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Abstract: In this contribution we evaluate the 3D geometry reconstructed by Neural Radiance Fields
(NeRFs) of an object’s occluded parts behind obstacles through a point cloud comparison in 3D space
against traditional Multi-View Stereo (MVS), addressing the accuracy and completeness. The key
challenge lies in recovering the underlying geometry, completing the occluded parts of the object
and investigating if NeRFs can compete against traditional MVS for scenarios where the latter falls
short. In addition, we introduce a new “obSTaclE, occLusion and visibiLity constrAints” dataset
named STELLA concerning transparent and non-transparent obstacles in real-world scenarios since
there is no existing dataset dedicated to this problem setting to date. Considering that the density
field represents the 3D geometry of NeRFs and is solely position-dependent, we propose an effective
approach for extracting the geometry in the form of a point cloud. We voxelize the whole density field
and apply a 3D density-gradient based Canny edge detection filter to better represent the object’s
geometric features. The qualitative and quantitative results demonstrate NeRFs’ ability to capture
geometric details of the occluded parts in all scenarios, thus outperforming in completeness, as our
voxel-based point cloud extraction approach achieves point coverage up to 93%. However, MVS
remains a more accurate image-based 3D reconstruction method, deviating from the ground truth
2.26 mm and 3.36 mm for each obstacle scenario respectively.

Keywords: neural radiance fields; geometry evaluation; point clouds; obstacles; multi-view stereo;
3D reconstruction; new dataset

1. Introduction

Image-based 3D reconstruction techniques uncover many applications in documenting
the geometric dimensions of the environment. Geometric scene reconstruction in 3D space
usually contains the depth information and relative positions between two or more entities,
which makes it suitable for applications that require highly accurate positioning informa-
tion. Providing a detailed and unambiguous representation of the spatial arrangement
and geometry, point clouds have become a fundamental data structure [1] for realistic
representation of objects and scenes in applications where high geometric accuracy and
photo-realism must be satisfied. Differing from images that are arranged as a grid pattern
and where the neighborhood of a pixel can easily be determined, point clouds represent
scenes through a collection of non-uniform distributed points [2], where each point corre-
sponds to a specific location or feature in the real world. The versatility of point clouds
lies in the level of details for representing complex geometry, determined by the number
of points.

Reliably reconstructing a scene in 3D space in the form of a dense point cloud based
on overlapping images captured from different viewpoints is originally addressed by
Multi-View Stereo (MVS) [3]. After the camera position and orientation have been identi-
fied through Structure-from-Motion (SfM) [4], MVS relies on cross-view correspondence
matching and triangulation to estimate the pixel-wise depth value by minimizing the gap
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between the predicted point and ray intersection. It can produce high-quality results when
applied on well-defined textured surfaces; thus, the main challenge lies in computing
distinctive points or features in the images of the scene [5]. Therefore, traditional MVS
often fails to obtain an accurate geometric reconstruction, particularly in cases of a lack of
texture, texture repetition, illumination changes or occlusions.

Recently, scene representation networks [6] have shown great potential to address
these limitations. Neural Radiance Fields (NeRFs) [7] have revolutionized the traditional
methods by storing 3D representations within the weights of a neural network from images
and paired camera parameters. The scene is represented as a continuous volumetric
field where the position-dependent density and radiance, which additionally depends on
the viewing direction at any given 3D point, are predicted through ray tracing from the
corresponding overlapping images and viewing directions. The explicit geometry of NeRFs
in the form of a point cloud is gained by sampling 3D points along the rays, resulting in
rendering of depth maps.

Despite offering new insights in generating novel views from images, existing image-
based 3D reconstruction methods do not consider obstacles which is paramount, since a
real-world scene often comprises multiple objects, with one or more being occluded by other
objects. In cases where objects in the scene obstruct each other and certain parts of the object
are not visible due to occlusions or limited camera angles, it can be challenging to generate
a complete and accurate 3D representation as feature extraction and matching become
restricted, especially for complex geometry. The quality of occluded object reconstruction
is important because obstacles are common in our daily environment and furthermore, it
can indicate how accurately NeRFs can represent the volumetric field under occlusions [8].

We introduce a new dataset named STELLA (available online at https://github.com/
sqirrel3/STELLA (accessed on 12 January 2024)) which stands for “obSTaclE, occLusion
and visibiLity constrAints”, concerning transparent and non-transparent obstacles since
this area remains rarely explored to date. The dataset consists of real-world challenging sce-
narios rather than synthetic in order to address users not only in research but in industry as
well. For comparability and assessing the impact of occlusions during the image orientation
phase, we include as well a scenario without obstacles, occlusions and visibility constraints.
Our goal is to help the benchmark progress because there is no existing dataset dedicated
to this problem setting. In addition, this is the first attempt to evaluate the geometry
behind obstacles reconstructed by NeRFs through a point cloud comparison in 3D space,
addressing accuracy and completeness. The key challenge lies in recovering the underlying
occlusion and completing the invisible parts of the object, thus investigating if NeRFs can
compete against traditional MVS for scenarios where the latter falls short. Considering that
NeRFs’ output is a continuous volumetric representation where the density field represents
the geometry and it solely depends on the position, we propose a simple yet effective
strategy to extract NeRFs’ geometry in the form of a point cloud. We voxelize the whole
density field and apply a 3D density-gradient based Canny edge detection filter to better
represent the object’s geometric features.

Our contributions can be summarized as follows:

(1) We introduce a new dataset named STELLA of real-world scenarios tackling transpar-
ent and non-transparent obstacles, occlusions and visibility constraints.

(2) We evaluate the underlying geometry of NeRFs for reconstructing the occluded ob-
ject parts behind obstacles by comparing point clouds in 3D space with respect to
ground truth.

(3) We propose a new approach for NeRFs geometry extraction in the form of a point
cloud by voxelizing the density field and applying a 3D density-gradient based Canny
edge detection filter to better constrain the geometric features.

This contribution is organized as follows: an outline of the related work concern-
ing image-based 3D reconstruction using MVS and NeRFs as well as obstacle datasets
is presented in Section 2. Following that, in Section 3 the processing steps for the 3D
reconstruction and extraction of the point clouds from NeRFs along with the evaluation
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metrics are described. Section 4 highlights the data acquisition setup, followed by the
qualitative and quantitative results in Section 5. The discussion is laid out in Section 6 and
Section 7 provides the final conclusions.

2. Related Work

In this section we give an overview of the respective literature. Namely, Section 2.1
refers to the traditional and learning-based MVS, then in Section 2.2 the neural implicit
3D geometric reconstruction methods are presented and Section 2.3 gives an overview of
current research concerning occluded object parts and obstacle benchmark datasets.

2.1. Multi-View Stereo

Traditional MVS methods rely on pixel matching algorithms to compute a 3D rep-
resentation of the scene from multiple images. Based on the projection between a set of
overlapping images taken from different positions, the depth values of each pixel are calcu-
lated, which is time-consuming and restricts the completeness of the reconstructed point
cloud [9]. Since MVS often fails in estimating correct depth pixel values in low-textured
areas of the scene, applying 3D edge extraction can support the mesh triangulation step [10]
and preserve geometric details. However, the quality of the reconstructed mesh strongly
depends on the accuracy of the extracted 3D edges.

Instead of relying on explicit geometric computations, learning-based MVS methods
use neural networks for regularization and feature extraction to achieve superior perfor-
mance against traditional methods [11]. One significant advantage is the ability to capture
high-level semantics and contextual information, allowing for improved depth estimation
on texture-less surfaces [12]. As a geometry-aware model [13], besides recovering per-
pixel depth values [14], the neural network can learn to estimate the surface normal and
reflectance of homogeneous and complex surfaces. By learning to infer the underlying
scene structure based on available information from visible regions, these methods are also
proficient in handling occlusions, noise, blur and distortion [15] through distinctive key
points identification. However, for real-time applications the balance between accuracy
and efficiency is crucial; hence, it sets limitations to the method’s applicability.

2.2. Neural Implicit Scene Reconstruction

Differing from traditional MVS, which reconstructs a scene by identifying common
features using triangulation techniques to determine their geometric position, NeRFs rep-
resent scenes as a continuous volumetric field consisting of position-dependent density
and view-dependent radiance. However, NeRFs assume controlled conditions and static
bounded scenes and can be computationally demanding, particularly when processing
high-resolution images. To address these drawbacks, researchers have been actively con-
tributing to enhance the method’s coherence, applicability and performance. Consequently,
an extension of Mip-Nerf [16] that resolves the anti-aliasing issue and allows scene re-
construction on different scales, Mip-NeRF 360 [17] overcomes the challenges presented
by unbounded real-world scenes with unconstrained camera orientations. NeRF-W [18],
on the other hand, extends NeRFs’ capabilities for creating 3D reconstructions in uncon-
trolled real-world environments. Through an effective alignment-aware training strategy,
AligNeRF [19] improves NeRFs’ performance on high-resolution data. A structure-aware
3D scene representation more efficient than NeRFs is introduced in Nerflets [20], which
decompose a scene into multiple neural fields to better describe an object’s appearance,
density and semantics. Neuralangelo [21] utilizes multi-resolution 3D hash grids and
neural surface rendering to achieve superior results in recovering dense 3D geometry from
multi-view images, enabling highly detailed scene reconstruction. NeRF-RPN [22] develops
a framework for 3D object extraction anisotropically, without class labels, by using only
density values. Point-NeRF [23] and Points2NeRF [24] model a volumetric radiance field
by combining the advantages from both traditional point cloud reconstruction and neural
radiance field representation. Recent improvements focusing on accelerating the inference
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step enable scene reconstruction within a few seconds, even with high-resolution images.
More precisely, Instant Neural Graphic Primitives (Instant-NGP) [25] address the issue of
computational efficiency while preserving rendering quality using a small neural network
augmented by multi-resolution hash encoding, implemented on fully fused CUDA kernels.

Considering reflective surfaces, NeRFs produce inaccurate depth estimation due to
the mixed geometry of the transmitted and reflected components [26]. Recently, some state-
of-the-art methods tackle the reconstruction of the 3D geometry of transparent objects and
the ability of seeing through the glass [27]. By assuming that the poses and geometry of a
glass container are known and estimated in a controlled setup, the object’s geometry inside
the container can be accurately extracted. Other methods [28,29] focus on solid transparent
objects and the geometry and refraction of light are treated separately. However, they
require preprocessing for environmental light since the images are captured under static
natural illumination in a controlled environment for one object per scene.

2.3. Occlusion Benchmark Datasets

Recovering the geometry of objects behind obstacles is tackled by decomposing an
image to background and front objects by using masks based on assumptions about
the occluded parts [30]. However, this approach is only suitable if small parts of the
scene are occluded and the objects have simple geometry. In addition, several benchmark
datasets [31–36] focus on occluded parts behind obstacles in real-world scenes from non-
overlapping images using single image annotations and masking for semantic extraction.
Other researchers consider texture-less scenes with no reflective properties [37,38] captured
in controlled lightning and a restricted number of images [39–41] to identify occlusions
through object detection.

We can conclude that although the numerous variants of NeRFs have offered new
insights in 3D reconstruction from images for real-world scenes, most are primarily focused
on the task of novel-view synthesis; hence, the evaluation refers to the radiometric image
quality. Moreover, a critical aspect still remains unexplored; evaluating the geometry of
the object’s occluded parts behind obstacles as there is no dataset depicting this type of
environment. Current benchmark datasets tackling obstacles are not suited for image-based
3D reconstruction since they consist of non-overlapping images and thus are only suitable
for semantic segmentation and object detection. In contrast, we bring the evaluation
from image to 3D metric space through a point cloud comparison against traditional
MVS, addressing the accuracy and completeness to investigate if NeRFs can challenge
conventional dense matching algorithms in obstacle scenarios. Furthermore, our STELLA
dataset concerns transparent and non-transparent obstacles with overlapping images,
which enables a reconstruction and evaluation of the geometry in 3D space. We perform
the evaluation against ground truth data, allowing for the development and comparison of
the performance of different algorithms using the provided evaluation metrics.

3. Methodology

As depicted in Figure 1, in Section 3.1 the principles of pose estimation are introduced.
Subsequently, Section 3.2 briefly summarizes the MVS dense matching principles while,
in Section 3.3 the 3D reconstruction and extraction of the geometry as a point cloud from
NeRFs are described. Lastly, Section 3.4 underlines the evaluation metrics.
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Figure 1. Flowchart of the undertaken investigations. The captured images with estimated camera
poses (Section 3.1) are input for MVS (Section 3.2) and NeRFs (Section 3.3). Besides dense matching
in MVS, we apply two point cloud extraction approaches for NeRFs, namely depth-based and voxel-
based, to analyze how the point cloud generation and extraction approach affects the 3D geometric
reconstruction. All point clouds are registered in the same metric space as the ground truth mesh for
evaluation (Section 3.4).

3.1. Pose Estimation

Camera poses are estimated independently through SfM. Namely, the algorithm
expects as input a set of overlapping images captured from different camera positions. The
camera poses along with the 3D geometry are determined by detecting robust distinctive
key points in all images. Then, descriptors that capture the appearance and geometric
properties of those points are generated, enabling robust image matching. The key points
are matched over all images based on similarity, depicting the same 3D point. An object is
recognized in a new image by individually comparing each feature from the new image
with the extracted ones. These corresponding key points are input to a bundle adjustment
that determines the camera poses and intrinsic parameters, as well as the 3D coordinates
for all key points depicted in multiple images, resulting in a sparse point cloud.

3.2. Multi-View Stereo

In order to investigate if NeRFs can compete against conventional dense matching
algorithms in obstacle settings, a traditional MVS dense point cloud is used for comparison
purposes. The core concept of MVS involves triangulation of corresponding features that
are matched and tracked across multiple images to calculate the position of 3D points,
hence creating a dense point cloud that captures the spatial structure of the scene. As MVS
is used to refine the output obtained by SfM, it takes the information from the sparse point
cloud for the pixel-wise computation of depth values per image. Since it operates in a more
constrained environment with known camera parameters, it computes the 3D vertices on
regions that could not be correctly detected by descriptors or matched in the previous step.

3.3. Neural Radiance Fields

Reconstructing NeRFs’ geometry in 3D space is achieved by predicting the depth
given a series of images with estimated camera poses that describe different perspectives
of an object. Nonetheless, the output is a continuous volumetric field and the geometry in
the form of a point cloud needs to be accessed. Therefore, we use two different point cloud
extraction approaches, namely depth-based and voxel-based, and analyze the results. Our
focus is on evaluating how the point cloud extraction approach affects geometric accuracy
and completeness.

Nerfacto We use Nerfacto in Nerfstudio [42] since it is mainly developed for real-
world data captured outdoors for unbounded scenes. The method uses a small neural
network with hash encoding for computational efficiency, while achieving comparable
accuracy. Maintaining a dense point set for nearby objects is achieved by consolidating
the points per ray into regions of the scene, usually with the first surface intersection. The
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point cloud is extracted by rendering depth maps for each input image, back-projecting
points from the depth maps and mapping to 3D coordinates with respect to the camera
poses. The depth is derived from the expected ray termination in the density field.

Instant-NGP We use the original Instant-NGP framework since it achieves a similar
accuracy as Nerfacto [43] but enables faster reconstruction. While the radiance field de-
pends on viewing direction and does not separate color and illumination, the density field
represents NeRFs geometry and is only related to query positions [44]. Consequently, we
have integrated a .ply writer in order to extract the point cloud in voxel space by voxelizing
solely the density field. Nevertheless, filtering with global density thresholds yields noisy
and incomplete reconstruction [45,46]; thus, we apply a 3D density-gradient based Canny
edge detection filter as it leads to higher accuracy and completeness [47]. Similarly, like
in images where variations in magnitude depict edges, the aim of 3D edge detection is to
locate edges belonging to boundaries of objects [48] by additionally taking into account the
third dimension.

The first-order derivative is used to find out the minimum and maximum values in
the gradient-based operator [49]:

∇ f = G[ f (x, y, z)] =

 Gx
Gy
Gz

 =


d f
dx
d f
dy
d f
dz

 (1)

Then, the magnitude representing edge strength is calculated:

M(x, y, z) = |G| =
√
(Gx)2 + (Gy)2 + (Gz)2 =

√(
d f
dx

)2
+

(
d f
dy

)2
+

(
d f
dz

)2
(2)

The gradient direction (orientation of edge normal) is given by:

θ = arctan
(

d f
dx

,
d f
dy

,
d f
dz

)
(3)

The gradient calculation in the voxelized 3D density field based on the density values
is first preceded by Gaussian smoothing to minimize noise, followed by gradient magnitude
thresholds on the density gradients and a hysteresis method to suppress weak and detect
strong edges. The density gradients are derived independently of the absolute magnitude
of density values, which allows for edge extraction along lower density values in the
density field.

In spite of that, NeRF reconstructions have points inside the object since points are
sampled along camera rays to render the volume density field. We strive to remove these
points by approximating the visibility of the point cloud from a given viewpoint. Due to
the object’s complexity, we render five different lines of sight with regard to a given radius.

3.4. Evaluation Metrics

Geometric evaluation is a critical aspect of assessing the quality of any 3D geometric
reconstruction. The goal is to quantify how well the geometric attributes match the real-
world features that they represent. For that reason, all point clouds are aligned in the same
metric space as the ground truth mesh for evaluation using the Iterative Closest Point
(ICP) [50], which finds an optimal rigid transformation to align two point sets. To evaluate
the geometry of the reconstructed point clouds, we use two criteria: accuracy (precision)
and completeness (recall).

Accuracy Accuracy quantifies how closely the reconstructed point cloud reflects
ground truth locations. We use cloud-to-mesh, which computes the displacements be-
tween each point in the compared point cloud and the nearest facet in the reference mesh
through Euclidean distance. The orthogonal (signed) distance from the point to the nearest
triangle plane, or the distance to the nearest edge is taken if the orthogonal projection of
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the point does not fall on any facet. Due to the normal distribution without long-tailed
data, measuring how dispersed the data is in relation to the ground truth mesh is pro-
vided through Mean Error (Mean), Standard Deviation (SD) and Root Mean Square Error
(RMSE) [51] accordingly:

Mean =
∑n

i=1(xi)

n
(4)

SD =

√
∑n

i=1(xi − x)2

n − 1
(5)

RMSE =

√
∑n

i=1(xi − x̄)2

n
(6)

where n is the number of points of the compared point cloud, xi stands for the closest
distance between each point in the compared point cloud and the nearest facet of the
reference mesh, while x denotes the mean value of the distances.

Completeness Completeness measures to what extent the ground truth surface is
covered. We report both qualitative and quantitative completeness by calculating the
percentages of points covered by MVS and NeRF reconstructions in all scenarios. A higher
percentage indicates higher completeness.

4. Datasets

We base our investigations on a real-world dataset STELLA, consisting of three sce-
narios: without obstacles, occlusions and visibility constraints (Original) and with two
types of obstacles, transparent (Window) and non-transparent (Vegetation). The object be-
hind the obstacles whose recovered geometry should be evaluated is a 0.7 m tall Buddha
statue (further on referred to as object) placed on a 0.48 × 0.38 × 0.02 m rectangular plate
(Figures 2 and 3).

(a) (b)

Figure 2. Image capturing setup for both obstacle scenarios with Nikon D810 SLR mounted on a
tripod: (a) We place the object behind windows whose glass isn’t completely transparent, it has
dust and paint dots which make the reconstruction challenging; (b) Different vegetation coverage is
considered in the front side of the object.
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Figure 3. Trajectory of the image capturing with visualized camera poses for all scenarios: Original,
Window and Vegetation. The red squares indicate that the images are not taken for the pose estimation
due to homogeneous background and repetitive texture.
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Image capturing Image-based 3D reconstruction is sensitive to variations in image
quality as images with low resolution, motion blur or noise can hinder the accuracy of
feature matching and depth estimation. Therefore, all scenarios are captured using a Nikon
D810 SLR digital camera with a 36MP sensor, image resolution of 7360 × 4912 pixels, 20 mm
focal length and f/8 aperture size. Due to the high resolution, the camera is mounted on a
tripod (Figure 2) to prevent shivering and vibrations during acquisition. The images for
the Original scenario without obstacles, occlusions and visibility constraints are captured
indoors in a hemispheric trajectory around the object from three different camera heights of
0.7 m, 1.1 m and 1.5 m respectively, to achieve full object coverage. For the Window scenario,
the object is placed behind two windows (front and right side) whose glass is not completely
transparent, it has dust and paint dots to additionally challenge the pose estimation, hence
the reconstruction. For the Vegetation, different types of vegetation coverage are considered
in the front side of the object. The images are captured in a circular trajectory from a
uniform distance of the object (Figure 3). Each scenario consists of 125 images which are
used in our research purposes.

Ground truth The ground truth data in the form of a mesh are obtained using Struc-
tured Light Imaging (SLI). The method captures the geometry of the object by illuminating
the surface using structured light projection. The light source projects a coded pattern of
parallel light stripes onto the object and the cameras capture these patterns from a known
position, resulting in a specific sequence of gray values for each pixel of an image, from
which the range can be calculated. The coordinates of the object points can then be triangu-
lated from the intrinsic and extrinsic camera parameters and the image coordinates. For
this purpose, we utilize the stereoSCAN scanning device whose projector is placed between
two digital cameras at a fixed distance from each other. The object is placed on a turntable
and the rotations are controlled automatically by a workstation [52]. Any remaining holes
are closed, resulting in a smoothed mesh with 0.1 mm accuracy (Figure 4).

(a) (b)

Figure 4. Structured Light Imaging (SLI) 3D mesh as ground truth: (a) front and (b) back view. The
colored squares depicting the geometry of the occluded object parts are enlarged in Figure 6.

5. Results

In this section, we conduct evaluations on our STELLA dataset, which contains three
scenarios: without line-of-sight obstructions (Original) and with transparent (Window) and
non-transparent (Vegetation) obstacles against a ground truth mesh. To evaluate how the
point cloud generation and extraction approach affects the 3D geometric reconstruction, we
compare the dense matching by MVS with two NeRF approaches, namely depth-based and
voxel-based, and argue which method represents occlusions more accurately and reliably.
In order to quantify the quality of the reconstructed geometry, we calculate accuracy and
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completeness between the point clouds and the ground truth mesh. For accuracy, we
report three error metrics: Mean, SD and RMSE, while the completeness is presented as
a percentage. The inputs to all methods are 125 high-resolution images for each scenario.
The results are categorized as qualitative (Section 5.1), where the geometric reconstructions
as point clouds are visualized (Figures 5–7), and quantitative (Section 5.2), to numerically
present the accuracy and completeness across all scenarios respectively (Table 1).

MVS Nerfacto Instant-NGP
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W
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V
eg

et
at

io
n

Figure 5. Qualitative comparison of the point cloud geometric reconstructions for all used meth-
ods: MVS, Nerfacto and Instant-NGP in all scenarios: without obstacles, occlusions and visibil-
ity constraints (Original), transparent (Window) and non-transparent (Vegetation) obstacles respec-
tively. MVS shows gaps in reconstructing the geometry of the occluded parts, while NeRFs exhibit
in completeness.

5.1. Qualitative Results

The qualitative comparison of the point clouds for the used methods in all scenarios
in Figure 5 highlights the reconstruction quality of the geometry and object complete-
ness. Since we are investigating the 3D reconstruction through obstacles, we focus on the
geometry of the occluded parts of the object.
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Figure 5. Enlargements of the occluded parts for all used methods in all scenarios against the ground
truth (Figure 3). MVS manifests significant gaps in the reconstruction, while NeRFs achieve higher
object completeness and better reconstruct the underlying geometry behind obstacles.

Figure 6. Enlargements of the occluded parts for all used methods in all scenarios against the ground
truth (Figure 4). MVS manifests significant gaps in the reconstruction, while NeRFs achieve higher
object completeness and better reconstruct the underlying geometry behind obstacles.
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Accuracy The error displacement values against the ground truth mesh correspond to
the color ramp, where green indicates errors close to 0 (Figure 7). First, the approximate
distances are computed, which are used to set the best octree level at which the distance
computation is performed. All distances above the mesh have positive values, while
negative distances are an indication that the point lies below the nearest triangle. Following
the suggestion of the initial NeRF paper and because other commercial alternatives do not
lead to better geometric representation, MVS is reconstructed using COLMAP [3], and even
though it fails to reliably reconstruct the object’s surface behind the occluded areas, when
it comes to accuracy, it shows almost a uniform match with the ground truth. In contrast,
NeRF reconstructions in all scenarios show a fuzzier interpretation of the object’s outer
surface because there are not sufficient surface constraints in the implicit representation.
The density is learned implicitly and is not conditioned by ground truth information since
the network optimization is based on minimizing the image reconstruction loss between
training and rendered images [53]. Moreover, NeRFs’ accuracy is strongly dependent on the
point cloud extraction approach. Nerfacto shows higher correspondence with the ground
truth since the point cloud is extracted directly from the depth maps. On the contrary,
Instant-NGP point clouds contain artifact points within the object (Vegetation) because
NeRFs sample points in the entire 3D space and we are addressing the whole voxelized
density field. Those points have the highest error displacements and significantly distort
the accuracy results.

Completeness Generally, MVS achieves a sharper result and complex geometry like
the spikes on the head and the facial features are reliably reconstructed (Figure 5). However,
the gaps in the geometry of the occluded parts decrease the completeness. On the other
hand, we remark that NeRFs can capture the overall spatial arrangement of the scene
completely while being able to also capture geometric details, e.g., the spikes on the
head and other surface details (Figure 6) of occluded object parts, thus achieving higher
completeness. For the Original and Vegetation scenario, Instant-NGP and our voxel-based
point cloud extraction approach provide the strongest visual results. However, noise and
artifacts can be observed in the reconstructions, particularly in Instant-NGP reconstruction
for the Window scenario. NeRF artifacts arise because the method cannot capture the object’s
accurate and clean geometry resulting in floaters, and cannot complete the neural density
field resulting in holes. NeRFs demand hundreds of input images with highly accurate
camera poses and fall short under conditions of sparse observations, especially in real-
world scenarios, resulting in a foggy density field. The camera poses are an essential part
of NeRFs because points are sampled per ray emitted from the camera’s center along the
pixel’s direction. Misaligned camera poses result in cloudy artifacts and a reduction in the
sharpness and details of the reconstructed scene. Even with high-resolution input images,
the geometry varies based on the scenario’s constraints, such as acquisition constellations,
types of obstacles and occlusions. Hence, the completeness as well as the accuracy are
highest in the Original scenario because the scene is bounded, background content does not
exist in any direction and the images are captured on a surrounding hemisphere (Figure 3),
covering a wide range of object’s surface.

We can also observe discoloration among different scenarios, namely the visual ap-
pearance of the Original scenario strongly differs from the Window and Vegetation. 3D
geometric reconstruction is sensitive to lighting conditions and materials. Variations in
lighting can lead to inconsistent color and texture information in images. The Original
scenario is captured indoors under controlled lighting, which is different from the other two
obstacle scenarios, captured outdoors under natural illumination, which is not constant. In
NeRFs, the color of a point does not change when viewed from different directions; instead,
it gets determined as a weighted sum of all spatial points along the ray in the radiance field
independently of the volume density. However, apart from visual appearance, the color
differences do not affect the geometric reconstruction.
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Figure 7. Cloud-to-mesh comparison by visualization of the reconstructed point clouds against the
ground truth accordingly for all scenarios, Original, Window and Vegetation. The ground truth mesh
is presented as a thin black line and the colors correspond to the error displacements (in mm) in a
longitudinal section of the object.
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5.2. Quantitative Results

Table 1 provides a quantitative comparison of the used methods for 3D reconstruction:
MVS, Nerfacto and Instant-NGP in all scenarios: Original, Window and Vegetation and
underscores the trade-off between accuracy and completeness among the methods.

Accuracy MVS demonstrates superior accuracy among the methods across all scenar-
ios with lowest error displacements in all metrics, thus achieving the highest correspon-
dence with the ground truth. In the Original scenario, where the line of sight is unobstructed,
the average difference between the reconstructed point cloud and the ground truth mesh is
a remarkable 0.41 mm. Even though the divergence values for both Window and Vegetation
obstacle scenarios are up to 2.27 mm and 3.49 mm respectively, MVS indicates almost a
uniform match with the real-world features it represents. It should be noted that although
NeRFs provide lower geometric accuracy compared to MVS, the method shows more
robust results as the accuracy values are within the same range for each scenario; however,
they are strongly dependent on the chosen point cloud extraction approach. More precisely,
Nerfacto using depth rendering to extract the explicit geometry, achieves accuracy within
8.52 mm and 8.49 mm, respectively, in both obstacle scenarios for most parts of the object
surface. Instant-NGP shows higher divergence from the ground truth, with 18.66 mm for
the Window scenario and 16.82 mm for the Vegetation scenario, since points are sampled in
the entire volumetric representation and for the point cloud extraction we have voxelized
the whole density field.

Completeness Although MVS outperforms in pinpoint accuracy, it fails to reconstruct
the object’s outer surface, especially the occluded geometry behind obstacles on account
of completeness. In all scenarios, the reported values are lower compared to NeRFs. The
absolute completeness values range between approximately 65 and 77% for both obstacle
scenarios respectively, proportionally with the number of points. Regardless of the point
cloud extraction approach, NeRFs consistently provide a higher point coverage with respect
to the ground truth across all scenarios, suggesting a more robust reconstruction through
obstacles in diverse environments. However, between NeRF reconstructions, our Instant-
NGP voxel-based point cloud extraction approach outperforms the depth-based method
by Nerfacto, with completeness scores within 94% and 84% for the Original and Vegetation
scenario respectively.

Table 1. Quantitative results of the cloud-to-mesh comparison addressing the number of points,
accuracy and completeness for each method. MVS outperforms both NeRFs point cloud extraction
approaches when it comes to accuracy. However, NeRFs show higher coverage for the ground truth
points. The best results are highlighted in bold.

Scenario Method
Number of

Points (Million)

Accuracy (mm) Completeness

(%) ↑Mean ↓ SD ↓ RMSE ↓

Original

MVS 16.48 0.02 0.40 0.41 88.96

Nerfacto 2.65 3.78 5.29 6.50 90.12

Instant-NGP 2.53 3.51 6.61 7.48 93.65

Window

MVS 2.66 0.19 2.26 2.27 65.26

Nerfacto 3.11 −3.9 7.58 8.52 83.38

Instant-NGP 2.98 −10.10 15.69 18.66 80.92

Vegetation

MVS 1.92 −0.95 3.36 3.49 76.94

Nerfacto 1.72 −3.43 7.76 8.49 69.59

Instant-NGP 2.16 −7.82 14.89 16.82 83.99
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6. Discussion

In this contribution we evaluate the 3D geometry reconstructed by NeRFs against
traditional MVS, tackling the accuracy and completeness of the occluded object surface
behind obstacles. We can notice a clear trade-off between accuracy and completeness
among the methods; while MVS consistently exhibits higher accuracy, NeRFs outperform
in completeness, indicating a consistent performance across different obstacle scenarios.

6.1. Qualitative Evaluation

Accuracy MVS achieves the best geometric accuracy results with highest correspon-
dence with the ground truth (Table 1) and the 3D geometry is reconstructed by identifying
common image features, using triangulation techniques to determine their 3D position.
NeRFs, on the other hand, use deep learning to infer a continuous volumetric representa-
tion from a set of overlapping images without identification of common features, but rather
learn an implicit function that maps 3D coordinates along the rays. The volume density
is essentially inferred as part of this process since it affects how much light is absorbed
and scattered along the ray between the 3D point and the camera viewpoint. However,
NeRFs are trained by minimizing the image reconstruction loss over training views through
gradient descent. The volume density field is thus flexible so each training can lead to a
slightly different geometry prediction and result. The error displacements tend to increase
faster to the negative because those are the points behind the mesh surface, caused by the
fact that NeRFs sample points in the whole 3D field and consequently inside the object.
The errors with positive values lie above the nearest mesh triangle and thus most likely
represent noise and outlier points.

Completeness Reasonably, the incomplete geometry in MVS and NeRFs occurs in the
occluded areas behind the obstacles (Figure 5). MVS shows bigger gaps in reconstructing
the object’s surface and less complete geometry (Figure 6) but a sharper result. On the
contrary, NeRFs generally show a more reliable reconstruction of the occluded parts and
demonstrate higher points coverage. Generally, the empty spaces in a point cloud stem
from two main sources: an insufficient number of overlapping images and constraints of
the reconstructive algorithm. When the camera poses are known, the dense point cloud is
generated using the location and orientation information from SfM. The quality of image-
based 3D reconstruction is highly dependent on the presence of distinctive features and
texture in the images to establish correspondences between points for the pose estimation.
Scenes with uniform or repetitive patterns can enforce challenges as feature extraction and
matching may be less effective to accurately reconstruct the 3D geometry. On top of that,
light paths through unpolarized glass are complex and involve reflection. These multiple
reflections cause image distortions that invalidate the single viewpoint assumption as
a different reflection might be shown depending on the viewpoint. Hence, it imposes
difficulties in reconstructing the 3D geometry of such objects because the presence of
specular and mirror reflections can lead to noisy results. The glass in our Window scenario is
not completely transparent, it has filth and paint dots which additionally challenge the pose
estimation and subsequently the reconstruction. As a consequence, the images (30 in total)
through the glass from the right side of the object are not taken for pose estimation (Figure 3),
resulting in gaps (right arm and face), especially for MVS since it strongly depends on the
object’s visibility on numerous overlapping images for a reliable reconstruction. In contrast,
NeRFs show more complete geometry in those parts as the geometry is reconstructed
through ray tracing from the camera poses and 3D point sampling, particularly Instant-
NGP, which almost completely approximates the missing parts. However, the point cloud
is quite noisy and the facial features are poorly reconstructed. NeRFs can often produce
artifacts due to the inherent ambiguity of the task of reconstructing an unbounded scene
from a relatively small set of images.

Without affecting the object’s geometry, we can identify color differences in the recon-
structed point clouds (Figure 5), knowing that the color of the object may change depending
on the viewpoint. The radiance field is sampled along camera rays and the samples are
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aggregated to predict the pixel color using hierarchical stratified sampling, meaning that
the ray is divided into equally spaced bins, where a sample is uniformly drawn from
each bin. Using stratified samples generally improves the reconstructions as it helps to
prevent overfitting. Once the space is sampled, it is known which samples contributed to
the final color, which can be used to sample more points around those regions, leveraging
a probabilistic function to determine the expected color value along the ray. NeRFs do
not explain the view dependency of a reflecting surface point by changing the color of a
point when viewed from different directions, but they utilize all spatial points behind it
along the camera ray to obtain the correct color, resulting in incorrect depth maps [26]. The
visual appearance of the Original scenario strongly differs from the Window and Vegetation
scenarios. The Original scenario is captured indoors under different light compared to the
other two obstacle scenarios, captured outdoors under natural illumination, which can
vary. Moreover, due to the transparency in the Window scenario, both NeRF point clouds
show minor discoloration caused by the reflecting properties of the glass. However, mixed
color points are more present in the Vegetation scenario, especially for Nerfacto, considering
the non-transparency of the vegetation as an obstacle. Instant-NGP shows better visual
results since we voxelize only the density field that does not consider the color as it is only
position-dependent.

6.2. Quantitative Evaluation

Accuracy NeRFs’ accuracy strongly depends on the point cloud extraction approach.
This is especially evident for Instant-NGP reconstructions which contain artifact points
inside the object (Figure 7) that decrease the accuracy, because we have voxelized the whole
density field. Unlike MVS, whose accuracy drops from 2.27 mm for the transparent (Win-
dow) obstacle to 3.49 mm for the non-transparent (Vegetation) obstacle, NeRFs’ accuracy is
almost constant in both obstacle scenarios, indicating a more robust reconstruction through
obstacles in diverse environments. Additionally, even though we have rendered five dif-
ferent lines of sight due to the object’s complexity, when applying the point removal, a
smaller radius has been set because we do not want to sacrifice the completeness. The point
removal approach is viewpoint-dependent and better suited for symmetrical geometric
forms. It is worth mentioning that the point distribution on the object’s surface is not
proportional because the spikes on the head and the facial features contain more points. It
is likely that those points have higher density values since NeRFs are optimized to capture
complex geometry with high level of detail.

The Original scenario achieves the best accuracy and completeness results for all
methods compared with the two obstacle scenarios owing to the more accurate pose
estimation and object visibility on all images. The camera parameters are taken to compute
the depth information for every pixel in an image. Fusion of the depth maps of multiple
images in 3D then produces a dense point cloud to recover the 3D geometry of the scene.
Thus, incorrect camera poses lead to incorrect depth maps and strongly affect the geometric
accuracy and subsequently the completeness. Assessing the impact of occlusions during
the image orientation requires a more synthetic environment while keeping the same
scene setup and adding different obstacles. However, in this contribution we are focused
on real-world challenging settings to address industry audiences as well. Obtaining an
accurate geometric representation from NeRFs still remains an open challenge since NeRFs
are optimized for view synthesis and do not enforce an accurate underlying geometry on
the density field.

Completeness The completeness percentage is proportional to the number of points,
except in the Original scenario, where MVS in spite of the fact that it has 16.48 million points,
still exhibits the lowest completeness because the points are not proportionally distributed
on the object’s surface. For comparability, the point clouds should have a similar number
of points; however, this parameter cannot be adjusted in COLMAP. It is calculated through
cross-view correspondence matching and triangulation to estimate the pixel-wise depth
values and the input images have a high resolution of 7360 × 4912 pixels.
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7. Conclusions

In this contribution we evaluate the 3D geometry of NeRFs against traditional MVS
for reconstructing objects through transparent and non-transparent obstacles against a
ground truth. In addition, we introduce a new “obSTaclE, occLusion and visibiLity con-
strAints” STELLA (available online at https://github.com/sqirrel3/STELLA, accessed on
12 January 2024) dataset consisting of real-world challenging scenarios tackling transparent
and non-transparent obstacles because there is no existing dataset dedicated to this problem
setting. For comparability and assessing the impact of occlusions on the pose estimation,
we include as well a scenario without visibility obstructions. Considering that the density
field represents NeRFs’ geometry and it solely depends on the position, we propose an
effective strategy to extract NeRFs’ geometry in the form of a point cloud by voxelizing the
whole density field and applying 3D density-gradient based Canny edge detection to better
represent the object’s geometric features. We investigate how the point cloud generation
and extraction approach affects the 3D geometric reconstruction and thus the accuracy
and completeness. NeRFs’ geometric accuracy is strongly dependent on the point cloud
extraction approach and while it is lower compared to MVS, the method shows more robust
results as the accuracy values are within the same range for each scenario. Nerfacto shows
higher correspondence with the ground truth. On the contrary, Instant-NGP point clouds
contain artifact points within the object that distort the accuracy results because NeRFs
sample points in the entire 3D space and we are addressing the whole voxelized density
field. However, NeRFs and our voxel-based point cloud extraction approach consistently
provide a higher point coverage and hence outperform in completeness.

NeRFs still produce inconsistent geometry among multi-view observations, which is
manifested into foggy floaters hovering within the volumetric representation. Obtaining
an accurate geometric representation from NeRFs still remains an open challenge since
the method is optimized for view synthesis and does not enforce an accurate underlying
geometry on the density field. The density should be limited to only have positive values in
the first intersection between the ray and object surface. Furthermore, NeRF reconstruction
highly depends on accurately estimated camera poses, so investigating a different number
of input images and degrading image quality can quantify the impact of the camera
parameters on the geometric reconstruction.
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