KIT | KIT-Bibliothek | Impressum | Datenschutz

Cosmological and idealized simulations of dark matter haloes with velocity-dependent, rare and frequent self-interactions

Fischer, Moritz S.; Kasselmann, Lenard; Brüggen, Marcus; Dolag, Klaus; Kahlhoefer, Felix 1; Ragagnin, Antonio; Robertson, Andrew; Schmidt-Hoberg, Kai
1 Institut für Theoretische Teilchenphysik (TTP), Karlsruher Institut für Technologie (KIT)

Abstract:

Dark matter self-interactions may have the capability to solve or at least mitigate small-scale problems of the cosmological standard model, Lambda Cold Dark Matter. There are a variety of self-interacting dark matter models that lead to distinguishable astrophysical predictions and hence varying success in explaining observations. Studies of dark matter (DM) density cores on various mass scales suggest a velocity-dependent scattering cross-section. In this work, we investigate how a velocity dependence alters the evolution of the DM distribution for frequent DM scatterings and compare to the velocity-independent case. We demonstrate that these cases are qualitatively different using a test problem. Moreover, we study the evolution of the density profile of idealized DM haloes and find that a velocity dependence can lead to larger core sizes and different time-scales of core formation and core collapse. In cosmological simulations, we investigate the effect of velocity-dependent self-interaction on haloes and satellites in the mass range of ≈10$^{11}$−10$^{14}\ M_\odot$. We study the abundance of satellites, density, and shape profiles and try to infer qualitative differences between velocity-dependent and velocity-independent scatterings as well as between frequent and rare self-interactions. ... mehr


Volltext §
DOI: 10.5445/IR/1000170100
Veröffentlicht am 18.04.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Teilchenphysik (TTP)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2023
Sprache Englisch
Identifikator KITopen-ID: 1000170100
Umfang 22 S.
Vorab online veröffentlicht am 11.10.2023
Schlagwörter astroparticle physics, methods: numerical, galaxies: haloes, dark matter
Nachgewiesen in arXiv
Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page