attains values between 0 and 1 and relates linearly to Somers’ D. For a

perfect feature, AUC = 1 and D = 1; for a feature that is independent of the
binary outcome, AUC = 1

2
undD = 0.
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Figure 4.3: Traditional ROC curves and AUC values for the features X , X ′ and X ′′

as predictors of the binary outcome Y1 = 1{Y ≥ 1} in the simulation example of
Section 4.2.3, based on a sample of size n = 400.

(3) The numerical value ofAUC admits an interpretation as the probability of con-
cordance for feature–outcome pairs.

(4) The ROC curve and AUC are purely rank based and, therefore, invariant un-
der strictly increasing transformations. Specifically, if φ : R → R is a strictly
increasing function, then the ROC curve and AUC computed from

(φ(x1), y1), . . . , (φ(xn), yn) ∈ R× {0, 1} (4.7)

are the same as the ROC curve and AUC computed from (4.1).

As an immediate consequence of the latter property, ROC curves and AUC assess
the discrimination ability or potential predictive ability of a classifier, feature, marker,
or test (Wilks, 2019). Distinctly different methods are called for if one seeks to eval-
uate a classifier’s actual value in any given applied setting (Adams and Hand, 1999;
Hernández-Orallo et al., 2012; Ehm et al., 2016).
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4.3 ROCmovies anduniversal ROC (UROC) curves for real-
valued outcomes

As noted, traditional ROC analysis applies to binary outcomes only. Thus, researchers
working with real-valued outcomes, and desiring to apply ROC analysis, need to con-
vert and reduce to binary outcomes, by thresholding artificially at a cut-off value. Here
we propose a powerful generalization of ROC analysis, which overcomes extant short-
comings, and introduce data analytic tools in the form of the ROCmovie, the universal
ROC (UROC) curve, and an associated rank based coefficient of (potential) predictive
ability (CPA) measure— tools that apply to just any linearly ordered outcome, includ-
ing both binary, ordinal, mixed discrete-continuous, and continuous variables.

4.3.1 General real-valued setting

Generalizing the binary setting in (4.1), we now consider bivariate data of the form
(x1, y1), . . . , (xn, yn) ∈ R× R, (4.8)

where xi is a real-valued point forecast, regression output, feature, marker, or covari-
ate value, and yi is a real-valued outcome, for i = 1, . . . , n. Throughout we assume
that there are at least two unique values among the outcomes y1, . . . , yn.
The crux of the subsequent development lies in a conversion to a sequence of binary
problems. To this end, we let

z1 < · · · < zm

denote them ≤ n unique values of y1, . . . , yn, and we define
nc =

n∑
i=1

1{yi = zc}

as the number of instances among the outcomes y1, . . . , yn that equal zc, for c =

1, . . . ,m, so that n1 + · · · + nm = n. We refer to the respective groups of instances
as classes.
Next we transform the real-valued outcomes y1, . . . , yn into binary outcomes 1{y1 ≥
θ}, . . . ,1{yn ≥ θ} relative to a threshold value θ ∈ R. Thus, instead of analysing the
original problem in (4.8), we consider a series of binary problems. By construction,
only values of θ equal to z2, . . . , zm result in nontrivial, unique sets of binary outcomes.
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4. ROC movies, UROC curve and CPA
Therefore, we considerm− 1 derived classification problems with binary data of the
form

(x1,1{y1 ≥ zc+1}), . . . , (xn,1{yn ≥ zc+1}) ∈ R× {0, 1}, (4.9)
where c = 1, . . . ,m−1. As the derived problems are binary, all the tools of traditional
ROC analysis apply.
In the remainder of the sectionwedescribe our generalization of ROC curves for binary
data to ROC movies and universal ROC (UROC) curves for real-valued data. First, we
argue that them− 1 classical ROC curves for the derived data in (4.9) can be merged
into a single dynamical display, to which we refer as a ROC movie (Definition 1). Then
wedefine theUROC curve as a judiciouslyweighted average of the classical ROC curves
of which the ROC movie is composed (Definition 2).
Finally, we introduce a general measure of potential predictive ability for features,
termed the coefficient of predictive ability (CPA). CPA is a weighted average of the
AUC values for the derived binary problems in the very sameway that theUROC curve
is a weighted average of the (classical) ROC curves that constitute the ROC movie.
Hence, CPA equals the area under the UROC curve (Definition 3). Alternatively, CPA
can be interpreted as a weighted probability of concordance (Theorem 1) or in terms
of rank based covariances (Theorem 2). CPA reduces to AUC if the outcomes are
binary, and relates linearly to Spearman’s rank correlation coefficient if the outcomes
are continuous (Theorems 3 and 4).

4.3.2 ROC movies

We consider the sequence ofm−1 classification problems for the derived binary data
in (4.9). For c = 1, . . . ,m− 1, we letROCc denote the associated ROC curve, and welet AUCc be the respective AUC value.
Definition 1. For data of the form (4.8), the ROCmovie is the sequence (ROCc)c=1,...,m−1of the ROC curves for the induced binary data in (4.9).
If the original problem is binary there arem = 2 classes only, and the ROC movie re-
duces to the classical ROC curve. In case the outcome attains m ≥ 3 distinct values
the ROC movie can be visualized by displaying the associated sequence ofm− 1 ROC
curves. In medical survival analysis, the outcomes y1, . . . , yn in data of the form (4.8)
are survival times, and the analysis is frequently hampered by censoring, as patients
drop out of studies. In this setting, Etzioni et al. (1999) and Heagerty et al. (2000)
26
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Figure 4.4: ROCmovies and UROC curves for the featuresX ,X ′ andX ′′ as predictors
of the real-valued outcome Y in the simulation example of Section 4.2.3, based on
the same sample as in Figure 4.3. In the ROC movies, the number at upper left shows
the threshold under consideration, the number at upper center the relative weight
wc/maxl=1,...,m−1wl from (4.11), and the numbers at bottom right the respectiveAUC
values.

introduced the notion of time-dependent ROC curves, which are classical ROC curves
for the binary indicator 1{yi ≥ t} of survival through (follow-up) time t, with censor-
ing being handled efficiently. For an example see Figure 2 of Heagerty et al. (2000),
where the ROC curves concern survival beyond follow-up times of 40, 60, and 100
months, respectively. If the thresholds considered correspond to the unique values of
the outcomes, the sequence of time-dependent ROC curves becomes a ROC movie in
the sense of Definition 1, save for the handling of censored data. When the number
m ≤ n of classes is small or modest, the generation of the ROC movie is straight-
forward. Adaptations might be required asm grows, and we tend to this question in
Section 4.5.2.
We have implemented ROC movies, UROC curves, and CPA within the uroc package
for the statistical programming language R (R Core Team, 2021) where the animation
package of Xie (2013) provides functionality for converting R images into a GIF anima-
tion, based on the external software ImageMagick. The uroc package can be down-
loaded from https://github.com/evwalz/uroc. In addition, a Python (Python
Software Foundation, 2021) implementation is available at https://github.com/e
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4. ROC movies, UROC curve and CPA
vwalz/urocc. Returning to the example of Section 4.2.3, Figure 4.4 compares the
features X , X ′ and X ′′ as predictors of the real-valued outcome Y in a joint display
of the three ROCmovies and UROC curves, based on the same sample of size n = 400

as in Figure 4.3. In the ROC movies, the threshold z = 1.00 recovers the traditional
ROC curves in Figure 4.3.

4.3.3 Universal ROC (UROC) curves

Next we propose a simple and efficient way of subsuming a ROC movie for data of the
form (4.8) into a single, static graphical display. As before, let z1 < · · · < zm denote
the unique values of y1, . . . , yn, let nc =

∑n
i=1 1{yi = zc}, and let ROCc denote the(classical) ROC curve associated with the binary problem in (4.9), for c = 1, . . . ,m−1.

By Theorem 5 of Gneiting and Vogel (2022), there is a natural bijection between the
class of the ROC curves and the class of the cumulative distribution functions (CDFs)
of Borel probability measures on the unit interval. In particular, any ROC curve can be
associated with a non-decreasing, right-continuous function R : [0, 1] → [0, 1] such
that R(0) = 0 and R(1) = 1. Hence, any convex combination of the ROC curves
ROC1, . . . ,ROCm−1 can also be associated with a non-decreasing, right-continuous
function on the unit interval. It is in this sense that we define the following; in a nut-
shell, the UROC curve averages the traditional ROC curves of which the ROC movie is
composed.
Definition 2. For data of the form (4.8), the universal receiver operating characteristic
(UROC) curve is the curve associated with the function

m−1∑
c=1

wcROCc (4.10)
on the unit interval, with weights

wc =

(
c∑

i=1

ni

m∑
i=c+1

ni

)/(
m−1∑
i=1

m∑
j=i+1

(j − i)ninj

)
(4.11)

for c = 1, . . . ,m− 1.
Importantly, theweights in (4.11) dependon thedata in (4.8) via the outcomes y1, . . . , ynonly. Thus, they are independent of the feature values and can be used meaningfully
in order to compare and rank features. Their specific choice is justified in Theorems
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4. ROC movies, UROC curve and CPA
1 and 2 below. Clearly, the weights are nonnegative and sum to one. If m = n then
n1 = · · · = nm = 1, and (4.11) reduces to

wc = 6
c(n− c)
n(n2 − 1)

for c = 1, . . . , n− 1; (4.12)
so the weights are quadratic in the rank c and symmetric about the inner most rank(s),
at which they attain a maximum. As we will see, our choice of weights has the effect
that in this setting the area under the UROC curve, to which we refer as a general
coefficient of predictive ability (CPA), relates linearly to Spearman’s rank correlation
coefficient, in the same way that AUC relates linearly to Somers’D.
In Figure 4.4 the UROC curves appear in the final static screen, subsequent to the ROC
movies. Within each ROC movie, the individual frames show the ROC curve ROCcfor the feature considered. Furthermore, we display the threshold zc, the relative
weight from (4.11) (the actual weight normalized to the unit interval, i.e., we show
wc/maxl=1,...,m−1wl), and AUCc, respectively, for c = 1, . . . ,m − 1. Once more we
emphasize that the use of ROCmovies, UROC curves, andCPA frees researchers from
the need to select— typically, arbitrary— threshold values and binarize, as mandated
by classical ROC analysis.
Of course, if specific threshold values are of particular substantive interest, the re-
spective ROC curves can be extracted from the ROC movie, and it can be useful to
plot AUCc versus the associated threshold value zc. Displays of this type have been
introduced and studied by Rosset et al. (2005).

4.4 Coefficient of predictive ability (CPA)

We proceed to define the coefficient of predictive ability (CPA) as a general measure
of potential predictive ability, basedonnotation introduced in Sections 4.3.2 and4.3.3.
Definition 3. For data of the form (4.8) and weights w1, . . . , wm−1 as in (4.11), the co-
efficient of predictive ability (CPA) is defined as

CPA =
m−1∑
c=1

wc AUCc. (4.13)
In words, CPA equals the area under the UROC curve.
Importantly, ROC movies, UROC curves, and CPA satisfy a fundamental requirement
on any generalization of ROC curves and AUC, in that they reduce to the classical
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4. ROC movies, UROC curve and CPA
notions when applied to a binary problem, whencem = 2 in (4.10) and (4.13), respec-
tively. Another requirement that we consider essential is that, when both the feature
values x1, . . . , xn and the outcomes y1, . . . , yn are pairwise distinct, the value of a per-formancemeasure remains unchanged if we transpose the roles of the feature and the
outcome. As we will see, this is true under our specific choice (4.11) of the weights wcin the defining formula (4.13) for CPA, but is not true under other choices, such as in
the case of equal weights.

4.4.1 Interpretation as a weighted probability

We now express CPA in terms of pairwise comparisons via the function s in (4.2).
To this end, we usefully change notation for the data in (4.8) and refer to the feature
values in class c ∈ {1, . . . ,m} as xck, for k = 1, . . . , nc. Thus, we rewrite (4.8) as

(x11, z1), . . . , (x1n1 , z1), . . . , (xm1, zm), . . . , (xmnm , zm) ∈ R× R, (4.14)
where z1 < · · · < zm are the unique values of y1, . . . , yn and nc =

∑n
i=1 1{yi = zc},for c = 1, . . . ,m.

Theorem 1. For data of the form (4.14),
CPA =

∑m−1
i=1

∑m
j=i+1

∑ni

k=1

∑nj

l=1(j − i) s(xik, xjl)∑m−1
i=1

∑m
j=i+1(j − i)ninj

. (4.15)

Proof. By (4.4), the individual AUC values satisfy
AUCc =

1∑c
i=1 ni

∑m
i=c+1 ni

c∑
i=1

m∑
j=c+1

ni∑
k=1

nj∑
l=1

s(xik, xjl)

for c = 1, . . . ,m− 1. In view of (4.11) and (4.13), summation yields
CPA =

m−1∑
c=1

wcAUCc

=

∑m−1
c=1

∑c
i=1

∑m
j=c+1

∑ni

k=1

∑nj

l=1 s(xik, xjl)∑m−1
i=1

∑m
j=i+1(j − i)ninj

=

∑m−1
i=1

∑m
j=i+1

∑ni

k=1

∑nj

l=1(j − i) s(xik, xjl)∑m−1
i=1

∑m
j=i+1(j − i)ninj

,

as claimed.
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4. ROC movies, UROC curve and CPA
Thus, CPA is based on pairwise comparisons of feature values, counting the number
of concordant pairs in (4.14), adjusting to a count of 1

2
if feature values are tied, and

weighting a pair’s contribution by a class based distance, j − i, between the respec-
tive outcomes, zj > zi. In other words, CPA equals a weighted probability of concor-
dance, with weights that grow linearly in the class based distance between outcomes.
The specific form of CPA in (4.15) invites comparison to a widely used measure of
discrimination in biomedical applications, namely, the C index (Harrell et al., 1996;
Pencina and D’Agostino, 2004)

C =

∑m−1
i=1

∑m
j=i+1

∑ni

k=1

∑nj

l=1 s(xik, xjl)∑m−1
i=1

∑m
j=i+1 ninj

. (4.16)
If the outcomes are binary, both the C index andCPA reduce toAUC. WhileCPA can
be interpreted as aweighted probability of concordance, C admits an interpretation as
an unweighted probability, whence Mason and Weigel (2009) recommend its use for
administrative purposes. However, theweighting in (4.15)may bemoremeaningful, as
concordance between feature–outcome pairs with outcomes that differ substantially
in rank tends to be of greater practical relevance than concordance between pairs with
alike outcomes. While CPA admits the appealing, equivalent interpretation (4.13) in
terms of binaryAUC values and the area under the UROC curve, relationships of this
type are unavailable for the C index.
Subject to conditions, the C index relates linearly to Kendall’s rank correlation coef-
ficient (Somers, 1962; Pencina and D’Agostino, 2004; Mason and Weigel, 2009). In
Section 4.4.3 we demonstrate the same type of relationship forCPA and Spearman’s
rank correlation coefficient, thereby resolving a problem raised byHeagerty and Zheng
(2005, p. 95). Just as the C index bridges and generalizes AUC and Kendall’s coeffi-
cient,CPA bridges and nestsAUC and Spearman’s coefficient, with the added benefit
of appealing interpretations in terms of the area under theUROC curve and rank based
covariances.

4.4.2 Representation in terms of covariances

The key result in this section represents CPA in terms of the covariance between the
class of the outcome and the mid rank of the feature, relative to the covariance be-
tween the class of the outcome and the mid rank of the outcome itself.
The mid rank method handles ties by assigning the arithmetic average of the ranks in-
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4. ROC movies, UROC curve and CPA
volved (Woodbury, 1940; Kruskal, 1958). For instance, if the third to seventh positions
in a list are tied, their shared mid rank is 1

5
(3 + 4 + 5 + 6 + 7) = 5. This approach

treats equal values alike and guarantees that the sum of the ranks in any tied group
is unchanged from the case of no ties. As before, if yi = zj , where z1 < · · · < zmare the unique values of y1, . . . , yn in (4.8), we say that the class of yi is j. In brief, weexpress this as cl(yi) = j. Similarly, we refer to the mid rank of xi within x1, . . . , xn as
rk(xi).

Theorem 2. Let the random vector (X, Y ) be drawn from the empirical distribution of
the data in (4.8) or (4.14). Then

CPA =
1

2

(
cov(cl(Y ), rk(X))

cov(cl(Y ), rk(Y ))
+ 1

)
. (4.17)

Proof. Suppose that the law of the random vector (X, Y ) is the empirical distribution
of the data in (4.8). Based on the equivalent representation in (4.14), we find that

cov(cl(Y ), rk(X))

cov(cl(Y ), rk(Y ))
=

∑m
i=1

∑ni

k=1 irk(xik)−
1
2
(n+ 1)

∑m
i=1 ini∑m

i=1 ini

(∑i−1
j=0 nj +

1
2
(ni + 1)

)
− 1

2
(n+ 1)

∑m
i=1 ini

,

where n0 = 0. Consequently, we can rewrite (4.17) as

CPA =

∑m
i=1

∑ni

k=1 irk(xik) +
∑m

i=1 ini

(∑i−1
j=0 nj +

1
2
ni − n− 1

2

)
∑m

i=1 ini

(
2
∑i−1

j=0 nj + ni − n
) . (4.18)

We proceed to demonstrate that the numerator and denominator in (4.15) equal the
numerator and denominator in (4.18), respectively. To this end, we first compare fea-
ture values within classes and note that

m∑
i=1

ni∑
k=1

ni∑
l=1

is(xil, xik) =
m∑
i=1

i

ni∑
k=1

(
ni − k +

1

2

)
=

1

2

m∑
i=1

in2
i ;

for if the feature values in class i are all distinct, the largest one exceeds ni−1 others,
the second largest exceeds ni − 2 others, and so on, and analogously in case of ties.
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We now show the equality of the numerators in (4.15) and (4.18), in that

m−1∑
i=1

m∑
j=i+1

ni∑
k=1

nj∑
l=1

(j − i) s(xik, xjl)

=
m−1∑
i=1

m∑
j=i+1

ni∑
k=1

nj∑
l=1

js(xik, xjl)−
m−1∑
i=1

m∑
j=i+1

ni∑
k=1

nj∑
l=1

is(xik, xjl)

+
m−1∑
j=1

m∑
i=j+1

nj∑
k=1

ni∑
l=1

js(xik, xjl)−
m−1∑
j=1

m∑
i=j+1

nj∑
k=1

ni∑
l=1

js(xik, xjl)

=
m∑
i=1

m∑
j=1
j ̸=i

ni∑
k=1

nj∑
l=1

js(xik, xjl)−
m−1∑
i=1

m∑
j=i+1

ni∑
k=1

nj∑
l=1

i (s(xjl, xik) + s(xik, xjl))

=
m∑
j=1

nj∑
l=1

j

(
rk(xjl)−

1

2

)
−

m∑
i=1

ni∑
k=1

ni∑
l=1

is(xil, xik)−
m−1∑
i=1

m∑
j=i+1

ininj

=
m∑
i=1

ni∑
k=1

irk(xik) −
1

2

m∑
i=1

ini −
1

2

m∑
i=1

in2
i − n

m−1∑
i=1

ini +
m−1∑
i=1

ini

i∑
j=0

nj

=
m∑
i=1

ni∑
k=1

irk(xik) −
1

2

m∑
i=1

ini −
1

2

m∑
i=1

in2
i − n

m∑
i=1

ini +
m∑
i=1

ini

i∑
j=0

nj

=
m∑
i=1

ni∑
k=1

irk(xik) +
m∑
i=1

ini

(
i−1∑
j=0

nj +
1

2
ni − n−

1

2

)
.

As for the denominators,
m−1∑
i=1

m∑
j=i+1

(j − i)ninj =
m−1∑
i=1

m∑
j=i+1

jninj −
m−1∑
i=1

m∑
j=i+1

ininj

=
m∑
i=1

ini

i−1∑
k=0

nk − n
m−1∑
i=1

ini +
m−1∑
i=1

ini

i∑
k=1

nk

= 2
m∑
i=1

ini

i−1∑
k=0

nk − n
m−1∑
i=1

ini +
m−1∑
i=1

in2
i +

m−1∑
i=1

ini

i−1∑
k=0

nk −
m∑
i=1

ini

i−1∑
k=0

nk

= 2
m∑
i=1

ini

i−1∑
k=0

nk − n
m−1∑
i=1

ini +
m−1∑
i=1

in2
i − nmnm +mn2

m

= 2
m∑
i=1

ini

i−1∑
k=0

nk − n
m∑
i=1

ini +
m∑
i=1

in2
i

=
m∑
i=1

ini

(
2

i−1∑
j=0

nj + ni − n

)
,
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whence the proof is complete.
Interestingly, the representation (4.17) in terms of rank and class based covariances
appears to be neweven in the special casewhen the outcomes are binary, so thatCPA
reduces toAUC. The representation also sheds new light on the asymmetry of CPA,
in that, in general, the value of CPA changes if we transpose the roles of the feature
and the outcome. In contrast to customarily used measures of bivariate association
and dependence, which are necessarily symmetric (Nešlehová, 2007; Reshef et al.,
2011;Weihs et al., 2018),CPA is directedwhen the outcome is binary or ordinal. Thus,
CPA avoids a technical issue with the use of rank-based correlation coefficients in
discrete settings, namely, that perfect classifiers do not reach the optimal values of the
respective performance measures (Nešlehová, 2007, p. 565). However, in the case of
no ties at all, to which we tend now, CPA becomes symmetric, as one would expect,
given that the feature and the outcome are on equal footing then.

4.4.3 Relationship to Spearman’s rank correlation coefficient

Spearman’s rank correlation coefficient ρS for data of the form (4.8) is generally under-
stood as Pearson’s correlation coefficient applied to the respective ranks (Spearman,
1904). In case there are no ties in either x1, . . . , xn nor y1, . . . , yn, the concept is un-ambiguous, and Spearman’s coefficient can be computed as

ρS = 1− 6

n(n2 − 1)

n∑
i=1

(rk(xi)− rk(yi))
2 , (4.19)

where rk(xi) denotes the rank of xi within x1, . . . , xn, and rk(yi) the rank of yi within
y1, . . . , yn,
In this setting CPA relates linearly to Spearman’s rank correlation coefficient ρS, inthe very same way that AUC relates to Somers’D in (4.5).
Theorem 3. In the case of no ties,

CPA =
1

2
(ρS + 1) . (4.20)

Indeed, in case there are no ties, both mid ranks and classes reduce to ranks proper,
and then (4.20) is readily identified as a special case of (4.17). For an alternative proof,
in the absence of ties the weights wc in (4.11) are of the form (4.12). The stated result
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4. ROC movies, UROC curve and CPA
then follows upon combining the defining equation (4.10), the equality stated at the
bottom of the left column of page 4 in Rosset et al. (2005), and equation (5) in the
same reference.
Note that CPA becomes symmetric in this case, as its value remains unchanged if we
transpose the roles of the feature and the outcome. Furthermore, if the joint distri-
bution of a bivariate random vector (X, Y ) is continuous, and we think of the data in
(4.8) as a sample from the respective population, then, by applying Definition 3 and
Theorem 3 in the large sample limit, and taking (4.12) into account, we (informally)
obtain a population version of CPA, namely,

CPA = 6

∫ 1

0

α(1− α)AUCα dα =
1

2
(ρS + 1) , (4.21)

whereAUCα is the population version ofAUC for (X,1{Y ≥ qα}), with qα denotingthe α-quantile of the marginal law of Y . We defer a rigorous derivation of (4.21) to
future work and stress that, as bothX and Y are continuous here, their roles can be
interchanged.
Under the assumption ofmultivariate normality, the population version of Spearman’s
ρS relates to Pearson’s correlation coefficient r as

ρS =
6

π
arcsin

r

2
; (4.22)

see, e.g., Kruskal (1958). Returning to the example in Section4.2.3, where (Y,X,X ′, X ′′)

is jointly Gaussian with covariance matrix (4.6), Table 4.1 states, for each feature, the
population values of Pearson’s correlation coefficient r,CPA, and the C index relative
to the real-valued outcome Y , as derived from (4.21) and (4.22) and the respective
relationships for the C index and Kendall’s rank correlation coefficient τK, namely

C =
1

2
(τK + 1) (4.23)

and
τK =

2

π
arcsin r. (4.24)

These results imply that for a bivariate Gaussian population with Pearson correlation
coefficient r ∈ (0, 1) it is true that τK > ρS > 0 and CPA > C > 1/2. In fact, under
positive dependence it always holds that τK ≥ ρS ≥ 0, as demonstrated by Capéraà
and Genest (1993), whence CPA ≥ C ≥ 1/2. However, there are also settings where
these inequalities get violated (Schreyer et al., 2017). In Figure 4.4 theCPA values for
the features appear along with the UROC curves in the final static screen, subsequent
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Table 4.1: Population values of Pearson’s correlation coefficient r, CPA, and the C
index for the features X , X ′, and X ′′ relative to the real-valued outcome Y , where
(Y,X,X ′, X ′′) is Gaussian with covariance matrix (4.6).

Feature r CPA C
X 0.800 0.893 0.795
X ′ 0.500 0.741 0.667
X ′′ 0.200 0.596 0.564

to the ROC movie. The empirical values show the expected approximate agreement
with the population quantities in the table.
Suppose now that the values y1, . . . , yn of the outcomes are unique, whereas the fea-
ture values x1, . . . , xn might involves ties. Let p ≥ 0 denote the number of tied groups
within x1, . . . , xn. If p = 0 let V = 0. If p ≥ 1, let vj be the number of equal values in
the jth group, for j = 1, . . . , p, and let

V =
1

12

p∑
j=1

(
v3j − vj

)
.

Then Spearman’smid rank adjusted coefficient ρM is defined as
ρM = 1− 6

n(n2 − 1)

(
n∑

i=1

(
rk(xi)− rk(yi)

)2
+ V

)
, (4.25)

where rk is the aforementioned mid rank. As shown by Woodbury (1940), if one as-
signs all possible combinations of integer ranks within tied sets, computes Spearman’s
ρS in (4.19) on every such combination and averages over the respective values, one
obtains the formula for ρM in (4.25).
The following result reduces to the statement of Theorem 3 in the case p = 0 when
there are no ties in x1, . . . , xn either.
Theorem 4. In case there are no ties within y1, . . . , yn,

CPA =
1

2
(ρM + 1) . (4.26)

Proof. As noted, ρM arises from ρS if one assigns all possible combinations of integer
ranks within tied sets, computes ρS on every such combination and averages over
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4. ROC movies, UROC curve and CPA
the respective values. In view of (4.18), if there are no ties in y1, . . . , yn, averaging
1
2
(ρS + 1) over the combinations yields 1

2
(ρM + 1), which equals CPA by (4.17).

The relationships (4.5), (4.20) and (4.26) constitute but special cases of the general,
covariance based representation (4.17). In this light, CPA provides a unified way of
quantifying potential predictive ability for the full gamut of dichotomous, categori-
cal, mixed discrete-continuous and continuous types of outcomes. In particular, CPA
bridges and generalizesAUC, Somers’D and Spearman’s rank correlation coefficient,
up to a common linear relationship.

4.4.4 Comparison of CPA to the C index and related measures

We proceed to a more detailed comparison of the CPAmeasure (4.13) to the C index
(4.16) and measures studied by Waegeman et al. (2008).1 As noted, both CPA and
the C index are rank-based, reduce toAUC when the outcome is binary, and become
symmetric when both the features and the outcomes are pairwise distinct. We relax
these conditions slightly and restrict attention tomeasures that use ranks only, reduce
to AUC when the outcome is binary and there are no ties in the feature values, and
become symmetric when there are no ties at all. This excludes measures based on
the receiver error characteristic (REC, Bi and Bennett, 2003) and the regression re-
ceiver operating characteristic (RROC, Hernández-Orallo, 2013) curve, which are nei-
ther rank based nor reduce to AUC. The Ucons measure of Waegeman et al. (2008)
averages consecutiveAUC values in the same fashion as CPA in (4.13), but uses con-
stant weights, as opposed to the class dependent weights (4.11) for CPA, and does
not become symmetric when there are no ties at all.2 The Upairs and Uovo measures
of Waegeman et al. (2008) satisfy our criteria, relate closely to the C index, and in the
simulation setting of Figure 4.5 it holds that Uovo = Upairs = C.3

1Wedenote themeasures Û , Ûpairs, Ûovo, and Ûcons in equations (8), (16), (17), and (18) ofWaegeman
et al. (2008) by U , Upairs, Uovo, and Ucons, respectively.2To see thatUcons does not become symmetric when there are no ties in x1, . . . , xn nor y1, . . . , yn,consider a dataset of size n ≥ 4, where y1 < · · · < yn and x3 < x1 < x2 < x4 < · · · < xn.Then AUC1 = (n − 3)/(n − 1), AUC2 = (2n − 5)/(2n − 4), and AUCc = 1 for c = 3, . . . , n − 1,
whereas if we interchange the roles of the feature and the outcome, then AUC1 = (n − 2)/(n − 1),
AUC2 = (2n − 6)/(2n − 4), and AUCc = 1 for c = 3, . . . , n − 1, resulting in distinct unweighted
sums.3The Upairs measure corresponds to a performance criterion proposed by Herbrich et al. (2000,
equation (7.11)) and equals the proportion of correctly ranked pairs of instances. Except for the treat-ment of ties in the feature, Upairs equals the C index. In particular, if the feature values are pairwise
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Figure 4.5: Rank based performance measures for the featuresX ,X ′ andX ′′ as pre-
dictors of the real-valued outcome Y in the simulation example of Section 4.2.3, with
Pearson correlation coefficient r = 0.8, 0.5 and 0.2, respectively, based on a sample
of size n = 220. We discretize the continuous outcome into 2k consecutive blocks of
size 220−k each, and plot (a) U , and (b) CPA and the C index as functions of the dis-
cretization level k = 1, . . . , 20. Note that k = 1 yields a binary outcome and k = 20 a
continuous outcome.

In view of the above requirements and properties, we restrict the subsequent compar-
ison to CPA, the C index, and the U measure introduced by Waegeman et al. (2008).
For a dataset withm classesU equals the proportion of sequences ofm instances, one
of each class, that align correctly with the feature values. As noted, these measures
are rank based and reduce to AUC when the outcome is binary and there are no ties
in the feature values. In the continuous case with no ties in the feature values nor in
the outcomes, they become symmetric, U attains the value 1 under a perfect ranking
and the value 0 otherwise, C = 1

2
(1− τK), and CPA = 1

2
(1− ρS).

In Figure 4.5 we report on a simulation experiment where we draw samples of 220
instances from the joint Gaussian distribution of the random vector (Y,X,X ′, X ′′)

with covariance matrix (4.6), so that the features have Pearson correlation coefficient
r = 0.8, 0.5, and 0.2with the continuous outcome Y . By discretizing the outcome into
distinct then Upairs = C. The measure Uovo represents the Hand and Till (2001) approach of averagingthe (m2 ) one-versus-oneAUC values in anm-class problem. It has been compared toUpairs byWaege-
man et al. (2008) and relates to the C index as well. In particular, if the feature values are pairwise
distinct and the dataset furthermore is balanced with class memberships n1 = · · · = nm, as in the
simulation setting that we report on in Figure 4.5, then Uovo = Upairs = C.
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4. ROC movies, UROC curve and CPA
2k consecutive blocks of size 220−k each, where k = 1, . . . , 20, and computing CPA,
the C index and the U measure as a function of k, all discretization levels are consid-
ered, ranging from a binary variable for k = 1 to continuous outcomes for k = 20.
When k = 1 the three measures coincide and equal AUC, essentially at the popula-
tion value of

AUC1/2 =
2

π
arcsin

r√
2
+

1

2
, (4.27)

in the sense stated subsequent to (4.21). The U measure is tailored to ordinal out-
comes with a few classes only and degenerates rapidly with k. When k = 20, CPA
and the C index are rescaled versions of Spearman’s ρS and Kendall’s τK, essentially atthe population values in Table 4.1.
Throughout, themeasures lie in between their common value for k = 1, which equals
AUC, and the respective values for k = 20. For all features and all k > 1, the C index
is smaller than CPA, and CPA varies considerably less with the discretization level
than the C index. To supplement these experiments with an analytic demonstration,
suppose thatX and Y are bivariate Gaussian with nonnegative Pearson correlation r.
If we convert Y to a balanced binary outcome, then bothCPA and the C index reduce
to a common value, namely, AUC1/2 in (4.27). As a function of r, the ratio of the
C index for the continuous vs. the balanced binary outcome attains values between
0.8996 and 1, whereas forCPA the respective ratio remains between 1 and 1.0156, as
illustrated in Figure 4.6. These findings alongwith results in Capéraà andGenest (1993)
and Schreyer et al. (2017) suggest that, quite generally, CPA and the C index yield
qualitatively similar results in practice, with CPA being less sensitive to quantization
effects, and the value of CPA typically being larger than for the C index.

4.4.5 Computational issues

We turn to a discussion of the computational costs of generalized ROC analysis for a
dataset of the form (4.8) or (4.14) with n instances andm ≤ n classes.
It is well known that a traditional ROC curve can be generated from a dataset withn in-
stances inO(n log n) operations (Fawcett, 2006, Algorithm 1). A ROCmovie comprises
m−1 traditional ROC curves, so in a naïve approach, ROCmovies can be computed in
O(mn log n) operations. However, our implementation takes advantage of recursive
relations between consecutive component curves ROCi−1 and ROCi. While a formal
analysis will need to be left to future work, we believe that our algorithm has com-
putational costs of O(n log n) operations only. If the number m of unique values of
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Figure 4.6: Ratio of CPA (blue curve) respectively the C index (green curve) for the
feature X as a predictor of the continuous outcome Y over AUC for X and the bal-
anced binary outcome1{Y ≥ 0}, whereX andY are bivariate Gaussianwith Pearson
correlation r ∈ [0, 1]. The solid horizontal line is at a ratio of 1, which is attained when
r = 0 and r = 1.

the outcome is large, then for all practical purposes the ROC movie can be shown at
a modest numberm0 of distinct values only, at a computational cost ofO(m0n log n)operations. For example, in the setting of Figure 4.8 in the meteorological case study
in Section 4.5.2 there are m = 35, 993 unique values of the outcome, whereas the
ROC movie usesm0 = 401 frames only. For the vertical averaging of the component
curves in the construction of UROC curves, we partition the unit interval into 1,000
equally sized subintervals.
Importantly, CPA can be computed in O(n log n) operations, without any need to
invoke ROC analysis, by sorting x1, . . . , xn and y1, . . . , yn, computing the respective
mid ranks and classes, and plugging into the rank based representation (4.18). Simi-
larly, there are algorithms for the computation of the C index inO(n log n) operations
(Knight, 1966; Christensen, 2005).

4.4.6 Key properties: Comparison to traditional ROC analysis

Weare now in a position to judgewhether the proposed toolbox of ROCmovies, UROC
curves, and CPA constitutes a proper generalization of traditional ROC analysis. To
facilitate the assessment, the subsequent statements admit immediate comparison
with the key insights of classical ROC analysis, as summarized in Section 4.2.4.
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We start with the trivial but important observation that the new tools nest the notions
of traditional ROC analysis. This is not to be taken for granted, as extant generalizations
do not necessarily share this property.
(0) In the case of a binary outcome, both the ROCmovie and theUROC curve reduce

to the ROC curve, and CPA reduces to AUC.
(1) ROC movies, the UROC curve and CPA are straightforward to compute and in-

terpret, in the (rough) sense of the larger the better.
(2) CPA attains values between 0 and 1 and relates linearly to the covariance be-

tween the class of the outcome and the mid rank of the feature, relative to the
covariance between the class and the mid rank of the outcome. In particular,
if the outcomes are pairwise distinct, then CPA = 1

2
(ρM + 1), where ρM is

Spearman’s mid rank adjusted coefficient (4.25). If the outcomes are binary,
then CPA = 1

2
(D + 1) in terms of Somers’D. For a perfect feature, CPA = 1,

ρM = 1 under pairwise distinct andD = 1 under binary outcomes. For a feature
that is independent of the outcome, CPA = 1

2
, ρM = 0 under pairwise distinct

andD = 0 under binary outcomes.
(3) The numerical value of CPA admits an interpretation as a weighted probability

of concordance for feature–outcome pairs, with weights that grow linearly in
the class based distance between outcomes.

(4) ROC movies, UROC curves, and CPA are purely rank based and, therefore, in-
variant under strictly increasing transformations. Specifically, if φ : R→ R and
ψ : R → R are strictly increasing, then the ROC movie, UROC curve, and CPA

computed from
(φ(x1), ψ(y1)), . . . , (φ(xn), ψ(yn)) ∈ R× R (4.28)

are the same as the ROCmovie, UROC curve, andCPA computed from the data
in (4.8).

We iterate and emphasize that, as an immediate consequence of the final property,
ROCmovies, UROC curves, andCPA assess the discrimination ability or potential pre-
dictive ability of a point forecast, regression output, feature, marker, or test. Markedly
different techniques are called for if one seeks to assess a forecast’s actual value in any
given applied problem (Ben Bouallègue et al., 2015; Ehm et al., 2016).
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4.5 Real data examples

In the following examples from survival analysis and numerical weather prediction the
usage of ROC movies, UROC curves, and CPA is demonstrated. We start by returning
to the survival example from Figure 4.1, where the new set of tools frees researchers
form the need to artificially binarize the outcome. Then the use ofCPA is highlighted
in a study of recent progress in numerical weather prediction (NWP), and in a compari-
son of the predictive performance of NWPmodels and convolutional neural networks.

4.5.1 Survival data fromMayo Clinic trial

In the introduction, Figs. 4.1 and 4.2 serve to illustrate and contrast traditional ROC
curves, ROC movies and UROC curves. They are based on a classical dataset from a
Mayo Clinic trial on primary biliary cirrhosis (PBC), a chronic fatal disease of the liver,
that was conducted between 1974 and 1984 (Dickson et al., 1989). The data are pro-
vided by various R packages, such as SMPracticals and survival, and have been
analyzed in textbooks (Fleming and Harrington, 1991; Davison, 2003). The outcome of
interest is survival time past entry into the study. Patients were randomly assigned to
either a placebo or treatment with the drug D-penicillamine. However, extant anal-
yses do not show treatment effects (Dickson et al., 1989), and so we follow previous
practice and study treatment and placebo groups jointly.
We consider two biochemical markers, namely, serum albumin and serum bilirubin
concentration in mg/dl, for which higher and lower levels, respectively, are known to
be indicative of earlier disease stages, thus supporting survival. Hence, for the pur-
poses of ROC analysis we reverse the orientation of the serum bilirubin values. Given
our goal of illustration, we avoid complications and remove patient records with cen-
sored survival times, to obtain a dataset with n = 161 patient records andm = 156

unique survival times. The proper handling of censoring is beyond the scope of our
study, and we leave this task to subsequent work. For a discussion and comparison of
extant approaches to handling censored data in the context of time-dependent ROC
curves see Blanche et al. (2013).
The traditional ROC curves in Figure 4.1 are obtained by binarizing survival time at a
threshold of 1462 days, which is the survival time in the data record that gets closest to
four years. The ROCmovies and UROC curves in Figure 4.2 are generated directly from
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4. ROC movies, UROC curve and CPA
the survival times, without any need to artificially pick a threshold. TheCPA values for
serum albumin and serum bilirubin are 0.73 and 0.77, respectively, and contrary to the
ranking in Figure 4.1, where bilirubin was deemed superior, based on outcomes that
were artificiallymade binary. Our tools free researchers from the need to binarize, and
still they allow for an assessment at the binary level, if desired. For example, the ROC
curves and AUC values from Figure 4.1 appear in the ROC movie at a threshold value
of 1462 days. In line with current uses of AUC in a gamut of applied settings, CPA is
particularly well suited to the purposes of feature screening and variable selection in
statistical and machine learning models (Guyon and Elisseeff, 2003). Here, AUC and
CPA demonstrate that both albumin and bilirubin contribute to prognostic models
for survival (Dickson et al., 1989; Fleming and Harrington, 1991).

4.5.2 Monitoring progress in numerical weather prediction (NWP)

Here we illustrate the usage ofCPA in the assessment of recent progress in numerical
weather prediction (NWP), which has experienced tremendous advance over the past
few decades (Bauer et al., 2015; Alley et al., 2019; Ben Bouallègue et al., 2019). Specifi-
cally, we consider forecasts of surface (2-meter) temperature, surface (10-meter) wind
speed and 24-hour precipitation accumulation initialized at 00:00 UTC at lead times
from a single day (24 hours) to five days (120 hours) ahead from the high-resolution
model operated by the European Centre for Medium-Range Weather Forecasts
(ECMWF Directorate, 2012), which is generally considered the leading global NWP
model. The forecast data are available at https://confluence.ecmwf.int/displ
ay/TIGGE. As observational reference we take the ERA5 reanalysis product (Hersbach
et al., 2018). We use forecasts and observations from 279 × 199 = 55, 521 model
grid boxes of size 0.25◦ × 0.25◦ each in a geographic region that covers Europe from
25.0◦ W to 44.5◦ E in latitude and 25.0◦ N to 74.5◦ N in longitude. The time period
considered ranges from January 2007 to December 2018.
In Figure 4.7 we apply CPA and the C index to compare forecasts from the ECMWF
high-resolution run to a reference technique, namely, the persistence forecast. The
persistence forecast is simply the most recent available observation for the weather
quantity of interest; as such, the forecast value does not depend on the lead time.
CPA and the C index are computed on rolling twelve-month periods that correspond
to January–December, April–March, July–June or October–September, typically com-
prising n = 365× 55, 521 = 20, 265, 165 individual forecast cases. The ECMWF fore-

43

https://confluence.ecmwf.int/display/TIGGE
https://confluence.ecmwf.int/display/TIGGE


4. ROC movies, UROC curve and CPA

0.97

0.98

0.99

2008 2011 2014 2017

Year

C
PA

2m Temperaturea

d e f

0.80

0.85

0.90

0.95

2008 2011 2014 2017

Year

C
PA

Wind speedb

0.7

0.8

0.9

2008 2011 2014 2017

Year

C
PA

Precipitationc

HRES D+1 D+2 D+3 D+4 D+5

Persistence D+1 D+2 D+3 D+4 D+5

0.900

0.925

0.950

2008 2011 2014 2017

Year

C
 in

de
x

2m Temperature

0.70

0.75

0.80

0.85

0.90

2008 2011 2014 2017

Year

C
 in

de
x

Wind speed

0.7

0.8

0.9

2008 2011 2014 2017

Year

C
 in

de
x

Precipitation

Figure 4.7: Temporal evolution ofCPA and the C index for forecasts from the ECMWF
high-resolution model at lead times of one to five days in comparison to the simplistic
persistence forecast in terms ofCPA (a, b, c) and the C index (d, e, f). Theweather vari-
ables considered are (a, d) surface (2-meter) temperature, (b, e) surface wind speed
and (c, f) 24-hour precipitation accumulation. The measures refer to a domain that
covers Europe and twelve-month periods that correspond to January–December (solid
and dotted lines), April–March, July–June andOctober–September (dotted lines only),
based on gridded forecast and observational data from January 2007 through Decem-
ber 2018.

cast has considerably higher CPA and C index than the persistence forecast for all
lead times and variables considered. For the persistence forecast the measures fluc-
tuate around a constant level; for the ECMWF forecast they improve steadily, attesting
to continuing progress in NWP (Bauer et al., 2015; Alley et al., 2019; Ben Bouallègue
et al., 2019; Haiden et al., 2021).
To place these findings further into context, recall that CPA is a weighted average
of AUC values for binarized outcomes at individual threshold values, as have been
used for performance monitoring by weather centers (Ben Bouallègue et al., 2019;
Haiden et al., 2021). The CPA measure preserves the spirit and power of classical
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Figure 4.8: ROC movies, UROC curves, and CPA for ECMWF high-resolution (HRES)
and persistence forecasts of 24-hour precipitation accumulation over Europe at a lead
time of five days in calendar year 2018. In the ROC movies, the number at upper left
shows the threshold at hand in the unit of millimeter, the number at upper center the
relative weight wc/maxl=1,...,m−1wl from (4.11), and the numbers at bottom right the
respective AUC values.

ROC analysis, and frees researchers from the need to binarize real-valued outcomes.
Results in terms of the C index are qualitatively similar, with the numerical value of
CPA being higher than for the C index.
The ROC movies, UROC curves, and CPA values in Figure 4.8 compare the ECMWF
high-resolution forecast to the persistence forecast for 24-hour precipitation accumu-
lation at a lead time of five days in calendar year 2018. As noted, this record com-
prises more than 20 million individual forecast cases, and there are m = 35, 993

unique values of the outcome. We certainly lack the patience to watch the full se-
quence ofm−1 screens in the ROCmovie. A pragmatic solution is to consider a subset
C ⊆ {1, . . . ,m−1} of indices, so thatROCc is included in the ROCmovie (if and) only
if c ∈ C. Specifically, we set positive integer parameters a ≤ m−1 and b such that the
ROC movie comprises at least a and at most a+ b curves. Let the integer s be defined
such that 1+(a− 1)s ≤ m− 1< 1+as, and let Ca = {1, 1+ s, . . . , 1+(a− 1)s}, so
that |Ca| = a. Let Cb = {c : nc ≥ n/b}; evidently, |Cb| ≤ b. Finally, let C = Ca ∪ Cb sothat a ≤ |C| ≤ a + b. We have made good experiences with choices of a = 400 and
b = 100, which in Figure 4.8 yield a ROC movie with 401 screens.
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Figure 4.9: Predictive ability of WeatherBench three days ahead forecasts of 850 hPa
temperature in 2017 and 2018 at different latitudes in terms of (a) RMSE, (b)CPA, and
(c) the C index. HRES, T63, and T42 indicate NWP models run at decreasing grid reso-
lution that are compared to the CNN, linear regression (LR), and persistence forecasts
(Rasp et al., 2020). Note that RMSE is negatively oriented (the smaller the better),
whereas CPA and the C index are positively oriented.

4.5.3 WeatherBench: ConvolutionalNeuralNetworks (CNNs) vs. NWP
models

As noted, operational weather forecasts are based on the output of global NWPmod-
els that represent the physics of the atmosphere. However, the grid resolution of NWP
models remains limited due to finite computing resources (Bauer et al., 2015). Spurred
by the ever increasing popularity and successes of machine learning models, alterna-
tive, data-driven approaches are in vigorous development, with convolutional neural
networks (CNNs; LeCun et al., 2015) being a particularly attractive starting point, due to
their ease of adaptation to spatio-temporal data. Rasp et al. (2020) introduce Weath-
erBench, a ready-to use benchmark dataset for the comparison of data-driven ap-
proaches, such as CNNs and a classical linear regression (LR) based technique, to NWP
models, such as the aforementioned HRES model and simplified versions thereof, T63
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and T42, which run at successively coarser resolutions. Furthermore, WeatherBench
supplies baseline methods, including both the persistence forecast and climatological
forecasts.
As evaluation measure for the various types of point forecasts, WeatherBench uses
the root mean squared error (RMSE). In related studies, the RMSE is accompanied
by the anomaly correlation coefficient (ACC), i.e., the normalized product moment
between the difference of the forecast at hand and the climatological forecast, and the
difference between the outcome and the climatological forecast (Weyn et al., 2020).
However, as noted by Rasp et al. (2020), results in terms of RMSE and ACC tend to be
very similar. Here we argue that a rank based measure, such as CPA or the C index,
would be a more suitable companion measure to RMSE than ACC.
Figure 4.9 compares WeatherBench forecasts three days ahead for temperature at
850 hPa pressure, which is at around 1.5 km height, in terms of RMSE (in Kelvin),CPA,
and the C index. With reference to Table 2 of Rasp et al. (2020), we consider the
persistence forecast, the (direct) linear regression (LR) forecast, the (direct) CNN fore-
cast, the Operational IFS (HRES) forecast, and successively coarser versions thereof
(T63 and T42). The panels display the performance measures as functions of latitude
bands, from the South Pole at 90◦S to the equator at 0◦ and the North Pole at 90◦N,
for the WeatherBench final evaluation period of the years 2017 and 2018. The mea-
sures are initially computed grid cell by grid cell, and then averaged across the grid
cells in a latitude band, which is compatible with the latitude based weighting that is
employed in WeatherBench. Note that RMSE is negatively oriented (the smaller, the
better), whereas the rank based measures are positively oriented (the closer to the
ideal value of 1 the better).
With respect to RMSE (Figure 4.9a) marked geographical differences are visible. In
equatorial regions, where day-to-day temperature variations are generally low, all fore-
casts have a low RMSE and the range between the best-performing HRES forecast and
the simplistic persistence forecast is small. The HRES forecast remains best for all lat-
itudes, followed by the T63 forecast. The coarsest dynamical model forecast, T42,
shows a further deterioration as expected, but with large outliers in the high latitudes
of the southern hemisphere and in the 30s of the northern hemisphere. It is likely that
the lack of model orography creates large errors in areas of high terrain such as the
Antarctic plateau and the Himalayas. Among the data-driven forecasts, CNN is better
than LR for all extratropical latitudes. Finally, persistence performs worst through all
latitudes with prominent peaks near 50◦S and 50◦N. These are the midlatitude storm
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track regions, where day-to-day changes are large and impede good forecasts based
on persistence.
The corresponding results in terms of CPA and the C index (Figure 4.9b–c) resem-
ble each other, but show remarkable differences to the RMSE based analysis. Most
notable are their low values in the tropics, which indicate poor performance of all
forecasts, well in line with recent findings in meteorology (Kniffka et al., 2020). In
contrast, the low RMSE suggests superior performance in this region. The rank based
measures are independent of magnitude and thus provide a scale free assessment
of predictability. Another striking difference to RMSE is the large drop in the Furi-
ous Fifties of the southern hemisphere, creating a large asymmetry with the northern
midlatitudes. This area is almost entirely oceanic and characterized by mobile low-
pressure systems, the dynamical behaviour of which appears to be difficult to learn
under data-driven approaches.
In Figure 4.10 we compare CPA and the C index, both for individual grid cells and for
measures that have been averaged over latitude bands. The scatterplots illustrate the
findings from Sections 4.4.3 and 4.4.4, in that the value of CPA throughout is larger
than for the C index, in remarkably close agreement with the respective theoretical
relationship under the assumption of bivariate Gaussianity.
We conclude that RMSE and the rank based measures bring orthogonal facets of pre-
dictive performance to researchers’ attention, and encourage the usage of of CPA
or the C index to supplement RMSE as key performance measures in WeatherBench.
While ACC is scale free as well, it is moment based rather than rank based, and thus is
more closely alignedwith RMSE than a rank basedmeasure. Similar recommendations
apply in many practical settings, where predictions of a real-valued outcome are eval-
uated, and a magnitude dependent measure, such as RMSE, is usefully accompanied
by a rank based criterion of predictive performance. In the special case of probabilis-
tic classifiers for binary outcomes, this corresponds to reporting both the Brier mean
squared error measure and AUC. See Hernández-Orallo et al. (2012) for a detailed,
theoretically oriented comparison of these and other performance measures under
binary outcomes.
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Figure 4.10: Comparison ofCPA and the C index for WeatherBench three days ahead
forecasts of 850 hPa temperature in 2017 and 2018. The points in the scatterplots
of CPA vs. the C index correspond to (a) measures for individual grid cells and (b)
averages of measures over latitude bands. The dashed curves show the theoretical
relationship between CPA and the C index in bivariate Gaussian populations.

4.6 Discussion

We have addressed a long-standing challenge in data analytics, by introducing a set
of tools — comprising receiver operating characteristic (ROC) movies, universal ROC
(UROC) curves, and a coefficient of predictive ability (CPA) measure — for general-
ized ROC analysis, thereby freeing researchers from the need to artificially binarize
real-valued outcomes, which often is associated with undesirable effects (Altman and
Royston, 2006). Throughout this chapter, we have assumed that predictors and fea-
tures are linearly ordered, thereby covering binary, ordinal, and continuous outcomes
simultaneously. While our motivating example uses data from a clinical trial, our ap-
proach does not account for censored data, as typically encountered in survival anal-
ysis. We strongly encourage extensions of ROC movies, UROC curves and CPA that
apply to censored data, perhaps along the lines of Blanche et al. (2013). For generaliza-
tions of ROC analysis tomulti-class problemswith categorical outcomes that cannot be
linearly ordered see Hand and Till (2001), Ferri et al. (2003), and Section 9 of Fawcett
(2006).
ROCmovies, UROC curves, andCPA reduce to the classical ROC curve andAUCwhen
applied to binary data. Moreover, attractive properties of ROC curves, such as invari-
ance under strictly increasing transformations and straightforward interpretability are
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maintained by ROC movies and UROC curves. In contrast to customarily used mea-
sures of bivariate association and dependence (Reshef et al., 2011; Weihs et al., 2018),
CPA is asymmetric, i.e., in general, its value changes if the roles of the feature and
the outcome are transposed. However, when both the feature and the outcome are
continuous,CPA becomes symmetric, and relates linearly to Spearman’s rank correla-
tion coefficient. Thus,CPA bridges and generalizesAUC, Somers’D and Spearman’s
rank correlation coefficient, up to a linear relationship, just like the C index connects
and generalizes AUC, Somers’ D and Kendall’s rank correlation coefficient. While
in typical practice the two measures yield qualitatively similar results, under positive
dependence CPA is larger than the C index, and CPA tends to be less affected by
discretization effects.
In view of the advent of dynamic graphics in mainstream scientific publishing, we con-
tend that ROC movies, UROC curves, and CPA are bound to supersede traditional
ROC curves and AUC in a wealth of applications. Open source code for their im-
plementation in Python (Python Software Foundation, 2021) and the R language and
environment for statistical computing (R Core Team, 2021) is available on GitHub at
https://github.com/evwalz/urocc and https://github.com/evwalz/uroc.
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5 | Easy Uncertainty Quantification
(EasyUQ)

How can we quantify uncertainty if our favorite computational tool — be it numeri-
cal, statistical, or machine learning approach, or just any computer model — provides
single-valued output only? This chapter introduces the Easy Uncertainty Quantifica-
tion (EasyUQ) technique, which transforms real-valued model output into calibrated
statistical distributions, based solely on training data of model output–outcome pairs,
without any need to access model input. In its basic form, EasyUQ is a special case of
the recently introduced Isotonic Distributional Regression (IDR) techniquewhich is de-
scribed in its general form in Section 3.4. The smooth EasyUQ approach supplements
IDR with kernel smoothing, to yield continuous predictive distributions that preserve
key properties of the basic form, including stochastic monotonicity with respect to the
original model output. In the final chapter of this work, the EasyUQ approach is used
to perform the step choosing and fitting models of the forecasting cycle introduced in
Section 1.

5.1 Introduction

In an editorial that remains topical and relevant (Trefethen, 2012), SIAMPresident Nick
Trefethen noted a decade ago that

“An answer that used to be a single numbermay nowbe a statistical distribution.”

Indeed, with the increasing reliance of real-world decisions on the output of computer
models – which might be numerical or statistical, parametric or nonparametric, sim-
ple or complex – and the advent of uncertainty quantification as a scientific field of its

51



5. Easy Uncertainty Quantification (EasyUQ)
own, there is a growing consensus in the computational sciences community that de-
cisions ought to be informed by full predictive distributions, rather than single-valued
model output. For recent perspectives on these issues and uncertainty quantification
in general, we refer to topical monographs (Ghanem et al., 2017; Smith, 2014; Sulli-
van, 2015) and review articles (Abdar et al., 2021; Berger and Smith, 2019; Gneiting
and Katzfuss, 2014; Roy and Oberkampf, 2011).
How can we quantify uncertainty if the computational model at hand provides single-
valued output only? With Nick Trefethen’s comment inmind, we address the following
problem: Given single-valued, univariate model output, how can we generate a pre-
diction interval or, more generally, a probabilistic forecast in the formof a full statistical
distribution? In this work, we introduce the Easy Uncertainty Quantification (EasyUQ)
technique that serves this task, based solely on a training archive of model output–
outcome pairs. The single-valued, univariate model output can be of any type — e.g.,
it might stem from a physics-based numerical model, might arise from a purely statis-
tical or machine learning model, or might be based on human expertise. In a nutshell,
EasyUQ applies the recently introduced Isotonic Distributional Regression (IDR, Henzi
et al., 2021) approach to generate discrete, calibrated predictive distributions, con-
ditional on the model output at hand. The name stems from the three-fold reasons
that EasyUQ operates on the final model output only, without any need for access to
the original model input, that the method honors a natural assumption of isotonicity,
namely, that higher values of the model output entail predictive distributions that are
larger in stochastic order, and that the basic version of EasyUQ does not involve any
tuning parameters, and thus does not require user intervention. The more elaborate
Smooth EasyUQ approach introduced in this chapter subjects the EasyUQ distribu-
tion to kernel smoothing, to yield predictive probability densities that preserve key
properties of the basic approach. Prediction intervals are readily extracted; e.g., the
equal-tailed 90% interval forecast is framed by the quantiles at level 0.05 and 0.95 of
the predictive distribution.
As the EasyUQ approach requires training data, it addresses general “weather-like”
tasks (Berger and Smith, 2019, p. 441), which are characterized by frequent repetition
of the task — e.g., hourly, daily, monthly, at numerous spatial locations, or for a range
of customers or patients — in concert with short to moderate lead times of the fore-
casts, thus enabling the development of a sizeable archive of forecast–outcome pairs.
EasyUQ makes the best possible use of single-valued model output in the sense of
empirical score minimization on the training data, subject to the natural constraint of
isotonicity. Specifically, the larger the model output, the larger the predictive distribu-
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tion, in the technical sense of the familiar stochastic order (Shaked and Shanthikumar,
2007), i.e., the respective cumulative distribution functions (CDFs) do not intersect
and their graphs move to the right as the model output increases. Subject to the iso-
tonicity constraint, the EasyUQdistributions are optimalwith respect to a large class of
loss functions that includes the popular continuous ranked probability score (CRPS,
Gneiting and Raftery, 2007; Matheson and Winkler, 1976), all proper scoring rules for
binary events, and all proper scoring rules for quantile forecasts, among others (Henzi
et al., 2021, Thm. 2). For prediction, the EasyUQ and Smooth EasyUQ distributions are
interpolated to the value of the model output at hand, while respecting isotonicity.
Figure 5.1 illustrates the EasyUQ approach on WeatherBench (Rasp et al., 2020), a
benchmark dataset for weather prediction that serves as a running example in this
chapter and is also used in Section 4.5.3 of Chapter 4. Panel a) shows single-valued
forecasts of upper air temperature from theHRES numericalweather predictionmodel
run by the European Centre for Medium-Range Weather Forecasts (ECMWF, Molteni
et al. (1996)) along with the associated observed temperatures in February 2017. The
training data for EasyUQ, which converts the single-valued HRES model output into
conditional predictive distributions, comprise the forecast–outcome pairs from 2010
through 2016, as illustrated in the scatter plot in panel c). Panel d) shows the EasyUQ
predictive distributions for February 2017, which derive from the single-valued HRES
forecasts in panel a), and can be compared to the computationally much more ex-
pensive ECMWF ensemble forecasts in panel b). To facilitate the comparison, panel
c) includes inset diagrams with the ECMWF ensemble and EasyUQ predictive CDFs for
two particular days. Panels e) and f) showEasyUQpredictive CDFs and Smooth EasyUQ
predictive densities when the HRES model output equals 263, 268, and 273 degrees
Kelvin, respectively. The isotonicity property of the EasyUQ distributions is reflected
by the non-intersecting CDFs. The boxes in panels b) and d) range from the 25th to the
75th percentile of the distribution and generate 50% prediction intervals, whereas the
whiskers range from the 5th to the 95th percentile and form 90% intervals.
The remainder of the chapter is organized as follows. Section 5.2 provides comprehen-
sive descriptions of IDR and the basic EasyUQ method, and gives details, background
information, and a comparison to conformal prediction (Vovk et al., 2022, 2020b) for
both the WeatherBench temperature forecast challenge and a precipitation forecast
example. In Section 5.3, we introduce the Smooth EasyUQ technique and show that
it retains the isotonocity property of the basic method.For the selection of kernel pa-
rameters, we introduce multiple one-fit grid search, a computationally much less de-
manding approximate version of cross-validation. In Section 5.4, we demonstrate that
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Figure 5.1: EasyUQ illustrated onWeatherBench data. Time series of three days ahead
a) single-valued HRES model forecasts, b) state of the art ECMWF ensemble forecasts,
and d) basic EasyUQ predictive distributions based on the single-valued HRES forecast
along with associated outcomes of upper air temperature in February 2017 at a grid
point over Poland, in degrees Kelvin. The boxplots show the quantiles at levels 0.05,
0.25, 0.50, 0.75, and 0.95 of the predictive distributions. c) Scatterplot of HRES model
output and associated outcomes in 2010 through 2016, which serve as training data.
The inset diagrams show the ECMWF and EasyUQ predictive CDFs for (A) 9 February
2017 and (B) 15 February 2017, respectively. e) Basic and Smooth EasyUQ predictive
CDFs and f) Smooth EasyUQpredictive densities at selected values of the single-valued
HRES forecast. For further details see Section 5.2.2.
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EasyUQ can be integrated into the workflow of neural network learning and hyperpa-
rameter tuning, and we use benchmark problems to compare its predictive perfor-
mance to state-of-the-art techniques from machine learning and conformal predic-
tion. The chapter closeswith remarks in Section 5.5, wherewe return to the discussion
of input-based vs. output-based uncertainty quantification.
While the basic version of EasyUQ arises as a special case of the extant IDR technique
(Henzi et al., 2021), we take the particular perspective of the conversion of single-
valued model output into predictive distributions. Original contributions in this chap-
ter include the development of the Smooth EasyUQmethod (Sections 5.3.1 and 5.3.2),
a detailed comparison to conformal prediction in case studies (Sections 5.2.2, 5.2.3,
and 5.3.3) and from computational and methodological perspectives (Sections 5.3.4
and 5.5), and the integration and benchmarking of EasyUQ and Smooth EasyUQ for
neural networks (Section 5.4).

5.2 Basic EasyUQ

We begin the section with a prelude on the evaluation of predictions in the form of
full statistical distributions. Then we describe the IDR and EasyUQ techniques, and we
illustrate EasyUQ on theWeatherBench data from Rasp et al. (2020) and on precipita-
tion forecasts from Henzi et al. (2021). Generally, EasyUQ depends on the availability
of training data of the form

(xi, yi), i = 1, . . . , n, (5.1)
where xi ∈ R is the single-valued model output and yi ∈ R is the respective real-
world outcome, for i = 1, . . . , n. For subsequent discussion, we note the contrast
to more elaborate, input-based ways of uncertainty quantification that require access
to the features or covariates from which the model output xi is generated. In the
WeatherBench example from Figure 5.1, we have training data comprising twice daily
HRES forecasts and the associated observed temperatures in 2010 through 2016 as
illustrated in panel c), where n = 5, 114, but we do not have access to the excessively
high-dimensional input to the HRES model. In practice, one needs to find a predictive
distribution given the value x of the model output at hand, which may or may not be
among the training values x1 ≤ · · · ≤ xn, and some form of interpolation is needed,
while retaining isotonicity. In panel e) of Figure 5.1 we illustrate predictive CDFs when
x equals 263, 268, and 273 degrees Kelvin, respectively.
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Extensions of this setting to situations where single-valued output frommultiple com-
putational models is available can be handledwithin the IDR framework, as we discuss
below. If model output and real-world outcome are vector-valued — e.g., when tem-
perature is predicted atmultiple sites simultaneously—EasyUQcanbe applied to each
component independently, and the EasyUQ distributions for the components can be
merged by exploiting dependence structures in the training data, based on empirical
copula techniques such as the Schaake shuffle (Schefzik et al., 2013).

5.2.1 Basic EasyUQ: Leveraging the Isotonic Distributional Regression
(IDR) technique

In this section, it will be instructive to think of the quantities involved as random vari-
ables, which we emphasize by using the upper case in the notation. If model outputX
serves to predict a future quantity Y , then one typically assumes that Y tends to at-
tain higher values asX increases; in fact, the isotonicity assumption can be regarded
as a natural requirement for X to be a useful forecast for Y . Isotonic Distributional
Regression (IDR), described in Section 3.4, is a recently introduced, nonparametric
method for estimating the conditional distributions of a real-valued outcome Y given
a covariate or feature vectorX from a partially ordered space under general assump-
tions of isotonicity (Henzi et al., 2021). EasyUQ leverages the basic special case of IDR
where X is the single-valued model output at hand. In this chapter, we review the
construction and the most relevant properties of IDR for uncertainty quantification; a
more general description is provided in Section 3.4 and for detailed formulations and
proofs we refer the reader to Henzi et al. (2021).
Formally, EasyUQ assumes that the conditional distributions of the outcome Y given
the model output X , which we identify with the CDFs Fx(y) = P(Y ≤ y | X = x),
are increasing in stochastic order (Shaked and Shanthikumar, 2007) in x, i.e., Fx(y) ≥
Fx′(y) for all y ∈ R if x ≤ x′, or equivalently qx(α) ≤ qx′(α) for all α ∈ (0, 1), where
qx(α) = F−1

x (α) is the conditional lower α-quantile. In plain words, the probabil-
ity of the outcome Y exceeding any threshold y increases with the model output x.
Isotonicity in this sense is a natural assumption that one expects to hold, to a reason-
able degree of approximation, in many types of applications. An important exception
arises for location-scale families. Specifically, the arguments in the proof of Proposi-
tion 1 in Gneiting and Vogel (2022) imply that isotonicity is violated when the true pre-
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dictive distributions come from a location-scale family with varying scale.1 However,
the practical impact of this result is limited, due to the fact that in typical practice the
scale parameter varies only mildly (Gneiting et al., 2005) and violations remain minor.
Crucially, estimators that enforce isotonicity tend to be superior to estimators that do
not, evenwhen the key assumption is violated, provided the deviation from isotonicity
remains modest. For an illustration in a simulation setting see the non-isotonic sce-
nario (25) in Table 1 of Henzi et al. (2021), where IDR retains acceptable performance
relative to its competitors, despite the key assumption being violated. For a rigorous
result, Thm. 7 of El Barmi and Mukerjee (2005) demonstrates that, in the special case
of discretemodel output, EasyUQ has smaller large sample estimation error than non-
isotonic alternatives even under mild violations of the isotonicity assumption.
EasyUQ assumes isotonicity with respect to the usual stochastic order. In situations
where this assumption is severely violated itmay beworthwhile to consider isotonicity
with respect to a weaker requirement for distributions to be ordered. An analogous
method to IDR under increasing concave and convex stochastic ordering constraints
has been introduced by Henzi (2023). An extension of EasyUQ in this direction is left
for future work.
To estimate conditional CDFs under the given stochastic order constraints from train-
ing data of the form (5.1), we define

(F̂x1(y), . . . , F̂xn(y))
′ = arg min

θ∈Rn : θi≥θj if xi≤xj

n∑
i=1

(θi − 1{yi ≤ y})2 (5.2)
at y ∈ R. If x1 < · · · < xn, then by classical results about isotonic regression,

F̂xj
(y) = min

k=1,...,j
max
l=j,...,n

1

l − k + 1

l∑
i=k

1{yi ≤ y}, j = 1, . . . , n. (5.3)
At any single threshold y, the computation can be performed efficiently inO(n log(n))
complexity with the well-known pool-adjacent-violators (PAV) algorithm. Since the
loss function in (5.2) is constant for y in between the unique values ỹ1 < · · · < ỹk of
y1, . . . , yn, it suffices to compute (5.3) at the unique values, for which efficient recur-
sive algorithms are available (Henzi et al., 2022). An estimate F̂x for the conditional
CDF at model output x ∈ (xi, xi+1) is obtained by pointwise linear interpolation in x.

1For example, if F1 = L(Y |X = x1) = N (µ1, σ
2
1) and F2 = L(Y |X = x2) = N (µ2, σ

2
2), where

x1 ̸= x2 and σ1 ̸= σ2, then F1 and F2 are incomparable in stochastic order, whence isotonicity is
violated. However, if σ1 and σ2 are close to each other, the CDFs of F1 and F2 cross in the far (left or
right) tail only (Gneiting and Vogel (2022), proof of Proposition 1), so violations remain minor.
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For x ≤ x1 and x ≥ xn, we use F̂x1 and F̂xn , respectively. The EasyUQ conditional
CDFs are step functions that correspond to discrete predictive distributions with mass
at (a subset of) the unique values ỹ1 < · · · < ỹk only.
The IDR approach has desirable properties that make it suitable for uncertainty quan-
tification. By (5.2), the EasyUQ CDFs depend on the order of x1, . . . , xn, but not ontheir values, and hence the solution is invariant under strictly monotone transforma-
tions of the model output, except for interpolation choices when x ̸∈ {x1, . . . , xn}.Furthermore, the EasyUQ distributions are in-sample calibrated (Henzi et al., 2021,
Thm. 2). Importantly, a comparison of the loss function in (5.2) and the definition
of the CRPS in (2.8) reveals that EasyUQ minimizes the CRPS over all conditional
distributions satisfying the stochastic order constraints. Furthermore, the EasyUQ so-
lution is universal, in the sense that it is simultaneously in-sample optimal with re-
spect to comprehensive classes of proper scoring rules in terms of conditional CDFs or
conditional quantiles, such as, e.g., weighted forms of the CRPS with the Lebesgue
measure in (2.8) replaced by a general measure (Henzi et al., 2021, Thm. 2). Other ap-
proaches to estimating conditional CDFs, e.g., based on parametric models, nearest
neighbors, or kernel regression, do not share the universality property, and estimates
change depending on the loss function at hand.
In Figure 5.1 we illustrate EasyUQ predictive CDFs in the empirical WeatherBench ex-
ample. Simulation examples, to which we turn now, have the advantage that the true
conditional CDFs are available, so we can comparewith them. Figure 5.2 illustrates the
construction of the discrete EasyUQ predictive distributions step by step, based on a
training archive of the form (5.1) with n = 500 simulated from a bivariate distribution,
where the model outputX is uniform on (0, 10) and the outcome Y satisfies

Y | X ∼ Gamma(shape =
√
X, scale = min{max{X, 2}, 8}). (5.4)

EasyUQ converts the single-valued model output X into conditional predictive CDFs
close to the right-skewed true ones. Indeed, IDR, and hence, EasyUQ are asymptoti-
cally consistent: As the training archive size n grows, the estimated EasyUQ CDFs con-
verge to the true conditional CDFs (El Barmi and Mukerjee, 2005; Henzi et al., 2021;
Mösching and Dümbgen, 2020). Of particular relevance to EasyUQ is the following
recent result (Henzi et al., 2023, Thm. 5.1): If x1, . . . , xn themselves are not fixed but
are predictions from a statistical model that is estimated on the same training data
then IDR is a consistent estimator of the true conditional distributions, subject to mild
regularity conditions.
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Figure 5.2: Computation of EasyUQ predictive distributions from a training archive of
n = 500 model output–outcome pairs simulated according to (5.4). a) The minimizer
F̂x(y) of (5.3) at y = 7, interpolated linearly in x. The jiggled dots show the indicators
1{yi ≤ y}. b) EasyUQ conditional CDFs F̂x (step functions) and the respective true
conditional CDFs (smooth curves) at selected values of x. The vertical line at y = 7
highlights the values marked in the top panel. c) Training data (xi, yi) for i = 1, . . . ,
n, and conditional quantile curves q̂x(p) resulting from inversion of the EasyUQ CDFs
F̂x. The lowest and highest quantile curves (levels 0.05 and 0.95) together delineate
equal-tailed 90% prediction intervals.
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The basic EasyUQmethod extends readily to vector-valuedmodel output. Ifx1, . . . , xnare vectors in a space with a partial order ⪯, then the same approach (5.2) applies
with the usual inequality ≤ replaced by the partial order ⪯. This allows more flex-
ibility in the sense that distributions Fx and Fx′ are allowed to be incomparable in
stochastic order if x and x′ are incomparable in the partial order. A prominent ex-
ample concerns ensemble weather forecasts (Gneiting and Raftery, 2005; Leutbecher
and Palmer, 2008; Palmer, 2000), where a numerical model is run several times under
distinct conditions, and the partial order ⪯ that underlies IDR can be tailored to this
setting (Henzi et al., 2021).
To summarize, the basic EasyUQ method provides a data driven, theoretically princi-
pled, and fully automated approach to uncertainty quantification that is devoid of any
need for implementation choices. Based on training data, EasyUQ converts single-
valued model output into calibrated predictive distributions that reflect the uncer-
tainty in the model output and training data, as opposed to tuning intense methods,
where uncertainty quantification might reflect implementation decisions and user
choices. The EasyUQ predictive solution is invariant under strictly monotone transfor-
mations of the model output, it is in-sample calibrated, it is in-sample optimal with
respect to comprehensive classes of loss functions, and subject to mild conditions it is
asymptotically consistent for both output from deterministic models and output from
statistical or machine learning models, even when the model is learned on the same
data.2

5.2.2 Illustration on WeatherBench challenge

In a notable development, WeatherBench (Rasp et al., 2020) introduces a bench-
mark dataset (which is also used in Section 4.5.3 of Chapter 4) for the comparison of
purely data driven and numerical weather prediction (NWP) model based approaches
to weather forecasting. Following up on the illustration in Figure 5.1, where we con-
sider a grid point at (latitude, longitude) values of (53.4375, 16.875), we now provide
background information and quantitative results at grid points worldwide.
Our experiments are based on the setup in WeatherBench and consider forecasts of

2By Thm. 2 of Henzi et al. (2021), the fitted EasyUQ distributions are threshold calibrated, i.e., the
predicted non-exceedance probabilities equal their empirical counterparts in the training data. Fur-
thermore, the fitted distributions are empirical score minimizers under a large class of proper scoring
rules.
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upper air temperature at a vertical level of 850 hPa pressure. The forecasts are issued
twice daily at 00 and 12 Coordinated Universal Time (UTC) at lead times of three and
five days ahead. The single-valuedHRES forecast is from the high-resolutionmodel op-
erated by the European Centre forMedium-RangeWeather Forecasts (ECMWF),which
represents the physics and chemistry of the atmosphere and is generally considered
to be the leading global NWP model. To reduce the amount of data, WeatherBench
regrids the HRES model output and the respective outcomes, which originally are on
a 0.25 degree latitude–longitude grid (72×144), to coarser resolution (32×64) via bi-
linear interpolation. The CNN forecast is also single-valued; it is purely data driven and
based on a Convolutional Neural Network (CNN), with trained weights being available
inWeatherBench. The single-valued Climatology forecast is the best performing base-
line model fromWeatherBench; it is obtained as the arithmetic mean of the observed
upper air temperature in the training data, stratified by 52 calendar weeks.
Conformal Prediction (CP, Vovk et al., 2022, 2020b) is an increasingly popular, general
technique for the construction of predictive distributions from single-valued model
output. For a comparison with EasyUQ, we employ CP in the form of the studentized
Least Squares Prediction Machine (LSPM, Vovk et al., 2022, Algorithm 7.2) with the
single-valued model output as sole covariate. We consider CP to be a key competitor,
as it is an output-based method that shares desirable properties of EasyUQ. Specifi-
cally, the LSPM supplements a least squares based point prediction of the outcome
with a conformal predictive system for uncertainty quantification. Based on training
data (xi, yi), where i = 1, . . . , n − 1, Algorithm 7.2 returns a fuzzy predictive distri-
bution (Vovk et al., 2022, eq. (7.7)) that is defined in terms of quantitiesC1, . . . , Cn−1.Comparative evaluation requires a crisp predictive distribution, for which we use the
empirical distribution of C1, . . . , Cn−1, which adheres to the bounds imposed by the
fuzzy distribution.3 For moderate to large training sets and x the value of the model
output at hand,Ci typically is very close to ŷ+yi− ŷi, where ŷ and ŷi are least squarespoint predictions based on x and xi, respectively (Vovk et al., 2022, Section 7.3.4).
Finally, we consider the state-of-the-art approach to uncertainty quantification in

3Here and in Section 5.3.4, we adopt the convention in Vovk et al. (2022, Section 7.2) and assume
that the size of the training set is n−1, rather than n, to allow for direct references to material therein.
The respective crisp CDF is given by F (y) = i/n for y ∈ (C(i), C(i+1)) and i = 0, 1, . . . , n − 1, and
F (y) = i′′/n for y = C(i) and i = 1, . . . , n − 1, where C(0) = −∞, C(1) ≤ · · · ≤ C(n−1) are the
order statistics of C1, . . . , Cn−1, C(n) = ∞ and i′′ = max{ j : C(j) = C(i)}. For related discussion
and alternative choices of a crisp CDF that is compatible with the fuzzy CDF, see Boström et al. (2021,
Section 2) and Vovk et al. (2020a, Section 5).
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5. Easy Uncertainty Quantification (EasyUQ)
Table 5.1: Predictive performance in terms ofmeanCRPS forWeatherBench forecasts
of upper air temperature at lead times of three and five days, in degrees Kelvin. The
evaluation period comprises calendar years 2017 and 2018. CP and EasyUQ generate
predictive CDFs that are fitted at each grid point individually, based on training data
from 2010 through 2016. Forecasts are issued twice daily, and scores are averaged
over 32× 64 grid points, for a total of 2,990,080 forecast cases.

Forecast CRPS

Type Method Three Days Five Days
Single-valued Climatology 2.904 2.904

CNN 2.365 2.782
HRES 0.998 1.543

Distributional CP on Climatology 2.055 2.055
CP on CNN 1.673 1.955
CP on HRES 0.731 1.123

Distributional EasyUQ on Climatology 2.038 2.038
EasyUQ on CNN 1.671 1.949
EasyUQ on HRES 0.736 1.122

Distributional ECMWF Ensemble 0.696 0.998

weather prediction, namely, ensemble forecasts (Gneiting and Raftery, 2005; Leut-
becher and Palmer, 2008; Palmer, 2000), which are input-based methods. Specif-
ically, we use the world leading ECMWF Integrated Forecast System (IFS, https:
//www.ecmwf.int/en/forecasts), which comprises 51 NWP runs, namely, a con-
trol run and 50 perturbed members (Molteni et al., 1996). The control run is based
on the best estimate of the initial state of the atmosphere, and the perturbed mem-
bers start from slightly different states that represent uncertainty. Even a single NWP
model run, such as the HRES run, is computationally very expensive, and computing
power is the limiting factor to improvingmodel resolution. Despite having coarser res-
olution, an ensemble typically requires 10 to 15 times more computing power than a
single run (Bauer et al., 2015). In contrast, the implementation of the output-based CP
and EasyUQ methods is fast, with hardly any resources needed beyond a single NWP
model run.
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5. Easy Uncertainty Quantification (EasyUQ)
To compare CP and EasyUQ predictive CDFs to the respective single-valued forecasts
weuse theCRPS from (2.8) and recall that for single-valued forecasts themeanCRPS
reduces to themean absolute error. As evaluation period, we take calendar years 2017
and 2018; for estimating the CP and EasyUQ predictive distributions, we use training
data from calendar years 2010 through 2016 and proceed grid point by grid point. The
corresponding results are provided in Table 5.1. Not surprisingly, the ECMWFensemble
forecast has the lowest mean CRPS. However, CP and EasyUQ based on the HRES
model output result in promising CRPS values, even though the methods require
considerably less computing time and resources.
The CP and EasyUQ predictive distributions show nearly identical predictive perfor-
mance. To understand this behavior, we note that in the case of temperature, Gaus-
sian predictive distributions with fixed variance are typically very adequate (see, e.g.,
Gneiting et al. (2005, Table 3)). In this light, key requirements of CP in the form of
the LSPM (namely, fixed spread and fixed shape of the predictive distributions) and
EasyUQ (namely, isotonicity) are reasonably met. While EasyUQ generates predictive
distribution that vary in spread and shape, the variations remain modest (Figure 5.1c–
f), and the CP distributions, which essentially are translates of each other, are com-
petitive.
The subsequent case study turns to a weather variable that is not covered by the
WeatherBench challenge, but which serves to illuminate and highlight differences be-
tween the CP and EasyUQ techniques.

5.2.3 Illustration on precipitation forecasts

Precipitation accumulation is generally considered the “most difficultweather variable
to forecast” (Ebert-Uphoff and Hilburn, 2023). Indeed, the uncertainty quantification
for deterministic forecasts of precipitation is more challenging than for temperature,
since precipitation accumulation follows a mixture distribution with a point mass at
zero — for no precipitation — and a continuous part on the positive real numbers.
Applying CPwithout corrections is bound to transfermass to negative values of precip-
itation accumulation. Taking advantage of knowledge about the outcome distribution,
a natural remedy is to censor at zero and use the CDF

G(y) =

0, y < 0,

F (y), y ≥ 0,
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5. Easy Uncertainty Quantification (EasyUQ)
Table 5.2: Predictive performance in terms of mean CRPS for forecasts of daily pre-
cipitation accumulation at Frankfurt airport at lead times from one to five days, in mil-
limeters. CP and EasyUQ generate predictive CDFs based on training data from 2007
through 2014. The evaluation period comprises calendar years 2015 and 2016.

Forecast CRPS

Type Method 1 Day 2 Days 3 Days 4 Days 5 Days
Single-valued Climatology 2.187 2.187 2.187 2.187 2.187

HRES 1.125 1.294 1.412 1.478 1.686
Distributional CP on Climatology 1.382 1.382 1.382 1.382 1.382

CP on HRES 0.886 0.966 1.063 1.081 1.129
Censored CP on Climatology 1.324 1.324 1.324 1.324 1.324
Censored CP on HRES 0.850 0.925 1.031 1.050 1.100

Distributional EasyUQ on Climatology 1.242 1.242 1.242 1.242 1.242
EasyUQ on HRES 0.732 0.803 0.876 0.945 1.001

Distributional ECMWF Ensemble 0.752 0.847 0.856 0.918 0.981

in lieu of F .4 In contrast, the EasyUQ predictive distributions reflect the nonnegativity
of the outcomes in the training data, without any need for adaptation.
We now investigate the performance of CP and EasyUQwithin the experimental setup
from Henzi et al. (2021), taking forecasts and observations of 24-hour accumulated
precipitation from 6 January 2007 through 1 January 2017 at Frankfurt airport, Ger-
many. Just as in the WeatherBench example, we consider a weekly climatology, the
HRES forecast, and the 51 member NWP ensemble from ECMWF. The weekly climatol-
ogy is computed over the period 2007 to 2014, which is the same period that is used
for CP and EasyUQ training. The evaluation period comprises calendar years 2015 and
2016. Table 5.2 shows the mean CRPS over the evaluation period for the various
types of forecasts at lead times from one to five days. Evidently, the climatological
forecasts, along with their scores, do not depend on the lead time. In contrast to the

4In our experiments, we train without consideration of censoring, and we censor at zero ex post.
For a nonnegative outcome, such a procedure guarantees improvement, in the technical sense that
CRPS(G, y) ≤ CRPS(F, y) for all y ≥ 0. Alternatively, one might take censoring into account during
training. However, methods of this latter type are more complex to implement, and improvements in
CRPS cannot be guaranteed out-of-sample.
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WeatherBench temperature example, EasyUQ outperforms CP for both Climatology
and the HRES model output, and at all lead times. While censoring improves the dis-
tributional forecasts from CP, the performance gap to EasyUQ remains pronounced.
EasyUQ on the HRES model output even outperforms the raw ECMWF ensemble at
lead times of one and two days.5
Figure 5.3 provides a graphical comparison of CP on HRES, Censored CP on HRES,
EasyUQ on HRES, and ECMWF ensemble forecasts at small (x = 0.38), moderate
(x = 3.40), and large (x = 11.93) values of the HRES model output x. We see that
the CP predictive distributions are essentially translates of each other, with mass po-
tentially being transferred to negative values of precipitation accumulation, and cen-
soring shifting any such mass to zero. In contrast, the ECMWF ensemble and EasyUQ
distributions do not have mass at negative values, and they vary in shape and scale.
However, while the ECMWF ensemble tends to show forecast distributions that are
too narrow, as is frequently observed in practice (Gneiting and Raftery, 2005) and il-
lustrated by the right-hand example, the EasyUQ distributions, which are based on
the single-valued HRES forecast only, show what appears to be adequate spread. Re-
markably, and unlike any other method that we are aware of, EasyUQ achieves this
desirable performance in its very basic form, without any need for implementation
decisions, parameter tuning, or other forms of adaptation and intervention.

5This is largely due to the fact that gridded ensemble predictions are compared against station ob-
servations. To counter these effects, the ensemble forecast itself can be subjected to statistical postpro-
cessing, i.e., the application of statistical methods to correct for biases and dispersion errors (Gneiting
et al., 2005; Raftery et al., 2005). Parametric methods based on distributional regression (Messner
et al., 2014; Scheuerer, 2014) model the distribution of precipitation accumulation with censored logis-
tic or censored generalized extreme value distributions. An alternative approach is taken in Bayesian
model averaging (Sloughter et al., 2007), which posits separate parametric forms for the probability
of zero precipitation and the density at positive amounts. Evidently, discrete-continuous mixture dis-
tributions considerably complicate model building and estimation, and great efforts are made to find
suitable parametric families for specific weather variables. For a detailed performance comparison on
the data on hand see Henzi et al. (2021, Figure 5), whose study also includes versions of IDR with multi-
variate covariates derived from the full ECMWFensemble and suitable partial orders on them, an option
alluded to at the end of Section 5.2.1. These yield improvements compared to both the raw ensemble
forecast and EasyUQ on HRES, at the price of higher conceptual complexity, higher computational costs,
and the need for access to the full ensemble, rather than single-valued HRES model output.
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Figure 5.3: One-day ahead forecasts of daily precipitation accumulation at Frankfurt
airport valid 23 January 2015 (left, HRES model output x equal to 0.38, as indicated
by the blue cross), 14 January 2015 (middle, x = 3.40), and 21 February 2016 (right, x
= 11.93), in millimeters. The predictive distributions for CP on HRES, Censored CP on
HRES, EasyUQ on HRES, and ECMWF ensemble techniques are shown. The observed
precipitation accumulation was at y = 0, y = 2, and y = 17 millimeters, respectively.

5.3 Smooth EasyUQ

EasyUQ provides discrete predictive distributions with positive probability mass at the
outcomes from the training archive. For genuinely discrete outcomes, the variable of
interest attains a small number of unique values only, which is a desirable property.
For genuinely continuous variables, it is preferable to use continuous predictive distri-
butions. We now describe the Smooth EasyUQ technique, which turns the discrete
basic EasyUQ CDFs into continuous Smooth EasyUQ CDFs with Lebesgue densities,
while preserving isotonicity. To achieve this, Smooth EasyUQ applies kernel smooth-
ing, which requires implementation choices, unlike basic EasyUQ which does not re-
quire any tuning. However, we provide default options.

5.3.1 Smooth EasyUQ: Kernel smoothing under isotonicity preserva-
tion

Our goal is to transform the discrete basic EasyUQ CDFs F̂x from (5.3) into smooth
predictive CDFs F̌x that admit Lebesgue densities f̌x, without abandoning the order
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relations honored by the basic technique. To this end, we define the Smooth EasyUQ
CDF as

F̌x(y) =

∫ ∞

−∞
F̂x(t)Kh(y − t) dt, (5.5)

where Kh(u) = (1/h)κ(u/h) for a smooth probability density function or kernel κ,
such as a standardizedGaussian or Student-tdensity, with bandwidthh > 0. While the
convolution approach in (5.5) is perfectly general for the smoothing of CDFs, we hence-
forth focus the presentation on EasyUQ. The choice of the kernel and the bandwidth
are critical, andwe tend to their selection in the next section, wherewe introducemul-
tiple one-fit grid search as a computationally efficient alternative to cross-validation.
For now, recall that F̂x(y) from (5.3) is a step function with possible jumps at the
unique values ỹ1 < · · · < ỹk of the outcomes y1, . . . , yn in the training set. Hence, wecan write (5.5) as

F̌x(y) =
k∑

j=1

F̂x(ỹj)

∫ ỹj+1

ỹj

Kh(y − t) dt,

where ỹk+1 = ∞. To compute the density f̌x = F̌ ′
x, we set ỹ0 = −∞, note that F̂xassigns mass wj(x) = F̂x(ỹj)− F̂x(ỹj−1) to ỹj , and find that

f̌x(y) =
k∑

j=1

F̂x(ỹj) [Kh(y − ỹj)−Kh(y − ỹj+1)] =
k∑

j=1

wj(x)Kh(y − ỹj). (5.6)
In other words, the Smooth EasyUQ density f̌x from (5.6) arises as a kernel smoothing
of the discrete probabilitymeasure that corresponds to F̂x and assignsweightwj(x) to
ỹj . Consequently, f̌x is a probability density function, F̌x is a proper CDF, and, notably,Smooth EasyUQ preserves the stochastic ordering of the basic EasyUQ estimates. In
Figure 5.4 we illustrate the interpretation of the Smooth EasyUQ density as a kernel
smoothing of the EasyUQ point masses wj(x) on the WeatherBench example.

5.3.2 Choice of kernel and bandwidth: Multiple one-fit grid search

In order to compute the Smooth EasyUQ density f̌x from (5.6), one needs to choose a
kernelκ and a bandwidthh > 0 to yield amixture of translates of the densityKh(u) =

(1/h)κ(u/h). While there is a rich literature on bandwidth selection for kernel density
estimation and kernel regression (see, e.g., Köhler et al. (2014) and Silverman (1986)),
caution is needed when applying established approaches to Smooth EasyUQ, due to
the fact that smoothing is applied to estimated conditional CDFs rather than raw data.
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Figure 5.4: Smooth EasyUQ predictive density (5.6) in the WeatherBench example
from Figure 5.1f) at HRESmodel output x equal to 268 degrees Kelvin. The vertical bars
show the weights w1(x), . . . , wk(x) that the discrete EasyUQ distribution F̂x assignsto the unique values ỹ1 < · · · < ỹk of the outcomes in the training set, where k = 76.
Furthermore, while the extant literature focuses on bandwidth selection for a fixed
kernel, approaches of this type are restrictive for our purposes. The Smooth EasyUQ
density from (5.6) inherits the tail behavior of the kernel κ, and so the properties of
the kernel are of critical importance to the quality of the uncertainty quantification in
the tails of the conditional distributions. To allow for distinct tail behavior, we use the
Student-t family and setKν,h(u) = (1/h)κν(u/h), where

κν(y) =
Γ((ν + 1)/2)

(πν)1/2 Γ(ν/2)

(
1 +

y2

ν

)−(ν+1)/2 (5.7)
is a standardized Student-t probability density function with ν > 0 degrees of free-
dom. It is well known that the Student-t distribution has a finite first moment if ν > 1

and a finite variance if ν > 2. In the limit as ν → ∞, we find that κν(y) → κ∞(y)

uniformly in y, where κ∞(y) = (2π)−1/2 exp(−y2/2) is the standard Gaussian density
function, so the ubiquitous Gaussian kernel emerges as a limit case in (5.7).
Turning to the choice of the tail parameter ν ∈ (0,∞] and the bandwidth h > 0, we
begin by discussing the latter. A popular approach for bandwidth selection, in both ker-
nel regression and kernel density estimation, is leave-one-out cross-validation. Here
the target criterion in terms of the bandwidth is

CV(h) =
1

n

n∑
i=1

S(F̌xi,−i,h, yi), (5.8)

where S is a proper scoring rule, and F̌xi,−i,h is the Smooth EasyUQ CDFwith covariate
xi and bandwidth h, estimatedwith all data from (5.1) except for the i-th instance. The
optimization of the target criterion (5.8) uses either the CRPS as loss function S, as
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is (implicitly) suggested for the estimation of conditional CDFs and quantile functions
(see, e.g., Bowman et al. (1998, p. 801) and Li et al. (2013, p. 58)) and yielding a target
that is asymptotically equivalent to the integrated mean squared error (Henzi et al.,
2021, Section S4), or the LogS, as is proposed for ensemble smoothing (Bröcker and
Smith, 2008). We take the latter as the default choice, since the LogS is much more
sensitive to the choice of the bandwidth h than the more robust CRPS.
However, there are a number of caveats. Empirical data are typically discrete to some
extent, and might contain ties in the response variable, such as in the setting of Fig-
ure 5.4, where there are onlym = 76 unique values among the outcomes y1, . . . , yn,even though f̌x is estimated from a training archive of size n = 5, 114. In such cases,
the optimal cross-validation bandwidth under the LogS may degenerate to h = 0, a
problem that is also known in density estimation (Silverman, 1986, pp. 51–55), in the
estimation of Student-t regressionmodels (Fernandez and Steel, 2009) and, in related
form, in performance evaluation for forecast contests (Kohonen and Suomela, 2006;
Quiñonero-Candela et al., 2006). Another issue is that leave-one-out cross-validation
is computationally expensive, as for each value of h it requires the computation of
n distinct IDR solutions. While a potential remedy is to remove a higher percentage
of observations in each cross-validation step, we use a considerably faster approach,
which we term one-fit grid search, that addresses both issues simultaneously.
One-fit grid search avoids repeatedfits of IDR and computes EasyUQonly once, namely,
on the full sample from (5.1). Specifically, given any fixed kernel κ, one-fit grid search
finds the optimal bandwidth h in terms of the target criterion

OF(h) =
1

n

n∑
i=1

S(F̄xi,−i,h, yi), (5.9)
where F̄xi,−i,h removes the unique value ỹj = yi from the support of F̌xi

in (5.5), by
settingwj(x) in (5.6) to zero and rescaling the remainingweights. We choose theLogS
as the default option for the loss function S in the one-fit criterion (5.9), and we use
Brent’s algorithm (Brent, 1973) for optimization. Effectively, one-fit grid search is a fast
approximation to cross-validation, andwhen n is small, leave-one-out cross-validation
and the original criterion in (5.8) can be used instead, of course. To choose a Student-t
kernel, we repeat the procedure, i.e., we consider values of ν ∈ {2, 3, 4, 5, 10, 20,∞}
in (5.7), with ν = ∞ yielding the Gaussian limit, apply one-fit grid search for each of
these values, to find the respective optimal bandwidth h, and select the combination
of ν and h for which the target criterion (5.9) is smallest overall. While being highly
effective in our experience, multiple one-fit grid search is a crude approach, and we
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encourage further development.

5.3.3 Illustration on temperature and precipitation forecast exam-
ples

For an initial illustration, we return to the WeatherBench challenge and the EasyUQ
densiies in Figs. 5.1f) and 5.4, where n = 5, 114 andm = 76, and multiple one-fit grid
search with respect to the LogS yields parameter values ν = ∞ and h = 0.60 in the
kernel density (5.7). Considering the 32×64 = 2, 048 grid points inWeatherBench and
predictions three days ahead, the value of ν selected the most frequently for Smooth
EasyUQ on the HRES model output, namely, 619 times, is ν = 10, with a median
choice of h = 0.49. For Smooth EasyUQ on Climatology and CNN ν = ∞ was most
frequently selected, namely 1, 391 and 1, 361 times with median choices of h = 0.85

and h = 1.04, respectively.
A very simple and frequently used referencemethod for converting single-valuedmodel
output into a predictive density is the Single Gaussian technique (Doubleday et al.,
2020). It issues a Gaussian distribution with mean equal to the single-valued model
output, and a constant variance that is optimal with respect to the mean LogS on a
training set, which here we take to be the same as for EasyUQ. Evidently, both Smooth
EasyUQ and the Single Gaussian technique could be trained in terms of the CRPS as
well. We also compare to the Smooth CP technique, which converts the discrete CP
distributions to densities, as described in the next section.
In Table 5.3, we evaluate Smooth EasyUQ, Smooth CP, and Single Gaussian density
temperature forecasts in the WeatherBench setting. For evaluation, we use both the
CRPS and the LogS. Throughout, Smooth EasyUQ and Smooth CP outperform the
Single Gaussianmethod, though they do not match the performance of the smoothed
ECMWF ensemble forecast, which we construct as follows. Let z̃1 < · · · < z̃k be theunique values of the ensemble members z1, . . . , zl of an ensemble forecast of size l.
The smoothed ensemble CDF is then of the form (5.5) with mass wj =

1
l

∑l
i=1 1(zi =

z̃j) for j = 1, . . . , k. Interestingly, this is the same as Bröcker and Smith (2008,
realtions (19)–(21)) smoothing of ensemble forecasts, with parameters a = 1 and
r1 = r2 = s2 = 0 being fixed. However, while Bröcker and Smith (2008) use a
Gaussian kernel and optimize the bandwidth parameter only, we take a more flexible
approach and consider values of ν ∈ {2, 3, 4, 5, 10, 20,∞} for a Student-t kernel, to
find the optimal ν and bandwidth h in terms of theLogS. Across the 2, 048 grid points,
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Table 5.3: Predictive performance in terms ofmeanLogS andmeanCRPS forWeath-
erBench density forecasts of upper air temperature at lead times of three and five
days, in degrees Kelvin. The evaluation period comprises calendar years 2017 and
2018. The Single Gaussian, Smooth CP, and Smooth EasyUQ methods are trained at
each grid point individually, based on data from 2010 through 2016. Forecasts are
issued twice daily, and scores are averaged over 32 × 64 grid points, for a total of
2,990,080 forecast cases.

Density Forecast LogS CRPS

Days Ahead Three Five Three Five
Single Gaussian on Climatology 2.578 2.578 2.060 2.060
Single Gaussian on CNN 2.413 2.553 1.696 1.983
Single Gaussian on HRES 1.694 2.073 0.748 1.153
Smooth CP on Climatology 2.562 2.562 2.059 2.059
Smooth CP on CNN 2.384 2.519 1.672 1.952
Smooth CP on HRES 1.627 2.007 0.732 1.123
Smooth EasyUQ on Climatology 2.540 2.540 2.043 2.043
Smooth EasyUQ on CNN 2.375 2.509 1.667 1.945
Smooth EasyUQ on HRES 1.640 2.006 0.736 1.122
Smoothed ECMWF Ensemble 1.503 1.824 0.685 0.990

the most frequent choice is ν = 5, namely, 743 times, with a median bandwidth value
of h = 0.50.
While smoothing iswarranted for temperature forecasts, it is problematic for forecasts
of precipitation accumulation, due to the nonnegativity of the outcome and the point
mass at zero. Indeed, due to the kernel smoothing, the Smooth EasyUQ and smoothed
ECMWF ensemble densities have mass on the negative halfaxis, unlike the discrete
(basic) EasyUQ and (raw) ECMWF distributions, which are concentrated on the non-
negative halfaxis. Nonetheless, Table 5.4 compares the predictive performance of Sin-
gle Gaussian, Smooth CP, Smooth EasyUQ, and smoothed ECMWF ensemble forecasts
in the setting of Section 5.2.3, in both the original and the censored variants. The re-
sultsmirror the findings in Table 5.2, in that censoring yields improvement and EasyUQ
outperforms CP, whereas CP outperforms the Single Gaussian technique.
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Table 5.4: Predictive performance in terms of mean CRPS for density forecasts of
daily precipitation accumulation at Frankfurt airport at lead times from one to five
days, in millimeters. CP and EasyUQ generate predictive CDFs based on training data
from 2007 through 2014. The evaluation period comprises calendar years 2015 and
2016.

Density Forecast 1 Day 2 Days 3 Days 4 Days 5 Days
Single Gaussian on HRES 1.244 1.380 1.547 1.577 1.724
Censored Single Gaussian on HRES 1.013 1.145 1.266 1.276 1.401
Smooth CP on HRES 0.886 0.971 1.064 1.087 1.132
Censored Smooth CP on HRES 0.849 0.928 1.028 1.052 1.098
Smooth EasyUQ on HRES 0.760 0.828 0.901 0.968 1.033
Censored Smooth EasyUQ on HRES 0.745 0.817 0.893 0.960 1.016
Smoothed ECMWF Ensemble 0.762 0.855 0.863 0.924 0.986
Censored Smoothed ECMWF Ensemble 0.750 0.850 0.860 0.921 0.984

5.3.4 Computational considerations

We add a brief discussion of the computational complexity of output-based methods
for uncertainty quantification. For this comparison, we utilize the setting of Vovk et al.
(2022, Algorithm 7.2), which requires predictive distributions for m new values of x,
based on a training set of sizen−1with instances (x1, y1), . . . , (xn−1, yn−1). We report
upper estimates of the computational complexity for the Single Gaussian technique,
CP, and EasyUQ, considering both training (i.e., initial operations on the training data
only) and inference (i.e., operations to be repeated for each new value). For the sim-
plistic Single Gaussian technique, training requires O(n) operations and inference is
straightforward.
For EasyUQ, themain effort lies in training, where the complexity is upper bounded by
O(n2) operations (Henzi et al., 2022). Training the EasyUQ CDFs only on a fixed grid
of ordinates guarantees a cost reduction to O(n log n) operations, and Henzi et al.
(2021) describe approaches based on subset aggregation that reduce the computa-
tional burden for estimation. That said, the numerical experiments in our chapter use
the standard implementation throughout, without exception. For inference, each new
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value of x requires the determination of its position within the unique values across
x1, . . . , xn−1, followed by interpolation of the trained EasyUQ CDFs at the predecessor
and successor values, at up toO(mn) operations.
For CP in the form of the studentized LSPM (Vovk et al., 2022, Algorithm 7.2) essen-
tially no training is required, but inference incursO(mn2) operations. Residual-based
approximations to CP, which are instances of split conformal predictive systems (Vovk
et al., 2022, Section 7.3.4; Vovk et al., 2018), are much faster, shift the bulk of the cost
to training at O(n) operations, and yield nearly identical predictive performance to
CP in our experience, except when training sets are small.
For both, CP and EasyUQ, we have implemented smoothing in ways that avoid cross-
validation and honor the aforementioned bounds. Smooth EasyUQ uses one-fit grid
search as developed in this chapter. To generate the Smooth CP densities, we use ker-
nel smoothing with a Gaussian kernel and bandwidth chosen according to Silverman’s
rule of thumb (Silverman, 1986), applied to the quantities C1, . . . , Cn−1 that arise foreach new instance separately.
In the aforementioned experiments, we generally found the computational cost of
EasyUQ to be nested in between the costs of CP and residual-based approximations
to CP.6 Compared to the enormous effort of running the HRES model, or even the
input-based ECMWF ensemble method, which require the operational use of super-
computers, run times and computational costs for the output-based Single Gaussian,
CP, and EasyUQ techniques are negligible.

6To provide intuition into computation times, we report mean run times for the Single Gaussian
technique, CP, and EasyUQ applied to the HRES forecast in the setting of Table 5.2, where the training
set is of size 2,896 and the evaluation set of size 721. The mean run time averaged over the five lead
times is 0.005 seconds for the Single Gaussian technique, 0.45 seconds for CP, and 0.085 seconds for
EasyUQ.We note that the computing time for CP on a CPU is 33.64 seconds, but can be reduced to 0.45
seconds on a GPU. Evidently, the comparison faces the usual challenges, given that execution times
depend on factors including but not limited to hardware architecture, disk speed, memory availability,
and the programming language and compiler used. Specific to the situation at hand, we use code in
Python, R, and C++, run some functions on a GPU and others on a CPU, and it is unlikely that every one
of our implementations, which typically are based on packages, has been coded in the most efficient
way.
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5.4 EasyUQ and neural networks

Neural networks and deep learning techniques have enabled unprecedented progress
in predictive science. However, as they “can struggle to produce accurate uncertainties
estimates [. . . ] there is active research directed toward this end” (Baker et al., 2022,
p. 67), which has intensified in recent years (Abdar et al., 2021; Chung et al., 2021; Duan
et al., 2020;Gal andGhahramani, 2016; Immer et al., 2021; Kuleshov et al., 2018; Laksh-
minarayanan et al., 2017; Marx et al., 2022; Vovk et al., 2020b). We now discuss how
EasyUQ and Smooth EasyUQ can be used to yield accurate uncertainty statements
from neural networks. Evidently, our methods apply in the ways described thus far,
where single-valued model output is treated as given and fixed, with subsequent un-
certainty quantification via EasyUQ or Smooth EasyUQ being a completely separate
add-on, as illustrated using our temperature and precipitation examples. In the con-
text of neural networks, this means that the network parameters are optimized to
yield single-valued output, and only then is EasyUQ applied. We now describe a more
elaborate approach where we integrate our methods within the typical workflow of
neural network training and evaluation.

5.4.1 Integrating EasyUQ into the workflow of neural network learn-
ing and hyperparameter optimization

Neural networks and associatedmethods for uncertainty quantification are developed
and evaluated in well-designed workflows that involve multiple splits of the available
data into training, validation, and test sets. For each split, the training set is used to
learn basic neural network parameters, the validation set is used to tune hyperparam-
eters, and the test set is used for out-of-sample evaluation. Scores are then averaged
over the tests sets across the splits, and methods with low mean score are preferred.
Algorithm 1 describes how Smooth EasyUQ can be implemented within this typical
workflow of neural network learning and hyperparameter tuning. In a nutshell, we
treat the kernel parameters for Smooth EasyUQ, namely, the Student-t parameter ν
and the bandwidth h, as supplemental hyperparameters, and we optimize over both
the neural network hyperparameters and the kernel parameters. As the evaluation
occurs out-of-sample, the issues associated with the choice of the kernel parameters
discussed in Section 5.3.2 aremitigated, unless a dataset is genuinely discrete, inwhich
case evenout-of-sample estimates of the bandwidthh can degenerate to zero, thereby
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Algorithm 1 Integration of Smooth EasyUQ into the workflow of neural network train-
ing and hyperparameter tuning. The procedure returns themean score of the Smooth
EasyUQ predictions across data splits.
1: for split in mysplit do
2: separate data into training set, validation set, and test set
3: for hyperpar in myhyperpar do
4: learn neural network with hyperpar on training set
5: use neural network output to fit basic EasyUQ on training set
6: use moderated grid search to select EasyUQ parameters ν and h
7: save selected (ν, h) and mean score on validation set
8: end for
9: select best hyperpar and associated (ν, h), based on smallest mean score
10: re-learn network with best hyperpar on combined training and validation sets
11: use re-learned neural network output to re-fit basic EasyUQ on combined

training and validation sets
12: use Smooth EasyUQ based on re-fitted EasyUQwith best (ν, h) for predictions

on test set
13: save scores on test set
14: end for
15: return mean score across splits

indicating that smoothing is ill-advised. To handle even such ill-advised cases, we use a
procedure that we call moderated grid search (Walz, 2023). Specifically, we first check
whether using ν = 2 or a Gaussian kernel results in a degeneration of the optimal
bandwidth h to zero, and if so, we use the latter with bandwidth chosen according to
Silverman’s rule of thumb (Silverman, 1986). Otherwise, we consider values of ν ∈
{2, 3, 4, 5, 10, 20,∞} in (5.7), with ν = ∞ yielding the Gaussian limit. For each value
of ν, we use Brent’s method (Brent, 1973) to optimize the log score with respect to
the bandwidth h on the validation set, and choose the optimal combination of ν and
h. Once network hyperparameters and kernel parameters have been determined, we
re-learn the neural network on the combined training and validation sets, using the
optimized hyperparameters, and apply EasyUQ on the re-learned single-valued neural
network output. Finally, we apply Smooth EasyUQ based on the re-learned EasyUQ
solution and the selected kernel parameters, to yield density forecasts on the test set.
While optimization could be performed with respect to the CRPS, the LogS, or any
other suitable proper scoring rule, we follow the machine learning literature, where
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benchmarking is typically done in terms of theLogS. TheCRPS serves as an attractive
alternative, much in line with recent developments in neural network training, where
optimization is performed with respect to the CRPS (D’Isanto and Polsterer, 2018;
Rasp and Lerch, 2018). Its use becomes essential in simplified versions of Algorithm
1 that work with the discrete basic EasyUQ distributions rather than Smooth EasyUQ
densities.

5.4.2 Application in benchmark settings from machine learning

As noted, our intent is to compare Smooth EasyUQ in the integrated version of Algo-
rithm 1 to extant, state of the art methods for uncertainty quantification from the sta-
tistical and machine learning literatures. The comparison is made on ten datasets for
regression tasks using the experimental setup proposed and developed by Hernandéz-
Lobato and Adams (2015), Gal andGhahramani (2016), Lakshminarayanan et al. (2017),
and Duan et al. (2020). Characteristics of the ten datasets are summarized in Table 5.5,
including the size of the datasets, the number of unique outcomes, and the dimension
of the input space for the regression problem.
Each dataset is randomly split 20 times into training (72%), validation (18%), and test
(10%) sets. However, for the larger datasets, Protein and Year, the train-test split is
repeated only five and a single time(s), respectively. After finding the optimal set of
(hyper)parameters, methods are re-trained on the combined training and validation
sets (90%) and the resulting predictions are evaluated on the held-out test set (10%).
We use the same splits as in the extant literature in the implementation from https:
//github.com/yaringal/DropoutUncertaintyExps, and the final score is
obtained by computing the average score over the splits.
Following the literature, we consider four techniques for the direct generation of con-
ditional predictive distributions that do not use neural networks, namely, a semipara-
metric variant of the distributional forest technique (Duan et al., 2020; Schlosser et al.,
2019), generalized additivemodels for location, scale and shape (GAMLSS, Stasinopou-
los andRigby, 2007), Gaussian process (GP) regression (Rasmussen andWilliams, 2005),
and natural gradient boosting (NGBoost, Duan et al., 2020). We adopt the exact im-
plementation choices of Duan et al. (2020) for these techniques, which in some cases
involve smoothing. Except for NGBoost, scores for the Year dataset are unavailable
(NA), in part, because methods fail to be computationally feasible for a dataset of this
size.
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Table 5.5: Characteristics of datasets and predictive performance for competingmeth-
ods of uncertainty quantification in regression problems, in terms of the mean loga-
rithmic score (LogS) in a popular benchmark setting from machine learning (Duan
et al., 2020; Gal and Ghahramani, 2016; Hernandéz-Lobato and Adams, 2015; Laksh-
minarayanan et al., 2017). For each dataset, we show size, number of unique out-
comes, and dimension of the input (covariate or feature) space. Italics indicate dis-
crete datasets where the number of unique outcomes is small. For each method, we
report the mean LogS from the reference stated, with further details provided in Sec-
tion 5.4.2. For each of the lower three blocks of comparable methods, the best (low-
est) mean score is set in blue. Two scores are numerically infinite; missing scores are
marked NA.

Method / Dataset Boston Concrete Energy Kin8nm Naval Power Protein Wine Yacht Year

Size 506 1,030 768 8,192 11,934 9,568 45,730 1,599 308 515,345
Unique Outcomes 229 845 586 8,191 51 4,836 15,903 6 258 89
Dimension Input Space 13 8 8 8 16 4 9 11 6 90

Distributional Forest 2.67 3.38 1.53 −0.40 −4.84 2.68 2.59 1.05 2.94 NA
GAMLSS 2.73 3.24 1.24 −0.26 −5.56 2.86 3.00 0.97 0.80 NA
GP Regression 2.37 3.03 0.66 −1.11 −4.98 2.81 2.89 0.95 0.10 NA
NGBoost 2.43 3.04 0.60 −0.49 −5.34 2.79 2.81 0.91 0.20 3.43
40 Deep Ensembles 2.41 3.06 1.38 −1.20 −5.36 2.79 2.83 0.94 1.18 3.35
40 Laplace 2.65 3.14 1.27 −1.00 NA 2.87 2.90 0.97 1.97 3.61
40 Single Gaussian 2.78 3.20 1.14 −1.03 −5.37 2.83 2.93 0.98 2.11 3.61
40 Smooth CP 2.89 3.14 1.20 −1.00 −5.52 2.85 2.88 0.97 1.88 NA
40 Smooth EasyUQ 2.83 3.04 0.79 −1.05 −6.51 2.77 2.48 0.48 1.36 3.24
400 MC Dropout 2.46 3.04 1.99 −0.95 −3.80 2.80 2.89 0.93 1.55 3.59
400 Laplace 2.61 3.07 0.80 −1.11 NA 2.83 2.87 1.04 1.18 3.61
400 Single Gaussian 3.41 3.32 0.85 −1.09 −6.32 2.81 2.87 1.38 2.04 3.61
400 Smooth CP 2.87 3.05 0.83 −1.09 −6.65 2.78 2.84 1.01 1.03 NA
400 Smooth EasyUQ 2.46 2.94 0.55 −1.13 −7.51 2.75 2.41 1.07 0.85 3.24
2L MC Dropout 2.34 2.82 1.48 −1.10 −4.32 2.67 2.70 0.90 1.37 NA
2L Laplace 2.57 2.98 0.56 −1.13 NA 2.76 2.81 1.22 1.24 3.60
2L Single Gaussian ∞ 3.78 0.74 −0.96 −7.19 2.76 2.77 10.51 ∞ 3.61
2L Smooth CP 2.66 2.94 0.63 −1.18 −7.33 2.70 2.67 1.01 0.74 NA
2L Smooth EasyUQ 2.49 2.71 0.36 −1.21 −8.20 2.67 2.30 0.95 0.50 3.23
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The remaining methods considered in Table 5.5 are based on neural networks, and we
adopt the network architectures proposed by Hernandéz-Lobato and Adams (2015)
and Gal and Ghahramani (2016). Specifically, we use the ReLU nonlinearity and ei-
ther a single or two hidden layers, containing 50 hidden units for the smaller datasets,
and 100 hidden units for the larger Protein and Year datasets. To tune the network
hyperparameters, namely, the regularization parameter λ and the batch size, we use
grid search. Thus, the nested hyperparameter selection in the Smooth EasyUQ Algo-
rithm 1 finds a best combination of λ, the batch size, ν, and h by optimizing the mean
LogS. Our intent is to compare EasyUQ and Smooth EasyUQ to state of the art meth-
ods for uncertainty quantification from machine learning, namely, Monte Carlo (MC)
Dropout (Gal and Ghahramani, 2016) and Deep Ensembles (Lakshminarayanan et al.,
2017), which perform uncertainty quantification directly within theworkflow of neural
network fitting. Furthermore, thesemethods are input-based, i.e., they require access
to, and operate on, the original covariate or feature vector. As seen in the table, the
dimensionality of the input space in the benchmark problems varies between 4 and
90.
In contrast, EasyUQ, CP, and the Single Gaussian technique operate on the basis of the
final model output only, and so can be applied without the original, potentially high-
dimensional covariate or feature vector being available. For CP we adapt our previ-
ously described implementation with further refined splits into training (57.6%), cali-
bration (14.4%), validation (18%), and test (10%) sets. Smooth CP uses the respective
variant of Algorithm 1. An intermediary role between input-based and output-based
methods is assumed by the recently developed Laplace approach (Immer et al., 2021;
Ritter et al., 2018), which leverages scalable Laplace approximations based on weights
of the trained network. For our numerical experiments we use the laplace software
library for PyTorch (Daxberger et al., 2021).
A critical implementation decision in the intended comparisons is the number of train-
ing epochs in learning the neural network.7 While the original setup specifies 40
training epochs (Hernandéz-Lobato and Adams, 2015), MC Dropout uses 400 or, in
the 2-layer configuration, 4,000 iterations (Gal and Ghahramani, 2016). Therefore, to
enable proper comparison, we apply the competing methods in three distinct neural
network configurations, namely, a single-layer networkwith 40 training epochs (prefix
40 in Tables 5.5 and 5.6), a single-layer network with 400 training epochs (prefix 400),

7For the purposes of this comparison, the number of training epochs needs to be fixed. In practice,
the number of epochs could be treated as a further hyperparameter and determined on the validation
set.
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and a 2-layer architecture with 4,000 training epochs (prefix 2L). In Tables 5.5 and 5.6,
key comparisons between techniques for uncertainty quantification are then within
the respective three groups of methods, for which the neural network configurations
used are identical.

5.4.3 Comparison of predictive performance

Weassess the predictive performance of EasyUQ, Smooth EasyUQ, andothermethods
for probabilistic forecasting and uncertainty quantification, by comparing the mean
LogS in Table 5.5. Weuse theLogS from (2.7) in negative orientation, so smaller values
correspond to better performance. Evidently, the use of the LogS, which is customary
in machine learning, prevents comparisons to the basic versions of EasyUQ and CP, to
which we turn in Table 5.6.
A first insight from Table 5.5 is that, in general, the methods in the second, third, and
fourth blocks, which are based on neural networks, perform better relative to the di-
rect, not on neural networks based methods in the first block (from top to bottom).
Thus, we focus attention on the comparison of distinct methods for uncertainty quan-
tification in neural networks, namely, Deep Ensembles (Lakshminarayanan et al., 2017)
or MC dropout (Gal and Ghahramani, 2016), the Laplace approach (Ritter et al., 2018),
the Single Gaussian technique, Smooth CP, and Smooth EasyUQ. The 2-layer architec-
ture generally improves results, compared to using a single layer for the neural net-
work. Smooth EasyUQ dominates the Single Gaussian and Smooth CP techniques and
generally yields lower mean LogS than Deep Ensembles, MC Dropout, or the Laplace
approach. In 24 of the 3 × 10 = 30 five-fold comparisons across the bottom three
blocks, Smooth EasyUQ achieves or shares the top score. For eight of the ten datasets
considered, the best performance across all 19 methods considered, including both
neural network based approaches and not on neural networks based techniques, is
achieved or shared by Smooth EasyUQ under the 2-layer network architecture. While
this is not an exhaustive evaluation and no single method dominates universally, we
note that Smooth EasyUQ is highly competitive with state of the art techniques for
uncertainty quantification from machine learning.
To allow comparison with the basic form of EasyUQ, which generates discrete predic-
tive distributions, we use Table 5.6 and themeanCRPS from (2.8) to assess predictive
performance. Each of the three blocks in the table allows for a seven-way comparison
among either Deep Ensembles orMC Dropout, the Laplace approach, the Single Gaus-
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Table 5.6: Predictive performance for competing methods of uncertainty quantifica-
tion in regression problems, in terms of the mean CRPS in a popular benchmark set-
ting frommachine learning (Duan et al., 2020; Gal and Ghahramani, 2016; Hernandéz-
Lobato and Adams, 2015; Lakshminarayanan et al., 2017). For each dataset, we show
size, number of unique outcomes, and dimension of the input (covariate or feature)
space. Italics indicate discrete datasets where the number of unique outcomes is
small. For Kin8mn and Naval themeanCRPS has beenmultiplied by factors of 10 and
1,000, respectively. For each block of comparable methods, the best (lowest) mean
score is set in blue. For details, see Section 5.4.2.

Method / Dataset Boston Concrete Energy Kin8nm Naval Power Protein Wine Yacht Year

Size 506 1,030 768 8,192 11,934 9,568 45,730 1,599 308 515,345
Unique Outcomes 229 845 586 8,191 51 4,836 15,903 6 258 89
Dimension Input Space 13 8 8 8 16 4 9 11 6 90

40 Deep Ensembles 1.59 3.04 0.78 0.48 0.41 2.23 2.40 0.34 0.45 4.35
40 Laplace 1.71 3.02 0.45 0.49 NA 2.46 2.46 0.35 0.80 4.72
40 Single Gaussian 1.72 3.03 0.41 0.48 0.66 2.24 2.48 0.35 0.83 4.72
40 CP 1.73 3.04 0.45 0.49 0.58 2.24 2.47 0.36 0.90 NA
40 Smooth CP 1.74 3.05 0.45 0.49 0.58 2.24 2.47 0.36 0.91 NA
40 EasyUQ 1.69 2.94 0.34 0.48 0.54 2.21 2.22 0.31 0.66 4.35
40 Smooth EasyUQ 1.64 2.89 0.33 0.48 0.55 2.20 2.20 0.32 0.64 4.34
400 MC Dropout 1.56 2.79 0.37 0.48 1.22 2.21 2.40 0.35 0.57 4.73
400 Laplace 1.66 2.67 0.29 0.44 NA 2.17 2.36 0.37 0.41 4.73
400 Single Gaussian 1.61 2.72 0.29 0.44 0.27 2.17 2.36 0.38 0.41 4.73
400 CP 1.70 2.77 0.30 0.45 0.20 2.16 2.38 0.37 0.42 NA
400 Smooth CP 1.71 2.77 0.30 0.45 0.20 2.16 2.38 0.37 0.43 NA
400 EasyUQ 1.75 2.72 0.26 0.44 0.12 2.16 2.10 0.35 0.39 4.33
400 Smooth EasyUQ 1.60 2.61 0.25 0.44 0.13 2.15 2.09 0.37 0.35 4.33
2L MC Dropout 1.45 2.19 0.33 0.41 1.07 1.92 1.95 0.33 0.47 4.63
2L Laplace 1.64 2.29 0.22 0.44 NA 2.01 2.15 0.42 0.41 4.65
2L Single Gaussian 1.89 2.27 0.25 0.41 0.11 2.03 2.04 0.45 0.25 4.69
2L CP 1.70 2.47 0.24 0.42 0.11 2.02 2.02 0.38 0.36 NA
2L Smooth CP 1.71 2.48 0.24 0.42 0.11 2.03 2.02 0.38 0.36 NA
2L EasyUQ 2.07 2.40 0.24 0.42 0.03 1.98 1.83 0.42 0.30 4.30
2L Smooth EasyUQ 1.66 2.14 0.21 0.40 0.04 1.97 1.82 0.40 0.27 4.31
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sian technique, Conformal Prediction in its basic (CP) and smoothed form (Smooth
CP), the basic version of EasyUQ, and Smooth EasyUQ. As noted, the Naval, Wine, and
Year datasets are distinctly discrete, with 51, 6, and 89 unique outcomes, respectively.
For data of this type, predictive distributions ought to be discrete. Accordingly, there
are no benefits of using Smooth EasyUQ for these datasets, compared to using basic
EasyUQ, which adapts readily to discrete outcomes. In six of the 3× 3 = 9 seven-fold
comparisons for the discrete datasets, the basic version of EasyUQ achieves the lowest
mean score. Across the remaining seven datasets and for all three network configura-
tions, smoothing is beneficial, and Smooth EasyUQ outperforms the basic version of
EasyUQ. In 15 of the 3 × 7 = 21 seven-fold comparisons on these datasets, Smooth
EasyUQ achieves or shares the top score. All but one of the binary comparisons be-
tween Smooth CP and Smooth EasyUQ, all but two of the comparisons between the
Single Gaussian technique and Smooth EasyUQ, all but one of the comparisons be-
tween the Laplace method and Smooth EasyUQ, and all but eight of the comparisons
between Deep Ensembles or MC Dropout and Smooth EasyUQ, are in favor of the
latter.

5.5 Discussion

In this chapter we have proposed EasyUQ and Smooth EasyUQ as general methods for
the conversion of single-valued computationalmodel output into calibrated predictive
distributions, based on a training set of model output–outcome pairs and a natural as-
sumption of isotonicity. Contrary to recent comments in review articles that lament an
“absence of theory” (Abdar et al., 2021, p. 244), for data-driven approaches to uncer-
tainty quantification, the basic version of EasyUQ enjoys strong theoretical support, in
sharing the optimality and consistency properties of the general Isotonic Distributional
Regression (IDR, Henzi et al., 2021) method. The basic EasyUQ approach is fully auto-
mated, does not require any implementation choices, and the generated predictive
distributions are discrete. The more elaborate Smooth EasyUQ approach developed
in this chapter generates predictive distributions with Lebesgue densities, based on a
kernel smoothing of the original IDR distributions, while preserving the key properties
of the basic approach. Code for the implementation of IDR in Python (Python Software
Foundation, 2021) and replication material for this article are openly available (Walz,
2023).
The method is general, handling both discrete outcomes, with the basic technique
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being tailored to this setting, and continuous outcomes, for which Smooth EasyUQ is
the method of choice. It applies whenever single-valued model output is to be con-
verted into a predictive distribution, covering both the case of point forecasts, as in
the WeatherBench example, and computational model output in all facets, such as
in the machine learning example, where EasyUQ and Smooth EasyUQ convert single-
valued neural network output into predictive distributions. Percentiles extracted from
the predictive distributions can be used to generate prediction intervals.
The proposed term EasyUQ stems from various desirable properties. First, the basic
version of EasyUQ does not involve tuning parameters nor requires user intervention.
Second, EasyUQ operates on the natural, easily interpretable and communicable as-
sumption that larger values of the computational model output yield predictive distri-
butions that are stochastically larger. Third, EasyUQ is an output-based technique, i.e.,
it merely requires training data in the form of model output–outcome pairs (xi, yi) asin (5.1), without any need to access the potentially high-dimensional covariate or fea-
ture vector zi, which serves as input to the computational model that generates xi.This property is shared with the widely used Single Gaussian technique and related
methods, such as the early Geostatistical Output Perturbation (GOP, Gel et al., 2004)
approach and the Quantile Regression Averaging (QRA, Nowotarski and Weron, 2015)
method for the generation of prediction intervals.
The term Conformal Prediction (CP, Marx et al., 2022; Vovk et al., 2020b, 2022) refers
to a family of output-based methods that yield predictive distributions and prediction
intervals that enjoy attractive out-of-sample coverage guarantees, but often mean
that the shape and scale of the predictive distributions do not vary with the model
output. In simple problems, where predictive distributions that are essentially trans-
lates of each other are appropriate, both CP and EasyUQ perform well, and typically
yield very similar predictive performance, as illustrated by the temperature example in
Section 5.2.2. The flexibility of EasyUQ, which allows for predictive distributions that
vary in shape and/or scale, subject to the isotonicity condition, materializes in more
challenging problems, where predictive distributions that are translates of each other
fail. While EasyUQ adapts to such settings without any need for user intervention, CP
might suffer considerable loss in predictive performance, even if adaptedmanually, as
exemplified in the precipitation example in Section 5.2.3.
While adaptive variants of CP are available, their predictive performance in both sim-
ulated and real-data settings has been mixed, compared to standard variants (Vovk
et al., 2020b). Recently, Boström et al. (2021) investigated Mondrian (i.e., covariate-
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conditional) CP as a flexible alternative, in which conformal predictive distributions
are built on separate categories formed by binning covariates (in our case, the model
output). This requires additional implementation decisions, namely, on the choice of
the bins. Boström et al. (2021) take five bins with equal numbers of training instances,
which improves predictive performance in their experiments. From a methodological
point of view, in situations where the isotonicity assumption of IDR is met, the binning
approach of Mondrian CP can be understood as an approximation to EasyUQ. EasyUQ
finds optimal binnings without manual intervention (Henzi et al., 2021, Thm. 2), and
training borrows strength from the entirety of the training data, whereas Mondrian
CP diminishes the training sample by splitting it, which introduces a trade-off between
training data size and adaptivity. A limitation of EasyUQ is that estimates under iso-
tonicity constraints tend to be inconsistent at the boundary of the covariate domain
(Guntuboyina and Sen, 2018), which raises the danger of disproportionately decreased
spread of EasyUQ distributions at extreme values of the model output. In settings
where this is of concern, a potential remedy is to resort to Mondrian CP at extreme
values, while reaping the benefits of EasyUQ at moderate values of the model output.
We leave further methodological development in these directions to future work.
In contrast to CP and EasyUQ, input-based methods such as MC Dropout (Gal and
Ghahramani, 2016), Deep Ensembles (Lakshminarayanan et al., 2017), the techniques
proposed by Camporeale and Caré (2021) and Chung et al. (2021), and the reference
methods considered by Duan et al. (2020) require access to the covariate or feature
vector zi. Input-based methods are much more flexible than output-based methods
and thus have higher potential in principle, as evidenced by the success of ensemble
methods in numerical weather prediction (Bauer et al., 2015; Gneiting and Raftery,
2005). However, they tend to be more computationally intense than output-based
methods, and as the machine learning example shows, they may not outperform the
latter. Generally, sophisticated input-based methods for uncertainty quantification
might realize their potential when applied to substantively informed, highly complex
computational models, as in the case of numerical weather prediction, where predic-
tive uncertainty varies. Output-based approaches to uncertainty quantification typ-
ically are less complex and thus easier to implement and might nonetheless yield
competitive predictive performancewhen applied to output fromdata-drivenmodels,
such as the neural network models in the benchmark setting from machine learning.
We end the chapter with speculations about the usage of EasyUQ and Smooth EasyUQ
in weather prediction. The current approach to forecasts at lead times of hours to
weeks rests on ensembles of physics-basednumericalmodels (Bauer et al., 2015; Gneit-
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ing and Raftery, 2005) but it is being challenged by the advent of purely-data driven
models based on ever more sophisticated neural networks (Ebert-Uphoff and Hilburn,
2023; Schultz et al., 2021). Published only recently, the WeatherBench comparison
(Rasp et al., 2020) showed a huge performance gap between forecasts from physics-
based numerical models and neural network based, purely data-driven forecasts, with
the latter being clearly inferior, as exemplified in our Tables 5.1 and 5.3. Fast breaking
developments suggest that the situation may have reversed since then, with purely
data-driven approaches now outperforming physics-based forecasts of univariate
weather quantities (Ben Bouallègue et al., 2023; Bi et al., 2023; Chen et al., 2023;
Lam et al., 2023). There is a caveat, though, as under the new, data-driven paradigm,
spatio-temporal and inter-variable dependence structures might be misrepresented,
due to the lack of physical constraints in the model and a need for hierarchical tempo-
ral aggregation in the generation of weather scenarios (Bi et al., 2023; Ebert-Uphoff
and Hilburn, 2023). However, the resulting neural network based forecasts can be
subjected to EasyUQ and Smooth EasyUQ, and samples from the resulting predic-
tive distributions can be merged by empirical copula techniques such as ensemble
copula coupling (ECC, Schefzik et al., 2013), to adopt and transfer spatio-temporal
and inter-variable dependence structures in physics-based ensemble forecasts. Hy-
brid approaches of this type might combine and extract the best from both traditional
physics-based and emerging data-driven approaches to weather prediction, and may
turn out to be superior to both.
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6 | Decompositions of the mean con-
tinuous ranked probability score

The continuous ranked probability score (CRPS) is the most commonly used scoring
rule in the evaluation of probabilistic forecasts for real-valued outcomes. To assess and
rank forecasting methods, researchers compute the mean CRPS over given sets of
forecast situations, basedon the respective predictive distributions andoutcomes. We
propose a new, isotonicity-based decomposition of themeanCRPS into interpretable
components that quantify miscalibration (MCB), discrimination ability (DSC), and
uncertainty (UNC), respectively. In the final chapter of thiswork, the isotonicity-based
decomposition is used to properly perform the step Evaluation of the forecasting cycle
which introduced in Section 1.

6.1 Introduction

Probabilistic predictions are forecasts in the form of predictive probability distribu-
tions, which ought to be as sharp as possible subject to calibration (Gneiting et al.,
2007). Informally, predictive distributions are calibrated if they provide a statistically
coherent explanation of the outcomes. Sharpness, on the other hand, quantifies how
well one can discriminate different scenarios for future events according to the fore-
cast and is a property of the forecast only. For the comparative evaluation of prob-
abilistic forecasts, proper scoring rules should be employed (Gneiting and Raftery,
2007). A proper scoring rule assigns a numerical score to a probabilistic forecast with
corresponding observed realization, and addresses calibration and sharpness simulta-
neously. If we compare two competing forecasts according to their scores, it is nat-
ural to ask in which aspect one forecast is superior to the other. This motivates the
decomposition of average realized scores into more interpretable terms measuring
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6. Decompositions of the mean continuous ranked probability score
calibration, discrimination ability, and uncertainty, respectively.
Historically, the first score decomposition was introduced by Murphy (1973), who pro-
posed a decomposition of the mean Brier score (BS). For a sequence of forecast–
observation pairs (p1, y1), . . . , (pn, yn), consisting of predictive probabilities pi ∈ [0, 1]

and corresponding binary outcomes yi ∈ {0, 1}, the empirical average Brier score
from (2.11)

BS =
1

n

n∑
1=1

(pi − yi)2

quantifies the overall performance of the assessed forecasts based on the actual ob-
servations. Murphy (1973) motivates a decomposition of BS into interpretable com-
ponents: a term measuring miscalibration (MCB) or reliability, a term measuring dis-
crimination ability (DSC) or resolution, and a term quantifying the overall uncertainty
(UNC) of the outcome. Originally derived as a vector partition by Murphy (1973),
Siegert (2017) gives a persuasive interpretation of the Murphy decomposition: For
k = 1, . . . , n, consider the conditional event probability qk, i.e., the proportion of
realized binary events (yi = 1) in the cases where the forecast was pk. Denote by
BSc the empirical Brier score of the calibrated forecasts q1, . . . , qk, and by BSr theempirical Brier score with respect to the static reference forecast r = (1/n)

∑n
i=1 yi,namely,

BSc =
1

n

n∑
1=1

(qi − yi)2 and BSr =
1

n

n∑
1=1

(r − yi)2 .

Siegert (2017) shows that the Murphy decomposition reads as
BS =

(
BS− BSc

)︸ ︷︷ ︸
MCB

−
(
BSr − BSc

)︸ ︷︷ ︸
DSC

+ BSr︸︷︷︸
UNC

. (6.1)
The three terms of this exact decomposition reveal deeper insight into the perfor-
mance of the assessed forecasts: The predictive probabilities are calibrated if they are
close to their conditional event probabilities, and hence, low values ofMCB indicate a
good performance in terms of calibration. A perfectly calibrated forecast sequence can
be constructed by issuing the marginal probability r over all instances. Even though
perfectly calibrated, such a sequencewould not be informative, since the same predic-
tive probability is issued throughout. For such a sequence, wewould obtainDSC = 0,
which has a negative effect on the score, whereas larger values of DSC are obtained
if the calibrated forecasts can discriminate different scenarios better than the refer-
ence forecast. Finally, the UNC component informs about the inherent difficulty of
the prediction problem and is independent of the forecasts.
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6. Decompositions of the mean continuous ranked probability score
The rationale behind the decomposition in (6.1) can be summarized as the following
recipe: Having available a calibration method that transforms the original forecasts
p1, . . . , pn into calibrated forecasts q1, . . . , qn, one can measure miscalibration as the
difference in the mean score of the original forecasts to the calibrated ones, result-
ing in the MCB term. The CORP (Consistent, Optimally binned, Reproducible, and
PAV algorithm based) score decomposition suggested by Dimitriadis et al. (2021) uses
this general recipe, where the calibrated forecasts q1, . . . , qn are computed by apply-
ing nonparametric isotonic regression on the vector (y1, . . . , yn) with respect to the
order induced by (p1, . . . , pn). The authors argue persuasively that “the assumption
of nondecreasing CEPs is natural, as decreasing estimates are counterintuitive, rou-
tinely being dismissed as artifacts by practitioners” (Dimitriadis et al., 2021, p. 4). If
we consider, e.g., the conditional event probability over all events where we predicted
a positive outcomewith probability 0.5, thenwe should expect this value to be smaller
than the conditional event probability over all events where we predicted a positive
outcome with probability 0.6. As noted by Bentzien and Friederichs (2014), Siegert
(2017), Leutbecher and Haiden (2021), and Gneiting et al. (2023a), and discussed in
detail by Gneiting and Resin (2023), the recipe extends to scores other than the Brier
score and general types of statistical functionals. In this chapter, we focus on the con-
tinuous ranked probability score (CRPS; Matheson and Winkler, 1976). The CRPS is
one of the most prominent scoring rules for the evaluation of probabilistic forecasts
for real-valued outcomes and is popular across application areas and methodological
communities; see, e.g., Gneiting et al. (2005), Hothorn et al. (2014), Pappenberger
et al. (2015), Rasp and Lerch (2018), and Gasthaus et al. (2019). The CRPS is defined
in terms of any cumulative distribution function (CDF) F on R and y ∈ R (see (2.8)),
and given by

CRPS(F, y) =

∫
R

(
F (z)− 1{y ≤ z}

)2
dz.

For a sequence of forecast–observation pairs (F1, y1), . . . , (Fn, yn), comprising a pre-
dictive distribution Fi and a corresponding real-valued outcome yi, the mean CRPS,

CRPS =
1

n

n∑
i=1

CRPS(Fi, yi) (6.2)
serves to quantify the overall performance of the forecasts. Possible decompositions
of the mean score at (6.2) have been discussed in the literature, with the most promi-
nent approaches being introduced by Hersbach (2000) and Candille and Talagrand
(2005). These methods offer promising solutions but come with severe limitations. In
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6. Decompositions of the mean continuous ranked probability score
a nutshell, the Hersbach decomposition lacks a theoretical background and the desir-
able property that the components of the decomposition are nonnegative, whereas
the decomposition of Candille and Talagrand (2005) is not practically feasible, as ac-
knowledged by the authors. Another approach for decomposing the mean CRPS is
by exploiting its representation as an integral over Brier scores, compare (6.5), and
then integrating existing decompositions ofBS. Similarly, theCRPS can be expressed
as an integral over quantile scores, see (6.6), and existing decompositions for quan-
tile scores can be leveraged to decompose the mean score at (6.2). However, these
approaches have the drawback that miscalibration and discrimination ability are not
measured with respect to the full probabilistic forecasts but only with respect to indi-
vidual threshold or quantile levels.
In this article, we propose a new decomposition of the meanCRPS based on Isotonic
Distributional Regression (IDR; Henzi et al., 2021) described in 3.4. In the case of binary
outcomes, Dimitriadis et al. (2021) argue that isotonicity between the predictive prob-
abilities and the calibrated forecasts is a natural constraint, as violations of isotonicity
indicate poor predictive performance. This argument generalizes to the real-valued
setting, since it is natural to assume that the conditional law of the outcome, given the
forecast, should tend to be small (large) if the predictive distribution is small (large),
where notions of small and large are understood with respect to the usual stochas-
tic order. IDR is a nonparametric distributional regression technique that honors the
shape constraint of isotonicity between covariates and responses. Applying IDR to the
data (F1, y1), . . . , (Fn, yn) yields calibrated forecasts, whereas the marginal distribu-
tion of the outcomes y1, . . . , yn serves as static reference forecast r. The general recipefrom (6.1) then yields mean scores CRPSc and CRPSr for the calibrated forecast andthe reference forecast, respectively, and a corresponding exact decomposition,

CRPS = MCBISO −DSCISO +UNC0,

of the mean CRPS at (6.2), to which we refer as the isotonicity-based decomposi-
tion. The isotonicity-based approach guarantees the nonnegativity of the three com-
ponents, and the miscalibration term admits a persuasive interpretation in terms of
calibration.
While auto-calibration serves as the universal notion of calibration for binary events
(Gneiting and Ranjan, 2013, Theorem 2.11), for real-valued random outcomes, numer-
ous different notions of calibration are found in the literature (Dawid, 1984; Diebold
et al., 1998; Strähl and Ziegel, 2017; Arnold et al., 2023a), as reviewed by Gneiting and
Resin (2023). All relevant notions of calibration for this chapter are summarized in
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Section 2.2.1. The strongest notion is auto-calibration and, ideally, one would like to
measure miscalibration as deviation from auto-calibration, as targeted by the decom-
position of Candille and Talagrand (2005). However, the Candille–Talagrand approach
yields degenerate empirical decompositions. Therefore, we quantify miscalibration as
the deviation from isotonic calibration, as introduced by Arnold and Ziegel (2023) in a
study of the population version of IDR. Isotonic calibration is closer to auto-calibration
than the notions of calibration targeted by the Hersbach decomposition, or by the
aforementioned decompositions based on Brier or quantile scores.
The remainder of the chapter is organized as follows. Section 6.2 reviews the previ-
ously proposed decompositions and their properties. In Section 6.3, we develop the
empirical version of the new isotonicity-based decomposition, followed by a thorough
study of the population versions of the various types of decomposition and their prop-
erties in Section 6.4, with particular emphasis on calibration. In Section 6.5, we apply
the proposed isotonicity-based decomposition in case studies from meteorology and
machine learning. Themain part of the chapter closes with a discussion in Section 6.6.
Technical comments, and a series of detailed analytic examples in population settings
are available in Appendices 6.A through 6.C.

6.2 Previously proposed empirical decompositions

6.2.1 Preliminaries

Throughout this chapter, we denote by P(R) the class of all probability distributions
on R with finite first moment. We treat its elements interchangeably as probability
measures or cumulative distribution functions (CDFs).
Single-valued forecasts for functionals of an unknown quantity should be compared
using consistent scoring functions (Gneiting, 2011). For example, the quadratic score
(x− y)2, and the piecewise linear quantile score (see (2.5))

qsα(x, y) = (1{y ≤ x} − α) (x− y), (6.3)
where x, y ∈ R, are consistent scoring functions for the mean functional, and for the
quantile at level α ∈ (0, 1), respectively. In other words, ∫ (x− y)2 dF (y) is minimal
when x is the mean of F ∈ P(R), and ∫ qsα(x, y) dF (y) is minimal when x is a
quantile of F at level α ∈ (0, 1).
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6. Decompositions of the mean continuous ranked probability score
Probabilistic forecasts specify a probability measure over all possible values of the
outcome, and predictive performance ought to be be compared and evaluated using
proper scoring rules (Gneiting and Raftery, 2007). A popular proper scoring rule for
probability forecasts of a binary outcome is the Brier score

sB(p, y) = (p− y)2, (6.4)
where p ∈ [0, 1] and 1− p are the predicted probabilities of the outcomes y = 1 and
y = 0, respectively. A key example of a proper scoring rule for predictive distributions
over R is the continuous ranked probability score (CRPS), defined for all F ∈ P(R)
and y ∈ R, and given equivalently by

CRPS(F, y) =

∫
sB(F (z),1{y ≤ z}) dz (6.5)

=

∫ 1

0

qsα(F
−1(α), y) dα, (6.6)

where sB and qsα are defined at (6.4) and (6.3), respectively, and where F−1 denotes
the quantile function defined as F−1(α) = inf{z ∈ R | F (z) ≥ α} for α ∈ (0, 1).
The representation at (6.6) is due to Laio and Tamea (2007).
We consider a collection

(F1, y1), . . . , (Fn, yn) (6.7)
of tuples that comprise a forecast Fi ∈ P(R) in the form of a CDF and the respective
outcome yi ∈ R, where i = 1, . . . , n. Our aim is to decompose the empirical mean
score,

CRPS =
1

n

n∑
i=1

CRPS(Fi, yi), (6.8)
of the forecast–observation pairs at (6.7) into three distinct components, namely, mis-
calibration (MCB), discrimination (DSC), and uncertainty (UNC). The following de-
sirable properties are relevant.
(E1) The decomposition is exact, i.e.,

CRPS = MCB−DSC + UNC.

(E2) The componentsMCB, DSC, and UNC are nonnegative.
(E3) The decomposition is not degenerate. Here, a decomposition is degenerate if

MCB = CRPS whenever F1, . . . , Fn are pairwise distinct.
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6. Decompositions of the mean continuous ranked probability score
(E4) The DSC component vanishes if F1 = · · · = Fn.
(E5) TheUNC component canbe expressed in termsof the outcomes y1, . . . , yn only.

These conditions do not depend on the use of any specific scoring rule; they are de-
sirable for decompositions of mean scores in general.
An exact decomposition (E1) is desirable, since it allows us to fully decompose the
mean score. A degenerate decomposition is undesirable, as in typical practice, such
as in the case studies in Section 6.5, the issued forecast distributions are pairwise dis-
tinct, and then the method is useless. A static forecast, i.e., F1 = · · · = Fn, hasno discrimination ability, hence (E4) is desirable. Requirement (E5) is natural sinceintrinsic uncertainty does not depend on the activities of forecasters.
Finally, we argue that there ought to be a population version of the decomposition
that applies to any admissible joint distribution P of tuples (F, Y ). Furthermore, the
population version ought to reduce to the empirical version if P is the empirical mea-
sure for the data at (6.7). We study decompositions at the population level in Section
6.4.

6.2.2 Candille–Talagrand decomposition

Candille and Talagrand (2005) naturally extend the idea of theMurphy decomposition
at (6.1). To describe their approach, let δy denote the Dirac or point measure in y ∈ R,
and let the marginal law F̂mg = 1

n

∑n
i=1 δyi denote the empirical distribution of the

outcomes y1, . . . , yn in (6.7). Let F̂i be the auto-calibrated version of the forecast Fiin (6.7), i.e., let F̂i be the normalized version of∑n
j=1 1{Fj = Fi} δyj for i = 1, . . . , n.

Then
CRPSmg =

1

n

n∑
i=1

CRPS(F̂mg, yi) and CRPSac =
1

n

n∑
i=1

CRPS(F̂i, yi) (6.9)
are the mean score of the marginal forecast and the auto-calibrated forecast, respec-
tively. Candille and Talagrand (2005) define uncertainty, miscalibration, and discrimi-
nation components as

UNC0 = CRPSmg, (6.10)
MCBCT = CRPS− CRPSac, DSCCT = CRPSmg − CRPSac, (6.11)
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respectively, to yield the Candille–Talagrand (CT) decomposition

CRPS = MCBCT −DSCCT +UNC0. (6.12)
The Candille–Talagrand decomposition tackles the core idea of auto-calibration and
satisfies properties (E1), (E2), (E4), and (E5), but fails to satisfy the nondegeneracy
condition (E3), which prohibits its practical use.
To avoid a degenerate decomposition, one might partition the forecasts into equiva-
lence classes of CDFs that are considered identical when calibrating (Candille and Ta-
lagrand, 2005, p. 2147). However, the choice of such a partition is challenging and the
decomposition depends on its effects, akin to the effects of binning on the classical re-
liability diagram for probability forecasts of a binary event as described by Dimitriadis
et al. (2021) and references therein.

6.2.3 Brier score based decomposition

The Brier score based representation of individual CRPS values at (6.5) implies that
CRPS =

1

n

n∑
i=1

CRPS(Fi, yi) =

∫ ∞

−∞
BSz dz, (6.13)

where
BSz =

1

n

n∑
i=1

sB(Fi(z),1{yi ≤ z}).

In this light, a natural way of decomposing CRPS lies in integrating a given decom-
position of the mean Brier score, as proposed and implemented by Ferro and Fricker
(2012), Tödter and Ahrens (2012), and Lauret et al. (2019), among other authors.
Specifically, suppose that, for each z ∈ R, there is a decompositionBSz = MCBBS,z−
DSCBS,z +UNCBS,z of the mean Brier score. Then we can define
MCBBS =

∫ ∞

−∞
MCBBS,z dz, DSCBS =

∫ ∞

−∞
DSCBS,z dz, UNCBS =

∫ ∞

−∞
UNCBS,z dz.

(6.14)
The CORP approach of Dimitriadis et al. (2021) yields a compelling decomposition of
the mean Brier score, which does neither require tuning, nor binning of the assessed
predictive probabilities, and enforces a natural shape constraint of isotonicity between
the predictive probabilities and the calibrated forecasts. Throughout this article, we
92



6. Decompositions of the mean continuous ranked probability score
decompose the mean Brier score by the CORP approach and refer to the induced de-
composition, namely,

CRPS = MCBBS −DSCBS +UNCBS, (6.15)
as the Brier score based (BS) decomposition of CRPS. Details of this approach are
reviewed in Appendix 6.A.1, where we prove the following result.
Proposition 6.2.1. For the Brier score based decomposition at (6.15) it holds that
UNCBS = UNC0, and the decomposition satisfies properties (E1), (E2), (E3), (E4),
and (E5).

Despite these favorable properties, the Brier score based decomposition is subject to
shortcomings and inconsistencies, due to the isolated treatment of probability fore-
casts at fixed thresholds. For discussion, we refer the reader to Section 6.2.6 and Ap-
pendix 6.A.

6.2.4 Quantile score based decomposition

In view of the quantile score representation of the CRPS at (6.6), a natural approach
to decomposing the mean score CRPS leverages decompositions of the mean quan-
tile score at (6.3). Specifically, the quantile score representation implies that

CRPS =
1

n

n∑
i=1

CRPS(Fi, yi) =

∫ 1

0

QSα dα,

where
QSα =

1

n

n∑
i=1

qsα(F
−1
i (α), yi).

Suppose that for each α ∈ (0, 1), there is a decomposition QSα = MCBQS,α −
DSCQS,α+UNCQS,α of themean quantile score, and defineMCBQS as the integral of
MCBQS,α overα ∈ (0, 1), and similarly for the discrimination and uncertainty compo-
nents. The CORP score decomposition of Dimitriadis et al. (2021) and its core idea of
isotonicity as a shape constraint between issued and calibrated forecasts extend natu-
rally to quantiles, as discussed by Gneiting and Resin (2023, Section 3.3) and Gneiting
et al. (2023b, Section 3.3). Throughout the article, we decompose the mean quantile
score by the CORP approach and refer to the resulting decomposition, namely,

CRPS = MCBQS −DSCQS +UNCQS, (6.16)
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as the quantile score based (QS) decomposition of CRPS. For details, we refer the
reader to Appendix 6.A.2 where we prove the following result.
Proposition 6.2.2. For the quantile score based decomposition at (6.16) it holds that
UNCQS = UNC0, and the decomposition satisfies properties (E1), (E2), (E3), (E4),
and (E5).

The quantile score based decomposition is subject to shortcomings in analogy to the
issues with the Brier score based approach, due to the reliance on quantile forecasts
at fixed levels; for further discussion see Section 6.2.6 and Appendix 6.A.

6.2.5 Hersbach decomposition

The decomposition of Hersbach (2000) applies specifically to ensemble forecasts and
operates under the implicit assumption of a continuous outcome. For the data at (6.7),
Hersbach’s assumptions imply, without loss of generality, that for i = 1, . . . , n the
forecast Fi is the empirical CDF of a fixed number m of values xi1 ≤ · · · ≤ xim, withthe outcome yi ̸∈ {xi1, . . . , xim} being distinct from these values. However, with a
view towards a generalization of the Hersbach decomposition, we (naively) allow for
any real-valued outcome yi.
In line with the other types of decomposition, Hersbach (2000) defines the uncer-
tainty component as UNC0 at (6.10). The miscalibration component, which Hersbach
(2000) refers to as reliability, is

MCBHBo =
m∑
ℓ=0

ḡℓ (pℓ − ōℓ)2 ,

where pℓ = ℓ/m for ℓ = 0, . . . ,m, and ḡℓ is the average width of bin i, i.e.,
ḡℓ =

1

n

n∑
i=1

(xiℓ+1 − xiℓ) (6.17)
for ℓ = 1, . . . ,m− 1. The term ōℓ approximates the average frequency of an outcome
below the midpoint of bin ℓ; specifically,

ōℓ = f̄ℓ − m̄ℓ,

where
f̄ℓ =

1

nḡℓ

n∑
i=1

1{Fi(yi) ≤ pℓ} (xiℓ+1 − xiℓ) and m̄ℓ =
1

nḡℓ

n∑
i=1

1{xiℓ < yi < xiℓ+1} (yi − xiℓ)

(6.18)
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for ℓ = 1, . . . ,m − 1. For any ℓ with xiℓ < xiℓ+1 it holds that Fi(yi) ≤ pl if, and only
if, yi < xiℓ+1. To complete the specification, we let ō0 = (1/n)

∑n
i=1 1{yi < xi1} and

ōm = (1/n)
∑n

i=1 1{xim < yi}, and if these quantities are nonzero then we let ḡ0 =

(1/(nō0))
∑n

i=1 1{yi < xi1} (xi1 − yi) and ḡm = (1/(nōm))
∑n

i=1 1{xim < yi} (yi −
xim). The miscalibration component thus measures deviations from uniformity for the
rank histogram (Hamill, 2001; Gneiting et al., 2007).
Hersbach (2000) defines the resolution (in our terminology, the discrimination) com-
ponent DSCHBo = MCBHBo + UNC0 − CRPS as the remainder, to complete the
original Hersbach (HBo) decomposition

CRPS = MCBHBo −DSCHBo +UNC0. (6.19)
Towards a generalization, we introduce a slightly modified miscalibration component,

MCBHB =
m−1∑
ℓ=1

ḡℓ
(
pℓ − f̄ℓ

)2
, (6.20)

and a respectivelymodified discrimination component,DSCHB = MCBHB+UNC0−
CRPS, to yield themodified Hersbach, or simply Hersbach (HB) decomposition,

CRPS = MCBHB −DSCHB +UNC0. (6.21)
The interpretation of the miscalibration component remains unchanged, as MCBHBandMCBHBo differ only slightly, with f̄ℓ in (6.20) being the approximate frequency of
an outcome below the right endpoint of bin ℓ. For a more detailed comparison and
the proof of the following result, we refer the reader to Appendix 6.B.
Proposition 6.2.3. The original and modified Hersbach decompositions at (6.19) and
(6.21), respectively, satisfy properties (E1), (E3), and (E5), while properties (E2) and
(E4) fail to hold.

As discussed thus far, the Hersbach decomposition requires that the forecasts assume
the form of an ensemble. Further shortcomings have been discussed in the litera-
ture (Siegert, 2017); in particular, it has been noted that the discrimination component
DSCHBo is defined “somewhat artificially” (Hersbach, 2000, p. 565) and that it can be
negative, thus violating (E2). The original Hersbach decomposition has been extended
by Lalaurette so that it applies to forecasts with strictly increasing CDFs (Candille and
Talagrand, 2005, Appendix A).We discuss and generalize Lalaurette’s extension in Sec-
tion 6.4.3, and our analysis demonstrates that the extensions can more naturally be
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Table 6.1: Candille–Talagrand (CT), quantile score based (QS), Brier score based (BS),
andHersbach (HB) decomposition of themean scoreCRPS, as applied to the one-day
ahead raw ensemble (ENS) forecast of precipitation accumulation at Frankfurt Airport
(Section 6.5.1), and the EasyUQ forecast for the Boston and Wine data, respectively
(Section 6.5.2).

Forecast CRPS UNC0 MCBCT MCBQS MCBBS MCBHB

ENS 0.75 1.21 0.75 0.18 0.16 0.08
EasyUQ (Boston) 1.75 4.76 1.75 0.72 0.57 0.36
EasyUQ (Wine) 0.35 0.43 0.35 0.04 0.07 0.08

interpreted as extensions of the modified Hersbach decomposition. In Section 6.4.3
we describe empirical versions that apply in the general case of forecast distributions
with finite support, and to mixed discrete-continuous distributions for nonnegative
quantities, respectively.

6.2.6 Numerical example and discussion

For illustration, we consider forecasts from the case studies in Section 6.5. The decom-
positions from Sections 6.2.2 through 6.2.5 all use the uncertainty component UNC0at (6.10), and they specify the discrimination component as

DSC• = CRPS−MCB• − UNC0,

where • indicates the type of decomposition, namely, the Candille–Talagrand (CT),
the Brier score based (BS), the quantile score based (QS), or the modified Hersbach
(HB) decomposition.
Table 6.1 displays the mean score CRPS, the uncertainty component UNC0, and the
various MCB• terms for the ENS forecast of precipitation accumulation at Frankfurt
Airport, as studied in our Section 6.5.1 and Henzi et al. (2021), and the EasyUQ fore-
casts for the Boston Housing and Wine data, as considered in our Section 6.5.2 and
in Chapter 5. The ENS forecast is an ensemble forecast with m = 52 members and
so the Hersbach decomposition at (6.19) applies; for the EasyUQ forecasts, we ap-
ply formula (6.40). For the first two examples in the table, it holds that CRPS =
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MCBCT > MCBQS > MCBBS > MCBHB, where the initial equality reflects the
degeneracy of the Candille–Talagrand decomposition. In our experience, the sub-
sequent inequalities hold in many, though not all, empirical examples. However, as
we state in further generality at (6.24) and in Corollary 6.4.6, it always holds that
CRPS ≥ MCBCT ≥ max{MCBBS,MCBQS}.
While the Candille–Talagrand decomposition seems attractive and preferable from
theoretical perspectives, the degeneracy prohibits its practical use. The Hersbach de-
composition has been popular in the specific setting of ensemble forecasts, but has
serious shortcomings including but not limited to the possibility of a negative discrim-
ination component. The Brier score and quantile score based decompositions have
desirable properties, but they define the components of the decomposition in terms
of isolated functionals (probabilities and quantiles, respectively) rather than the entire
predictive distributions, which is “unsatisfactory” (Ferro and Fricker, 2012, p. 1958) and
entails the artifacts described in Remarks 6.A.1 and 6.A.2, respectively. Furthermore,
it is not obvious whether the Brier score based or the quantile score based decompo-
sition ought to be preferred. In this light, there remains the need for a decomposition
that is both practically feasible and theoretically justifiable and appealing.

6.3 Empirical isotonicity-based decomposition

We propose a method that builds on the idea of the Candille–Talagrand decomposi-
tion, but replaces auto-calibration with a slightly weaker notion of calibration, namely,
isotonic calibration. The resulting isotonicity-based decomposition, which we develop
in this section, can be interpreted as a nondegenerate approximation to the Candille–
Talagrand decomposition.

6.3.1 Empirical isotonicity-based decomposition

Recall that we denote by P(R) the class of the probability distributions on R with
finite first moment. For CDFs F,G, F is stochastically smaller than or equal to G, for
short F ≤st G, if F (x) ≥ G(x) for all x ∈ R. The stochastic order defines a partial
order onP(R) and we refer to Shaked and Shanthikumar (2007) for a comprehensive
study.
In the spirit of the Candille–Talagrand decomposition, a calibration tool ought to be
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applied to the assessed forecasts F1, . . . , Fn from (6.7), and we propose that this tool
be isotonic distributional regression (IDR; Henzi et al., 2021). IDR is a nonparametric
distributional regression method under the shape constraint of isotonicity between
covariates and responses: For training data consisting of covariates x1, . . . , xn in a
partially ordered set (X ,⪯) and real-valued responses y1, . . . , yn, Henzi et al. (2021)prove that there exists a unique minimizer of the criterion

1

n

n∑
i=1

CRPS(Pi, yi) (6.22)
over all vectors of CDFs (P1, . . . , Pn) with Pi ≤st Pj if xi ⪯ xj for i, j = 1, . . . , n, and
they refer to this minimizer as the IDR solution.
The constraint of isotonicity between the assessed and the calibrated forecasts is natu-
ral, and hence, we apply IDR to the data (F1, y1), . . . , (Fn, yn) at (6.7) with the stochas-tic order serving as the partial order on the covariate spaceP(R). In a number of prac-
tically relevant situations the stochastic order is too strong, since it does not allow for
crossings between CDFs, andwe discussmodifications that resolve this problem in the
latter part of this section. For now, we assume that there are sufficiently many pairs
of CDFs across F1, . . . , Fn that can be ranked in stochastic order.
Let F̌1, . . . , F̌n denote the calibrated forecasts that are obtained by using IDR, let

CRPSISO =
1

n

n∑
i=1

CRPS(F̌i, yi)

denote the mean score of the calibrated forecasts, let the marginal forecast F̂mg andits mean score CRPSmg be defined as at (6.9), and let
MCBISO = CRPS− CRPSISO, DSCISO = CRPSmg − CRPSISO.

Then the isotonicity-based (ISO) decomposition
CRPS = MCBISO −DSCISO +UNC0 (6.23)

differs from the Candille–Talagrand decomposition at (6.11) by the choice of the cali-
bration method only, as it draws on the slightly weaker notion of isotonic calibration
in lieu of auto-calibration. The isotonicity-based decomposition has desirable and ap-
pealing properties, as follows.
Proposition 6.3.1. The isotonicity-based decomposition at (6.23) satisfies (E1), (E2),
(E3), (E4), and (E5). Furthermore,MCBISO = 0 if, and only if,Fi = F̌i for i = 1, . . . , n,
and DSCISO = 0 if, and only if, F̌i = F̂mg for i = 1, . . . , n.
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Proof of Proposition 6.3.1. By definition, the isotonicity-based decomposition satisfies
properties (E1) and (E5). The IDR solution is the unique minimizer of the criterion
(6.22) over all vectors of distributions (P1, . . . , Pn) that are stochastically orderedwiththe same order relations as the covariates. Here, the covariates areF1, . . . , Fn and thepartial order on the covariate space is the stochastic order. Therefore, (F1, . . . , Fn) isan admissible vector of distributions in theminimization problem, whenceMCBISO ≥
0. A further admissible vector in the minimization problem is the constant vector with
entries F̂mg, whenceDSCISO ≥ 0, so (E2) is satisfied. The examples in the case study
in Section 6.5 imply that the isotonicity-based decomposition satisfies (E3). Assume
now that F1 = · · · = Fn. Then we obtain F̂mg as the IDR solution, whenceDSCISO =

0, so (E4) is satisfied. Finally, if MCBISO = 0 then Fi = F̌i, since IDR is the unique
minimizer of the criterion at (6.22), and analogously, if DSCISO = 0 then F̌i = F̂mgfor i = 1, . . . , n.

Generally, the determination of the pairwise stochastic order relations between the
distributions F1, . . . , Fn requiresO(n2) operations. As IDR can be implemented in at
mostO(n2) operations (Henzi et al., 2021, 2022), the computation of the isotonicity-
based decomposition is of complexity O(n2). In contrast, the Brier score based and
quantile score based decompositions requireO(n) ormore distinct determinations of
pairwise stochastic order relations (cf. Appendices 6.A.1 and 6.A.2) and, hence, the im-
plementation is of complexity at leastO(n2 log n). The computation of the Hersbach
decomposition for an ensemble forecast of sizem requiresO(mn) operations.
In its present form, the isotonicity-based decomposition is fully automated in the
sense that it does not involve any tuning parameter. For the examples in Table 6.1,
MCBISO equals 0.34, 0.80, and 0.072, respectively, and so MCBISO is larger than
MCBBS (which equals 0.068 in the third example) andMCBQS and smaller than the
essentially uselessMCBCT = CRPS term. As we demonstrate in Section 6.4.4, it is
always true that

CRPS ≥ MCBCT ≥ MCBISO ≥ max{MCBBS,MCBQS}. (6.24)

In view of these theoretical guarantees in concert with its non-degeneracy and gener-
ality, we contend that the isotonicity-based method is more compelling than the Brier
score or quantile score based decompositions.
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6.3.2 Computational implementation

When the predictive distributions are empirical distributions, stochastic order rela-
tions can be found by comparing the CDFs at a finite number of real numbers, namely,
the respective jump points. If the predictive distributions are parametric, analytical re-
sults in terms of the parameters may be available; see, e.g., Shaked and Shanthikumar
(2007) and the proof of Proposition 1 in Gneiting and Vogel (2022).
In relevant applications, the stochastic order may be to strong, since it allows for no
crossings of the forecasts. For example, for Gaussian forecasts F = N (µ, σ2) and
G = N (ν, τ 2), F and G only order with respect to the stochastic order in case of
σ = τ , a condition which is rarely satisfied if parameters are estimated from data.
Generally, if F and G are members of a location-scale family, they are stochastically
ordered if, and only if, they have equal scale parameter, subject tominimal conditions.
If only very few forecasts in the dataset are comparable with respect to the stochastic
order, applying IDR results in calibrated forecast that are close to Diracmeasures of the
corresponding observations. Hence, in principle, the ISO-based decomposition faces
the same problem as the Candille–Talagrand decomposition in this setting. However,
we argue that there is a convincing remedy to the issue.
Consider settings where only few of the predictive distributions Fi in the collection at(6.7) are comparable with respect to the stochastic order. Frequently, predictive distri-
butions fail to order due to crossings of the CDFs in a far tail. Recent work by Brehmer
and Strokorb (2019) and Taillardat et al. (2023) casts doubt on the ability of the average
CRPS to distinguish tail behavior of the forecast distribution, which provides support
for the evaluation of the forecasts on a bounded interval only. Motivated by these
findings, instead of decomposing the original mean score CRPS as given in (6.8), we
decompose

CRPS
(a,b)

=
1

n

n∑
i=1

CRPS(F̃
(a,b)
i , yi), (6.25)

where for lower andupper threshold valuesa ≤ min{y1, . . . , yn} and b ≥ max{y1, . . . , yn},respectively,

F
(a,b)
i (x) =


0, x < a,

Fi(x), x ∈ [a, b),

1, x ≥ b,

(6.26)

for i = 1, . . . , n. Given an error tolerance ϵ > 0, we determine the thresholds a and b
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such that the condition∣∣∣CRPS− CRPS

(a,b)
∣∣∣ = CRPS− CRPS

(a,b)
< ϵ (6.27)

is satisfied, where the equality holds since CRPS ≥ CRPS
(a,b). Condition (6.27) is

equivalent to
I(a, b) =

1

n

n∑
i=1

(∫ a

−∞
Fi(x)

2 dx+

∫ ∞

b

(1− Fi(x))
2 dx

)
< ϵ.

A simple method for determining the thresholds a and b to be used in (6.26) is de-
scribed in Algorithm 2. If the support of the predictive distributions is bounded from
above or below (e.g., in the case of precipitation accumulations, which are necessarily
nonnegative), it is natural to set a or b equal to the respective bound (e.g., a = 0 for
precipitation accumulations).
Algorithm 2 Thresholds a, b
1: ϵ = CRPS/1000

2: a = min{y1, . . . , yn} and b = max{y1, . . . , yn}
3: if I(a, b) ≥ ϵ then
4: δ = (b− a)/100
5: while I(a, b) ≥ ϵ do
6: a = a− δ and b = b+ δ

7: end while
8: end if
9: return a, b

The computation of this modified isotonicity-based decomposition remains of com-
plexity O(n2). Furthermore, the following result shows that, even with the approxi-
mation, theoretical guarantees from (6.24) continue to hold.
Proposition 6.3.2. Let CRPS = MCBISO−DSCISO +UNC0 = MCBBS−DSCBS +

UNC0 denote decompositions for data (F1, y1), . . . , (Fn, yn), and let

CRPS
(a,b)

= MCB
(a,b)

ISO −DSC
(a,b)

ISO +UNC0 = MCB
(a,b)

BS −DSC
(a,b)

BS +UNC0

denote the respective decompositions for modified data (F
(a,b)
1 , y1), . . . , (F

(a,b)
n , yn),

where F (a,b)
1 , . . . , F

(a,b)
n derive from F1, . . . , Fn as in (6.26). Then I(a, b) = CRPS −

CRPS
(a,b)

< ϵ implies that

MCBISO ≥ MCB
(a,b)

ISO ≥ MCB
(a,b)

BS > MCBBS − ϵ. (6.28)
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Proof of Proposition 6.3.2. The properties of the IDR solution imply CRPSISO ≤
CRPS

(a,b)

ISO ≤ CRPS
(a,b) ≤ CRPS, and we conclude that

MCBISO = CRPS− CRPSISO ≥ CRPS
(a,b) − CRPS

(a,b)

ISO = MCB
(a,b)

ISO .

To complete the proof, we apply the inequality (6.24) to the modified data to yield
MCB

(a,b)

ISO ≥ MCB
(a,b)

BS , andwenote thata ≤ min{y1, . . . , yn} and b ≥ max{y1, . . . , yn},whenceMCBBS −MCB
(a,b)

BS = I(a, b) < ϵ.
Assume that the predictive CDFs belong to a location-scale familywith full support, i.e.,
there exists a distribution F0 ∈ P(R)with full support onR such that for i = 1, . . . , n

and x ∈ R, Fi(x) = F0((x − µi)/σi) for some location µi ∈ R and scale σi > 0.
Then for any i, j = 1, . . . , n, the stochastic order relations between the modified
distributions can be obtained based on the parameters (Gneiting and Vogel, 2022,
proof of Proposition 1), in that

F
(a,b)
i ≤st F

(a,b)
j

if, and only if, µi ≤ µj and either σi = σj or (µiσj − µjσi)/(σj − σi) /∈ [a, b]. In
more complex but not uncommon situations, e.g., when the predictive distributions
aremixtures of Gaussians, it may be hard to decide analytically whether or not there is
a stochastic dominance relation between any two such distributions. A remedy is then
to numerically evaluate and compare the CDFs on a suitably chosen grid of threshold
values. As a default we suggest and use an equidistant grid from a to b of size 5000.
As long as the grid is sufficiently dense, order relations hardly ever change with the
size of the grid, as experimental experience demonstrates.
In order to increase the number of comparable pairs amongst F1, . . . , Fn, it may ap-
pear natural to exchange the stochastic order with a weaker partial≤′ order on P(R)
in the sense that G ≤st H implies G ≤′ H for G,H ∈ P(R), rather than restricting
the support of the predictive distributions to a bounded interval [a, b] ⊆ R. Possible
choices include the almost-first-stochastic-dominance order proposed by Leshno and
Levy (2002) or stochastic dominance of order (1 + γ) as proposed by Müller et al.
(2017). If there are only few forecasts in a sample (F1, y1), . . . , (Fn, yn) ∈ P(R) × R
that are comparable with respect to ≤st, one could think of applying IDR with re-
spect to ≤′ instead of ≤st in order to obtain more comparable forecasts. However,
such an approach is bound to fail since isotonic calibration is generally only compat-
ible with the stochastic order. More specifically, let Y be a random variable and F
be a random forecast defined on the same probability space. Recall from Section
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6.4.2 that ICL forms the population version of IDR (Arnold and Ziegel, 2023, Propo-
sition 4.1). In analogy to Definition 3.1 of Arnold and Ziegel (2023), one could de-
fine the σ-lattice generated by F with respect to the weaker order ≤′ as L ′(F ) =

{F−1(B) | B ∈ B(P(R)) ∩ U ′}, where U ′ denotes the family of all upper sets in
P(R) with respect to ≤′. However, if the space P(R) equipped with the partial or-
der ≤′ and the topology of weak convergence satisfies Assumption C.1 of Arnold and
Ziegel (2023), the corresponding notion of isotonic calibration, namely, PY |L ′(F ) = F ,
fails to be intuitive for two reasons. First, auto-calibration does not imply the respec-
tive notion of calibration. Second, G ≤′ H already implies G ≤st H for all G and
H in the support of F by Theorem 3.3 of Arnold and Ziegel (2023). Clearly, this im-
plication may only hold if ≤′ equals ≤st on the support of F , which is violated for
any ≤′ that is strictly weaker than ≤st, contrary to the scope of a relaxation. More-
over, there is no theoretical guarantee that the corresponding miscalibration term
MCBISO′ = ECRPS(F, Y )− ECRPS(PY |L ′(F ), Y ) is nonnegative.
Consequently, the stochastic order is the only valid choice of a partial order if IDR is
applied to generate a calibrated forecast for an isotonicity-based approach in the spirit
of the Candille–Talagrand decomposition.

6.4 Population level analysis

In this section, we present population level versions of all decompositions which we
have discussed so far, and we analyse their relations to notions of calibration. The
population quantity to be decomposed is the expected score

ECRPS(F, Y ), (6.29)
where the expectation is with respect to the joint law P of the random tuple (F, Y )

on a probability space (Ω,F ,P), where F is a CDF-valued random quantity, which
we interpret as the forecast, and the random variable Y is the real-valued outcome.
For subsequent use, we assume the existence of a standard uniform variable U on
(Ω,F ,P), which is independent of (F, Y ). Evidently, if P is the empirical distribution
for the data at (6.7) the expectation at (6.29) reduces to the mean score CRPS from
(6.8).
In all types of decompositions, the population version of the uncertainty component
is the expected score

UNC0 = ECRPS(Fmg, Y ) (6.30)
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of the marginal law Fmg of Y . Again, the expectation is with respect to P, and if P is
the empirical distribution of the data at (6.7) then (6.30) reduces to (6.10). In this light,
the decompositions at the population level read

ECRPS(F, Y ) = MCB• −DSC• +UNC0,

where • indicates the type, namely, CT, BS, QS, HB, or our new ISO. Therefore, it
suffices to specify the miscalibration component MCB•; the discrimination compo-
nent is deduced as DSC• = MCB• +UNC0 − ECRPS(F, Y ).

6.4.1 Desiderata for decompositions at the population level

We adapt the desirable properties (E1) through (E5) for decompositions of a mean
score from Section 6.2 to the population setting, as follows.
(P1) The decomposition is exact.
(P2) The componentsMCB, DSC, and UNC are nonnegative.
(P3) TheMCB component vanishes if, and only if, the forecast is calibrated in a well-

defined sense.
(P4) TheDSC component vanishes if the forecast is static, i.e., there is anF0 ∈ P(R)such that F = F0 almost surely.
(P5) The UNC component only depends on the unconditional distribution Fmg of

the outcome.
Concerning (P3), a notion of forecast calibration has to be specified. In the special
case of a binary outcome, there is a unique, clear-cut notion of calibration (Gneiting
and Ranjan, 2013, Theorem 2.11). Here, we consider the case of a real-valued out-
come, for which numerous notions of calibration exist (Gneiting and Resin, 2023).
Auto-calibration is the strongest such notion, but typically cannot be used in prac-
tice. Indeed, it turns out that (E3) and (P3) are competing requirements in the sense
that if a decomposition satisfies (P3) with respect to auto-calibration, then (E3) is vi-olated and the decomposition becomes degenerate. If a weaker notion of calibration
is requested for (P3), then (E3) can be satisfied for the empirical counterpart of the
decomposition. Requirement (P4) is natural, since a static forecast has no discrimina-
tion ability at all. Finally, property (P5) is motivated by the observation that intrinsic
104



6. Decompositions of the mean continuous ranked probability score
uncertainty does not depend on the forecast; evidently, the criterion is satisfied by
UNC0 at (6.30).

6.4.2 Isotonic conditional expectations and laws

The population versions of the isotonicity-based, Brier score based, and quantile score
based decompositions rely on conditional expectations given σ-lattices and isotonic
conditional laws. We give a short overview of the necessary concepts and refer to
Arnold and Ziegel (2023) for further details. Readers not familiar with measure theory
might skip the current subsection and intuitively think of the conditional expectation
and the conditional law of a random variable Y given a σ-latticeA, which we denote
E(Y | A) and PY |A, respectively, as classical conditional expectations and laws underthe constraint of isotonicity.
Consider the probability space (Ω,F ,P). A subset A ⊆ F is a σ-lattice if it is closed
under countable unions and intersections and Ω, ∅ ∈ A. Let A ⊆ F be a σ-lattice
and let X and Z be integrable random variables defined on (Ω,F ,P). We call X A-
measurable if {X > x} ∈ A for all x ∈ R and define the σ-lattice generated by X ,
denoted byL (X), as the smallestσ-latticewhich contains {X > x} for allx ∈ R. We
call anA-measurable random variable X̃ a conditional expectation ofX givenA, for
short E(X | A), if E(X1A) ≤ E(X̃1A) for all A ∈ A and E(X1B) = E(X̃1B) for all
B ∈ σ(X̃), where σ(X̃) denotes the σ-algebra generated by X̃ . Brunk (1965) showed
that E(X | A) is almost surely unique and coincides with the classical conditional
expectations if A is a σ-algebra. Conditional expectations given σ-lattices are closely
connected to isotonicity as illustrated in Arnold and Ziegel (2023). In particular, for
any integrable random variable X and random variable Z, there exists an increasing
Borel measurable function f : R→ R such that E(X | L (Z)) = f(Z). This result is
analogous to the well-known factorization result for classical conditional expectations
given σ-algebras, with the difference that, additionally, f has to be increasing.
Isotonic conditional laws can be defined in analogy to classical conditional laws. Specif-
ically, the isotonic conditional law (ICL) of the random variable Y given A, denoted
PY |A, is a Markov kernel from (Ω,F) to (R,B(R)) such that ω 7→ PY |A(ω, (y,∞))

is a version of P(Y > y | A) = E(1{Y > y} | A) for any y ∈ R. Arnold and
Ziegel (2023) show the existence and uniqueness of ICL. Equivalently, ICL emerges as
the minimizer of an expected score, where the scoring rule may be taken from a large
class of proper scoring rules that includes the CRPS.
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We are particularly interested in ICL with respect to the σ-lattice generated by the
forecast F . We call B ⊆ P(R) an upper set if P ∈ B and P ≤st Q implies Q ∈ B
for Q ∈ P(R), and we denote by U the family of all upper sets in P(R). For the
forecast F , we define the σ-lattice generated by F as the family of all preimages of
measurable upper sets under F , i.e., L (F ) =

{
F−1(B) | B ∈ B(P(R)) ∩ U} ⊆ F ,

where B(P(R)) denotes the σ-algebra on P(R) with respect to the weak topology.
For details, we refer the reader to Definition 3.1 of Arnold and Ziegel (2023).
In a nutshell, PY |L (F ) arises as the best available prediction for the distribution of Y ,given all information in the forecast F , under the assumption that smaller (greater)
values of F correspond to smaller (greater) values of the conditional law with respect
to the stochastic order.
The forecast F is called isotonically calibrated if F is almost surely equal to the iso-
tonic conditional law of Y given L (F ), i.e., F = PY |L (F ) almost surely. Other rel-
evant notions of calibration are described in Section 2.2.1 and Figure 2.1 summarizes
relationships between them.

6.4.3 Population level decompositions

Wenowgive generalizations of the empirical decompositions discussed in Sections 6.2
and 6.3 that apply at the population level. Recall thatwe consider the joint lawP of the
random tuple (F, Y ) on a probability space (Ω,F ,P). As before, we let P(R) denote
the class of the Borel probability measures onR that have a finite first moment. In the
current and the subsequent subsections, we generally operate under the following
regularity conditions.
Assumption 6.4.1. Let the marginal law Fmg of Y be such that Fmg ∈ P(R), andsuppose that

E
∫
|x| dF (x) <∞. (6.31)

In view of the kernel score representation of the CRPS (Gneiting and Raftery, 2007,
eq. (21)), Assumption 6.4.1 implies that

ECRPS(F, Y ) = EE(CRPS(F, Y ) | F )

= E
(
EF (|X − Y | | F )−

1

2
EF (|X −X ′| | F )

)
≤ EEF |X|+ E |Y | <∞,
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where X and X ′ are independent random variables with law F . Similarly, it follows
that ECRPS(Fmg, Y ) < ∞. Furthermore, the properties of isotonic and standard
conditionals laws imply thatECRPS(PY |L (F ), Y ) ≤ ECRPS(F, Y ) andECRPS(PY |F , Y ) ≤
ECRPS(F, Y ), respectively. In this light, Assumption6.4.1 ensures thatECRPS(F, Y ),
ECRPS(Fmg, Y ), ECRPS(PY |L (F ), Y ), and ECRPS(PY |F , Y ) are finite.
The population version of the Candille–Talagrand decomposition at (6.12) is

ECRPS(F, Y ) = MCBCT −DSCCT +UNC0, (6.32)
where UNC0 is defined at (6.30), and

MCBCT = ECRPS(F, Y )− ECRPS(PY |F , Y ).

Similarly, the population version of the isotonicity-based decomposition at (6.23) is
ECRPS(F, Y ) = MCBISO −DSCISO +UNC0, (6.33)

where
MCBISO = ECRPS(F, Y )− ECRPS(PY |L (F ), Y ).

Thedecomposition at (6.33) is analogous to the theoretically preferredCandille–Talagrand
decomposition at (6.32), except that the performance of the forecast F is compared
with the isotonic conditional law PY |L (F ) rather than the conditional law PY |F . Thegeneral decompositions at (6.32) and (6.33) reduce to (6.12) and (6.23), respectively,
when P is the empirical distribution of the data in (6.7).
The population version of the Brier score based decomposition at (6.15) is

ECRPS(F, Y ) = MCBBS −DSCBS +UNC0, (6.34)
where

MCBBS = ECRPS(F, Y )− E
∫ (

P(Y ≤ z | L (F (z)))− 1{Y ≤ z}
)2

dz.

Similary, the population version of the quantile based based decomposition at (6.16)
is

ECRPS(F, Y ) = MCBQS −DSCQS +UNC0, (6.35)
where

MCBQS = ECRPS(F, Y )− E
∫ 1

0

qsα
(
qα(Y | L (F−1(α))), Y

)
dα.
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The properties of isotonic conditional expectations and isotonic conditional quantiles
imply that E ∫ (P(Y ≤ z | L (F (z))) − 1{Y ≤ z})2 dz ≤ ECRPS(F, Y ) < ∞ and
E
∫ 1

0
qsα(qα(Y | L (F−1(α))), Y ) dα ≤ ECRPS(F, Y ) < ∞. The decompositions

at (6.34) and (6.35) reduce to (6.15) and (6.16), respectively, when P is the empirical
distribution of the data in (6.7).
Finally, we consider the Hersbach decomposition. To this end, let νF be the image of
the Lebesguemeasure λ under F , i.e., νF (A) = λ(F−1(A)), and define themeasures
given by

µ(A) = E (νF (A)) (6.36)
and

τ(A) = E
(∫

A

1{F (Y ) ≤ p} dνF (p)
)
, (6.37)

respectively, where A ∈ B(0, 1) is any Borel set. We are now ready to state a popula-
tion version of the Hersbach decomposition from Section 6.2.5.
Proposition 6.4.1. Let Assumption 6.4.1 hold, and let µ and τ be the measures defined
at (6.36) and (6.37), respectively. Then τ is absolutely continuous with respect to µ; let
f denote the respective Radon–Nikodym derivative. It holds that

ECRPS(F, Y ) = MCBHB −DSCHB +UNC0, (6.38)
where UNC0 is given at (6.30),
MCBHB =

∫ 1

0

(p− f(p))2 dµ(p), DSCHB = UNC0 −
∫ 1

0

f(p)(1− f(p)) dµ(u)−MS,

and

MS = E
[
1{F (Y ) = 0} (F−1(0+)−Y )+1{F (Y ) > 0} (2F (Y )−1)(Y−F−1(F (Y )))

]
.

(6.39)
Proof of Proposition 6.4.1. Following Appendix A in Candille and Talagrand (2005), we
apply the change of variable z 7→ p = F (z) to demonstrate that ECRPS(F, Y ) can
be represented as
E
∫
S

(F (z)− 1{F (Y ) ≤ F (z)})2 dz + E
∫
S

(2F (z)− 1)(1{F (Y ) ≤ F (z)} − 1{Y ≤ z}) dz,

where S = {z ∈ R | (F (z) − 1{Y ≤ z})2 > 0}. The indicator is essential, since if
F (Y ) = 0 then1{F (Y ) ≤ F (z)} = 1 and the integralsmay not exist. Wedecompose
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S into the disjoint sets S1 = S ∩ {z ∈ R | F (z) > 0} and S2 = S ∩ {z ∈ R |
F (z) = 0} = {z ∈ R | Y ≤ z, F (z) = 0}, and use the equivalence 1{F (Y ) ≤
F (z)} − 1{Y ≤ z} = 1{Y > z, F (Y ) = F (z)} to show that
ECRPS(F, Y ) = E

∫
S1

(F (z)− 1{F (Y ) ≤ F (z)})2 dz + E
∫
S2

1{Y ≤ z, F (z) = 0} dz

+ E
∫
S

(2F (Y )− 1)1{Y > z, F (Y ) = F (z)} dz

= E
∫
S1

(F (z)− 1{F (Y ) ≤ F (z)})2 dz +MS,

whereMS is given at (6.39).
We have τ(A) ≤ E

∫
A
1 dνF (u) = E(νF (A)) = µ(A) for A ∈ B(0, 1), i.e., τ is

absolutely continuous with respect to µ. Hence τ has a density f with respect to µ,
and we find that

ECRPS(F, Y ) = E
∫
S

(F (z)− 1{F (Y ) ≤ F (z)})2 dz +MS

= E
∫ 1

0

(p− 1{F (Y ) ≤ p})2 dνF (p) + MS

=

∫ 1

0

p2 dµ(p)−
∫ 1

0

(2p− 1) dτ(p) + MS

=

∫ 1

0

p2 dµ(p)−
∫ 1

0

(2p− 1) f(p) dµ(p) + MS

=

∫ 1

0

(p− f(p))2 dµ(p) +
∫ 1

0

f(p) (1− f(p)) dµ(p) + MS,

which yields the claimed decomposition.

The MS component can only be nonzero when Y lies outside the support of F with
positive probability; hence, we writeMS for misspecified support. Note that MS can
be negative, e.g., if F = (δ0 + 3 δ2)/4 and Y = 1 almost surely thenMS = −1/2.
The following result shows that the population decomposition nests themodified em-
pirical Hersbach decomposition. Therefore, we consider forecast–observation pairs
(F1, y1), . . . , (Fn, yn), where for each i = 1, . . . , n, Fi is a distribution with a finite
number mi of support points xi1 < · · · < ximi

and (cumulative) probability values
pi1 < · · · < pimi

, so that Fi(x
i
ℓ) = piℓ for ℓ = 1, . . . ,mi. Let 0 < p̂1 < . . . < p̂M = 1

be the unique probability values from the set {piℓ | i = 1, . . . , n; ℓ = 1, . . . ,mi}. For
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i = 1, . . . , n and j = 1, . . . ,M − 1, we define

σi
j =

ℓ if p̂j = piℓ,

0 if p̂j /∈ {pi1, . . . , pimi
}.

Corollary 6.4.2. Assume that P is the empirical measure of forecast–observation pairs
(F1, y1), . . . , (Fn, yn), where each Fi is a distribution with finite support as described
above. Then

MCBHB =
M−1∑
j=1

ĝj(p̂j − f̂j)2 (6.40)
where, for j = 1, . . . ,M − 1,

ĝj =
1

n

n∑
i=1

1{σi
j ̸= 0}

(
xiσi

j+1 − x
i
σi
j

)
, (6.41)

f̂j =
1

nĝj

n∑
i=1

1{Fi(yi) ≤ p̂j}1{σi
j ̸= 0}

(
xiσi

j+1 − x
i
σi
j

)
. (6.42)

Proof of Corollary 6.4.2. For i = 1, . . . , n, let νi be the image measure of Fi with re-
spect to the Lebesgue measure, i.e.,

νi =
M−1∑
j=1

δp̂j1{σi
j ̸= 0}

(
xiσi

j+1 − x
i
σi
j

)
,

and thus, µ =
∑M−1

j=1 δp̂j ĝj , where ĝj is given at (6.41). Therefore, for anyA ∈ B(0, 1),we have
τ(A) = E

∫
A

1{F (Y ) ≤ u} dνF (u)

=
1

n

n∑
i=1

M−1∑
j=1

δp̂j(A)1{Fi(yi) ≤ p̂j}1{σi
j ̸= 0}

(
xiσi

j+1 − x
i
σi
j

)
=

M−1∑
j=1

δp̂j(A)
1

n

n∑
i=1

1{Fi(yi) ≤ p̂j}1{σi
j ̸= 0}

(
xiσi

j+1 − x
i
σi
j

)
=

M−1∑
j=1

δp̂j(A)f̂j ĝj.

We conclude that the Radon–Nikodym derivative of τ with respect to µ is f(p̂j) = f̂jfor j = 1, . . . ,M − 1, where f̂j is given at (6.42).
To specialize Corollary 6.4.2 to the ensemble setting, let mi = m and piℓ = ℓ/m for
i = 1, . . . , n and ℓ = 1, . . . ,m − 1. ThenM = m, p̂j = j/m, and the quantities in
(6.17) and (6.41) coincide, as do the first quantity in (6.18) and that in (6.42).
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6. Decompositions of the mean continuous ranked probability score
Thenext result demonstrates that Proposition 6.4.1 subsumes theHersbach–Lalaurette
decomposition for strictly increasing forecast CDFs as given in Appendix A of Candille
and Talagrand (2005).
Corollary 6.4.3. Let Assumption 6.4.1 hold, and suppose that F−1 is almost surely ab-
solutely continuous. ThenMS = 0 and the measure µ at (6.36) has density

γ(p) = E
(

d

dp
F−1(p)

)
(6.43)

with respect to the Lebesgue measure on the unit interval. Furthermore, the measure
τ at (6.37) has Radon–Nikodym derivative defined by

f(p) =
1

γ(p)
E
(
1{F (Y ) ≤ p} d

dp
F−1(p)

)
(6.44)

if γ(p) > 0, and f(p) = 0 otherwise, with respect to µ.

Proof of Corollary 6.4.3. SinceF−1 is almost surely absolutely continuous, for any 0 <
a < b < 1, we have almost surely
νF ([a, b)) = λ(F−1([a, b))) = F−1(b)− F−1(a) =

∫ F−1(b)

F−1(a)

dp =

∫ b

a

d

dp
F−1(p) dp.

That is, the random measure νF almost surely possesses a density ( d/ dp)F−1(p)

with respect to the Lebesgue measure, and it follows that the measure µ has density
γ at (6.43) with respect to the Lebesgue measure. Since for A ∈ B(0, 1),

τ(A) = E
∫
A

1{F (Y ) ≤ p} dνF (p) =
∫
A

E
(
1{F (Y ) ≤ p} d

dp
F−1(p)

)
dp,

the density f of the measure τ with respect to µ is given as stated at (6.44).
Relating to the case study on probabilistic quantitative precipitation forecasts in Sec-
tion 6.5.1, the following Example derives the empirical Hersbach decomposition for
probabilistic forecasts of a nonnegative quantity, assuming that the forecast distribu-
tions are mixtures of a point mass at zero and a strictly positive density on the positive
halfline.
Example 6.4.1. Let (F1, y1), . . . , (Fn, yn) be forecast–observation pairs for a nonneg-
ative (possibly, censored) quantity, so that yi ≥ 0 for i = 1, . . . , n. Suppose that, for
i = 1, . . . , n,

Fi(x) =

0 for x < 0,

pi0 +
∫ x

0
fi(t) dt for x ≥ 0,
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6. Decompositions of the mean continuous ranked probability score
for some 0 ≤ pi0 < 1 and a strictly positive continuous function fi : (0,∞) →
R+ with ∫∞

0
fi(t) dt = 1 − pi0. Then F−1

i is absolutely continuous and has deriva-
tive fi(F−1

i (p))−1 for p ∈ (pi0, 1) and zero otherwise. Hence, MCBHB =
∫ 1

0
(p −

f(p))2 γ(p) dp by Corollary 6.4.3, where
γ(p) =

1

n

n∑
i=1

1

fi(F
−1
i (p))

1(pi0,1)
(p), f(p) =

1

nγ(p)

n∑
i=1

1{Fi(yi) ≤ p} 1

fi(F
−1
i (p))

1(pi0,1)
(p)

for p ∈ (0, 1) with γ(p) > 0, and f(p) = 0 otherwise.

6.4.4 Properties of the decompositions

Thepopulation versions of theCandille–Talagrand, isotonicity-based, Brier score based,
and quantile score based decompositions satisfy properties (P1), (P2), (P4), and (P5),and property (P3) with auto-calibration, isotonic calibration, threshold calibration, andquantile calibration, respectively. The following theorem and its proof summarize and
elaborate on property (P3) and lend theoretical support to the use of the isotonicity-
based decomposition. While in principle one would like to quantify miscalibration
in terms of deviations from auto-calibration, as done by the Candille–Talagrand de-
composition, the empirical version thereof is degenerate. By imposing the natural
shape constraint of isotonicity between the assessed and the calibrated forecasts, a
practically useful decomposition is obtained that does not rely on implementation
choices, save for a possible choice of threshold values a and b in the modified CDFs
F (a,b) at (6.26). The isotonicity-based decomposition quantifies miscalibration as de-
viation from isotonic calibration, which is closer to auto-calibration than threshold or
quantile calibration as illustrated in Figure 2.1.
Theorem 6.4.4. Under Assumption 6.4.1 the following statements hold.

(a) The Candille–Talagrand decomposition at (6.32) is exact and satisfies
– MCBCT ≥ 0 with equality if, and only if, F is auto-calibrated;

– DSCCT ≥ 0 with equality if, and only if, PY |F = Fmg almost surely.

(b) The isotonicity-based decomposition at (6.33) is exact and satisfies
– MCBISO ≥ 0 with equality if, and only if, F is isotonically calibrated;

– DSCISO ≥ 0 with equality if, and only if, PY |L (F ) = Fmg almost surely.
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6. Decompositions of the mean continuous ranked probability score
(c) The Brier score based decomposition at (6.34) is exact and satisfies

– MCBBS ≥ 0 with equality if, and only if, F is threshold calibrated;

– DSCBS ≥ 0with equality if, and only if, for all z ∈ R,P(Y ≤ z | L (F (z)))

= P(Y ≤ z) almost surely.

(d) The quantile score based decomposition at (6.35) is exact and satisfies
– MCBQS ≥ 0 with equality if F is quantile calibrated; conversely, if the
random element (Y, F−1(α)) satisfies Assumption 6.1 in Arnold and Ziegel
(2023) for all α ∈ (0, 1) then MCBQS = 0 implies quantile calibration of
F ;

– DSCQS ≥ 0with equality if, and only if, for allα ∈ (0, 1), qα(Y | L (F−1(α)))

= qα(Y ) almost surely.

Proof of Theorem 6.4.4. Concerning part (a), we consider the Brier score based de-
composition of CRPS and apply Fubini’s theorem to obtain
MCBCT =

∫ (
E
(
F (z)− 1{Y ≤ z}

)2 − E
(
P(Y ≤ z | F )− 1{Y ≤ z}

)2)
dz,

(6.45)
DSCCT =

∫ (
E
(
Fmg(z)− 1{Y ≤ z}

)2 − E
(
P(Y ≤ z | F )− 1{Y ≤ z}

)2)
dz.

(6.46)
Recall that for any z ∈ R, the expectation E (1{Y ≤ z} − p)2 is minimized by P(Y ≤
z | F ) over all σ(F )-measurable random variables p, and this minimizer is P-almost
surely unique. Since F (z) and the constant Fmg(z) are σ(F )-measurable, it follows
from (6.45) and (6.46) that MCBCT ≥ 0 and DSCCT ≥ 0, respectively. Equality in
(6.45) holds if, and only if, F is auto-calibrated. Equality in (6.46) holds if, and only if,
PY |F = Fmg, i.e., P(Y ≤ z | F ) = Fmg(z) for all z ∈ R.
For part (b), in analogy to the above, we find that
MCBISO =

∫ (
E
(
F̄ (z)− 1{Y > z}

)2 − E
(
P(Y > z | L (F ))− 1{Y > z}

)2)
dz,

(6.47)
DSCISO =

∫ (
E
(
F̄mg(z)− 1{Y > z}

)2 − E
(
P(Y > z | L (F ))− 1{Y > z}

)2)
dz,

(6.48)
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where F̄ (z) = 1 − F (z), and F̄mg(z) = 1 − Fmg(z). Recall that for any z ∈ R,
the expectation E(1{Y > z} − p)2 is minimized by P(Y > z | L (F )) over all
L (F )-measurable random variables p, and the minimizer is P-almost surely unique.
Since F̄ (z) and the constant F̄mg(z) are L (F )-measurable, it follows directly that
MCBISO ≥ 0 andDSCISO ≥ 0. Equality in (6.47) holds if, and only if, F is isotonically
calibrated, and equality in (6.48) holds if, and only if, PY |L (F ) = Fmg.
To demonstrate part (c), it suffices to observe from Arnold and Ziegel (2023, Lemma
5.4) that threshold calibration is equivalent to P(Y ≤ z | L (F (z))) = F (z) for
z ∈ R. The rest of the argument is analogous to the above.
Finally, for part (d), recall that forα ∈ (0, 1), a randomvariable is a conditional quantile
qα(Y | L (F−1(α))) if, and only if, it minimizes EQSα(X, Y ) over all L (F−1(α))−
measurable randomvariablesX , seeArnold and Ziegel (2023). It follows thatMCBQS ≥
0 andDSCQS ≥ 0. Assume thatF is quantile calibrated; then qα(Y | L (F−1(α)

))
=

F−1(α) for α ∈ (0, 1) and hence MCBQS = 0. Conversely, if MCBQS = 0 then Fu-
bini’s theorem implies∫ 1

0

(
E qsα

(
F−1(α), Y

)
− E qsα

(
qα
(
Y | L (F−1(α))

)
, Y
))

dα = 0.

Since the integrand is non-negative, it follows that qα(Y | L (F−1(α))
)
= F−1(α)

for almost all α ∈ (0, 1) and, hence, there exists a Lebesgue null set N ⊆ (0, 1) with
qα(Y | L (F−1(α))) = F−1(α) for all α ∈ (0, 1) \N . Assume for a contradiction that
N ̸= ∅ and consider α0 ∈ N . Choose (αn)n∈N ⊆ (0, 1) \N with αn ↑ α0 as n → ∞.
Since F−1(αn) → F−1(α0) almost surely and qsαn

(·, y) → qsα0
(·, y) pointwise for

any y ∈ R, it follows that qsαn
(F−1(αn), Y ) → qsα0

(F−1(α0), Y ) almost surely, and
hence,E qsαn

(F−1(αn), Y )→ E qsα0
(F−1(α0), Y ) by dominated convergence. Anal-

ogously, E qsαn
(X, Y ) → EQSα0

(X, Y ) forX = qα0(Y | L (F−1(α0))) and, hence,
E qsα0

(X, Y ) ≥ E qsα0
(F−1(α0), Y ) since E qsαn

(X, Y ) ≥ E qsαn
(F−1(αn), Y ) for

all n ∈ N. This shows that qα(Y | L (F−1(α))
) is an α-quantile of F for α ∈ (0, 1).

By construction in Section 6 of Arnold and Ziegel (2023), qα(Y | L (F−1(α))
) is

the smallest possible minimizer of E qsα(X, Y ), so it coincides with F−1(α) for all
α ∈ (0, 1) and, hence, N = ∅. Clearly, DSCQS = 0 if qα(Y | L (F−1(α))

)
= qα(Y )

for α ∈ (0, 1). Conversely, if DSCQS = 0 then qα(Y | L (F−1(α))
)
= qα(Y ) for

α ∈ (0, 1).
In view of known relationships between notions of calibration (Gneiting and Resin,
2023, Sections 2.2 and 2.3) the following implications hold.
114



6. Decompositions of the mean continuous ranked probability score
Corollary 6.4.5. Under Assumption 6.4.1, an auto-calibrated forecast yieldsMCBCT =

MCBISO = MCBBS = MCBQS = 0.

Corollary 6.4.6. Under Assumption 6.4.1, it holds that

ECRPS(F, Y ) ≥ MCBCT ≥ MCBISO ≥ max{MCBBS,MCBQS}. (6.49)
Proof of Corollary 6.4.6. For any z ∈ R, PY |F (·, (z,∞)) minimizes E(p − 1{Y >

z})2 over all σ(F )-measurable random variables p, and hence, also over all L (F )-
measurable random variables since any L (F )-measurable random variable is also
σ(F )-measurable, see Arnold and Ziegel (2023, Lemma 3.1). Thus, we apply Fubini to
derive
ECRPS(PY |F , Y ) =

∫
E (PY |F (·, (z,∞))− 1{Y > z})2 dz

≤
∫

E (PY |L (F )(·, (z,∞))− 1{Y > z})2 dz = ECRPS(PY |L (F ), Y ),

which impliesMCBCT ≥ MCBISO. Moreover, for any z ∈ Rweknow thatL (F (z)) ⊆
L (F ), where for any σ-lattice A ⊆ F , Ā denotes the σ-lattice which consists of all
complements of elements inA. Hence, we may argue similarly that

ECRPS(PY |L (F ), Y ) =

∫
E(1− PY |L (F )(·, (z,∞))− 1{Y ≤ z})2 dz

≤
∫

E(P(Y ≤ z | L (F (z)))− 1{Y ≤ z})2 dz,

which impliesMCBISO ≥ MCBBS. Finally for anyα ∈ (0, 1), we have thatP−1
Y |L (F )(α)minimizes E qsα(X, Y ) over all L (F )-measurable random variablesX . We use that

L (F−1(α)) ⊆ L (F ), to derive that
ECRPS(PY |L (F ), Y ) =

∫ 1

0

E qsα(P
−1
Y |L (F )(α), Y ) dα ≤

∫ 1

0

E qsα(qα(Y | L (F−1(α)), Y ) dα

and henceMCBISO ≥ MCBQS.
Importantly, while formulated at the population level, the above results apply to the
empirical versions of the decompositions, by identifying the joint distribution P of the
tuple (F, Y ) with the empirical law of the data at (6.7). In particular, the relations
in (6.49) nest the respective inequalities (6.24) for the empirical decompositions. For
the isotonicity-based decomposition, if modified CDFsF (a,b) are used the results apply
to the latter, and we refer to (6.28) for relationships to the respective components
computed on the original CDFs.
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Finally, we consider the Hersbach decomposition from Proposition 6.4.1, which strug-
gles to satisfy the desirable properties fromSection 6.4.1. By definition, properties (P1)and (P5) hold. Themiscalibration component is clearly nonnegative. However,DSCHBmay be negative as in Example 6.C.3, i.e., property (P2) is violated. Moreover, the ex-
ample in the proof of Proposition 6.2.3 shows that the Hersbach decomposition fails
to satisfy (P4). Concerning (P3), Hersbach (2000) and Candille and Talagrand (2005)
argue that the Hersbach reliability component is closely related to the rank histogram
and hence one might expect that MCBHB = 0 if, and only if, F is probabilistically
calibrated. However, the examples in Section 6.C.4 and 6.C.5 show that probabilistic
calibration is neither sufficient nor necessary forMCBHB = 0. The following proposi-
tion collects calibration properties in relation to the Hersbach decomposition.
Proposition 6.4.7. Let Assumption 6.4.1 hold and consider the population version of
the Hersbach decomposition at (6.38).
(a) If Y ∈ supp(F ) almost surely, thenMS = 0, whereMS is defined at (6.39).
(b) For an auto-calibrated forecast, it holds thatMS = MCBHB = 0.

(c) Suppose thatF belongs to a location family, i.e., for all x ∈ R,F (x) = F0(x−µ)
for some F0 ∈ P(R) and random location µ. Suppose furthermore that F0 has
no jumps andF−1

0 is absolutely continuous. ThenMCBHB = 0 if F is probabilis-
tically calibrated.

Proof of Proposition 6.4.7. The claim in part (a) follows from the definition of MS at
(6.39). For part (b), suppose that F is auto-calibrated. Then Y ∈ supp(F ) almost
surely and henceMS = 0 by part (a). The tower property implies for any A ∈ B(0, 1)
that

τ(A) = E
(
E
(∫

A

1{F (Y ) ≤ p} dνF (p)
∣∣∣ F))

= E
(∫

A

E (1{F (Y ) ≤ p} | F ) dνF (p)
)

= E
(∫

A

F (F−1(p)) dνF (p)

)
,

where the last equality follows since ifY ∈ supp(F ), thenF (Y ) ≤ p if and only ifY ≤
F−1(p) and P(Y ≤ F−1(p) | F ) = F (F−1(p)) by auto-calibration. By the properties
of generalized inverses (Embrechts and Hofert, 2013), we have F (F−1(p)) ≥ p for all
p ∈ (0, 1). However, if F (F−1(p)) > p for all p ∈ B in some B ∈ B(0, 1), then
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MCB = MCBCT 0 < MCB < MCBCT MCB = 0

CT ISO BS QS HB

E5

E4

E3

E2

E1

Figure 6.1: The graphic indicates for the population level examples E1, . . . , E5 in Ap-
pendix 6.C whether theMCB• term, where • stands for CT, ISO, BS, QS, or HB, re-
spectively, agrees with the theoretically preferred quantityMCBCT (green), is smaller
than MCBCT but remains positive (orange), or deceptively equals zero (red). Con-
nected segments indicate equality of corresponding terms. For analytic results, see
Table 6.2.

F−1(B) = {x ∈ R | F (x) ∈ B} = ∅ and hence νF (B) = 0 almost surely. That is,
νF ({p ∈ (0, 1) : F (F−1(p)) > p} = 0 almost surely and thus

τ(A) = E
(∫

A

F (F−1(p)) dνF (p)

)
= E

(∫
A

p dνF (p)

)
=

∫
A

p dµ(p).

We conclude that f(p) = p µ-almost surely and henceMCBHB = 0.
The condition in part (c) is equivalent to assuming that d

dp
F−1 is almost surely constant

for all p ∈ (0, 1). Since F is probabilistically calibrated, we have for any p ∈ (0, 1),

f(p) =
1

γ(p)
E
(
1{F (Y ) ≤ p} d

dp
F−1(p)

)
=
γ(p)

γ(p)
E (1{F (Y ) ≤ p}) = P(F (Y ) ≤ p) = p

and henceMCBHB = 0.

In Appendix 6.C we compare the different types of decompositions in a number of
analytic examples at the population level. Figure 6.1 summarizes how the respective
miscalibration terms relate to the theoretically preferredMCBCT component.
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6.5 Case studies

We now illustrate the use of the isotonicity-based decomposition from Section 6.3
in case studies on weather forecasts and benchmark regression tasks from machine
learning, both ofwhich are also discussed in Chapter 5. For simplicity, we use an abbre-
viated notation for the components of themean scoreCRPS throughout this section,
namely, MCB = MCBISO, DSC = DSCISO, and UNC = UNC0, respectively. Notethe opposite orientation ofMCB andDSC, in that higherDSC corresponds to better
discrimination ability, whereas lowerMCB indicates better calibration.
When one seeks to simultaneously compare CRPS,MCB, and DSC between larger
numbers of forecastmethods, tables get cumbersome. Therefore, we suggest a graph-
ical display, namely, the MCB–DSC plot, which is motivated by similar displays in
Dimitriadis et al. (2023) and Gneiting et al. (2023b). In this type of graphic, MCB

is plotted against DSC, and isolines correspond to specific values of the mean score
CRPS, which is constant along parallel lines. The uncertainty component UNC is in-
dependent of the forecast method, and we display it in the upper left or upper right
corner of the plot.

6.5.1 Probabilistic quantitative precipitation forecasts

Ensemble prediction systems have tremendously improvedweather forecasts over the
past decades (Bauer et al., 2015). However, ensemble forecasts remain subject to bi-
ases and dispersion errors, and hence require some form of statistical postprocessing
(Gneiting and Raftery, 2005; Vannitsem et al., 2018). Here we consider the case study
in Henzi et al. (2021), which compares the performance of raw and postprocessed en-
semble forecasts for 24-hour accumulated precipitation in terms of the mean score
CRPS, which we decompose intoMCB, DSC, and UNC, respectively.
Following Henzi et al. (2021), we consider forecasts and observations for 24-hour ac-
cumulated precipitation from 6 January 2007 to 1 January 2017 at Brussels, Frank-
furt, London, and Zurich in millimeters. The 52 member raw ensemble (ENS) fore-
cast operated by the European Centre for Medium-Range Weather Forecasts com-
prises a high resolution member, a control member at lower resolution, and 50 per-
turbed members at the same lower resolution but with perturbed initial conditions
(Molteni et al., 1996). We use data from 2007 to 2014 to train the postprocessing
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techniques Bayesian model averaging (BMA; Sloughter et al., 2007), ensemble model
output statistics (EMOS; Scheuerer, 2014), heteroscedastic censored logistic regres-
sion (HCLR; Messner et al., 2014) and two versions, IDRcw and IDRst, of isotonic dis-tributional regression (IDR; Henzi et al., 2021), where IDRcw is documented in Henzi
et al. (2021) and IDRst uses the stochastic order on the ensemble CDFs. For further
implementation details we refer the reader to Henzi et al. (2021). The years 2015 and
2016 form the evaluation period.
The ENS and IDR forecast distributions have finite support andweapply the isotonicity-
based decomposition of CRPS in its pure form from Section 6.3.1. For the other
forecasts, which employ mixtures of a point mass at zero (for no precipitation) and
a density at positive accumulations as predictive distributions, we fix a = 0 and use
Algorithm 2 to determine the upper bound b, which generally is identical to, or very
slightly higher than, the highest accumulation observed in the test data; then we com-
pute stochastic order relations on an equidistant grid of size 5000 over [a, b] and apply
the isotonicity-based decomposition in its approximate form from Section 6.3.2.
The respectiveMCB–DSC plots for Brussels, Frankfurt, London, and Zurich are shown
in Figure 6.2. We note an increase of the mean score CRPS values with the predic-
tion horizon, which is due to a decrease in discrimination ability. The raw ensemble
(ENS) forecasts discriminate very well, but are poorly calibrated. The postprocessing
methods yield considerable improvement in CRPS, subject to a trade-off between
MCB and DSC. The EMOS and HCLR techniques, which employ inflexible paramet-
ric densities with fixed shape, excel in terms of discrimination, but lack in calibration.
In contrast, the BMA and IDR techniques, which are much more flexible, are better
calibrated, but inferior in terms of discrimination ability.

6.5.2 Benchmark regression problems from machine learning

A sizable strand of recent literature inmachine learning is concernedwithmethods for
uncertainty quantification for neural networks, where the task is the transformation of
single-valued neural network output into predictive distributions (Gawlikowski et al.,
2023). In this literature, performance is typically evaluated in terms of the mean loga-
rithmic score (Gneiting and Raftery, 2007, Section 4.1) which, in sharp contrast to the
CRPS, can only be applied to methods that generate predictive densities. Further-
more, extant measures for the assessment of calibration and discrimination ability
tend to be ad hoc. In this section, we demonstrate the use of the mean score CRPS
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Figure 6.2: MCB–DSC plots for forecasts of 24-hour accumulated precipitation at
Brussels, Frankfurt, London, and Zurich, at prediction horizons of one to five days
ahead. The mean score CRPS is constant along the parallel lines and shown in the
unit of millimeters. Acronyms are defined in the text, and details of the forecast meth-
ods are documented in Henzi et al. (2021, Section 5).
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6. Decompositions of the mean continuous ranked probability score
and its isotonicity-based decomposition intoMCB, DSC, and UNC in this context.
We adopt the benchmark regression tasks setting originally proposed by Hernandéz-
Lobato and Adams (2015) and consider the datasets and methods from the middle
block of Table 6 in Chapter 5, except thatwe skip results for theNaval and Year datasets,
for which there aremissing entries. The experimental setting is based on single-valued
output fromaneural network, which learns a regression function based on a collection
of covariates or features. In this setting, Walz (2023) compares competing methods
for uncertainty quantification, including the popular Monte Carlo Dropout approach
(MC Dropout; Gal and Ghahramani, 2016) and a scalable Laplace approximation based
technique (Laplace; Immer et al., 2021; Ritter et al., 2018) that operate within the
neural network learning pipeline. Their competitors include output-based methods
that learn on training data of previous single-valuedmodel output and outcomes only,
without accessing feature values, namely, the Single Gaussian technique, conformal
prediction (CP; Vovk et al., 2020b), and the EasyUQ technique, which is based on IDR
(Henzi et al., 2021). Furthermore, we consider smoothed versions of the discrete CP
and EasyUQ distributions, termed Smooth CP and Smooth EasyUQ, respectively. For
implementation details, we refer the reader to Walz (2023).
The CP and EasyUQ distributions have finite support, and the Single Gaussian incurs
normal distribution with a fixed variance, but varying mean. For these threemethods,
we use the isotonicity-based decomposition of CRPS in the standard form from Sec-
tion 6.3.1. The Laplace method also employs normal distributions, but with varying
mean and variances. The MC Dropout technique yields mixtures of normal distribu-
tions, and the Smooth CP and Smooth EasyUQ distributions are mixtures of Student-t
distributions (or normal distributions as a limit case). For these methods, we use the
approximations described in Section 6.3.2.
The MCB–DSC plots in Figure 6.3 illustrate the mean score CRPS and the MCB,
DSC, and UNC components for the eight datasets and seven methods, respectively.
The MC Dropout technique yields predictive distributions that are poorly calibrated,
a finding that is well documented in the machine learning literature (Gawlikowski
et al., 2023), though with high discrimination ability. The predictive distributions gen-
erated by the Laplace method trade better calibration for diminished discrimination
ability. The simplistic Single Gaussian technique performs surprisingly well, typically
with both theMCB and theDSC component being small relative to the competitors.
The EasyUQ and CP distributions generally are well calibrated, with low MCB com-
ponents throughout, and often superior overall performance. Smoothing of the dis-
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6. Decompositions of the mean continuous ranked probability score
crete EasyUQ and CP distributions has only small effects. The only exception is for the
EasyUQ forecast for the Wine dataset, which has only ten unique outcomes that cor-
respond to quality levels, thus favoring the discrete basic EasyUQ distributions, which
place all probability mass on this small set of outcomes.

6.6 Discussion

In line with the general idea of the CORP approach of Dimitriadis et al. (2023) and
Gneiting and Resin (2023), we have developed an isotonicity-based decomposition of
the mean score CRPS. Both theoretically and computationally, the isotonicity-based
decomposition serves as an attractive alternative to the Candille–Talagrand decompo-
sition, which is of theoretical appeal, but yields degenerate decompositions in prac-
tice. Remarkably, Proposition 6.3.2 ensures that theoretical guarantees for the stan-
dard implementation from Section 6.3.1 very nearly carry over to the approximate im-
plementation described in Section 6.3.2. Code in R (R Core Team, 2021) for the compu-
tation of the isotonicity-based decomposition and replication materials are available
at https://github.com/evwalz/isodisregSD and https://github.com/evwal
z/paper_isocrpsdeco, respectively.
Due to its linear computational complexity, the Hersbach decomposition is a viable
option for decomposing CRPS for ensemble forecasts with a moderate number m
of members, even when the size n of the evaluation set at (6.7) is very large and the
isotonicity-based approach with its quadratic complexity is not feasible. We recom-
mend that it be used in the modified form described in Section 6.2.5, which allows for
extensions beyond the case of ensemble forecasts. A useful facet of the Hersbach de-
composition is that it applies to general (nonnegatively) weighted sums (rather than
simple averages only) of CRPS scores (Hersbach, 2000). The isotonicity-based de-
composition generalizes to weighted sums as well, as the theoretical guarantees for
IDR (Henzi et al., 2021) continue to apply in weighted case, and software developed by
Alexander Henzi (https://github.com/AlexanderHenzi/isodistrreg) handles
the extension. We leave details to future work.
As noted, the desirable properties (E1), . . . , (E5) in the empirical case and (P1), . . . ,
(P5) in the population case remain valid for decomposition of the mean score un-
der proper scoring rules other than the CRPS. For instance, in various applications
a certain region of the potential range of the outcome is of particular interest, and
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6. Decompositions of the mean continuous ranked probability score
predictive performance might then be assessed with emphasis on these regions. In
such settings, one may use versions of theCRPS as proposed by Gneiting and Ranjan
(2013), namely,

CRPSw(F, y) =

∫ ∞

−∞
w(x) sB(F (x),1{y ≤ x}) dx

and

CRPSv(F, y) =

∫ 1

0

v(α) qsα(F
−1(α), y) dα,

where w and v, respectively, are nonnegative weight functions. In view of the univer-
sality property of IDR (Henzi et al., 2021, Theorem2), the isotonicity-based decomposi-
tion extends naturally tomeans of these types of scores, while preserving its desirable
properties.
However, the isotonicity-based approach fails if amean of logarithmic scores (Gneiting
and Raftery, 2007, Section 4.1) is sought to be decomposed, for the logarithmic score,
which allows for the comparison of density forecasts only, cannot be applied to the
discrete IDR distributions. While in principle isotonic recalibration by IDR, on which
isotonicity-based decompositions are based, could be replaced by recalibration with
other methods, it is not at all evident what type of technique ought to be used, and
we are unaware of any suchmethod that would share the optimality properties of IDR
that underlie the theoretical guarantees enjoyed by the isotonicity-based approach.
Various authors have pondered the use of theCRPS, which is favored by themeteoro-
logical and renewable energy literatures, as opposed to the logarithmic score, which is
of particular popularity in econometrics andmachine learning, with the choice arising
both in the context of estimation via empirical score minimization and in the evalu-
ation of predictive performance (Gneiting and Raftery, 2007). For example, D’Isanto
and Polsterer (2018, Appendix B) argue that in neural network learning empirical score
minimization in terms of themeanCRPS is preferable to optimization of the logarith-
mic score. In the evaluation of predictive performance, the availability of the theoret-
ically supported and practically feasible isotonicity-based decomposition, in concert
with the applicability of the score to discrete forecast distributions, strengthens argu-
ments in favor of the CRPS.
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6. Decompositions of the mean continuous ranked probability score

Appendix 6.A Technical details for theBrier score andquan-
tile score based decompositions

In this appendix we describe the Brier score (BS) and quantile score (QS) based de-
compositions from Sections 6.2.3 and 6.2.4 for themean scoreCRPS of the forecast–
observation pairs (F1, y1), . . . , (Fn, yn) at (6.7). Both decompositions build on a gen-
eral version of the pool-adjacent-violators (PAV) algorithm for nonparametric isotonic
regression (Ayer et al., 1955). While historically work on the PAV algorithm has focused
on the mean functional (Barlow et al., 1972; Robertson et al., 1988; de Leeuw et al.,
2009), the algorithm yields optimal isotonic fits under any identifiable functional; see,
e.g., Jordan et al. (2022) and Gneiting and Resin (2023, Section 3.1).

6.A.1 Brier score based decomposition

For each threshold value z ∈ R, we interpretF1(z), . . . , Fn(z) as probability forecastsfor the binary event ξi(z) = 1{yi ≤ z}, where i = 1, . . . , n. We obtain calibrated
forecasts F́1(z), . . . , F́n(z) by applying the PAV algorithm for the mean functional on
ξ1(z), . . . , ξn(z)with respect to the order induced byF1(z), . . . , Fn(z). This yields theCORP decomposition of the mean Brier score

BSF (z) =
1

n

n∑
i=1

sB
(
Fi(z), ξi(z)

)
as proposed by Dimitriadis et al. (2021), namely,

BSF (z) =
(
BSF (z) − BSF́ (z)

)
︸ ︷︷ ︸

MCBBS,z

−
(
BSF́ (z) − BSF̂mg(z)

)
︸ ︷︷ ︸

DSCBS,z

+ BSF̂mg(z)︸ ︷︷ ︸
UNCBS,z

,

where F̂mg(z) =
1
n

∑n
i=1 ξi(z) for z ∈ R,

BSF́ (z) =
1

n

n∑
i=1

sB
(
F́i(z), ξi(z)

)
and BSF̂mg(z)

=
1

n

n∑
i=1

sB
(
F̂mg(z), ξi(z)

)
.

Integration of theMCBBS,z,DSCBS,z andUNCBS,z components over z ∈ R yields the
Brier score based score components and decomposition at (6.14) and (6.15), respec-
tively.
Computationally, it suffices to run the PAV algorithm at z ∈ {y1, . . . , yn} and at the
crossing points of the CDFs F1, . . . , Fn.
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6. Decompositions of the mean continuous ranked probability score
Proof of Proposition 6.2.1. We note that

UNCBS =

∫
BSF̂mg(z)

dz =

∫
1

n

n∑
i=1

sB
(
F̂mg(z), ξi(z)

)
dz

=
1

n

n∑
i=1

∫ (
F̂mg(z)− ξi(z)

)2
dz =

1

n

n∑
i=1

CRPS(F̂mg, yi) = UNC0,

which implies that (E5) is satisfied. Property (E1) is immediate. Dimitriadis et al.
(2021) show thatMCBBS,z and DSCBS,z are nonnegative for all z ∈ R and thus (E2)is satisfied. Example 6.C.3 implies that the decomposition is not degenerate, so (E3)is satisfied. Finally, suppose that F1 = · · · = Fn. Then for each z ∈ R, the PAV
algorithm for the mean functional on ξ1(z), . . . , ξn(z) with respect to the order in-
duced by F1(z) = · · · = Fn(z) yields the constant calibrated forecast F̂mg(z). Hence
DSCBS = 0, so that (E4) is satisfied.
Remark 6.A.1. The functions F́1, . . . , F́n are not necessarily increasing and hence theygenerally fail to be CDFs. For instance, let n = 2 and z < z′. If F1(z) < F2(z),
F1(z

′) = F2(z
′) and y2 ≤ z < z′ < y1, then F́2(z) = 1 > 1/2 = F́2(z

′), so F́2 is notincreasing.

6.A.2 Quantile score based decomposition

For each level α ∈ (0, 1), we consider F−1
1 (α), . . . , F−1

n (α) as point forecasts in the
form of the α-quantile. We apply the PAV algorithm for the α-quantile functional on
y1, . . . , ynwith respect to the order inducedbyF−1

1 (α), . . . , F−1
n (α) to yield calibrated

α-quantile forecasts F̀−1
1 (α), . . . , F̀−1

n (α). This induces the CORP decomposition of
the mean quantile score

QSF−1(α) =
1

n

n∑
i=1

qsα
(
F−1
i (α), yi

)
as described by Gneiting and Resin (2023, Section 3.3) and Gneiting et al. (2023b, Sec-
tion 3.3), namely,

QSF−1(α) =
(
QSF−1(α) −QSF̀−1(α)

)︸ ︷︷ ︸
MCBQS,α

−
(
QSF̀−1(α) −QSF̂−1

mg (α)

)︸ ︷︷ ︸
DSCQS,α

+ QSF̂−1
mg (α)︸ ︷︷ ︸

UNCQS,α

,
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6. Decompositions of the mean continuous ranked probability score
where F̂−1

mg (α) is the quantile function of the marginal empirical law of the outcomes
y1, . . . , yn,

QSF̀−1(α) =
1

n

n∑
i=1

qsα
(
F̀−1
i (α), yi

)
, QSF̂−1

mg (α)
=

1

n

n∑
i=1

qsα
(
F̂−1
mg (α), yi

)
.

Integration of the MCBQS,α,DSCQS,α and UNCQS,α components over α ∈ (0, 1)

yields the quantile score based decomposition at (6.16).
For an exact computation, the PAV algorithm needs to be run at all quantile levels l/k,
where k = 1, . . . , n and l = 1, . . . , k − 1, and at all crossing points of the quantile
functions F−1

1 , . . . , F−1
n . In practice, it suffices to apply the PAV algorithm on a fine

grid of quantile levels.

Proof of Proposition 6.2.2. In analogy to the proof of Proposition 6.2.1, we find that

UNCQS =

∫ 1

0

QSF̂−1
mg (α)

dα =

∫ 1

0

1

n

n∑
i=1

qsα
(
F̂−1
mg (α), yi

)
dα

=
1

n

n∑
i=1

∫ 1

0

qsα
(
F̂−1
mg (α), yi

)
dα =

1

n

n∑
i=1

CRPS(F̂mg, yi) = UNC0,

and hence (E5) is satisfied. Property (E1) is clear by definition. Theorem 3.3 of Gneit-
ing and Resin (2023) implies thatMCBQS,α and DSCQS,α are nonnegative for all α ∈
(0, 1) and thus (E2) is satisfied. Example 6.C.3 shows that the decomposition is not
degenerate, i.e., (E3) is satisfied. Finally, suppose that F1 = · · · = Fn. Then for each
α ∈ (0, 1), applying the PAV algorithm on y1, . . . , yn with respect to the order inducedby F−1

1 (α) = · · · = F−1
n (α) yields the constant calibrated forecast F̀−1(α) = F̂−1

mg (α)and hence DSCQS = 0, i.e., (E4) is satisfied.

Remark 6.A.2. In analogy to the statements in Remark 6.A.1, the functions F̀−1
1 , . . . , F̀−1

nare not necessarily increasing and hence may not be quantile functions. For example,
let n = 2 and α < α′ < 1/2, and suppose that y1 < y2, F−1

1 (α) < F−1
2 (α), and

F−1
1 (α′) = F−1

2 (α′). Then F̀−1
2 (α) = y2 > y1 = F̀−1

2 (α′) whence F̀−1
2 is not increas-

ing.
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Figure 6.4: Adaptation of Figure 2 from Hersbach (2000) with the empirical CDF of
x1 < · · · < x5 and outcome y. Hersbach (2000) assumes that y /∈ {x1, . . . , x5} anddivides the quantity xℓ+1 − xℓ for ℓ = 1, . . . ,m − 1 into αℓ and βℓ, as illustrated in
the left panel. When y = x3 the original decomposition sets α2 = β3 = 0. However,
according to display (26) in Hersbach (2000), if y ↑ x3 then α2 → x3 − x2, β2 → 0,
and β3 = x4 − x3, and if y ↓ x3 then α2 = x3 − x2, α3 → 0, and β3 → x4 − x3.This suggests that α2 = x3 − x2, α3 = 0, β2 = 0, and β3 = x4 − x3 when y = x3,as indicated in the right panel and in accordance with the quantity f̄3 in the modified
Hersbach decomposition.

Appendix 6.B Technical details for the original and mod-
ified Hersbach decompositions

As in Section 6.2.5, we consider a collection of the form at (6.7) of forecast–outcome
pairs (F1, y1), . . . , (Fn, yn), where for i = 1, . . . , n, the forecast Fi is the empirical
CDF of a fixed number m of numbers xi1 ≤ · · · ≤ xim. Hersbach (2000) implicitly
assumes that yi /∈ {xi1, . . . , xim} for i = 1, . . . , n. If this condition is not satisfied,
the extension of the original Hersbach decomposition at (6.19), which is implemented
in the R function crpsDecomposition from the verification package (https://rd
rr.io/cran/verification/), is problematic. Our suggested modified Hersbach
decomposition at (6.21) resolves this issue, as illustrated graphically in Figure 6.4.
We proceed to a comparison of the orginal with the modified Hersbach decomposi-
tion. For i = 1, . . . , n, Hersbach (2000) defines the quantities

αi
ℓ = (xiℓ+1 − xiℓ)1{yi > xℓ+1}+ (yi − xℓ)1{xiℓ < yi < xiℓ+1},
βi
ℓ = (xiℓ+1 − xiℓ)1{yi < xiℓ}+ (xiℓ+1 − yi)1{xiℓ < yi < xiℓ+1},
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for ℓ = 1, . . . ,m− 1, and

αi
m = (yi − xim)1{yi > xim} and βi

0 = (xi1 − yi)1{yi < xi1}.

For ℓ = 1, . . . ,m − 1, let ᾱℓ = (1/n)
∑n

i=1 α
i
ℓ, β̄ℓ = (1/n)

∑n
i=1 β

i
ℓ, ḡℓ = ᾱℓ + β̄ℓ,and ōℓ = β̄ℓ/ḡℓ. To complete the specification, let ō0 = (1/n)

∑n
i=1 1{yi < xi1}, ḡ0 =

1{ō0 ̸= 0}β̄0/ō0, ōm = (1/n)
∑n

i=1 1{xim < yi}, and ḡm = 1{ōm ̸= 0}ᾱm/(1− ōm),where β̄0 = (1/n)
∑n

i=1 β
i
0 and αm = (1/n)

∑n
i=1 α

i
m.

As before, let pℓ = ℓ/m for ℓ = 0, . . . ,m. Hersbach (2000) defines the miscalibration
component as

MCBHBo =
m∑
ℓ=0

ḡℓ (pℓ − ōℓ)2 .

In contrast, we let

MCBHB =
m−1∑
ℓ=1

ḡℓ
(
pℓ − f̄ℓ

)2
,

where f̄ℓ = (1/n)
∑n

i=1 f̄
i
ℓ with f̄ i

ℓ = (1/ḡℓ)1{yi < xiℓ+1 }(αi
ℓ + βi

ℓ) for i = 1, . . . , n

and ℓ = 1, . . . ,m− 1. In other words, Hersbach (2000) includes terms for l = 0 and
l = m in the miscalibration component and compares the nominal level pℓ with the
quantity ōℓ, which approximates the frequency of an outcome below the midpoint of
bin l. In contrast, weomit the outer terms and compare pℓwith f̄ℓ, which approximates
the frequency of an outcome below the right endpoint of bin l.

Proof of Proposition 6.2.3. By definition, both decompositions are exact and the un-
certainty component UNC0 depends only on the outcomes, i.e., (E1) and (E5) aresatisfied. Example 6.C.3 shows that (E3) is satisfied, and that (E2) fails to hold for
the modified Hersbach decomposition. Consider the sample (F, y1), (F, y2)with F =

(δ−1/2 + δ1/2)/2, y1 = −1/6 and y2 = 1/6. Then CRPS = 1/4 and UNC0 = 1/12.
Moreover, ḡ1 = 1, ḡ0 = ḡ2 = 0, ō1 = 1/2, ō0 = ō2 = 0, and f̄1 = 1. Thus
MCBHBo = 0, MCBHB = 1/4, DSCHBo = −1/6, and DSCHB = 1/12. This demon-
strates that the original Hersbach decomposition does not satisfy (E2) and (E4) andthat (E4) fails to hold for the modified decomposition as well. Numerical examples
in Hersbach (2000) show that (E3) is satisfied for the original Hersbach decomposi-
tion.
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Table 6.2: Analytic form of the various different types of decomposition in population
level examples E.1, . . . , E.5. For details and supporting calculations see the text.

Example E.1 E.2 E.3 E.4 E.5
ECRPS(F, Y )

∑n
i=1wi

σi√
π

1
6

1 39
80

5
24
t

UNC0
1
2

∑n
i,j=1wiwj A(µi − µj, σ

2
i + σ2

j )
2
5

3
4

3
2

2
9
t

MCBCT 0 1
30

1 7
400

3
200
t

MCBISO 0 1
30

1 9
2800

3
200
t2

MCBQS 0 1
30

13
16

9
2800

0
MCBBS 0 1

30
1
2

9
2800

0
MCBHB 0 0 1

8
1

1600
0

Appendix 6.C Analytic examples at the population level

In this section we compare the population level decompositions from Section 6.4 in a
number of examples in the prediction space setting. Table 6.2 collects and summarizes
the analytic forms of the decomposition components in these examples. Assumption
6.4.1 is satisfied throughout.

6.C.1 Auto-calibrated Gaussian

In this example, the predictive distribution F is Gaussian with mean µi and standard
deviation σi > 0 with probability wi for i = 1, . . . , n, where wi + · · · + wn = 1.
Conditionally on F , the outcome Y has distribution F , so F is auto-calibrated. We
conclude that

MCBCT = MCBISO = MCBBS = MCBQS = 0.

Proposition 6.4.7 yields MCBHB = MSHB = 0. Finally, we apply formulas in Grimit
et al. (2006) to obtain

ECRPS(F, Y ) =
n∑

i=1

wi
σi√
π

and UNC0 =
1

2

n∑
i,j=1

wiwjA(µi − µj, σ
2
i + σ2

j ),
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where A(µ, σ2) = 2σφ(µ

σ
) + µ(2Φ(µ

σ
) − 1), with φ and Φ denoting the density and

the CDF of the standard normal distribution, respectively.

6.C.2 Example in Candille and Talagrand (2005)

In this example of Candille and Talagrand (2005, p. 2145), the forecast F is F1, whichis uniform on (−1, 0), or F2, which is uniform on (0, 1), with equal probability. Given
F = F1, the conditional CDF of Y is Q1(z) = 1 − z2 for z ∈ (−1, 0), and given
F = F2, the conditional CDF of Y isQ2(z) = z2 for z ∈ (0, 1).
For i = 1, 2, we denote by Gi the isotonic conditional law of Y given F = Fi. Since
F1 ≤st F2 and Q1 ≤st Q2 it follows that Qi = Gi for i = 1, 2 and the isotonicity-
based decomposition coincides with the Candille–Talagrand decomposition. For any
z ∈ (−1, 1), F1(z) and F2(z) strictly order and hence the random variable F (z) al-
ready reveals the value of F . That is, σ(F (z)) = σ(F ) and hence P(Y ≤ z | F (z)) =
P(Y ≤ z | F ) = PY |F (z). Since this conditional probability is already an increasing
function ofF (z), wemay conclude by Proposition 3.2. in Arnold and Ziegel (2023) that
P(Y ≤ z | L (F (z))) = PY |F (z) for all z ∈ R and hence the Brier score based de-
composition correspondwith the Candille–Talagrand decomposition. Analogously the
claim can be shown for the quantile score based decomposition. Thus the isotonicity-
based, Brier score based, and quantile score based decompositions coincide with the
Candille–Talagrand decomposition, where ECRPS(F, Y ) = 1/6, MCBCT = 1/30,
and UNC0 = 2/5.
The forecasts satisfy the conditions in part (c) of Proposition 6.4.7, thereforeMCBHB =

0. Since Y ∈ supp(F ) almost surely, we haveMS = 0.

6.C.3 Example with two atoms

This simple example illustrates that the Brier score and quantile score based decompo-
sitions do not coincide in general, that the corresponding calibration methods do not
necessarily produce valid CDFs or quantile functions, respectively, and that DSCHBcan be negative.
Consider the distributions F1 = (δ1 + δ2)/2 and F2 = (δ0 + δ3)/2, where δz denotesthe Dirac measure at z ∈ R. Assume that F is F1 and F2 with equal probability and
that Y = y1 if F = F1 and Y = y2 if F = F2. Let y1 = 3 and y2 = 0, so the marginal
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law Fmg of Y is F2. We readily compute ECRPS(F, Y ) = 1 and ECRPS(Fmg, Y ) =

UNC0 = 3/4.
An application of the PAV algorithm for the mean functional on (1{y1 ≤ z},1{y2 ≤
z}) with respect to the order induced by (F1(z), F2(z)) at threshold z ∈ R results in
F́1(z) =

1
2
1[1,3)(z) + 1[3,∞)(z) and F́2(z) = 1[0,1)(z) +

1
2
1[1,3)(z) + 1[3,∞)(z),

and we see that F́2 fails to be increasing. Similarly, an application of the PAV algorithm
for the α-quantile on (y1, y2) with respect to the order induced by (F−1

1 (α), F−1
2 (α))

at level α ∈ (0, 1) results in
F̀−1
1 (α) = 3 and F̀−1

2 (α) = 31( 1
2
,1](α),

so F̀−1
2 fails to be increasing. Furthermore, it follows easily that MCBBS = 1/2 ̸=

13/16 = MCBQS. As the conditional lawofY givenF is aDiracmeasure,ECRPS(PY |F , Y ) =

0 andMCBCT = 1. Similarly,MCBISO = 1 since F1 and F2 do not order.
According to the formulas in Section 6.2.5, ḡ1 = 2 and f̄1 = (1{F1(y1) ≤ 1

2
} +

31{F2(y2) ≤ 1/2})/(2ḡ1) = 3/4 and thus MCBHB = (p1 − f̄1)2 ḡ1 = 1/8, whence
we conclude that DSCHB = MCBHB +UNC0 − ECRPS(F, Y ) = −1/8.

6.C.4 Example 2.4 a) in Gneiting and Resin (2023)

Let F be a mixture of uniform distributions on [0, 1], [1, 2], and [2, 3] with weights
p1, p2, and p3, respectively, and let Y be drawn from a mixture of these distributions
with weights q1, q2, and q3, respectively, where the tuple (p1, p2, p3; q1, q2, q3) attainseach of the values(

1
2
, 1
4
, 1
4
; 5
10
, 1
10
, 4
10

)
,
(
1
4
, 1
2
, 1
4
; 1
10
, 8
10
, 1
10

)
,
(
1
4
, 1
4
, 1
2
; 4
10
, 1
10
, 5
10

)
with equal probability. We note that F is probabilistically calibrated, and still we find
thatMCBHB ̸= 0.
Let F1, F2, and F3 denote the distributions that F attains. For i = 1, 2, 3, let Qi bethe conditional law of Y given F = Fi, and let Gi be the isotonic conditional law of
Y given F = Fi. The marginal law Fmg of Y is uniform on [0, 3] and, hence,

UNC0 = ECRPS(Fmg, Y ) =

∫ ∫
(Fmg(x)− 1{y ≤ x})2 dx dFmg(y)

=
1

3

∫ 3

0

∫ 3

0

(x
3
− 1{y ≤ x}

)2
dx dy =

3

2
.
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It holds that F1 ≤st F2 ≤st F3 but only Q1 ≤st Q3, hence PY |F ̸= PY |L (F ). Let
r = 10/7, s = 11/7. On (−∞, r], we have the pointwise inequalitiesQ2 ≤ Q3 ≤ Q1;on [r, s], we have Q3 ≤ Q2 ≤ Q1; and on [s,∞), we have Q3 ≤ Q1 ≤ Q2. Considerthe pooled CDFs Q12 = (Q1 + Q2)/2 and Q23 = (Q2 + Q3)/2. The Gi’s may be
derived by pooling theQi’s according to the given order constraintG1 ≤st G2 ≤st G3,namely,

G1(z) = Q1(z)1(−∞,s](z) +Q12(z)1[s,∞)(z),

G2(z) = Q23(z)1(−∞,r](z) +Q2(z)1[r,s](z) +Q12(z)1[s,∞)(z),

G3(x) = Q23(z)1(−∞,r](x) +Q3(z)1[r,∞)(z).

By the law of total expectation and Fubini’s theorem,

ECRPS(F, Y ) =
1

3

3∑
i=1

E
(
CRPS(F, Y ) | F = Fi

)
=

1

3

3∑
i=1

∫ ∫ (
Fi(x)− 1{y ≤ x}

)2
dx dQi(y)

=
1

3

3∑
i=1

∫ ∫ (
Fi(x)− 1{y ≤ x}

)2
dQi(y) dx

=
1

3

3∑
i=1

∫ (
F 2
i (x)− 2Fi(x)Qi(x) +Qi(x)

)
dx.

Similarly, wefind thatECRPS(G, Y ) = (1/3)
∑3

i=1

∫
(G2

i (x)−2Gi(x)Qi(x)+Qi(x)) dxand ECRPS(Q, Y ) = (1/3)
∑3

i=1

∫
(Qi(x) − Q2

i (x)) dx; hence ECRPS(F, Y ) =

39/80, ECRPS(G, Y ) = 339/700, and ECRPS(Q, Y ) = 47/100. We conclude that
MCBCT = 39

80
− 47

100
= 7

400
and MCBISO = 39

80
− 339

700
= 9

2800
.

Since the predictive distributions are ordered with respect to ≤st, it follows that forevery threshold z, the ordering of Fi(z) is the same. For z ∈ (−∞, 1], F2(z) and
F3(z) coincide but this also holds forG2(z) andG3(z). Similarly, for z ∈ [2,∞), F1(z)and F2(z) coincide but this also holds forG1(z) andG2(z). This implies that the Brier
score based and the isotonocity-based decompositions coincide. Since the stochastic
order is equivalently characterized by pointwise orderings of lower quantile functions,
the quantile score based and the isotonicity-based decompositions also coincide.
As allF−1

i ’s are absolutely continuous, wemay apply Corollary 6.4.3 to computeMCBHB.
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For p ∈ (0, 1) \ {1/4, 1/2, 3/4} we find that

d

dp
F−1
1 (p) = 21(0, 1

2
)(p) + 41( 1

2
,1)(p),

d

dp
F−1
3 (p) = 41(0, 1

2
)(p) + 21( 1

2
,1)(p),

d

dp
F−1
2 (p) = 41(0, 1

4
)(p) + 21( 1

4
, 3
4
)(p) + 41( 3

4
,1)(p),

hence
γ(p) = 1

3

∑3
i=1 E

(
d
dp
F−1(p)

∣∣∣F = Fi

)
= 10

3
1(0, 1

4
)(p) +

8
3
1( 1

4
, 3
4
)(p) +

10
3
1( 3

4
,1)(p).

The law of total expectation implies
E
(
1{F (Y ) ≤ p} d

dp
F−1(p)

)
=

10

3
p1(0, 1

4
)(p) +

(
3

15
+

34

15
p

)
1( 1

4
, 3
4
)(p) +

10

3
p1( 3

4
,1)(p),

and hence,
f(p) = p1(0, 1

4
)(p) +

(
3
40

+ 17
20
p
)
1( 1

4
, 3
4
)(p) + p1( 3

4
,1)(p).

Finally, we obtain
MCBHB =

∫
(p− f(p))2 γ(p) dp =

∫ 3
4
1
4

(
3
20
p− 3

40

)2 8
3
dp = 1

1600
.

6.C.5 Example 2.14 b) in Gneiting and Resin (2023)

For y1 < y2 < y3, let F be a mixture of the Dirac measures on y1, y2, and y3 withweights p1, p2, and p3, and let Y be drawn from amixture of the same Dirac measures
with weights q1, q2, and q3, respectively. Suppose that the tuple (p1, p2, p3; q1, q2, q3)attains each of the values(

1
2
, 1
4
, 1
4
; 5
10
, 4
10
, 1
10

)
,
(
1
4
, 1
2
, 1
4
; 1
10
, 5
10
, 4
10

)
,
(
1
4
, 1
4
, 1
2
; 4
10
, 1
10
, 5
10

)
with equal probability. Let t1 = y2 − y1 > 0, t2 = y3 − y2 > 0, and t = t1 +

t2. It is immediate that ECRPS(F, Y ) = 5t/24 and UNC0 = ECRPS(Fmg, Y ) =

2t/9. As Gneiting and Resin (2023) show,F is threshold and quantile calibrated, hence
MCBBS = MCBQS = 0.
Let F1, F2, and F3 denote the three discrete distributions that F may attain. For i =
1, 2, 3, denote by Qi the conditional law of Y given F = Fi and by Gi the isotonic
conditional law of Y given F = Fi, namely,
G1 =

1
2
δy1 +

4
10
δy2 +

1
10
δy3 , G2 =

1
4
δy1 +

7
20
δy2 +

4
10
δy3 , G3 =

1
4
δy1 +

1
4
δy2 +

1
2
δy3 .
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Since the image of the random vector (F, Y ) is finite and ICL is the population version
of IDR (Arnold and Ziegel, 2023, Proposition 4.1), one obtains theGi’s alternatively byapplying IDR on the finite sample of size n = 30with five occurrences of (F1, y1), fourof (F1, y2), one each of (F1, y3 and (F2, y1), five of (F2, y2), four each of (F2, y3) and
(F3, y1), one of (F3, y2), and five of (F3, y3). TheMCBCT andMCBISO components
may be calculated in analogy to previous examples. We obtainMCBCT = 3t/200 and
MCBISO = 3t2/200.
To compute the Hersbach decomposition, let νi be the image of the Lebesguemeasure
on (0, 1) underFi where i = 1, 2, 3. We have ν1 = t1δ1/2+t2δ3/4, ν2 = t1δ1/4+t2δ3/4,and ν3 = t1δ1/4 + t2δ1/2, and hence, µ = (1/3)(2t1 δ1/4 + t δ1/2 + 2t2 δ3/4). For
ℓ = 1, 2, 3 and pl = l/4, and for any A ∈ B(0, 1), the quantities fℓ = f(pℓ) satisfy

τ(A) = E
∫
A

1{F (Y ) ≤ p} dνF (p) (6.50)
=

∫
A

f(p) dµ(p) = f1
2t1
3
δ1/4(A) + f2

t

3
δ1/2(A) + f3

2t2
3
δ3/4(A),

where the expectation in (6.50) may be calculated by the law of total expectation:
E
∫
A
1{F (Y ) ≤ p} dν(p) = 1

3

3∑
i=1

E
(∫

A

1{F (Y ) ≤ p} dνF (p)
∣∣ F = Fi

)

=
1

3

3∑
i=1

∫ ∫
A

1{Fi(y) ≤ p} dνi(p) dQi(y)

=
t1
6
δ1/4(A) +

t

6
δ1/2(A) +

t2
2
δ3/4(A).

We conclude that fℓ = pℓ for ℓ = 1, 2, 3, and henceMCBHB = 0.
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7 | Physics-based vs. data-driven 24-
hour probabilistic precipitation fore-
casts for northern tropical Africa

Numerical weather prediction (NWP) models struggle to skillfully predict tropical pre-
cipitation occurrence and amount, calling for alternative approaches. For instance, it
has been shown that fairly simple, purely data-driven logistic regressionmodels for 24-
hour precipitation occurrence outperform both climatological and NWP forecasts for
theWest African summermonsoon. More complex neural network based approaches,
however, remain underdeveloped due to the non-Gaussian character of precipitation.
In this study, we develop and apply a new two-stage approach, where we train an
off-the-shelf convolutional neural network (CNN) on gridded rainfall data to obtain a
deterministic forecast and then apply the nonparametric Easy Uncertainty Quantifica-
tion (EasyUQ) approach to convert it into a probabilistic forecast. The structure of this
chapter aligns with the three forecasting steps introduced in Chapter 1. Each step is
successively applied using the corresponding newly developed tools from Chapters 4,
5 and 6, respectively.

7.1 Introduction

Despite the continuous improvement of numerical weather prediction (NWP)models,
precipitation forecasts in the tropics remain a great challenge. Several studies (Haiden
et al., 2012; Vogel et al., 2020) have shown that NWP models have difficulties in out-
performing climatological forecasts. A possible explanation is the exceptional high
degree of convective organization over tropical Africa (Nesbitt et al., 2006; Roca et al.,
2014), a process that is difficult to capture with the convective parameterization of
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7. Probabilistic precipitation forecasts for northern tropical Africa
NWP models (Vogel et al., 2018), although recent developments show some promise
(Becker et al., 2021). Statistical postprocessing, spatial averaging, or temporal aggre-
gation lead to improvements in the skill of raw NWP ensemble gridpoint forecasts in
tropical Africa (Vogel et al., 2020; Stellingwerf et al., 2021; Gebremichael et al., 2022;
Ageet et al., 2023), yet in regions of particularly poor performance of the operational
forecast systems, viz. West and Central Equatorial Africa, the forecast gain over clima-
tology is limited.
The overall poor performance of current operational systems motivates the develop-
ment of alternative approaches. Vogel et al. (2020) implement a fairly simple purely
data-driven logistic regressionmodel for 24-hour precipitation occurrence, which out-
performs climatology and NWP forecasts for the summer monsoon season in West
Africa. The predictor variables are designed by exploiting spatial-temporal coherence
patterns as developed and investigated further in Rasheeda Satheesh et al. (2023). To
this end, the rainfall at each grid point is correlated with the rainfall at all other lo-
cations from 1, 2, and 3 days before using the coefficient of predictive ability (CPA)
measure from Chapter 4 (Gneiting and Walz, 2022). The locations showing highest
CPA for 1, 2, and 3 days before, respectively, are selected as predictor variables in the
logistic regression model. The good performance of this simple logistic model, which
is related to coherent, tropical wave driven spatial propagation of precipitation fea-
tures in West Africa (Rasheeda Satheesh et al., 2023), motivates the development of
more sophisticated data-drivenmodels and the usage of additional weather quantities
linked to rainfall occurrence and amount.
Vogel et al. (2021) and Rasheeda Satheesh et al. (2023) have only investigated the
skill of probability forecasts for the binary problem of precipitation occurrence. In this
chapter, the more challenging problem of producing accurate probabilistic forecasts
for accumulated precipitation, a non-negative real-valued variable, is considered. Pre-
cipitation accumulation is generally considered the “most difficult weather variable to
forecast” (Ebert-Uphoff and Hilburn, 2023). Indeed, precipitation accumulation fol-
lows amixture distribution with a point mass at zero— namely, for no precipitation—
and a continuous part on the positive real numbers. Therefore, despite the sweeping
rise of data-drivenweather prediction (Ben Bouallègue et al., 2023) and rapid progress
in data-driven nowcasting of precipitation (Ayzel et al., 2020; Lagerquist et al., 2021;
Ravuri et al., 2021; Schroeder de Witt et al., 2021; Espeholt et al., 2022; Zhang et al.,
2023), the development ofmachine learning basedmethods for probabilistic quantita-
tive precipitation forecasts – at least for lead times longer 12 hours – has been lagging.
For example, precipitation was “not investigated” (Bi et al., 2023, p. 537) by the Pangu-
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Weather team and “left out of the scope" of the GraphCast development, because
“precipitation is sparse and non-Gaussian and would have required different model-
ing decisions than the other variables” (Lam et al., 2023, p. 6). We address these chal-
lenges by developing a novel two-stage CNN+EasyUQapproach, wherewefirst train an
off-the-shelf convolutional neural network (CNN) model to obtain a single-valued de-
terministic forecast, and then use the Easy Uncertainty Quantification (EasyUQ) (Walz
et al., 2024) approach presented in Chapter 5 to convert the deterministic forecast
into a probabilistic forecast.
The chapter is structured as followed. Section 7.2 introduces the data used in the anal-
ysis. Then, an overview of weather quantities which are known to be linked to precipi-
tation and thus are candidates for predictor variables is provided in section 7.3. Differ-
ent types of forecasting models are described in section 7.4. Importantly, we compare
the CNN+EasyUQ forecasts to a comprehensive suite of state of the art methods that
include physics-based raw NWP ensemble forecasts, postprocessed NWP forecasts,
data-driven statistical forecasts based on logistic regression and distributional index
models (DIMs), and combined statistical-dynamical (hybrid) approaches. Results from
this comparison are presented in section 7.5 with the main conclusion and outlook in
section 7.6.

7.2 Data

In this study, we use data from three different sources. The arguably best currently
available high-resolution, gauge-calibrated, gridded precipitation product, the Inte-
gratedMulti-Satellite Retrievals for GPM (Global PrecipitationMeasurement) (IMERG;
Huffman et al., 2020), serves as ground truth for precipitation. The European Centre
forMedium-RangeWeather Forecasts (ECMWF) Reanalysis Version 5 (ERA5; Hersbach
et al., 2020) product is used to obtain estimates of other weather quantities. Finally,
NWP forecasts, namely the high resolution (HRES) run and the full ECMWF ensemble
prediction system (EPS) are downloaded from ECMWF’s Meteorological Archival and
Retrieval System (MARS, https://www.ecmwf.int/en/forecasts/access-forec
asts/access-archive-datasets).
The evaluation domain, visualized in Figure 7.1, is northern tropical Africa, represented
by 61 × 19 grid boxes centered at 25◦W – 35◦E and 0◦ – 18◦N, respectively, similar
to the setup in Vogel et al. (2020) and Rasheeda Satheesh et al. (2023). Five dis-
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Figure 7.1: Overview of the study area. Following Rasheeda Satheesh et al. (2023), we
consider an evaluation domain over northern tropical Africa that comprises 61 × 19

grid boxes with centers spanning from 25◦ Wto 35◦ E in longitude and from 0◦ to 18◦ N
in latitude, respectively. The time period considered ranges from 1 December 2000 to
30 November 2019, with 24-hour forecasts of precipitation amount and precipitation
occurrence for 1 December 2010 to 30 November 2019 being evaluated. The analysis
is over land only, and shading indicates altitude inmeters, based on the ERA5 land–sea
mask.
tinct seasons are considered as identified previously (Fink et al., 2017; Maranan et al.,
2018): December–February (DJF), which is the dry season with occasional showers
along the Guinea Coast; theMarch–April (MA) period, which features highly organized
Mesoscale Convective Systems (MCSs) at the Guinea coast and the coastal hinterland;
May–June (MJ), the major rainy season along most parts of the Guinea Coast; July–
September (JAS), the major rainy season in the Sahel and the little dry season at the
coast; and October–November (ON), the second, weaker rainy season at the Guinea
Coast. To avoid cutting seasonal periods at the beginning or the end of the time pe-
riod under investigation, the time period considered starts 1 December 2000 and ends
30 November 2019. Importantly, the analysis and evaluation are performed over land
only, and we frequently identify a grid box with the grid point at its center. From now
on, when we refer to grid boxes or grid points, we only mean boxes or points on land.

7.2.1 GPM IMERG rainfall data

We use the GPM IMERG V06B final version (Hou et al., 2014; Huffman et al., 2020)
to calculate 24-hour accumulated precipitation from 06 – 06 UTC for the period un-
der investigation. GPM IMERG has a temporal resolution of 30 minutes and a spatial
resolution of 0.1◦ × 0.1◦. The data were regridded to a resolution of 1◦ × 1◦ using
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first-order conservative remapping. As we also consider 24-hour rainfall occurrence,
we threshold at 0.2 mm to obtain a binary event variable representing precipitation
occurrence.
The GPM IMERG algorithm uses both radar-calibratedmicrowave radiance from polar-
orbiting satellites and infrared radiance from geostationary satellites. In the final ver-
sion, the precipitation totals are calibrated with rain gauge measurements provided
by the Global Precipitation Climatology Centre (GPCC; Schneider et al., 2005). The
degree to which the original estimates are adjusted by the gauge calibration process
within a given region is generally determined by the number of available rain gauges,
which is highly variable across the Tropics.

7.2.2 Predictor variables from ERA5

Our study considers a range of meteorological variables, specified in section 7.3.2,
as predictor variables for statistical models. Specifically, we use the ERA5 reanaly-
sis (Hersbach et al., 2020), which provides a complete and consistent coverage of the
study domain by combining model data with observations. For this study the resolu-
tion of the data is 1◦×1◦ just like for GPM IMERG. In contrast to 24-hour accumulated
precipitation, the considered ERA5 weather quantities are instantaneous values at 00
UTC, thus six hours before the 24-hour accumulation period for GPM IMERG starts.
This way, observed ambient conditions well before the rainfall begins get considered.
For an operational implementation of the respective statistical methods, operational
analysis data would need to be used, as ERA5 is not available in near-real time, but we
do not expect this to make a big difference to our results.

7.2.3 Physics-based forecasts from ECMWF

We now describe the NWP forecasts used in this study, namely, the ECMWF high reso-
lution (HRES)model and ensemble prediction system (EPS;Molteni et al., 1996), which
are also used in the case studies of Chapter 4 (see Sections 4.5 and 4.5.3), Chapter
5 (see Sections 5.2.2, 5.2.3 and 5.3.3) and Chapter 6 (see Section 6.5.1). Owing to
the high resolution and the initialization with the most accurate analysis product, the
HRESmodel is arguably the leading global deterministic NWP forecast available. As an
operational product, HRES has changed considerably over time in frequent updates
(https://confluence.ecmwf.int/display/FCST/Changes+to+the+forecasti
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ng+system). The ECMWF EPS consists of one control run and 50 perturbedmembers.
Like the HRES model, the control run is based on the most accurate initial state of the
atmosphere. The perturbed members start from slightly different initial conditions
and use perturbed physics options.
The forecasts are available from MARS in a grid resolution of 0.25◦ × 0.25◦ and first-
order conservatively remapped to a resolution of 1◦ × 1◦. HRES forecasts for total
precipitation are obtained by summing forecasts for large scale precipitation and con-
vective precipitation, which are available from April 2001 on. For the EPS, total pre-
cipitation is available from April 2006 on. To cover an equal number of seasons, we
use data starting in December 2001 and December 2006, respectively. The HRES fore-
casts for 24-hour precipitation amounts are initialized at 00 UTC with a lead time of
24 hours. To obtain EPS forecasts for 24-hour precipitation amounts the difference
between forecasts of accumulated precipitation initialized at 00 UTC with lead times
of 30 and 6 hours is computed. To compute the EPS forecast probability for the oc-
currence of precipitation, the member forecasts are thresholded at 0.2 mm and the
respective binary outcomes are averaged.

7.3 Predictor variables for data-driven forecasts

In this section we discuss and analyze potential predictor variables for data-driven
forecasting methods. We distinguish predictor variables computed from IMERG data
based on spatio-temporal rainfall correlation, and predictor variables based on ERA5.
The initial selection of the variables stems from meteorological expertise.

7.3.1 Correlated rainfall predictors from IMERG

Vogel et al. (2021) introduced a logistic regression model to produce probability fore-
casts for the binary outcome of precipitation occurrence. As predictors, they used pre-
cipitation data with a lag of one and two days at locations with maximum positive and
minimum negative Spearman’s rank correlation coefficient. Rasheeda Satheesh et al.
(2023) noted that due to propagating rainfall systems positive dependencies carry the
most useful information, occasionally reaching three days backwards in time. More-
over, they suggested a replacement of Spearman’s rank correlation coefficient by the
coefficient of predictive ability (CPA; Gneiting andWalz, 2022) measure presented in
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Chapter 4. In general, CPA is asymmetric, with the predictor variable and the out-
come taking clearly identified roles, as for the classical Area Under the Receiver Op-
erating Characteristic (ROC) Curve (AUC) measure, to which CPA reduces when the
outcomes are binary. When both the predictor variable and the outcome are con-
tinuous variables, CPA becomes symmetric and equals Spearman’s rank correlation
coefficient, up to a linear transformation in a continuous setting. AUC or CPA val-
ues above 0.5 correspond to positive dependencies, and values below 0.5 to negative
dependencies.
Given these insights, this current study uses three correlated precipitation predictor
variables, by identifying the grid points with maximum CPA at a temporal lag of one,
two, and three days, respectively. Following Rasheeda Satheesh et al. (2023), corre-
lated locations are identified within an enlarged region that comprises 68◦W – 50◦E
and 0◦ − 20◦N, as compared to the evaluation domain depicted in Figure 7.1, which
ranges from 25◦W – 35◦E and 0◦ – 18◦N.

7.3.2 Predictor variables from ERA5 reanalysis

In addition to the correlated precipitation information, various meteorological vari-
ables from ERA5 are considered as predictors (Table 7.1). For a summary of how en-
vironmental conditions affect convection, see Maranan et al. (2018). Unless noted
otherwise, the variables are instantaneous quantities at 00 UTC. The first four vari-
ables in Table 7.1 are vertically integrated measures of water in different forms. TCWV
has been shown to be a promising predictor for precipitation by Lafore et al. (2017b);
Schroeder de Witt et al. (2021) use cloud information such as TCLW and TCC in their
global statistical model. The second group comprises the three classical measures of
convective instability; CAPE (the theoretical maximum of thermodynamic energy that
can be converted into kinetic energy of vertical motion), CIN (the energy barrier that
needs to be overcome to reach the level of free convection), and KX (based on dry
static vertical stability in the 850–500 hPa layer, absolute humidity at 850 hPa, and
relative humidity at 700h pa). CAPE and CIN have a complex relationship with pre-
cipitation and should be considered together and in concert with other parameters
(Lafore et al., 2017a). Galvin (2010) demonstrates the usefulness of KX in assessing
convective rainfall probability in relation to African Easterly Waves (AEWs).
The third group (2T, 2D, SPT) represents near-surface conditions. The former two are
closely related to the equivalent potential temperature of a starting convective air
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Table 7.1: Predictor variables from ERA5, all at 00 UTC.

Meteorological Variable Acronym
Total column water vapour TCWV
Vertically integrated moisture divergence VIMD
Total column cloud liquid water TCLW
Total cloud cover TCC
Convective available potential energy CAPE
Convective inhibition CIN
K-index KX
2m temperature 2T
2m dewpoint temperature 2D
24h surface pressure tendency SPT
Temperature at 850 hPa T850
Temperature at 500 hPa T500
Specific humidity at 925 hPa Q925
Specific humidity at 700 hPa Q700
Specific humidity at 600 hPa Q600
Specific humidity at 500 hPa Q500
Relative humidity at 500 hPa R500
Relative humidity at 300 hPa R300
Shear SHR
Streamfunction at 700 hPa Ψ700

parcel, thereby influencing the level of cumulus condensation and free convection and
thus CIN and CAPE, and have been shown to impact the intensity of convection inWest
Africa (Nicholls and Mohr, 2010). SPT, the tendency from 00 UTC of the day for which
the prediction is made to 00 UTC of the previous day, can be related to AEW propa-
gation and rainfall (Regula, 1936; Hubert, 1936). The fourth group characterises ther-
modynamic conditions in the boundary layer and free troposphere between 925 hPa
and 300 hPa. For temperature, we consider 850 hPa and 500 hPa representing lower-
tropospheric stability (as in KX). As moisture generally shows complex vertical struc-
tures, 925, 700, 600, and 500 hPa are chosen for specific humidity. For relative hu-
midity, themid- to upper-tropospheric levels of 500 hPa and 300 hPawere selected to
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indicate deep moistening, which facilitates cloud formation and reduces detrimental
effects of entrainment on convective development. Mid-tropospheric relative humid-
ity controls both rainfall enhancement by slowmoving tropical waves (Schlueter et al.,
2019) and evaporation of rainfall, and thus convective downdrafts and mesoscale or-
ganization of convection (Klein et al., 2021). The last two entries in Table 7.1 are the
circulation-related variables SHR (normalized difference of horizontal wind at 600 and
925 hPa) and Ψ700 representing mid-tropospheric streamlines. SHR influences the
potential for mesoscale organization and longevity through separating the areas of
convective up- and downdrafts as well as the generation of cold pools (Rotunno et al.,
1988; Lafore et al., 2017b). Anomalies in Ψ700 indicate variations in the African East-
erly Jet (AEJ), e.g., passages of troughs and ridges of AEWs (Kiladis et al., 2006).

7.3.3 Statistical analysis of predictor variables

Thus far, the selection of predictor variables has been based on meteorological exper-
tise and findings from other publications. Here, we use the aforementionedAUC (for
rainfall occurrence) and CPA (for amount) measures (see Section 7.3.1) for a deeper
analysis. In Figures 7.2 and 7.3 we show AUC and CPA values for the 20 ERA5 vari-
ables from Table 7.1. Both are computed in a co-located fashion for each grid point in
the evaluation domain (Figure 7.1) and the resulting distributions are represented by
boxplots.
Figure 7.2a shows AUC values for the dry season DJF. Given the overall low precipi-
tation amounts during this period, the box plots often stretch over large ranges, in-
dicating marked differences between grid points, and also large differences between
the variables. Stable positive relations (i.e., AUC above 0.5) are found for moisture
(TCWV, Q500, Q600, Q700, R500), cloud (TCLW, TCC), and instability variables (KX,
CAPE), demonstrating a clear dependence onmid-tropospheric conditions, while low-
level (Q925, 2D) and upper-level (R300) variables show a more ambiguous behavior.
Other well-defined relations are positive with 2T, and negative with T500 and VIMD.
As the variables are taken at 00 UTC, the relation to 2T may reflect warmer nights un-
der moister and cloudier skies. CIN, SPT, and Ψ700 show weak AUC values close to
0.5. AUC values for T850 cover a wide range and stretch across 0.5, indicating that
its impact depends strongly on the situation.
The corresponding analysis for MA (Figure 7.2b) shows an overall less noisy behavior
and AUC values more in line with the spatially averaged annual value of CPA that
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Figure 7.2: Boxplots of grid point AUC values between ERA5 variables from Table 7.1
and precipitation occurrence in season a) DJF, b) MA, c) MJ, d) JAS, and e) ON. The
arrangement of the predictor variables on the horizontal axis is in the order of the
spatially averagedCPA value for precipitation accumulation, whenCPA is computed
without splitting into seasons. The orange marks and the line plots in panel f) indicate
themeanAUC value over grid points for the season at hand. The box colour fromdark
to light blue indicates the ranking of the seasonal mean AUC value. In combination
this allows to identify differences between yearly vs. seasonal perspectives.

determines the order of the variables in all panels of Figures 7.2 and 7.3. Compared to
DJF, a more stable relation to low-level moisture (Q700, Q925, 2D) is visible. There is
a stronger relation to CAPE with little changes in CIN. Other remarkable changes are
less dependence on cold T500, and evenmore ambiguous relations to T850 andΨ700.
The pre-monsoon seasonMJ (Figure 7.2c), when rainfalls begin to move inland, shows
many similarities to MA but the point-to-point variability is smaller and AUC values
tend to be closer to 0.5, while their order mostly agrees to that based on annual CPAs.
Remarkable differences toMAare less dependence on 2T and clearer relations to T850
and Ψ700 (< 0.5). The latter may indicate a dependence of rainfall on the existence
of cyclonic perturbations such as AEWs. The general magnitude of AUC values close
to 0.5 is likely a reflection of the overall improved conditions for convection, which
makes individual storms less dependent on particular circumstances, thereby creat-
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Figure 7.3: As Figure 7.2 but for CPA and precipitation amount.

ing a higher degree of stochasticity (see also discussion in Rasheeda Satheesh et al.
(2023)). This trend continues going into the main monsoon season JAS (Figure 7.2d),
when most variables show AUC values close to 0.5. The narrower boxplots indicate
less local variability during a period when rains penetrate deeply into the continent.
As expected, in the post-monsoon season ON (Figure 7.2e), conditions resemble those
discussed for MA (Figure 7.2b), even with slightly larger amplitudes. Remarkable dif-
ferences to MA are that rainfall occurrence depends more on CIN and 2T, possibly
because in ON the solar angle is already flatter and the daytime heating is further
dampened by the higher moisture availability after the rainy season. As for DJF, rain
depends on cold T500 and the relation to T850 is highly variable and can take both
directions, however, with a clear tendency to cooler conditions when rain occurs. ON
also shows the clearest relation to cyclonic perturbations as reflected in AUC values
below 0.5 forΨ700. These may grow in importance relative to other mechanisms, as
triggering by daytime heating weakens. Finally, Figure 7.2f shows a summary plot of
mean AUC values for all five seasons. This plot underlines the similar behavior of MJ
and JAS (with a consistently higher amplitude for MJ), as well as of MA and ON (with
a consistently higher amplitude for ON). DJF often shows the highest magnitude, as
rain depends strongly on unusual conditions to occur, but given the many dry days,
the overall behavior appears quite noisy.
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Figure 7.4: Spatial pattern of CPA between the ERA5 predictor a) TCWV, b) KX, c)
R500, d) CIN, e) T850, f) Ψ700, g) TCC, h) 2T, i) CAPE, and j) SHR from Table 7.1 and
precipitation amount in season JAS.

The corresponding analysis forCPA is shown in Figure 7.3. Overall there aremany sim-
ilarities to Figure 7.2, indicating that variables that work as predictors for occurrence
also work for amount. This is particularly true for the wet part of the year (MJ, JAS and
ON), where plots look largely identical (Figure 7.3c–e). For MA (Figure 7.3b), there is
still large agreement across all variables but the magnitude of CPA values is smaller
and the box plots are narrower than for AUC. This indicates that in this somewhat
marginal rainfall season, amount is harder to predict than occurrence. This trend is
evenmore evident for dry DJF (Figure 7.3a), when some boxplots become very narrow
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and magnitudes fall underneath those of ON on average, as shown by the summary
plot (Figure 7.3f).
In order to better understand the ranges indicated in the boxplots in Figures 7.2 and
7.3, Figure 7.4 shows the spatial pattern of CPA of selected meteorological variables
exemplary for the peak monsoon season JAS. Consistent with the leftmost boxplot in
Figure 7.3d CPA values for TCWV are at or above 0.5 almost everywhere in the study
region (Figure 7.4a). The spatial pattern shows an interesting three-tier structure. Over
northern parts of the domain, where moisture is a general limiting factor,CPA values
are high, especially over the dry eastern Sahel. Further south, along the main rain
belt and stretching into the Congo Basin, CPA values are close to 0.5, indicating lim-
itations through convective triggering or stability rather than moisture availability. To
the south of the rain belt, i.e., along the Guinea Coast, and over the East African high-
lands, moisture appears to become a limiting factor again. A very similar pattern but
with a smaller range emerges for KX (Figure 7.4b). The largest differences to TCWV are
found in the Guinea Coastal area, where conditions are often close to moist neutral
requiring some lifting mechanism to produce rain (see Figure 1.31 in Fink et al., 2017).
Similar but slightly northward shifted structures are also found for CAPE (Figure 7.4i).
A much larger range (0.35–0.75) but with a similar three-tier structure is found for
R500 and CIN (Figures 7.4c,d). One would expect that a moister mid-troposphere
and less convective inhibition (recall that CIN is negatively oriented) enhances rainfall
amounts and so the behavior within the rain belt is somewhat counter-intuitive. The
most likely explanation is that in areas of abundantmoisture and often neutral stratifi-
cation, large rainfall amounts can most effectively be generated by organized convec-
tive systems that require some barrier to accumulate CAPE over the following day and
a relatively dry mid-troposphere to allow rainfall evaporation and downdrafts, which
in turn can trigger new convection through cold pools (cf. Table 11.2 in Lafore et al.
(2017a)). It is interesting to note that TCC shows similarly low CPA values (< 0.5) in
the rain belt as R500 (Figure 7.4a).
Finally, CPA values for T850 and Ψ700 are both characterised by a marked north-
south division around 12◦N (Figures 7.4e,f). In Figure 7.4e values over the East African
highland should be largely ignored, as they are mostly extrapolated to beneath the
model orography. The patterns indicate that in the north, high rainfall amounts are
accompanied by lower T850, likely indicating a northward progression of the moist
and cool monsoon layer, while in the south warm air at 850 hPa may indicate more
instability on the following day. With respect to Ψ700 (Figure 7.4f) low values in the
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Figure 7.5: Spatially averaged Spearman’s rank correlation coefficient between the
ERA5 variables from Table 7.1 in season a) DJF, b) MA, c) MJ, d) JAS, and e) ON.

north indicate that rainfall is accompanied by more cyclonic conditions, likely due to
the trough passage of AEWs, while in the south weak anticyclonic conditions prevail.
Mostmeteorological variables from Table 7.1 show spatial patterns akin to those in Fig-
ure 7.4, though some feature hard to interpret local signals that entail a wider range
of CPA values (e.g., 2T and SHR, Figure 7.4h,j). It is also worth mentioning that corre-
sponding spatial structures forAUC largely agree with CPA (not shown). Comparing
Figure 7.4 with the other four seasons, we find a high consistency in the discussed pat-
terns that largely shift north- and southward with the seasonal evolution of the West
African monsoon system (not shown).
For the construction of statistical models, correlations between predictor variables
matter, as they hinder interpretation and may yield unstable statistical parameters.
Figure 7.5 shows Spearman’s correlation coefficients for the 20 predictor variables
from Table 7.1 presented in the same order as in Figures 7.2 and 7.3. We compute the
correlation coefficient at each grid point, and then average over grid points. Note that
here, wewant the correlation coefficient to be symmetric (in contrast to the asymmet-
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7. Probabilistic precipitation forecasts for northern tropical Africa
ric relation between target and predictor variables). This analysis has been conducted
for the same seasons as in Figures 7.2 and 7.3 and the entire year but due to the large
similarities between them, we discuss JAS only (as for Figure 7.4).
Not surprisingly, there are generally high correlations between all moisture variables
(TCWV, Q500, Q600, Q700, Q925, 2D, TCLW, R500, R300, and TCC) with the weakest
relationship between R300 on the one hand and 2D and TCLW on the other hand.
It is noteworthy that R500 is more strongly correlated to Q500 than T500. KX and
CAPE show considerably different patterns with KX being highly correlated with the
moisture variables but surprisingly also associated with cold T850, which to some ex-
tent counteracts the impact of moister conditions. CAPE is most sensitive to low-level
moisture and associated with warm T850, as does CIN but to a smaller degree. A posi-
tive SPT is weakly associated with a moister and warmer atmosphere, consistent with
the southerly flow behind an AEW trough, where the moister atmosphere suppresses
longwave cooling. SHR, 2T, and T500 show overall weak and unsystematic correla-
tions, in agreement with the difficult to interpret spatial patterns for CPA discussed
above. Finally, T850, VIMD, and Ψ700 are consistently negatively correlated with the
moisture variables and KX, with the exception of 2D. While the relation to VIMD is
straightforward, the cooler T850 may be an indication of north-south movements of
the monsoon layer, bringing overall moister or drier conditions. The negative corre-
lation between moisture variables and Ψ700 reflects the wet conditions associated
with cyclonic disturbances, e.g., AEW troughs or vortices.

7.4 Physics-based and data-driven forecast methods

Forecasts for precipitation occurrence and precipitation amount ought to be prob-
abilistic to account for the chaotic nature of the atmosphere, thus for the former
they should output a probability of precipitation (PoP) and for the latter a proba-
bility distribution. We investigate forecasts for precipitation occurrence and precip-
itation amount separately, which allows to connect our results to Vogel et al. (2021)
and Rasheeda Satheesh et al. (2023), where the binary setting was considered only.
Furthermore, we can compare between the comparably easy task of producing PoP
forecasts and the more challenging task of constructing probabilistic forecasts for pre-
cipitation amounts. To assess the skill of statistical and machine learning models it
is essential to use baseline models to which to compare the forecast performance. In
the following subsections, different types of forecastingmodels are presented that are
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7. Probabilistic precipitation forecasts for northern tropical Africa
Table 7.2: Overview of probabilistic forecast methods for precipitation occurrence
and/or accumulation, including general type, brief description, acronym, and availabil-
ity of training data. Methods marked with an asterisk∗ yield PoP occurrence forecasts
only; for methods marked∗∗ we do not present results for PoP forecasts. The final col-
umn notes from which year and month onward training data are available and used.
See text for details.
Type Description Acronym Training
Climatological monthly probabilistic climatology MPC 2000 12
Physics-based ECMWF ensemble prediction system EPS NA

isotonic regression applied to EPS EPS+ISO∗ 2006 12
EMOS applied to EPS EPS+EMOS∗∗ 2006 12
EasyUQ applied to HRES HRES+EasyUQ 2001 12

Statistical logistic regresssion, baseline (5 predictors) Logit-base∗ 2000 12
same, full model (25 predictors) Logit-full∗ 2000 12
distributional index model, baseline (5 predictors) DIM-base∗∗ 2000 12
same, full model (25 predictors) DIM-full∗∗ 2000 12

Machine learning EasyUQ applied to convolutional neural network CNN+EasyUQ 2000 12
Hybrid mixture of HRES+EasyUQ and CNN+EasyUQ Hybrid NA

physics-based NWP models, purely data-driven statistical or machine learning tech-
niques, or mixtures of both. Table 7.2 provides an overview of all considered ap-
proaches.
As discussed in section 7.2, our evaluation period for 24-hour forecasts of precipitation
amount and precipitation occurrence ranges from 1 December 2010 to 30 November
2019. The DJF season runs across two subsequent calendar years and we generally
assign it to the second year. Reporting a yearly seasonal or overall mean instead of a
singlemean score over the complete evaluation period allows for amore distinct com-
parison between forecastingmodels and provides insights into the temporal evolution
of forecast skill.
Except for the ECMWFensemble prediction system (EPS), all types of forecastingmeth-
ods require training data and some form of training procedure.1 In this study, we use
annually growing, expanding training sets that resemble operational settings, where

1Our Hybrid model combines the CNN+EasyUQ and HRES+EasyUQ forecasts in a way that does not
require additional training.
152



7. Probabilistic precipitation forecasts for northern tropical Africa
only past data are available.2 The initial training period ranges from the first day of
the month in the right most column of Table 7.2 (hereinafter, the start date) to 30
November 2010, and the thus trained methods are used to generate day-ahead 24-
hour forecasts for the period from 1 December 2010 to 30 November 2011. Then, we
successively add onemore year to the training period, ranging now from the start date
through 30 November in year 2010+x, and use the thus trainedmethods to generate
forecasts for the 12-month period that begins on 1 December in year 2010 + x, where
x ∈ {1, . . . , 8}. This procedure is followed until training is on data through 30 Novem-
ber 2018 and the thus trained methods are used to generate forecasts for 1 December
2018 through 30 November 2019. Thus, there are nine evaluation folds in total, which
we associate with calendar years 2011, . . . , 2019, respectively.

7.4.1 Climatological forecasts

Arguably, the simplest possible typeof probabilistic forecast is a climatology constructed
from past observations. Here we use GPM IMERG to construct a monthly probabilis-
tic climatology (MPC). The MPC forecast for a specific valid date is an ensemble con-
structed by using all past observations from the month at hand. For example, for a
test date in January 2014, the MPC forecast is constructed based on data from Jan-
uary 2001 to January 2013, which yields an ensemble of size 31× 13 = 403. To obtain
the MPC PoP forecast, the relative frequency of ensemble members with rainfall ex-
ceeding 0.2 mm is computed.

7.4.2 Physics-based forecasts

Our comparison includes raw and postprocessed probabilistic forecasts from physics-
based numerical weather prediction (NWP) models run by the ECMWF (section 7.2.3).
The postprocessed forecasts require training, for whichwe use expanding training sets
with start dates listed in Table 7.2 as described above. Training is performed at each
grid point individually.

2Nonparametric statistical methods such as IDR andmachine learning approaches benefit from hav-
ing as much (relevant) training data available as possible. Subject to this caveat, the predictive perfor-
mance generally does not depend very much on the details of the training scheme. For example, the
EPS+EMOS technique using a rolling training period of the most recent 730 days yields similar results.
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Operational ECMWF NWP ensemble

The operational ECMWF ensemble prediction system (EPS) comprises 51 NWP runs,
namely, a control member and 50 perturbed members. Just as for the climatological
MPC approach, the EPS PoP forecast is the relative frequency of members that exceed
0.2 mm.

Statistically postprocessed ECMWF NWP ensemble

Statistical postprocessing is used to correct for systematic biases in raw ensemble fore-
casts. Here we use EnsembleModel Output Statistics (EMOS), originally developed by
Gneiting et al. (2005), to generate full predictive probability distributions by linking en-
semble information to distributional parameters. The optimal coefficients are found
by optimizing a performance metric on training data.
In the binary case, we recalibrate the EPS PoP by using nonparametric isotonic re-
gression (Zadrozny and Elkan, 2002), here referred to as EPS+ISO. For precipitation
amounts, we apply the EMOS technique proposed by Scheuerer (2014) which models
positive rainfall accumulations with generalized extreme value distributions, to gener-
ate the EPS+EMOS forecast. While EPS+EMOS induces a PoP forecast, the predictive
performance is very similar, though typically slightly inferior, to EPS+ISO. Therefore,
we do not report results for the respective PoP forecasts (cf. Table 7.2).

EasyUQ on the HRES model

The high resolution (HRES) model from ECMWF generates a deterministic NWP fore-
cast. We use the EasyUQ technique, introduced in Chapter 5, to transform this single-
valued forecast into a postprocessed predictive distribution, to yield theHRES+EasyUQ
forecast.

7.4.3 Statistical forecasts

Statistical approaches use training data to learn relationships between a target vari-
able and one or more predictor variables. Here, the target variable is precipitation
amount at a given grid point, which in the case of precipitation occurrence is thresh-
olded at 0.2 mm. We use logistic regression (see Section 3.2) to obtain PoP forecasts
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and Distributional single IndexModels (DIMs; Henzi et al., 2023) for probabilistic fore-
casts of precipitation amounts, based on predictor variables from section 7.3. Statis-
tical models require training, and we use annually expanding training sets with start
date in December 2000 (Table 7.2) as described above. Training is performed at each
grid point individually.
The analysis in section 7.3 provides a thorough understanding of the influence of the
selected variables from Table 7.1 on precipitation occurrence and amount, and enables
to link them to typical seasonal weather phenomena. However, overall the effect of
meteorological variables on precipitation is similar across seasons when taking into
account the latitudinal shifts associated with the monsoon system. As a consequence
we found little difference in model performance between fitting models on seasonal
data versus the whole available training period, as temporal effects such as seasonal
changes can be captured by predictor variables that encode the day of the year. There-
fore, instead of fitting seasonal models, we train models that apply year-round.
We distinguish baseline models with two predictors that encode the day of the year
and three correlated rainfall predictors (section 7.3.1) from full models that addition-
ally use 20 predictor variables from ERA5 (section 7.3.2). To prevent a statistical model
from overfitting, regularization techniques can be applied. However, in this exper-
iment the performance of the statistical models, which use modest numbers of at
most 25 predictor variables only, does not improvewhen using the regularization tech-
niques we tested. Consequently, we refrain from performing any feature selection be-
yond the choices made in section 7.3, which were driven by meteorological expertise
and extant literature in atmospheric physics.

Logistic regression

We use logistic regression (Logit) models, introduced in Section 3.2, to generate sta-
tistical PoP forecasts. Specifically, let m be the number of predictor variables, which
we denote by x1, . . . , xm, and let p be the PoP forecast. The logistic regression model
then is of the form

logit(p) = log
p

1− p
= α0 +

m∑
j=1

αjxj, (7.1)

where the statistical coefficients α0, α1, . . . , αm are estimated from training data. Our
baselinemodel (Logit-base) originates from Vogel et al. (2021) and Rasheeda Satheesh
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et al. (2023) and usesm = 5 predictor variables, namely, three correlated rainfall pre-
dictors x1, x2, and x3 at temporal lags of one, two, and three days, respectively, as de-
scribed in section 7.3.1, and two variables x4 = sin(2πd/365) and x5 = cos(2πd/365)

that depend solely on the day of the year d. The full model (Logit-full) extends to
m = 25 predictor variables in (7.1), now including the twenty ERA5 variables from
Table 7.1.

Distributional index models

To produce probabilistic forecasts for accumulated precipitation we use the Distribu-
tional (single) Index Model (DIM) approach introduced by Henzi et al. (2023), which
combines the classical single indexmodel with Isotonic Distributional Regression (IDR;
Henzi et al., 2021). In a nutshell, an index is learned that represents the conditional
mean of the target variable (see Section 3.1), here log-transformed precipitation accu-
mulation, and then a predictive distribution is estimated nonparametrically under a
stochastic ordering constraint. As before, letm be the number of predictor variables,
which we denote by x1, . . . , xm, and let y now be precipitation accumulation. The
index model then assumes the relationship

log

(
y +

1

100

)
= β0 +

m∑
j=1

βjxj, (7.2)
where the statistical coefficients β0, β1, . . . , βm are learned from training data. Sub-
sequent to the training of the index model, the nonparametric IDR distributions are
estimated on the same training set. We distinguish a baseline model (DIM-base) and
an extended model (DIM-full, m = 25 in (7.2)), for which we use the same sets of
predictor variables as in the Logit approach from section 7.4.3.
Note that PoP forecasts can be extracted from theDIM-base andDIM-full distributions.
These yield similar, though slightly inferior, results than the Logit-base and Logit-full
PoP forecasts, respectively, and so we do not report the respective scores (cf. Table
7.2).

7.4.4 Machine learning based forecasts: CNN+EasyUQ

The aforementioned statisticalmodels are applied at each grid point individually. Thus,
including spatial information has to be done bymanually engineering features accord-
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ingly, such as the correlated rainfall predictors from section 7.3.1. In contrast, Convo-
lutional Neural Network (CNN) models operate directly on the two-dimensional input
space and can learn spatial relations from the data without the need to extract spa-
tial information beforehand. CNN models are most commonly used for image tasks,
where the input usually is a two- or three-dimensional array of pixel values. The grid-
ded weather data over our evaluation domain can be envisaged as two-dimensional
pseudo images of size 61×19. These dimensions correspond to longitude and latitude,
respectively, spanning the study domain (Figure 7.1) from 25◦ W to 35◦ E and 0◦ to 18◦
N, respectively, with a grid resolution of 1◦× 1◦. With a suitable architecture, a single
CNNmodel produces a two-dimensional arraywith forecasts for all grid points at once,
instead of training models at each grid point individually. Due to their inherent induc-
tive bias towards local neighborhood connectivity, CNNs are well-suited for predicting
precipitation on the 61 × 19 grids, as they effectively exploit spatial correlations and
structures within a grid, recognizing patterns within local areas that may be indicative
of specific weather conditions. For this reason, the three correlated rainfall predictors
from section 7.3.1 are replaced by 61× 19 grids of IMERG precipitation accumulations
(section 7.2.1) at temporal lags of one, two, and three days, respectively.
Motivated by their successful application in related meteorological tasks (Ayzel et al.,
2020; Weyn et al., 2020; Lagerquist et al., 2021; Chapman et al., 2022; Otero and
Horton, 2023), we employ a CNN architecture in the form of the U-Net (Ronneberger
et al., 2015). The architecture of the U-Net consists of a contracting (downsampling)
path and an expansive (upsampling) path, which are symmetric in terms of individual
layer properties, giving it a U-like shape. We make use of max pooling operations for
downsampling and transposed convolutions for upsampling layers. A crucial feature
of the U-Net is skip connections between layers of the same size in the contracting and
expanding paths. Applied to the precipitation data grid, these connections allow the
network to use information frommultiple resolutions, combining the context from the
contracting pathwith the localization information from the expansive path. This allows
to model longer spatial range dependencies in the data. To avoid overfitting, we also
make use of Dropout (Srivastava et al., 2014) throughout the network architecture.
To transform the deterministic precipitation forecasts of the CNN model into proba-
bilistic forecasts, the EasyUQ technique introduced in Chapter 5 is applied at each grid
point individually, subsequent to the training of the index model, and based on the
same training data as for the neural network, augmented with the deterministic CNN
output. As noted, the resulting CNN+EasyUQ forecast distributions are discrete and
have mass exclusively at outcomes observed during training. Code for the implemen-
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tation of the CNN+EasyUQ approach in Python (Python Software Foundation, 2021) is
available under https://github.com/evwalz/precipitation. Once more we
emphasize that, while our usage of EasyUQ in concert with the CNN model is novel,
we employ standard choices, such as quadratic loss and 3x3 convolutional kernels, for
the neural network architecture and neural network training.

7.4.5 Hybrid approaches

NWP models represent the physical laws of atmospheric dynamics through a set of
differential equations. Statistical or machine learning based approaches, on the other
hand, do not encode physical laws but learn patterns based exclusively on past data.
A hybrid model is a combination of both approaches and thus can benefit from both
the physical expertise embodied in NWP output and the flexibility of data-driven ap-
proaches. In this paper, we base hybrid approaches on the deterministic HRES forecast
from section 7.4.2 and the deterministic CNN forecast from section 7.4.4. We consider
three approaches to obtain probabilistic forecasts from the deterministic HRES and
CNN forecasts. First, the NWP forecast can be used as an additional gridded feature
in the CNN model, followed by grid point based application of EasyUQ. Secondly, we
can apply IDR using both deterministic forecasts as input features. Lastly, a simple
approach is to use a weighted or unweighted average of the predictive distributions
generated by HRES+EasyUQ and CNN+EasyUQ. We found experimentally that the first
two approaches do not improve predictive ability, generally showing similar forecast
performance to the CNN+EasyUQ forecast. The last approach in its most basic form of
an equal average between the HRES+EasyUQ and CNN+EasyUQ distributions, which
does not require any additional training, shows slight forecast improvements. It is
therefore selected and referred to as the Hybrid model.

7.5 Forecast evaluation

In this section we report major findings from the forecasting experiment. The dis-
cussion concentrates on the peak monsoon season JAS, but results are also provided
for the other seasons. As described at the start of section 7.4, our experiment uses
expanding training sets to learn the forecasting models, and we frequently report an-
nual results from the evaluation folds for 2011, . . . , 2019. As evaluation metrics, the
mean Brier score (BS) and the mean continuous ranked probability score (CRPS) in-
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Figure 7.6:Mean Brier score (BS) for the Logit PoP forecast under successive addition
of the predictor variables displayed on the horizontal axis. The base model includes
three correlated rainfall predictors and two time features. The BS is averaged over
space and season a) DJF, b) MA, c) MJ, d) JAS, and e) ON, and f) across seasons for
evaluation folds from 2011 to 2019.
troduced in Section 2.4 are used.

7.5.1 Effects of variable selection in statistical models

To better understand the influence of the predictor variables on the forecast perfor-
mance of the statistical models, namely, the Logit PoP forecast (section 7.4.3) and the
DIM forecast for precipitation accumulation (section 7.4.3), a visual analysis is provided
in Figure 7.6 and Figure 7.7, respectively. Starting with the mean score of the base
model, which has five predictor variables, one more variable is successively added
and the corresponding mean score is shown, until the full model with 25 predictor
variables is reached. The variables are selected in the order of the distance between
0.5 and the mean AUC respectively CPA computed without splitting into seasons.3
Although the overall level of the scores varies strongly between seasons, the results
are qualitatively similar. Therefore, the subsequent interpretation of the visual dis-

3An AUC or CPA value of 0.5 suggests a useless feature.
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Figure 7.7: Mean continuous ranked probability score (CRPS) for probabilistic fore-
casts fromDIM for precipitation accumulation inmillimeters under successive addition
of the predictor variables displayed on the horizontal axis. The base model includes
three correlated rainfall predictors and two time features. TheCRPS is averaged over
space and season a) DJF, b)MA, c)MJ, d) JAS, and e) ON, and f) across seasons for eval-
uation folds from 2011 to 2019.

plays focuses on season JAS. Figure 7.6d shows that for season JAS the addition of
TCWV to the Logit base model yields an improvement of the BS on the order of 5% in
all years. Small further improvements of less than 1% are obtained by addingmid-level
humidity (Q700) and static stability (KX). The addition of further variables yieldsminor
improvement only, with the striking exception of 2m temperature (2T), which leads to
an improvement comparable to Q700 and KX, despite AUC values barely above 0.5
(Figure 7.2d). Qualitatively, improvements in CRPS per predictor regarding precipita-
tion amount (Figure 7.7d) show similar results, yet the percentage improvements are
smaller such that adding variables other than TCWV andQ700 barely improves perfor-
mance. Generally, the performance difference between years is large, and the ranking
of the years differs between the BS, where the lowest values are seen for 2017, and
the CRPS, where they are seen for 2013.
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Figure 7.8: Mean Brier score (BS) for PoP forecasts from Table 7.2 in season a) DJF, b)
MA, c) MJ, d) JAS, e) ON, and f) across seasons, for evaluation folds from 2011 to 2019.

7.5.2 Comparative evaluation of predictive performance

Figure 7.8 visualizes the mean Brier score (BS) for the PoP forecasting models from
Table 7.2. For season JAS, the results are similar to the findings in Vogel et al. (2021).
The ECMWF ensemble prediction system (EPS) shows inferior or, in later years, com-
parable performance to MPC, and both EPS and MPC are outperformed by a simple
logistic regression approach based on correlated rainfall predictors only (Logit-base).
The inclusion of ERA5 predictors into the logistic regression model (Logit-full) leads to
a clear improvement even beyond the postprocessed EPS-ISO and HRES+EasyUQ PoP
forecasts. Surprisingly, the HRES+EasyUQ forecast shows better performance than the
ensemble-based EPS+ISO forecast. The CNN+EasyUQ forecast outperforms all other
methods, except for the Hybrid forecast, which shows nearly the same performance.
The ranking of the forecasting methods based on their averageBS remains consistent
across seasons. Throughout, the CNN+EasyUQ and Hybrid forecasts perform similarly
to each other, and outperform their competitors by considerable margins.
ThemeanCRPS for the forecastingmodels for precipitation accumulation from Table
7.2 is displayed in Figure 7.9. Through 2014 in season JAS, EPS clearly shows the lowest
forecast skill; thereafter, its skill improves and gets close to the performance of MPC
and DIM-base. Unlike the Logit-full PoP forecasts, DIM-full does not outperform the
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Figure 7.9: Mean continuous ranked probability score (CRPS) for probabilistic fore-
casts of precipitation accumulation in the millimeters from Table 7.2 in season a) DJF,
b) MA, c) MJ, d) JAS, e) ON, and f) across seasons, for evaluation folds from 2011 to
2019.
postprocessed EPS+EMOS forecast. The HRES+EasyUQ approach yields better scores
than EPS+EMOS, probably due to the flexibility of the EasyUQ forecast distributions.
The CNN+EasyUQ approach shows a considerable forecast improvement within the
evaluation period, and the Hybrid model performs similar or slightly better for some
years. As can be seen by the dotted light gray line giving the JAS area-averaged rainfall
in panel d), the mean CRPS co-varies with the total rainfall amount, thus the years
with the best performance are usually also the driest. The ranking of the forecasting
methods based on their average CRPS remains consistent across seasons. Similar to
the binary setting, the CNN+EasyUQ and Hybrid forecasts show comparable perfor-
mance, and outperform their competitors by considerable margins across all seasons.

7.5.3 Spatial structure of predictive performance

To facilitate the assessment of forecast performance relative to a baseline, skill scores
can be used, defined as the quantity (Sbase−Sfcst)/ Sbase, where Sfcst is the mean score
of the forecast at hand andSbase is themean score of the baseline. A positive (negative)
BS orCRPS skill score corresponds to predictive performance better (worse) than the
baseline.
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For an understanding of spatial patterns of forecast performance, skill score plots of
the forecast approaches considered here with MPC as reference forecast are shown
in Figure 7.10 for precipitation occurrence and in Figure 7.11 for precipitation accumu-
lation, both for the JAS peak monsoon season and across evaluation folds.
With respect to the PoP forecasts for rainfall occurrence, EPS shows negative skill rel-
ative to MPC over the southern parts of the study domain, particularly over the rela-
tively dry areas along the Guinea coast, over Gabon and southern Cameroon, where
rainfall tends to be rather localized and short-lived such that precipitation occurrence
is hard to predict (Figure 7.10a). Senegal/Mauritania and Chad/Sudan are the only
areas with considerable positive skill, while the rest of the domain ranges close to
zero. Applying statistical postprocessing (EPS+ISO, Figure 7.10b) removes the large
negative skill along the Guinea Coast but shows remaining issues in a stretch from
Nigeria to South Sudan with mostly weakly negative skill. Remarkably, postprocess-
ing deteriorates skill around the highlands in Guinea/Sierra Leone and westernmost
Ethiopia. Over the Sahel, in contrast, the postprocessing leads to an overall improve-
ment and consistently positive skill. A possible reason is the stronger influence of pre-
dictable features such as AEWs or midlatitude perturbations here in contrast to the
more stochastic rains in the south (Rasheeda Satheesh et al., 2023). The comparison
between the EPS+ISO and HRES+EasyUQ (Figure 7.10c) demonstrates that for forecasts
at individual sites there is no added value in running an NWP ensemble system, even
after postprocessing. The structures are fairly consistent (e.g., with problematic re-
gions in Guinea/Sierra Leone, the Central African Republic, South Sudan, and Ethiopia)
but the values are consistently more positive for the HRES+EasyUQ technique, which
is based on HRES model alone, as opposed to using an ensemble.
Moving to the data-based approaches (Figure 7.10d—g) we see consistent improve-
ment over most areas of the study domain, though PoP forecasts for western Ethiopia
remain a challenge, possibly related to the rough topography in this area. While in
the simpler Logit-base approach (Figure 7.10d) some areas of negative skill remain,
the inclusion of additional predictors in Logit-full (Figure 7.10e) leads to a consistent
improvement and thus positive skill almost everywhere in the study region. It is also
noteworthy that the Logit models generate overall smoother skill fields compared to
the physics-based approaches. Finally, the CNN+EasyUQ and Hybrid methods (Fig-
ure 7.10f,g) outperform all other approaches to a large extent, reaching up to 40%
improvement relative to the climatological benchmark MPC. The improvement rela-
tive to EPS is particular impressive over the Guinea coastal region (e.g., Ivory Coast
and Ghana), where EPS performs much worse than MPC, for an illustration of the
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Figure 7.10: Spatial structure of the Brier skill score for probability forecasts of precipi-
tation occurrence with a) EPS, b) EPS+ISO, c) HRES+EasyUQ, d) Logit-base, e) Logit-full,
f) CNN+EasyUQ, and g) the Hybrid forecast from Table 7.2, relative toMPC as baseline,
for season JAS and combined evaluation folds from 2011 to 2019.

ability of the CNN to learn complex physical relationships that determine local rain-
fall probability. The inclusion of NWP information from the HRES model in the Hybrid
approach yields small improvements in some places but no clear advance relative to
CNN+EasyUQ. This demonstrates that knowing the ambient conditions shortly before
the beginning of the 24-hour forecast period is muchmore important than knowledge
of the forecast evolution during that period.
The corresponding analysis for rainfall amount (Figure 7.11) reveals many parallels to
rainfall probability. EPS (Figure 7.11a) stands out as having many areas of negative
CRPS skill, with an overall similar structure to the occurrence analysis (Figure 7.10a).
Postprocessing (EPS+EMOS, Figure 7.11b) cures many issues of EPS, leading to mostly
weakly positive skill, but does not perform as well as the computationally much less
expensive HRES+EasyUQ technique (Figure 7.11c). Here the skill fields for amount are
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Figure 7.11: Spatial structure of the CRPS skill score for probabilistic forecasts of pre-
cipitation accumulation with a) EPS, b) EPS+EMOS, c) HRES+EasyUQ, d) DIM-base, e)
DIM-full, f) CNN+EasyUQ, and g) the Hybrid forecast from Table 7.2, relative toMPC as
baseline, for season JAS and combined evaluation folds from 2011 to 2019.

overall smoother than for occurrence with less contrast between the Sahel and the
southern areas. The DIM models (replacing the Logit models for amount) show negli-
gible further advance. The skill of DIM-base (Figure 7.11d) is close to zero everywhere
with a negative area in the southeast and positive elsewhere, while the inclusion of
additional predictors (DIM-full, Figure 7.11e) slightly improves skill over most areas.
Finally, as for occurrence, the machine learning based CNN+EasyUQ and Hybrid meth-
ods (Figure 7.11f,g) outperform all other approaches to a large extent with positive
CRPS skill of up to 30%. Here the Hybrid approach leads to a more considerable im-
provement relative to CNN+EasyUQ, yielding fairly equal skill improvement across the
entire, quite heterogeneous domain. These improvements are more prominent in ar-
eas where the physics-based HRES model may better represent the time evolution of
dynamical features such as AEWs and extratropical influences.
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7.5.4 Calibration and discrimination ability

Wenowassess the calibration anddiscrimination ability of the forecasts. FollowingVo-
gel et al. (2021) and Rasheeda Satheesh et al. (2023), reliability diagrams for the PoP
forecasts from Table 7.2 at the grid point closest to Niamey (13◦N, 2◦E) are presented in
Figure 7.12. 4 The panels use the CORP approach of Dimitriadis et al. (2021) and show
the decomposition (see Appendix 6.A) of themean Brier score (BS) intomiscalibration
(MCB), discrimination (DSC), and uncertainty (UNC) components. Instead of con-
sidering each evaluation fold separately, the decomposition is computed once on fore-
casts in the peakmonsoon season JAS fromall nine evaluation years together. If the re-
liability curve is close to the diagonal, a PoP forecast is calibrated (reliable). Deviations
from the diagonal indicate some type of miscalibration: S-shaped curves indicate un-
derconfidence (PoP too close to center), inverse S-shaped curves correspond to over-
confidence (PoP too extreme), and curves that are mostly below (above) the diagonal
indicate biased PoP. The climatological MPC PoP forecast has a very limited range of
forecast probabilities and lacks discrimination ability, but shows excellent calibration.
The poor calibration of the raw ENS PoP is corrected by postprocessing (ENS+ISO). In
agreement with the findings in Vogel et al. (2021) and Rasheeda Satheesh et al. (2023),
the Logit-base PoP forecast is well calibrated and has moderate discrimination ability.
In comparison, Logit-full shows a lower BS (more skillfull PoP forecasts) reflected in
both better calibration and improved discrimination ability. The CNN+EasyUQ and Hy-
brid techniques show superior performance — they are similarly well calibrated as
EPS-ISO and Logit-full but show considerably higher discrimination ability.
To assess the calibration of the probabilistic forecasts for accumulated precipitation
at the grid point closest to Niamey, Figure 7.13 shows Probability Integral Transform
(PIT) histograms. For the MPC and EPS ensemble forecast, a universal PIT (uPIT) his-
togram is shown (Vogel et al., 2018); for the other methods, the randomized version
of the PIT is used (Gneiting and Resin, 2023, eq. (1)). A uniform histogram indicates
calibrated forecasts while a U-shaped (hump-shaped) histogram suggests underdis-
persed (overdispersed) forecasts, meaning that the forecasts are overconfident (un-
derconfident). Skewed histograms indicate biases. The ECMWF ensensemble (EPS)
is underdispersed, which is corrected for in the EPS+EMOS forecast, though a bias
remains. The other forecasts show PIT histograms that are nearly uniform. The asso-
ciated decomposition (6.1) of the mean CRPS demonstrates the superior calibration of

4Python code for computation and plotting is available at https://github.com/evwalz/corp
_reldiag.
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Figure 7.12: Reliability diagrams for PoP forecasts at the grid point closest to Niamey
(13◦N, 2◦E) with a) MPC, b) EPS, c) EPS+ISO, d) HRES+EasyUQ, e) Logit-base, f) Logit-
full, g) CNN+EasyUQ, and h) the Hybrid approach from Table 7.2, for season JAS and
combined evaluation folds from 2011 to 2019, with 90% consistency bands under the
assumption of calibration (Dimitriadis et al., 2021). The panels also show the mean
Brier score (BS) and its miscalibration (MCB), discrimination (DSC), and uncertainty
(UNC) components from (6.1). The histograms along the horizontal axis show the
distribution of the forecast probabilities.

the climatological MPC forecast and the outstanding discrimination ability and overall
predictive performance of the CNN+EasyUQ and Hybrid approaches.
Finally, we use the decomposition of the mean Brier score (BS) (see Appendix 6.A)
or mean continuous ranked probability score (CRPS) (see Section 6.3) into miscali-
bration (MCB), discrimination (DSC), and uncertainty (UNC) components for a spa-
tially aggregated quantitative assessment. We compute the decomposition at each
grid point based on forecasts for all five seasons from all nine evaluation years, and the
score components are then averaged across grid points. Themiscalibration–discrimination
(MCB–DSC) plots for the mean BS (Figure 7.14) and mean CRPS (Figure 7.15) pro-
vide a spatially consolidated comparison of the forecast methods. In all panels, the
climatological MPC forecast shows the lowestMCB and the lowestDSC component.
The ECMWF raw ensemble (EPS) has higher MCB than all other methods, and the
miscalibration is taken care of by postprocessing (EPS+ISO, EPS+EMOS). Regarding the
statistical forecasts, the inclusion of the ERA5 predictors (Logit-full, DIM-full) models
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Figure 7.13: Probability Integral Transform (PIT) histograms for probabilistic fore-
casts of precipitation accumulation at the grid point closest to Niamey (13◦N, 2◦E)
with a) MPC, b) EPS, c) EPS+EMOS, d) HRES+EasyUQ, e) DIM-base, f) DIM-full, g)
CNN+EasyUQ, and h) theHybrid approach fromTable 7.2, for season JAS and combined
evaluation folds from2011 to 2019. The vertical scale of the histograms is shared across
forecasts, except for EPS. The panels also show the mean continuous ranked proba-
bility score (CRPS) and its miscalibration (MCB), discrimination (DSC), and uncertainty
(UNC) components from (6.1). The vertical scale of the histograms is shared across
forecasts, except for EPS.
in addition to the correlated rainfall predictors (Logit-basic, DIM-basic) improvesDSC
whileMCB remains similar. The superiority of the CNN+EasyUQ forecast stems from
its elevated discrimination ability. The Hybrid forecast shows slightly improved skill
relative to CNN+EasyUQ, and trades better calibration for even higher discrimination
ability.

7.6 Discussion

In this chapter the predictability of one-day ahead, 24-hour precipitation occurrence
and amount over northern tropical Africa is investigated. Our study builds on previ-
ous papers with focus on forecasting rainfall occurrence for the summer season JAS,
which compared the performance of climatological, raw and postprocessed ECMWF
ensemble forecasts, and a simple logistic regressionmodel based on correlated rainfall
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Figure 7.14: Miscalibration (MCB), discrimination (DSC), and uncertainty (UNC)
component of the mean Brier score (BS) in season a) DJF, b) MA, c) MJ, d) JAS, e)
ON, and f) across seasons for PoP forecasts from Table 7.2. The CORP decomposition
of Dimitriadis et al. (2021) is applied at each grid point, based on the combined eval-
uation folds from 2011 to 2019, and the mean score and score components are then
averaged over grid points. Parallel lines correspond to equal mean scores.

predictors. This binary forecasting problem is revisited in this chapterwithmajor adap-
tions. Instead of TRMM, GPM IMERG is used as ground truth data source. Forecasts
are produced for the entire year instead of just the summer season (JAS) and ERA5
predictor variables are used to augment the logistic regression model. To this end,
an extensive analysis of weather variables from ERA5 is performed to investigate and
understand their relation to and their influence on precipitation. The meteorological
interpretation of these dependencies is obtained by combining previously conducted
research and results from statistical analysis performed in this work.
A key contribution of our work is that we additionally investigate the more challeng-
ing problem of producing probabilistic forecasts for accumulated precipitation. Since
the climatology and the NWP model output in this chapter are in the form of ensem-
bles, they can be readily used as probabilistic forecasts for precipitation amount. To
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Figure 7.15:Miscalibration (MCB), discrimination (DSC), and uncertainty (UNC) com-
ponent of the mean continuous ranked probability score (CRPS) in season a) DJF, b)
MA, c) MJ, d) JAS, e) ON, and f) across seasons for probabilistic forecasts of precipita-
tion accumulation in millimeters from Table 7.2. The isotonicity-based decomposition
from Section 6.3 is applied at each grid point, based on the combined evaluation folds
from 2011 to 2019, and the mean score and the score components are then averaged
over grid points. Parallel lines correspond to equal mean scores.

produce data-driven statistical forecasts, the Distributional IndexModel (DIM) is intro-
duced, which is simple but very effective and thus can serve as a persuasive baseline.
To account for the recent rise ofmachine learning inweather forecasting, a CNNmodel
is presented which has the additional benefit of inherently exploiting spatial relations.
To obtain a probabilistic output, we couple the CNN model with the recently intro-
duced EasyUQ approach, to yield the CNN+EasyUQ technique. In summary, these dif-
ferent forecasting approaches provide a detailed forecasting benchmark covering the
range of simple to sophisticated models and ideas from NWP, statistics, and machine
learning.
The CNN+EasyUQ technique outperforms its competitors by a large margin, except
for the Hybrid forecast, which is a simple arithmetic average of the HRES+EasyUQ and
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CNN+EasyUQ forecast distributions that does not require any additional training and
yields minor only (if any) further improvement. It is interesting to place our results
for one-day ahead, 24-hour forecasts in the context of recent advances in data-based
precipitation forecasts. For nowcasts at prediction horizons up to 12 hours, progress
has been persuasive (Ayzel et al., 2020; Lagerquist et al., 2021; Ravuri et al., 2021;
Espeholt et al., 2022; Zhang et al., 2023). In stark contrast, recent developments in
neural network based weather forecasts at prediction horizons of days ahead have
provided sparse attention to rainfall (Bi et al., 2023; Rasp et al., 2023), arguably due to
the recognition that “precipitation is sparse and non-Gaussian” (Lam et al., 2023, p. 6).
The CNN+EasyUQ technique provides an elegant and computationally highly efficient
way of addressing the non-Gaussianity of precipitation accumulation. In very recent
work, Andrychowicz et al. (2023) find that the data-drivenMetNet-3 approach outper-
forms the ECMWFandNOAA rawensembles in terms ofCRPS for hourly precipitation
accumulation over the continental United States at lead times up to 20 hours, but not
beyond. However, unlike our study, which compares the CNN+EasyUQ forecast with
state of the art competitors, Andrychowicz et al. (2023) do not compare MetNet-3 to
postprocessed NWP ensemble forecasts, nor to statistical forecasts of the type con-
sidered here.
The reproduction of the results in this chapter requires access to GPM IMERG pre-
cipitation data, predictor variables from ERA5, and ECMWF NWP forecasts. The first
two sources are freely accessible, which makes results for MPC, the statistical ap-
proaches (Logit and DIM), and our key innovation, the CNN+EasyUQ technique, readily
reproducible. For themore elaborate CNN+EasyUQ approach, code in Python (Python
Software Foundation, 2021) is publicly available at https://github.com/evwal
z/precipitation. The raw ECMWF EPS, the postprocessed versions thereof, the
HRES+EasyUQ forecast, and theHybridmodel require access to ECMWFNWP forecasts
which are freely available using the TIGGE (The International Grand Global Ensemble)
archive (Bougeault et al., 2010) instead of MARS from ECMWF.
In view of its outstanding performance in this study, the CNN+EasyUQ approach can
likely improveoperational probabilistic forecasts of day ahead, 24-hour rainfall in north-
ern tropical Africa. To make real-time forecasts feasible, one would need to use the
IMERG Early Run (https://gpm.nasa.gov/taxonomy/term/1357) in lieu of IMERG,
which is an option that remains to be tested. To obtain ensemble forecasts of en-
tire, spatio-temporally coherent precipitation fields, rather than forecasts at individ-
ual locations and fixed prediction horizons, the HRES+EasyUQ and CNN+EasyUQ ap-
proaches can be coupled with empirical copula techniques (Clark et al., 2004; Schefzik
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et al., 2013), for which we encourage follow-up studies. While our study is limited
in geographic scope, we feel that data-driven approaches of this type have poten-
tial throughout the tropics. Furthermore, the results of comparative studies by Little
et al. (2009) for the United Kingdom and Andrychowicz et al. (2023) for the continen-
tal United States admit the speculation that the CNN+EasyUQ technique can improve
probabilistic forecasts of 24-hour precipitation in the extratropics as well. Finally, a
very interesting and relevant research question is whether similar advances in predic-
tive performance are feasible at prediction horizons larger than a day ahead.
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8 | Conclusion

The research in this thesis focused on statistical forecasting and evaluation within the
context of real-valued outcomes, with a particular emphasis on the development and
assessment of probabilistic forecasts. Therefore, this work started with an introduc-
tion section, in which the forecasting cycle was elucidated to provide the reader with a
better understanding and to distinguish the purpose of the newly developed statistical
methods by connecting them to relevant forecasting steps. Subsequently, this work
investigated the CPA measure in Chapter 4, developed EasyUQ and Smooth EasyUQ
in Chapter 5 and introduced the isotonicity-based CRPS decomposition in Chapter
6. Each of these methods was tailored to address a distinct challenge in real-valued
forecasting problems. Consequently, each individual chapter outlined the motivation,
provided arguments for the specific construction and offered a detailed investigation
based on case studies. While these developments were designed as stand-alone con-
cepts, Chapter 7 demonstrated how the three tools nicely complement each other
and emphasized that this collection of methods offers a persuasive approach to suc-
cessfully apply the forecasting cycle in the context of real-valued outcomeswith corre-
sponding probabilistic forecasts. More specifically, this work contributed three meth-
ods.
Firstly, the CPA measure, defined in Chapter 4, extends the classical AUC value to
general real-valued data while maintaining desirable properties of ROC analysis. It
equals the AUC measure for binary outcomes and is linearly related to Spearman’s
rank correlation coefficient if feature and outcome are continuous. Since the CPA

is asymmetric it is particularly well suited to the purpose of feature screening and
variable selection. The data examples in Subsection 4.5, highlight the usage of CPA
and relate it to other rank based measures like the C index, and differentiate it from
RMSE which is commonly used as evaluation measure. In addition, Chapter 7 demon-
strated how the CPA measure can be used to apply the statistical data analysis step
for real-valued forecasting problems. Future work may focus on a deeper theoretical
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investigation of the CPA measure. Furthermore, suitable adaptions of ROCM, UROC
curve and CPA to specific types of data could be developed, e.g., modifications to
properly handle censoring in survival analysis.
Secondly, the EasyUQ approach, introduced in Chapter 5, is a simple yet effective
method to transform deterministic forecasts into calibrated predictive distributions
based on a training set of model output–outcome pairs and a natural assumption of
isotonicity. The method is fully automated and readily adapts to the underlying true
outcome distribution without the need to specify a suitable parametric distribution
beforehand. As shown in the case studies, EasyUQ is competitive to state of the art ap-
proaches. For "nice" distributions, it performs similar to conformal prediction (CP) but
shows clear advantages for more "difficult" distributions. The more elaborate Smooth
EasyUQ approach generates predictive distributions with Lebesgue densities, based
on a kernel smoothing of the original IDR distributions, while preserving the key prop-
erties of the basic approach. Future work could focus on investigating a coupling of
EasyUQ andMondrian CP (Boströmet al., 2021), improving the computational runtime
of Smooth EasyUQ, comparing it to newly developed approaches based on diffusion
models (Han et al., 2022) and adapting EasyUQ for specific domain problems, e.g.,
combining EasyUQ with empirical copula techniques in weather forecasting (Schefzik
et al., 2013).
Finally, the isotonicity-based CRPS decomposition in Chapter 6 provides a persua-
sive technique to decompose ameanCRPS value intomore informative components,
namelyMCB,DSC andUNC. Both theoretically and computationally, the isotonicity-
based decomposition serves as an attractive alternative to the Candille–Talagrand de-
composition, which is theoretically appealing, but yields degenerate decompositions
in practice. Future work might focus on providing details of a generalization of the
isotonicity-based decomposition to other proper scoring rules, such as the weighted
CRPS. However, such a generalization fails if a mean of logarithmic scores is sought
to be decomposed, as the logarithmic score can not be applied to the discrete IDR
distributions.
For each method, corresponding code is available in R, Python, or both to facilitate
usage for practitioner and ensure easy access to the newly developed tools across
various research disciplines.
All in all, this thesis introduced three advanced methodologies that not only address
current challenges effectively but also suggest future research endeavors. While the
primary emphasis of this work is evident in the comprehensive exploration of precip-
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itation forecasting problem, the broader implications extend far beyond this specific
domain. The forecasting steps and associated tools demonstrated here offer a versa-
tile framework that can readily be applied to general real-valued outcomes, particu-
larly emphasizing probabilistic forecasting.
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