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Abstract A key challenge for the virtual characterization of components manufactured using short fiber-
reinforced thermoplastics (SFRTs) is the inherent anisotropy which stems from the manufacturing process. To
address this, a multi-scale approach is necessary, leveraging deep material networks (DMNs) as a microme-
chanical surrogate, for a one-stop solution when simulating SFRTs under highly nonlinear long-term load
cases like creep and fatigue. Therefore, we extend the a priori fiber orientation tensor interpolation for quasi-
static loading (Liu et al. in Intelligent multi-scale simulation based on process-guided composite database.
arXiv:2003.09491, 2020; Gajek et al. in Comput Methods Appl Mech Eng 384:113,952, 2021; Meyer et al.
in Compos Part B Eng 110,380, 2022) using DMNs with a posteriori approach. We also use the trained DMN
framework to simulate the stiffness degradation under fatigue loading with a linear fatigue-damage law for the
matrix. We evaluate the effectiveness of the interpolation approach for a variety of load classes using a dedi-
cated fully coupled plasticity and creep model for the polymer matrix. The proposed methodology is validated
through comparison with composite experiments, revealing the limitations of the linear fatigue-damage law.
Therefore, we introduce a new power-law fatigue-damage model for the matrix in the micro-scale, leveraging
the quasi-model-free nature of the DMN, i.e., it models the microstructure independent of the material models
attached to the constituents of the microstructure. The DMN framework is shown to effectively extend material
models and inversely identify model parameters based on composite experiments for all possible orientation
states and variety of material models.
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1 Introduction

1.1 State of the art

In industrial lightweight applications, short-fiber-reinforced thermoplastic materials play a crucial role. There-
fore, during the past few decades, there has been a lot of research on the experimental characterization and
numerical prediction of their mechanical behavior. The geometry of the reinforcements, such as aspect ratio
and orientation [4,5], has an impact on the polymer material’s complex overall response. This is also affected
by external factors such as temperature [6] and humidity [7]. In general, the composite material inherits distinct
anisotropic behavior at every material point of the macro-scale component because the local fiber orientations
rely on the injection molding process. The experimental as well as the simulative characterization of short
fiber-reinforced thermoplastics (SFRTs) is time-consuming because of their intrinsic anisotropy, especially for
inelastic long-term load case like fatigue and creep.

In order to simplify the characterization workflow, an effective multi-scale method based on the idea
of homogenization is chosen by splitting the problem into micro- and macro-scales [8,9]. The constitutive
models for each phase of the composite (in our case, the polymer matrix and the glass fibers) and the geometric
representation of the microstructure are the two key components of the micro-scale problem. The micro-scale
problem that needs to be solved changes at different locations of the composite part as the microstructure varies
throughout the component, for example, due to changing volume fraction or fiber orientation. Therefore, the
need for a fast and accurate method for solving the micromechanical problem over different varying spatial
microstructures emerges naturally. Computational homogenization methods operate on a particular spatially
resolved microstructure and determine the macroscopic properties in a direct manner, alleviating the restrictive
geometric assumptions of mean field or analytical homogenization approaches [10–13] The combination of
Fast Fourier Transform (FFT) approaches [14–17] and model-order reduction (MOR) frameworks [18–20]
yields promising results. However, the MOR-based approach is restricted to the models in the micro-scale that
it is trained on. Moreover, the selection of a proper quadrature is critical for the MOR framework since it has
a significant influence on the computational performance [21].

Data-driven approaches offer an appealing method for solving the micromechanical problem on unit cells
and directly approximating effective characteristics. Since they can operate on a multidimensional region of
interest, artificial neural networks (ANNs) are particularly useful for such techniques. However, training the
ANNs is a data and time-intensive endeavor. Several inelastic material laws such as plasticity [22–24], damage
[25], creep [26] and fatigue [27] were modeled using ANNs. However, outside of the training domain, the
predicted accuracy of such data-driven systems seems to be low. Moreover, inherent physical conditions such
as monotonicity and thermodynamic consistency are often not accounted for. Nevertheless, physics-informed
neural networks (PINNs)were proposed as a remedy [28]. For PINNs, an artificial neural network approximates
the solution field of a PDE, typically by enforcing the PDE to be satisfied at specific collocation points via
penalization. Applied tomicromechanics, PINNs run into problems as the solution fields are typically (weakly)
discontinuous, which, together with the sheer complexity of microstructured materials used in industry, limit
the efficiency of such networks. Several alternative strategies involving varying neural network topologies like
recurrent neural networks (RNNs) and convolutional neural networks (CNNs) emerged for modeling themulti-
scale inelastic behavior. Wu et al. [29] used an RNN-based surrogate model in an FE2 setting for modeling the
elasto-plastic response in heterogeneous materials. A similar approach was adopted by Ghavamian et al. [30],
where an RNN models the history-dependent micro-level response. Tandale et al. [31] used both CNNs and
RNNs for modeling history-dependent behavior to speed-up nonlinear simulations for predicting structural
deformation.

Liu et al. [32,33] proposed a framework for a surrogate model of micromechanical computations known as
deep material networks. Instead of attempting to learn the solutions to the underlying PDE with heterogeneous
coefficients, DMNs attempt to learn the material’s microstructure, i.e., they seek a simplified effective model
of the geometrical interactions characteristic for the microstructure. Once a simplified surrogate model of the
microstructure is obtained, various inelastic material laws can be inserted into the surrogate microstructure
model to compute the effective material response. The decoupling of the material law from the microstructural
arrangement enables the DMNs to effectively model the spatially varying microstructure for a variety of
different constitutive laws. Gajek et al. [2,34], in later works, proposed direct DMNs which have lesser fitting
parameters compared to the original DMNs of Liu and coworkers. The inheritance of the thermodynamic
consistency of the DMNs from the constitutive laws of the constituents was demonstrated by Gajek et al. [34].
Nguyen et al. [35] proposed an interaction-based deep material network for modeling porous microstructures
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using a nonlinear training strategy. Dey et al. [36] used the DMNs to model long-term creep deformation
using an early-stopping approach and further used it for the inverse characterization of a coupled plasticity-
creep model [37]. DMNs were also employed to estimate the uncertainties in the sheet molding compound
manufacturing process [3] and for fully coupled thermomechanical two-scale simulations [38]. Liu et al. [1]
used a transfer learning approach to model microstructures having varying fiber orientation tensors (FOTs).
The versatility of the DMNs was leveraged by Gajek et al. [34] in a FE-DMN framework for simulation of an
injection molded component having a spatially varying microstructure under elasto-plastic loading by using a
priori interpolation, i.e., the parameters of the identified DMN are a function of the fiber orientation state in the
online phase. However, such approaches seem limited for the harsh conditions of long-term loading scenarios
such as creep and fatigue since the proposed theory [34] suggests that engineering accuracy may be lost if the
constitutive laws are highly nonlinear, as shown in Dey et al. [36].

We are interested in characterizing the stiffness degradation before failure under high-cycle fatigue for
short fiber-reinforced thermoplastics (SFRTs). The fatigue behavior of thermoplastic materials differs from
that of metallic materials, which is widely researched. In contrast to metals, thermoplastic materials exhibit
a significant stiffness loss prior to failure under fatigue loading [39,40]. This stiffness drop is further influ-
enced by fiber orientation and stress amplitude. Fatigue modeling techniques for polymer composites include
phenomenological macro-scale damage models which calibrate damage growth on the basis of macroscopic
observable features, requiring time and cost intensive experimental studies [41–43]. Another method, using
physics-based progressive damage models, specifically takes into account microstructural fatigue effects such
as matrix degradation, fiber fracture, and matrix-fiber debonding. The macroscopic composite response is a
product of homogenization [44] provided localizing effects such as fracture due to damage are accounted for. A
multi-scale fatigue-damage model was introduced by Köbler et al. [9] for short-fiber-reinforced thermoplastics
based on a modified classical phase-field fracture ansatz [45]. The computation at the micro-scale is performed
using fiber orientation interpolation and a full-field/MOR based strategy [46]. Recently, Magino et al. [47]
introduced a fatigue-damage model based on the compliance tensor [48] in order to exploit the stability of
the second phase in the fatigue-damage evolution. In fact, the intrinsic convexity of these classes of models
aims to reduce the computational cost related with gradient extension-based damage models [49]. Although
the chosen fatigue-damage model leads to an efficient model-order reduction, the MOR strategy put forward
in Magino et al. [47] is limited to this particular class of material models. Further works have also used similar
models for upscaling fatigue-damage models [50] and accounting for the viscous effects [51] under fatigue
loading of SFRTs.

1.2 Contribution

In this work, we use an industrially relevant semi-crystalline thermoplastic polybutylene terephthalate (PBT),
reinforced with 30% by weight (17.8% by volume) E-glass fibers to characterize simultaneously the stiffness
degradation under high-cycle fatigue and the material response under quasi-static and creep loadings. As a
starting point, we build upon the work of Magino et al. [47] wherein a convex, rate-independent damage model
based on the work of Görthofer et al. [48] was formulated in the logarithmic cycle space for the PBT matrix
at the micro-scale. The constitutive model is concisely described in Sect. 2. However, with a view to upscale
the model to the macro-scale, we integrate the model in the direct DMN framework [34] which offers us a
reliable and reasonably accurate surrogate model to solve the micromechanics. DMNs have already been used
to simulate long-term load cases like creep [36]. The intrinsic convexity and the non-localized character of
the fatigue-damage model enables a direct integration into the DMN framework. The DMN methodology is
discussed briefly in Sect. 2. However, one of the drawbacks of the DMN is that it is restricted to a specific
microstructural arrangement. To account for the spatially varyingmicrostructure, an interpolation over the fiber
orientation tensor is necessary. However, previous a priori approaches [1–3] for the FOT interpolation appear
prohibitive for the harsh conditions of long-term loading. Furthermore, the representation of highly nonlinear
creep using DMNs require an additional inelastic input during training [36]. Therefore, aiming at a holistic
approach for the simulation of quasi-static as well as long-term loading, we formulate an a posteriori approach
where multiple DMNs are trained and the fiber orientation interpolation concept proposed by Köbler et al. [46]
is used, see Sect. 2. A brief outline of a coupled plasticity-creep model incorporated in the DMN framework
for further validation is also given in Sect. 2.

We outline the results of the fiber orientation interpolation using the DMN framework in Sect. 3 not
only for the fatigue-damage model introduced in Magino et al. [47] but also for the coupled plasticity-creep
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model introduced in Dey et al. [37]. We assess the predictive capabilities of the interpolation procedure by
comparing the DMN-based interpolation with full-field FFT simulations. Furthermore, the relative error and
the computation time of the DMN-based upscaling is also compared with the MOR-based upscaling.

Finally, inSect. 4,we leverage the power of theDMNs to inversely characterize [37] the stiffness degradation
under high-cycle fatigue using macro-scale experiments performed on the composite. Since the DMNs model
the spatial geometry of themicrostructure, anymaterialmodelmaybeused for the constituents of the composite.
This contrasts with the full-field FFTmicro-scale andMORmacro-scale approach adopted inMagino et al. [47,
50], where the material model for the matrix is fixed in the micro-scale and cannot be further modified
based on the results of the FOT-interpolated macro-scale. We exploit this model-free nature of the DMN to
modify the existing fatigue-damage model [47]. We extend the linear damage evolution with the help of a
nonlinear power-law term. Finally, we plug this model into the DMN-based interpolation concept for the
inverse characterization [37] of the matrix material using a 9-layer macroscopic sample and compare them to
experimental results.

2 Generalized DMN-based database for variable fiber orientation

2.1 Models for matrix

2.1.1 Fatigue-damage model

The fatigue-damage model proposed in Magino et al. [47] for the stiffness degradation at small strains is
formulated in the generalized standard material (GSM) framework [52]. GSMs are preserved under a scale
transition in the context of multi-scale modeling, e.g., in the case of DMNs [2]. The model is formulated in
logarithmic cycle space denoted by a continuous variable N̄ ≥ 0, as a replacement of the commonly used time
scale. The rescaling using N̄ = log10 N , where N represents the current cycle, allows us to perform efficient
fatigue computations using large steps �N̄ in the logarithmic cycle space.

The free energy density of the modelψ(ε, d) [47] is defined, with the help of the macroscopic strain tensor
ε, the initial fourth-order stiffness tensor C and a scalar damage variable d , which is an internal variable, as

ψ(ε, d) = 1

2(1 + d)
ε : C : ε, (2.1)

where d ≥ 0. The Cauchy stress σ is computed as

σ ≡ ∂εψ = 1

(1 + d)
C : ε. (2.2)

The dissipation potential is defined in the GSM framework by

φ(d ′) = 1

2α
(d ′)2, (2.3)

where α is a positive constant determining the speed of damage evolution and d ′ = dd/dN̄ .
Finally, the evolution of the internal variable d , in an explicit form, is defined as

d ′ = α

2(1 + d)2
ε : C : ε, (2.4)

where the damage variable d develops linearly in the logarithmic cycle space N̄ . The evolution Eq. (2.4) is
discretized with an implicit Euler method in the logarithmic cycle space. The parameters of the fatigue-damage
model are sourced from Magino et al. [47, § 2.3], identified using experiments performed with PBT matrix
and the reinforced composite. The parameters are given in Table 1.
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Table 1 Material parameters under fatigue loading—matrix parameters identified from experiments

Matrix [47, § 2.3] Elastic E = 2690MPa ν = 0.4
Damage α = 0.015 1/MPa

Fibers [53] Elastic E = 72000MPa ν = 0.22

Table 2 Material parameters for coupled plasticity-creep model—matrix parameters inversely identified from composite exper-
iments

Matrix [37] Elastic E = 2475.0MPa ν = 0.4
Plastic h = 4.0MPa ω = 399.2 y0 = 24.9MPa y∞ = 37.9MPa
Creep A1 = 0.005MPa−1 nc = 10.15 A2 = 2.4 × 10−13 MPa−1 C = 2583.45

k = 0.018 ε̇0 = 1.0 s−1

2.1.2 Coupled plasticity and creep model

A material model for the modeling of both plasticity and creep at different time scales at small strains is
formulated within the GSM framework, see Dey et al. [37, § 2.3]. The strain tensor ε = ∇su is decomposed
into an elastic, plastic and a creep part,

ε = εe + εp + εc. (2.5)

The plastic strain and the creep strain, along with an isotropic hardening variable ᾱ are considered as the
internal variables. The plastic and creep deformations are assumed to be volume preserving. The stress tensor
of the isotropic material model emerges as

σ = κ tr[ε]1 + 2μdev[ε − εp − εc], (2.6)

where κ andμ denote the compression and shear modulus, respectively. The evolution of the internal variables
are explicitly reported

ε̇p = 〈φ〉+
η

dev[σ ]
‖dev[σ ]‖ ,

˙̄α = √
2/3/η 〈φ〉+,

ε̇c = ε̇0

[
1 + C e−‖εc‖/k] [

(A1
√
3/2‖dev[σ ]‖)nc + (A2

√
3/2‖dev[σ ]‖)

] dev[σ ]
‖dev[σ ]‖ ,

(2.7)

in terms of the yield function which is a combination of linear and a Voce-type hardening,

φ = ‖dev[σ ]‖ − √
2/3

(
y0 + h ᾱ + (y∞ − y0)(1 − e−ωᾱ)

)
(2.8)

and the Macauley bracket

〈φ〉+ = max(0, φ). (2.9)

The material model is discretized in time using an implicit Euler approach. A conventional return-mapping
algorithm based on a creep-plastic predictor and a plastic corrector step solves the discretized evolution
equations [54]. The derivation of the material model [55,56] is discussed in detail in Dey et al. [37, § 2.3].

The material parameters of the model comprise the yield stress y0, a limiting stress y∞, a plastic hardening
modulus h, an exponential-hardening factor ω, a viscosity η, the creep constants C and k, creep prefactors A1
as well as A2, a reference creep rate ε̇0, and the creep exponent nc. These material parameters were obtained
inversely from fitting the model with composite experiments using fiber-reinforced PBT [37, § 4.3] and are
reported in Table 2.

The glass fibers aremodeled as linear elastic for the purpose of upscalingwhenused in conjunctionwith both
the fatigue-damage and plasticity-creep models. The material parameters are obtained from Doghri et al. [53]
and defined in Table 1.
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2.2 Deep material networks

2.2.1 Framework

Liu et al. [32,33] first proposed DMNs as a data-driven surrogate model for full-field micro-scale simulations
in concurrent multi-scale approaches.We build upon the direct DMN framework introduced in Gajek et al. [34]
and report on a further extension of the framework by an early-stopping strategy proposed in Dey et al. [36]
for modeling of long-term creep deformation. The DMN framework is divided in two distinct phases: offline
training and online evaluation.We supplement the offline training phase using an inelastically informed training
strategy as outlined in Dey et al. [36].

2.2.2 Offline training

In computational micromechanics, the DMNs aim to replace computationally expensive full-field simulations.
Direct deep material networks [34] use a hierarchical binary tree of rotation-free laminates as shown in Fig. 1a
to represent a two-phase microstructure. In the linear elastic scenario, evaluating the effective stiffness of a
two phase laminate with a normal n, representing the direction of lamination, and the volume fraction of its
constituents, indicated by c1 and c2, is computationally inexpensive.

The binary tree of laminates aims to find an effective model of a complex microstructure Y and enables the
fast evaluation of the homogenization function DMN Y . The two-phase laminates Bi

k , shown in Fig. 1b, form
the building blocks of the DMN. A DMN with K layers utilizing a running index k = 1, . . . , K (from top to
bottom layer K ) is considered. The total number of nodes in the DMN is 2K − 1 where i = 1, . . . , 2K − 1.
We evaluate the homogenized effective stiffness of the DMN using the stiffness tensorsC1 andC2 of the input
materials,

C̄ = DMN Y (C1,C2) (2.10)

by traversing the binary tree from the bottom to the top and by computing the effective laminate stiffness at
every node

C
i
k = Bi

k(C
2i−1
k+1 ,C2i

k+1), k = 1, . . . , K , i = 1, . . . , 2k−1. (2.11)

The effective stiffness of a laminate can be analytically computed [57, § 9.5], independent of the anisotropy of
the input stiffnesses and the geometrical parameters of the laminate. Formore details about the homogenization
at every building block please refer to Gajek et al. [34, § 3.2].

The input materials are assigned to the bottom layer of the DMN in an alternate fashion,

C
i
K+1 =

{
C1, i odd,
C2, i even. (2.12)

Liu et al. [32] proposed to parameterize the laminates’ volume fractions using weightsw2i−1
K+1 andw2i

K+1 which
are attached to each laminate at the input layer K + 1. All allowable weights are non-negative and add up to
one. As we progress up the layers, these weights are additively propagated

wi
k = w2i−1

k+1 + w2i
k+1. (2.13)

The volume fractions of each building block can be retrieved by normalizing the weights

c1 = w2i−1
k+1

w2i−1
k+1 + w2i

k+1

and c2 = 1 − c1. (2.14)

A direct DMN is uniquely parameterized by the lamination direction of each laminate n and the weights
attached to the input layer wi

K+1, which can be organized into a parameter vector p. The vector p of the DMN
can then be identified based on linear elastic material sampling and optimization in terms of a cost function
which will be discussed in later sections. Once the DMN is identified, it may be used to compute nonlinear
and inelastic constitutive behavior, as outlined in Sect. 2.2.3.

However, the proposed theory [34] behind DMNs suggests the results tends to be inaccurate if the con-
stitutive laws exhibit a significant degree of nonlinearity. This has been also been shown when predicting the
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Fig. 1 A two-phase deep material network as shown in Dey et al. [37]

material response under long-term creep loading, see Dey et al. [36, § 3.2]. To circumvent this limitation, we
follow an early-stopping strategy [58, § 7.8] and evaluate the inelastic material law every 50th or 100th iterate
during training. Thus, the DMN parameters p are identified every epoch with the help of the elastic loss,
but the best state of the DMN is identified using the best inelastic error. This inelastically informed training
methodology was further accelerated using a simple Norton-type creep law [59] in Dey et al. [36, § 3.3] to
accurately predict the quasi-static and long-term creep response using DMNs.

2.2.3 Online evaluation

In the online phase, the inelastic response of the DMN is determined while keeping the parameter vector p
constant. We follow the approach introduced by Gajek et al. [34] to solve the online phase of the DMN, where
a flattened representation of the DMN is used. In the online phase, our DMN resembles a traditional laminate
with numerous phases. A nonlinear material behavior of GSM type is assigned to each phase of the flattened
DMN. Each phase of the flattened DMN contains the internal variables of the nonlinear constitutive law.

For a prescribed macroscopic strain ε̄ = ∇s ū, a variational problem is set up for the online phase of the
DMN,

ψ̄(ε̄) = inf
a

⎡

⎣
2K∑

I=1

w I
K ψ I

K (ε I
K (ε̄, aik))

⎤

⎦ (2.15)

where k = 1, . . . , K and i = 1, . . . , 2k−1 and defined in terms of the displacement jump vectors a, strains in
the bottom layer ε I

K , and the free energies

ψ I
K (ε I

K ) =
{

ψ1(ε I
K ), I odd,

ψ2(ε I
K ), I even.

(2.16)

The index I = 1, . . . , 2K represents the phases in the bottom layer of the deep material network. The strains in
each phase of the bottom layer of the DMN can be evaluated based on the approach followed in Gajek et al. [2,
Eq. (3.16)]. The displacement jump vectors are attached to each node of the DMN online phase and are
explicitly reported in Dey et al. [37, § 3.3]. The stresses on the macroscopic level are computed from Eq. (2.15)
via

σ̄ (ε̄) ≡ ∂ψ̄

∂ ε̄
= inf

a

⎡

⎣
2K∑

I=1

w I
K σ I

K

⎤

⎦ , (2.17)
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where σ I
K is the stress in each individual phase of the bottom layer given as

σ I
K = ∂ε I

K
ψ I
K (2.18)

and can be obtained from the respective constitutive law attached to each phase, see Eqs. (2.2) and (2.6).
The unknown jump vectors a associated with each node of the DMN are solved via Newton’s method,

where we use a backtracking algorithm to ensure a stable convergence behavior. Please refer to Dey et al. [37,
§ 3.3] for more details. A DMN with K layers contains 2K − 1 nodes, and each Newton step updates all
3 · 2K − 1 components of the jump vector a concurrently. To boost computational performance, we also use
the last converged displacement jumps from the previous time step to initialize the displacement jumps a at the
start of the Newton iteration. This decrease in runtime is offset by an increase in memory demand to store the
vector at the conclusion of each time step. In the case inelastic models are used, the internal variables attached
to every phase of the bottom layer are stored. A DMN of depth K with 2K−1 laminates in the bottom layer
consists of

Z1 · 2K−1 + Z2 · 2K−1 (2.19)

internal variables, where Z1 and Z2 represent the number of internal variables for each phase. The internal
variables (2.19) are updated after the convergence of Newton iteration. The online phase is implemented as a
user-defined material subroutine (UMAT) in Fortran, which makes use of the LAPACK [60] libraries for an
efficient computation of the linear algebra operations and can be easily integrated into commercial software,
like Abaqus [61] or the commercial FFT solver FeelMath [62].

2.3 Fiber orientation interpolation

Advani and Tucker [63] introduced the second-order fiber orientation tensor (FOT)

A2 =
∫

p ⊗ p ρ( p) dA( p) (2.20)

in terms of a fiber orientation distribution function ρ, which defines the probability of finding fibers in a
particular direction p. The FOT carries a limited amount of information with only five independent degrees of
freedom. Despite its restricted information richness, the efficient form of the FOTmakes it a popular choice for
commercial injection molding simulations. The second-order FOT can be extended to higher moments using
closure approximations [64,65].

The FOT is a symmetric positive semidefinite tensor with unit trace. The eigenvalue decomposition of A2
leads to

A2 = Q diag (λ1, λ2, λ3) QT , (2.21)

where Q is an orthogonal matrix and with eigenvalues λ1 ≥ λ2 ≥ λ3 sorted in descending order. Therefore,
up to a rotation, the fiber orientation tensor A2, can be uniquely defined by two positive real numbers λ1 and
λ2 satisfying

1

3
≤ λ1 ≤ 1 and 1 − 2λ1 ≤ λ2 ≤ λ1, (2.22)

the two inequalities. These inequalities can be represented geometrically in the form of a planar triangle, see
Fig. 2. We call this triangle the FOT triangle and use the CMYK color scheme proposed by Köbler et al. [46],
see Fig. 2.

Themanufacturing of SFRT components using injectionmolding introduces a spatially varyingmicrostruc-
ture throughout the component. Therefore, the total anisotropic nature of the composite must be considered
when modeling the material in the micro-scale. DMNs offer us an effective surrogate to model the complete
anisotropic picture at the micro-scale. However, the DMNs are intrinsically limited to a particular microstruc-
tural state and there emerges a natural need to model spatially varying microstructural states using DMNs.
Liu et al. [1] used a transfer learning paradigm to train a single DMN progressively over various microstruc-
ture states to create a unified database that encompasses a range of geometric descriptors. On the other hand,
Gajek et al. [2] used the FOT triangle in association with a DMN to jointly identify parameters of the DMN.
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Fig. 2 Fiber orientation triangle depicting the two highest eigenvalues of the fiber orientation tensor. The three extreme cases,
i.e., the vertices of the triangle, (a) unidirectional, (b) isotropic and (c) planar isotropic fiber orientation are shown

Fig. 3 A discretization of the fiber orientation triangle with 15 nodes

This approach yields a single DMN surrogate model that covers all fiber orientations. Both the aforementioned
approaches were performed for heterogeneous microstructure having elasto-plastic constituents.

However, as part of this work we aim to introduce a multi-scale model simultaneously for the stiffness
degradation under high-cycle fatigue with strong nonlinearity and deformation under creep loading for large
time scales. Dey et al. [36] showed that identifying an accurate surrogate model for long-term creep loading
requires additional inelastic inputs during the elastic offline training phase. Hence, identifying a single DMN
surrogate model for all FOT states appears prohibitive for high cycle fatigue and long-term creep. Therefore,
we use the idea proposed in Köbler et al. [46], where a fiber orientation interpolation is performed using
effective stresses, with the stresses originating from individually trained DMNs.

To this effect on the micro-scale, we first triangulate the FOT triangle using 15 fiber orientation nodes,
resulting in 16 sub-triangles, see Fig. 3. Each triangulation node represents a microstructural state and is
furnished with a microstructural image Yi , where i = 1, . . . , 15, generated using the sequential addition and
migration (SAM) algorithm [66] and the FOT computed using the λ1 and λ2 values of the particular node.
Thereafter, we generate training and validation data for the DMNs at each node using elastic full-field FFT-
based computational homogenization. These serve as the input for training the DMNs at every node. The
trained DMN parameters pi are stored in a database for use in the macro-scale computations.

On the macro-scale, the inputs consist of the DMN parameters of the 15 trained DMNs at each node and
the material models of the constituents of the composite. Each element is connected with the DMN parameters
of the three nearest pretrained orientations based on its assigned orientation, see Köbler et al. [46]. Therefore,
any fiber orientation state � can be represented uniquely in terms of a convex combination

� = s1�1 + s2�2 + s3�3 (2.23)

of the fiber orientation states �1, �2 and �3 contained in the FOT triangle and a triple of positive numbers
(s1, s2, s3) which sum to unity. Thus, for a macroscopic strain E the macroscopic stress � is calculated

� =
3∑

i=1

si σ̄ i (E, pi , σ I
K ), (2.24)

where σ̄ i denotes the DMN online phase stress (2.17) calculated at each node of the containing triangle depen-
dent on the DMN parameters pi and the stresses σ I

K defined in Eq. (2.18), which emerge from the respective
material models. As a result, the stresses at the node are interpolated, and the nodal internal variables (2.19)
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Fig. 4 Multi-scale FOT interpolation framework using DMNs

of the DMN develop independently and reside on the nodes �1,�2 and �3. The entire FOT interpolation
workflow has been summarized as an algorithm similar to Magino et al. [47, Fig. 6] in Fig. 4. An essential
difference to the MOR-based workflow introduced in Magino et al. [47] is the decoupling of the macro-scale
simulation from the material model of the constituents, leveraging the power of the DMN which serves as an
efficient surrogate of only the geometric state.

The FOT interpolation framework in the macro-scale is implemented as an Abaqus [61] UMAT following
Köbler et al. [46] which calls upon the DMN online phase UMAT at every node of the triangle, which
further integrates the UMAT for the constitutive laws of each constituent of the composite. The trained DMN
parameters are stored as an XML file and integrated using the UEXTERNALDB routine of Abaqus [61].

3 Identification of a DMN-based database for variable fiber orientations

3.1 Microstructural investigations

The constitutive laws of the constituents (fiber and matrix) as well as the spatial arrangement of the fibers in
the matrix material influence the micromechanical problem. As such, the overall response of the composite
is dependent on the material’s representative microstructure. Several studies were conducted on the various
important parameters of the microstructure (such as fiber length) and their influence on the material response
in Dey et al. [37, § 4.1] for a polybutylene terephthalate (PBT) matrix, reinforced with 30% by weight E-glass
fibers. The studies were conducted by comparing the experimental elastic response of the composite with
the material response obtained using the FFT-based computational homogenization software FeelMath [62]
with the help of virtual microstructures generated using the SAM [66] algorithm. For more details, refer to
Dey et al. [37, § 4.1].

In this work, we use the same composite as used in Dey et al. [37] to characterize the matrix material
under high-cycle fatigue. Since the geometric descriptors are not affected by the loading conditions, we use
the best calibrated microstructural parameters from Dey et al. [37] for generating training and validation data
for the DMNs as well as for full-field FFT simulations for validations. Therefore, we generated cubic unit cells
with an edge length of 625μm, which includes cylindrical fibers having a length of 285μm and diameter of
10μm separated by a minimum distance of 3μm. Eachmicrostructure is discretized using 5123 voxels, further
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Table 3 Relative error dependent on tolerance criterion using energy equivalence

Tolerance for residual Unidirectional (%) Isotropic (%) Planar isotropic (%)

10−5 0.015 6.2e−5 9.9e−5
10−4 0.018 8.9e−4 1e−3
10−3 10.9 12 12.7

Table 4 Relative error dependent on tolerance criterion using strain equivalence

Tolerance for residual Unidirectional (%) Isotropic (%) Planar isotropic (%)

10−5 0.03 1.3e−5 2e−4
10−4 0.02 1.7e−3 1.5e−3
10−3 12.1 12.8 13.5

resampled by a factor of two to 2563 voxels using the composite voxel approach, see [67–69]. This strategy
serves to accelerate the FFT computations with high fidelity, see Dey et al. [36, § 3.1]. All the microstructures
are generated using the second-order FOT along with the exact closure approximation [64,65] which serves as
an input for the SAM [66] algorithm. The second-order FOT is calculated with the help of the eigenvalues λ1
and λ2 at each node of the triangle as shown in Fig. 3. It is also reported in Dey et al. [37] that a multi-layered
microstructure over the thickness gives us better accuracy when compared to a single layer over the thickness.
However, in this work, we circumvent the need to use a layered microstructure with the help of the FOT
interpolation, where the layers are resolved in the macro-scale sample, see Sect. 4.1.

3.2 On the runtime of linear elastic full-field simulations

After the identification of the geometric descriptors,we are interested in the generation of training andvalidation
data for the 15 DMNs populating the FOT triangle, see Fig. 3. This results in a large number of full-field
FFT computations and thus reducing the runtime of the linear elastic full-field simulations is of paramount
importance. We follow Dey et al. [36] and generate linear elastic training and validation data via the FFT-based
computational homogenization software FeelMath [62] using the linear conjugate gradient method [70–72]
and the staggered grid discretization [17,73]. A detailed discussion on the different gradient-based methods
for FFT computations and the respective convergence criterion can be found in Schneider et al. [74].

The phase contrast of the constituents plays an important role in determining the runtime of the full-field
simulations. However, for the DMNs, we sample over a range of phase contrasts, which is a pre-requisite for
good training of the DMN [33]. In this work, we design several numerical experiments using an extremely
high phase contrast of 10,000 to evaluate the fidelity and computation time for the extreme case. We primarily
check the accuracy and runtime of full-field FFT simulations dependent on the strain equivalence-based
and energy equivalence-based residuals and their respective tolerances. The errors are evaluated using the
Frobenius norm in Mandel notation with the help of a high-fidelity FFT computation which incorporates the
energy equivalence-based residual with a tolerance of 10−8. In an automated process, all micromechanical
computations were performed in parallel on a high performance computing cluster, where each full-field FFT
computation uses 8 CPUs and 4 GB of memory per CPU.

Weconsider the three extremefiber orientations separately, i.e., unidirectional, isotropic and planar isotropic
fiber orientation as depicted in Fig. 2, and vary the tolerance for both energy equivalence and strain equivalence-
based residuals from 10−5 to 10−3. The relative errors for all the three extreme fiber orientations compared
to the respective high-fidelity solution are depicted in Tables 3 and 4 for the energy and strain equivalence-
based residuals, respectively. The error increases as the tolerance increases for all microstructure realizations.
However, the increase in error from a tolerance of 10−4 to 10−3 is rather large. The unidirectional orien-
tation state has the highest errors. Moreover, the overall errors using the energy equivalence-based residual
appears to be lower than the strain equivalence-based residual. This is consistent with the findings reported in
Schneider et al. [75]. Therefore, for the linear elastic FFT computations we use the energy equivalence based
residual with a tolerance of 10−4 which gives reasonable errors for all microstructure realizations with reduced
runtime when compared to a tolerance of 10−5. The computation times w.r.t. the tolerance for the extreme fiber
orientation states are depicted in Fig. 5 which indicates that an increase in tolerance leads to a reduction in the
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Fig. 5 Computation times using different equivalence criteria and tolerances

computation time. We observe that the energy equivalence-based residual with a tolerance of 10−4 reduces the
computation time by a factor of two when compared to a tolerance of 10−5, further justifying its use.

3.3 Training the DMN database

In this work, we follow the approach outlined in Dey et al. [37, § 4.2] for training each of the 15 DMNs
attached to the 15 nodes of the FOT triangle (see Fig. 3) based on the direct DMN framework [34] outlined
in Sect. 2.2. For each DMN, the tuples

(
C
s
1,C

s
2

)
were sampled using orthotropic elasticity tensors as outlined

in Liu and Wu [33]. The effective elasticity tensor C̄s
FFT, computed using the workflow outlined in Sect. 3.2,

completes the triples
(
C
s
1,C

s
2, C̄

s
FFT

)
used for training and validation. As a point of departure from previous

works involving the direct DMN framework, we train each of the DMNs on 400 training data points and further
use 100 validation data points. Even for this comparatively low number of data points per DMN, already, a
total of 500 × 15 = 7500 linear elastic FFT computations have to be performed for generating training and
validation data.

A depth of seven was chosen for each DMN, i.e., each DMN consists of a binary tree of rotation-free
laminates with seven levels. The increase in depth of the DMN increases the accuracy of the DMN in the online
phase. However, the increase in accuracy is offset by the computation time in the online phase of the DMN.
As the number of unknowns increases exponentially with the depth, the runtime increases exponentially with
increase in depth, as well. Although the online phase computation of a shallower DMN is less time-consuming,
a minimum depth of seven is required to evaluate highly nonlinear load cases with sufficient fidelity.

The training proceeds to evaluate each of the DMN parameter sets pi , where i = 1, . . . , 15, for the 15
microstructural realizations denoted by the 15 nodes in the FOT triangle, see Fig. 3, byminimizing the objective
function,

J ( pi ) −→ min
pi

with J ( pi ) =
nb∑

s=1

Js( pi ) + �( pi ) (3.1)

and the batch size nb = 40, where C̄s
DMN( pi ) is evaluated as in Gajek et al. [34] and

Js( pi ) = 1

nb

∥∥C̄s
FFT − C̄

s
DMN( pi )

∥∥
1∥∥C̄s

FFT

∥∥
1

. (3.2)

The penalty term is defined as

�( pi ) = λ
(

bT
1 〈vi 〉+ − c1

)
+ λ

(
bT
2 〈vi 〉+ − c2

)
, (3.3)
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Table 5 Identified material parameters for the Norton-type model (3.5)

Matrix Elastic E = 2475MPa ν = 0.4
Creep An = 0.014MPa−1 nn = 27.0 ε̇0 = 1.0 s−1

where c1 = 0.822 and c2 = 0.178 are the volume fractions of the respective phases and vi are the vectors
of unconstrained weights for each DMN as outlined in Dey et al. [36, Eq. (2.21)]. In this case, b1 is a vector
having ones at all odd indices and zero otherwise, and b2 is a vector having ones at all even indices and zero
otherwise. The penalty factor λ is set to 100. The minimum of the objective function (3.1) is sought for training
each DMN with a stochastic batch-gradient-descent approach based on automatic differentiation and a batch
size of 40. The entire database generation was automated using Python, the DMN framework was implemented
using PyTorch [76] and trained with the help of the AMSGrad method [77]. The learning rate was modulated
using cosine annealing [78],

β(m) = βmin + 1

2
(βmax − βmin)

(
1 + cos

(
π
m

M

))
, (3.4)

whereβ andm denote the learning rate and epoch, respectively. Themaximum learning rate is slightly increased
to βmax = 0.000725 to compensate for training on a sparse dataset, when compared to the maximum learning
rate of 0.0007 in Dey et al. [37]. The minimum learning rate is set to βmin = 0. The parameter M is set to
4000 and all the DMNs are trained up to 10000 epochs.

Aiming for an extrapolation of the DMN online phase to long-term loading scenarios we augment the
training approach with an inelastic input via an early-stopping procedure [36]. We follow the workflow laid
down in Dey et al. [36] and use Hooke’s law combined with a Norton-type creep law [59]

σ = κ tr[ε]1 + 2μdev[ε − εc],
ε̇c = ε̇0(An

√
3/2 ‖dev σ‖)nn dev[σ ]

‖dev[σ ]‖ ,
(3.5)

with creep parameters An and nn , as a surrogate model to monitor the DMN performance every 50 epochs
during training. For each microstructure realization, the full-field FFT computations using the Norton law and
material parameters identified using the workflow specified in Dey et al. [36, § 3.3] and outlined in Table 5,
are used as the ground truth.

The DMN response is evaluated with the help of a single voxel microstructure by an FFT-based solver
[62]. On the other hand, full-field simulations are performed using the microstructure realization attached to
every node of the FOT triangle. In both cases, a uni-axial tensile stress of 60 MPa is applied, which is ramped
up in 8.5 s and subsequently held constant for 8.64 × 104 s in the three principal directions denoted by σ̄i i
for i = 1, 2, 3. The creep strain component ε̄i i in each loading direction is computed and the following error
measure is introduced to evaluate the performance of the DMN w.r.t. the ground truth FFT computations

enii,t =
∣∣∣ε̄DMN,Nortoni i,t − ε̄

FFT,Norton
i i,t

∣∣∣

maxτ

∣∣∣ε̄FFT,Nortoni i,τ

∣∣∣
for i = 1, 2, 3, (3.6)

together the maximum errors

enii = max
τ

enii,τ as well as en = max
i i

enii , (3.7)

where τ denotes the time steps.
The best DMN state pi for each microstructure realization is identified over the course of the training with

the help of the best Norton error en . For a more detailed description of the training technique, we refer to
Dey et al. [36, Alg. 1]. The best Norton error en for all the orientation states is shown in Fig. 6. We observe
the overall maximum errors throughout the FOT triangle remains fairly consistent around 4%. The maximum
value of the maximum Norton error is 6.9% at a node near the unidirectional fiber orientation state. We also
report on the loss value and the generalization capacity of this specific node having the maximum value of
Norton error, shown in Fig. 7. We observe a monotonic decrease of the loss for the first 100 epochs followed
by oscillations, see Fig. 7a.
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Fig. 6 Maximum Norton error for a fiber orientation triangle with 15 nodes

Fig. 7 Offline training results for node with highest maximum Norton error

The generalization capabilities of the DMN in the linear elastic offline phase are assessed with the help of
a mean error

emean = 1

Ns

Ns∑

s=1

es, (3.8)

where

es =
∥∥C̄s

FFT − C̄
s
DMN

∥∥
1∥∥C̄s

FFT

∥∥
1 ,

(3.9)

and Ns is the number of samples in the training or the validation set, respectively. We see that the trend of the
loss function corresponds to the mean training and validation errors, see Fig. 7b. The simultaneous decrease
in training and validation error during training is an indicator that there is no overfitting in the offline training
phase.

3.4 Validation of DMN database

3.4.1 Fatigue-damage model

Before deploying the DMN in a two-scale simulation, we focus on verifying the deep material network’s
predicted stress response. Firstly, we use the fatigue-damage model and parameters described in Sect. 2.1.1
as the constitutive model for the matrix and a linear elastic model for the fibers to check the fidelity of the
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Fig. 8 Maximum and mean error for fiber orientation interpolation under high-cycle fatigue

trained DMN database. We compare the composite response under high-cycle fatigue using the DMNs for
all 15 microstructure realizations at each node over the FOT triangle, see Fig. 3. Furthermore, to assess the
predictive capabilities of the database outside the training domain we generate microstructures at the centroids
of all 16 sub-triangles, see Fig. 3. At these microstructure realizations, we interpolate the stress response from
the nearby trained DMN states instead of directly computing it with the trained DMN as outlined in Sect. 2.3
and suggested by Köbler et al. [46]. However, this technique raises the effort by a factor of three, both in terms
of computation time and memory use, because three DMN states must be examined for each macroscopic
Gauss point.

We use themicrostructure realizations generated using the SAMalgorithm [66] at each node and centroid to
evaluate the full-field FFT response using FeelMath [62]. TheDMNresponse is evaluated using one tetrahedron
element in Abaqus [61] with the help of the DMN online phase UMAT at each node and the fiber interpolation
UMAT at every centroid. We subject the composite to cyclic loading with a constant stress amplitude and a
stress ratio of R = 0, where

R = σmin

σmax
. (3.10)

To account for the anisotropic response, we instantaneously ramp up to a constant stress of 100MPa till N̄ = 6,
applied in 60 equidistant load steps for the three principal directions denoted by σ̄i i where i = 1, 2, 3. We
evaluate the strain ε̄i i under high-cycle fatigue in each direction. Similar to the Norton error, we introduce a
fatigue error to evaluate the performance of the trained DMN states and the FOT interpolation w.r.t. the FFT
computations,

e f
ii,t =

∣∣∣ε̄DMN, f
i i,t − ε̄

FFT, f
i i,t

∣∣∣

maxτ

∣∣∣ε̄FFT, f
i i,τ

∣∣∣
for i = 1, 2, 3, (3.11)

along with the maximum errors

e f
ii = max

τ
e f
ii,τ as well as e f

max = max
i i

e f
ii . (3.12)

In addition, we introduce a mean error

e f
mean = max

i i

1

τ

∫ T

0
e f
ii,t dt, (3.13)

where τ = [0, T ] denotes the time interval. The maximum (3.12) and mean (3.13) errors are evaluated at all
centroids and nodes and are plotted in Fig. 8 over the FOT triangle.

We observe that the maximum error and the mean errors over the complete FOT triangle lie below 4% and
3%, respectively. The errors observed at the nodes where the DMNs are trained are slightly lower compared to
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Fig. 9 Comparison of DMN and full-field results under high-cycle fatigue for node having the worst maximum error over the
FOT triangle

the interpolated centroids. This is in accordance with the MOR-based fiber orientation interpolation outlined
in Magino et al. [47, § 4.3.4]. However, in our case the maximum error at the nodes are around 2% which
is several magnitudes higher than the MOR-based system. This is to be expected since the DMN is a more
general approach which only learns the spatial geometry in contrast to the MOR approach [47] where the
nodes are trained on modes of the specific loading paths. Nevertheless, the maximum interpolated errors at
the centroids of the triangle using the DMNs are slightly lower when compared to the maximum errors of 5%
for the MOR-based system [47]. In this work, the maximum error of 3.14% over the entire FOT triangle is
observed under extension in the 11-direction at a centroid having eigenvalues λ1 = 0.9 and λ2 = 0.07. The
comparison of the DMN and full-field results for this specific load case is shown in Fig. 9.

3.4.2 Coupled plasticity and creep model

We additionally validate the performance of the DMN and the fiber orientation interpolation with the help of
the plasticity and creep coupled law for the matrix material described in Sect. 2.1.2, along with the material
parameters outlined in Table 2. The model can represent both plasticity and creep at different time scales. We
start with the plasticity and introduce the maximum relative elasto-plastic error epmax [36, Eq. 3.9], following
Dey et al. [36]. The loading conditions and simulation workflows are the same as used in Dey et al. [36].
Furthermore, we introduce a mean error similar to the fatigue loading scenario,

epmean = max
i j

1

τ

∫ T

0
epi j,t dt, (3.14)

where

epi j,t =
∣∣∣σ̄DMN

i j,t − σ̄FFT
i j,t

∣∣∣

maxτ

∣∣∣σ̄FFT
i j,τ

∣∣∣
. (3.15)

The errors are plotted over the FOT triangle in Fig. 10.
The maximum elasto-plastic error is observed to be 11.6% under uni-axial extension in 11-direction in

the unidirectional microstructure realization, see Fig. 12a. The representation of the elasto-plastic response
of the unidirectional microstructure realization, using the DMN, appears difficult and is also observed in
Gajek et al. [2]. The overall maximum error remains fairly consistent over the FOT triangle. More fluctuations
can be observed in the mean error with a maximum value below 5%, see Fig. 10b.

The loading conditions for the validation of the creep response are similar to the ones introduced for the
Norton error in Sect. 3.3. At every node, a uni-axial tensile stress of 60 MPa is applied, which is ramped up
in 8.5 s and subsequently held constant for 8.64× 104 s in the three principal directions denoted by σ̄i i where
i = 1, 2, 3. However, at nodes where λ1 has a value greater than 0.6, the uni-axial tensile stress is reduced to
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Fig. 10 Maximum and mean error for fiber orientation interpolation under elasto-plastic loading

Fig. 11 Maximum and mean error for fiber orientation interpolation under creep loading

Fig. 12 Comparison of DMN and full-field simulation for elasto-plasticity and creep for node having the worst maximum errors
over the FOT triangle
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Fig. 13 Geometry and fiber orientation of the sample [51]

30 MPa in the 22 and 33-directions. In the case of all centroids, a uni-axial tensile stress of 40 MPa is used in
all directions. The maximum and mean error for computing the DMN and full-field response using the creep
strain component ε̄i i is introduced

ecmax = max
i i

max
τ

ecii,τ and ecmean = max
i i

1

τ

∫ T

0
ecii,t dt, (3.16)

respectively, where

ecii,t =
∣∣∣ε̄DMN,ci i,t − ε̄

FFT,c
i i,t

∣∣∣

maxτ

∣∣∣ε̄FFT,ci i,τ

∣∣∣
for i = 1, 2, 3. (3.17)

The maximum and mean error for the FOT triangle under creep loading is shown in Fig. 11. The maximum
errors do not show any major fluctuations with a maximum value of 8.5% in the 11-direction at a node near
the isotropic fiber orientation state. The FFT and DMN responses for the maximum error are visualized in
Fig. 12b. The overall maximum errors for creep appear to be higher than the errors reported in Dey et al. [36].
A probable cause is the use of fewer training data points in this work. However, the mean errors show very
little fluctuations and are below 4%, see Fig. 11b.

3.5 Computation time

Finally, we discuss the computational cost of the deep material network-based fiber orientation interpolation
and compare it to the MOR-based fiber orientation interpolation [47]. To this effect, we use an Abaqus [61]
tetrahedron element simulation containing one Gauss point which we run on a single node having a single
CPU. We apply a uni-axial load of 100 MPa for N̄ = 6 in 60 equidistant load steps. The fiber orientation
concept based on DMNs requires 27 ms for solving the material law at the Gauss point for a prescribed macro-
increment in the logarithmic cycle space. It is to be noted that at every Gauss point, three separate DMNs need
to be evaluated for finding the interpolated material response. On the other hand, the MOR-based approach
using 15 proper orthogonal decompositionmodes for the reduced-order model fromMagino et al. [47] requires
around 2.4 ms for identifying the material response at the Gauss point for a prescribed macro-increment in the
logarithmic cycle space.

Therefore, the computational cost is increased by a factor of around 10 when using individually trained
DMNs for fiber orientation interpolation. Nevertheless, the versatility of theDMNmakes it an attractive choice.
The trained DMNs can not only model the fatigue response with high fidelity but also the plasticity-creep
response as shown in Sect. 3.4. This is unlike the MOR-based approach which is configured for predicting
the fatigue response only. Moreover, the decoupling of the material response of the constituents from the
geometric state, in the DMN response, opens a vast array of opportunities to modify existing material models
and parameterize them based on the composite response.
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Fig. 14 Stiffness degradation under high-cycle fatigue loading

4 Extension of fatigue-damage model

4.1 Experimental investigations

The stiffness degradation under fatigue loading for fiber-reinforced polymers are investigated with the help of
experiments performed using the reinforced PBT composite [51]. The experiments were performed on samples
cut out from an injection molded plate. We use the samples cut out in the 0◦ and 90◦ direction w.r.t. the flow
direction during injection molding as shown in Fig. 13a. The layered fiber orientation tensor over the thickness
of the sample was extracted from μCT scans performed using a small volume of the identified samples [79].
The FOT using nine layers over the thickness of the sample is depicted in Fig. 13b [51].

Both the samples were subjected to cyclic loading with a stress ratio of R = 0 using a range of stress
amplitudes [51]. Moreover, the experiment for each load case was repeated three times to determine the
variation of the measurements [51]. The decrease of dynamic stiffness of the material under fatigue loading
is of interest to us. As a result, for each cycle, we recorded the maximum strain εmax and the minimum strain
εmin. Finally, the dynamic stiffness of the sample is calculated,

Edyn = σmax − σmin

εmax − εmin
. (4.1)

The experiments corresponding to each stress level are conducted at different frequencies. This was done to
study the viscoelastic effect of the composite on the stiffness degradation, see Magino et al. [51]. However,
in this work, the viscoelastic effects are not taken in account during the modeling approach. Therefore, we
normalize the dynamic stiffness using the initial dynamicYoung’smodulus of the sample at N̄ = 0, Edyn(0).We
plot the normalized dynamic stiffness against the logarithmic cyclic variable N̄ for different stress amplitudes
in the 0◦ and 90◦ directions in Fig. 14.We also plot the scatter of the experiment for each stress level along with
the mean value in Fig. 14. Each experiment at every stress level is repeated three times to obtain the scatter.

At first glance, it can be seen that the scattering of the experiments is significantly higher in the 0◦ direction
when compared to the 90◦ direction, see Fig. 14a and b. Moreover, the stiffness degradation in both directions
show a steady linear decrease up to around N̄ = 2, i.e., in the primary stage. However, after 100 cycles,
i.e., secondary stage and beyond, the stiffness degradations due to fatigue-damage shows a strongly nonlinear
response. Hence, it was clear to us that the elegant fatigue-damage model for the matrix, formulated using
a linear damage evolution, in Magino et al. [47] (Sect. 2.1.1) is not sufficient to fully represent the highly
nonlinear stiffness degradation of the composite material. Therefore, in the following section, we introduce a
novel fatigue-damage model for the matrix material, based on a nonlinear damage evolution, and seek a better
fit to the composite experiments shown in Fig. 14.
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4.2 Power-law fatigue-damage model

In this section, we extend the fatigue-damage model with a linear damage evolution, proposed in Magino
et al. [47] and briefly outlined in Sect. 2.1.1. We follow the approach fromMagino et al. [47] and formulate the
model in the logarithmic cycle space denoted by a continuous positive variable N̄ . Furthermore, the improved
power-law fatigue-damage model is defined in the GSM setting [52] and can be directly integrated in the DMN
framework.

We use the free energy density of the model defined in Eq. (2.1), with the help of the macroscopic strain
tensor ε, the initial fourth-order stiffness tensor C and a positive scalar damage variable d , which serves as
the internal variable. The stress is thereby computed as defined in Eq. 2.2. However, we formulate a new
dissipation potential, dependent not only on the damage evolution d ′ = dd/dN̄ as in Eq. (2.3), but also on the
damage variable d and formulated in the GSM framework as

φ(d ′, d) = 1

2α (1 + A 〈d − dcrit〉+)n
(d ′)2, (4.2)

in terms of the parameter α controlling the speed at which damage evolves, a critical damage value dcrit, a
pre-factor A and an exponent n.

Finally, the evolution of the internal variable d obtained using the Biot’s equation associated to this specific
model, in an explicit form, is defined as

d ′ = α (1 + A 〈d − dcrit〉+)n

2(1 + d)2
ε : C : ε, (4.3)

where the damage variable d increases in a linear fashion over the logarithmic cycle space N̄ up to d ≤ dcrit,
if the stress amplitude is prescribed. In the case when the damage variable d > dcrit, the damage evolution
is scaled based on a power-law which is dependent on the exponent n, the remaining damage d − dcrit and
the pre-factor A. This condition is encoded in the model with the help of the Macauley bracket

〈d − dcrit〉+ = max(0, d − dcrit). (4.4)

The evolution Eq. (4.3) is discretized using an implicit setting in the logarithmic cycle space. The fatigue-
damage model with the linear damage evolution, defined in Eq. (2.4), can be obtained by setting the parameter
A = 0 in the nonlinear damage evolution (4.3).

We aim to understand the damage evolution of the nonlinear model in detail with the help of a uni-axial
extension in a one-dimensional setting under a constant stress amplitude σmax of 30 MPa. Moreover, we
consider the evolution of the dynamic stiffness Eeff with an initial value of 3 GPa. The exact integration of the
damage evolution (4.3) under a constant stress amplitude and initial condition of d(0) = 0 is plotted in Fig. 15a
for different values of the exponent n. We assign the pre-factor A and α a value of 2 and 0.11, respectively,
and the nonlinear evolution starts when the damage reaches a critical value dcrit = 0.05. We also compare
the nonlinear response with the linear response where we set the parameter A to zero. We observe that the
parameter α determines the initial slope of the damage evolution which remains constant up to N̄ = 6 in the
linear case (A = 0). However, in the nonlinear case (A = 2), the damage evolution progresses exponentially
when the damage variable d reaches the critical damage dcrit. The damage evolution is stronger with increase
in the value of exponent n, see Fig. 15a.

We also plot the effective dynamic stiffness Eeff degradation defined as

Eeff = 1

1 + d
E (4.5)

over the logarithmic cycle variable N̄ normalized with the elastic modulus E , which equals the effective
stiffness in the undamaged initial state, in Fig. 15b. We see that the slope of the curve remains constant for the
linear case (A = 0) and the effective Young’s modulus decreases due to the damage under fatigue loading.
Nevertheless, in the nonlinear case (A = 2), we observe a behavior corresponding to the damage evolution,
where the rate of stiffness degradation increases after the critical damage threshold is reached and is dependent
on the value of exponent n. Thus, for a higher number of cycles, the stiffness degradation is sped up and
reproduces the stiffness degradation observed in the experiments performed on the composite rather well, see
Fig. 14. Therefore, the improved matrix model, incorporating nonlinear power-law damage evolution under
high-cycle fatigue, should in principle be able to better reproduce the composite experiments depicted in
Fig. 14.
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Fig. 15 Effect of changing the exponent n on the nonlinear polymer matrix behavior

4.3 Inverse calibration of power-law fatigue-damage model

Exploiting the additional freedom enabled by the power-law fatigue-damage model, proposed in Sect. 4.2,
requires identifying three new parameters dcrit, A and n in addition to the two parameters of the linear model
(Sect. 2.1.1) E and α. These five parameters need to be calibrated using experimental results. The inverse
calibration approach introduced in Dey et al. [37, Fig. 1] enables us to efficiently calibrate all the parameters
directly from composite experiments, see Fig. 14.

However, in contrast to Dey et al. [37], instead of using a single element computation in Abaqus [61] for
the inverse calibration, we use the complete sample shown in Fig. 13a by leveraging the FOT interpolation
introduced in Sect. 2.3. We observe, in the fatigue testing sample, a slight stress intensity factor rendering
the macroscopic response slightly inhomogeneous. Therefore, the structural simulation of the full geometry
is deemed necessary. We assign a nine-layered fiber orientation structure to the macroscopic sample depicted
in Fig. 13b. Each element in the sample is assigned the respective orientation state and the material response
can be efficiently computed using the trained DMNs attached to the three closest orientation states via the
fiber orientation interpolation, see Sect. 2.3. Therefore, the trained DMN database over the FOT triangle has a
twofold advantage. In addition to enabling the evaluation of the material response at any orientation state, the
model-free nature of the DMNpermits us to inversely calibrate matrix properties from a single set of composite
experiments.

In our case, we calibrate the power-law fatigue-damage model for the matrix, introduced in Sect. 4.2, based
on composite experiments performed in the 0◦ direction. The inverse calibration is performed in two distinct
steps. In the first step, we calibrate the model based on linear damage evolution by setting the parameter A to 0
and optimizing with the experiments performed in the 0◦ direction up to a normalized dynamic stiffness value
of 0.98. This is the primary stage of the stiffness degradation under fatigue loading which can be described
by a linear model. We aim to find the Young’s modulus E and the damage-speed parameter α and consider
a fixed Poisson’s ratio ν = 0.4. The macroscopic sample is evaluated in Abaqus [61] and the simulation
is iteratively called in an OptiSlang [80] optimization workflow. We simulate the fatigue loading with three
different stress amplitudes with a stress ratio R = 0. We set up a minimization problem wherein the area under
the normalized dynamic stiffness curve obtained from the composite experiment and from the simulation using
the macroscopic sample is considered for each stress level. The objective function minimizes the sum of the
areas for the three stress amplitudes.

We use the One-Click-Optimization (OCO) algorithm in OptiSlang [80] and generate 100 samples of the
parameters using Latin Hypercube Sampling (LHS) [81]. The best fitting parameters, stored in Table 6, are
obtained when the objective function reaches a minimum value of 0.5%. The plots comparing the composite
experiments and the simulations using the linear damage with the best fitting parameters is shown in Fig. 16.
We observe that the linear model represents the stiffness degradation of the composite experiments in the
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Fig. 16 Experimental and simulation results with best fitting parameters in 0◦ direction using linear damage evolution

Table 6 Matrix parameters for fatigue loading identified with inverse calibration of the composite experiments

Matrix Elastic E = 2871.5MPa ν = 0.4
Damage (Linear) α = 0.07 1/MPa
Damage (Power-law) dcrit = 0.06 A = 4 n = 1.4

primary stage to a reasonable accuracy. The inverse parameter approach also results in higher values of the
Young’s modulus E when compared to the Young’s modulus obtained using experiments from the matrix
material [47], see Table 1.

In the next step, we fix the identified linear damage parameters and aim to find the parameters for the
nonlinear power-law damage evolution. We follow a similar approach like the linear damage but now we use
the complete experimental stiffness degradation of the composite in the 0◦ direction for three different stress
amplitudes, see Fig. 14a. We again use the same optimization and objective function in OptiSlang [80] and
find the best fitting parameters using 100 LHS parameter sets. The best fitting parameters, reported in Table 6,
were found with a minimum value of the objective function of 11.6%. The composite experiments in the 0◦
direction are plotted against the best fitting simulation using both the linear and power-law damage evolution
in Fig. 17a. We find that the power-law damage evolution can better model the stiffness degradation under
fatigue. This is mainly because the rate of stiffness degradation remains fixed in the case of linear damage
evolution, and it can model the stiffness degradation up to 100 cycles or primary stage only, with reasonably
accuracy. On the other hand, the power-law damage evolution can predict the stiffness degradation within
the scattering of the experiment for the entire logarithmic cycle window for the lower stress amplitudes. In
case of the maximum stress amplitude of 70 MPa, the stiffness degradation beyond 10,000 cycles is not well
represented since the model does not account for localizing effects.

Furthermore, the best fitting parameters are used to simulate the composite experiments at different stress
amplitudes in the 90◦ direction, see Fig. 17b, to validate the anisotropic response. As in the 0◦ direction, we
observe that the power-law damage evolution provides a better fit compared to the linear case for all stress
amplitudes. However, in the 90◦ direction, the fit is worse when compared to the 0◦ direction. A possible reason
might be that the localization effects are stronger in the 90◦ direction since the composite is weaker, especially
for higher stress amplitudes. Nevertheless, the power-law fatigue-damage model introduced in Sect. 4.2 fits
the composite experiments in both 0◦ and 90◦ directions with reasonable fidelity when compared to the matrix
model with linear damage evolution introduced in Magino et al. [47]. Therefore, the FOT interpolation based
on the DMNs allow us not only to extend or modify material laws of the constituents but also enable us to
efficiently identify the material parameters with a reduced number of experiments via inverse calibration.

5 Conclusion

In the work at hand, we consider the problem of multi-scale modeling of short fiber-reinforced thermoplastics
for all possible orientation states under long-term loading using the DMNs as a surrogate for the micro-scale.
This is in contrast to FE2 approaches where each Gauss point in the macro-scale finite element simulation is
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Fig. 17 Experimental and simulation results with best fitting parameters under high-cycle fatigue

equipped with a finite element model of the microstructure that is used to solve the cell problem. Although
the FE2 method delivers accurate results, it is computationally expensive, especially when the microstructure
definition varies in the macro-scale. In this regard, MOR-based approaches are computationally efficient.
However, there exists a trade-off in the numerical performance when selecting the proper quadrature essential
for accuracy [82,83]. Magino et al. [47] uses specific material models to circumvent the quadrature problem,
which in turn restricts modeling freedom. Nevertheless, one of the major drawbacks of the MOR approach is
that any further change in the constitutivemodel requires a re-calibration of the completemicro-scale approach.

We are interested in a more general approach where the matrix model for fatigue-damage can be mod-
ified and tuned based on performance at the composite level. The DMNs offer us an efficient surrogate for
micromechanics and is able to model the inelastic composite response for a variety of design tasks. Several
works [1–3] have introduced upscaling techniques by training/re-training a singleDMNa priori over an array of
microstructural descriptors. However, with a view to long-term load cases such as fatigue or creep [36], we use
the fiber orientation interpolation introduced in Köbler et al. [46] and train multiple DMNs over the complete
FOT triangle for the a posteriori evaluation of the composite response. We integrate the fatigue-damage model
introduced in Magino et al. [47] in the FOT interpolation framework and validate the composite response for
all possible orientation states with the help of full-field FFT response. We demonstrate the generalizability of
the DMN-based FOT interpolation by integrating and validating the systemwith a coupled plasticity-creep law
[37]. We show that the trained DMN database can reproduce the composite response for fatigue, quasi-static
and creep load cases simultaneously with a reasonable fidelity.

Finally, we critically examine the stiffness degradation of the composite based on experimental results. We
find that after a few hundred cycles (primary stage) the stiffness degradation becomes strongly nonlinear in
nature. Therefore, we introduce an improved matrix model with a nonlinear power-law damage evolution for
modeling fatigue of SFRTs. We circumvent the drawback of re-calibrating the multi-scale workflow imposed
by the MOR-based approach [47] with the DMN-based approach. The DMNs decouple the constitutive model
of the constituents from the geometric state. Thus, we integrate the power-law fatigue-damage model into the
DMN-based multi-scale framework with minimum effort. We inversely calibrate [37] the power-law fatigue-
damage model for the matrix based on composite experiments and demonstrate that this model enables us
to better fit the stiffness degradation beyond the primary stage. Nevertheless, the modeling of the stiffness
degradation in the tertiary stage before failure will be better served with a localizing approach.

The DMN framework coupled with the FOT interpolation framework fromKöbler et al. [46] creates an off-
the-shelf all-inclusive database for calibrating the composite response for all possible orientation states under a
range of load cases. This framework can also be used for component simulation with a varying spatial response,
albeit with further speed-up using sparse matrices in the DMN online phase [2] creating a one-stop solution for
multi-scale modeling of SFRTs. Furthermore, extending the database framework for interpolation over other
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geometric descriptors such as fiber length and capturing the uncertainties arising out of the microstructure [3]
may also be worth the effort.
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