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Abstract

Cell shape plays a fundamental role in many biological processes, including adhesion,

migration, division and development, but it is not clear which shape model best predicts

three-dimensional cell shape in structured environments. Here, we compare different

modelling approaches with experimental data. The shapes of single mesenchymal cells cul-

tured in custom-made 3D scaffolds were compared by a Fourier method with surfaces that

minimize area under the given adhesion and volume constraints. For the minimized surface

model, we found marked differences to the experimentally observed cell shapes, which

necessitated the use of more advanced shape models. We used different variants of the cel-

lular Potts model, which effectively includes both surface and bulk contributions. The simula-

tions revealed that the Hamiltonian with linear area energy outperformed the elastic area

constraint in accurately modelling the 3D shapes of cells in structured environments. Explicit

modelling the nucleus did not improve the accuracy of the simulated cell shapes. Overall,

our work identifies effective methods for accurately modelling cellular shapes in complex

environments.

Author summary

Cell shape and forces have emerged as important determinants of cell function and thus

their prediction is essential to describe and control the behaviour of cells in complex envi-

ronments. While there exist well-established models for the two-dimensional shape of

cells on flat substrates, it is less clear how cell shape should be modeled in three dimen-

sions. Different from the philosophy of the vertex model often used for epithelial sheets,

we find that models based only on cortical tension as a constant geometrical surface ten-

sion are not sufficient to describe the shape of single cells in 3D. Therefore, we employ dif-

ferent variants of the cellular Potts model, where either a target area is prescribed by an

elastic constraint or the area energy is described with a linear surface tension. By
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comparing the simulated shapes to experimental images of cells in 3D scaffolds, we can

identify parameters that accurately model 3D cell shape.

Introduction

The shape of animal cells is the result of active and passive intracellular and extracellular forces

arising from actin polymerization, actomyosin contraction, cell adhesion, and material proper-

ties of the cell and its mechanical environment [1]. The cell membrane, a lipid bilayer with

fluid-like properties, acts as the physical boundary of the cell and determines cell area and vol-

ume, but does not contribute directly to the mechanics of adherent cells. In most cell types, the

actin cortex, a thin layer of actin filaments and myosin motor proteins located directly beneath

the membrane, is the main mechanically relevant component [2]. The cortex actively contracts

the cell surface, introducing tension gradients that enable the cell to change shape [3]. Other

internal structures relevant to cell shape include the nucleus, which is anchored in the cytoskel-

eton, actin stress fibers, which are actomyosin filament bundles that form dynamically in

response to the mechanical environment, microtubules, stiff hollow structures that provide

intracellular coordination and stability, and intermediate filaments, which contribute to cell

integrity and resilience against external stress, mainly in epithelial cells [4–6]. Although our

understanding of each system is increasing, the interplay between the three filament systems is

crucial for cell mechanics and their resulting cell shape is difficult to predict due to the com-

plexity of the system [7].

Because cell shape is influenced by so many different factors, in principle it can be highly

variable. As different cell types ensure specific functions within the organism, their shapes are

optimized for these functions depending on cell type. Furthermore, cell shapes change during

development and morphogenesis. While all animal cells have the ability to change their shape

in principle, some cell types like epithelial cells, muscle cells or neurons show little shape

changes in the somatic stage. Other cell types, mainly those which function alone in the con-

text of connective tissue, such as keratocytes and fibroblasts, change their shape more fre-

quently [8]. Additionally, cell shape changes are necessary during division, even for epithelial

cells, that usually are tightly integrated with their neighboring cells, but round up for divison

[9]. With recent technological advancements, it is now easier to obtain 3D images of cells,

enabling the investigation of not only their 2D projections, but also their full 3D shape [10–

12]. Concomitant with these advances in imaging, also the corresponding image processing

algorithms, which formerly have been developed mainly for 2D [13, 14], now quickly improve

to quantitatively evaluate cell shape also in 3D [15]. These developments now make it possible

to establish a closer link to modelling and simulation of cell shape.

Mathematical modelling plays an important role in improving and validating our under-

standing of cell shape, especially if combined with quantitative experiments. Simulating cell

shape in structured environments tests and increases our understanding of the underlying

mechanisms governing cell behavior [16]. Analytical 2D cell shape models have been devel-

oped to predict cell shape on micropatterned environments using line and surface tensions

[17, 18], and the notion that the contractile actin cortex is responsible for 3D cell shape is

wide-spread [19, 20]. In fact this philosophy underlies the popular vertex models for epithelial

sheets and 3D cell assemblies, which reduces cell mechanics to the contractility of the cellular

interfaces [21, 22]. 3D cell shape simulations have relied also on more phenomenological

approaches, including neural networks [23] and learned probability distributions [24], but for

a mechanistic understanding, it is desirable to start from physical models of cell surface
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mechanics. A popular and very versatile framework for doing so is the cellular Potts model

(CPM), which combines several mechanical contributions into one energy function [25].

In this study, we employ energy-based descriptions to model cell shape in well-defined

environments and compare different surface energy descriptions. In particular, we compare

an explicit surface minimization to the CPM-approach, which represents different physical

mechanisms in one framework. Our approach provides a robust framework for modelling

complex 3D cell shapes and has the potential to improve our understanding of the fundamen-

tal principles that govern cell behavior in structured environments. Although cell shape in bio-

logical tissue is more variable than shown here, our approach identifies the elements required

to address these more complex situations.

In order to quantify cellular shapes in structured environments, we utilized 3D structures

manufactured with laser nanoprinting, which allowed us to create precisely controlled condi-

tions for cell adhesion [26]. First, we compared the experimentally observed shapes of single

mesenchymal NIH/3T3 cells in structured environments with minimized surfaces under vol-

ume constraint using a Fourier decomposition. We found that these shapes can differ signifi-

cantly, confirming that cell shape is more complex than surfaces under constant tension

(surfaces of constant mean curvature). To address this issue, we employed two additional

modelling approaches, namely the CPM with elastic or linear area energies. Our simulations

showed that the Hamiltonian with linear area energy outperformed the elastic area constraint

in accurately modelling the shapes of cells in structured environments. We also found that

explicitly modelling the nucleus did not generally improve the accuracy of the simulated cell

shapes. Overall, our study provides insights into effective methods for modelling cellular

shapes in complex environments.

Materials and methods

3D structured environments

We manufactured structured environments for cells using 3D laser nanoprinting [26]. In this

technique, a photopolymerizable resist forms radicals in the focal volume of a femtosecond-

pulsed laser. The resist only polymerizes after a two-photon absorption, and because the prob-

ability for a two-photon polymerization is only high enough in the focal volume of the laser,

complex structures can be printed with submicrometer precision.

The fabricated structures consisted of L-shaped, V-shaped, right-triangular and equilateral-

triangle shaped patterns, see Fig 1a-a000 (design scheme) and b-b000 (electron micrographs),

with 15μm high anti-adhesive columns connected by biofunctionalized cross struts of 5μm

width, providing a suitable platform for cell adhesion in 3D. These geometries were selected to

resemble the shapes of commonly used 2D micropatterns, which are well investigated in terms

of 2D cell shapes [27, 28], while eliminating the apico-basal polarity observed in cells on sub-

strates. Using 3D shapes with planar geometry also has the advantage of easy cell seeding and

good imaging conditions.

To functionalize the structures, they were first rinsed with 70% ethanol (Carl Roth) and

then dried for 30 min under UV light. Thereafter, the structures were overcoated with 200 μ/

ml poly-L-lysine (Sigma-Aldrich) dissolved in phosphate-buffered saline (PBS, Biochrom AG)

for 1 h at room temperature and then washed three times with PBS. This was followed by incu-

bation with 10 μg/ml fibronectin in PBS for 1 h at room temperature. The functionalized struc-

tures can be seen in Fig 1c-c000. After washing again three times with PBS, the structures were

either used directly or stored in PBS for a maximum of two days at 4˚C.

PLOS COMPUTATIONAL BIOLOGY Modelling Cell Shape in 3D Structured Environments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011412 April 4, 2024 3 / 21

https://doi.org/10.1371/journal.pcbi.1011412


Fig 1. Overview of the 3D printed scaffolds used in this work. a-a
0 0 0

) Top view with dimensions of the 3D structures.

Shown in gray is the contact area (“cross struts”) for the cells in the L-shaped (a), V-shaped (a0), right triangle-shaped

(a0 0) and equilateral triangle-shaped (a
0 0 0

) structures. The width of the struts is 5 μm. The supporting columns (not

depicted) have a height of 15μm. The angles not explicitly indicated are 90˚ and 45˚. b-b
0 0 0

) Scanning electron

microscope images of the 3D structures. c-c
0 0 0

) Fluorescence imaging of the structures after fibronectin coating and

immunohistochemical staining. d-d
0 0 0

) Fluoresence imaging of NIH/3T3 cells in fibronectin-coated structures after

immunohistochemical staining (fibronectin = magenta, self-fluorescence of columns = blue, DAPI = blue,

actin = green). e-e0 0 0) 3D reconstruction of the cells in 3D structures. The cells adhere to the cross struts, using the

entire strut as the adhesion surface. Scaffold not depicted in e. Scale bar: 10μm.

https://doi.org/10.1371/journal.pcbi.1011412.g001
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Cell culture

NIH/3T3 embryonic mouse fibroblast cells were cultured at standard conditions (saturated

humidity, 37˚C, 5% CO2) in serum containing medium and passaged three times per week to

avoid contact inhibition. During passaging, cells were first rinsed twice with pre-warmed PBS

and then incubated with 250 μL, 5% trypsin / 10 mM EDTA (Invitrogen) at 37˚C for 3 min to

allow cells to detach from the substrate. The cell suspension was taken up in 5 mL of pre-

warmed DMEM (Invitrogen) containing 10% fetal calf serum (FCS, PAA Laboratories). The

serum in the medium provides saturation of trypsin. The cells were then centrifuged at 1000

rpm for 5 min. The supernatant was removed and the cell pellet resuspended in 5–10 mL of

medium. Depending on the desired dilution, a certain volume was transferred to new cell cul-

ture flasks with pre-prepared tempered medium. The usual division ratios for NIH/3T3 cells is

between 1:10 and 1:20.

After structure functionalization with fibronectin, NIH/3T3 mouse embryonal fibroblasts

were seeded on the structures using a micromanipulator (aureka, aura optik GmbH) with an

attached hydraulic manual microinjector (CellTram, Eppendorf). Cells were added to 4˚C

CO2 buffered F12- imaging medium (0.76 g F12 nutrient mixture (Invitrogen), 50 mL water,

25mM HEPES (Carl Roth), 1% Pen/Strep (Sigma-Aldrich), 200mM L-glutamine (Life Tech-

nologies), 10% FCS). A portion of this cell suspension was pipetted over the glass plate con-

taining the structures, which was also coated with F12 imaging medium (4˚C) and clamped in

a magnetic holder. The unheated medium reduced premature adhesion of the cells to the sub-

strate bottom and to the glass capillary of the microinjector. The individual cells were then

aspirated to a glass capillary via the microinjector by creating a negative pressure. The capillary

was then conveyed over the desired structure using the micromanipulator and the cell was

transferred. After all structures were occupied, the temperature was raised to 37˚C to acceler-

ate adhesion of the cells to the structures.

Protein staining was performed immunologically on fixed samples in a humidity chamber.

Cells were fixed at room temperature for 10 min with 37˚C tempered 4% PFA (Sigma-Aldrich)

in PBS. This was followed by permeabilization of the cell membrane by washing three times

with 0.1% TritonX-100 (Carl Roth) in PBS for 5 min, followed by incubation with anti-fibro-

nectin (BD Transduction Laboratories, 1:500) for 1 h at room temperature or at 4˚C. All anti-

bodies and staining substances were diluted in 1% BSA (Bovine Serum Albumin) in PBS. This

was followed by three wash steps for 5 min each with PBS. The fluorescent secondary antibod-

ies anti mouse AF 647 (Life Technologies, 1:400) as well as DAPI (Roth, 1:2000) and fluores-

cently coupled phalloidin AF 488 (Life Technologies, 1:200) were then applied for 1 h at room

temperature. After another wash step with PBS, the samples were embedded in 1% n-propyl

gallate (Sigma-Aldrich) in Mowiol (Hoechst) and stored at 4˚C.

3D images of the cells were taken on the LSM 510 Meta (Zeiss) and the Axio Imager.Z1

with ApoTome (Zeiss) at 37˚C, compare Fig 1d-d000. The 3D shapes were extracted from the

actin, DAPI and fibronectin staining as triangulated meshes (WRL-files) using Imaris (Bit-

plane), compare Fig 1e-e000.

Constant Mean Curvature (CMC) surfaces

The actin cortex is a network of actin filaments and myosin motors positioned beneath the cell

membrane, which contracts the cortex and influences cell shape. Assuming constant tension

throughout the cortex, cell shapes can be characterized as fixed-volume objects that minimize

their surface area, representing an approach that does not consider any contributions from the

bulk of the cell. This approach is applicable to cells in suspension, which tend to be spherical in

shape. For cells on adhesive stripes, their shapes can be described as a wetting process
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governed by surface tensions [29]. However, a quantitative 3D comparison between experi-

mentally observed cell shapes and shapes obtained from the described minimal surface model

has not yet been conducted to our knowledge.

Surface minimization under volume constraints leads to surfaces with constant mean cur-

vature (CMC) [30]. The mathematical problem of finding the minimum energy shape for a

given boundary is called the Plateau problem. To assess the validity of these assumptions for

cells in structured environments, we perform a comparison between experimentally observed

cell surfaces and minimized surfaces with the same volume. The discrepancy between the

observed and minimized cell shapes provides a measure of the degree to which factors beyond

constant surface tension due to the actin cortex contribute to cell shape in structured

environments.

The triangulated surfaces obtained from the experimental data were analyzed using Surfa-

ceEvolver (Version 2.70) [31], a software that utilizes gradient descent to minimize surfaces

under forces and constraints. The triangulated meshes obtained from the image processing

software Imaris were simplified using quadratic edge collapse decimation [32] and then used

as inputs to SurfaceEvolver. The observed volume was fixed, as well as all points attached to

the 3D printed scaffold. It was assumed that the surface tension is constant everywhere. The

surfaces were minimized using the gradient descent method, and the minimized triangulated

meshes were exported for further analysis.

Cellular Potts Model (CPM)

The CPM is a well established modelling framework to describe single cells or cell collectives.

Introduced by Glazier, Graner and Hogeweg in the 1990s to model differential adhesion [33,

34], CPMs are predominantly used to describe phenomena arising due to cellular interaction

[35–37], but they have also been used to describe single dynamics on micropatterns [18, 38–

40]. In contrast to the explicit surface models and similar to phase field models [41], they

include also contributions from bulk elasticity. In contrast to hydrodynamic or active gel mod-

els, however, their focus is on cell surface mechanics [25].

In detail, cells in the CPM are modeled on a lattice where each lattice site can be occupied

by a generalized cell σ of a predefined cell type τ. In our case, possible types are cytoplasm,

nucleus, medium as well as adhesive and non-adhesive scaffold; different from e.g. CPM-simu-

lations on cell sorting, we do not have multiple biological cell types. A generalized cell typically

occupies many lattice sites. The Hamiltonian H is an energy functional that defines the energy

for all possible lattice configurations. During the simulation, a modified Metropolis algorithm

is used to minimize the total energy of the system. The algorithm attempts to update the con-

figuration of the system by selecting a lattice site and trying to change its state to that of a

neighboring generalized cell. The change is accepted with a probability given by the Metropolis

rule, which depends on the energy difference between the new and the old configurations. By

repeating this process many times, the system evolves to a state that minimizes energy, but is

also able to cross local energy barriers [42]. Given the relatively simple shapes considered here,

our simulations always find a unique steady state, thus we did not make use of simulated

annealing procedures [39].

Choosing the appropriate Hamiltonian to describe biological systems has been a longstand-

ing question in the field. Early formulations of the Hamiltonian included an elastic volume

constraint and interaction energies. In order to more accurately model cell behavior, an elastic

surface constraint was added. Additionally, the nucleus can be modeled explicitly as a com-

partmentalized cell with an elastic constraint to ensure that the nucleus is close to the cell
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center of mass:

H ¼
X

Cytoplasm; Nucleus

lVt
� ðVðsÞ � VTt

Þ
2
þ

X

Cell; Nucleus

lAt
ðAðsÞ � ATt

Þ
2

þ
X

<x;x’>N

JtðsðxÞÞ;tðsðx’ÞÞð1 � dðsðxÞ; sðx’ÞÞ

þlNðxCell � xNucleusÞ
2
:

ð1Þ

Here the first term contains the elastic volume energies for the generalized cell types cytoplasm

and nucleus. The second term describes the elastic surface energies of the cell and the nucleus;

note that the cell surface is not identical with the cytoplasm surface, which would contain also

the interface to the nucleus. The scaffold is implemented as a fixed generalized cell type. The

inclusion of an elastic volume constraint in the Hamiltonian is motivated by the constant vol-

umes of cell compartments in biological systems, and the need to model dynamics with some

flexibility to avoid “lattice freezing” while ensuring that the simulated cells do not disappear,

which would reduce the energy of the system but does not align with biological reality. Con-

versely, the elastic area constraint is not strictly required for the simulation, but its inclusion

provides an additional constraint that allows more flexibility in the parameter selection of the

interaction energies J [42]. The third term in the Hamiltonian represents the interaction

energy localized at the cell interfaces. It is computed by summing over all voxels x, x’ within

the neighborhood N, which for N = 1 are the 6 directly adjacent voxels, for N = 2 it includes

the 8 diagonally adjacent voxels and so on. If the voxels x, x’ belong to different generalized

cells σ, their interaction energy J is added to the total energy of the system. Summing over the

neighborhood diminishes the effect of the anisotropic lattice and in addition introduces a bulk

element into the model. The value of J can be positive or negative and depends on the cell

types of the neighboring voxels. To ensure that the nucleus remains inside the cell, an elastic

constraint with strength λN is added between the cell center of mass xCell and the center of

mass of the nucleus xNucleus.

Instead of the elastic area constraint that follows from the assumption that the cell surface is

regulated to a specific value throughout the experiment, one can describe the surface with a

linear area term, which follows from the assumption that increasing the cell surface is always

possible, albeit for a certain energy cost [36, 39]:

H ¼
X

Cytoplasm; Nucleus

lVt
ðVðsÞ � VTt

Þ
2
þ lACell

AðCellÞ þ lANucleus
ðAðNucleusÞ � ATNucleus

Þ
2

þ
X

<x;x’>N

JtðsðxÞÞ;tðsðx’ÞÞð1 � dðsðxÞ; sðx’ÞÞ

þlNðxCell � xNucleusÞ
2
:

ð2Þ

Here, the volume, interaction and nucleus surface and centering energy terms are similar to

Eq 1, but the elastic area energy term of the cell is replaced with a linear area energy, where the

strength is determined by lACell
. Note that here, lACell

has different dimensions compared to Eq

1 because it represents different physics.

The simulations were implemented using CompuCell3D (version 4.1.1) [43]. Cell shape

was initialized as a triangular prism pyramid positioned between the adhesive sites and it was

checked that the final shape did not depend on the details of the initial conditions. The static

cell shapes used for further analysis were obtained by averaging over the last 500 Monte Carlo

steps of the 2000 Monte Carlo steps simulation.
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3D spherical harmonics analysis

To analyze and quantitatively compare 3D cell shapes obtained from experiments and simula-

tions, we employed a 3D spherical harmonics analysis. Spherical harmonics form a complete

set of orthonormal functions and can be used as an orthonormal basis for describing 3D

shapes. This approach enables precise, translation-invariant, scale-invariant, and rotation-

invariant description of 3D shapes and has been previously used to analyze biological shapes

[44–48].

Following the approach in [47], we first convert the boundary shapes for simulated and

experimentally observed cell shapes from Cartesian coordinates to spherical coordinates,

exploiting the fact that all our shapes are star-shaped and thus can be mapped bijectively to the

unit sphere. We then sample the data on a regular grid and use the Driscoll and Healy sam-

pling theorem [49] implemented in pyshtools (version 4.10) [50] to calculate the spherical har-

monics:

Ym
l ðy; �Þ ¼ kl;mPm

l ðcosyÞe
im�; ð3Þ

where l and m are the degree and the order, respectively. kl,m is the normalization and Pm
l are

the associated Legendre polynomials. The spherical harmonics as defined in Eq 3 define an

orthonormal basis, thus any scalar function f(θ, ϕ) on a sphere can be expressed as a sum of the

spherical harmonics:

f ðy; �Þ ¼
X1

l¼0

Xl

m¼� l

f̂ ðl;mÞYm
l ðy; �Þ: ð4Þ

Here, f̂ ðl;mÞ are the harmonic coefficients given by

f̂ ðl;mÞ ¼ kl;m

Z p

0

Z 2p

0

e� im�f ðy; �ÞPm
l ðcosyÞsiny d� dy: ð5Þ

We normalize the harmonic coefficients f̂ ðl;mÞ with respect to the first-order ellipsoid

f̂ ð0; 0Þ and use the normalized coefficients f̂ nðl;mÞ to calculate the rotation-invariant fre-

quency spectrum F(l) as a quantitative shape measure

FðlÞ ¼
Xl

m¼� l

f̂ 2

nðl;mÞ ð6Þ

Now, we can calculate a measure for the difference Dlmax
between two shapes a and b from

the corresponding frequency spectra:

Dlmax
ða; bÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xlmax

l¼0

ðFaðlÞ � FbðlÞÞ
2

s

: ð7Þ

In the subsequent analysis, we will use the first 30 degrees of the respective frequency spec-

tra to compare shapes (Δ30), because higher modes are not resolved in our data and do not

contribute significantly.

Results

Characterization of experimentally observed shapes

We first analyzed the shapes of n = 6 cells in L-shaped structures spanning between two fibro-

nectin coated cross struts. A representative cell can be seen in Fig 1d and 1e and S1 Video.
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Visual inspection of the extracted cell shapes revealed remarkable similarity across all cells.

Notably, the cells bridged along the free area between the beams, forming invaginated arcs—a

well-established phenomenon observed for cells on both 2D microstructured surfaces and 3D

structures [27, 51]. In some cases, we observe w-shaped invaginations due to the nucleus. Typi-

cal values for the shape difference measure Δ30 within this class were around 0.1. To get an

impression of the meaning of this value, in Fig 2a we record the values for the differences

between a sphere and ellipsoids with the same volume, but different aspect ratios A/B. We see

that the typical value of 0.1 corresponds to an aspect ratio below 1.5. We also observed a corre-

lation between Δ30 and the difference in height of the experimentally observed cell shapes Δh,

compare Fig 2b. For a systematic overview, we therefore ordered the cells according to height

and compute all Δ30-values, compare Fig 2c. This analysis demonstrates how the shape differ-

ence Δ30 varies within one class (the L-shapes) and establishes a reference for the comparison

between experimentally observed and simulated shapes.

Similarly, the shapes of n = 7 cells in V-shaped structures were analyzed, see Fig 1d0 and 1e0

and S2 Video, where we again observe invaginated arcs. In this case, the nucleus does not

interfere with the formation of the arc, and we do not observe w-shaped arcs. Additionally, we

analyzed the shapes of n = 3 cells in right triangle structures, see Fig 1d00 and 1e00 and S3 Video,

and of n = 4 cells in equilateral triangle structures, see Fig 1d000 and 1e000 and S4 Video. In these

Fig 2. Comparison of cell shapes on L-scaffolds. a) The shape difference measure Δ30 between a sphere and ellipsoids with the same volume, but

different ratios between the semi-axes A and B is shown as reference. b) Difference in height of the experimentally observed cell shapes Δh versus the

difference between the cell shapes Δ30. The fitted line indicates a weak correlation (R = 0.62). c) Heatmap of the difference Δ30 between the

experimentally observed cell shapes within the L-class.

https://doi.org/10.1371/journal.pcbi.1011412.g002
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structures, the cells also adhere to the additional cross strut as compared to the L-shaped struc-

ture or the V-shaped structure respectively. In these cases, we do not find invaginated arcs as

the cells fill the volume between the struts.

Comparison to CMC-surfaces

We employed Imaris to extract triangulated meshes of the experimentally observed shapes

(scaffold, cytoplasm and nucleus) and then united cytoplasm and nucleus to obtain one com-

pact object whose surface can be minimized, see the blue surfaces in Fig 3a-a000. To this end we

used the so-obtained triangulated mesh and fixed vertices close to the structures. Then, we

used SurfaceEvolver to minimize the shapes under a constant volume constraint. Upon visual

inspection, we found significant differences between the experimentally observed cell shapes

and the resulting minimal energy shapes for the L- and V-shaped structures, compare Fig 3a

and 3b and Fig 3a0 and 3b0, indicating that minimizing area under a volume constraint is not

sufficient for accurately describing cell shape in these cases. The observed cells in the scaffolds

stretch between adhesive areas and maintain a roughly constant thickness, while the minimal

energy surfaces form more sphere-like shapes with two thinly stretched extensions attached to

the scaffold due to the imposed boundary conditions. This finding is not surprising since

spheres have the lowest surface-to-volume ratio, thus the surfaces are becoming locally sphere-

like to minimize their surface area. In general, these shapes seem to have characteristics of

unduloids, which are a class of axisymmetric CMC-surfaces. On the other hand, for cells in tri-

angular shaped structures adhering to all three cross struts, the difference between the experi-

mentally obtained and minimized surfaces are smaller, compare Fig 3a00, 3b00 and 3a000 and

3b000. The surfaces are smoother, but cell-scale surface changes are not found.

Landmark values of the surfaces before and after minimization quantify the shape differ-

ences. We compare the surface area reduction ΔA and the changes in reduced volume Δv. The

reduced volume v, which quantifies how much a shape differs from a perfect sphere, was calcu-

lated from v ¼ V=ð4pR3
0
=3Þ, where V is the volume of the cell and R0 is computed from the

surface area A of the cell as A ¼ 4pR2
0
. A reduced volume of 1 indicates a perfect sphere, while

all other shapes have a lower reduced volume. The differences in area and reduced volume are

illustrated in Fig 3c-c0 00. For cells in the L-shaped structures, the surface area was reduced by

(10±3)% during the minimization process on average, for the V-shaped structures the reduc-

tion was (9±3) %. Much smaller reductions were found for cells in triangular structures, cell

area in the right angle triangle was reduced on average by (5±2) % and in equilateral triangles

the difference is (2±1) %. As expected, surface area always went down under minimization,

even if this is hard as for the closed triangular frames, but the large values obtained for the L-

and V-frames indicate that 3D cell shape is not determined only by minimization of surface

tension.

For the reduced volume v, we find similar differences. After minimization, the reduced vol-

ume of cells in L-shaped structures increased by an average of (14±3) % when compared to the

reduced volume before minimization. For cells in V-shaped structures, this difference was (11

±4) %, whereas for cells in right angle triangles, the average difference of Δv was found to be (6

±2) % and for cells in equilateral triangles (4±1) %. In general, an increase was to be expected

because the surfaces develop more undulations during minimization.

These significant variations for cells that form invaginated arcs underscore the notion that

3D cell shape in structured environments is more complex than a surface that has been mini-

mized under a volume constraint due to an isotropically contracting actin cortex.

To quantify these differences further, we subsequently computed the spherical harmonics

coefficients of the obtained experimental and minimized shapes. Because the spectrum quickly
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decays and does not represent very fine details, as expected due to the finite resolution of the

imaging data, we only consider modes up to lmax = 30. The frequency spectrum of the spherical

harmonics for experimentally observed and minimized shapes can be seen in Fig 3d-d000. The

dipole moment of the spherical harmonics, represented by the amplitude of the first degree in

the frequency spectrum, exhibits a low value. This result is anticipated, given the observed cell

shape’s lack of symmetry with respect to a single axis. On the other hand, the second degree of

the frequency spectrum displays the highest amplitude across all observed cell shapes, corre-

sponding to the quadrupole moment that characterizes a distribution with two perpendicular

axes of symmetry. Additionally, the fourth spherical harmonic also has a pronounced peak in

the frequency spectrum, representing a six-axis symmetric distribution.

Fig 3. Comparison between experimentally observed cell shapes and their minimized surfaces. a-a0 0 0) The surfaces of the cells in structured

environments. b-b0 0 0) Minimized surfaces in the 3D structures. Mesh points attached to the structure were fixed during minimization. c-c0 0 0) Area (ΔA)

and reduced volume (Δv) differences between the experimentally observed and minimized surfaces. d-d0 0 0) Frequency spectrum of the experimentally

observed (blue) and minimized (red) surfaces. d) Δ30 = 0.175. d0) Δ30 = 0.148. d0 0) Δ30 = 0.026. d0 0 0) Δ30 = 0.031. Movies of the 3D reconstructions and

the minimized shapes can be found in S1–S4 Videos.

https://doi.org/10.1371/journal.pcbi.1011412.g003
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With the spherical harmonics analysis of the minimized structures, we are able to quantify

the difference between experimentally observed shapes and what we would expect from mini-

mal surfaces. The difference between the average experimentally observed and minimized

amplitude is Δ30 = 0.175 for cells in L-shaped structures. For cells in V-shaped structures, we

find Δ30 = 0.148. In both cases, there is a large difference in the low degrees of the frequency

spectrum. The amplitude of the first degree of the frequency spectrum for the minimized

shapes is larger than the experimental amplitude, while the amplitudes of the second and forth

degrees, which are prominent in the experimental shapes, are lower. This confirms the

increased sphericity of the minimized shapes. When comparing the experimentally observed

cell shapes to the minimized shapes in triangular structures, the difference is much smaller; for

cells in the right angle triangles, we find Δ30 = 0.026, and for cells in equilateral triangles we

find Δ30 = 0.031. Both values are much lower than for structures with invaginated arcs,

highlighting that the accuracy of cell shape prediction using constant mean curvature depends

on the structured environment.

With this we show that 3D cell shape in structured environments is not always adequately

described by minimized surfaces. We conclude that a constant surface tension due to a con-

tractile actin cortex is not enough to describe 3D cell shape, especially for cells in 3D with

invaginated arcs.

Comparison to CPM-shapes

The CPM can be used to simulate the behavior of cells in complex geometries, such as the scaf-

folds used in the experiments described above. By optimizing the parameters of the model it is

possible to simulate cell shapes that closely resemble those observed experimentally. Parame-

ters influencing the cell shape are the surface energy strength lAt
, which represents the energy

required to change the cell surface area, as well as the interaction energy between the cyto-

plasm and the medium Jcytoplasm,medium, which represents the energy required to expand the

cell surface into the surrounding medium. The neighbor order N is a parameter that deter-

mines the extent of the interactions between neighboring voxels. Choosing an appropriate

neighbor order is crucial in CPM simulations, as it diminishes the effect of the underlying lat-

tice and defines how much of the surrounding affects the cell [25]. Other parameters do not

change cell shape much as long as their value is chosen within a reasonable range. The volume

parameters lVt
and VTt

are used to ensure that the volume of the cytoplasm and the nucleus

stay close to the target volume VTt
throughout the simulation, however changing the con-

straint strength lVt
within an appropriate range does not change the cell shape. The interaction

parameters between cytoplasm and scaffold Jcytoplasm,scaffold, as well as cytoplasm and nucleus

Jcytoplasm,nucleus, are chosen to ensure the cell adheres to the scaffold and the nucleus is sur-

rounded by cytoplasm. The simulation temperature is fixed at T = 100 throughout the simula-

tions, which is a standard choice in CPM-simulations and sets the energy scale. All parameters

used in the CPM-simulations can be found in S1 Table. We note that while most parameters

used here are standard choices, the strongly negative interaction parameter between cells and

scaffolds is special to our work and represents the fact that adhesion drives the shape changes,

similar to earlier CPM-simulations for 2D [18, 39].

In the following we compare the results of the CPM-simulations to the experimental results

for the L-shaped scaffolds (n = 6), compare the representative cell shown in Fig 1d and 1e. The

corresponding spectra were averaged to obtain the average spectrum of an experimental cell in

a L-scaffold, compare Fig 3d. The CPM-simulation resulted in one averaged shape, the corre-

sponding spectrum was calculated and then Eq 7 was used to calculate Δ30 between these

shapes. In Fig 4, the measure of shape difference Δ30 between the experimentally observed cell
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shapes in the L-scaffolds and the cell shapes simulated with the elastic area Hamiltonian (Eq 1)

is shown for varying neighbor order N and interaction energy Jmedium,cytoplasm. Remarkably,

for a large parameter range of Jmedium,cytoplasm and intermediate neighbor order N, significantly

lower values of Δ30 are obtained than for the constant mean curvature shapes, indicating that

the CPM better captures the physical shape determinants of the 3D shapes.

From Fig 4, we also note that the neighbor order parameter effects the simulated cell shape

more than the interaction energy Jmedium,cytoplasm. When only the nearest neighbors are consid-

ered in the calculation of the interaction energy (N = 1), then the cell partially detaches from

the scaffold due to a reduced energy gain from cytoplasm-scaffold interactions. Additionally,

both the cytoplasm and nucleus become more spherical. For intermediate neighbor orders, 4

� N� 10, the simulated cell shapes resemble the experimentally observed shapes for a large

parameter range of the interaction energy Jmedium,cytoplasm, leading to low values of Δ30, with

the minimum being at Δ30 = 0.097, for Jmedium,cytoplasm = 50 and N = 7. Increasing the neighbor

order further to N = 20 leads to shapes that deviate more from the experimentally observed cell

shapes. When the interaction energy Jmedium,cytoplasm is low, the shape becomes w-shaped and

resembles that of minimized surfaces because the energy gain from cytoplasm-scaffold interac-

tions is large due to the high neighbor order. At the same time, the remaining cytoplasm vol-

ume reduces its energy by becoming spherical, leading to a w-shape. However, when the

interaction energy Jmedium,cytoplasm is sufficiently increased, the cost of a less spherical shape

becomes higher than the gain from the cytoplasm-scaffold interaction, resulting in more

spherical shapes and increasing the value of Δ30 again. The minimum of Δ30 is reached for

N = 7, which is a neighbor order with a low perimeter scaling error due to the underlying lat-

tice Jmedium,cytoplasm. Therefore, we fix the neighbor order to N = 7 in the following

simulations.

One of the long-standing questions in CPM-type simulations is the selection of the appro-

priate Hamiltonian. Specifically, when it comes to surface area, the two commonly used

Fig 4. Cell shape difference Δ30 between the experimental and simulated cell shapes as a function of neighbor order and interaction energy.

Neighbor order N defines the set of neighboring lattice sites that interact with a given lattice site, and interaction energy Jmedium,cytoplasm defines the

interaction strength between the cytoplasm and the surrounding medium. Simulated cell shapes for exemplary parameter choices are presented. The

minimum cell shape difference Δ30 = 0.097 is found for N = 7 and Jmedium,cytoplasm = 50, the corresponding cell shape is depicted on the right middle.

https://doi.org/10.1371/journal.pcbi.1011412.g004
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Hamiltonians are either based on the assumption that the surface of a cell is approximately

constant (possibly due to homeostatic regulation by the membrane), thus describing the area

energy with an elastic constraint, see Eq 1, or that increasing surface area always costs energy

for the cell (possibly because it has to work against actomyosin contractility and membrane

tension), leading to a linear area energy, see Eq 2. Comparing simulated cells with experimen-

tally observed cell shapes allows for the direct comparison between the two approaches. Cell

shapes simulated with either Hamiltonian, shown in Fig 5 for elastic area energy and in Fig 6

for linear area energy, closely resemble the experimentally observed cell shapes for a wide

range of parameter values, vastly outperforming the minimized surface cell shapes.

The cell shapes obtained with the elastic area Hamiltonian (see Eq 1 and Fig 5) are visually

close to the experimentally observed cell shapes for a large parameter range. The minimum

Δ30 = 0.090 is found for Jmedium,cytoplasm = 15 and λA = 0.05. Similar cell shapes are obtained for

a large parameter range. A simulation with the elastic area Hamiltonian (Eq 1) can be seen in

S5 Video. Increasing the interaction energy Jmedium,cytoplasm reduces the interface between cyto-

plasm and the medium, resulting in partially occupied scaffolds. For a low elastic area con-

straint λA and interaction energy Jmedium,cytoplasm = 0, the simulated cell shape visually differs

from the experimentally observed cells and resembles again a w-shape.

The minimum found with the linear area Hamiltonian in Eq 2 is even smaller, with Δ30 =

0.039 for Jmedium,cytoplasm = 0 and λA = 500, see Fig 6 and S6 and S7 Videos. The simulated cell

shape that resembles the experiments best is triangular shaped and without completely invagi-

nated arcs, however the thickness to length ratio of the cell closely resembles that of the experi-

mentally observed shapes. Surprisingly, the simulated cell shape resembles the experimentally

observed shapes best when the interaction energy approaches Jmedium,cytoplasm = 0. For a cell

that is surrounded by medium only, increasing Jmedium,cytoplasm has a similar effect to a linear

area constraint, as the surface of the cell corresponds to the interaction area between cell and

medium. In the case of structured environments, the interaction energy only acts on part of

the cell surface, while the whole cell surface is relevant for the area energy. For the linear area

Fig 5. Cell shape difference Δ30 between the experimental and simulated cell shapes obtained with the elastic area energy. Differences are shown as

a function of surface energy constraint λA and interaction energy Jmedium,cytoplasm. Simulated cell shapes for exemplary parameter choices are presented.

The minimum cell shape difference Δ30 = 0.090 is found for Jmedium,cytoplasm = 15 and λA = 0.05, the corresponding simulated cell is depicted on the top

left. A movie of the simulation can be seen in S5 Video.

https://doi.org/10.1371/journal.pcbi.1011412.g005
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Hamiltonian, the scaffold is only partially covered as increasing the cytoplasm surface area

always costs energy. It is surprising that the surface corresponding best to the experiments is

found for the linear area Hamiltonian simulation with interaction energy Jmedium,cytoplasm = 0,

as this is the simulation with the fewest parameters.

Cells with nuclei in square, V-shaped, right-angle and equilateral-triangle structures were

simulated with the parameter set that performed best for the L-shaped structure (linear area

Hamiltonian (Eq 2), λA = 500, Jmedium,cytoplasm = 0), see Fig 7. For the right angle triangular

structure, we find very good agreement between the experimentally observed shapes and the

simulation with Δ30 = 0.053. However, for the equilateral triangle and the V-shaped structure,

which differ more from the L-shaped structure than the right angle triangle, we find Δ30 =

0.141 and Δ30 = 0.136, which is worse than the results for the L-shape, where we find Δ30 =

0.039. These differences show that it is difficult to find universal parameters for the CPM that

accurately predict cell shape in differently structured environments.

From the experimental data, we find that the nucleus is significantly deformed by the cell

cytoskeleton, but does not have a large effect on cell shape. We include the nucleus explicitly in

our CPM simulations, and do not find a visual effect of the nucleus on cell shape in the simula-

tions. In S1 Appendix, we simulate cells without explicit nucleus representation in the CPM,

and find only minor cell shape changes.

Discussion

Due to recent technical advances in imaging, an increasing amount of experimental data is

three-dimensional (3D). This adds to the need for 3D single cell models to explain and predict

cell shape. Combining cell culture with structured environments opens the door for a detailed

quantitative comparision between theory and experiment [16, 26]. In this work, we compared

different approaches to describe cell shape in 3D. We used surface minimization and two main

variants of the cellular Potts model (CPM) to investigate how much simulated shape predic-

tions differ from experimentally observed cell shapes in precisely defined environments. We

Fig 6. Cell shape difference Δ30 between the experimentally observed cell shapes and simulated cell shapes obtained with the linear area energy.

Differences are shown as a function of surface energy constraint λA and interaction energy Jmedium,cytoplasm. Simulated cell shapes for exemplary

parameter choices are presented. The minimum cell shape difference Δ30 = 0.039 is found for Jmedium,cytoplasm = 0 and λA = 500, the corresponding

simulated cell is depicted on the top left. A movie of the simulation and final shape can be seen in S6 and S7 Videos.

https://doi.org/10.1371/journal.pcbi.1011412.g006
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find that the predicted constant mean curvature (CMC) shapes agree well if the cell does not

form invaginated arcs and stress fibers. Larger differences were found for cell shapes in L- and

V-shaped structures, which are characterized by exposed areas and invaginated arcs.

In general, better cell shape prediction was possible with the CPM, independent of the

choice of Hamiltonian and specific parameter values. Invaginated arcs form without explicitly

simulating stress fibers and the high quadrupole moment in the spherical harmonics is cor-

rectly predicted. There are multiple factors that contribute to the better performance of CPM-

simulations compared to surface minimization models. By selecting the neighbor order in the

CPM, one can define how local the interaction energy is. This influences to which extend the

surface minimization can occur, or may even facilitate surface extension between two general

cell types, if the interaction energy is negative. A cell described by a Hamiltonian with volume,

area, interaction and nucleus centering energies leads to more complex shapes that better

resemble experimental results than the case in which only surface tension is minimized. In the

future, it would be interesting to convert the CPM model parameters established here into

physical values. As a first estimate, we note that the known cellular surface tension around 1

nN/μm [17] should correspond to the interaction parameters J divided by pixel size squared.

With our pixel size around 1 μm, the simulation temperature T = 100 thus corresponds to an

energy scale of 100 nNμm, which makes sense because several focal adhesions are involved

here, each with typical force 5 nN and typical size μm [52]. For a more detailed analysis of the

CPM-parameters, however, one had to conduct simulations with different resolutions [25].

Even though CPM-simulations better capture experimental cell shapes, it should be noted

that there are some systematic differences between the simulated and experimental shapes. For

Fig 7. Experimental and simulated shapes and frequency spectrum. a-a0 0 0) Reconstruction of the experimental data from cells in L-shaped, V-shaped,

right-angle triangular and equilateral triangular shaped structures. b-b0 0 0) Simulated cell shapes in structured environments. c-c0 0 0) Frequency spectra of

the experimental and simulated cell shapes. c)Δ30 = 0.039, c0)Δ30 = 0.136, c0 0)Δ30 = 0.053 c0 0 0)Δ30 = 0.141.

https://doi.org/10.1371/journal.pcbi.1011412.g007
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instance, cells in experiments have more variability in their shapes (compare Fig 2c) and attach

only partially to the structures compared to the smooth shapes predicted here by the CPM

when averaging over many configurations. In the future, one should investigate how well the

single CPM-trajectories, which were not analysed here, can represent these fluctuations. To

this end, it might be interesting to replace the Metropolis algorithm by a more physical algo-

rithm, possibly even by one that represents non-equilibrium physics [53]. We also note the

reconstruction of cell shape in experiments using actin staining is only one possible measure

of cell shape, which in the future could be complemented e.g. by membrane stains. We finally

note that actin stress fibers often span between adhesive sites, however their impact has not

been accounted for in the simulations and could be included in the future, as done before for

single cell CPM-simulations in 2D [18].

The best agreement between experimental and simulated cell shape was found with the lin-

ear area Hamiltonian, despite the fact that less parameters are used during the simulation. This

indicates that cells in 3D scaffolds are not subject to strong homeostasis of their surface area, as

it is known for cells adhering from solution onto flat substrates, when cell surface area can

increase by large amounts. The effect of the nucleus on cell shape seems to be negligible in our

setting and the nucleus is strongly deformed by the cytoskeleton, suggesting that there are

mechanisms to keep it away from the cell surface and its mechanics, as represented here by the

nucleus anchoring term in the CPM-Hamiltonian. This aspect could however change if the

geometrical environment became even more restrictive. In the future, our results could be

used for better understanding and even controlling cells in 3D scaffolds, which hold great

promise to normalize cell shape and function.

Supporting information

S1 Appendix. Cell shapes simulated with the CPM without explicit representation of the

nucleus.

(PDF)

S1 Table. Parameters for the CPM simulations.

(PDF)

S1 Video. Shape of an experimentally observed single cell in an L-shaped structure (left)

and minimized surface in an L-shaped structure (right).

(GIF)

S2 Video. Shape of an experimentally observed single cell in a V-shaped structure (left)

and minimized surface in a V-shaped structure (right).

(GIF)

S3 Video. Shape of an experimentally observed single cell in a right-angle triangular struc-

ture (left) and minimized surface in a right-angle triangular structure (right).

(GIF)

S4 Video. Shape of an experimentally observed single cell in an equilateral triangular

structure (left) and minimized surface in an equilateral triangular structure (right).

(GIF)

S5 Video. Cellular Potts model simulation of a single cell in an L-shaped structure with the

elastic area Hamiltonian (Eq 1).

(MP4)
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S6 Video. Cellular Potts model simulation of a single cell in an L-shaped structure with the

linear area Hamiltonian (Eq 2).

(MP4)

S7 Video. Result of the cellular Potts model simulation of a single cell in an L-shaped struc-

ture with the linear area Hamiltonian (Eq 2).

(GIF)
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