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Abstract

For a class  of drawings of loopless (multi‐)graphs in
the plane, a drawing D ∈  is saturated when the

addition of any edge to D results in D′ ∉ —this is

analogous to saturated graphs in a graph class as

introduced by Turán and Erdős, Hajnal, and Moon. We

focus on k‐planar drawings, that is, graphs drawn in

the plane where each edge is crossed at most k times,

and the classes  of all k‐planar drawings obeying a

number of restrictions, such as having no crossing

incident edges, no pair of edges crossing more than

once, or no edge crossing itself. While saturated

k‐planar drawings are the focus of several prior works,

tight bounds on how sparse these can be are not well

understood. We establish a generic framework to deter-

mine the minimum number of edges among all n‐vertex
saturated k‐planar drawings in many natural classes. For

example, when incident crossings, multicrossings and

selfcrossings are all allowed, the sparsestn‐vertex saturated
k‐planar drawings have n( − 1)

k k

2

− ( mod 2)
edges for any

k 4≥ , while if all that is forbidden, the sparsest such

drawings have n( − 1)
k

k k

2( + 1)

( − 1)
edges for any k 6≥ .
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1 | INTRODUCTION

Graph saturation problems concern the study of edge‐extremal n‐vertex graphs under various
restrictions. They originate in the works of Turán [36] and Erdős et al. [17]. For a family  of
graphs, a graph G without loops or parallel edges is called  ‐saturated when no subgraph of G

belongs to  and for every u v V G, ( )∈ , where uv E G( )∉ , some subgraph of the graph G uv+

belongs to  . Turán [36] described, for each t , the n‐vertex graphs that are K{ }t ‐saturated and
have the maximum number of edges—this led to the introduction of the Turán numbers where
the setting moves from graphs to hypergraphs, see for example the surveys [26, 34].
Analogously, Erdős et al. [17] studied the n‐vertex graphs G that are K{ }t ‐saturated and have the
minimum number of edges. This sparsest saturation view has also received much subsequent
study [18], and our work fits into this latter direction but concerns “drawings of (multi‐)
graphs,” also called topological (multi‐)graphs.

There has been increasing interest in saturation problems on drawings of (multi‐)graphs in
addition to the abstract graphs above. A drawing is a graph together with a cyclic order of edges
around each vertex and the sequence of crossings along each edge so that it can be realized in the
plane (or on another specified surface). The saturation conditions usually concern the crossings
(which can be thought of as avoiding certain topological subgraphs). The majority of work has been
on Turán‐type results regarding the maximum number of edges which can occur in an n‐vertex
drawing (without loops and homotopic parallel edges) of a particular drawing style. For example,
n‐vertex planar (crossing‐free) drawings are well known to have at most n3 − 6 edges for any
n 3≥ . In the case of planar drawings, the sparsest saturation version (as in Erdős et al. [17]) is also
equal to the Turán version: Every saturated planar drawing has n3 − 6 edges.

However, for drawing styles that allow crossings in a limited way, these two measures become
nontrivial to compare and can indeed be quite different, as first observed by Brandenburg et al. [10].
This interesting phenomenon happens for example for k‐planar drawings where at most k

crossings on each edge are allowed; and which are the focus of the present paper. The left of
Figure 1 depicts a drawing of the 8‐cycle C8 in which each edge is crossed exactly four times and
one cannot add a ninth (nonloop) edge to the drawing while maintaining 4‐planarity, that is, this is
a saturated 4‐planar drawing ofC8. On the other hand, note that even the complete graph K8 in fact
admits 3‐planar drawings as shown in the middle of Figure 1.

In this sense, we call a drawing that attains the Turán‐type maximum number of edges
a max‐saturated drawing, while a sparsest saturated drawing is called min‐saturated
(max‐saturated drawings are also called optimal in the literature [9] while saturated drawings
in general are also called maximal). The target of this paper is to determine the number of

FIGURE 1 Saturated 4‐planar drawing of the 8‐cycle (left), 3‐planar drawing of the 8‐clique (middle), and
saturated 6‐planar drawing of the 7‐matching (right). [Color figure can be viewed at wileyonlinelibrary.com]
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edges in min‐saturated k‐planar drawings of loopless (multi‐)graphs, that is, the smallest
number of edges among all saturated k‐planar drawings with n vertices. Somewhat
mysteriously, the answer for the cases considered here will always be of the form
α n( − 1)k ⋅ . However, it turns out that the precise value of αk depends on numerous subtleties
of what precisely we allow in the considered k‐planar drawings. Such subtleties are formalized
by drawing styles Γ later, each one with its own constant αΓ. As we always require k‐planarity,
we omit k from the notation αΓ.

For example, by restricting to connected graphs, we have at least n − 1 edges on n vertices, that
is, α 1Γ ≥ . And in fact we also have α 1Γ ≤ for all k 4≥ as testified by entangled drawings of cycles
like in the left of Figure 1. Allowing disconnected graphs but restricting to contiguous1 drawings,
we immediately have α 1 2Γ ≥ ∕ since we have minimum degree at least 1 in that case. And again
we also have α 1 2Γ ≤ ∕ for all k 6≥ as one can find saturated k‐planar drawings of matchings like
in the right of Figure 1. Other subtleties occur when we distinguish whether selfcrossing edges,
repeatedly crossing edges, crossing incident edges, and so on, are allowed or forbidden. We enable a
concise investigation by first deriving lower bounds on αΓ for any drawing style that satisfies only
some mild assumptions. We can then consider specific drawing styles Γ given by combinations of
the crossing restrictions mentioned above and swiftly determine the exact value of αΓ, thus
determining the smallest number of edges among all k‐planar drawings of that style on n vertices.
Our results for multigraphs are summarized in Table 1.

An extended abstract of this paper appeared and won the best paper award at the 29th
International Symposium on Graph Drawing and Network Visualization held in 2021 [13].

1.1 | Related work

Many results in the literature concern simple drawings. In such a drawing any two edges share
at most one point which implies that there are no parallel edges. For k‐planar graphs the
Turán‐type question, the edge count in max‐saturated drawings, is well studied. Any k‐planar
simple drawing on n vertices contains at most k n3.81 edges [1], and better (and tight) bounds
are known for small k [1, 30, 31]. Specifically 1‐planar drawings contain at most n4 − 8 edges
which is tight [31]. For k 3≤ , any k‐planar drawing with the fewest crossings (among all
k‐planar drawings of the abstract graph) is necessarily simple [30]. Therefore the tight bounds
for k 3≤ also hold for drawings that are not necessarily simple. However, already for k = 4,
Schaefer [33, p. 58] has constructed k‐planar graphs having no k‐planar simple drawings,
and these easily generalize to all k > 4. Pach et al. [30] conjectured that for every k there is a
max‐saturated k‐planar graph with a simple k‐planar drawing. For k = 2, 3, the max‐saturated
k‐planar homotopy‐free multigraphs have been characterized [9].

In the sparsest saturation setting not only min‐saturated k‐planar drawings are of interest
but also min‐saturated k‐planar (abstract) graphs: sparse k‐planar graphs that are no longer
k‐planar after adding any edge. Brandenburg et al. [10] and independently Eades et al. [16]
constructed saturated 1‐planar n‐vertex graphs with only n2.64 edges and saturated 1‐planar
drawings with n2.33 edges. Barát and Tóth [7] show that any saturated 1‐planar n‐vertex
drawing (n 4≥ ) has at least n n− 2.22

20

9

10

3
≈ edges, but they remark that their bounds seem

suboptimal. For k = 2, Auer et al. [4] construct saturated 2‐planar drawings with n1.33 edges,

1The planarization (defined in Section 1.2) is connected.
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while Barát and Tóth [8] show that any saturated simple 2‐planar drawing has at least n − 1

edges. For saturated 2‐planar (abstract) graphs, Hoffmann and Reddy [22] show that any such
graph has at least n2 edges and construct a saturated 2‐planar graph with n O2 + (1) edges. The
questions we address in this work have also been explicitly asked [24, section 3.2].

Recently, the case of saturation problems for simple drawings has come into focus. The
Turán‐type question is trivial here as all complete graphs have simple drawings. However,
knowing when a given simple drawing is saturated turns out to be rather complex as it has
recently been shown that it is NP‐complete to decide whether a given simple drawing is
saturated [2]. In fact, it is NP‐complete to decide whether a single edge can be inserted into a
simple drawing [3]. Contrary to the simple drawings of complete graphs, there are
constructions of saturated simple drawings (and generalizations thereof) with only O n( ) edges
[21, 28]. The Turán‐type question was studied also for simple drawings of multigraphs [20, 25,
32] where the results distinguish between various drawing restrictions.

In the case of k‐quasiplanar2 graphs the focus has been on the Turán‐type question. It
was conjectured that, for every fixed k, every k‐quasiplanar graph has O n( ) edges. This has
been verified for k 4≤ , but the best general upper bound for simple k‐quasiplanar graphs is
c n nlogk for some constant ck and has been improved slightly for some special cases [35].
For t‐simple3 k‐quasiplanar graphs a general bound n n2 logα n( )c

is known where c is a

TABLE 1 Overview of results (see also Theorem 5): The minimum number of edges of saturated k‐planar
drawings on n vertices of a drawing style defined by a set of restrictions.

k Restrictions

Minimum number of edges
of saturated k‐planar
drawings on n vertices Tight example

k 4≥ no restriction n( − 1)
k k

2

− ( mod 2)
⋅ Figure 2

I no incident crossings

k 4≥ S no selfcrossings n( − 1)
k

2

− 1
⋅ Figure 3

S no self‐ and I no incident crossings

k 4≥ M no multicrossings n( − 1)
k

k k

2( − 1)

( − 1)( − 2) + 2
⋅ Figure 4

k 4≥ S no self‐ and M no multicrossings n( − 1)
k

k k

2( + 1)

( − 1)
⋅ Figure 5

k = 4 n( − 1)
4

5
⋅

k 5≥ I no incident and M no multicrossings n( − 1)
k

k k

2( − 1)

( − 1)( − 2) + 2
⋅ Figures 6 and 7

k 6≥ S no self‐, M no multi‐, and I no
incident crossings

S no self‐, M no multi‐, I no incident
crossings, and H homotopy‐free

n( − 1)
k

k k

2( + 1)

( − 1)
⋅ Figure 1 (right)

and Figure 8

Note: To attain the stated bounds via the constructions given in the respective figures, insert an isolated vertex in each empty cell.

2A drawing is k‐quasiplanar if every k‐set of edges contains a pair of edges that do not cross each other.
3A drawing is t‐simple if any two edges share at most t points.
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constant depending on k and t and α n( ) is the inverse of the Ackermann function [35].
Seemingly the only min‐saturation results for k‐quasiplanar drawings concern so‐called
outer or convex drawings in which all of the vertices occur on the boundary of a single face
of the drawing. Here, as in planar drawings, the min‐saturated drawings and max‐saturated
outer k‐quasiplanar n‐vertex drawings coincide [12, 15, 29]. In particular, Capoyleas
and Pach [11] show that every saturated outer k‐quasiplanar drawing on n k2 + 1≥ vertices

has exactly k n2( − 1) − ( )
k2 − 1

2
edges.

Also for the concept of gap‐planarity [5], which generalizes the notion of k‐planarity,
the focus so far has been on the Turán‐type question.

For further results, consider the surveys and book on beyond planar graph classes [14, 23, 27], the
report on sparsest saturation [24, section 3.2].

1.2 | Drawings, crossing restrictions, and drawing types

Throughout the paper, we consider topological drawings in the plane, that is, vertices are
represented by distinct points in 2 and edges are represented by continuous curves connecting
their respective endpoints. We allow parallel edges but forbid loops. As usual, edges do not pass
through vertices, any two edges have only finitely many interior points in common, each of
which is a proper crossing, and no three edges cross in a common point. An edge may cross
itself but it uses any crossing point at most twice. Also, each of these selfcrossings are counted
twice when considering the number of times that edge is crossed.

The planarization of a drawing D is the planar drawing obtained from D by making each
crossing into a new vertex, thereby subdividing the edges involved in the crossing. Although we
forbid loops in D its planarization might have loops due to selfcrossing edges. In a drawing, an
edge involved in at least one crossing is a crossed edge, while those involved in no crossing are
the planar or uncrossed edges. The cells of a drawing are the connected components of the plane
after the removal of every vertex and edge in D. In other words, the cells of D are the faces of its
planarization. A vertex v is incident to a cell c if v is contained in the boundary of c. Thus, in
this case one could at least start drawing an uncrossed edge from v into cell c.

Two distinct parallel edges e and f in a drawing D are called homotopic, if there is a homotopy
of the sphere between e and f , that is, the curves of e and f can be continuously deformed into
each other along the surface of the sphere while all vertices of D are treated as holes.

In what follows, we investigate drawings that satisfy a specific set of restrictions, where we
focus on those with frequent appearance in the literature:

• k‐planar: Each edge is crossed at most k times.
• H homotopy‐free: No two distinct parallel edges are homotopic.
• M single‐crossing: Any pair of edges crosses at most once and any edge crosses itself at most
once (edges with t {0, 1, 2}∈ common endpoints have at most t + 1 common points). In this
case we say that there are no multicrossings.

• I locally starlike: Incident edges do not cross (selfcrossing edges are allowed). In this case we
say that there are no incident crossings. In other papers this is also called star simple or semi
simple [6, 19] and may not allow selfcrossing edges.

• S selfcrossing‐free: No edge crosses itself.
• branching: The drawing is M single‐crossing, I locally starlike, S selfcrossing‐free, and H
homotopy‐free.

CHAPLICK ET AL. | 5
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A drawing style is just a class Γ of drawings, that is, a predicate whether any given
drawing D is in Γ or not. A drawing style Γ is monotone if removing any edge or vertex from
any drawing D Γ∈ results again in a drawing D′ Γ∈ , i.e., Γ is closed under edge/vertex
removal.

Let X be a subset of S I M{ , , } and k 0≥ be an integer. Then we define ΓX k, to be the drawing
style given by all k‐planar drawings of finite, loopless multigraphs obeying the subset X of the
restrictions above. We focus on the restrictions M single‐crossing, S selfcrossing‐free, I locally
starlike, and H homotopy‐free. Note that the k‐planar drawing style is monotone, and so is ΓX k,

for each X S I M{ , , }⊆ . However, the style of all homotopy‐free drawings is not monotone, as
removing a vertex may render two edges homotopic.

We are interested in k‐planar drawings in ΓX k, to which no further edge can be added
without either violating k‐planarity or any of the restrictions in X , and particularly in how
sparse these drawings can be; namely, the sparsest saturated such drawings.

Definition A drawing D is Γ‐saturated for drawing style Γ if D Γ∈ and the addition of
any new edge to D results in a drawing D′ Γ∉ .

1.3 | Outline of our results

To determine the sparsest k‐planar ΓX k, ‐saturated drawings for restrictions in X , we
introduce in Section 2 the concept of filled drawings in general monotone drawing styles
and give lower bounds on the number of edges in these. Using the lower bounds for filled
drawings and constructing particularly sparse ΓX k, ‐saturated drawings, we then give in
Section 3 the precise answer for all X S I M{ , , }⊆ and for the branching style, that is,
X S I M H= { , , , }, leaving open only a few cases for k {4, 5}∈ . Our results for multigraphs are
summarized in Table 1 and formalized in Theorem 5. In Section 4 we discuss saturated
drawings of simple graphs instead of multigraphs. Finally, in Section 5 we discuss further
extensions.

2 | LOWER BOUNDS AND FILLED DRAWINGS

Recall that Γ is monotone if it is closed under the removal of vertices and/or edges. Throughout
this section, let Γ be an arbitrary monotone drawing style; not necessarily k‐planar or defined
by any of the restrictions in Section 1.2.

Definition A drawing D is filled if any two distinct vertices that are incident to the same
cell c of D are connected by an uncrossed edge that lies completely in the boundary of c.

For example, the filled crossing‐free homotopy‐free drawings are exactly the planar
drawings of loopless multigraphs with every face bounded by three edges. Using Euler's
formula, such drawings on n 3≥ vertices have exactly m n= 3 − 6 edges. In this section we
derive lower bounds on the number of edges in n‐vertex filled drawings in drawing style Γ.
Another important example of filled drawings are those in which every cell has at most one
incident vertex. Note that every cell in a filled drawing has at most three incident vertices.
Generally, for a drawing D we use the following notation:

6 | CHAPLICK ET AL.
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n c D i i

m c D

= # vertices ( ) = # cells with exactly incident vertices , 0

= # edges ′ ( ) = # cells with 2 uncrossed edges in their boundary.

D i

D 2

≥

For a drawing D, let G be its underlying graph and P be its planarization. A component of D

is a connected component of P. A cut‐vertex of D is a cut‐vertex of G that is also a cut‐vertex of
P. And finally, D is essentially 2‐connected if it contains at least one edge, and if we remove all
isolated vertices, the remaining drawing does not have a cut‐vertex. This means that for each
simple closed curve that intersects D in exactly one vertex (of G)4 or not at all, either the
interior or the exterior contains no edges from D.

Lemma 1. For every monotone drawing style Γ and every filled drawing D Γ∈ we have
m α n c D( + ( ) − 1)D DΓ 0≥ ⋅ where







α
m

n c D
D is filled and essentially 2 connected= min

+ ( ′) − 1
: ′ Γ ‐ .D

D
Γ

′

′ 0

∈

Proof. We proceed by induction on the number nD of vertices in D. The desired inequality
m α n c D( + ( ) − 1)D DΓ 0≥ clearly holds if D itself is essentially 2‐connected. Otherwise D

has a cut‐vertex or two components with an edge. In both cases we can choose a simple
closed curve C with at least one vertex of D in its interior and at least one vertex in its
exterior such that D C∩ is either empty or a single vertex. Let D′ and D″ denote the
drawings obtained from D by removing every edge and vertex of D in the exterior of C,
respectively interior of C. Observe that D D′, ″ are filled and in Γ, as Γ is monotone. Further
observe that m m m+ =D D D′ ″ , as every edge of D lies on one side of C.

Now if C D∩ ≠ ∅, then C D∩ consists of exactly one vertex and n n n+ = + 1D D D′ ″ .
Moreover c D c D c D( ′) + ( ″) = ( )0 0 0 , since the vertex in C D∩ is incident to the cell
containing curve C in both drawings D′ and D″. Hence, using induction on D′ and D″ we
conclude

m m m α n c D α n c D

α n n c D c D α n c D

= + ( + ( ′) − 1) + ( + ( ″) − 1)

= ( + − 1 + ( ′) + ( ″) − 1) = ( + ( ) − 1).

D D D D D

D D D

′ ″ Γ ′ 0 Γ ″ 0

Γ ′ ″ 0 0 Γ 0

≥

On the other hand, if C D =∩ ∅, then n n n+ =D D D′ ″ . Moreover
c D c D c D( ′) + ( ″) = ( ) + 10 0 0 , since the cell of D containing curve C can have incident
vertices only on one side of C, as the drawing is filled. Similar as before, we have

m m m α n c D α n c D

α n n c D c D α n c D

= + ( + ( ′) − 1) + ( + ( ″) − 1)

= ( + + ( ′) + ( ″) − 1 − 1) = ( + ( ) − 1).

D D D D D

D D D

′ ″ Γ ′ 0 Γ ″ 0

Γ ′ ″ 0 0 Γ 0

≥

□

As suggested by Lemma 1, we shall now focus on filled drawings that are essentially
2‐connected. Our goal is to determine the parameter αΓ. First, we give an exact formula for the
number of edges in any filled essentially 2‐connected drawing. The parameter k in the

4Throughout, we shall generally only refer to vertices of G. And we shall mention it explicitly in the few situations
when we refer to vertices of P .
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following lemma will later be the k for the k‐planar drawings in Section 3. However, we do not
require any drawing to be k‐planar here.

Lemma 2. For any k > 2, if D is a filled, essentially 2‐connected drawing with n 3D ≥

vertices, then m n c D ε D= ( + ( ) − 2 + ( ))D k D
2

− 2 0 , where

( )ε D m m c c such that

m planar edges crossings m crossed edges

( ) = −cr + + ′ + ,

= # , cr = # , and  = # .

k k

2 x
− 4

4 p 2 3

p x

Proof. First observe that, since D is filled, no cell has four or more incident vertices. Hence,
c c c c#cells = + + +0 1 2 3. By counting along the angles around each vertex, we see that

m v c c c#isolated + 2 = #isolated + deg( ) = + 2 + 3 .D

v

1 2 3 (1)

Note that this relies on the assumption that D is essentially 2‐connected, as this
guarantees that each nonisolated vertex v lies on the boundary of exactly vdeg( ) cells.

As D is filled, each cell with exactly two vertices on its boundary is incident to either one
or two planar edges and each cell with three vertices on its boundary is incident to exactly
three planar edges. Moreover, each planar edge is contained in the boundary of exactly two
distinct such cells since D has no cut‐vertices and n 3D ≥ . By counting along the sides of the
planar edges, we see that m c c c2 = + ′ + 3p 2 2 3, which together with (1) gives

m c c c#isolated + 2 = + − ′ .x 1 2 2 (2)

Consider the planarization P of D. Since D is essentially 2‐connected, P has exactly
(1 + #isolated) many connected components. Moreover we have

   V P n E P m c c c c( ) = + cr and ( ) = + 2cr and #cells = + + + .D D 0 1 2 3

(3)

Applying Euler's formula to P we have

   



 




V P E P

n m c c c c

n m m c c c

n m m c c c

n
k

m m
k

m
k

m c c c

2 = ( ) − ( ) + #cells − #isolated

= cr + − − 2cr + + + + − #isolated

= − − cr + 2 + #isolated + ′ + + − #isolated

= + − − cr + ′ + +

= +
2 −

2
( + ) +

− 4

2
+

2
−cr + ′ + + .

D D

D D

D

D

(3)
0 1 2 3

(2)
x 2 0 3

x p 2 0 3

x p p x 2 0 3

Solving for mD we have:







 


 


m

k
n c

k
m

k
m c c=

2

− 2
+ − 2 +

2
−cr +

− 4

4
+ ′ + .D D 0 x p 2 3⋅

□

8 | CHAPLICK ET AL.
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Lemmas 1 and 2 together imply that for any filled drawing D Γ∈ we have

m

n

m

n c D

m

n c D

k

n c D ε D

n c D

− 1 + ( ) − 1
min

+ ( ′) − 1

= min
2

− 2

+ ( ′) − 2 + ( ′)

+ ( ′) − 1
,

D

D

D

D D

D

D

D

D

D

0
′

′

′ 0

′

′ 0

′ 0

≥ ≥

⋅

where both minima are taken over all filled, essentially 2‐connected drawings D′ Γ∈ and ε D( ′)

can be thought of as an error term for the drawing D′, which we seek to minimize. Indeed, if D′

is k‐planar, that is, each edge is crossed at most k times, then km2cr x≤ . Thus for k 4≥ we
have ε D( ′) 0≥ . In the next section, we shall see that (in many cases) the minimum is indeed
attained by drawings D′ with ε D( ′) = 0.

3 | EXACT BOUNDS AND SATURATED DRAWINGS

Recall that we seek to find the sparsest k‐planar, ΓX k, ‐saturated drawings in a drawing style ΓX k,

that is given by a set X S I M H{ , , , }⊆ of additional restrictions. These ΓX k, ‐saturated drawings
are related to the filled drawings from Section 2.

Lemma 3. For any k 0≥ and any X S I M{ , , }⊆ , as well as for X S I M H= { , , , }, every
k‐planar, ΓX k, ‐saturated drawing is filled.

Proof. Consider a k‐planar drawing D ΓX k,∈ and a cell c in D with two incident vertices
u v, , such that u and v are not connected by an uncrossed edge in the boundary of c. That is,
D is not filled and we shall show that it is not ΓX k, ‐saturated. We add a new uncrossed edge
e uv= in that cell, resulting in a new drawing D′. Clearly, the introduction of e did not
create any new selfcrossings, incident crossings, multicrossings, or edges being crossed more
than k times. Hence, for X S I M{ , , }⊆ , drawing D′ lies in ΓX k, and D was not ΓX k, ‐saturated.

It remains to consider X S I M H= { , , , } and rule out that e is homotopic to another edge
to show that D′ ΓX k,∈ . So let e′ be an edge parallel to e which is closest to e in the cyclic
order of edges incident to u. Since incident crossings and selfcrossings are forbidden, e and e′

together form a simple closed curveC. If e′ is uncrossed, then e′ is not in the boundary of cell
c. Since e′ is a parallel edge closest to e and since incident crossings are forbidden we find
edges f and f ′ connecting u to a vertex in the interior and a vertex in the exterior of C,
respectively. Hence e and e′ are not homotopic. On the other hand, suppose that e′ is crossed
by some edge e″. As incident crossings are forbidden, neither u nor v is an endpoint of e″. As
multicrossings are forbidden, the two endpoints of e″ lie in the exterior and the interior of C,
respectively. Hence e and e′ are not homotopic. □

To determine the exact edge‐counts for min‐saturated drawings, we shall find for each drawing
style some essentially 2‐connected, ΓX k, ‐saturated drawings that attain the minimum in Lemma 1.

Motivated by the error term ( )ε D m m c c( ) = −cr + + ′ +
k k

2 x
− 4

4 p 2 3 in Lemma 2, we define tight

drawings as those k‐planar drawings in which (1) every edge is crossed exactly k times

( )mso = cr
k

2 x and (2) every cell contains exactly one vertex (so m c c c= = ′ = = 0p 0 2 3 ). Observe

that tight drawings are indeed ΓX k, ‐saturated and filled and exist only in case k 4≥ . Note that, to

CHAPLICK ET AL. | 9
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aid readability, isolated vertices are omitted from the drawings in the figures. Namely, the actual
drawings have one isolated vertex in each cell shown empty in the figures. This is also mentioned
in the figure captions.

Lemma 4. For every k 4≥ and every monotone drawing style Γ of k‐planar drawings, if
D Γ∈ is a tight drawing, then α < 1

k

n

nΓ
2

− 2

− 2

− 1
D

D
≤ ⋅ .

Proof. If D is not essentially 2‐connected, then there is a closed curve C containing
edges of D in the interior as well as exterior, such that C D∩ is either empty or a single
vertex. Then the drawing obtained by removing everything inside C (and adding an
isolated vertex if the resulting cell is empty) is again in Γ by monotonicity and again tight,
but has fewer vertices. As n

n

− 2

− 1
is monotone increasing in n, it thus suffices to prove the

claim for any essentially 2‐connected tight drawing D0.
Clearly, D0 is filled, as there are no two vertices incident to the same cell. We

immediately get c D m c c km( ) = 0, = 0, ′ = = 0, 2cr =0 0 p 2 3 x, and it follows that

( )ε D m m c c( ) = −cr + + ′ + = 0
k k

0 2 x
− 4

4 p 2 3 . As there is at least one edge in D0 and

this is crossed k 4≥ times, Euler's formula implies that there are at least three cells.
Hence n 3D0

≥ and Lemma 2 gives

α
m

n c D

m

n k

n

n k+ ( ) − 1
=

− 1
=

2

− 2

− 2

− 1
<

2

− 2
1.

D

D

D

D

D

D
Γ

0 0

0

0

0

0

0

0

≤ ⋅ ≤

□

Theorem 5 (See also Table 1). Let k X S I M H4, { , , , }≥ ⊆ be a set of restrictions, and
Γ = ΓX k, be the corresponding drawing style of k‐planar drawings.

For infinitely many values of n, the minimum number of edges in any n‐vertex
Γ‐saturated drawing is

n for X or X

n for X or X

n for X

n for X

n for X and k

n for X and k

n for X and k

n for X and k

I

S S I

M

S M

I M

I M

S I M

S I M H

( − 1) = { } = .

( − 1) = { } = { , }.

( − 1) = { }.

( − 1) = { , }.

( − 1) = { , } = 4.

( − 1) = { , } 5.

( − 1) = { , , } 6.

( − 1) = { , , , } 6.

k k

k

k

k k

k

k k

k

k k

k

k k

k

k k

2

− ( mod 2)

2

− 1

2( − 1)

( − 1)( − 2) + 2

2( + 1)

( − 1)

4

5

2( − 1)

( − 1)( − 2) + 2

2( + 1)

( − 1)

2( + 1)

( − 1)

∅

≥

≥

≥

Proof. We start with the cases when X S I M{ , , }⊆ . Here the drawing style ΓX k, is
monotone and every ΓX k, ‐saturated drawing is filled by Lemma 3. Thus, by Lemma 4, we

10 | CHAPLICK ET AL.
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have α
k

n

nΓ
2

− 2

− 2

− 1

D

D

0

0

≤ ⋅ for every tight drawing D0. This gives the smallest bound when

nD0
is minimized. In this case D0 is essentially 2‐connected and m n= ( − 2)D k D

2

− 20 0
by

Lemma 2, since n 3D0
≥ for tight drawings. So it suffices to consider a tight drawing D0

with the smallest possible number mD0
of edges.

Next, we shall go through the possible subsets X of S I M{ , , } and determine exactly
the value αΓ for Γ = ΓX k, in two steps.

• First, we present a tight (hence filled) drawing D0 with the smallest possible number
mD0

of edges, which gives by Lemma 4 the upper bound

α
k

n

n

2

− 2

− 2

− 1
.

D

D
Γ

0

0

≤ ⋅

• Second, we argue that for every filled (hence also every ΓX k, ‐saturated), essentially 2‐
connected drawing D′ ΓX k,∈ we have

n c D ε D

n c D

n

n

+ ( ′) − 2 + ( ′)

+ ( ′) − 1

− 2

− 1
,D

D

D

D

′ 0

′ 0

0

0

≥ (4)

which by Lemmas 1 and 2 then proves the matching lower bound:

α = min = min

.

′

′ ′

′D o

m

n c D D k

n c D ε D

n c D

k

n

n

Γ
′ + ( ) − 1 ′

2

− 2

+ ( ) − 2 + ( )

+ ( ) − 1

(4)
2

− 2

− 2

− 1

D

D

D

D

D

D

′

′ 0

′ 0

′ 0

0

0

⋅

≥ ⋅

To verify (4), observe that if ε D( ′) 1≥ , then the lefthand side is at least 1, while the
righthand side is less than 1. Thus it is enough to verify (4) when ε D( ′) < 1. In particular
we may assume c c′ = = 02 3 and km2cr − 1x≥ for D′. Similarly, as ε D( ′) 0≥ , we may
assume that n c D n+ ( ′) − 1D D′ 0 0

≤ . Altogether this implies that (4) is fulfilled unless

m
k

n c D ε D
k

n m=
2

− 2
( + ( ′) − 2 + ( ′)) <

2

− 2
( − 1 − 2 + 1) = .D D D D′ ′ 0 0 0

In summary, for each X we shall give a tight drawing D0 with as few edges as possible,
and argue that every filled, essentially 2‐connected drawing D′ with fewer edges satisfies
the inequality (4). Note that m 1D′ ≥ as essentially 2‐connected drawings have at least one
edge. In fact, we may assume that D′ contains at least one crossed edge. Otherwise D′ is
filled, planar and hence connected. Thus m n − 1D D′ ′≥ and c D( ′) = 00 which verifies (4)
as follows:

n c D ε D

n c D

k m

n

n

n

− ( ′) − 2 + ( ′)

− ( ′) − 1
=

− 2

2 − 1
1 >

− 2

− 1
.D

D

D

D

D

D

′ 0

′ 0

′

′

0

0

⋅ ≥

Case 1. X I= { } and X = ∅.
Figure 2 shows drawings D0 with m = 1D0

edge when k is even, and m = 2D0
edges

when k is odd, which are tight for Γ = ΓX k, for both X I= { } and X = ∅, as incident edges

CHAPLICK ET AL. | 11
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do not cross. Thus m k= 1 + ( mod 2)D0
and n =D

k + 2

20
for k even, respectively, n k=D0

for k odd. Together this gives α =
k

n

n k kΓ
2

− 2

− 2

− 1

2

− ( mod 2)

D

D

0

0

≤ ⋅ .

On the other hand, let D′ ΓX k,∈ be any filled, essentially 2‐connected drawing. As
argued above, we may assume that m m m1 <D Dx ′ 0

≤ ≤ . For even k, there is nothing to
show as m m1 =D D′ 0

≥ . For odd k, we may assume that D′ consists of exactly one edge,
which has exactly k( − 1) 2∕ selfcrossings (since km2cr − 1x≥ ), and some of the

resulting cells may contain an isolated vertex. In particular, ε D m( ′) − cr = 1 2
k

2 x≥ ∕ .
Applying Euler's formula to the planarization of D′ we get n c D k+ ( ′) = ( + 1) 2D′ 0 ∕ ,
which verifies (4) as follows:

n c D ε D

n c D

k

k

k

k

n

n

+ ( ′) − 2 + ( ′)

+ ( ′) − 1

( + 1) 2 − 2 + 1 2

( + 1) 2 − 1
=

− 2

− 1
=

− 2

− 1
.D

D

D

D

′ 0

′ 0

0

0

≥
∕ ∕

∕

Case 2. X S= { } and X S I= { , }.
Figure 3 shows drawings D0 with m = 2D0

edges which are tight for Γ = ΓX k, for both
X S= { } and X S I= { , }, as there are neither incident crossings nor selfcrossings. Thus

m = 2D0
and n k=D0

, which gives α =
k

n

n kΓ
2

− 2

− 2

− 1

2

− 1

D

D

0

0

≤ ⋅ .

On the other hand, let D′ be any drawing in ΓX k, , and assume again that
m m1 < = 2Dx 0

≤ . In particular, D′ has exactly one crossed edge, which however is
impossible as selfcrossings are forbidden.

Case 3. X M= { }.
Figure 4 shows tight drawings D0 with m k= − 1D0

edges. Thus n =D0

( )m + 2 = + 2
k

D
k− 2

2

− 1

20
, which gives

( )
( )

α
k

n

n k

k

k k

2

− 2

− 2

− 1
=

2

− 2 + 1
=

2( − 1)

( − 1)( − 2) + 2
.

D

D

k

k
Γ

− 1

2

− 1

2

0

0

≤ ⋅ ⋅

FIGURE 2 Smallest tight drawings for even k 4≥ (left, cases k = 4 and k = 6 depicted) and odd k 4≥

(right, cases k = 5 and k = 7 depicted) in case X = ∅ and X I= { }, that is, nothing, resp. incident crossings, are
forbidden. (Isolated vertices in empty cells are omitted.) [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Smallest tight drawings for k 4≥ in case X S= { } and X S I= { , }, that is, selfcrossings, resp. also
incident crossings, are forbidden. (Isolated vertices in empty cells are omitted.) [Color figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 4 Smallest tight drawings for k 4≥ in case X M= { }, that is, multicrossings are forbidden.
(Isolated vertices in empty cells are omitted.)

FIGURE 5 Smallest tight drawings for k 4≥ in case X S M= { , }, that is, selfcrossings and multicrossings
are forbidden. (Isolated vertices in empty cells are omitted.) [Color figure can be viewed at
wileyonlinelibrary.com]

On the other hand, let D′ be any drawing in ΓX k, . As argued above the desired
inequality (4) holds, unless km − 1 2crx ≤ and m m m k1 < = − 1D Dx ′ 0

≤ ≤ . As
there are no multicrossings, the crossed edges may pairwise cross at most once,
and additionally each crossed edge may cross itself at most once, that is,

( ) ( )mcr + =
m m

x 2

+ 1

2
x x≤ . However, this would imply

km m m k m km m− 1 2cr ( + 1) ( − 2 + 1) = − ,x x x x x x≤ ≤ ≤

and thus m = 1x . However, then km k2cr − 1 = − 1 3x≥ ≥ , which contradicts that
there are no multicrossings.

Case 4. X S M= { , }.
Figure 5 shows tight drawings D0 with m k= + 1D0

edges. Thus

( )n m= + 2 = + 1D
k

D
k− 2

2 20 0
, which gives

( )
( )

α
k

n

n k

k

k k

2

− 2

− 2

− 1
=

2

− 2

− 1
=

2( + 1)

( − 1)
.

D

D

k

k
Γ

2

2

0

0

≤ ⋅ ⋅

On the other hand, let D′ be any drawing in ΓX k, . Again (4) holds, unless
km − 1 2crx ≤ and m m m k1 < = + 1D Dx ′ 0

≤ ≤ . As there are no multicrossings and

no selfcrossings, we have ( )cr
m

2
x≤ . However, this would imply km − 1 2crx ≤ ≤

m m k m km k km( − 1) ( − 1) = − − 4x x x x x≤ ≤ , which is a contradiction.

CHAPLICK ET AL. | 13
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Case 5. X I M= { , }.
Figures 6 and 7 show tight drawings D0 with m = 4D0

edges for k = 4, and
m k= − 1D0

edges for k 5≥ .

For k = 4 we have n m= + 2 = 6D
k

D
− 2

20 0
, which gives

α
k

n

n

2

− 2

− 2

− 1
=

2

4 − 2

6 − 2

6 − 1
=

4

5
.

D

D
Γ

0

0

≤ ⋅ ⋅

For k 5≥ we have analogous to Case 3 ( )n = + 2D
k − 1

20
, which gives

( )
( )

α
k

n

n k

k

k k

2

− 2

− 2

− 1
=

2

− 2 + 1
=

2( − 1)

( − 1)( − 2) + 2
.

D

D

k

k
Γ

− 1

2

− 1

2

0

0

≤ ⋅ ⋅

On the other hand, let D′ be any drawing in ΓX k, . Clearly, D′ Γ ΓX k M, { }∈ ⊂ for
XM I M{ } = { , }⊂ . However, we already argued in Case 3 that there is no drawing D′ in

ΓM{ } with km − 1 2crx ≤ and m k1 < − 1x≤ . This already seals the deal for k 5≥ .

FIGURE 6 Smallest tight drawings for k = 4 (left) and k = 5 (right) in case X I M= { , }, that is, incident
crossings and multicrossings are forbidden. (Isolated vertices in empty cells are omitted.)

FIGURE 7 Smallest tight drawings for k 6≥ in case X I M= { , }, that is, incident crossings and
multicrossings are forbidden. (Isolated vertices in empty cells are omitted.) [Color figure can be viewed at
wileyonlinelibrary.com]
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For k = 4, assume that D′ is a filled, essentially 2‐connected drawing in ΓX k, . As before, we
may assume that km m2cr − 1 = 4 − 1x x≥ , that is, there are at least m2 x crossings. On the

other hand, as multicrossings are forbidden, we have again ( )mcr +
m

x 2
x≤ , which together

implies that m 3x ≥ . We are done if m m k+ 4 =x p ≥ . Otherwise, we have m = 3x and
mcr 2 = 6x≥ . Now if two of the three crossed edges were incident, they would not cross each

other as XI ∈ , which would give at most three selfcrossings and two crossings of independent
edges, contradicting cr 6≥ . Thus we may assume that all three crossed edges are crossing
themselves, pairwise crossing and pairwise independent, that is, n = 6D′ and cr = 6.

Now let us consider the subdrawing H of the planarization of D′ obtained by
removing all vertices of D′. That is, H is planar, connected,  V H( ) = cr = 6, and
 E H k m m( ) = ( − 1) = 3 = 9x x . Applying Euler's formula shows that the number of
faces of H is    E H V H( ) − ( ) + 2 = 9 − 6 + 2 = 5. As n 6D′ ≥ , some face of H contains
two vertices of D′ in its interior, showing that m 1p ≥ , as D′ is filled. Thus
m m k+ 3 + 1 = 4 =x p ≥ , as desired.

Case 6. X S I M= { , , }.
The right of Figure 1 (with isolated vertices added to both empty cells) and Figure 8 show

tight drawings D0 with m k= + 1D0
edges for k 6≥ . Analogous to Case 4 ( )n = + 1D

k

20
,

which gives

( )
( )

α
k

n

n k

k

k k

2

− 2

− 2

− 1
=

2

− 2

− 1
=

2( + 1)

( − 1)
.

D

D

k

k
Γ

2

2

0

0

≤ ⋅ ⋅

On the other hand, any drawing D′ ΓX k,∈ is also a drawing in ΓS M{ , } for
XS M S I M{ , } = { , , }⊂ . However, we already argued in Case 4 that there is no drawing

D′ ΓS M{ , }∈ with km − 1 crx ≤ and m m k< = + 1Dx 0
.

Case 7. X S I M H= { , , , }.
We can not proceed with X S I M H= { , , , } as before, since ΓX k, is not monotone in that

case, since removing a vertex can make two edges homotopic. However, we see that the
tight drawings D0 in Figure 1 (right) and Figure 8 for drawing style ΓS I M{ , , } are also in ΓX k,

as there are no parallel edges and hence no homotopic edges. Thus

























m

n

m

n
D

m

n
D

m

n
D

m

n c D
D

k

n

n

m

n

− 1
min

− 1
: Γ is Γ ‐saturated

min
− 1

: Γ is filled

min
− 1

: Γ is filled

= min
+ ( ) − 1

: Γ

is filled and essentially 2‐connected

= α =
2

− 2

− 2

− 1
=

− 1

D

D

D

D
X k X k

D

D
X k

D

D

D

D

D

D

D

D

S I M

S I M

, ,

,

{ , , }

0
{ , , }

ΓS I M

0

0

{ , , }

0

0

0

0

≥ ∈

≥ ∈

≥ ∈

∈

⋅
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and equality holds throughout. Hence, for every filled and every ΓX k, ‐saturated drawing D

in ΓX k, we have m α n n( − 1) = ( − 1)D D
k

k kΓ
2( + 1)

( − 1)S I M{ , , }
≥ ⋅ ⋅ .

In Cases 1–6 we have determined exactly αΓ for each considered drawing style
Γ = ΓX k, . By Lemmas 1 and 3 every Γ‐saturated drawing D satisfies m α n( − 1)D DΓ≥ . For
Case 7 we have shown this inequality directly. Moreover, we presented in each case a
tight drawing D0 attaining this bound:

m
k

n
k

n

n
n α n=

2

− 2
( − 2) =

2

− 2

− 2

− 1
( − 1) = ( − 1)D D

D

D
D DΓ0 0

0

0

0 0
⋅ ⋅

It remains to construct an infinite family of Γ‐saturated drawings attaining this bound.
To this end it suffices to take tight drawings with α n( − 1)Γ edges and iteratively glue
these at single vertices. This again results in a tight drawing.

Formally, for vertices v v,1 2 in two copies of (not necessarily distinct) tight drawings D1

and D2, respectively, with m α n= ( − 1)D DΓi i for i = 1, 2, we consider the drawing D

obtained from D D,1 2 by identifying v1 and v2 into a single vertex and putting D2

completely inside a cell of D1 incident to v1. Then D is again tight and thus Γ‐saturated.
Moreover we have n n n= + − 1D D D1 2

and

m m m α n α n α n= + = ( − 1) + ( − 1) = ( − 1).D D D D D DΓ Γ Γ1 2 1 2 □

FIGURE 8 Smallest tight drawings for k 7≥ (for k = 6, see Figure 1 (right)) in case X S I M= { , , }, that is,
selfcrossings, incident crossings, and multicrossings are forbidden. Top‐Left: The 8‐matching for k = 7. Top‐
Right: The 9‐matching for k = 8. Bottom‐Left: The 10‐matching for k = 9. Bottom‐Right: The 11‐matching for
k = 10. (Isolated vertices in empty cells are omitted.) [Color figure can be viewed at wileyonlinelibrary.com]
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4 | BOUNDS FOR SIMPLE GRAPHS

We define a simple filled drawing D of a simple graph G as a drawing in which any two
vertices that are incident to the same cell c of D are connected. In contrast to filled
drawings (according to Section 2) the connecting edge may (partially or completely) lie
outside of the boundary of c. With this definition in mind, Lemmas 1 and 3 directly
translate to the simple graph setting (note that XH ∉ for any drawing style ΓX k, in this
setting). Lemma 2 though does not translate and consequently neither does the bound in
Lemma 4. We obtain the following bound on mD.

Lemma 6. For any k 0≥ , any k‐planar simple filled and essentially 2‐connected
drawing D it holds that m n( − 1)D k D

2

+ 2
≥ .

Proof. Consider the planarization P of D. As in the proof of Lemma 2 we find that
with P being essentially 2‐connected it has has exactly #isolated + 1 connected
components where #isolated is the number of isolated vertices. Moreover, for the
number of vertices and edges of P it holds that  V P n( ) = +crD and
 E P m( ) = + 2crD , with cr being the number of crossings in D. Let #cells be the
number of faces of P. Since D is simple filled it holds that #cells #isolated + 1≥ . By
applying Euler's formula we obtain

   V P E P

n m

n m

n m

2 = ( ) − ( ) + #cells − #isolated

= − − cr + #cells − #isolated

− − cr + #isolated + 1 − #isolated

= − − cr + 1.

D D

D D

D D

≥

Hence, m n+ cr − 1D D≥ and with mcr
k

D2
≤ we obtain the desired bound. □

Consequently, any simple filled drawing D Γ∈ (and hence every saturated k‐planar
drawing of a simple graph) satisfies

m

n

m

n k

n

n k− 1
min

− 1
min

2

+ 2

− 1

− 1
=

2

+ 2
,D

D D

D

D D

D

D
′

′

′ ′

′

′
≥ ≥ ⋅

where both minima are taken over all k‐planar simple filled, essentially 2‐connected drawings
D′ Γ∈ .

Considering upper bounds on the minimum number of edges in any ΓX k, ‐saturated k‐planar
drawing of a simple graph, we show in the following theorem that for any drawing style
X S I M{ , , }⊆ there exist sparser drawings than for multigraphs. Moreover, for X = ∅ and
X I= { } the resulting bound is tight.

Theorem 7. Let X S I M{ , , }⊆ be a set of restrictions, and Γ = ΓX k, be the
corresponding drawing style of k‐planar drawings of simple graphs. For infinitely
many values of n, the minimum number of edges in any n‐vertex Γ‐saturated drawing
is upper bounded by
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n if X and k k

n if X and k

n if X and k

I

S I

S I M

( − 1) { } 2, 3. (Figure 9)

( − 1) { , } 4. (Figure 9)

( − 1) { , , } 1. (Figure 10)

k k

k k

k

2

+ 2(( + 1) mod 2)

2

+ (( + 1) mod 2)

2

− 1

⊆ ≥ ≠

⊆ ≥

⊆ ≥

Proof. For X = ∅ and X I= { }, as well as X S= { } and X S I= { , } we modify the
constructions used in Theorem 5. In Figure 9 we show the modifications. Taking disjoint
unions of one of these drawings by placing instead of an isolated vertex the whole
drawing again into an empty cell leads a saturated k‐planar drawing of the respective
drawing style with m n= ( − 1)D

m

n c D D+ ( ) − 1

D

D

0

0 0 0
edges. In some sense, this is exactly the

first argument of Lemma 4 in reverse, that is, instead of replacing parts of the drawing by
isolated vertices, we replace an isolated vertex by a drawing.

In case of X = ∅ and X I= { } this leads to m n n= ( − 1) = ( − 1)D D k D
1

2 + − 1

2

+ 2k

2

if k is even (recall that selfcrossings are counted twice per visible crossing) and
m n n= ( − 1) = ( − 1)D D k D

2

4 + 2 − 1

2
k − 3

2

if k is odd. For X S= { } and X S I= { , } we get

m n n= ( − 1) = ( − 1)D k D k D
2

4 + − 2− 1

2

+ 1
if k is even and m n= ( − 1) =D k D

2

4 + − 3− 1

n( − 1)
k D
2 if k is odd.

For any X S I M{ , , }⊆ we modify a construction originally presented by Brandenburg
et al. [10] for 1‐planar drawings and adapted by Auer et al. [4] for 2‐planar drawings.
Here, we generalize the construction to k‐planar drawings. See Figure 10 for an
illustration for the cases k = 1, 2, and 3. The construction is more easily imagined on a

FIGURE 10 Construction for saturated simple k‐plane drawings in case k = 1 (left), k = 2 (middle), and
k 3≥ (right). The dashed left and right sides of the drawings are identified.

FIGURE 9 Modifications of the constructions used in Theorem 5 for X I{ }⊆ on the left, showing the cases
k = 2 and k = 5, and X XS I S{ , },⊆ ∈ on the right, showing the cases k = 4 and k = 5. (Isolated vertices in
empty cells are omitted.) [Color figure can be viewed at wileyonlinelibrary.com]
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cylinder. We describe it here for k 3≥ . Let D′ be the drawing, it consists of a path on nD′

vertices u u, …, n1 with the vertices being laid out along a vertical line from the top to the
bottom of the cylinder and each vertex ui with i n{1, }∉ being connected to ui+1 and uj

with j i k= + + 2 where we do not add an edge if uj does not exist. Finally, we add all
edges u uj1 for j k= 2, …, + 2 and u uj n for j n k= − ( + 2)D′ . As a result we obtain a
series of cells with no vertex on their boundaries in which we add isolated vertices.
Clearly this drawing is k‐planar and no edge can be added without crossing another edge
more than k times. Moreover, there are no multiple‐, incident‐, or selfcrossings and
hence D′ is ΓX k, ‐saturated. Moreover, for n k + 3D′ ≥ the drawing has
m n k= 2 + − 3D D′ ′ many edges. It remains to count how many isolated vertices we
can add. For every edge u ui i+1 with i k n k= , …, − − 1D′ bounds k − 2 cells in which we
can place an isolated vertex. Additionally, the edges u ui i+1 with i k= 3, …, − 1 and
i n n k= − 4, …, −D D′ ′ bound k1, …, − 3 many cells in which we can place one isolated
vertex each. In total we get that

n n n k k k k k= + ( − 2) − 2 ( − 2) + ( − 3)( − 2).D D D′ ′

Solving for nD′ we obtain that

n
n k k

k
=

+ + − 6

− 1
.D

D
′

2

Plugging the above into m n k= 2 + − 3D D′ we finally obtain

m
n k k

k
k

k
n

k k

k
= 2

+ + − 6

− 1
+ − 3 =

2

− 1
( − 1) +

3 − 2 − 9

− 1
.D

D
D

2 2

□

5 | CONCLUDING REMARKS

Regarding multicrossings, we either disallowed their existence (M) or did not restrict their number.
It is possible to make a more fine‐grained analysis and consider the maximum number of times
that a pair of edges (or an edge with itself) is allowed to cross as a parameter
μ. Modifications of our constructions, for example retracing a side of each edge in the construction
in Figure 8 from both endpoints, yield tight bounds for arbitrarily many values of k and μ.

FIGURE 11 ΓX k, ‐saturated 6‐planar drawing for X S M H= { , , }. [Color figure can be viewed at
wileyonlinelibrary.com]
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Our analysis of homotopy‐free drawings (H) is restricted to the branching style (i.e., to
simple drawings). Figure 11 shows a 6‐planar drawing that is ΓX k, ‐saturated with
X S M H= { , , }. The drawing can be easily generalized to a saturated k‐planar drawing in
this style for any even k 4≥ . By taking disjoint unions of this (and an isolated vertex) we obtain
an n‐vertex ΓX k, ‐saturated k‐planar drawing with n( − 1)

k

2

+ 1
edges, which is less than any of

the tight bounds in Theorem 5 and behaves more like the results for simple graphs.
Our drawings typically contain many isolated vertices. We discussed the case that isolated vertices

are not desired already in the introduction: in this case the sparsest graphs possible are matchings and
saturated k‐planar drawings of matchings indeed exist. For k 6≥ , Figures 1 and 8 show saturated k‐
planar drawings of matchings that are simple and hence contained in all specific drawing styles that
we consider. Disjoint unions of these drawings also yield arbitrarily large saturated drawings of
matchings for any fixed k 6≥ . For k 1≤ there are no saturated k‐planar drawings of matchings in
any drawing style considered here (besides the degenerate case of a single edge being saturated in
many possible drawings if homotopic parallel edges are forbidden). For k2 5≤ ≤ the existence of
saturated k‐planar drawings of matchings depends on the drawing style. The constructions from
Figures 2, 3, and 9 give saturated k‐planar drawings of matchings for this range of k for some drawing
styles. Disjoint unions of these drawings also yield arbitrarily large saturated drawings of matchings in
the respective style. For k 3≤ saturated k‐planar drawings of matchings do not exist whenever
parallel edges are allowed, since a cell with two incident vertices is unavoidable.

For simple graphs, it is a relevant open question to determine the minimum number of
edges in a saturated k‐planar simple drawing. Finally, our techniques only work for fixed
drawings. It remains open to determine the min‐saturated k‐planar (abstract) graphs and the
sizes of their edge sets.
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