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Abstract The synchronous reference frame phase-
locked loop (SRF-PLL), also called dqPLL, is an elec-
tric circuit commonly used in power electronics to esti-
mate the phase angle of a three-phase AC grid. If the
voltage is unbalanced, the PLL is modeled as a peri-
odically forced nonlinear oscillator and is known in
practice to converge to a steady oscillation. In the exist-
ing literature, the oscillation has been studied via lin-
earization assuming a low level of unbalance. Aiming
for stronger nonlocal statements, we present nonlinear
analysis. We apply the method of autonomous compar-
ison systems and incremental stability to show that the
steady oscillation is unique and attractive in a wider
neighborhood. Its lock-in domain is estimated using
numerical phase portrait analysis. The oscillation is fur-
ther approximated up to the terms of the second order
in the unbalance factor—it yields an estimation of the
time average of the PLL’s phase error which is not vis-
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ible by linearization only. The results provide stability
guarantees and can guide the tuning of SRF-PLL.
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1 Introduction

Phase-locked loops (PLLs) are a class of dynamical
systems designed to synchronize to the phase of a peri-
odic signal. The synchronization problem arises in sig-
nal processing [5], sensing [16], power electronics [1],
and other fields. We focus on a class of PLLs used
in power electronics. They are an important compo-
nent of many power inverters – notably, the grid-tied
ones operating on the interface between a DC power
source and the AC utility grid. The purpose of the PLL
is to determine the phase of the AC grid voltage. The
phase knowledge is then utilized to efficiently inject
DC power into the AC grid [22].

We investigate a common PLL design called syn-
chronous reference frame PLL (SRF-PLL) or dqPLL
[7]. It is based on Park’s dq coordinate transforma-
tion which transforms the voltage to a rotating refer-
ence frame. SRF-PLL achieves exact phase estimation
only under balanced conditions – that is, when voltage
amplitudes on all three wires are equal, and the phase
angle differences between them are 120◦. In reality,
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grid voltage is always unbalanced. In this case, SRF-
PLLphase estimation is contaminated by even harmon-
ics of the grid’s frequency – this is known from the
experimental studies of PLLs under distorted voltage
conditions [1].

In the previous literature, one finds two approaches
to the analysis of the unbalance-induced oscillation.
One method utilizes linearization, also known as the
small angle approximation [7]. Another technique
operates in the nonlinear setting and relies on a struc-
tural stability argument [6, Lemma 8]. Both of these
approaches assume infinitesimal unbalance and yield
small-angle results.

For large angles, SRF-PLL stability has been proven
only under balanced conditions using the Lyapunov
function method [9]. Extension of the nonlinear anal-
ysis to the unbalanced case is not easy for the reason
that the nonlinear PLL equations affected by voltage
unbalance are similar to those of a periodically forced
nonlinear pendulum. It is well known that such equa-
tions may exhibit rich dynamics, including chaos [8].
This complicates the global stability analysis – with
arbitrary angles and extra high unbalance. In this light,
we aim for regional results (not so far from zero, but
not infinitesimal either).

Our goal is to show that the oscillation observed in
experiment is, in some sense, the only behavior practi-
cally possible. Specifically, we want to show that there
is a “not small” region (the so-called lock-in domain)
in which the oscillation is unique and attractive. We
aim to estimate the lock-in domain better than is possi-
ble with the linearization or Lyapunov function meth-
ods. Furthermore, we are interested in approximating
the time average of the oscillation. Our motivation is
explained more substantially in Sect. 2.5, and the goals
are formulated in Sect. 2.6. The main analytical results
are described in Sect. 4.1, their numerical application
is illustrated in Sect. 4.2.

2 Preliminaries

2.1 SRF-PLL dynamics

Let us introduce the equations governing the SRF-PLL
circuit in an unbalanced AC grid with frequency ω:

δ̇ = −K1μ(2ωt) sin δ + γ + ωF
(
μ(2ωt)

)
, (1a)

γ̇ = −K2μ(2ωt) sin δ (1b)

where

F(μ) = 1 − 1 − κ2

μ2 . (1c)

These equations are derived in Appendix A (Proposi-
tion 3). The terms have the following meaning:

• δ is the dynamical part of the phase estimation error
produced by the PLL;

• γ is the frequency estimation error;
• K1 > 0 and K2 > 0 are constants that depend
on the parameters of the voltage (magnitude and
frequency) and parameters of the internal control
loop within PLL – these constants can be tuned by
the engineer;

• κ ∈ [0, 1) is a constant called the unbalance fac-
tor – larger κ corresponds to stronger unbalance;

• μ(·) is the 2π -periodic unbalance-induced forcing
function

μ(ψ) =
√
1 + 2κ cosψ + κ2 (2)

which satisfies the bounds

0 < 1 − κ ≤ μ(·) ≤ 1 + κ. (3)

Remark 1 System (1) presumes several modeling as-
sumptions: grid voltage conditions are time-invariant;
the voltage sensor is ideal; the PLL is implemented as
an analog circuit or at a very high sampling rate; the
dq transformation (a signal multiplier inside the PLL
which plays the role of a phase detector) is based on
the ideal sine waveform.

Remark 2 System (1) is similar to the equations of a
single-phase PLL [18, Eq. (5)]. The main difference,
introduced by the voltage unbalance, is the fact that
our system (1) is time-varying despite constant voltage
conditions.

System (1) is symmetric with respect to 2π -shifts
in δ, so we consider the PLL in the cylindrical phase
space S1 × R where points (δ, γ ) and (δ + 2π, γ ) are
identical.

Formally, system (1) is a nonlinear oscillator where
function μ(·) governs both the forcing term and para-
metric excitation. Unbalance factor κ is a parameter
that quantifies the magnitude of μ(·).

2.2 Normalized equations

Observe that the constants K1 and K2 in (1) are influ-
enced by the designer of the PLL,whereas themain grid
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frequency ω and the unbalance-induced function μ(·)
are uncontrollable factors. In order to limit our analysis
to only one unknown, we eliminateω via normalization
in the following way:

• use normalized timescale τ = ωt ;
• introduce new system variables: dynamical phase
error β(τ) = δ(t) and relative frequency error
ζ(τ ) = γ (t)/ω;

• define coefficients C1 = K1/ω, C2 = K2/ω
2.

With these modifications, the PLL system (1) changes
to

β ′ = −C1μ(2τ) sin β + ζ + F
(
μ(2τ)

)
, (4a)

ζ ′ = −C2μ(2τ) sin β (4b)

where the prime . . .′ means differentiation with respect
to τ .

Note that coefficients C1 and C2 are related to the
parameters Kp and Ki of the PI controller within the
PLL: due to (A18c) we have

C1 = Kp|�p|
ω

, C2 = Ki |�p|
ω2 (5)

where |�p| is the positive sequence voltage amplitude
and ω is the voltage frequency. Therefore, C1 and C2

can be interpreted as tunable parameters.
From now on, we consider the normalized PLL

dynamics (4) on the cylinder S1 × R.

2.3 Basic notions in the balanced case

In the balanced case we have κ = 0 and μ(·) ≡ 1, so
system (4) reduces to

β ′ = −C1 sin β + ζ, (6a)

ζ ′ = −C2 sin β. (6b)

In S
1 × R, the system has a stable equilibrium (β =

ζ = 0) and a saddle point (β = ±π , ζ = 0).
Using the variable x = β−C1

C2
ζ system (6) is equiva-

lent to one equation x ′′+C2 sin
(C1
C2

x ′+x
) = 0which is

similar to a nonlinear pendulum x ′′+C1x ′+C2 sin x =
0. Following the pendulum analogy, the “energy” func-
tion E = 1−cosβ + 1

2C2
ζ 2 decreases along the trajec-

tories of (6) except at the points where sin β = 0 since
E ′ = −C1 sin2 β ≤ 0. A modification of LaSalle’s

invariance principle [20, Theorem 4.2.1] proves that
every trajectory converges to an equilibrium. Obvi-
ously, almost all trajectories converge to the stable equi-
librium (0, 0). The only exception is the stable separa-
trices approaching the saddle (±π, 0).

More detailed discussion of SRF-PLL stability in
the balanced case can be found in [9].

It will be convenient to distinguish two cases based
on the quality of the linearization at the stable equilib-
rium: the oscillatory case and the overdamped case. In
the oscillatory case, the stable equilibrium is a focus;
otherwise, it is a node. The two cases are illustrated by
Fig. 1. Which case is present depends on the quality
factor (Q factor)

Q =
√
C2

C2
1

. (7)

With Q > 1/2 the balanced PLL is oscillatory, and for
Q < 1/2 it is overdamped.

The initial points can be classified depending on the
number of times n that the corresponding trajectory
crosses the line β = ±π . If n = 0, PLL converges
to the closest equilibrium (0, 0). If n �= 0, PLL goes
around the phase cylinder and eventually settles at one
of the aliases of (0, 0): either (2nπ, 0) or (−2nπ, 0).
The behavior with n �= 0 may be called cycle slipping.

Remark 3 Several variations of the notion of cycle slip-
ping are established in the theory of single-phase PLLs
[19, Definitions 4, 4′]. Our interpretation of this con-
cept is still slightly different. According to [19], there
is no cycle slipping if |β(0)−β(t)| ≤ 2π , either in the
upper limit as t → ∞ or at every t . We, on the other
hand, say that there is no cycle slipping if β(t) never
crosses the line β = ±π . Our condition is stronger:
assuming |β(0)| ≤ π , it implies |β(t)| ≤ π for all t
and therefore guarantees that there is no cycle slipping
in the sense of [19] either. Our definition of cycle slip-
ping via crossings with the line β = ±π is motivated
by the fact that the line is an invariant reference object.
As for the definitions from [19], they are formulated
in reference to the arbitrary initial point β(0) or to the
limit set of β(t) – this proves to be less convenient in
our case.

The initial points that do not produce cycle slipping
are said to belong to the lock-in domain [19]. The lock-
in domain of the balanced PLL (6) is shown in Fig. 1
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Fig. 1 Behavior of the balanced PLL (6). A – stable equilibrium.
B – saddle point. Black lines – stable separatrices approaching
B. Blue region D – lock-in domain. Trajectories starting in the

red region S make one crossing with the line β = ±π . For other
red regions, there are two, three, and more crossings

as the blue region D. The set of initial points leading
to one crossing with β = ±π is the red region S.

2.4 Basic notions for the unbalanced case

Balanced PLL (6) has constants C1 and C2 where the
unbalanced PLL (4) has periodic parameters C1μ(2τ)

andC2μ(2τ). For our purposes, we formally extend the
definition of the quality factor (7) to the unbalanced
case via replacing C1 and C2 by their time-varying
counterparts. This leads to the time-varying quality fac-
tor

Q(τ ) =
√

C2

C2
1μ(2τ)

(8)

and the following definition.

Definition 1 PLL (4) under given voltage conditions
is called oscillatory if Q(τ ) > 1/2 for all τ . It is called
overdamped if Q(τ ) < 1/2 for all τ .

The type of a PLL depends on the voltage conditions
since the range (3) of μ(·) is affected by the voltage
unbalance. Moreover, coefficients C1 and C2 from (5)
are influenced by the voltage parameters as well as by

the tuning of the PLL. If voltage parameters are within
specified operating limits, the ratio C2/C2

1 in (8) can
be robustly tuned so that Q(τ ) is always on the same
side of 1/2.

Remark 4 We do not discuss the intermediate case
where Q(τ ) goes above and below 1/2 over the course
of time, but this case can be treated similarly to our
approach.

In this paper we are interested in the periodic solu-
tions of (4) – the so-called steady oscillations.

Definition 2 A steady oscillation is a periodic solution
of the PLL (4).

The balanced-case definition of the lock-in domain
as the domain of “immediate” convergence to the stable
equilibrium is trivially extended to the unbalanced case
as follows. Note that due to the time-variability of (4)
we need to mention the initial time in this definition.

Definition 3 The lock-in domain is the set of initial
states (β0, ζ0) from which the PLL (4) converges to a
steady oscillation near (0, 0) without crossing the line
β = ±π , independently of the initial time t0 at which
the state (β0, ζ0) occurs.
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2.5 Practical motivation

Consider a power inverter that injects electrical power
from a DC source into the AC grid. The inverter uses a
PLL circuit to estimate the instantaneous phase angle
of the grid voltage. Ideally, power should be injected in-
phase with the grid to minimize losses. The larger the
phase error of the PLL, the less efficient the inverter’s
operation. In addition, if the PLL error is persistently
oscillating, the inverter will translate this oscillation
into the grid, thus compromising the voltagewaveform.
This explains why it is useful to understand the PLL’s
phase error.

Let us discuss the physical meaning of the lock-in
domain. Suppose the PLL is in a steady state when
the operating conditions change suddenly – for exam-
ple, due to a change in the voltage conditions or at the
startup of the PLL. If the PLL state is in the post-change
lock-in domain, the phase error goes into the steady
oscillation directly, without making unnecessary turns
around the phase cylinder. Such behavior is predictable
and clearly desirable in practice.

As a final thought, suppose that one wants to aver-
age the phase error oscillation over time in order to
simplify the overall system analysis. The time average
of the phase error is important because non-zero phase
error translates to a non-zero time delay which may
have interesting consequences. Nonlinear analysis is
necessary to capture the average phase error since it
turns out to be a term of order κ2.

2.6 Goals of the study

Based on the practical considerations from the previous
section, we set the following goals:

1. To localize a unique steady oscillation O1 of the
PLL near the origin (0, 0).

2. To construct an inner approximation of the lock-in
domain.

3. To construct an outer approximation of the lock-in
domain.

4. To approximate the time average of the dynamical
phase error β during the oscillation O1.

Remark 5 These goals are concerned with the char-
acteristics of the system that do not depend on the
timescale. Thus, results we obtain for the normalized
system (4) are valid for the original model (1) as well.

3 Auxiliary results

3.1 Autonomous comparison systems

Our analysis is based on the concept of autonomous
comparison systems. These are time-invariant systems
whose trajectories can be used to estimate the trajecto-
ries of a time-varying system such as (4). The approach
has been described in [4] for the second-order systems
in the standard form

ẋ = y, (9a)

ẏ = Y (x, y, t). (9b)

For our purposes, it is more convenient to consider the
PLL equations in their original form (4). We adapt the
technique of [4] for second-order systems

ẋ = X (x, y, t), (10a)

ẏ = Y (x, y, t) (10b)

in the following way. Suppose that there exist time-
invariant vector fields (X left,Yleft) and (Xright,Yright)
such that for all (x, y) ∈ R

2

inf
t

〈[
X (x, y, t)
Y (x, y, t)

]
,

[
Yleft(x, y)

−X left(x, y)

]〉
= 0 (11a)

and

sup
t

〈[
X (x, y, t)
Y (x, y, t)

]
,

[
Yright(x, y)

−Xright(x, y)

]〉
= 0 (11b)

where 〈·, ·〉 is the dot product.
Definition 4 The systems

ẋ = X left(x, y), (12a)

ẏ = Yleft(x, y) (12b)

and

ẋ = Xright(x, y), (13a)

ẏ = Yright(x, y) (13b)

defined by (11) are called, respectively, the left and
right autonomous comparison systems for (10).

Remark 6 We use the descriptors “left” and “right” in
the standard sense: given planar vectors v, vleft , and
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Fig. 2 Illustration of the idea behindDefinition 4.�left and�right
are trajectories of the comparison systems (12) and (13). Small
arrows represent possible directions in which the trajectories of
the time-varying system (10) can cross �left and �right

vright, we say that vleft is to the left of v, and vright is to
the right of v if the shortest rotation from v to vleft is
counterclockwise, and from v to vright clockwise.

Definition 4 is illustrated by Fig. 2. It shows the cone
of possible directions (X,Y ) that the original time-
varying system (10) can move in at the given point.
The leftmost direction in this cone is (X left,Yleft), and
the rightmost direction is (Xright,Yright). The following
statement is a useful direct implication of Definition 4.

Proposition 1 If the left comparison system (12) has a
limit cycle orbiting clockwise then the area within the
limit cycle is a forward invariant set of (10).

Proof Suppose �left is a trajectory of the left compari-
son system. It follows from Definition 4 that solutions
of (10) can only cross �left rightward, relative to the
direction of �left – this is shown by small arrows in
Fig. 2. In particular, if �left is a clockwise limit cycle,
then it is crossed by (10) inward. Therefore, the interior
of �left is a forward invariant set of (10). �


Remark 7 The geometric interpretation of the compar-
ison systems assumes that they have unique smooth
solutions. This implicit assumption will hold in our
analysis.

The following lemma suggests a simplified way of
computing the comparison dynamics for a class of sys-
tems which covers our PLL dynamics (4).

Lemma 1 For the system

ẋ = f (t)X (x, y, t), (14a)

ẏ = f (t)Y (x, y) (14b)

where f (·) ≥ const > 0 the comparison systems (12)
and (13) are formed by

Yleft(x, y) = Yright(x, y) = Y (x, y) (15a)

and

X left(x, y) =
⎧
⎨

⎩

inf
t
X (x, y, t), Y (x, y) ≥ 0,

sup
t

X (x, y, t), Y (x, y) < 0,
(15b)

Xright(x, y) =
⎧
⎨

⎩

sup
t

X (x, y, t), Y (x, y) ≥ 0,

inf
t
X (x, y, t), Y (x, y) < 0.

(15c)

Proof By a change of the time variable, factor f (t)
is eliminated from the system equations. This does
not change the system’s orbits and, therefore, does not
affect the comparison systems. The statement (15) then
follows from (11). �


Application of Lemma 1 gives the following explicit
form of the comparison systems for (4).

Corollary 1 The left comparison system for the PLL
(4) is

β ′ = −C1 sin β + G
(
sign(sin β), ζ

)
, (16a)

ζ ′ = −C2 sin β (16b)

and the right one is

β ′ = −C1 sin β + G
(− sign(sin β), ζ

)
, (17a)

ζ ′ = −C2 sin β (17b)

where

G(−1, ζ ) = min
μ

ζ + F(μ)

μ

= min

{
ζ − ζ−
1 + κ

,
ζ − ζ+
1 − κ

}
, (18a)
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G(+1, ζ ) = max
μ

ζ + F(μ)

μ

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ζ − ζ+
1 − κ

, ζ ≥ 2 · 1 + 2κ

1 − κ
,

ζ − ζ−
1 + κ

, ζ < 2 · 1 − 2κ

1 + κ
,

2

3

√
(ζ + 1)3

3(1 − κ2)
, otherwise

(18b)

with

ζ+ = 2κ

1 − κ
, ζ− = − 2κ

1 + κ
. (18c)

The value of G(0, ζ ) can be set equal to G(−1, ζ ) or
G(+1, ζ ) arbitrarily – it will not affect the solutions of
the comparison systems when they exist.

Proof The statement follows from Lemma 1 after
straightforward calculations. �


The functions G(±1, ζ ) are, respectively, the upper
and lower bounds on (ζ + F(μ))/μ:

G(−1, ζ ) ≤ ζ + F(μ)

μ
≤ G(+1, ζ ) (19)

for all μ ∈ [1 − κ, 1 + κ]. Together with the fact

G(−1, ζ+) = G(+1, ζ−) = 0 (20)

it implies that in (4)

β ′ > 0 when β = 0 and ζ > ζ+, (21a)

β ′ < 0 when β = 0 and ζ < ζ−. (21b)

This observation together with Corollary 1 will be
instrumental in the proof of Theorem 1 below and in
the numerical estimations of Sect. 4.2.

3.2 Stability of a time-varying linear equation

The following lemma gives a sufficient condition for
the stability of a linear time-varying second-order equa-
tion. It will be applied in the proof of Theorem 1
to establish linearization-based incremental asymptotic
stability of (4) in a neighborhood of the origin – that is,
convergence of any two of its solutions to each other
[3, Definition 3.3].

Lemma 2 Equation

m(t)ẍ + kẋ + x = 0 (22)

with 0 < mmin ≤ m(t) ≤ mmax < ∞ is uniformly
exponentially stable if

k >
√
mmax − √

mmin. (23)

Proof Consider the quadratic Lyapunov function can-
didate

v(x, ẋ) = [
x ẋ
]
P

[
x
ẋ

]
with P =

[
1 a
a b

]
(24)

whose derivative along the solutions of (22) is

v̇
∣∣
(22) = − [x ẋ

]
R

[
x
ẋ

]
(25a)

with

R = 1

m(t)

[
2a ka + b − m(t)

ka + b − m(t) 2
(
kb − am(t)

)
]

. (25b)

System (22) is uniformly exponentially stable if P and
R are positive definite uniformly in t . This holds if

a > 0, (26a)

a2 − b < 0, (26b)

p(m; a, b) < 0 for all m ∈ [mmin,mmax
]

(26c)

where p(m; a, b) = m2−2
(
ka+b−2a2

)
m+(ka−b)2.

Suppose m = m1 and m = m2 are the roots of p.
Inequality (26c) is satisfied if and only if

0 < m1 < mmin < mmax < m2. (27)

We are going to show that under the conditions of the
lemma there exist m1 and m2 that satisfy (27) and cor-
respond to the values of a and b that satisfy (26a) and
(26b).

From Vieta’s formulas

m1 + m2

2
= ka + b − 2a2, (28a)

±√
m1m2 = ka − b (28b)

which yields

123



A. Ponomarev et al.

2(a2 − b) = ±√
m1m2 − m1 + m2

2
< 0 (29)

due to the inequality of the algebraic and geometric
means. This shows that (26b) already follows from
(27). Moreover, from (28)

2(a2 − ka) = ∓√
m1m2 − m1 + m2

2
. (30)

For (26a) to be satisfied, (30) should have a positive
root a which implies

∓√
m1m2 − m1 + m2

2
> −k2

2
(31)

for at least one of the signs: “+” or “−”.We can assume
the “+” sign and thus require

m1 − 2
√
m1m2 + m2 < k2 (32)

which is equivalent to

√
m2 − √

m1 < k. (33)

Existence of m1 and m2 that satisfy (27) and (33) fol-
lows from the conditions of the lemma. �

Remark 8 What we have just proven in Lemma 2
is actually quadratic stability, i.e., existence of a
quadratic Lyapunov function. This concept, common
in the area of uncertain systems, is stronger than gen-
eral asymptotic stability [2, Chapter 3]. Although con-
servative, such a result is sufficient for our purposes.

4 Main results

4.1 Analytical statements

Our first main theorem establishes the existence of
a unique locally attractive oscillation near the origin
for small values of unbalance. Its proof demonstrates
the use of a left comparison system. In the context of
PLL analysis, an important limitation of the compari-
son systems approach is the fact that it always assumes
a “worst case” of the function μ(·). That is, the shape
of the actual function μ(·) given by (2) is not taken
into account. Nevertheless, the proof of Theorem 1 is
constructive. It lays the road to goals 1–3 from Sect. 2.6

enabled by the numerical simulation of the comparison
systems. This is demonstrated in Sect. 4.2.1.

Theorem 1 (Existence of an attractive steady oscil-
lation) There exist a constant κ ∈ (0, 1) and a set
E ⊂ {(β, ζ )} containing the origin such that for an
arbitrary 2π -periodic piecewise continuous function
μ(·) ∈ [1− κ, 1+ κ] the set E is forward invariant for
(4) and contains at least one π -periodic steady oscilla-
tion. Thediameter ofE is O(κ)asκ → 0. Furthermore,
if

|β| < arccos

⎛

⎜⎜
⎝

√
C2

1 − κ

C1 +
√

C2

1 + κ

⎞

⎟⎟
⎠

2

(34)

for all (β, ζ ) ∈ E then E contains exactly one steady
oscillation which attracts all solutions of (4) starting
in E .

Proof Our approach to the construction of E is shown
in Fig. 3 in the oscillatory and overdamped cases as per
Definition 1.

Let us discuss the oscillatory case first. Consider
the balanced conditions (κ = 0) and pick a trajectory
of the balanced PLL (6) that wraps around the origin.
This is the black curve � on the left side of Fig. 3. That
such a trajectory exists is clear from the structure of the
balanced oscillatory phase portrait (see Fig. 1).

Next, consider unbalanced conditions: κ > 0. The
trajectory of (4) starting from P0 will generally devi-
ate from � due to the influence of μ(·). We apply the
method of autonomous comparison systems to estimate
the perturbed trajectory. The trajectory of the left com-
parison system (16) starting from P0 is shown in Fig. 3
as the blue curve �′. The comparison system “tries
to oscillate” around the focal point A−(0, ζ−) when
sin β > 0 and around A+(0, ζ+) when sin β < 0. For
small enough κ , point A+ remains below P1, and P ′

1
remains below P0 by continuity. As the domain E we
then choose the blue Bendixson pocket E bounded by
�′ and the segment P ′

1P0. The small arrows in Fig. 3
show the possible directions of the unbalanced PLL (4)
on the boundary of E . The vertical segment is crossed
from left to right due to the property (21). The curve �′
is always pierced inward by the fundamental property
of comparison trajectories. Therefore, E is a forward
invariant set of (4).

123



Nonlinear analysis of the synchronous reference...

Fig. 3 Illustration for the proof of Theorem 1.�, �̃ – trajectories
of the balanced PLL (6). �′, �̃′ – trajectories of the left compar-
ison system (16). E – a forward invariant set of the unbalanced

PLL (4). Small arrows – directions in which the trajectories of
(4) may cross the boundary of E

The overdamped case differs from the oscillatory
one in that � approaches the origin without encircling
it. To construct the domain E , consider also another
trajectory �̃ of the balanced PLL (6) that starts from
a point P̃0 on the negative ζ -axis. With small κ , the
left comparison system (16) will have trajectories �′
and �̃′ as in Fig. 3. Then E is bounded by �′, �̃′, and
the segments A+P0 and A− P̃0. In all other aspects, the
above discussion holds in the overdamped case as well.

With forward invariance of E established, it is only
a matter of applying Brouwer’s fixed-point theorem to
the Poincaré map

(
β(0), ζ(0)

) �→ (
β(π), ζ(π)

)
pro-

duced by (4) to assert that E contains at least one π -
periodic steady oscillation [24, Theorem 15.1].

To show that the diameter of E is O(κ), suppose
that the ζ -coordinate of point P0 in Fig. 3 is ζ0 ≈
0. In the oscillatory case it is easy to confirm, e.g.,
via a linearization argument, that ζ0 = O(|P0P1|) as
|P0P1| → 0. Furthermore, |P1P ′

1| = O(κ) as κ →
0. Then, by requiring, e.g., |P1P ′

1| = 1
2 |P0P1| we set

up a relation between ζ0 and κ which implies ζ0 =
O(|P0P1|) = O(|P1P ′

1|) = O(κ). The diameter of E
is therefore O(ζ0)+O(κ) = O(κ). A similar argument
can be made in the overdamped case too.

Assuming now that condition (34) holds, we show
that all solutions of (4) located in E converge to
each other. Consider two such solutions (β1, ζ1) and
(β2, ζ2). We have

�β ′ = −2C1μ(2τ) cos
β1 + β2

2
sin

�β

2
+ �ζ, (35a)

�ζ ′ = −2C2μ(2τ) cos
β1 + β2

2
sin

�β

2
(35b)

where

�β = β1 − β2, �ζ = ζ1 − ζ2. (36)

Using the variable

x = �β − C1

C2
�ζ (37)

we obtain

x ′′ + 2g(τ ) sin
x + C1

C2
x ′

2
= 0 (38)
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where

g(τ ) = C2μ(2τ) cos
β1 + β2

2
. (39)

Linearization of (38) about the zero solution is

1

g(τ )
x ′′ + C1

C2
x ′ + x = 0. (40)

Due to (34)

1

C2(1 + κ)
≤ 1

g(τ )
<

(
C1

C2
+
√

1

C2(1 + κ)

)2

(41)

for all τ , and Lemma 2 asserts asymptotic stability of
the linearization (40). By virtue of the linearized sta-
bility principle this means that (4) is locally incremen-
tally asymptotically stable inside E [11, Proposition
3.3]. That is, all solutions of (4) in E converge to each
other and eventually to the steady oscillation which is
therefore unique within E . �


Our second theorem uses more information about
the actual function μ(·) given by (2) in order to attain
goal 4 of Sect. 2.6. It provides an estimation of order
κ2 of the time average of β. The proof is based on
the partial Taylor expansion of the steady oscillation
established in Theorem 1.

Theorem 2 (Time average of the dynamical phase
error) Under the conditions of Theorem 1, including
(34), the time average β of the dynamical phase error
β corresponding to the steady oscillation from Theo-
rem 1 can be expressed as

β = β2κ
2 + O

(
κ3
)

(42a)

where

β2 = − 4C1

4C2
1 + (C2 − 4)2

. (42b)

Proof We trivially obtain

μ(φ) = 1 + κ cosφ + O
(
κ2
)

, (43a)

F
(
μ(φ)

) = 2κ cosφ − 2κ2 cos 2φ + O
(
κ3
)

(43b)

and search for a periodic solution of (4) as

β = β1(τ )κ + β2(τ )κ2 + β3+(τ, κ), (44a)

ζ = ζ1(τ )κ + ζ2(τ )κ2 + ζ3+(τ, κ). (44b)

Plugging these expressions together with (43) into (4)
and balancing the coefficients before the powers of κ

we find that the coefficients in the terms of order κ and
κ2 satisfy the linear equations

d

dτ

[
β1

ζ1

]
= A

[
β1

ζ1

]
+
[
2 cos 2τ

0

]
, (45a)

d

dτ

[
β2

ζ2

]
= A

[
β2

ζ2

]
−
[
2 cos 4τ

0

]
− Bβ1(τ ) cos 2τ

(45b)

where

A =
[−C1 1

−C2 0

]
, B =

[
C1

C2

]
. (45c)

The equations have a unique periodic solution in the
form

β1 = βcos
1 cos 2τ + βsin

1 sin 2τ, (46a)

β2 = β2 + βcos
2 cos 4τ + βsin

2 sin 4τ (46b)

with some constants β
cos,sin
1,2 and β2. Simple calcula-

tions confirm that the time averageβ2 is given by (42b).
To complete the proof, we need to show that the

residual terms β3+ and ζ3+ are O(κ3). We have

d

dτ

[
β3+
ζ3+

]
= A

[
β3+
ζ3+

]
+ g(τ ) (47a)

where

g(τ ) = Bμ(2τ)(β − sin β) + O
(
κ3
)

. (47b)

Theorem 1 implies that the steady oscillation has diam-
eter O(κ) as κ → 0. Therefore, β = O(κ) and con-
sequently g = O(κ3). Furthermore, Lemma 2 due to
(34) asserts that the linear part of the system (47) is
uniformly exponentially stable. On these grounds we
conclude that the unique periodic solution of (47) is
indeed O(κ3). �
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4.2 Numerical estimations

To demonstrate the application of our methods, let us
consider SRF-PLL (4) in two cases: an oscillatory case
with

C1 = 0.5, C2 = 0.6 (48)

and an overdamped case with

C1 = 0.5, C2 = 0.04. (49)

Since C1 and C2 depend on the PLL parameters Kp

and Ki as in (5), one can implement cases (48) and
(49) under given voltage conditions by tuning the PLL.

Below we demonstrate how goals 1–3 listed in
Sect. 2.6 may be reached using numerical integration
of the autonomous comparison systems. Thenwe apply
Theorem 2 to attain goal 4.

4.2.1 Estimation of the lock-in domain

Let us start with unbalance κ = 10%. This case is
shown in the left columnof Fig. 4. Similarly to the proof
of Theorem 1, the left comparison system oscillates
around the pair of points A± = (0, ζ±). There is a
stable limit cycle surrounding these points which is
easily found by the numerical simulation of the left
comparison system. The set E bounded by the limit
cycle is shown in green – it is a forward invariant set of
the PLL due to Proposition 1. The PLL has exactly one
steady oscillation inside E because E satisfies condition
(34) of Theorem 1, and the oscillation is attractive, at
least within E .

In order to construct an inner estimation of the lock-
in domain, we compute the stable separatrices of the
left comparison system that approach the points B± =
(π, ζ±). Appendix B describes how the separatrices are
approximated numerically via integration of the system
in reverse time. The separatrices bound the blue region
D which is a forward invariant set of the PLL since
the boundary of D is crossed inward. Moreover, left
comparison trajectories inD converge toE which easily
implies that the PLL trajectories also converge to E and
therefore to the steady oscillation inside E . Thus, D is
an inner estimation of the lock-in domain.

Finally, we compute the stable separatrices of the
right comparison system approaching B±. These are
shown in red and are crossed by the PLL trajectories in

the direction away fromD. Therefore, PLL trajectories
starting from the red regionmarkedS willmake at least
one crossing with the line β = ±π before possibly
converging to the steady oscillation inside E . It means
that the lock-in domain cannot overlap with S. Thus,
the separatrices of the right comparison system outline
an outer estimation of the lock-in domain.

The case of higher unbalance κ = 15% is shown
in the right column of Fig. 4. One of the separatrices
defining the set D does not wrap all the way around
the phase cylinder, so D is bounded by only this one
separatrix. Otherwise, everything else holds.

The higher the unbalance factor κ , the larger the
set E becomes. Eventually it fails to satisfy condition
(34). Then Theorem 1 still says that there is at least
one steady oscillation inside E but cannot guarantee
its uniqueness. For even higher unbalance, the limit
cycle bounding E may cease to exist. It means that the
technique of autonomous comparison systems is not
applicable at this level of unbalance.

4.2.2 Comparison to the simulation

In Fig. 5 we compare the estimations of Fig. 4 to the
numerical simulation results. The steady oscillationO1

near the origin is found easily by means of numerical
simulation since it is stable. Then,we numerically solve
the PLL system (4) starting from a grid of initial points
and initial times and observe how they converge toO1.
If they converge without crossing the line β = ±π

then we assume that the initial point belongs to the
lock-in domain and color it blue. If the solution crosses
β = ±π one or more times but still converges to O1,
we color the initial point a shade of red, similarly to
how the red regions are colored in the balanced case
(Fig. 1). If the trajectory fails to converge toO1 during
the simulation time, we leave the initial point white.

To complete the picture, we also draw the unsta-
ble (saddle-type) oscillationO′

1 near the point (±π, 0)
which is born from the saddle equilibrium of the bal-
anced PLL [12, Lemma 4.5.1]. The oscillation and its
separatrices lie between the separatrices of the left and
right comparison systems – this statement is our ana-
logue of [4, Theorem7.1]. SinceO′

1 is unstable, we find
it via numerical minimization of the distance between
the initial point and its Poincaré image after one period.

In some cases there appears to exist another unsta-
ble periodic solution O2 – a steady oscillation of the
second kind, i.e., one that encircles the phase cylin-
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Fig. 4 Estimation of the steady oscillation near (0, 0) and the
lock-in domain of the unbalanced PLL (4). The steady oscillation
is contained in the green region E . The lock-in domain contains
the blue region D and does not intersect with the red region S.

The boundaries of D and E are formed by the trajectories of the
left comparison system (16). The boundary of S – by the right
comparison system (17)

der. Although unstable, O2 can still slow down the
PLL’s convergence toO1, as evident from the “conden-
sation” of the red bands aroundO2 in Fig. 5. However,
this oscillation always occurs around the line ζ = −2
which makes it easily avoidable in practice. Indeed,
since ζ is a relative frequency error,O2 corresponds to
the frequency estimation oscillating around−ω instead

of ω. In practice, the PLL algorithm can be equipped
with saturation that enforces the positiveness of the fre-
quency estimation. This eliminates the whole region
ζ ≤ −1 including the oscillation O2.

On the same practical note, in power grid applica-
tions the main frequency ω is known to be in a neigh-
borhood of the nominal value (50 or 60Hz). Thus, ζ
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Fig. 5 Results of the simulation of unbalanced PLL (4) starting
from various initial states. Initial points are colored depending
on how many times the corresponding trajectory crosses the line
β = ±π before converging to the steady oscillation O1. For
the blue points, there are no crossings, independent of the ini-
tial time – such points belong to the lock-in domain. Red points

result in one or more crossings; they are colored a shade of red
similarly to the red regions in Fig. 1 (balanced case). Points that
did not clearly converge during the time of simulation are left
white. Colored curves are the estimations of the lock-in domain
from Fig. 4. O′

1 is an unstable oscillation near the counterphase
(β = ±π ). O2 is an unstable oscillation of the second kind

can be limited to a narrow range around zero. Further-
more, the value of the unbalance factor κ in normal
operation rarely exceeds 2% [21]. For these values of
unbalance and with ζ in a neighborhood of zero, our

results indicate that the lock-in domain provably covers
a major portion of the range of phase angles β.
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Fig. 6 Relative error (51) of the approximate time average of the phase error given by Theorem 2

4.2.3 Time average of the oscillation

In relation to goal 4 of Sect. 2.6, let us compare the time
average of the dynamical phase error β in the steady
oscillation to its approximation byTheorem2.Wecom-
pute the oscillation numerically for different values of
κ and find the time average β via numerical integration.
Theorem 2 gives the approximation

β ≈ β2κ
2 (50)

with the relative error

β2κ
2 − β

β
(51)

which is shown in Fig. 6. We conclude that for the
given sets of oscillatory and overdamped PLL param-
eters Theorem 2 provides a good estimation of β.

5 Conclusion

We describe a nonlinear approach to the analysis of
SRF-PLL under unbalanced voltage conditions. The
following features are apparent:

1. The method is suitable for higher unbalance com-
pared to the linearization technique.

2. It shows the existence of a unique steady oscilla-
tion whose lock-in domain covers a relatively wide

range of phases. Assuming that the AC grid is oper-
ating under normal conditions (i.e., close to the
nominal frequency and close to balance), the results
prove that the lock-in range of phase angles is close
to (−π, π). Under given conditions, the analysis
can be used to assess if SRF-PLL is sufficiently
reliable.

3. The nonlinear approach yields an approximation
of the time average of the PLL’s phase error which
turns out to be a second-order quantity with respect
to the unbalance factor.

Future work may include:

1. Application of the method of autonomous compar-
ison systems to other PLL types and operating con-
ditions (e.g., with voltage harmonics).

2. After the κ and κ2 Taylor terms of the steady oscil-
lation are determined like in the proof ofTheorem2,
the residual term can be estimated via the compari-
son theory applied to its equation (47). In this way,
we can improve the set E where the steady oscilla-
tion is localized.

3. Instead of approximating the time-periodic system
(4) by autonomous comparison systems, one can
take another step and use even rougher approxima-
tions to allow analytical estimations, rather than
numerical. For example, one approach is based
on piecewise linear comparison systems [18] and
another employs collocation-based approximations
[13].
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4. As the proportion of renewable energy resources
in the power grid is rising, it becomes crucial to
understand the interaction between grid-tied PLL-
based voltage inverters and the grid itself. In this
paperwe considered the PLLdynamics in isolation,
but the same method may be helpful in the analysis
of one or multiple inverters in closed loop with the
grid.
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Appendix A Derivation of SRF-PLL dynamics

Consider the three-phase voltage

v =
⎡

⎣
va
vb
vc

⎤

⎦ =
⎡

⎣
Va cos(ωt + φa)

Vb cos
(
ωt + φb − 2π

3

)

Vc cos
(
ωt + φc + 2π

3

)

⎤

⎦ . (A1)

Assumption 1 The frequency ω, peak voltages Va,
Vb, Vc, and phase angles φa, φb, φc are all constant.

Definition 5 Voltage (A1) is called balanced if Va =
Vb = Vc and φa = φb = φc. Otherwise it is called
unbalanced.

In the balanced case, the task of the PLL is to deter-
mine the phase ωt +φa of the first voltage component.
As for the unbalanced conditions, themeaning of phase
estimation will be specified in Sect.A.2.

A.1 Park’s Transformation

In the following, we use the standard definition of the
Park transformwhere we omit the last (“zero”) compo-
nent and consider only the direct and quadrature com-
ponents. This truncated version is also known as the dq
transform.

Definition 6 [23, Appendix C] Given an arbitrary
angle φ, Park’s transformation of the voltage (A1) is

[
vd
vq

]
= 2

3

[
cosφ cos

(
φ − 2π

3

)
cos

(
φ + 2π

3

)

− sin φ − sin
(
φ − 2π

3

) − sin
(
φ + 2π

3

)
]

v

(A2)

where vd and vq are called the direct and quadrature
components, respectively.

For convenience, we rewrite the Park transform
using Fortescue’s symmetrical component theory [10].
First, define the phasor

� =
⎡

⎣
Va e jφa

Vb e j (−2π/3+φb)

Vc e j (2π/3+φc)

⎤

⎦ ∈ C
3 (A3)

where j is the imaginary unit.Voltage (A1) is expressed
as

v = 1
2�e jωt + 1

2�e− jωt (A4)

where � is the complex conjugate of �. We shall treat
the phasor space C3 as a 3-dimensional Hilbert space
over C with the inner product

〈�,�〉 := �∗� (A5)
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where �∗ is the conjugate transpose of �. Note that
we use the “physical” convention for the inner product
definition, i.e., linear in the second argument.

Fortescue’s symmetrical components are then as fol-
lows.

Definition 7 [17, Section 9.2] Positive, negative, and
zero sequence components (�p, �n , and �0, respec-
tively) of the phasor � are

�i = 1
3 〈ei ,�〉 ∈ C, i ∈ {p, n, 0} (A6a)

where

ep =
⎡

⎣
1

e− j2π/3

e j2π/3

⎤

⎦ , en =
⎡

⎣
1

e j2π/3

e− j2π/3

⎤

⎦ , e0 =
⎡

⎣
1
1
1

⎤

⎦ .

(A6b)

Park’s transform can be formulated more compactly
as

vd + jvq = 2
3e

− jφ〈ep, v〉, vd , vq ∈ R. (A7)

Combining this with (A4) and noticing that ep = en
we come to the following conclusion.

Proposition 2 Park’s direct and quadrature compo-
nents vd and vq can be determined from the equation

vd + jvq = e− jφ(�pe
jωt + �ne

− jωt), vd , vq ∈ R

(A8)

where �p and �n are, respectively, the positive and
negative sequence components of the voltage phasor.

A.2 Phase-locked loop

The task of the phase-locked loop is to track the phase of
thepositive sequencevoltagewhich equals arg�p+ωt .
This motivates the following definition.

Definition 8 Angle φ of Park’s transform (A8) is said
to be phase-locked to the voltage (A1) if φ ≡ arg�p +
ωt (mod 2π).

In the balanced case �n = 0, and due to (A8) the
phase lock implies vq = 0. Because of this, the PLL
algorithm assumes vq = 0 as its objective and manipu-
lates the angleφ to stabilizevq to zero.Most commonly,
stabilization is achieved by a PI (proportional-integral)
controller. The corresponding PLL equations are

φ̇ = Kpvq + z + ωnom, (A9a)

ż = Kivq (A9b)

where z is the integrator state, ωnom is the nominal
voltage frequency, Kp > 0 is the proportional gain,
and Ki > 0 is the integral gain of the PI controller.

If phase lock is achieved, φ becomes the positive
sequence phase and z+ωnom the frequency of the grid.

In order to put (A9) into a more convenient form,
we introduce new notation: the phase locking error

φ̃ = φ − (arg�p + ωt) (A10)

and the following common definition.

Definition 9 The unbalance factor of the voltage (A1)
is

κ = |�n|
|�p| . (A11)

Remark 9 This definition of unbalance, also known as
true unbalance, is adopted, e.g., by IEEE [15] and IEC
[14].

Assumption 2 0% ≤ κ < 100%.

Remark 10 Under normal conditions κ rarely exceeds
2% – the so-called “compatibility level” [21]. Stronger
unbalance may occur during temporary unsymmetrical
faults.

From (A8) we obtain

vd + jvq = |�p|e− j φ̃(1 + κe− j2ω(t+�t)) (A12a)

where

�t = arg�p + arg�n

2ω
. (A12b)

Assuming the exponential representation

1 + κe− jψ = μ(ψ)e− jα(ψ), μ(ψ), α(ψ) ∈ R
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(A13)

we have

vd + jvq = |�p|μ
(
2ω(t + �t)

)
e− j (φ̃+α(2ω(t+�t))).

(A14)

Remark 11 Functions μ(·) and α(·) are 2π -periodic.
In the balanced case μ(·) = 1 and α(·) = 0.

Assumption 3 �t = 0.

Remark 12 Time �t is the forward time shift inside the
PLL relative to the voltage oscillation. It effects the
time shift of the phase locking error. For the purposes
of qualitative analysis it is safe to ignore the time shift,
hence Assumption 3 is made.

Let us introduce new coordinates

δ(t) = φ̃(t) + α(2ωt), (A15a)

γ (t) = z(t) + ωnom − ω. (A15b)

System (A9) turns into

δ̇ = −Kp |�p|μ(2ωt) sin δ + γ + 2ωα′(2ωt),
(A16a)

γ̇ = −Ki |�p|μ(2ωt) sin δ. (A16b)

Relation (A13) gives

μ(ψ) =
√
1 + 2κ cosψ + κ2, (A17a)

2α′(ψ) = 2κ cosψ + 2κ2

1 + 2κ cosψ + κ2 = F
(
μ(ψ)

)
(A17b)

where

F(μ) = 1 − 1 − κ2

μ2 . (A17c)

Therefore, (A16) can be rewritten as

δ̇ = −K1μ(2ωt) sin δ + γ + ωF
(
μ(2ωt)

)
, (A18a)

γ̇ = −K2μ(2ωt) sin δ (A18b)

where

K1 = Kp|�p|, K2 = Ki |�p|. (A18c)

Fig. 7 Approximation of the stable separatrix approaching the
saddle equilibrium xeq via reverse-time integration of the system.
The initial point x0 is chosen close to xeq along the eigenvector
v− which corresponds to the negative eigenvalue at xeq

We arrive at the following.

Proposition 3 Under Assumptions 1–3 the SRF-PLL
equations can be written in the form (A18). The phase
locking error is

φ̃ = δ − α(2ωt). (A19)

If Assumption 3 does not hold, φ̃ experiences a forward
time shift �t given in (A12b).

In the language of system theory, Proposition 3
describes a system where the signals μ(2ωt) and
α(2ωt) are inputs, and the phase error φ̃ is the out-
put. The output φ̃ contains two parts: the dynamical
part δ produced by the nonlinear filter (A18), and the
passthrough part, i.e., the input α(2ωt) going directly
to the output. The latter part is simply a π

ω
-periodic

function, easy to calculate and analyze. Hence, in this
paper we look closer at the term δ and give it a special
name.

Definition 10 The angle δ produced by the PLL
dynamics (A18) is called the dynamical phase error.

Appendix B Computation of separatrices

Consider a system

ẋ = f (x), x ∈ R
2. (B20)
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Suppose xeq is a saddle equilibrium, i.e., the matrix of
the linear approximation of f (x) at xeq has one pos-
itive and one negative eigenvalue. Stable separatrices
are two trajectories that approach xeq from the direc-
tions±v− where v− is an eigenvector corresponding to
the negative eigenvalue. Figure7 illustrates a common
approach to finding the stable separatrix via numeri-
cal integration. One picks a point x0 close to xeq in
the direction of v− (or −v−) and integrates the system
starting from x0 in reverse time. As the stable separa-
trix at the saddle point is itself an unstable manifold,
at least near xeq, in reverse time it becomes stable and
attracts the trajectory starting from x0.

In the context of Sect. 4.2.1, we need to com-
pute the stable separatrices of the comparison systems
approaching points B+ and B−. For example, consider
the separatrix of the left comparison system that tends
to B+ (coordinates (−π, ζ+)) from the right. To the
right of B+, the left comparison system has the lin-
earization matrix

[
C1

1
1−κ

C2 0

]
(B21)

with a negative eigenvalue

λ− = 1

2

(

C1 −
√

C2
1 + 4C2

1 − κ

)

(B22)

and the corresponding eigenvector

−
[
λ−
C2

]
(B23)

pointing to the right and downward. To approximate
the separatrix, we start from the point

x0 =
[−π

ζ+

]
− ε

[
λ−
C2

]
(B24)

with a small ε > 0 and integrate the left comparison
system numerically in reverse time. Other separatrices
are approximated likewise.
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