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Abstract

This dissertation broadly draws inspiration from biology for solving issues in the rapidly
developing �eld of machine learning in the natural sciences. Nature and biology have
long served as foundation for models and algorithms in computer science. Well-known
examples include arti�cial neural networks, the attention mechanism, or population based
optimization. In the opposite direction, biology has seen rapid progress driven by high
throughput data acquisition methods and the surge in powerful machine learning methods
enabled by them. Evolution in particular provides a mechanism that has been adapted
to a family of optimization algorithms in computer science, but it also leaves behind
machine-learnable patterns in biological records.

Adaptation of machine learning techniques primarily developed for default applications
like image or language processing, to natural sciences poses diverse challenges, but have
been recently successful in solving long standing problems. Tailoring the model architec-
ture and inductive biases to the speci�c problem at hand promises greater performance
but often requires expert domain knowledge and specialized model components. One area
where machine learning has driven rapid advance is bio-molecular structure prediction.
This advance has been enabled by the algorithmic advances at the intersection of image
processing, language processing and geometric learning, by the rapid growth of public
databases, and �nally by the availability of compute resources.

While these recent successes have been relegated to areas, where labeled training data
is relatively ubiquitous, there are many, where labels or data in general are sparse. One
such example is structured ribonucleic acids. There are few resolved structures in the
public databases, since their structural resolution remains challenging. While the datasets
are expected to grow, experiments will remain expensive and time consuming and thus
data e�ciency is a valuable model property. My contribution for better contact prediction
models as a proxy for structure prediction is a composite model consisting of two modules.
The �rst module encompassing the bulk of the model parameters is pre-trained in a self-
supervised manner, in order to utilize as much information from unlabeled data as possible.
The second is a combination of shallow arti�cial neural network and classical random
forest model that further processes the latent representations of the bulk model, since it is
more robust than a neural network when faced with limited training data.
Another problem, especially present in the sparse data regime, is the biases present in

the distribution of the data. While there are more subtle phenomena, the most easily visible
one is class imbalance. Often, the less interesting background classes are overrepresented
in comparison to the interesting foreground or anomalies. This imbalance in particular
has an e�ect on the optimization landscape that is traversed during training of a neural
network. To manipulate the optimum the model �nally converges on, I dynamically deform
this landscape by scheduling from one training loss to another.
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Abstract

Finding suitable architectures or other parameters governing the training of a model is
a growing problem as models become increasingly complex and training more expensive.
To search these parameter spaces e�ciently, evolution can be leveraged. Evolutionary
optimization is a well established approach, however it has several properties that make it
useful for modern neural architecture search. Its population based nature has inherent
potential for parallelization, that makes it scalable to modern large scale computing
infrastructure and its sampling mechanism does not only forego utilization of gradients
but also distances altogether, which allows searching categorical parameter spaces. I
introduce a new communication scheme based on lazy synchronization to further adapt
evolutionary optimization to neural architecture search in high performance computing
environments.
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Zusammenfassung

Diese Dissertation beschäftigt sich mit biologisch inspirierten Methoden für das sich rapide
entwickelnde Feld des maschinellen Lernens angewendet auf die Naturwissenschaften.
Die Natur und insbesondere die Biologie dienen seit langem als Grundlage für Modelle
und Algorithmen in der Informatik. Bekannte Beispiele sind künstliche neuronale Netze,
der Attention Mechanismus, oder populationsbasierte Optimierungsverfahren. Im Ge-
genzug hat die Biologie in verschiedenen Bereichen große Fortschritte durch moderne
Hochdurchsatzverfahren und die dadurch ermöglichten Datenanalysemethoden erfahren.
Insbesondere das Konzept der Evolution bietet einen Mechanismus der für ganze Familien
von Optimierungsverfahren adaptiert wurde, aber sie hinterlässt auch maschinenlernbare
Muster in evolutionsbiologischen Datenbeständen.

Die Anpassung von Techniken des maschinellen Lernens, die für Standardanwendungen
wie Bild- oder Sprachverarbeitung entwickelt wurden, an naturwissenschaftliche Frage-
stellungen wirft eine Reihe von Herausforderungen auf, erlaubte aber auch in jüngster
Zeit lange zuvor ungelösten Problemen zu lösen. Modelarchitekturen und den enthaltenen
induktiven Bias auf spezi�sche Probleme maßzuschneidern erlaubt eine bessere Leistung
des Modells, setzt üblicherweise aber Expertenwissen und angepasste Modellkomponen-
ten voraus. Ein beispielhaftes Gebiet der Biologie, auf dem maschinelles Lernen großen
Fortschritt ermöglicht hat, ist die biomolekulare Strukturvorhersage. Dieser Fortschritt
wurde ermöglicht durch algorithmische Entwicklungen an der Schnittstelle zwischen
Bildverarbeitung, Sprachverarbeitung, und geometrischem Lernen, durch das rasante
Wachstum von ö�entlichen Datenbanken und nicht zuletzt durch die Verfügbarkeit von
großen Mengen an Rechenressourcen.
Während diese Fortschritte sich auf Gebiete beschränken, in denen die erwünschten

Vorhersageergebnisse für die Trainingsdaten bereits in großer Menge bekannt sind, gibt es
viele, in denen Beispielergebnisse oder Trainingsdaten insgesamt knapp sind. Ein solches
Beispiel sind funktionale Ribonucleinsäuren mit assoziierter dreidimensionaler Struktur.
Es gibt nur wenige experimentell aufgelöste Strukturen in ö�entlichen Datenbanken, da
die entsprechenden Experimente aufwändig und teuer sind. Obwohl diese Datensätze
im Laufe der Zeit anwachsen sollten, werden Strukturdaten ein limitierender Faktor
bleiben und die e�ziente Datennutzungwirdweiterhin eine notwendigeModelleigenschaft
sein. Mein Beitrag für eine bessere Kontaktvorhersage als Proxy für Strukturvorhersage
ist ein Kompositmodell bestehend aus zwei Modulen. Das erste, das den Großteil der
Modellparameter enthält, wird selbstüberwacht auf Gensequenzen trainiert, so dass die
vorhandenen Daten ohne assoziierte Strukturen genutzt werden können. Das zweite Modul
benutzt anschließend die latenten Repräsentationen des vorigen Moduls um die eigentliche
Vorhersage zu produzieren. Es besteht aus einem �achen neuronalen Netz und einem
robusten, klassischen Random Forest, die gemeinsam die wenigen Strukturdaten e�zient
nutzen können.
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Zusammenfassung

Ein weiteres Problem, das oft insbesondere in datenarmen Szenarien auftaucht, ist ein
Bias in der Verteilung von Trainingsdaten. Während es subtilere Phänomene gibt, ist eine
einfach zu beobachtende Eigenschaft das Klassenungleichgewicht. Die weniger interessan-
ten Hintergrundklassen sind oft überrepräsentiert im Vergleich zu dem interessanteren
Vordergrund oder gesuchten Anomalien. Dieses Ungleichgewicht hat insbesondere einen
Ein�uss auf die Optimierungslandschaft, die während des Trainings eines neuronalen
Netzwerks durchquert wird. Um das Optimum auf dem das Modell letztendlich konvergiert
zu manipulieren, verzerre ich diese Landschaft, indem ich verschiedene Trainingssignale
dynamisch miteinander kombiniere.
Das Finden von geeigneten Architekturen oder anderen Parametern, die das Training

eines Modells beein�ussen, ist ein an Relevanz zunehmendes Problem, da Modelle kom-
plexer und Training ressourcenhungriger werden. Evolution bietet einen Ansatz, um
diese Parameterräume e�zient zu durchsuchen. Evolutionäre Optimierung ist ein etablier-
tes Vorgehen, es hat jedoch einige Eigenschaften, die es besonders geeignet für neurale
Architektursuche machen. Die populationsbasierte Basis hat inhärentes Potenzial für
Parallelisierung, was gute Skalierungseigenschaften auf modernen großskaligen Rechenin-
frastrukturen verspricht. Ausserdem verläßt sich der Navigationsmechanismus nicht auf
Gradienten oder Distanzen im Suchraum, und ist daher geeignet sowohl kategorische
als auch kontinuierliche Parameter zu verarbeiten. Ich stelle ein neues Kommunikati-
onsprotokoll und darauf angepasste Algorithmen vor, die auf asynchronem Austausch
zwischen einzelnen Evaluations- und Trainingsschritten basieren, um populationsbasierte
Optimierung für neurale Architektursuche auf Hochleistungsrechnern anzupassen.
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1. Introduction

1.1. Motivation

Molecular biology is the study of life on the level of biological macromolecules in terms
of their chemical and physical properties. Detailed understanding of molecular origins
and function is the foundation of progress in a wide range of �elds like medicine, chemi-
cal engineering, or material science. Supplementing and augmenting experimental and
theoretical biology, data science and simulation have been established as a third pillar
of scienti�c endeavor. This has lead to the establishment of bioinformatics as its own
discipline at the intersection between biology and computer science. High throughput
experiments producing terabytes of data necessitate e�cient computational methods in
their analysis and interpretation. One example is molecular structure prediction. High
throughput sequencing made entire genomes cheaply accessible, but the three dimensional
structures of the derived macromolecules are still only determined through expensive and
time consuming experiments. Modern deep learning models applied to all the available
data have enabled prediction of protein structures from their genetic sequences. The
function of these molecules, that act as nano-scale machinery, governing life on a cellular
level, is tightly linked to their structure. Hence, progress in the understanding of molecular
structure enables further research into many cellular and also industrialized processes.
The inverse problem, protein design, is equally aided by machine learning.

In Return, computer science draws inspiration from nature. Processes optimized through
evolution over millennia are often a reasonable �rst approach for a given problem with
some potential for adaptation. Arti�cial neural networks and population based optimizers
are just two examples of leveraging biological understanding for building general mod-
els in computer science. However, there is a second mechanism inspiring generalizable
problem solving. Sometimes technical solutions for speci�c domain problems show utility
beyond their originally intended application. Sequence processing algorithms or statisti-
cal principles and heuristics for the systematic, quantitative study of populations have
emerged in biological use cases before being propagated through computer science in
general. In this vein, we wanted to develop machine learning tools for the investigation of
biological problems. We can then leverage the �ndings of these investigations to design
improved computational tools in general and in particular for machine learning. The cen-
tral biological application we focus on is molecular contact map prediction from genetic
sequences for ribonucleic acids. Contact map prediction serves as a proxy for full structure
prediction. This constraint is given primarily by the extreme sparsity of labels used to
train supervised machine learning models, which is a problem hampering many scienti�c
deep learning applications. More technical problems encountered here are class imbalance
and model calibration. Since contact maps are a sparsi�ed and lossy representation of
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structure they contain little signal and a lot of background. This in�uences the resulting
model trained with such labels. Mitigating resulting harmful biases while preserving the
interpretability of its prediction, e.g. by maintaining its calibration, is an open problem.
Finally, determining the non-learnable parameters of deep learning models is its own area
of machine learning research.

We explored further measures to maximize data e�ciency, which are technically avail-
able to other domains, like self-supervised learning, and composite deep and traditional
models. Relatively deep neural networks can be trained as self-supervised models using
the larger amounts of unlabeled data. The representations such a model generates can
then be used by a traditional machine learning model, in this example a gradient boosted
forest classi�er, better than the usually used neural network. The drawback is that the
large self-supervised model cannot be �ne-tuned by backpropagating the error through
the entire composite model. To address this shortcoming, we �ne-tune the neural network
using a small surrogate network standing in for the forest model [1]. To traverse the loss
landscape in search for an optimum resulting in a well calibrated model, we introduce
loss scheduling [2]. Varying di�erent loss contributions over the course of training of a
neural network allows for the trading o� of the bene�ts and drawbacks of di�erent loss
functions. To perform hyperparameter search, we adapt the well established evolutionary
optimization to the HPC setting [3], where large scale machine learning takes place. Mini-
mizing synchronization, we dispense with the notion of generations as synchronization
barriers and instead adopt a more �exible and e�cient communication scheme.

1.2. Research Questions

The work presented in this thesis tries to address and is guided by several central questions.
The problem posed at the root is that of structure prediction of RNA molecules.

• How can modern deep learning be applied to improve RNA structure prediction?

In the pursuit of a solution to this problem a series of follow-up questions arises:

• How can the extreme data sparsity for RNA be addressed?

• How can evolutionary information be leveraged to maximize the exploitable infor-
mation content of the available data?

• When using contact prediction as a proxy for full structure prediction, how can the
class imbalance problem be addressed?

• Does the combination of multiple self-supervised upstream tasks improve down-
stream performance and model robustness?

• Can the use of classical machine learning methods improve data e�ciency?

• How can classical machine learning methods be combined with modern deep neural
networks?

2



1.3. Contributions

• How can evolution be leveraged to �nd suitable combinations of model and training
parameters?

• How can high performance computing environments be exploited for hyperparame-
ter search?

1.3. Contributions

Here we give a brief overview over the individual contributions making up this thesis.
Molecular structure prediction is a problem in molecular biology [7], where the three
dimensional atomic structure of a molecule is to be determined from easier to access infor-
mation, commonly genetic sequences. In the complete prediction pipeline a model solving
this problem receives a genetic sequence as input and generates a point cloud with the
coordinates of the atoms making up the molecule. For one class of biomolecules, proteins,
a range of end-to-end models solving this problem have been recently introduced [8, 9,
10].

For others, like ribonucleic acid (RNA), training these types of end-to-end models is not
feasible, since there is several orders of magnitude less data available, requiring a more
complex work�ow. Instead of end-to-end structure prediction, contact prediction [11, 12]
is used as a proxy, in order to simplify the problem. For each possibly interacting pair of
building blocks in the sequence, the model predicts, whether they are in proximity in the
3D structure or not. All predictions taken together form a contact map, that can serve as
an input to bias a downstream modeling algorithm. Contact prediction thus transforms
the problem to a binary semantic segmentation problem.
To use the still small amount of available data most e�ciently, we combine self-

supervised pre-training of arti�cial neural networks with decision forests trained with
extreme gradient boosting. The neural network extract patterns from the unannotated
data that serve as more useful input features for the tree model. The forest model uses the
labeled data more e�ciently than a neural network would. Even though this composite
model is not end-to-end trainable, it performs the best out of an unsupervised baseline
model and di�erent types of neural networks [1], almost doubling Matthew’s correlation
between prediction and label compared to a less sophisticated baseline.

Class imbalance is a problem for classi�cation tasks [13], not only when evaluating the
model using metrics based on assumptions of class balance, but also for training itself, since
strongly underrepresented classes are sometimes ignored by the model entirely. Using
resampling techniques to balance the classes do not use the scarce data e�ciently and
are also not trivially implementable for segmentation problems. For the aforementioned
contact map prediction the foreground class is strongly underrepresented. Using di�erent
loss functions from the default cross-entropy [14], e.g. focal loss, can produce better
results, with the trade-o� that they are not necessarily proper scoring functions, i.e. we
have to expect the resulting model to be not well calibrated. Since the predictions of the
model are only one step in a complex process, interpretable results are relevant. To train
well calibrated neural networks on class imbalanced segmentation datasets, we use loss
scheduling. For this chapter, we examine established semantic segmentation datasets [15,
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16, 17]. The training begins with a better performing loss function in terms of the target
metric and is gradually scheduled towards a proper scoring function. Models trained in
this way converge consistently on a di�erent local minimum in the properly scoring loss
landscape for a semantic image segmentation problem [2].

Training deep, arti�cial neural networks, in particular large language models, consumes
larger and larger amounts of compute resources in terms of time and energy [18, 19, 20].
This does not only limit training of the �nal model, but also the exploration of the space of
possible model con�gurations. During this hyperparameter optimization (HPO) or neural
architecture search (NAS) many model candidates have to be at least partially trained.
Evolutionary optimization is an established, gradient free, population based method
for global optimization [21]. The gradient free aspect makes this optimization method
suitable for NAS and the population based aspect makes it easier to parallelize. With the
rise of of deep learning, NAS grows both in relevance and resource consumption. For
evolutionary optimization, a population of candidates is evaluated. Since all candidates can
be treated independently, this can be done in parallel. After evaluation selection, crossover,
and mutation generate a new population. Especially in the case of NAS each candidate
evaluation might take very di�erent amounts of time and workers idle while waiting for
the last evaluation in one population to complete. We proposed a lazy synchronization
and breeding algorithm using soft generations, that produces new candidates to evaluate
ad-hoc using the currently available set of already evaluated candidates. It compares
favorably against a widely used competitor both in terms of performance and runtime [3].

1.4. Outline

This thesis is structured as follows:

• Chapter 1: This chapter. Outlines motivation, research questions, and methodology
of this thesis.

• Chapter 2: Provides background and theoretical basis of the relevant aspects from
both biology and computer science.

• Chapter 3: Presents my work on RNA contact prediction by data e�cient deep
learning, an example of a data sparse machine learning problem.

• Chapter 4: Presents my work on loss scheduling, a technique for manipulating the
traversal of the loss landscape during training of a neural network.

• Chapter 5: Presents my work on high performance computing adapted population
based hyperparameter optimization.

• Chapter 6: concludes this thesis and presents an outlook for future avenues of
investigation.
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2. Background

This chapter introduces the background from biology and machine learning, that we build on
in later chapters. The relevant biological aspects include terminology and concepts frommolec-
ular biology and evolution in particular. we also discuss some bioinformatics concepts as they
touch on sequence processing and structure determination. The discussed machine learning
background includes neural networks, hyperparameter optimization and high performance
computing.

2.1. Biology

2.1.1. Evolution and Molecular Biology

The theory of evolution describes the adaptation of populations of organisms to envi-
ronmental pressures posed by their environment over the course of generations [22].
Individuals better adapted to their environment have better chances of survival and more
opportunity to procreate – they are "�tter". Apart from the environment, the other vari-
able going into the adaptation procedure is the initial setup of the organism itself. In a
simpli�ed view, this setup is given by the genes the organism inherited from its parents.
The organisms’ genes serve as the blueprints for the machinery and infrastructure it uses
to interact with its environment and itself. Genes are encoded on sequential chains of
molecules, deoxyribonucleic acid (DNA), comprised of a limited alphabet of building blocks.
Figure 2.1 and �g. A.1 show the nucleic acid and protein alphabets, respectively. Genes in
the genome, the collection of all genes of the organism, can be read, copied, and executed
by other complex molecules present in the organism, which are themselves described
by their respective genes. Because of their sequential nature and �nite set of recurring
building blocks, DNA sequences (and similar biological sequences) are often represented
and digitally processed simply as strings of letters. To synthesize these molecular machines
and others that are necessary or useful to the survival of the organism on a cellular level,
the DNA blueprint is �rst transcribed to ribonucleic acid (RNA) �g. 2.2 for transport. The
transcribed RNA can then be optionally modi�ed during post-processing and/or translated
to a protein. Proteins are, next to the aforementioned RNA and DNA, another class of bio-
logical macro-molecules. Other major groups of biomolecules include carbohydrates and
lipids, which are not discussed further here. Like DNA or RNA macro-molecules, proteins
are formed by linear chains of smaller building blocks from an alphabet of (canonically)
twenty di�erent amino acids �g. 2.2. Proteins perform a wide range of functions, like
catalysis, signaling, and providing structure. However, protein blueprints make up only
a small part [24] of an entire genome. A larger part of the identi�ed genes implement
regulatory instructions, or their function is entirely unknown.
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Adenine Cytosine Guanine Uracil
A C G U

GGGUGACUCCAGAGGUCGAGAGACCGGAGAUAUCACCC

Figure 2.1.: In yellow: Structure and sequence of 1a9l [23]. Green, red, blue, and orange:
RNA residues (bases) and their corresponding tokens or letters. Bases in the
structure are shown in purple.

2.1.2. Molecular Sequence, Structure, and Function

All processes that when combined enable life on the molecular level involve molecular ma-
chinery. Like machines on the macroscopic scale, the function and use of these microscopic
machines is tightly coupled to their structure. However and perhaps most remarkably,
unlike their macroscopic counterparts, proteins and functional RNA are typically at least
partially self-assembling: Their genetic code does not only describe the ingredients that
are required to build component parts, but this sequence contains su�cient information
to reversibly self-assemble into a speci�c functional 3D-shape.
Up to this point we avoided making sweeping statements while maintaining a high

level of abstraction. In the following we will employ some simpli�cations for illustrative
examples. A life-cycle of a protein might look as follows: as response to a cellular signal, its
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2.1. Biology

Figure 2.2.: Protein synthesis in the ribosome (green) translating an mRNA sequence into
an amino acid sequence using the translation matrix implemented by tRNA.
Adapted from wikimedia [25].

gene is transcribed into the corresponding RNA strand by a polymerase, another protein.
The transcript is then transported to the ribosome, a complex made up of protein and RNA,
where the sequence is read and translated three RNA bases (called a “codon”) to one amino
acid at a time, producing a protein chain. As the protein is synthesized it folds into the
structure through interaction with the surrounding environment. Once the protein is fully
assembled it can perform its function, until it is recycled into its component parts, which
are returned to the ribosome, where they can be used to build new proteins. DNA can
usually be thought of in terms of just their sequence. Their sequence stores information,
which can be read and executed by more actively functional molecules, like RNA and
protein. For a protein catalyst for example, the folded structure is central to their function,
the reactants have to �t into binding pockets or be able to reach the active site of the
catalyst for it to function correctly. One example for a functional RNA is transfer RNA
(tRNA), which ferries the amino acids to the ribosome, where it performs the protein
translation process. It needs to selectively bind to a triplet of RNA bases on one end and to
the corresponding amino acid on the other (cf. �g. 2.2), while holding it in such a way that
the ribosome can link it to the emerging protein chain. In general the sequence, structure,
and function of molecules are tightly coupled. A detailed understanding of a molecules
structure usually precedes detailed understanding of its function. E�orts furthering this
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understanding are mostly driven by two practical motivators next to scienti�c curiosity:
dysfunction, i.e. disease and molecular design. Understanding of the function of a molecule
involved in a disease enables the development of treatment. Molecular design on a larger
scale, i.e. starting with a function and �nding a corresponding sequence, enables the
design of biochemical processes[26].

Putting this in terms of data structures, a genetic sequence can be represented by a string
of tokens over an alphabet of monomers or residues, while the three dimensional structure
can be represented by a point cloud, or a graph, if including chemical information.
Returning to evolution, sequences have to be copied at many stages throughout the

processes making up life. While there are mechanisms in place preventing or correct-
ing mistakes, when they do happen, mutations can occur, and an altered sequence can
propagate. Mutations and constraining pressure from the environment are the drivers
of evolution. Over the course of generations genomes evolve and separated populations
diverge into di�erent species [27], as these mutations can be bene�cial or detrimental in
the context of the organisms environment.

2.1.3. Structure Determination

In this context, structure determination describes the process of determining the three
dimensional point cloud of the atomic coordinates of a biological macromolecule. It en-
compasses experimental structure determination and computational structure prediction.
Experimental structure determination includes X-ray crystallography [28], nuclear mag-
netic resonance (NMR) spectroscopy [29, 30], and cryo-electron microscopy [31]. All of
these require extensive sample preparation and are expensive and lengthy. At the same
time high throughput sequencing techniques have made genetic sequences abundant. To
bypass the often involved and expensive experimental structure determination and to
further the understanding of molecular structure and function, predicting a molecular
structure directly from its genetic sequence has been the goal of computational biology for
a long time [7]. Early attempts would utilize a molecular dynamics (MD) simulation based
on physical principles, where the atoms constituting the molecule and the solvent were
subjected to the forces from chemical bonds and electrostatic interactions [32]. In addition
to MD simulations there are also monte-carlo driven approaches, which neglect the dy-
namics of the folding process and search the folded structure by search for an optimum in
the free energy landscape of the molecule [33]. Molecular simulations are computationally
expensive and involve a trade-o� between runtime and accuracy. Capturing the entire
folding process in an ab initio simulation is still only possible for fast folding proteins on
specialized hardware [34].
If the approximation of the force �eld and the environment is good enough and given

enough timeMD simulations can yield insight not only in the structure, but also the folding
and interaction dynamics of the molecule in question. However these two requirements
are limiting the e�cacy of molecular dynamics as a structure prediction tool. The fastest
process to simulate, the vibration of hydrogen atoms, occurs on the scale of femtoseconds,
which determines the time step of the simulation. Folding processes can take up to seconds,
which sets the average number of required time steps to 1015. Even with approximations
enabling larger time steps makes the computational cost prohibitive. Coarse-graining
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2.1. Biology

models [35] to increase the size of time steps also makes parameterizing a force �eld more
di�cult.
More recently, data driven approaches have enabled advances in structure prediction.

In turn, these were enabled by the ubiquity of both sequence [36, 37, 38] and structure
databases [39].
Contact prediction predicts partial structural information as a proxy for full structure

prediction usually as one part in a larger software pipeline [12, 40, 41]. In a contact map,
the 8 9-th entry indicates whether residue 8 and residue 9 are in spatial contact, akin to an
adjacency matrix. Contact maps are an edge case of discretized distance maps with just two
bins. Predicting full contact maps can be considered the precursor to structure prediction,
as its output was initially intended to bias e.g. simulations [42] for more e�cient sampling.

Mutual Information

The simplest approach we present here is co-evolutionary mutual information (MI). The
underlying assumption of MI for contact prediction is, that function, structure, and se-
quence of a molecule are subject to evolutionary pressure. Mutations that are deleterious
are unlikely to be present in the evolutionary record. If e.g. the interaction between to
positions in the sequence is bene�cial to the molecules functioning, a mutation weakening
that interaction might reduce the molecules e�ectiveness. This change can still propagate,
unless it is outright lethal. A subsequent mutation, that stabilizes the interaction again is
then much more likely to survive than one, that destabilizes it further. This concept gives
rise to the idea, that correlated mutations between pairs of sequence positions indicate
spatial adjacencies. Sampling the evolutionary record means collecting sequences for the
same molecule from several di�erent species. To set these sequences, that have undergone
point mutations, insertions, and deletions over the course of evolution, in relation, they
are integrated into a common reference frame, a multiple sequence alignment (MSA). An
alignment algorithm like Needleman-Wunsch [43] (also known as Wagner-Fischer [44])
or Smith-Waterman [45] inserts gap characters in the sampled sequences, such that all
sequences end up the same length and the corresponding positions of the sequences fall
in the same column of the resulting matrix. There exist a number of frameworks that
are commonly used both for assembling the set of sequences and for alignment [46, 47].
These algorithms are related to the Hunt-Szymanski derived algorithms used in version
control systems, however they are in a sense less strict, since e.g. point mutations should
remain in the same column despite not being represented by the exact same character.
This fuzziness is usually achieved by including a gap penalty to the �nal alignment score.
Figure 2.3 shows a small example MSA. Assuming the co-evolutionary patterns present
in an MSA contain information about the structure of the molecule, the MI between two
positions that are in contact should be elevated. Given such an MSA the MI between two
positions 8 and 9 in the sequence is given by[40]:

MI8 9 =
’
�,⌫2+

58 9 (�,⌫) ln
58 9 (�,⌫)

58 (�) 59 (⌫)
(2.1)
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CCUUCCGGCGUCCCAGGCGG---GGCGCCGCGGGACCGCCCUCG--UGU-CUG--UGGCGGUGGGAUCCCGCGGCCGUG-UUUUCCUGGUGGCCCGGCCAUG
CCGUUCGGCGUCCCAGGCGG---GGCGCUGCGGGACCGCCCUCG--UGU-CUG--UGGCGGUGGGAUCCCGUGGCCGUG-UUUUCCUGGUGGCCCGGCCGCG
CCUUCCGGCAUCCCAGGCGG---GGCGCCGCGGGACCGCCCUCG--UGU-CUG--UGGCGGUGGGAUCCCGCGGCCGUG-UUUUCCUGGUGGCCCGGCAUGC
CCGGCCGGCGUCCCGGGCGU---GGG--UGCGGGACCGCCCUCUGUGGU-CUU--GGGCGGUGGGAUCCCGCGUG-UUG-UUUUCCCGGUGGCCCGGCCGUG
CCGGCCGGCGUCCCGGGC------GU--CGCGGGACCGCCCUCG--UGC-UGG--UGGCGGUGGGAUCCCGUG--CGCG-UUUACCCGGUGGCCCGGCUCGC
CCGGUCGGCGUCCCAGGC------GUGUCGCGGGACCGCCCUCG--UGU-GUGGGUGGCGGUGGGACCCCGCGCUGGUU---UUCCUGGUGGCCCGGCCGUG
CCGGCUGGCGUCACGGGC------ACGCCGCGGGACCGCUCCCG--UGUGUUG--GGGCGGUGGGAUCCCGCGGCGUUG-UUUUCCCGGUGGCCCGGUCGCG
CCGGCUGGCGCCGCGGGC------GU--CGCGGGACCGCCCUCG--UGC-UGG--UGGCGGUGGGAUCCCGUG--CACG-UUUACCCGGUGGCCUGGCUCGC
CCGGCCGGCGUCCCGGGCGU----GGGCGCGGGA-CCGCCCUGG--UCU-GUG--G-GCGGUGGGAUUCCCGUGCGUUG-UUUUCCCGGCGGCCCGGUCGCC
CGGGUUGGCGUCGCGGGCGG---U-----GCGGGACCGCCCUCG--CG---UG--UGGCGGUGGGACCCCGC----UUG-UUUUCCCGGCGGCCCGACUCUG
GGCUCCGGUGUCC---CAGG---CAUGUCACGGGACCGCCCAGG--UGU-GGG-----CGGUGGCAUCCCGUGUCUGUU-UUCCGGGAGGGACCCGGCUUUC
CCGGCCGGCGUCCCCGGGGGAUGCGCCGUGCGGGACCGCCCUCG--UG---UG--UGGCGGUGGGACCCCGCGUGUGCUCUCCCCCGGCGGGCUCCGUCGUC

Figure 2.3.: MSA for RF00957[48], a microRNA family. The red column highlights a con-
served position, the blue columns highlight a co-evolving pair.
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the inverse sequence weight,

<B = | {I 2 {0, . . . , ⇢ � 1} |seqid(�B,�I
) > 80%} (2.4)

i.e. the number of sequences in the alignment, that has a sequence identity larger than 80%,
the alphabet+ , the alphabet size @ = |+ |, the e�ective number of sequences"e� =

Õ⇢
B=0<

B ,
and the pseudo count _ � 0, which is usually set to the same value as "e�. Note that
if there is no correlation between the sites, the pair-wise frequency factorizes into the
product of the single-site frequency such that the MI value is 0.

Large values of MI8 9 indicate, that the residues represented by the tokens at positions 8
and 9 are in spatial contact in the structure. However, MI produces a lot of false positives,
since the correlations found by it could also be caused by indirect couplings, i.e. if position
8 is in contact with position 9 , and 9 with : , then MI8: might also be large, or by functional
correlations.

Direct Coupling Analysis

Direct coupling analysis [40] (DCA) is an improvement on contact prediction aimed at
increasing the precision of MI. It is based on a statistical inverse Potts model and quanti�es
the strength between two columns of an MSA, excluding e�ects from other positions.
The underlying idea of the model is to formulate an evolutionary energy landscape

for sequences of a set length. This energy term consists of contributions from pair-wise
interactions and of single-site biases. The energy of a sequence is de�ned as:

⇢ (�1, . . . ,�!�1) = �
!�1’
8< 9

48 9 (�8,�9 ) �

!�1’
8

⌘8 (�8) (2.5)
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The amount of MI resulting only from the direct coupling can then be computed with:

DI8 9 =
’
�⌫

%dir
8 9 (�,⌫) ln

%dir
8 9 (�,⌫)

58 (�) 59 (⌫)
(2.6)

with the term replacing the pair-wise frequency:

%dir
8 9 (�,⌫) =

1
/8 9

exp
�
48 9 (�,⌫) + ⌘8 (�) + ⌘9 (⌫)

�
(2.7)

The parameters occurring in this pair model can be found using di�erent approximations
like message passing, mean �eld [40], or pseudo-likelihood maximization [49].

2.2. Machine Learning

Machine learning (ML) describes the �eld of scienti�c research and application, where
machines, algorithms or models are generated that perform tasks or give predictions
without having been given explicit rules how to do this by a human designer. Instead
the ML model discovers the patterns from data it is trained on. This is especially but not
exclusively used for tasks, which are usually intuitively easy to humans but di�cult for
computers, like deciding, if a digital picture contains the image of a cat or a horse, or
not. Next to these well established paradigms of image and language processing, there
are applications in the natural sciences, which are not feasible for an untrained person
or are even beyond any human as a matter of principle. In general ML systems are
non-general (they can only perform the task they were trained on) and learn sample-
ine�ciently compared to a human (where a human might need few samples to understand
the distinguishing features of a cat or a horse, an ML model might need thousands).

ML has seen a boom in recent years primarily driven by the advent of deep learning and
deep neural networks enabled by the availability of large amounts of (labeled) training
data and specialized hardware like general-purpose graphics processing units (GPUs) and
tensor processing units (TPUs) [20, 50]. In the following we will give an overview on the
background relevant to this thesis. As ML is a vast �eld, it can not be and therefore is not
intended to be comprehensive.

2.2.1. Learning Paradigms

Usually, one distinguishes between three types of ML models: supervised, unsupervised,
and reinforcement learning. All of these learning procedures are usually iterative. The
model is initialized randomly and the training re�nes the model parameters until a con-
vergence criterion is reached.

Supervised models like most arti�cial neural networks receive some input and produce
an output that is compared against a label. The training process then minimizes the
prediction error to produce the �nal model. Unsupervised methods do not require labels.
One example for an unsupervised model is :-means clustering, where the data, a set of
vectors of real values, is split into : subsets. The training process here minimizes the
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distance of the sample vectors to their current class mean, which does not require any
knowledge about which cluster it should belong to. Since labels are usually expensive, not
requiring any is a major advantage, however unsupervised models are often limited to
speci�c applications.

As a hybrid between supervised and unsupervised, there is also self-supervised training.
Here a label is generated from the input data, by distorting or augmenting the original
input. The model is then tasked with identifying or reversing the augmentation. By forcing
the model to learn, what a “proper” input sample looks like, it is thought to extract patterns,
that are useful for a range of downstream tasks. Examples for this can be found in a range
of domains like inpainting [51] or jigsaw puzzles [52] for image processing or masked
language modeling [53] for language processing. In some instances, particularly in text
generation the self-supervised model can be used for the �nal task without supervised
�netuning.
Reinforcement learning is focused on the training of intelligent agents navigating a

scenario as successfully as possible through the application of policies, which are optimized
through a reward, accumulated until its conclusion.
In practice the distinction between supervised and unsupervised is not as clear and

more paradigms have been introduced. Self-supervised learning is often used to pre-train
a supervised model. Rather than training the supervised model starting from a randomly
initialized state, instead a part of the model is �rst trained on unlabeled data. To this
end, the unlabeled data is augmented or distorted in some way [51, 52, 54, 19] and the
un-augmented data serves as label. By teaching the model what a proper input looks like,
it is already sensitized to relevant patterns in the data, before having been exposed to a
single label. However, it does still need some labels during a �ne-tuning or downstream
training.

2.2.2. Classification and Regression

One of the classical supervised ML problems is classi�cation. Given a sample of a dataset,
the model should predict, which of a pre-de�ned set of discrete categories this sample
belongs to. The already mentioned problems of image classi�cation, e.g. identifying an
animal or object displayed [55], or handwritten digit recognition [56] are examples. So
much so, that digit recognition problem MNIST [56] is considered the “Hello World” of
ML. There are sub-categories like binary, multi-class [55, 56], and multi-label classi�cation,
or semantic segmentation [15].

In regression problems (a term originally coined in a biological context [57]), the model
should predict a continuous value instead. Examples are time-series forecasting of temper-
ature or relative gas pressure for weather forecasting [58].
In practice classi�cation tasks are usually realized as regression of the probability or

con�dence of the model, that the sample in question belongs to each of the possible classes.
This has several advantages: it gives a rudimentary level of uncertainty quanti�cation [59],
inherently allows for a ranking of the predictions, and it makes such a model trainable
through gradient descent, as this requires a di�erentiable loss function.
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data trainable activation
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Figure 2.4.: Feed-forward network with two layers processing a batch of eight input vectors
with an input dimension of seven. The latent and output dimension are twelve
and three, respectively, and the activation functions are a ReLU and a sigmoid
function.

2.2.3. Neural Networks

Deep arti�cial neural networks have become all but synonymous with ML. Large language
models [60] (large language models (LLMs)) and stable di�usion [61] are not anymore
only of interest to researchers, but utilized by the general public. Several frameworks
have found widespread adoption. The ones used in this work are Tensorflow [62] and
PyTorch [63].
The basis for neural networks are multi-layer perceptrons [64, 65, 66] (multilayer

perceptrons (MLPs)) also called a feed-forward networks (cf. �g. 2.4). They are inspired by
biological neural networks and process information by propagating it forwards through
layers of arti�cial neurons from an input layer towards an output layer. The complete
network is a universal function approximator [67]:

5 (x0 |w) = ~̂ (2.8)

the network 5 with the weightsw makes a prediction ~̂ 2 R3# , given the input x0 2 R30 .
In a network with # layers, the =-th single layer of the MLP performs the following
transformation:

x=+18 = f=
 
3=’
9=0

w=
8 9x

=
9

!
(2.9)

with the non-linear activation function f : R ! R and the layers weight or parameter
matrixw 2 R3=⇥3=+1 . Note that we omit the bias vector at each layer for simplicity. Using
this notation x# = ~̂ is the output of the model. The output of one layer serves as input to
the next and the operation the entire network performs is a concatenation of alternating
linear and non-linear transformations. The non-linearities are essential, since without
them the in-sequence applied linear transformations are equivalent to a single linear
transformation. In the following, we will denote an element-wise application of a function
to a vector like a vector: 2 : R: ! R: represents the application of f to the : elements of
an input vector x 2 R: :

2 (x) 9 = f (x 9 )
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2. Background

There are several commonly used activation functions. For the internal, hidden layers,
recti�ed linear unit(eq. (2.10)), exponential linear unit(eq. (2.11)), gaussian error linear
unit [68](eq. (2.12)), and leaky recti�ed linear unit(eq. (2.13)) are often used (cf. �g. 2.5).

ReLU(G) = max(0, G) (2.10)

ELU(G |U) =

(
G, if G > 0
U · (exp(G) � 1) , if G  0

(2.11)

GELU(G) = G ·
1
2

h
1 + erf

⇣
G/
p
2
⌘i

(2.12)

LeakyReLU(G |U) = max (0, G) + U ·min (0, G) (2.13)

The activation of the �nal layer depends on the task of the model. The sigmoid (eq. (2.14)
and softmax(eq. (2.15) functions are used for binary and multi-label classi�cation and for
multi-class classi�cation, respectively.

f (G) =
exp(G)

exp(G) + 1
(2.14)

2 (x)8 =
exp(x8)Õ
9 exp

�
x 9

� (2.15)

Identity (eq. (2.16)), tanh (eq. (2.18)), and softplus (eq. (2.17)) are used for regression tasks
depending on the required interval of the output value.

5 (G) = G (2.16)

Softplus(G) =
1
V
· log(1 + exp(V · G)) (2.17)

tanh(G) =
exp(G) � exp(�G)
4G? (G) + exp(�G)

(2.18)

Gradient Descent and Back-Propagation

Finding the best or a just good set of values for the parameters of a neural network can be
viewed as an optimization problem. During the training process an optimization algorithm
searches for an optimum in the parameter space, given the training dataset. While there
are many optimization algorithms for di�erent kinds of problems, gradient descent type
algorithms [69] like stochastic gradient descent, RMSprop [70], or ADAM [71] are usually
employed due to the high dimension of the search space, assumptions about convexity
of the search space, and the e�ciency of their parallel implementations. To improve the
model output iteratively, the optimization algorithm �rst conducts a forward pass, by
computing the output with the current weights as in eq. (2.8). Then it compares the output
of the model to the label ~ using a loss or cost function. The most common loss functions
are mean square error for regression, e.g.:

MSE(~̂,~) = (~ � ~̂)2 (2.19)
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ReLU leaky ReLU

ELU GELU

sigmoid tanh

softplus identity

Figure 2.5.: Commonly used activation functions
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for a scalar regression and cross entropy loss (CE) for classi�cation, e.g.:

CE(~̂,~) =
’

22classes
~2 log ~̂2 (2.20)

for a multi-class classi�cation with ⇠ classes. Assuming the target ~ is one-hot encoded,
this simpli�es to the predicted log-likelihood of the target class. The loss � of the model is
then the loss averaged over the training dataset with # samples:

� (w) =
1
#

#�1’
8=0

� (~̂ (w |x),~) (2.21)

And the optimal set of weights minimizes this loss.

ŵ = argmin (� (w)) (2.22)

To improve upon the current weights, the optimizer follows the negative gradient towards
a local minimum:

w  w � ; · rw � (w) (2.23)

with a learning rate ; .
For practical reasons, the gradient is usually not averaged over the entire dataset, but

over a batch of samples. For a model with only a single layer, computing these gradients
is straightforward. For deeper networks, backpropagation [72] i.e. repeated application of
the chain rule is used. The gradient of the loss with respect to the weights in the last layer
is given by:

m�

mw#�1
8 9

=
m�

mx#
9

·

mx#
9

mw#�1
8 9

=
m�

mx#
9

·

m2#�1
9

ma#�19

· x#�1
8 (2.24)

For the hidden layers:

m�

mw=
8 9

=
m�

ma=:

ma=:
mw=�1

8 9

=
m�

ma=:
· x:�18 = %=

9 · x
:�1
8 (2.25)

with the layer error

%=
9 =

m�

ma=9
=

m�

ma=+1:

ma=+19

ma=:
= %=+1

: ·w=+1
9: ·

m2=

ma=9
(2.26)

and the activation a= = w=
· x= . The layer errors can be backpropagated from the error of

the �nal layer, which is given by:

%#�1
9 =

m�

mx#
9

·

m2#�1
9

ma#�19

(2.27)

The intermediate results (often called latent representations) needed to e�ciently compute
weights updates can be cached during the forward pass. For more complex model archi-
tectures, backpropagation is still applied using an automatic di�erentiation engine [63,
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2.2. Machine Learning

73]. Linear units as activation functions in the bulk of the network are used to combat one
of the common problems of early neural network: vanishing gradients. Since activation
functions like sigmoid have gradients tending toward 0 for activations with large absolute
values, a model training can become stuck in certain regions of the parameter space.
Next to the problem of vanishing gradients, there are also shattered gradients. For deep
neural networks the gradients become smaller at each layer during backpropagation, such
that the early layers converge very slowly [74]. To remedy this, skip-connections are
introduced [74] (sometimes called highways).

x=+18 = x=8 + 2=

 
3=’
9=0

w=
8 9x

=
9

!
(2.28)

This way each layer only learns the residual, and the gradient can �ow through the
identities from the output layer all the way back to the input layer unimpeded.

The Attention Mechanism

Next to pure feed-forward models there are several archetypal network building blocks
replacing the pure linear layer for certain applications where the input has a more com-
plex structure, than a one-dimensional feature vector. Exploiting known structure of
the data often makes the network more performant, weight e�cient, or versatile. The
major paradigms are image processing, sequence processing, and geometric learning.
For image processing tasks, the relationship between neighboring pixels is important for
low-level features, and convolutional neural networks [75] (convolutional neural networks
(CNNs)) consider patches of pixels in their receptive �eld to compute their output. CNNs
drastically increase e�ciency compared to a feed-forward network, by applying the same
convolutional �lter to the entire input image, sharing the weights. For sequences, espe-
cially sequences of variable length, recurrent neural networks (recurrent neural networks
(RNNs)), e.g. long short term memory [76] (LSTM), are popular. These models iterate over
an input sequence of tokens. At each iteration they take the input token and a memory
of the previous iteration as input to generate an output token and the memory state for
the next iteration as output. Geometric neural networks [77] (geometric neural networks
(GNNs)) are more diverse. One variant is geometric or graph convolutions, which takes a
vertex and the neighborhood of that vertex in the graph as input to generate an output
representation of that vertex. Since unlike in the image processing case, the size of the
neighborhood is variable, the weights of the transformation are shared for all vertices in
the neighborhood.
Attention networks [78], popularized by the transformer architecture [79], are a rela-

tively new type of neural network originally designed for the processing of sequences in
language processing tasks. However, attention can process any structured data consisting
of tokens of the same type, like sequences of tokens, images of pixels [80], volumes of
voxels, or graphs of vertices [81]. Attention uses query-key information retrieval to model
the interaction between individual tokens (cf. �g. 2.6). To this end, querying the latent
state has to be made processable for a neural network by making it di�erentiable and thus
learnable. The model performs a query represented by a vector q 2 R3@ , by computing
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data trainable

x@ 2 R5⇥7

x:E 2 R
13⇥8

w@ 2 R7⇥6

w: 2 R
8⇥6

wE 2 R8⇥4

q 2 R5⇥6

k> 2 R6⇥13

v 2 R13⇥4

attention map 2 R5⇥13

~̂ 2 R5⇥4

>

Figure 2.6.: Attention mechanism: Query, key and value

the scalar product with a set of vectors representing keys
�
k8 2 R3: |8 = 0, . . . , !

 
for the

key-value pairs, that are queried against. The results is a set of !:E relevance scores. These
are softmax activated to get an attention score. The result of the query is the sum of the
values weighted by their attention score. Usually, a set of queries are performed in parallel,
such that the full attention layer can be expressed as:

~(x@, x:E |w@,w: ,wE ) = softmax
✓
w@x@ · (w:x:E )

>

p
3:

◆
wE · x:E = softmax

✓
q · k>
p
3:

◆
v (2.29)

with the learned projection matrices of the layer w {@,:,E} 2 R
3⇥3{@,:,E} , 3: = 3@ , the query

input tensor x@ 2 R!@⇥3 and the key-value input tensor x:E 2 R!:E⇥3 . To attend to multiple
input tokens in one layer, multi-head attention performs several attention operations in
parallel on the same inputs, but separate projections, beforemixing the values using another
projection matrix on the concatenated value tensors of each head. For many applications
the queries and key-value pairs are constructed from the same set of input vectors. This is
called self-attention. Since this attention only operates on pairs of tokens and can not take
the location of the tokens into account implicitly like convolutions or recurrent networks,
the input to a transformer model are augmented with explicit positional information.
Usually this is implemented either as a learned positional embedding or a �xed sinoidal
embedding [79]. This is one of the limiting factors for the number of tokens a transformer
can process in a single step, since a learned embedding can only embed sequences of a size
it has seen during training. Another bottleneck is memory. A self-attention layer has both
time and space complexity in O

�
!2

�
, since an attention value for every pair is computed

and the intermediate result is stored for backpropagation. Since both compute time and
accelerator memory is limited, there are e�orts to make attention more e�cient [82, 83].
However, large models require model parallelism [84, 85], i.e. distributing the model
parameters and latent representations over multiple compute units.
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Input x 2 R4

G2  F1

G3  F2 G1  F3

G1  F4 ⇠3 G2  F6 G0  F7

⇠1 ⇠2 ⇠3 ⇠4 ⇠1 ⇠4

Figure 2.7.: Decision tree example

2.2.4. Random Forest Models

Random forest models are a traditional ML model used for both classi�cation and regres-
sion. They are an example of an ensemble model, combining many weak learners, e.g.
classi�cation and regression trees (CARTs) [86], into one stronger predictor. A tree model
is trained on a set of = samples G8 with 3 features and a label ~8 , each. At each vertex, the
trained model makes a binary partition of the training samples arriving at that node. The
root vertex of the three represents the entire training set. The split samples follow the
branches depending (cf. �g. 2.7) on the value of the split feature at each vertex until they
reach a leaf node. The average label of the training samples that arrive at a leaf node is
the prediction of a single tree. An optimal split at a vertex minimizes the diversity of the
resulting partitions. There are di�erent metrics used to quantify diversity. Examples are
summed square error (SSE) for regression

SSE =
=’
8

(~8 � ~)
2 (2.30)

and Gini impurity for classi�cation with ⇠ classes and ?8 fraction of samples with class 8

�⌧ =
⇠’
8

 
?8

’
:<8

?:

!
= 1 �

⇠’
8

?28 (2.31)

Since the training set contains only a �nite number of samples, all split boundaries along
all samples and all features can be computed and the one resulting in the optimal split
selected.

Single tree models without constraints are prone to over�tting, when the partitions at
the vertices of the tree are allowed to become too small. Regularization addresses this. For
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tree models, bagging (bootstrap aggregating), i.e. training only on a subset of the samples,
and feature bagging [86], training only on a subset of the features, are used. To still use
the discarded data, the complete forest contains multiple tree models, who are trained on
overlapping subsets of features and samples.
Instead of building the trees completely independently, boosting [87] builds the weak

learners successively reducing the residual of an errormetric. For gradient boosted trees [88,
89] the output of the individual trees gets then weighted and the weight is optimized with
respect to the error metric with gradient descent. A complete forest regression model �<
is built additively

�< (G) = �<�1(G) + W<⌘< (G)W = argminW
’
8

!(~8, �<�1(G8) + W⌘< (G8)) (2.32)

with �0 = 0, the<-th tree ⌘< and the 8-th labeled sample (G8,~8). The initial classi�cation
model instead assigns each class the same score.

2.2.5. Model Evaluation

To quantify and evaluate the performance of a model, a range of metrics is used. For
regression models a mean square error (MSE) or mean absolute error (MAE) between label
and prediction of the model is often used.

For classi�cation models more intuitive metrics, that are not di�erentiable are available.
Most of these metrics are originally de�ned for binary classi�cation and then extended
for multi-class problems. For the multi-class case there are often two versions of the
extension: macro-averaging and micro-averaging. For macro-averaging the metric is
computed separately for each class. The mean of these scores is then the total score. For
micro-averaging, the underlying statistics of the predictions are used to compute the
score directly instead. Micro-averaged scores run the risk of neglecting underrepresented
classes.

The basis for most of the relevant metrics [90] is the confusion matrix ⇠ 2 N#⇥# with
the number of classes # , where ⇠8 9 is the number of times the model predicted class 8 for
a sample belonging to class 9 . In the following, TP denotes a classi�er’s true positive, FP
the false positive, FN the false negative , and TN true negative predictions.

TP8 = ⇠88 (2.33)

TN8 =
’
9<8

⇠ 9 9 (2.34)

FP8 = �⇠88 +

’
9

⇠8 9 (2.35)

FN8 = �⇠88 +

’
9

⇠ 98 (2.36)

The global accuracy is the fraction of correctly classi�ed samples:

ACC =
Õ

8 ⇠88Õ
8
Õ

9 ⇠8 9
=

Õ
8 TP8

|samples|
(2.37)
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Accuracy on its own is often not a good metric for class-imbalanced problems since
mistakes for an underrepresented class contribute little to the overall score. Instead, the
class precision may be employed, which is the fraction of pixels predicted to belong to
class 8 that actually belong to class 8:

PPV8 =
TP8

TP8 + FP8
(2.38)

Here, PPV is the class-averaged (macro) precision. The class recall (sensitivity) is the
fraction of pixels belonging to class 8 that are correctly predicted to belong to class 8:

SEN8 =
TP8

TP8 + FN8
(2.39)

SEN denotes the class-averaged recall.

F18 =
2 · TP8

2 · TP8 + FN8 + FP8
= 2 ·

PPV8 · SEN8

PPV8 + SEN8
(2.40)

F1 is the class-averaged F1-score or macro-F1-score.

2.3. Hyperparameter Optimization

Neural networks also contain parameters, which can not be trained through the normal
gradient descent mechanism during the training process. E.g. the number of layers
or the number of neurons per layer are usually a design decision decided on by the
operator. This problem is a special case of hyperparameter optimization (HPO) called
neural architecture search (NAS). Manual search for optimal hyperparameter combinations
proves to be quite ine�cient [91]. Because the search space may contain integer, ordinal,
or categorical variables, gradients can not be computed and gradient-free optimizers
have to be used. E.g. in the search for neural network parameters the learning rate is
continuous (and usually logarithmic), the number of layers is integer, and the choice
of activation function is categorical. The easiest commonly used algorithms are grid
search and random search. They have the advantage of being easily implementable and
trivially parallelizable. However they do not tend to search the space very e�ciently
and usually devote just as much resources to more interesting or promising regions
as to overexplored ones. For grid search in particular the true optimum might fall in
between the grid spaces searched without returning a lot of useful information on how to
re�ne the search. More elaborate search algorithms can broadly be categorized into NAS
speci�c approaches using reinforcement learning agents and neuro-evolution, and black-
box optimization approaches, which use more or less generic optimization algorithms to
sample the parameter space. NAS is a rapidly evolving �eld [92, 97, 98, 99, 100, 101, 102,
103, 104, 93, 94, 95, 91, 96] and the overview we give here is far from comprehensive.

2.3.1. Particle Swarm Optimization

particle swarm optimization [105] (PSO) is an established optimization algorithm inspired
by the behavior of swarms of living organisms in their search for food. Each particle moves
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Algorithm 1: Pseudocode for a genetic optimization algorithm
Input :Search-space limits, population size % , termination_condition, selection_policy,

crossover_probability, mutation_probability.
1 Initialize population pop of % individuals within search space.
2 while not termination_condition do // OPTIMIZE

3 Evaluate individuals in pop. // EVALUATE

4 Choose parents from pop following selection_policy. // SELECT

5 foreach individual in pop do // VARY

6 if random  crossover_probability then // RECOMBINE

7 Recombine individuals randomly chosen from parents.
8 if random  mutation_probability then // MUTATE

9 Mutate.
10 Update individual in pop.

Result: Best individual found

through the search space with a velocity, which is determined by its own knowledge of
the space and communication with the other members of the swarm. At each iteration 6
the velocity of each particle 8 is updated and then applied to the position:

v6+18 = lv6 + qp · A1 ·
⇣

ˆx6personal,8 � x
6
8

⌘
+ qs · A2 ·

⇣
ˆx6global � x

6
8

⌘
(2.41)

x6+18 = x68 + v6+18 (2.42)

where qp and qs represent the cognitive and social coe�cients, A1 and A2 are random
numbers drawn from a normal distribution centered around 1, and l is the inertia factor.

ˆxpersonal,8 and ˆxglobal are the personal and global best points, respectively. There exist several
variants of PSO [106], which modify this update rule to adapt it to di�erent situations.

2.3.2. Evolutionary Optimization

Genetic or evolutionary optimizers are based on the idea of using the same mechanism
as Darwinian evolution. An individual candidate combination of hyperparameters is
modeled as a gene sequence, either as an array of bits or directly as a list of parameters.
Several individuals form a population which is used to breed new candidates. To drive the
population towards better solutions, the worst individuals in the population are discarded
or the best ones selected. Their genes are then recombined through crossover, i.e. two or
more parent individuals exchange values for the same genes to create the same number of
child individuals. Finally, single genes are mutated. Each gene selected for mutation is
assigned a random new value, either uniformly selected from the range of possible values
or biased towards the proximity of the previous value. Algorithm 1 shows the algorithm
as pseudocode.

Over the course of generations, the population trends towards better solutions.
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2.3. Hyperparameter Optimization

Algorithm 2: Pseudocode for a CMA-ES optimization algorithm
Input :Search-space limits, population size _, termination_condition, `, 2f .

1 Initialize x , f , ⇠ = � , pf = 0, p2 = 0 while not termination_condition do // OPTIMIZE

2 for 8 < _ do
3 x8 = x + f · N

3
(0,⇠) 58 = Evaluatex8

4 Sort solutions G8 x0  x // MEAN

5 x  
Õ

8<` (F8x8) // ISOTROPIC

6 pf  update_iso(pf ,f
�1⇠�1/2(x�x0) ) // ANISOTROPIC

7 p2  update_aniso(p2 ,f
�1
(x � x0), |pf |) // COVARIANCE

8 ⇠  update_C(⇠,p2 , (G1 � x0)/f, . . . , (G_ � x0)/f) // STEP SIZE

9 f  update_step(f, |pf |

Result: G1 or x

2.3.3. Covariance Matrix Adaptation Evolution Strategy

covariance matrix adaptation evolution strategy (CMA-ES) is an optimization algorithm
related to genetic optimization. It also generates a population, which is re�ned over
the course of generations to converge towards an optimum. The di�erence lies in the
propagation mechanism. CMA-ES explicitly models the distribution samples for the next
generation are drawn from. This distribution is approximated with a multivariate normal
distribution and the mean vector and covariance matrix are updated each generation such,
that the likelihood of well performing individuals in previous generations is maximized.
Additionally, the algorithm (see algorithm 2) keeps track of an anisotropic and an isotropic
evolution path.

x6+18 = N
3
(x6,f2

6⇠
6
) = x6 + f6 · N

3
(0,⇠6

) (2.43)

The mean of the distribution is the weighted mean of a subset of the population of the
previous generation, where the weightsF8 are positive and sum to one and depend on the
value of the objective function at those points. The update rules are simpli�ed here to:

pf  (1 � 2f )pf +
p
1 � (1 � 2f )2

p

F⇠�1/2
x � x0)

f
(2.44)

p2  (1 � 22)p2 + ⇥( |pf | � U ·

p

3)
p
1 � (1 � 22)2

p

F
x � x0)

f
(2.45)

⇠  (1 � 21 � 2` � 2B)⇠ + 21p2p
>

2 + 2`

`�1’
8=0

F8
G_ � x0

f

✓
G_ � x0

f

◆>
(2.46)

f  f · exp
✓
2f

✓
|pf |

E|N3 (0, � ) |
� 1

◆◆
(2.47)

with the remaining parameters either being constants or depending on the problem space
dimension 3 . Again, there are several variants of CMA-ES adding additional features [107,
108].
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Algorithm 3: Pseudocode for a bayesian optimization algorithm
Input :Search-space limits, population size, termination_condition, initial population.

1 while not termination_condition do // OPTIMIZE

2 x̂  argminx2population(0(x)) evaluate ~ = x̂

3 update posterior
4 update acquisition function
Result: Best point found

2.3.4. Bayesian Optimization

Bayesian optimization [109] uses Bayes’ theorem to construct a surrogate of the objective
function to be optimized. Using the information of previously evaluated points in the
search space as evidence, the posterior probability of a surrogate model is proportional to
the likelihood of the evidence given the model times the prior probability of the model

% (model|evidence) / % (evidence|model) · % (model) (2.48)

The surrogate of the objective function is combined with an acquisition function 0, which
drives where to sample the search space next. To suggest the next point to be evaluated
it takes into account the expected value of the posterior and its variance. Areas close to
already sampled points have low variance and are unlikely to be sampled. Areas that are
expected to have far from optimal values of the objective function are not interesting and are
also less likely to be sampled. Algorithm 3 shows the generic bayes optimization algorithm.
For NAS, tree structured parzen estimator [110, 111] (TPE) are often used to compute the
posterior, rather than gaussian processes. Here, the population of already evaluated points
is split into the best and worst set of points. The posterior distribution is then estimated
by �tting Gaussian kernels to these samples resulting in a “good” distribution 6 and a “bad”
distribution 1. The acquisition function is then given by 1/6.

2.3.5. Reinforcement Learning

Next to generic gradient free optimization techniques, there are also e�orts to utilize
machine learning to solve the hyperparameter optimization problem. Here an agent
trained with reinforcement learning [112, 113] suggests new parameter combinations. The
suggested model is then constructed and trained and the agent receives a reward based
on the performance of the model. The agents in the cited examples are long short term
memorys (LSTMs), which produce a sequence of parameters until they terminate or hit a
budget threshold.

2.3.6. Neuro-evolution

Neuro-evolution (not to be confused with evolutionary optimization) algorithms [114, 115,
116] combine hyperparameter search and network training into a single process. Instead of
generating an architecture, which is then constructed, trained, and evaluated, they train a
model continuously while adding, removing, or swapping building blocks or components.
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2.4. High Performance Computing

To process the large amounts of data repeatedly to �t the amount of parameters of a
complex neural network, a single GPU on a single compute node is no longer su�cient.
To provide the considerable compute resources required by the training of large machine
learning models, high performance computing (HPC) environments are required. An HPC
cluster consists of hundreds to thousands of compute nodes which are connected through
a low-latency network. Each with its own central processing units (CPUs), memory, disk
space and, optionally, hardware extensions, e.g. (general purpose) graphics processing
units ((GP)GPUs). Through the network infrastructure the individual processes distributed
over the nodes can collaborate on a single problem. Since in such a distributed memory
architecture the di�erent processes can not coordinate and exchange information directly
through local memory, software has to be designed for this hardware or adapted to it.

The message passing interface [117] (MPI) is a communication standard with multiple
implementations and bindings in several languages. Within an MPI program a speci�ed
number of processes are launched on the assigned compute nodes. All processes run
the same program and are grouped into a communicator. Each process participating
in a communicator has a unique rank, which can be used to address it for message
passing or for control �ow within the program being executed. MPI provides a range of
di�erent operations, depending on the situation at hand. To name a few: synchronous and
asynchronous, point-to-point and collective, bu�ered and unbu�ered.
To store the results of a program, all compute nodes also have access to a distributed

�le system. Writing to and especially reading from the distributed �le system is again
slower than reading from locally mounted storage and should generally be avoided inside
performance relevant sections of a program.
In the context of neural networks, one commonly distinguishes between model paral-

lelism and data parallelism. Model parallelism is usually relevant, when a single neural
network would require more memory than a single GPU can provide. There are several dif-
ferent possible ways of realizing model parallelism, e.g. vertical or horizontal distribution
of the network. For the following chapters only data parallelism is relevant. It is based on
the fact, that the model output for each sample in a batch can be computed independently.
Each GPU hosts a copy of the same model. During a single training iteration, a global
batch of data is distributed over the available GPUs to compute forward and backward step.
The gradient updates are exchanged and after one update, all models are synchronized
again. This speeds up training and allows for larger batch sizes.

Next to MPI there are also dedicated GPU communication interfaces like NCCL [118] or
RCCL [119], which enable e�cient inter-GPU communication within a node and across
node boundaries.

In the following, each chapter contains a section describing the hardware setup used to
produce the results described in that chapter. The parallelization strategies used are also
described in each chapter, if applicable.
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3. Data E�icient RNA Contact Prediction

This chapter describes our work on data e�cient RNA contact prediction. Only little labeled
data for RNA is available in the form of experimentally resolved molecular structures. Our
approach to make the most out of this limited data is two-pronged. First, we use self-supervised
learning to utilize unlabeled data as much as possible. Second, we use boosted decision trees
to improve the prediction over a pure neural network. The chapter adapts and builds on our
publication in Communications Biology [1].

3.1. Introduction

As illustrated in chapter 2, the problem of predicting biomolecular structures from their
genetic sequences has rapidly advanced by leveraging high throughput data acquisition (in
particular high-throughput sequencing) via machine learning. A sequence in this context
is a string of tokens, where each token represents one residue of the linear molecular
structure. One of the main challenges in transferring the progress achieved for protein
structure prediction to RNA is the stark di�erence in data availability. Successful protein
structure prediction models utilize hundreds of thousands of experimentally determined
structures as training labels [120]. Meanwhile, the number of available RNA structures
is quite sparse and amounts to approximately one hundred, three orders of magnitude
less [121]. To address these challenges, we forgo the end-to-end prediction of molecular
structures in the form of atomic-resolution point clouds, which is possible for proteins,
and return to the prediction of contact maps as a proxy. The predicted contact maps can
then serve as bias for a simulation or other modeling to perform the full contact prediction.
RNA sequences are more abundant and as discussed in chapter 2 also contain structural
information.
Building on the MSA Transformer [122] already used for protein data, we employ a

backbone network that is trained in a self-supervised fashion. While traditional supervised
learning requires labeled datasets to train a model, self-supervised training can harness
the larger amounts of unlabeled data in addition to the few labeled samples. During self-
supervised pre-training, training samples are augmented, i.e. perturbed in some fashion and
the model is tasked with recovering the original sample or predicting information about
the applied augmentation. A range of di�erent pre-or upstream tasks can be conceived
of. This way the model learns patterns and context that represent the data. The most
common implementation of this is masking out elements of the input, which the model
then recovers. We describe the self-supervised tasks in more detail in section 3.3. On top
of this inpainting or masked language modeling used to train the MSA Transformer, we
explore di�erent upstream tasks to expose the model to patterns at di�erent scales. The
secondary motivation for di�erent upstream tasks is the ine�ciency of random inpainting
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3. Data E�cient RNA Contact Prediction

masks. The chance that a randomly generated augmentation is informative for the model
is low. However, implementing a mechanism akin to semi-hard example mining [123, 124]
without already knowing a lot about the considered molecule so far has proved elusive.

To use the labeled data as e�ciently as possible, we use decision forest models for the
downstream contact prediction. These models, in particular XGBoost [89], have been
shown to outperform neural networks in certain contexts [125].

3.2. RelatedWork

In this section, we will provide an overview of the most important approaches to predicting
biomolecular contact maps from their sequences. As protein and RNA models are very
similar on a technical level, we will not di�erentiate between them in the following.

3.2.1. Direct Coupling Analysis

Direct coupling analysis [40] (DCA) is an unsupervised technique to �nd evolutionary
couplings between co-evolving positions in a molecular sequence. The underlying theory
is based on the idea that two residues forming a structurally or functionally relevant
interaction in the molecular structure will leave behind a pattern in the evolutionary
record, as mutations weakening the interaction are selected against (cf. chapter 2). Some
of the possible mutations immediately make the organism non-functional and do not
occur in the evolutionary record. In less extreme cases, a mutation might only weaken the
strength of an interaction. On its own this mutation would then be expected to be less
prevalent but existent. However subsequent mutations might compensate and stabilize the
function of the molecule again. These correlated mutations leave behind a clear pattern
when comparing many related sequences of the same molecule across species. Often the
interaction that determines the �tness of the molecule is direct physical one between two
residues in the RNA or protein chain. This allows to infer a spatial proximity from a high
mutational correlation score between two tokens in the genetic sequence over the course
of evolution.
This method still requires many sequences of the target molecule over a wide range

of related organisms. However, sequencing is a lot cheaper than experimental structure
determination.

The input for DCA is a multiple sequence alignment (MSA) of the target sequence and
a set of, ideally, related but diverse sequences. Di�erent algorithms can be used to produce
an alignment from such a set [46, 47] queried from a sequence database [36, 38]. Given
an MSA, DCA models the correlations between position in the target sequence, while
accounting for indirect interactions to improve the true positive rate on structural contacts.
The resulting model �tted to an alignment has parameters for the bias for each position and
for the coupling strength between positions, with the bias representing the distribution of
tokens at that position. Historically, DCA is rooted in so called Pott’s models that used to
explain magnetism in statistical physics.

28



3.3. Method

Ordering the coupling parameters according to their magnitude and selecting the
strongest ones allows for a �rst contact prediction, albeit without a quantitative measure
for the model’s con�dence. An in-depth explanation is given in chapter 2.

3.2.2. Neural-Network Based Approaches

Early neural networks for contact prediction were CNN which used the output map
of DCA as input and re�ned it, thus treating the task almost entirely like an image
processing problem. These CNN-based models [126, 127] predict entire contact maps, i.e. a
contact likelihood for each possible pair of residues. To include features of the underlying
sequences directly, an outer concatenation or sum of embedded tokens and the so-called
sequence pro�le containing information on alignment statistics for each position of the
sequence were added to the input [126]. On the output side, these CNNs would soon
predict discretized distance maps also known as distograms [41] instead of binary contacts.

With the advent of transformers [79] and large language models [128], the focus shifted
away from image towards language processing models. The MSA Transformer [122] is
such a protein languagemodel. It extracts co-evolutionary patterns through self-supervised
training and can be used to predict contacts from its latent attention maps. A succes-
sive single sequence model [129] embeds the evolutionary context inside its own model
parameters instead of the input MSA and latent representations.

A third paradigm is geometric or graphmodels which extract information from generated
or sampled structures, e.g., an improved structure score [130]. Since these models do not
generate structure candidates themselves, we consider them beyond the scope of this
thesis.

3.2.3. End-to-End Models

Ideally, a model would predict the atomic coordinates as a point cloud directly. This
would save a lot of post-processing and often computationally involved modeling and give
the model potentially useful inductive biases [120]. While a �rst end-to-end model, the
recurrent geometric network (RGN) [131], was still based on long short-term memory [76],
the more recent AlphaFold2 [120] and RosettaFold [9] are attention-based. The latter
use a similar architecture of di�erent sub-modules, including a token-level attention
network and a geometric structure module to model appropriate inductive biases, e.g., the
SE(3)-Transformer [132]. Interestingly, the token-level sub-module is also trained with a
self-supervised masked language task as auxiliary loss. The referenced models are trained
on protein data, as they require hundreds of thousands of samples.

For RNA a the RNAformer [133], a transformer model for secondary structure prediction,
a related problem with more available data, was recently published.

3.3. Method

In this section, we describe our own contribution to solving ML-based RNA contact
prediction.
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3. Data E�cient RNA Contact Prediction

3.3.1. Data

The entire data used for training originates from several sources. Self-supervised pre-
training uses unlabeled MSAs, while �netuning requires structure labels. For the latter
the �rst sequence in the alignment is the one the label structure belongs to. For the self-
supervised backbone training, we use 4070 MSAs from the RFam 14.6 [134, 135] database
and 43 MSAs from ZWD [136]. Figure 3.1 shows the distributions of MSA depth and width,
i.e., the number of sequences and sequence length over the entire dataset. The labels
for the upstream training are generated stochastically on the �y during the training and
described in the respective section for each task. For downstream training, we use a set of
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Figure 3.1.: Distribution of number of sequences (left) and sequence length (right) per
MSA in the upstream dataset.

RNA MSAs and structures [121] previously used to train the simple convolutional model
CoCoNet [127]. A contact map label Z is constructed from a structure, by creating a binary
tensor of dimension ! ⇥ !, where ! is the sequence length. If the shortest inter-residue
distance between atoms of two residues 8 and 9 is shorter than 10Å then the Z 8, 9 is 1,
otherwise 0. These MSAs are selected from the same set of molecule families comprising
RFam but �ltered with the following constraints:

• Only RNA is present. Complexes with RNA or other molecules are excluded.

• The resolution is better than 3.6Å.

• The minimum sequence length is 40 residues.

• For multiple structures with sequence identity � 50%, only the higher resolution one
is included.

In these MSAs, the columns containing gap characters in the target sequences are removed
since this has been shown to improve the performance of DCA.
As labels, the full atomic structure is available. To generate a target contact map, we

measure the shortest distance between all inter-residue atom pairs. All pairs closer than
10Å are considered ‘in contact’.

30
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3.3.2. Metrics

Some metrics for evaluating contact map prediction models go beyond the default classi�-
cation metrics described in chapter 2. The Top-!0.5-precision is the precision computed
over the ! most con�dent predictions where ! is the sequence length. The Top-!-precision
is the precision over the ! most con�dent predictions, assuming all these predictions are
positive. This implies that the decision boundary might be adjusted to be lower than 0.5,
which is why we chose to denominate the “normal” precision with the �xed decision
boundary to avoid ambiguity and use nomenclature consistent with most references. Using
this metric has two bene�ts. First, it is applicable to DCA, which only provides an order of
contacts but no transferable scores (i.e. the score is system-speci�c). Second, optimizing
for it forces the model to make a number of positive predictions, avoiding the pathologic
case where the model only predicts very few contacts and thus renders itself useless.
For a global metric, which takes into account all predictions and not just the most

con�dent, we use the Matthews correlation coe�cient (MCC):

MCC =
TP · TN � FP · FN

(TP + FP) (TP + FN) (TN + FP) (TN + FN)
(3.1)

This correlation score lies between �1.0 and 1.0 and is particularly useful for imbalanced
binary classi�cation problems. A score of 0 means, there is no correlation between target
and prediction. A score of 1 means, that prediction and target are identical.

3.3.3. Self-Supervised Upstream Training

The model used for pre-training consists of several distinct stages (cf �g. 3.2). First, the
original input samples are augmented and the corresponding labels are generated. The
augmented inputs are then passed through the model backbone, which comprises several
blocks of tied axial self attention [122] and outputs a latent representation. A sub-model
for each task, called a task head, produces the prediction for each task from this latent
representation. Finally, the loss between the previously generated labels and the model
predictions is used to back-propagate through the entire model and update its weights.
The task heads are kept deliberately shallow so as to contain most of the model capacity in
the backbone and best possibly exploit a regularization between the di�erent tasks when
using multiple tasks at once.
The tasks themselves can, and in some cases are expected to, be combined with each

other. Accordingly, the total upstream training loss is calculated as the sum of the respective
individual task losses:

! =
’
task

!task (3.2)

It should be noted for the tasks considered here, we did not �nd a need to rescale the losses
to be on the same scale (cf. section 3.4.1).

Model Backbone

The bulk of the model consists of a sequence of tied axial attention blocks similar to
the MSA Transformer [122]. To conserve memory, this architecture does not compute
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Figure 3.2.: Illustration of the upstream training including augmentations and label gener-
ation for pre-training tasks, backbone model, and task heads.

attention between all tokens in the MSA. Instead each transformer block �rst applies
attention across a sequence (row) and then across the column. Additionally the row
attention maps before the softmax for row attention are summed over the column, such
that they e�ectively express attention between two columns. Before reaching the attention
blocks, an input MSA is prepended a column of start sequence tokens, one-hot encoded,
and embedded such that each token is represented by a vector of dimension 3⌘ , the hidden
size of the network. Since transformers natively process sets of input tokens rather than
sequences, we also add a positional embedding as a set of !max, the maximum sequence
length, learned vectors added to the embedded token vector before the �rst attention block.
Since the positional embedding only carries information about which position the token
has in the sequence, but not to which of the sequences in the alignment it belongs to,
the position of the sequence within the alignment is not explicitly known to the model.
However, since the �rst attention operation processes the sequences entirely, it has implicit
access to sequence-global context, which can be meaningful to subsequent operations.

The �nal output of this backbone is a latent representation of the MSA, i.e., a tensor of
shape [⌫, ⇢, !,3⌘], with batch size ⌫ and number of sequences ⇢. Each task head receives
this tensor as input and reduces it according to its requirements if necessary. Table 3.1
shows the full upstream model and training parameters.

Inpainting

The inpainting task is inspired by the inpainting used in self-supervised training of image
processing models [51]. First, the augmentation replaces a selected fraction of all tokens
in the input MSA with uniformly selected other legal tokens.The inpainting head at the
end of the neural network takes the latent embedding of each masked token and predicts
which original token was replaced. Several variants of the inpainting augmentation can be
implemented. The most successful masking selection in terms of downstream performance
is the simplest one, where each token has the same chance of being masked. Unintuitively,
masking schemes taking into account the structure of the data, i.e., masking out single
entire columns or consecutive blocks of columns, perform worse even though they should
make the task harder and more informative.
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3.3. Method

As already mentioned, masked tokens are not replaced with a special masking token,
like in other applications [122, 53], but with random legal tokens. We did not explore
di�erent distributions for sampling these replacement tokens. Conceivable versions are
sampling the replacement tokens according to the letter frequencies in the entire MSA or
the column where the token is being replaced. Besides these choices, the most important
hyperparameter is the masking frequency, i.e., the fraction of tokens to mask out.
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Figure 3.3.: Illustration of the inpainting task.

Jigsaw

The jigsaw tasks is intended to capture information on a larger scale than inpainting. In
its original image processing version [52], random patches of the input image are given
to the model in a particular order and a classi�er task head predicts the permutation
applied to this order. Adapting this approach to MSAs, we partition the sequences in the
MSA along the same columns and permute these partitions independently of each other
per sequence.The task head receives the start sequence special token and predicts the
permutation applied to each sequence.
To make the jigsaw training more informative, the permutations are embedded in a

Euclidean space with distances approximating their Hamming distance instead of a purely
categorical one-hot representation usually employed for classi�ers.

Hyperparameters for this task are the number of partitions, whether to apply the same
permutation for each sequence in the MSA, and how much, if any, of the border regions
to exclude. The rationale behind this is that the borders of the MSA are often the most
volatile and thus contain a lot of gap characters, which makes them trivial to identify. We
set the number of partitions to 4 and the number of permutations to 24.
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Figure 3.4.: Illustration of the jigsaw task.
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Contrastive Embedding

For contrastive tasks, the model has to embed di�erent augmentations of the same input
samples closer than those of di�erent samples in an output space [54]. For the MSA-
adapted version, each sequence is embedded, while the augmentations applied are given
by the other tasks that are trained concurrently. The loss is similar to the NT-Xent loss
used in SimCLR [54] computed over all positive pairs of sequences 8 and 9 . Positive pairs
originate from the same MSA.

�8, 9 = � log
exp

⇣
sim(~̂8, ~̂ 9 )/)

⌘
Õ

: (1 � X8,:) exp
�
sim(~̂8, ~̂:)/)

� (3.3)

The temperature ) is set to 100 for the models whose results are shown here. : indexes
over all samples in the global batch, i.e. it includes the sequences from the local batches
on other GPUs.
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Figure 3.5.: Illustration of the contrastive task.

Bootstrap

The bootstrap task bears most similarity to generative adversarial networks (GANs) [137].
The di�erence is that the generator is not a neural network. Instead the augmentation
randomly generates a new arti�cial sequence according to the per column frequencies of
each letter. The generated sequence then replaces one of the original sequences in the
MSA. The model being trained plays the role of the discriminator network, classifying for
each sequence whether it is sampled from evolution or generated by the augmentation.
The only parameter for this task is the bootstrapping ratio, which determines how many
sequences in the MSA contribute to the bootstrapped sequence. The loss is a per token CE
between the generated and the replaced sequence.
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Figure 3.6.: Illustration of the bootstrapping task.
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3.3.4. Finetuning and Downstream Training

Figure 3.7 illustrates how training for the contact prediction task is performed. We use

Attentionmaps
(# ⇥ ! ⇥ ! ⇥ � )

Ground-truth: RNA contact map
(! ⇥ !)

Fully-connected
Sigmoid activation

XGBoost

Binary
Cross-
entropy

Figure 3.7.: Downstream training.

four di�erent versions of downstream training for the actual contact prediction:

• Frozen regression: Training a single-layer regression model receiving the attention
maps of the pre-trained and then frozen backbone as input.

• Fine-tuned regression: Training the same simple regression architecture but leav-
ing the backbone parameters trainable, thus �netuning the backbone parameters to
the contact prediction task.

• Frozen XGBoost: Training an XGBoost random forest model using the frozen
backbone attention maps.

• Fine-tuned XGBoost: Training an XGBoost model using the attention maps of the
previously regression-�ne-tuned backbone.

All of these models take the stack of attention maps produced by the backbone as an input,
rather than the latent output representation. Their receptive �eld is limited to one pixel of
this image with the number of color channels determined by the number of blocks and the
number of attention heads per block. We only use the row attention maps at this point,
since column attention would require an additional transformation. For both regression
and XGBoost, we hold back 20% of the training data as random validation set to use for
early stopping since over-�tting is a likely problem, especially for the �netuning with
unfrozen backbone. We explore di�erent early-stopping metrics:

• cross entropy loss
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• top-!0.5-precision or positive predictive value

• top-!-precision or positive predictive value

• F1-score

• MCC
End-to-end training random forest downstream models is easily possible since the back-
bone model is trained using gradients and the individual trees are constructed without
gradients. While the gradient-boosted forests �t the weights for the weak learners’ indi-
vidual contributions using gradients, the trees themselves are still trained the same way.
This is why we use the weights from the backbone model �ne-tuned through regression
to generate the inputs for the �ne-tuned XGBoost model.

Parameter Pre-training Finetuning

Architecture
# Attention blocks 10 10
# Heads per block 12 12
# Features per head 64 64

Batch size (local) 1 1
Optimizer Adam Adam
Learning rate 3 ⇥ 10�5 1 ⇥ 10�4

Warm-up linear, 400 epochs –
Decay inverse square root, after 400 epochs –

Drop-out ratio 0.3 0
Pre-processing

Cropping mode random random
Cropping size 400 400
Subsampling mode random diversity-maximizing
Subsampling size 50 50

Inpainting
Mode token-wise –
Masking ratio 0.15 –
Replacing tokens regular seq. tokens –

Jigsaw
# Chunks 4 –
# Permutations 24 –

Bootstrapping
Mode token-wise –
Replacement ratio 0.5 –

Contrastive
Temperature 100 –

Validation data size 100 MSAs 20%
Float precision 16-bit mixed 16-bit mixed
Training time 2 days < 30 minutes

(incl. early stopping)

Table 3.1.: Hyperparameters of the neural networks for pre-training and �netuning.

Regression Model

The contact prediction model is a simple single-layer fully connected model processing
one pixel of the input stacked attention maps generated by the backbone at a time. This
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is implemented as a one-by-one convolution with =heads ⇤ =blocks input channels, which
corresponds to the total number of attention heads. Since the problem is a binary classi�-
cation, there is a single output channel followed by a sigmoid activation function. The
loss function used is focal loss (FL).

3.3.4.1. XGBoost

Before passing the stacked latent attention maps to XGBoost, the backbone symmetrizes
them like in the regression case and only passes the upper diagonal. XGBoost expects
a list of samples with labels as training input. Since the entire XGBoost training set is a
list of attention maps consisting of individual pixels, we �atten the upper triangle of each
tensor and concatenate them to a list of potential contacts. The per-pixel outputs of the
XGBoost model are then reconstructed into a contact map prediction.

Parameter Value

# Trees (max) 300
Tree depth (max) 16
Learning rate 1.0
Booster DART [138]

Drop-out ratio 0.1
Subsampling

Mode gradient-based
Rate 0.9

Colsample
By-tree 0.7
By-level 0.7

Minimum split loss 0.7
Objective binary:logitraw
Tree method gpu_hist
Training time < 10 minutes

(incl. early stopping)

Table 3.2.: XGBoost model hyperparameters.

3.3.4.2. Finetuning

Finetuning a pre-trained model usually simply means training the neural network with
the task-speci�c data of the downstream task. However, when the downstream model is a
random forest, it is not easily possible to back-propagate the loss through the entire stack
of models. For gradient-boosted trees, it might be possible to build an end-to-end trained
compound model, but in this work we went a di�erent route.
To tune the backbone to the downstream task, we use the regression model. Since it

is a neural network the contact prediction loss can be propagated from the regression
head through the entire backbone. For the regression model, the di�erence between the
the untuned and the tuned training amounts to unfreezing the backbone weights during
contact prediction training. The tuned XGBoost model then uses tuned backbone from
the unfrozen regression training.
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3.3.5. Hyperparameter Search

We performed a random search for the backbone model’s hyperparameters for 300 itera-
tions within the limits given in table 3.3.
For the downstream regression model, we brie�y manually explored adding hidden

layers and biases but then stuck to the same con�guration as the MSA Transformer.
The hyperparameter search for the downstream XGBoost model was conducted using

Propulate [3], the evolutionary search algorithm discussed in chapter 5. Table 3.4 shows
the limits of the respective parameter search space. The evolutionary mechanism applied
is a combination of selection, single-point crossover, and mutation operations. Using four
nodes with four GPUs each, 16 workers are distributed over four islands with a migration
probability of 0.1, a mating probability of 0.7, a mutation probability of 0.4, and a random
initialization probability of 0.1.

Parameter Limits

# Blocks {6, 8, 10}
# Heads {8, 12, 16}
3head {16, 32, 64, 128}
Learning rate [10�6, 103 ]
Dropout [0, 0.5]
Inpainting masking mode {token, column}
Jigsaw partitions {3, 4, 5}
Contrastive Temperature [10, 100]

Table 3.3.: Backbone hyperparameter search limits.

Parameter Limits

# Trees (max) [1, 500]
Tree depth (max) [4, 16]
Learning rate [0.01, 1.0]
Drop-out ratio [0, 0.5]
Subsampling

Mode {uniform, gradient-based}
Rate [0.4, 1]

Colsample
By-tree [0.4, 1]
By-level [0.4, 1]

Minimum split loss [0, 1]

Table 3.4.: XGBoost hyperparameter search limits.

3.3.6. Parallelization Strategy of Pre-Training

Using tied axial attention is primarily a memory saving measure, even though it also
provides some inductive bias. Without further optimizations, HoreKa’s 40GB GPUs can
only hold the latent representations of a single sample. To speed up pre-training and
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increase the e�ective batch size, we employ data parallelism by distributing the samples of
one training iteration to the four GPUs of one node. This parallelization scheme requires
synchronization at certain points during training. At each training iteration, each GPU
performs the forward and backward pass for its sample. The local gradients are shared
and averaged so that each GPU can update its copy of the model synchronously with the
same batch-global gradient. Since the input MSA of each sample might contain a di�erent
number of sequences of di�erent length, i.e., a di�erent number of total tokens, a GPU
with a small sample might have to wait for a GPU with a larger sample to complete before
it can move on to the next iteration.

Downstream training is signi�cantly faster and a single GPU is su�cient for regression,
backbone �netuning, and XGBoost training.

3.3.7. Computing Environment

We performed all reported experiments on the high-performance computing system
“Hochleistungsrechner Karlsruhe” (HoreKa) operated at Scienti�c Computing Center (SCC),
Karlsruhe Institute of Technology (KIT). HoreKa provides di�erent kinds of compute nodes.
The accelerator nodes we used are equipped with two 38-core Intel Xeon Platinum 8368
processors at 2.4GHz base frequency and 3.4GHzmaximum turbo frequency, 512GBmain
memory, two network adapters, and 4 NVIDIA A100-40 GPUs with 40GB memory each.
The nodes are connected with a low-latency, non-blocking NVIDIA Mellanox In�niBand
4X HDR interconnect with 200Gbit/s per port.

The operating system installed on all nodes is Red Hat Enterprise Linux 8.2. The relevant
software package versions are Python v3.8 with biopython v1.79, numpy v1.20.3, torch
v1.9.1.+cu111, torchmetrics v0.6.0, pytorch-lightning v1.5.1, and lightning-bolts
v0.4.0.

3.4. Results

3.4.1. Upstream Performance

Since inpainting is the task operating on the highest resolution, i.e., of individual tokens,
and already established as the baseline, we report upstream training performance with
respect to this task. The jigsaw, contrastive, and bootstrap tasks are always used in
conjunction with inpainting. Table 3.5 shows upstream performance on the validation
set. For inpainting and jigsaw, we report classi�er accuracy. We observe that inpainting
performance always su�ers when including a secondary task and there is no synergy
between tasks.

Figure 3.8 shows the training loss over the course of pre-training. The losses are on the
same order of magnitude, with the contrastive contribution diverging from inpainting the
most. Di�erent loss weights did not yield any appreciable performance improvement.
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Task Inpainting
Accuracy

Sec. Task
Accuracy

Epochs Energy / Wh

Inpainting 90.4 % — 2222 52989.8
Jigsaw 83.1 % 98.3 % 2264 53837.6
Contrastive 89.9 % — 1707 50540.8
Bootstrapping 83.1 % 95.1 % 2182 52874.2

Table 3.5.: Pre-training task performance and energy consumption

3.4.2. Downstream Performance

For evaluating downstream contact prediction performance, we use two metrics, i.e., the
top-: ·!-precision or positive predictive value (PPV), where ! is the sequence length of the
molecule and : is a fraction usually set to 1, and the Matthews correlation coe�cient. Note
that for the precision metric, the decision threshold is adapted for each molecule such that
the number of positive predictions is b: · !c. Figure 3.9 shows averaged top-!-precision
and MCC for all model types. Figure 3.10 shows top-: · !-precision over : for the tuned
XGBoost model. Since the DCA baseline does not produce likelihoods that are consistent
between molecules, MCC can not be computed here.

Our �rst observation is that jigsaw drastically decreases downstream performance, even
though it did not have a comparable impact on upstream inpainting accuracy. The other
pre-training tasks are less impactful, but the overall best model ends up being trained
purely with inpainting.
In terms of model architecture, the frozen regression inpainting model can be viewed

as another baseline since it is equivalent to the MSA transformer adapted to RNA. This
model is roughly on par with the DCA baseline but outperformed quite signi�cantly by
the CoCoNet baseline.

Neglecting the jigsaw case for now, �netuning the backbone parameters by unfreezing
them during downstream training improves the score in terms of MCC to surpass CoCoNet
performance. Applying XGBoost instead of the simple regression model to the pre-trained
backbone output without �netuning increases performance even further than �netuning.
A combined approach using the attention maps of the �ne-tuned backbone as input for an
XGBoost model yields the best results overall.

For top-! precision, the di�erence between �ne-tuned regression and frozen XGBoost is
much smaller, where the �ne-tuned regression is even better in some cases. However, �ne-
tuned XGBoost remains the best model, at least as long as the correct early-stopping metric
is used during the backbone �netuning. In �g. 3.9, sets of models, whose performance is
averaged, are separated by whether a global metric or a top-! metric was used. I.e. the
models where early stopping was performed with top-! metric as the monitor metric are
grouped together. The impact on this is larger on the top-! precision of the �nal model
but still observable for the (global) MCC score. I explore this e�ect in more detail later in
this section.

Returning to the jigsaw task, particularly the frozen models’ performance su�ers. Fine-
tuning can recover it partially, albeit not reaching the other models of the same training
setup.
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Early-Stopping Metric Impact

In conjunction with other regularization measures (cf. table 3.1), we use early stopping
during downstream training. For this, we split o� a validation dataset from the training set
and stop the training when the validation performance begins to degrade. The validation
performance can be measured in terms of several di�erent metrics. For �ne-tuned XGBoost
models, early stopping comes into play at two stages: �rst during the �netuning training
of the backbone and then during the training of the downstream forest model itself.
Figure 3.11 shows the �nal test performance over the metrics used for both backbone
�netuning and �nal XGBoost downstream training.

The �netuning early-stopping metrics are more impactful, with the top-! style metrics
giving consistently better performance than the global metrics, including validation loss.
The only notable downstream metric is �1, which degrades the performance gain granted
by the choice of �netuning metric and brings it down to the level of the global ones. In
particular, optimizing exclusively for MCC does not result in the best model in terms of
MCC.

Feature Importance

One of the usually touted advantages of XGBoost models is their interpretability. Note
that since we use opaque, learned latent representations from a deep neural network as
input, this bene�t is diminished. Figure 3.12 exemplarily shows the absolute parameter
values of two regression models and the feature importance maps of two XGBoost models.
The XGBoost feature importance score is the number of times the feature is used to split
the data across all trees.

While the frozen regression model focuses on a small set of features, the weights of the
�ne-tuned regression spread more evenly across more features, favoring features from
later layers of the backbone. The XGBoost models reverse this pattern, i.e., the �ne-tuned
model favors earlier features than the frozen one.

RNA Accessible Surface Area Prediction

To examine the generalizability our approach of �netuning pre-trained latent inputs for a
downstream model that is itself not back-propagatable, we consider a related task.
The task is predicting an RNA’s accessible surface area (ASA), which also contains

structural information. We use the same pre-training inpainting task and pre-training data
here. However, the task structure di�ers from the contact prediction task solved before.
Instead of a binary classi�cation for each pair of residues, it is a regression task for each
residue, where the input is the backbone’s latent embedding, that the task heads also receive
during pre-training, rather than the stacked latent attention maps. The downstream dataset
for this task is adapted from the RNA temperature adaptation dataset [139], consisting of
182 MSAs. We split this into training and validation set and report the Pearson correlation
coe�cient between prediction and label ASA over the validation dataset. In the absence
of a completely separate test set, we do not perform a hyperparameter search for this task
and use the same parameters as for the contact prediction. Since the backbone model is
limited to sequence lengths of 400, we only use the middle 400 residues for a prediction.
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3. Data E�cient RNA Contact Prediction

Table 3.6 shows the Pearson correlation coe�cients for the ASA prediction over the
di�erent downstream models. With the frozen XGBoost model being worse or on par with
the �ne-tuned neural network, the pattern observed for the contact prediction task does
not persist exactly. Also the jigsaw task is not as degrading as in the contact prediction
task and performs better than bootstrapping. However, the �ne-tuned XGBoost model
pre-trained on just inpainting remains the best result. This model also beats the baseline
performance of 0.63 reported by Yang et al. [139].

Frozen NN Tuned NN Frozen XGB Tuned XGB

Jigsaw 0.1731 0.4849 0.4877 0.6740
Contrastive 0.1832 0.5292 0.4930 0.7194
Bootstrap 0.1115 0.4938 0.4927 0.6984
Inpainting 0.1934 0.5222 0.4905 0.7443

Table 3.6.: Pearson correlation coe�cients for ASA prediction.

3.4.2.1. Examples

Figures 3.13 and 3.15 show example structures with the predicted contacts overlayed. For
the contact maps, the upper triangle shows the results for the best inpainting �netuned
XGBoost model. The lower shows the best model with a frozen backbone.

For 3ndb most of the false positives are slightly above the contact de�nition threshold.
There is one prediction, which is not compatible with the structure. The frozen model
does not make the same mistake here, but has more false positives clustered closer to the
true contacts.

5di2 shows a cluster of false positives for both models. However, the structure indicates,
that there is either a transient interaction where the false positive contacts are predicted,
or that something is missing from the structure. Either this part of the molecule interacts
with a di�erent RNA or protein, or a small ligant might bind in the pocket.

Figures 3.14 and 3.16 show the corresponding contact maps.
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Figure 3.8.: Upstream loss components over the course of pre-training.
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Figure 3.9.: Downstream model performance for di�erent pre-training task combinations
and downstream training procedures in terms of top-! precision (PPV!) and
MCC on the test set. The red, orange, and blue lines show the DCA baseline,
the CoCoNet baseline, and our best model, respectively. Squares mark the score
averaged over the di�erent early-stopping metrics. The error bars show the
best and worst score. Circles and triangles for the �ne-tuned XGBoost instead
show the score averaged over global and top-! style metrics, respectively.
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Figure 3.10.: Macro-top-(: · !) precision. The light dotted lines show individual samples of
the test set. The thick lines show the average. DCA, CoCoNet, and inpainting
tuned XGBoost are shown in red, orange, and blue, respectively. The band
around the average shows standard deviation.
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Figure 3.11.: Downstream performance for the �ne-tuned inpainting XGBoost model in
terms of top-! precision and MCC. The metrics used during �netuning are
listed along the y-xis and the metrics used during XGBoost training are listed
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Figure 3.12.: Absolute values of regression model parameters (top) and XGBoost feature
importance scores (bottom) for a selection of downstream models with frozen
(left) and �ne-tuned (right) backbone, respectively. The regression models
are pre-trained with inpainting and bootstrapping and optimized for �1 score.
The XGBoost models are pre-trained with inpainting and optimized for top-!
precision. The �ne-tuned XGBoost model uses top-! precision during both
�netuning and actual downstream training.

Figure 3.13.: 3D visualization of an RNA (PDB: 3ndb). Green dashed lines indicate correctly
predicted inter-residue contacts, yellow ones refer to false positives.
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Figure 3.14.: Contact map (PDB: 3ndb) – unfrozen vs. frozen. The upper left part shows
the top ! contact predictions for the best model with unfrozen backbone, the
lower right one for the best model with frozen backbone. Green pixels refer
to true positives, yellow to false positives, light blue to false negatives, and
dark blue to true negatives.
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Figure 3.15.: 3D visualization of an RNA (PDB: 5di2). Green dashed lines indicate correctly
predicted inter-residue contacts, yellow ones refer to false positives.
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Figure 3.16.: Contact map (PDB: 5di2) - unfrozen vs. frozen. The upper left part shows
the top ! contact predictions for the best model with unfrozen backbone, the
lower right one for the best model with frozen backbone. Green pixels refer
to true positives, yellow to false positives, light blue to false negatives, and
dark blue to true negatives.
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3.5. Discussion

In summary, we demonstrated the bene�t of combining two techniques, that is, self-
supervised pre-training and random forest models, in order to extract structural informa-
tion from evolutionary information. Despite not being end-to-end trainable, our approach
improves upon the baseline using the sparse labeled data e�ciently. More particularly,
the �netuning of the pre-trained latent representation serving as inputs to the more data
e�cient random forest model is an approach that may prove e�ective in other label-sparse
settings, which are common in ML tasks from life sciences. The generalizability to the
related but di�erent task of ASA prediction is a �rst indicator towards this direction.

3.5.1. Of Note

Comparing the models using the output of the frozen backbones as input, it may be
intuitive that the XGBoost model with a higher capacity performs better than a single
neural network layer. However, the improved performance of frozen XGBoost over the
�ne-tuned end-to-end trained model suggests that the former can inherently model aspects
of the problem better.
Di�erent pre-training tasks and combining them with multi-tasking did not result in

measurable bene�ts. Maybe, the tasks as designed were not di�cult enough or the model
found a shortcut. Furthermore, we could con�rm the observation noted by the authors
of the MSA Transformer [122] that the masking for inpainting is more bene�cial when
performed on random single tokens rather than entire columns, even though this makes
the task more di�cult. Intuitively, the model can often insert the most common token
in the column to �nd the correct one, making this masking regimen highly ine�cient.
The contrastive task seems to be too easy, trivially embedding sequences originating from
di�erent MSAs far apart.

3.5.2. Outlook

In the following, we want to brie�y discuss avenues for possible future research building
on the work described before.
As mentioned previously, our approach can be adapted to other settings. One such

setting is the growing �eld of multiomics. While deep learning is already widely applied
in genomics or meta-genomics, e.g. in transcriptomics, classical ML techniques like
independent component analysis are often used [140]. A combined approach like the one
we proposed here might o�er an e�cient route to learning transferable patterns from
di�erent sources of information, conceptually similar to ImageBind [141].

That the jigsaw task in particular does not seem to aid in contact prediction is somewhat
disappointing. In the original image processing variant, there were additional augmenta-
tions intended to prevent the model from learning shortcuts to the pre-training task, like
taking a random crop from each jigsaw partition. However, these kinds of augmentations
are more di�cult to design for MSAs than for images and the con�guration space for up-
stream tasks that has to be searched for viable hyperparameters grows even larger. While
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3. Data E�cient RNA Contact Prediction

the hyperparameter optimizer presented in chapter 5 [3] makes such a search feasible, it
was not available yet at the time of conducting this part of the project.

Why the other two pre-training tasks are not particularly useful is more intuitive. The
contrastive task might bene�t from more closely modeling it to the equivalent image
processing task. Instead of embedding an average over the entire sequence, taking a
�xed size crop would make the task more meaningful since the intra-class distance is not
trivially low. In addition, this would remove the need for the currently required reduction
operation.
For bootstrapping, a more sophisticated generator model might force the backbone to

learn more relevant patterns. However, a model collapse, where the model only samples
from the sequences already present in the MSA, would have to be prevented, possibly
by combining it with an additional contrastive component. Still, MSAs with very few
sequences would remain a problem for this task.

For inpainting, a mechanism akin to (semi-) hard example [142] mining or task di�culty
scheduling might be bene�cial.
On a more technical level, the synchronization overhead described in section 3.3.6

could be reduced by bucketing, i.e., building a super-batch during sampling and grouping
samples of similar size together into the actual training batches. This is a commonly used
technique for ML problems where inputs might be of variable size [143], and the samples
in a single batch have to be padded to be able to be batched together. While usually applied
to minimize the memory footprint, bucketing could improve the computational e�ciency
during pre-training at the cost of some sampling randomness.
Finally, foregoing the processing of entire MSAs and returning to single-sequence

models would enable the utilization of larger pre-training datasets. Such a backbone model
could and would need to be a lot larger than the one used here [122, 144], since it has to
encode the relevant information from the evolutionary record within its model parameters
rather than extracting it from the input and storing it in the latent representations.

The contact de�nition also has room for improvement. We used a simple distance cuto�,
but the way two RNA bases can interact is limited by their geometry. Instead of a binary
contact classi�cation the model could be trained to predict which of the interactions is
taking place.
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In this chapter we present work that has been published in the proceedings of the International
Conference on Machine Learning and Applications [2]. The main contribution is a dynamic
loss scheduling mechanism, that deforms the optimization landscape during training in order
to exploit properties of di�erent loss functions and limited available training data as well as
possible.

4.1. Introduction

The training process of a classi�cation model is–next to the model itself–to a large part
governed by the choice of loss function and the sampling of training data. Class imbalance
often inherent in semantic segmentation data can have adverse e�ects on the shape of
the optimization landscape traversed during training, and thus the performance of the
�nal model. For example the background class is often more prevalent than the classes of
interest. In extreme cases, an easily found local optimum is one, where minority classes
are completely ignored in favor of a majority class. Arbitrarily di�erent loss functions can
lead to optima in di�erent positions in weight space, but di�erent roughness or frustration,
i.e., competition between local minima, of the loss landscape [145].
There are three possible adaption avenues: the model architecture, the data, and the

loss function. Choosing better model hyperparameters will be the subject of chapter 5. As
for data, it is in principle possible to resample the data to achieve a more balanced class
distribution. In practice, however, this often not viable due to a drastic data reduction,
especially infeasible in data sparse scenarios, posing the risk of not optimally utilizing the
given, valuable information. The acquisition of additional data is usually challenging in
its own right and usually dismissed on the basis of high time and cost investment. This
leaves the loss function as the only remaining option.
Loss functions for class imbalance in classi�cation [14] and for class imbalance for

semantic segmentation problems [146] have been proposed. We present a more generic
approach inspired by biology. In a nature vs. nurture view, where the model architecture
represents the former and dataset and loss the latter, it might be bene�cial to use di�erent
signals at di�erent stages of the models training. The goal is to switch to a di�erent training
trajectory, which ultimately converges on a di�erent optimum than the one found with
gradient descent on a not distorted landscape. To maintain the minimum that the model
�nally converges on to be the one of the original loss function, the trajectory dynamically
and gradually transitions from the distorted landscape back to the original one. We call
the process of transitioning “loss scheduling”.
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4.2. RelatedWork

The proposed concept touches upon several di�erent aspects, that have been subject to
active consideration of general machine learning research. Here, we brie�y present the
preceding work on di�erent metrics for model training and evaluation [147], compound
or auxiliary losses [120], loss landscape theory [148], class imbalance [14], and model
calibration [59] in more detail.

4.2.1. Class Imbalance

Class imbalance describes the phenomenon, where di�erent class labels occur in a dataset
used for machine learning with di�erent frequencies. In many real-world problems class
imbalance can degrade classi�er performance for models trained on an imbalanced dataset,
especially in terms of generalization [16, 15, 149]. In extreme cases, an underrepresented
class might be ignored by the classi�er altogether. As a rule of thumb classi�ers should
be initialized such, that their predictions reproduce the class distribution in the training
set [150].

4.2.2. Semantic Segmentation

Semantic segmentation [15, 151] is an established problem class in image processing. The
task is to partition an image into two or more regions. This is a special case of classi�cation,
since each pixel is classi�ed rather than the entire sample image. Often there are one
or more foreground classes, which are the pixels of interest, and a background class,
containing the rest of the image. Usually, the background class is vastly overrepresented
compared to the foreground classes. The contact map prediction described in chapter 3
can be viewed as a semantic segmentation problem. Depending on the contact de�nition
used, the background class ’no contact’ can make up up to 98% of the pixels in one
contact map [126]. Because the class imbalance of image segmentation tasks is already
manifest at a sub-sample level, it can not be addressed by re-sampling or building an
unbiased dataset. In the context of segmentation, two types of class imbalance can be
distinguished. At the sample level, where the class label applies to the entire sample
image as a whole, and at the pixel level where the label only applies to a single element
of a more complex data structure making up the complete sample. Sample-level class
imbalance leads to a concentration of the underrepresented class to few batches and
hinders training convergence. Similarly to classi�cation tasks, this type of imbalance
can be addressed during data collection by including class representatives uniformly [55].
Pixel-level class imbalance where only few pixels of a sample containing a particular class
are harder to address at the data collection stage. One approach that does not involve
modifying the loss function is stochastic sampling, which can also be used for sample-level
class imbalance. For segmentation training, ground-truth pixels are masked out with
a probability proportional to their class label frequency. This approach is not further
explored in this work for two reasons: First, not training on large parts of the training
data while still performing all computations makes the already expensive training process
even less e�cient both in terms of computational expense and data e�ciency. Second,
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Figure 4.1.: Idealized schematic depictions of reliability diagrams to compare the con�dence
of the model output to the ground-truth accuracy for each probability.

it has been reported [152] that stochastic oversampling on classi�cation tasks causes a
model to over�t the underrepresented class.

4.2.3. Model Calibration

Neural network classi�ers produce con�dence scores, i.e., likelihoods, or posterior proba-
bilities that the input sample belongs to one or more classes. For a well calibrated predictor,
this con�dence matches the frequency, with which the classi�er is correct. In other words,
if the model predicts an input belonging to a class with 90% con�dence one hundred times,
90 of the samples should belong to the predicted class. Figure 4.1 shows an illustration of
calibration and reliability.
Neural network classi�ers have been shown to often be overcon�dent [59]. To quan-

tify calibration of a binary classi�er with parameters w , the expected calibration error
(ECE) [153] can be used. To this end, the ⌫ predictions over a set of samples are split into
# bins. The contribution of each bin to the total error are then given by the di�erence of
the average predicted score for that bin ~̂ and the actual fraction of positive labels P/⌫= ,
weighted by the number of samples in that bin:

ECE(w) =
#’
==1

⌫=
⌫

·

����~̂ (x8 |w) � P=
⌫=

���� (4.1)
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Figure 4.2.: Idealized loss landscapes. A landscape with a broad thus easy to �nd shallow
minimum with a narrow global minimum (left) and a noisy landscape where
the barrier between the two minima is removed, but the global minumum has
shifted slightly (right).

4.2.4. Loss Landscapes

A loss landscape is the mapping of the model parameter space to the corresponding loss
value given a model, a loss function, and a set of inputs. During the training of a neural
network, this landscape is explored to �nd a minimum. Due to the batched nature of
the employed optimization algorithms, the entire training dataset is not seen at once.
Consequently, the landscape �uctuates slightly between steps. Such �uctuations can be a
desired side-e�ect to allow the model escaping from a local minimum. Trapping in local
minima is a potential problem, since neural networks are usually trained with gradient
descent based algorithms [71, 69].

Several factors determine the shape of the loss landscape and how it is traversed, which
in turn determines how well it can converge. Among them is the loss function itself. When
the target metric can not be directly optimized, usually because it is not di�erentiable,
there are often multiple possible surrogate functions, like MSE or cross-entropy loss that
can be used to measure predictive performance. Figure 4.2 shows schematic illustrations
of related loss landscapes with di�erent roughness and barriers between local optima.

As mentioned in chapter 2, the default classi�cation loss is CE, which can also be used for
segmentation when viewing the task as a pixel-wise classi�cation. CE is a proper scoring
rule [154], in theory driving the model to predict the true probability distribution. A class
weighted variant (WCE) gives more weight to underrepresented classes, by increasing the
training signal from misclassi�ed members of those classes.

WCE(~̂,~) =
’

22classes
w2~2 log ~̂2w2 =

✓
#2Õ
8 #8

◆�1
(4.2)

The class weightw2 is usually set to the inverse class frequency, either computed over the
given batch or the entire dataset.
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4.2.5. Dice Loss

Dice loss is a di�erentiable measure, related to the intersection over union (IoU), of
the overlap between two areas, in this context usually the ground-truth mask and the
predicted segmentation. A generalized version [146] includes a smoothing parameter and
class weights to mitigate region size e�ects. The de�nition for class weighted dice loss
(WDL) we use in the following is:

WDLG = 1 � 2
Õ⇠

2=1F2
Õ

G ~2G~̂2G + BÕ⇠
2=1F2

Õ
= ~

2
2G + ~̂

2
2G + B + Y

(4.3)

with class weightsF2 for class 2 , the smoothing parameter B , and Y for numerical stability.
Dice loss is established for segmentation tasks, since it performs well for class imbalanced
problems, however, it does not tend to produce well calibrated models [155].

4.2.6. Focal Loss

Reweighting individual pixel loss contributions is a more �ne-grained approach compared
to emphasizing the contribution of an entire class of pixels. Focal loss [14], originally a
classi�cation loss, modi�es cross entropy, enhancing the loss of individual di�cult-to-learn
training samples.

FLG = �(1 � ~̂G )W~G log(~̂G ) = (1 � ~̂G )WCEG , (4.4)

where W is an adjustable focusing parameter. The underlying assumption for the devel-
opment of focal loss is, that the loss contribution of the easy, already correctly classi�ed
samples is overwhelming the signal from the few di�cult ones by sheer volume. Focal
loss is not a proper scoring function and thus does not produce well calibrated models.

4.2.7. Loss Max-Pooling

Similarly to focal loss, loss max-pooling [156] uses a modulating factor to enhance larger
contributions to the overall loss while suppressing smaller ones. In short, the max-pooled
cross entropy loss is then written as:

CEMP(~) = F~ · ~ log(~̂) = F (CE(~)) · CE(~) (4.5)

The weightF (~) emphasizes the largest pixel losses of a single sample image and ignores
the smallest ones and is given by:

F (~) =

8>>>><
>>>>:

g ~ 2 J

g
⇣
CE(~)
U

⌘@�1
~ 2 J

0 else

(4.6)

with g = =
�1
@ ·<

�1
? , @ = ?

?�1 , the top< loss values of one image J , U = max
⇣
J

⌘
. ? and

< are hyperparameters that have to be set by the model designer and = is the number of
pixels in the sample. We apply the max-pooling over all pixels in an entire batch, rather
than over the pixels of each image.
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4. Loss Scheduling

4.3. Method

4.3.1. Loss Scheduling

To manipulate the minimum the segmentation model converges on, we dynamically distort
the optimization landscape, transitioning from one of the losses described previously to
cross entropy loss. The total training loss is

!G = FCE(8)CEG +FD/F(8)(D/F)!G

where the weightsF always sum to 1. We explore two di�erent transition schedules here.
The “naive” schedule is a simple linear ramp with constant warmup and cooldown periods:

FCE(8) = max
✓
0,min

✓
1,
8 � B

4 � B

◆◆
(4.7)

at iteration 8 and beginning and end of the linear transition B and 4 . The “alternating”
schedule begins with cross-entropy and linearly ramps to the other loss before returning
to cross-entropy in a sinoidal curve (cf. �g. 4.3).

FCE(8) = min
✓
1,max

✓
0, 1 �

8

B

◆◆
+ 1 � cos

✓
min

✓
c

2
,max

✓
0,
c (8 � B)

2 (4 � B)

◆◆◆
(4.8)

Here B and 4 are beginning and end of the sinoid.
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Figure 4.3.: Di�erent loss scheduling schemes. Shown is the cross entropy loss contribution,
i.e., weightFCE, over the fraction of total optimization epochs.

4.3.2. Model Architecture

We explore two di�erent convolutional model architectures for image segmentation to
empirically validate the loss scheduling approach. The fully convolutional network [157]
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Figure 4.4.: Relative class frequencies of evaluated datasets. The class distribution of VOC
is similar to the one of SBD

(FCN) consists of convolutional layers, batch normalization layers, ReLU activations, and a
deconvolution to produce the per-pixel prediction. The �nal activation layer is a per-pixel
softmax, which produces class likelihood predictions.
The second model is DeepLabV3 [158]. This model includes atrous or dilated convo-

lutions in addition to the default operations included in the FCN. These are intended to
widen the receptive �eld of a layer without incurring the cost of additional parameters.

For both models, we use the stock implementation that are part of the torchvision [63]
library with the ResNet-50 backbone, but without pre-trained weights.

4.3.3. Data

For training and evaluation we use three di�erent datasets. The Pascal Visual Object
Classes (VOC) dataset [16] contains 11 540 images and 20 di�erent classes. The Semantic
Boundaries Dataset [149] (SBD) with a total of 11 355 images uses the same 20 di�erent
classes, The Cityscapes [17] dataset contains 25 000 images and 30 di�erent classes.
Figure 4.4 shows the class frequencies for the three datasets.

4.3.4. Losses

The losses we use for scheduling are weighted and unweighted versions of cross-entropy
and dice loss. Focal loss and max pooled cross-entropy are included for comparison as
other examples of strategies to address similar problems.

4.3.5. Metrics

We employ several metrics described in chapter 2 to quantify and compare the quality of
the trained classi�ers. Furthermore, we introduce a score to quantify the calibration of a
model. As depicted in �g. 4.1, a well calibrated classi�er would produce class-membership
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4. Loss Scheduling

probabilities rather than an opaque con�dence score. The calibration is estimated based
on calibration curves: We �rst bin the model output for each pixel and class. Then we
plot the fraction of positive labels for each bin over the mean output. As a measure of
a model’s reliability, we de�ne a scalar calibration score (CAL), which is computed by a
metric similar to the expected calibration error (ECE) introduced in [153]:

CAL = 1 �
4
#

·

’
8

|?8 � ?̂8 | = 1 �
4
#

·

’
8

|X8 | (4.9)

4.3.6. Computing Environment

All experiments have been performed on one of 15 computational nodes with commodity
components hosted at the Jülich Supercomputing Centre (JSC). Each node is equipped
with an Intel Xeon Gold 6126 CPU @ 2.60GHz as host processor, 256 GB of DDR3 main
memory, and four NVidia Tesla V100 GPGPUs as AI accelerator with 32 GB VRAM per
card. The GPUs communicate internally via an NVLink interconnect and are optimized
for GPUDirect communication across node boundaries with 2x Mellanox 100 Gbit EDR
In�niBand links. A Redhat Enterprise Linux with kernel version 3.10.0 has served as
operating system. The driver for the NVidia GPU was 418.87.00 and the CUDA runtime
was in version 10.1. The GPU driver, and CUDA runtimewere in versions 418.87.00 and 10.1,
respectively. All models were implemented in PyTorch 1.4.0 [63] and torchvision [159].

4.4. Results

Table 4.1 contains the raw numbers and some additional data, including the performance
for SBD and VOC models using pre-trained weights trained on the MS-COCO dataset [15].
These pre-trainend models perform consistently better than any other model we trained
purely on one of the three smaller datasets. Focal loss and max pooled cross entropy pro-
duce performance metrics comparable with the other traditional losses but have the worst
calibration scores. Models using a traditional loss or a compound loss with unweighted
cross entropy have similar performance and calibration metrics. Compound or scheduled
losses with class weighted cross entropy sacri�ce global accuracy for class-averaged recall.
On VOC and SBD, DeepLabV3 tends to have better overall accuracy, �1, and recall but
worse calibration compared to FCN with the exception of dice loss. On Cityscapes only
losses scheduled towards weighted cross entropy and DLWCE compound loss speci�cally
produce models that do not ignore at least one minority class. The di�erent schedules do
not display a consistent trend over the range of models. We also tested loss scheduling
from focal loss to cross entropy with similar results as for the dice loss version. Figure 4.5
shows model recall over calibration score to make a comparison of the di�erent scenarios
easier. All models have in common that the single, static losses tend towards lower values
for both recall and calibration, whereas the compound losses, scheduled or static trend
towards the top right. Comparing the Cityscapes to the other two larger datasets, the
values for recall are similar, but the calibration su�ers. DeepLabV3 tends to trade in some
recall for calibration on average. It also performs better with CEMP and FL than FCN.
Again the choice of schedule has less of an impact than the component losses. For VOC and
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4.4. Results

SBD the scheduled losses tend to have slightly better calibration scores. In particular for
models trained with weighted cross entropy as one component, rather than unweighted
cross entropy. The clearest trend is shown in the case of DeepLabV3 and Cityscapes, i.e.
the more complex model with the smaller dataset. Here, the cluster of models trained with
weighted cross entropy as a component loss is the least scattered. Note that the model
trained with pure weighted cross entropy is tied to the cluster with models trained with
unweighted cross entropy as component loss as in the other scenarios. Within the XXWCE
cluster the scheduled losses produce slightly better calibrated models.
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Figure 4.5.: Model performance in terms of recall over calibration score.
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4. Loss Scheduling

4.5. Discussion

In this chapter we introduced loss scheduling as an approach to train models in the face of
class imbalance. We demonstrated, that a model can be induced to converge on a di�erent
optimum, than if only trained on a pure loss and the scheduling �ne-tunes properties
of the resulting model compared to using a static compound loss. Compound losses in
general seem to be capable of combining bene�cial features of di�erent losses, but if the
properties of a single pure loss are required, loss scheduling still enables this. Surprisingly,
the losses speci�cally designed for class imbalance did not necessarily produce the best
performing models, even disregarding their calibration. Although, the inspiration here was
the adversely shaped loss landscape due to class imbalance, the approach is generalizable
to other problem settings and other losses with other schedules. In this regard especially
the impact on DeepLabV3 trained on Cityscapes and the relative performance of the
pre-trained models is relevant. The latter implies, that class imbalance is just a facet of
data sparsity. Training on a larger dataset leads to better performance. Pre-training on a
related dataset can transfer a lot of the performance to the downstream problem. For a
relatively small dataset, as in the former, a brute force approach can not be used to train a
more complex model, but a more elaborate training process, like loss scheduling could be
used instead.

Very long training processes, like when grokking [160] would occur, likely necessitate
custom schedules. Also, while the schedule choice only had limited impact on model
performance and training process, in other settings this may not hold. More complex mod-
els than feed forward networks or convolutional models, e.g. transformers or geometric
models, might also entail a more complex loss landscape. So far, we have considered, but
not tested the combination of more than two loss components. One of the downsides
to loss scheduling is the introduction of additional external parameters, which in turn
increases the combinatorial space to be optimized in hyperparameter searches.
There is some room for further investigation of loss landscape deformation through

scheduling. Even though schedules so far have had marginal impact on �nal model
performance, a more complex landscape might exhibit more interesting behavior, e.g., in
terms of convergence iterations, and merit di�erent schedules. In the context of chapter 3,
the concept could be extended to a task scheduling: oftentimes dialing in the task di�culty
during self-supervised pre-training is non-trivial. Measuring the impact on the �nal model
then requires full training of the entire model complex. Some models have employed
ideas like semi-hard example mining to adapt the training signal to the models current
capabilities. If this approach is not available due to lack of feedback, scheduling may be an
alternative approach.
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5. Propulate: Massively Parallel
Population Based Optimization

In this chapter, we present our work on an HPC-adapted hyperparameter and neural architec-
ture search platform. It is inspired by evolutionary optimization and similar population based
optimizers. The central idea is a softened notion of the generation enabling lazy synchroniza-
tion between parallel workers. When one worker �nishes evaluating a candidate solution,
instead of waiting for all other workers to �nish with their current candidate, it uses only
the new information that has been discovered up to this point to generate the next candidate
immediately. This approach reduces the idle times when the candidates take di�erent amounts
of time to evaluate, as is common in neural architecture search. The work presented in this
chapter has been published previously at the International Supercomputing Conference [3].

5.1. Introduction

Hyperparameter optimization (HPO) is the process of choosing not learnable parameters
of a machine learning model. For neural networks this encompasses model architecture
like number or width of layers, but also training parameters like learning rate or choice of
optimizer. HPO, in particular in the context of neural architecture search (NAS), has been
of increasing relevance [161] as the use of data-driven models and the resource footprint
of those models increases [20]. Since evaluating a proposed set of hyperparameters usually
involves at least a partial training, a more expensive model implies a more expensive
hyperparameter search multiplied by a large factor. Therefore, smart search algorithms
that minimuze the required number of evaluations are needed. Manual tuning or traditional
approaches like grid search are not only ine�cient in terms of time, but also energy and
by extension carbon footprint [162].
As the name implies hyperparameter optimization is a hierarchical process. In an

outer loop, a new set of candidate hyperparameters is proposed, which is evaluated by
�tting the actual parameters or weights of the model in an inner loop. Figure 5.1 shows a
sketch of the hyperparameter optimization process. To evaluate the performance of the
hyperparameters, the model performance is measured on a held-out validation dataset.
This validation dataset should be su�ciently diverse from the training data to prevent
ground-truth bleeding and overestimating the performance. Since the HPO might over�t
on the validation data, the �nal performance of the best model found is then estimated
on a third test dataset not seen during the optimization. Evaluating the hyperparameters
in the inner loop requires at least a partial training of the model, which makes this
process computationally expensive. It is thus necessary to utilize su�cient computing
resources to optimize the hyperparameters in a reasonable amount of time. Using these

65



5. Propulate: Massively Parallel Population Based Optimization

outer loop

inner loop

modeltraining
data

validation
data

test
data

HPO

training
score

validation
score

test
score

Figure 5.1.: Schematic illustration of the hyperparameter optimization process

resources e�ciently requires scalable and high-performance computing adapted algorithms.
Chapter 2 gives more background on the relevant concepts of HPC and HPO. The key to
leveraging HPC resources is parallelization. As a general �rst approach we unroll the outer
loop and train and evaluate many candidates in parallel, since they are independent of each
other. Facilitating this parallelization is the primary task we are interested throughout
this chapter.

Besides scalability, a general hyperparameter optimizer needs to feature certain proper-
ties owing to their speci�c usage:

• Black box or gray box optimization: The exact nature of the function to be optimized
is not known in advance.

• Discrete parameter spaces: Possible types of hyperparameters go beyond continuous
search spaces and include integer, ordinal, and categorical parameters.

• Gradient-free: Because of the properties of the search spaces commonly encountered,
the optimization algorithm can not rely on gradients to navigate the search space.

Naive approaches like grid search and random search ful�ll all these criteria. However,
there aremore intelligent, state-dependent search algorithms that require fewer evaluations
of the black box function to meaningfully sample the search space. Chapter 2 contains an
overview over di�erent methods.

5.2. RelatedWork

We have examined the theory of relevant optimization algorithms in chapter 2. Here, we
will brie�y discuss implementations and frameworks as direct competitors to Propulate.
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The recent AI boom has triggered heavy use of hyperparameter optimization techniques
with Python as the de facto standard programming language. For NAS we thus limit
our view to Python-based frameworks. Several surveys give a theoretical overview of
hyperparameter optimization in general or neural architecture search speci�cally [92, 97,
98, 99, 100, 101, 102, 103, 104, 93, 94, 95, 91, 96].
Several frameworks, Optuna [163], Hyperopt [164], SMAC3 [165, 166], Spearmint [167],

GPyOpt [168], and MOE [169], DeepHyper [170, 171] implement some form of Bayesian
optimization as a surrogate model, e.g. tree-structured Parzen estimators or Gaussian
processes (cf. chapter 2).

SMAC3 (SequentialModel-based Algorithm Con�guration) combines a random-forest-
based Bayesian approach with an aggressive racing mechanism [165]. Its parallel variant,
pSMAC, uses multiple collaborating SMAC3 runs which share their evaluations through the
�le system. Spearmint, GPyOpt, and MOE are Gaussian-process-based Bayesian optimiz-
ers. Spearmint enables distributed HPO via Sun Grid Engine and MongoDB. GPyOpt is
integrated into the Sherpa package [172], which provides implementations of recent hy-
perparameter optimizers and the software infrastructure to run them in parallel via a
grid engine and a database server. MOE (Metric Optimization Engine) uses a one-step
Bayes-optimal algorithm to maximize the multi-points expected improvement in a parallel
setting [169]. Using a REST-based client-server model, it enables multi-level parallelism by
distributing each evaluation and running multiple evaluations at a time. Nevergrad [173]
and Autotune [174] provide gradient-free and evolutionary optimizers, including Bayesian,
particle swarm, and one-shot optimization. In Nevergrad, parallel evaluations use several
workers via an executor from Python’s concurrent module. Autotune enables concurrent
global and local searches, cross-method sharing of evaluations, method hybridization,
and multi-level parallelism. Open Source Vizier [175] is a Python interface for Google’s
HPO service Vizier. It implements Gaussian process bandits [176] and enables dynamic
optimizer switching. A central database server does the algorithmic proposal work while
clients perform evaluations and communicate with the server via remote procedure calls.
Katib [177] is a cloud-native AutoML project based on the Kubernetes container orches-
tration system. It integrates with Optuna and Hyperopt. Tune [178] is built on the Ray

distributed computing platform. It interfaces with Optuna, Hyperopt, and Nevergrad and
leverages multi-level parallelism. Except for DeepHyper, which can use MPI for communi-
cation and parallelism, these tools use a database like MongoDB or SQL, i.e., the �le system.
PyHopper [179] is a scheduled Markov chain Monte Carlos sampler, which is intended
particularly for high dimensional parameter spaces. However, so far, it is only parallelized
for a single node with multiple GPUs.
Another family of solutions are bio-inspired approaches like particle swarms (e.g.,

FLAPS [180]) or evolutionary optimizers like DEAP [181] and MENNDL [182]. FLAPS (Flexible
seLf-Adapting Particle Swarm) is an PSO, which dynamically scales the weights of di�erent
contributions to a compound loss function during the optimization. It was primarily
developed to �nd hyperparameters for MD simulations. DEAP (Distributed Evolutionary
Algorithms in Python) [181] implements general evolutionary algorithms, evolution
strategies, multi-objective optimization, and co-evolution of multi-populations. It enables
parallelization via Python’s multiprocessing or SCOOP module. EvoTorch [183] is built
on PyTorch and implements distribution- and population-based algorithms. Using a Ray
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cluster, which uses a central head node for coordination and several worker nodes for
evaluation, it can scale over multiple CPUs, GPUs, and computers. MENNDL (Multi-node
EvolutionaryNeuralNetworks forDeepLearning) [182] is a closed-sourceMPI-parallelized
hyperparameter optimizer for automated network selection. A coordinator node handles
the evolutionary operations while the remaining worker nodes conduct the evaluations.
However, global synchronization hinders optimal resource utilization [182].

5.3. Method

The problem of parallel hyperparameter search can be separated into two aspects. Firstly,
candidates have to be generated and evaluated. Secondly, the computational load of these
processes has to distributed and the relevant information has to be communicated between
all participating resources.

5.3.1. Lazy Synchronization for Parallel Search

The basis for our neural architecture search approach is evolutionary optimization. In
synchronized, parallel evolutionary optimization, if the cost for a single evaluation of the
objective function varies depending on the hyperparameter candidate, resources are wasted
as workers with a cheaper candidate have to wait for the evaluation of the more expensive
ones to �nish (cf. �g. 5.2). To alleviate this bottleneck inherent to synchronized parallel
evolutionary algorithms, our massively parallel population based optimizer Propulate
(propagate and populate) implements a lazy synchronization mechanism designed for
large-scale HPC systems. Unlike other conventional population based algorithms, Propulate
softens the notion of a generation. Instead, Propulate uses the entirety of the thus far
evaluated solution candidates as the basis for breeding of new candidates. This enables
asynchronous evaluation, variation, propagation, and migration of individuals.
The basic propagation mechanism is still that of Darwinian evolution, as in other

evolutionary optimization algorithms. Well-performing individuals assumed to carry
bene�cial traits are selected from the overall population. Their traits are then recombined
andmutated to breed new suggested candidates (see chapter 2). These di�erent propagation
building blocks can be assembled for the speci�c task at hand. Each one is represented
by its own propagator, which receives a set of individuals and generates a di�erent set
of individuals. The construction of an evolutionary propagator for example, requires a
selection, crossover, and mutation propagator. The evolutionary propagator applies these
propagators with speci�ed probabilities to generate a single new candidate. For example,
to have a more aggressive optimization process, the selection operator selects only the best
individuals from the already evaluated population, whereas a selection propagator closer
to the traditional evolutionary optimization would select the most recently evaluated ones.
Varying the mutation propagator might switch between mutating a single trait uniformly
in the given limits and mutating multiple traits within a Gaussian distribution centered on
the trait value of the parent individual.

Figure 5.3 illustrates the Propulate process on a higher level outside of the propagation
process. Examining the example of the individual bred for generation 3 by the blue worker,
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Figure 5.2.: Illustration of the evaluation progress of a naively parallelized evolutionary
optimizer with four workers along the y-axis. Time progresses along the x-axis.
The blue boxes represent the evaluation of a single candidate. The red arrows
show idle time caused by the synchronization barriers at the dashed lines after
each generation.
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Figure 5.3.: Propulate Asynchronous propagation. Interaction of two workers during
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(cf. section 5.3.2) superscript. Populations are depicted as round grey boxes,
where most recent individuals have black outlines. Varying evaluation times
are represented by sharp boxes of di�erent widths.
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ind8163: the worker �rst applies the propagator to generate the new candidate parameter
set for this generation. It then evaluates the new individual by calling the user-supplied
black-box function with the generated parameters. It then asynchronously sends the
individual with its associated loss value to all other workers. Then, it checks whether the
other workers have sent any individuals whose evaluation has completed in the meantime.
In this example none have, so it integrates only ind8163 in its breeding population and
generates the next candidate. Once worker 2 has �nished with its own currently ongoing
evaluation of its own second generation and sent the result to the other workers, it receives
the evaluated individual from worker 1. Worker 2 then updates its own population with
those two newly evaluated individuals and continues with its own breeding step. All
of these communication operations are realized as asynchronous MPI calls. Results are
checkpointed and written to disk for later use, but during the run, nothing is read from
disk inside the Propulate optimization itself.

The initial population that subsequent generations are bred from is generated randomly,
and during the course of the search, there can be a chance set to randomly generate a
fresh individual completely unrelated to the rest of the population instead of the crossover
and mutation operations.

5.3.2. Splitting the Population

Population based optimizers sometimes separate the global population into several sub-
populations, each on their own evolutionary island [184]. Individuals can be exchanged
between islands intermittently. This approach has two advantages: �rstly, if one popu-
lation prematurely converges on a local optimum, there is a chance that other islands
continue the exploration or even give the stuck sub-population the stimulus to restart its
progress. Secondly, since all individuals on an island are exchanged between all workers
of that island, splitting the population into several islands can reduce the communication
costs and reserve more computational time for candidate evaluation. In addition to the
basic migration mechanism already described, there is another variation called pollina-
tion. Whereas in true migration, emigrants are removed from their populations of origin
for further breeding, pollination models retain that individual and only send a copy to
the receiving island. Figures 5.4 and 5.5 illustrate the migration and pollination process,
respectively. Comparing the mechanism for both schemes on worker # on island 1, the
initial process is similar. After evaluation and (lazy) intra-island synchronization, it sends
the chosen migrants to all workers of the target island, here island 2, who receive them
asynchronously. It also informs all other workers on island 1 which individuals have emi-
grated and are no longer available for breeding. Afterwards, worker # receives migrants
sent since the last synchronization from worker 1 on island 2 and integrates them into the
breeding population. Then, the worker performs population bookkeeping, which depends
on whether it is in pollination or true migration mode. After these migration-related intra-
island population updates, worker # breeds the individual for the next generation with its
normal propagator, now including information from island 2. After �nishing this evalua-
tion, worker # randomly decides with the speci�ed migration probability not to emigrate
any individual and skips to the immigration step. The main di�erence on a technical level
between pollination and true migration is that pollination creates copies and thus in�ates
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the total population over time. To alleviate this, the pollination includes an immigration
operator that can remove individuals to keep the population size at the same level. One
worker on the target island is responsible for performing this culling and communicating
to the other workers on that island which individuals are no longer active in the breeding
population. In return, the communication on the source island on which individuals are
no longer available due to emigration is not required since only copies were sent and the
original is still active on the source island. Again, there are no explicit synchronization
barriers for inter-island communication. Instead, there is a chance after each evaluation
that several individuals will be selected for migration and sent to be integrated into the
population of the target islands. Figure 5.6 shows the hierarchical communication setup
with several workers and islands. Typically, better performing individuals are selected for
migration. With worse-performing islands receiving candidates from better-performing
ones, islands communicate evolutionary information competitively, thus increasing diver-
sity among the sub-populations compared to panmictic models [185]. Independent from
the propagation mechanism of the evolutionary optimization, the following parameters
determine the behavior and performance of the Propulate search process:

• Island number and subpopulation sizes

• Migration (pollination) probability

• Number ofmigrants (pollinators): Howmany individuals migrate from the source
population at a time.

• Migration (pollination) topology: Directed graph of migration (pollination) paths
between islands.

• Emigration policy: How to select emigrants (e.g., random or best) and whether to
remove them from the source population (actual migration) or not (pollination).

• Immigration policy: How to insert immigrants into the target population, i.e.,
either add them (migration) or replace existing individuals (pollination, e.g., random
or worst).

5.3.3. Alternative Algorithms

The HPOs considered here, which act as blackbox optimization functions, suggest new
hyperparameter combinations only based on the objective function value of previously
suggested hyperparameters. The sampling algorithm that suggests new candidate solutions
for evaluation resides in a propagator on each worker rank. It takes the locally visible
population with each individual identi�ed by its worker of origin and its generation as
input and produces a new vector in hyperparameter space:

%F0({(x
F6,~F6)}) ! xF060. (5.1)

with the propagator %F0 on worker F0, the set of tuples of previous suggestions xF6
evaluated by workerF at generation 6 with associated objective function value ~F6. The
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Figure 5.4.: Asynchronous migration. Consider two islands with # (blue) and" (red)
workers, respectively. Intra-island communication and operations are shown in
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messages are received, that signal, which individuals have been emigrated by
another worker.
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Figure 5.5.: Asynchronous pollination. Consider two islands with # (blue) and" (red)
workers, respectively. Intra-island communication and operations are shown
in light colors and inter-island communication in full colors. During Sync
blocks messages are received, that signal, which individuals have been replaced
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72



5.3. Method

Island 1

 Worker 1  

intra-island communicator 
for syncing 

Pop list

 Worker 2  

Pop list

 Worker N  

Pop list

 Worker 3  

Pop list

Island 2

 Worker 1  

intra-island communicator 
for syncing 

Pop list

 Worker 2  

Pop list

 Worker 3  

Pop list

 Worker M  

Pop list

Island num_isles

 Worker 1  

intra-island communicator 
for syncing 

Pop list

 Worker 2  

Pop list

 Worker 3  

Pop list

 Worker L  

Pop list

 global communicator for migration  

Figure 5.6.: Propulate communication setup. Workers on the same island share an island
communicator. All workers share a global communicator, which is used for
migration and pollination.

new candidate xF060 of the current generation 60 Note that any 6 in the input set does not
necessarily have to be smaller than 60, since a di�erent worker may already be several
generations ahead and have provided its results. Evolutionary optimizers are only one
example of such an algorithm that can be adapted to the Propulate platform. Evolutionary
and depending on the surrogate model Bayesian optimizers can directly process discrete
parameters. Since these other algorithms considered here can not process categorical
or discrete search parameter spaces, we �rst project these parameters into a continuous
space. To obtain an integer parameter, the internal continuous representation is rounded.
To represent categorical variables without imposing an order, they are one-hot encoded
and one dimension is added to the search space for each category. For these variables, the
candidate parameter is retrieved from the internal continuous representation by �nding
the class vector closest to the candidate position, which amounts to taking the argmax as
long as the algorithm is constrained to the interval of [0, 1], e.g.,

x =

8>>>>>><
>>>>>>:

0.0001 learning rate
4.920 number of layers
0.163 activation: ReLU
0.987 activation: ELU
0.618 activation: sigmoid

9>>>>>>=
>>>>>>;
!

8>><
>>:
0.0001

5
ELU

9>>=
>>;
. (5.2)

This approach arbitrarily imposes that the distance between categories is the same, which
might cause a bias. Depending on the algorithm di�erent scales for di�erent dimensions
in parameter space can be rescaled to avoid this. For example, in the space of activation
functions, one might expect that ReLU should be closer to ELU than to a sigmoid in an
embedding of activation functions, which is not represented in a one-hot encoding.
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5.3.3.1. Particle Swarm Optimization

PSO is an optimization algorithm inspired by the food-searching behavior of animal
swarms (see section 2.3). Several �avors of PSO were integrated into Propulate by Paul
Zanner within the scope of his bachelor thesis [186]. Each rank represents one particle
in the swarm. Within the swarm, only the best individual discovered so far has to be
distributed to other members to represent the social aspect of the optimization. The
cognitive contribution (cf. chapter 2) is given by the previous candidates evaluated by
the same worker. Currently, the swarm communicates all evaluation results, even ones
that have no prospect of informing the trajectory of other particles, because it is worse
than the best global results. The core of the swarm optimization is provided in the
form of propagators similar to the evolutionary operators of the original Propulate. The
only additional ingredient beyond that is an additional velocity �eld for individuals that
contributes to the position in the search space of the candidate of the next generation.

5.3.3.2. Covariance Matrix Adaptation Evolution Strategy

CMA-ES adapts the distribution from which new candidates are sampled over the course
of the optimization to better trade o� exploration and exploitation. It is provided as an
alternative to the default Bayesian optimizer in Optuna. An asynchronous adaption of
CMA-ES was integrated into Propulate by Jonathan Roth within the scope of his bachelor
thesis [187].

To adapt CMA-ES to the lazy synchronization scheme of Propulate, the algorithm has to
be adapted such that in each iteration only a single new candidate is proposed. Since the
sampling still has a stochastic component and each worker has a separate random number
generator, no particular care has to be taken to avoid redundancy within the CMA-ES
sampling. Also, each individual is likely generated from its own unique parent population
since it is, at least initially, the only one containing the most recently evaluated individual
from that worker.

5.3.3.3. Nelder-Mead Method

A simplex is the generalization of a triangle in two dimensions to an arbitrary number
of dimensions. The downhill simplex or Nelder-Mead [188] method is a set of rules on
how to choose the next candidate solution in an = dimensional optimization problem
given = + 1 solutions forming the vertices of a simplex in the search space. The size of the
population is then not entirely arbitrary anymore but rather determined by the dimension
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of the parameter space to be searched. Simplex optimization uses the following policies:
re�ection, expansion, contraction, and shrinking, with certain marked points:

x> = centroid
82simplex

x8 (5.3)

x=+1 = max
82B8<?;4G

(x8) (5.4)

x= = max
8<=+1

(x8) (5.5)

xA = x> + U (x> � max
82simplex

(x8)) (5.6)

x4 = x> + U (xA � x2) (5.7)

x2 = x> + d

(
xA � x> 5 (xA ) < 5 (x=+1)

x=+1 � x> 5 (xA ) � 5 (x=+1)
(5.8)

With the re�ection U > 0, expansion W > 1, contraction d  0.5, and shrinking f < 1
coe�cients. During a single iteration of sequential Nelder-Mead, one or more of the
re�ected point xA , the expanded point x4 , or a contracted point x2 might have to be
computed in order to update the simplex for the next iteration. For the shrinking operation,
the entire simplex is scaled to a smaller one of the same shape �xed to the best known
vertex so far. As a consequence, potentially several evaluations have to be performed
for a single iteration. This is not directly compatible with Propulate, which assumes only
a single black box function evaluation at each generation. To adapt the algorithm, we
change the how the operator is selected at each generation.

• First the current simplex is constructed from the best = + 1 solutions so far.

• If the last generation is the best solution so far: expand.

• If the last generation is the worst in the simplex: outer contract.

• If the last generation is not in the simplex: cycle through re�ect, outer contract, inner
contract, and shrink.

• Else: re�ect

For initialization, the �rst =+1 points are sampled from a Gaussian around a point identical
to all workers on the same island.

5.3.4. Implementation

Implementation-wise, to ensure interoperability with existing data science and ML work-
�ows, which are expected to be the primary use-case, we maintain a Python implementa-
tion1. All communication between workers occurs directly over MPI. In most applications,
evaluating the objective function represents the largest contribution to the total resource
consumption. Performance-relevant paths inside the objective function evaluation are
1 https://github.com/Helmholtz-AI-Energy/propulate
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expected to be implemented and optimized in CUDA and C/C++ or Fortran. With the
aforementioned work�ows, this is typically already the case. Since we expect most of the
time to be spent on evaluation, optimization here has great impact on the duration of the
overall search.

5.3.5. Computing Environment

We ran the experiments on the distributed-memory, parallel hybrid supercomputerHochleis-
tungsrechner Karlsruhe (HoreKa2) at the Scienti�c Computing Center, Karlsruhe Institute
of Technology. Each of its 769 compute nodes is equipped with two 38-core Intel Xeon
Platinum 8368 processors at 2.4GHz base and 3.4GHz maximum turbo frequency, 256GB
(standard) or 512GB (high-memory and accelerator) local memory, a local 960GB NVMe
SSD disk, and two network adapters. 167 of the nodes are accelerator nodes, each equipped
with four NVIDIA A100-40 GPUs with 40GB memory connected via NVLink. Inter-node
communication uses a low-latency, non-blocking NVIDIA Mellanox In�niBand 4X HDR
interconnect with 200Gbit/s per port. A Lenovo Xclarity controller measures full node
energy consumption, excluding �le systems, networking, and cooling. The operating
system is Red Hat Enterprise Linux 8.2.

5.3.6. Performance Evaluation

We evaluate the performance of our proposed approach considering three di�erent aspects:
optimization performance, computational overhead, and relevance to neural architecture
search. The obvious one is optimization performance, as in how good are the best solutions
found by Propulate. Since optimization in general is a large and well-researched �eld of
research, and evolutionary optimization is not expected to be the optimal choice for all
optimization problems our expectation here is to at best match the baseline. Next, there is
the computational performance and, speci�cally, the overhead borne by the communication
setup and the propagation and sampling routines of Propulate. This is where we expect
a drastic improvement over the baseline, since e�cient parallelization was our primary
consideration in the design of Propulate.

To examine the computational overhead and general optimization behavior, we �rst use
often used mathematical benchmark functions (see table 5.1) rather than a more complex
problem derived from neural architecture search. Evaluating the benchmark function
is virtually free, especially compared to training a neural network. These test functions
are primarily intended to test communication overhead under extreme circumstances
to ensure correct implementation of and compare the di�erent optimization algorithms.
Additionally, this allows characterizing the optimization algorithms in terms of their
suitability for di�erent optimization problems, helping users choose the most suitable
approach for their problem. Noise, roughness, or problem space dimension informs the
choice of Propulate’s parameters.
Finally, the most important aspect is neural architecture search. Compared to the

mathematical benchmark functions evaluation for this task is more expensive, which

2 https://www.scc.kit.edu/en/services/horeka.php
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masks the communication overhead at least partially. If we assume, that the baseline is
more intelligent and can �nd a better solution if given the same number of evaluations,
can Propulate still outperform it by searching faster? An optimal solution to the NAS
problem is not known, so only relative performance score is considered.

The selection of benchmark functions poses a speci�c challenge for each instance:

• Sphere is smooth, unimodal, strongly convex, symmetric, and thus simple.

• Rosenbrock has a narrow minimum inside a parabola-shaped valley.

• Step represents the problem of �at surfaces. Plateaus pose obstacles to optimizers as
they lack information about which direction is favorable.

• Quartic is a unimodal function padded with Gaussian noise. As it never returns
the same value on the same point, algorithms that do not perform well on this test
function will do poorly on noisy data.

• Rastrigin is non-linear and highly multimodal. Its surface is determined by two
external variables, controlling the modulation’s amplitude and frequency. The local
minima are located at a rectangular grid with size 1. Their functional values increase
with the distance to the global minimum.

• Griewank’s product creates sub-populations strongly codependent to parallel GAs,
while the summation produces a parabola. Its local optima lie above parabola level
but decrease with increasing dimensions, i.e., the larger the search range, the �atter
the function.

• Schwefel has a second-best minimum far away from the global optimum.

• Lunacek’s bi-sphere’s [189] landscape structure is the minimum of two quadratic
functions, each creating a single funnel in the search space. The spheres are placed
along the positive search-space diagonal, with the optimal and sub-optimal sphere
in the middle of the positive and negative quadrant, respectively. Their distance and
the barrier’s height increase with dimensionality, creating a globally non-separable
underlying surface.

• Lunacek’s bi-Rastrigin [189] is a double-funnel version of Rastrigin. This function
isolates global structure as the main di�erence impacting problem di�culty on a
well-understood test case.

To provide reasonable defaults, we also give results for a grid search over those parame-
ters. Since the intended primary use-case is neural architecture search, we also compare
Propulate against Optuna optimizing the hyperparameters of a training for a remote sensing
application.
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Table 5.1.: Benchmark functions

Name Function Limits Global minimum
Sphere 51 = G21 + G22 ±5.12 5 (0, 0) = 0
Rosenbrock 52 = 100

�
G21 � G2

�2
+ (1 � G1)2 ±2.048 5 (1, 1) = 0

Step 53 =
Õ5

8=1 int (G8) ±5.12 5 (G8  �5) = �25
Quartic 54 =

Õ30
8=1

�
8G48 + N8 (0, 1)

�
±1.28 5 (0, ..., 0) =

Õ
8 N8

Rastrigin 55 = 200 +
Õ20

8=1 G
2
8 � 10 cos (2cG8) ±5.12 5 (0, ..., 0) = 0

Griewank 56 = 1 + 1
4000

Õ10
8=1 G

2
8 �

Œ10
8=1 cos

G8p
8

±600 5 (0, ..., 0) = 0

Schwefel 57 = 10+ �
Õ10

8=1 G8 sin
p
|G8 | ±500 5

�
G⇤1, ..., G

⇤

10
�
= 0,

with + = 418.982887 G⇤8 = 420.968746
Bi-sphere 58 = min

�Õ30
8=1 (G8 � `1)

2 , ±5.12 5 (`1, ..., `1) = 0
30 + B ·

Õ30
8=1 (G8 � `2)

2� with
`1 = 2.5, `2 = �

�
B�1

�
`21 � 1

� �1/2 ,
B = 1 �

⇣
2
p
50 � 8.2

⌘�1/2
Bi-Rastrigin 59 = 58 + 10

Õ30
8=1 1 � cos 2c (G8 � `1) ±5.12 5 (`1, ..., `1) = 0

5.3.6.1. Optuna

The aforementioned Optuna [163] is an optimization framework providing Bayesian-and
CMA-ES-based optimizers (cf. chapter 2). We chose Optuna as a baseline since it appears
to be the most widely adopted hyperparameter search suite. It is actively developed
and maintained, with up-to-date documentation including a growing number of usage
examples and practical guidance. Its primary reference has been cited over 3 200 times as
of the time of writing. It is advertised as being easy to parallelize and lightweight. The
parallelization is realized through a relational database, with the measurements shown
for MySQL. The workers retrieve unevaluated candidates from the database and store
their results after evaluating them. To conserve resources, Optuna also includes pruning
mechanisms to abort unpromising trials. In our comparison, we use early stopping for
both Optuna and Propulate instead of Optuna’s built-in pruning mechanism.

5.4. Results

5.4.1. Propulate Parameters

Propulate itself has several con�gurable parameters. The number of workers, the problem
dimension, and the partition and communication setup between islands are algorithm-
agnostic. The choice of optimization algorithm could be considered a parameter, and �nally,
each algorithm requires con�guration. For example, the evolutionary optimizer requires
a population size (independent of the number of workers), probabilities for mutation,
crossover, random initialization, and variance if the mutation uses a Gaussian around the
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value of the parent rather than a uniform probability distribution. Each component might
o�er additional degrees of freedom, e.g., crossover might use =-point crossover rather than
just drawing from two parents. Table 5.2 shows the search space. The absolute amount
of resources is kept constant at two workers, but how they are distributed over islands
is varied. The grid search is run over a subset of the previously discussed benchmark
functions to avoid giving Propulate an unfair advantage when comparing it to Optuna in
the next section. The results are averaged over �ve runs for the quartic, Rastrigin, and
bi-Rastrigin benchmark functions (cf. table 5.1). These functions were chosen for their
varying di�culty in optimization and high-dimensional parameter spaces (30, 20, and 30,
respectively). Each run uses a di�erent seed for each point in the searched grid.

Number of islands 2 4 8 16 32
Island population size 72 36 18 9 4
Migration (pollination) probability 0.1 0.3 0.5 0.7 0.9
Pollination True False
Crossover probability 0.1 0.325 0.55 0.775
Point-mutation probability 0.1 0.325 0.55 0.775
Random-initialization probability 0.1 0.325 0.55 0.775

Table 5.2.: Grid search parameters. Using 144 workers distributed over two nodes.

For quartic, Propulate found a minimum below 0.01 ± 0.005 for 80.12 % of all points
across the �ve grid searches. This increases to 94.94 % for minima within 0.1 ± 0.05 of
the global minimum. In comparison, the tolerances have to be relaxed considerably for
the more complex Rastrigin and bi-Rastrigin. While only 18.57 % of all grid points had a
function value less than 1.0 ± 0.5 for Rastrigin, only a single point resulted in an average
value of less than 10 for bi-Rastrigin. Although the average value of bi-Rastrigin was only
less than 10 once, we found the minimum across each of the �ve searches to be less than
1.0 for 3.31 % of the grid points.

Considering grid points with at least one result smaller than 1.0, 86.61 % used either 16
or 36 islands, while the remainder used eight. As Propulate initializes di�erent islands at
di�erent positions in the search space, the chance that one of them is at a very bene�cial
position increases with the number of islands. The the higher migration probabilities of
0.7 or 0.9 for 61.41 % of these points, leads to a quick proliferation of �t individuals from
island to island.

With every best grid point using pollination, we clearly �nd pollination to be favorable
over real migration here. To determine the other hyperparameters, we compute the
averages of the results for the top ten grid points across all three functions. The top
ten were determined by grouping over the lowest average and standard deviation of the
function values, sorting by the averages, and sorting by the standard deviations. This
method reduces the chances of a single run simply bene�ting from an advantageous
starting seed. Average crossover, point-mutation, and random-initialization probabilities
are 0.655±0.056, 0.363±0.133, and 0.423±0.135, respectively. The average number of islands
was 28.800 ± 6.009, which equates to an island population of 5.00 ± 1.043. The average
migration probability was 0.527 ± 0.150. These values provide a reasonable starting point
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for choosing default hyperparameters for Propulate (see Table 5.3). As the grid searches
only considered functions with independent parameters, we assume a relatively high
random-initialization probability to be useful due to the bene�ts of random search [190].
On this account, we chose to reduce the default random-initialization probability to 0.2. As
the migration probability might also be lowered arti�cially by this phenomenon, we set its
default to 0.7. The default probabilities for crossover and point-mutation were chosen as
0.7 and 0.4, respectively. The island size was set at four workers. This choice is motivated
by technical considerations, as the test system has four accelerators per node, and the
number of CPUs per node is a multiple of four.

5.4.2. Optimization Benchmark Functions

To evaluate Propulate in terms of optimization performance and communication overhead
in an idealized setting, we ran ten optimizations for each benchmark function described pre-
viously for both Propulate and Optuna. We use the same amount of compute resources for
both algorithms, with the same degree of parallelization and total number of evaluations,
38 912. Table 5.3 shows the parameters used for Propulate. For Optuna, the default parame-
ters are used throughout. We use a tree-structured Parzen estimator instead of CMA-ES as
sampling algorithm. Since this optimizer can also process categorical parameters natively,
this seems a fair comparison.

Number of islands 38
Island population size 4
Pollination probability 0.7
Crossover probability 0.7
Point-mutation probability 0.4
Sigma factor 0.05
Random-initialization probability 0.2
Generations per worker 256
Selection policy Best
Pollination topology Fully connected
Number of migrants 1
Emigration policy Best
Immigration policy Worst

Table 5.3.: Propulate hyperparameters for benchmark function optimization.

Figure 5.7 shows function value over run time comparing Propulate to Optuna. In terms
of solution quality, Propulate and Optuna are comparable for most functions. For some
objective functions, e.g., Schwefel, Rastrigin, and bi-Rastrigin, Propulate even achieves an
even better value. The di�erence is more drastic for walltime. Propulate is consistently
faster than Optuna, between one and three orders of magnitude. This result is not entirely
unexpected: since these benchmark functions are cheap to evaluate, the optimization
algorithm itself and communication dominate the wallclock time. An example of an
individual run for rastrigin, with the evolution of the objective function’s value and
distance to the optimum is shown in appendix A.4.
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Figure 5.7.: Lowest function value found over wallclock time to reach them averaged
over ten runs by Propulate (red) and Optuna (blue). On both axes lower is
better. Propulate is consistently faster and occasionally �nds a better result
than Optuna.

This di�erence in e�ciency also has implications for the energy consumption of the
di�erent approaches. Propulate measure only 46.27Wh compared to Optuna’s 2646.29Wh
on average. This means Optuna consumes �fty times more energy than Propulate to solve
this task.

5.4.3. Neural Architecture Search for Remote Sensing Classification

To evaluate the performance of Propulate on a use case closer to the intended application,
i.e., relatively expensive function evaluation with varying run times, I use a typical neural
architecture search problem. Since Propulate is already being used for this purpose and
has contributed to several publications [191, 1, 192], I revisit one of these, an image
classi�cation problem by Coquelin et al. [191], focusing on the neural architecture search.
It should be noted that the results presented in the original paper were achieved with
an old version of the algorithm (cf. section 5.5). The results included in this section are
representative of the current version of Propulate.
BigEarthNet [193] is a Sentinel-2 multispectral image dataset in remote sensing. It

comprises 590 326 image patches, each assigned one or more of the 19 available CORINE
Land Cover map labels [194, 193]. Multiple computer vision networks for BigEarthNet
classi�cation have been trained [193], with ResNet-50 [195] being closest to state of the
art. The task is to optimize the model architecture and training process of BigEarthNet
image classi�cation in terms of validation �1 score.
The search space is shown in table 5.4. The degrees of freedom are similar to the

ones considered in the original paper [191]. The training parameters are learning rate,
learning rate schedule, loss function, and the di�erent optimizers and their parameters.
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The model parameters are activation functions, number of �lters per convolutional block,
and the activation order inside a block [196]. To simplify the search space, only SGD-based
optimizers are included and not Adam-like ones. These optimizers share a parameter
subspace. This should not a�ect the performance of the �nal model since SGD with a
well-tuned learning rate schedule usually performs better than Adam. Including Adam is
possible, but (at least in the current version of the algorithm) introduces genes into the
space that are only used sometimes, depending on other Genes. This makes the search less
e�cient and may have led to the problems outlined in the original paper. Each training
is stopped early if the validation loss has not increased in the last ten epochs. The data
preparation and processing is identical to the original. The network is implemented in
TensorFlow [62].

For both Propulate and Optuna we average the results over three searches. Each search
is run over 24 h on 32 GPUs. We use 1 � � val1 with the validation �1 score as the objective
function to be minimized.
On average, Optuna achieves its best OF value of (0.39 ± 0.01) within (7.05 ± 3.14) h.

Propulate beats Optuna’s average best after (5.30 ± 2.41) h and achieves its best OF value
of 0.36 within (13.89 ± 5.15) h.

Optimizers Optimizer parameters LR warmup parameters

Adagrad Initial accum. value
⇥
10�4, 0.5

⇤
LR warmup steps

⇥
100, 104

⇤
SGD Clipnorm [�1,�1000] Initial LR

⇥
10�5, 10�1

⇤
Adadelta Clipvalue [�1, 1000] Decay steps

⇥
102, 105

⇤
RMSprop Use EMA Boolean LR warmup power

⇥
10�1, 101

⇤
EMA momentum [0.5, 1.0]
EMA overwrite

⇥
1, 103

⇤
Momentum [0.0, 1.0]
Nesterov Boolean
Rho [0.8, 0.99999]
Epsilon

⇥
10�9, 10�4

⇤
Loss functions LR parameters

Binary CE Categorical CE Categorical hinge Decay rate [0.8, 0.9999]
Hinge KL divergence Squared hinge Staircase inverse Boolean

time decay

Activation functions Decay rate [0.1, 0.9]

ELU ReLU Softplus Staircase poly- Boolean
Exponential SELU Softsign nomial decay
Hard sigmoid Sigmoid Swish End LR

⇥
10�4, 10�2

⇤
Linear Softmax Tanh Power [0.5, 2.5]

Table 5.4.: Hyperparameter search space of ResNet-50 for BigEarthNet image classi�cation.
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5.4.4. Scaling

To explore Propulate’s scaling behavior I continue to use the neural architecture use case.
Figure 5.8 shows the results for weak and strong linear scaling. The baseline con�guration
used two full nodes. Since each node has four GPUs, speedup and e�ciency is calculated
with respect to eight workers. For strong scaling, the total number of evaluations is �xed
at 512 and the number of workers, i.e., GPUs increases in steps of four. I average over three
runs with di�erent seeds and keep four workers per island while increasing the number
of islands. Speedup increases up to 128 workers, where we reach approximately half the
optimal value. This is an expected decline since each worker only processes few individuals,
so the variance in evaluation times leads to larger idle times of the faster workers when
they �nish all of their assigned generations before the �nal population synchronization at
the end. This ine�ciency can partially be avoided, by letting workers run for a speci�ed
time rather than a set number of generations. Additionally, as the number of workers
approaches the total number of evaluations, the randomly initialized evolutionary search
in turn approaches a random search. At the extreme of a single generation no evolutionary
operator can be used to inform the search. This means that the search performance is likely
to be worse than what the pure compute performance might suggest. It is still possible
to apply Propulate on these scales, but the other search parameters have to be adjusted
accordingly as shown in the weak scaling plot (see Figure 5.8 top). The parameter that is
normally given to Propulate by the user is the number of generations, independent of the
worker count. The early super-scalar behavior is likely due to the non-sequential baseline.
For small node counts, the performance is in�uenced by e�ects stemming from cluster
utilization beyond the use case studied here, like �le system congestion or inter-node
distance in the network. With larger node counts relative to total cluster size, these e�ects
average out or approach the worst case, which is consistent with the trend shown in
Figure 5.8. Weak e�ciency only drops to 95 % on average at our largest con�guration of
128 workers.

5.4.5. Nelder-Mead

Figure 5.9 compares the adapted Nelder-Mead against a sequential reference implementa-
tion. All runs perform 1000 function evaluations, with the default parameters of U = 1.0,
W = 2.0, d = 0.5, and f = 0.5. On the sphere and Rosenbrock functions, the reference
algorithm performs much better than the Propulate adapted one, with values smaller than
10�29, which are not shown. For the rest of the functions, the search result is of similar
quality. The adapted algorithm with a single worker is slightly slower than the reference
one. The parallel ones, with two and four workers, respectively, accelerate the process
without signi�cant loss of performance. In fact, the parallel runs sometimes produced a
result for Rosenbrock comparable to that of the reference algorithm, albeit less reliably.
Island sizes much larger than the dimension of the search space are probably ine�cient
since they will result in a lot of redundant sampling around the starting point.
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Figure 5.8.: Weak e�ciency (top) and strong speedup (bottom) relative to a baseline of
eight workers averaged over three runs.

Figure 5.9.: Comparison of the reference Nelder-Mead (blue) against the Propulate adapted
version with a single worker (red), two workers (orange) and four workers
(red). The bars show standard deviation over ten runs.
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5.5. Conclusion

5.5.1. Summary

I presented Propulate, our HPC-adapted platform for population based hyperparameter
search coordination using lazy synchronization. While initially intended for neural archi-
tecture search, or hyperparameter search in general, its generic design makes it extensible
and adaptable to any variable length. HPC task distribution work�ow, where the depen-
dencies between task steps can be fuzzy, such that hard synchronization barriers can be
softened. I demonstrated Propulates optimization e�cacy, its scaling behavior, and its
versatility. Propulate is being actively developed and improved and being used beyond the
limits of our own research group. Several published scienti�c works have made use of it
already [191, 192] and several more are in preparation.

5.5.2. Discussion

There are several noteworthy aspects of the presented results. In a previous version of
Propulate, used in referencing publications [191, 192], I used a coordinator-worker model.
Instead of the current implementation, where each worker generates a new solution
candidate locally and distributes its information to all other workers, there was a central
coordinator rank that held the population and generated new candidates. The workers
would request a new suggestion from the coordinator whenever they were free and report
their result back once they �nished evaluating the objective function. I abandoned this
design because it is less user-friendly and robust. The most convenient implementation
had one rank spawn an additional process, and the MPI rank hosting the coordinator would
then simply send messages to itself, with the target process given by message tag. This
exploits behavior that is dependent on the MPI implementation and may not be available
on some clusters.
Having a distinguished coordinator rank creates di�erent problems. For neural ar-

chitecture search problems, the availability of accelerator hardware is the determining
factor for how many worker ranks can be assigned to one node. If a single training is not
parallelized, one worker is con�gured per accelerator. One of these ranks instead being
used for coordination and breeding means the associated accelerator idles, which implies a
relatively large ine�ciency. Spawning a single additional rank on one of the participating
nodes is not usually limited by computational resources, as the CPUs are not expected to
be fully utilized. However, requiring the con�guration of an asymmetric distribution of
ranks over multiple nodes increases the barrier to entry. The default assumption for MPI
programs is that of single-program-multiple-data. The current implementation, where all
workers are equal is better adapted to this circumstance.

The current decentralized design avoids these problems. On top of that, it prevents
congestion at the beginning of a run. When all workers request a new candidate at the
same time, they may have to wait until the coordinator assigns them one.
The di�erence in wallclock time when comparing Propulate to Optuna stems from the

used communication technologies. Propulate sends updates and candidate suggestions
between workers using asynchronous MPI communication. It does not read from the
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�le system at all during an optimization run. Optuna, however, implements most of its
communication through a relational database on disk, which slows the process down
drastically. It has to avoid corruption of the database while workers read from and write
to it at arbitrary times. This e�ect is mitigated somewhat for the neural architecture use
case since a single evaluation of the objective function is more expensive. Propulate uses
parallel HDF5 for its checkpointing. In the beginning of a search, space for parameter data
and metadata is allocated and the responsibilities for each rank are assigned. If a search is
picked up from an existing checkpoint, the relevant data is read by each rank. After this
setup, each rank only touches the areas of the �le it has responsibility over and no further
communication is required.

5.5.3. Outlook

Several more algorithms might be suitable for adaptation to lazy synchronization [197,
198, 199, 200, 201]. In particular, Bayesian optimization techniques, which are widely used
for neural architecture search, still need to be included.

Beyond that, gray box techniques like successive halving, intelligent pruning, or perfor-
mance prediction based on partial training are promising avenues to reduce computational
cost and improve e�ciency. The latter two are the object of another bachelor thesis by
Vito Diercksen, which is currently in the process of being implemented. Another approach
to speeding up the evaluation of a single candidate is to assign more resources. Currently,
the degree of parallelization is capped by the limit of a single node. A third level in the
communication hierarchy of Propulate below the current lowest, from island and worker to
island, search worker, and evaluation worker for lack of better terms, would enable further
scaling by enabling data and/or model parallelism during the search. These techniques all
aim to improve the speed of evaluation, which only increases the impact of the e�cient
communication enabled by Propulate when compared to suites like Optuna.
Another established approach to increase the feasible number of evaluations is zero-

shot learning, like NASWOT [202], where model performance is estimated without going
through a training loop. While it is already possible to integrate these into the black box
objective function, I have not systematically investigated them so far. Related to this is
an approach uniquely enabled by Propulate. The training process of a neural network is
signi�cantly in�uenced by its weight initialization. In Propulate the initialization of indi-
viduals in later generations can be informed by the training of previous ones. Sometimes,
the random seed used to set the initial weights is already treated as a hyperparameter to be
optimized together with the model architecture and training setup, but here information is
available on improved parameters after partial optimization. Transplanting a good initial-
ization from a previously evaluated individual has the prospect of achieving �nal model
performance in later generations with fewer training iterations. Measuring the model
performance directly, without the need for surrogate model estimates or extrapolations or
training at full cost throughout the search process again increases e�ciency. The overhead
of these proxies can be discarded and the �nal model does not have to be re-trained from
scratch after obtaining a good set of hyperparameters.

Many challenges remain for solving the problem of hyperparameter optimization. The
choice of algorithm from a pool of thousands simply escalates the problem of hyperparam-
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eter selection to the functionally identical problem of search algorithm selection. Propulate
might be able to address this problem by employing a di�erent algorithm on each island
and letting them exchange information. Ideally, this could also include dynamically adapt-
ing search behavior, e.g., by scheduling the exploration vs. exploitation trade o�, adapting
island sizes and assigning more resources to better-performing samplers, or abandoning
irrelevant regions of the search space. A robust, standardized neural architecture search
benchmarking dataset would also help make transparent and informed recommendations
on how to approach a search for a given problem.

On a technical level, the problem of the size of the search space depending on the other
parameters in it remains. For example, di�erent training algorithms for the inner training
loop may have a di�erent number of parameters. Current workarounds solve this problem
through redundancy, which makes the search less e�cient. Using a �xed size embedding
for sampling, which is then projected into the actual hyperparameter space might be
another viable approach.
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This dissertation presented my work on biologically inspired machine learning techniques
applied to biological machine learning problems. In this chapter we will summarize and
recapitulate and provide some more context for the individual previous chapters with a focus
on the overarching context. We will also discuss future directions in a broader context beyond
what we have already provided in the individual chapters.

6.1. Discussion

Data science in general or machine learning more speci�cally, has been established as
another pillar of the natural sciences next to experiment, theory, and simulation. Machine
learning of molecular biology capitalizes on the progress of di�erent domains of language
processing, geometric learning, and image processing. However, these modern data
science technologies, in particular deep neural networks, necessitate the utilization of
large amounts of data. For example, the solution of some problems like protein structure
prediction has been enabled by the availability of vast numbers of both genetic sequences
and structurally resolved molecules. In areas where training data is less abundant, and
this situation is expected to persist for the foreseeable future, modern approaches can still
be applied. The sparse data that is available has to be utilized as e�ciently as possible in
order to transfer the progress of protein structure prediction to RNA structure prediction,
molecular function characterization, or molecular design. Solving these problems in turn
promises impactful new discoveries in industrial and medical applications.
The original research task of my scienti�c work was to leverage the attention mecha-

nism and transformer models for molecular structure prediction. Evolution has been a
main theme of my work in so far as machine learning approaches to biological questions
oftentimes endeavor to exploit information left behind in the training data by the evo-
lutionary processes that shaped them. However, traditionally used methods like direct
coupling analysis are stateless in the sense, that they produce an output from only a single
sequence alignment. Neural networks encode a memory of the data seen during training
in their weights. This enables generalization, transfer learning, and zero-shot predictions.
Comparing the current performance of neural networks on RNA problems with those

trained on proteins, or the di�erence in performance of the models presented in chapter 4
highlights the impact data sparsity has. In the more classical deep learning domains of
image classi�cation or text processing, there is at most a sparsity of labels. A language
model presented with enough data and with enough capacity might learn translation,
without having been explicitly shown corresponding pairs of expressions in di�erent
languages, given that this information is present in the training data. In more specialized
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areas like scienti�c machine learning applications, certain types of input training data are
already sparse.

In these settings, we expect the approaches we propose in chapter 3 and chapter 4, based
on self-supervised learning, robust and data-e�cient models, and better understanding of
the loss landscape to be useful beyond the biological applications we originally conceived
of them for.
Adding more complexity to the already di�cult problem of neural network training

exacerbates the already escalating problem of neural architecture search. Particularly
for a multi-stage training process as with a self-supervised pre-training, exploring the
hyper-parameter space manually becomes less e�ective. This circumstance sparked the
development of Propulate. Evolutionary optimization seems a natural �t for hyper-param-
eter search next to bayesian models. This closes the circle and brings evolution back from
being the data learned from to the driving mechanism.

Just like the wider machine learning �eld, neural architecture search is a rapidly devel-
oping area of research. There is a growing zoo of hyper-parameter suites, many of which
are surprisingly di�cult to deploy at as large a scale, as the problem of neural architecture
search seems to demand.

6.2. Further Research

We explored avenues for further research in the context of the isolated problems in the
respective individual chapters already. Tying everything together, loss scheduling or
task scheduling could be a way of improving self-supervised pre-training. Dynamically
adapting upstream task design and in particular task di�culty might make that search
space easier to explore and make it unnecessary to �nd a harder to hit sweet spot.

To perform hyper-parameter searches for this multi-stage process in particular, a parti-
tioning of the complete search space into a hierarchical structure promises large gains in
e�ciency. For a single generation pre-training, an exhaustive search of the much cheaper
to evaluate downstream model can be performed to convergence. This way the much
more expensive pre-training can be reused or rather not be undervalued by the algorithm,
because the hyper-parameters selected for the second stage happened not to match the
ones for the �rst stage well. The complete model in chapter 3 is even a three stage process:
pre-training, �netuning, and building of the downstream forest model. There are similar
multi-stage modeling processes distinct from self-supervised pre-training. One of these is
currently in preparation to be published using Propulate for its hyper-parameter search.
To my knowledge, none of the available tools covers this use-case. Likely because this
kind of partitioning would require coupling and communication between individuals or
trials, which is easier to facilitate in a design like that of Propulate.
In addition to the discussed topics, we have also conducted preliminary research on

related biological applications. Namely, gene expression network prediction[203, 204].
Currently traditional unsupervised machine learning techniques like di�erent clustering
algorithms or signal processing inspired ones like independent component analysis [205]
(ICA) are used. Independent component analysis was originally intended for source
separation. For its applications, e.g. speaker separation, neural networks have mostly
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succeeded it [206]. As in the other use-cases discussed, the unsolved problem in bringing
deep learning to this �eld is primarily one of data sparsity, but also of validation.

Since all extant forms of life are usually thought of to originate from a single common
ancestor, there is only a single tree of life. How many degrees of separation have to be
maintained to not over-estimate performance and how many are too much to consider
the data in distribution often seems to be determined arbitrarily. On sequence data, a
minimum sequence dissimilarity is often used to cluster the data [207]. One set of clusters
is used for training and another for validation or testing. The cluster de�nition is then
arbitrary, but for other types of data the boundaries are even more blurry.
The concept of evolution has been a driver on di�erent aspects of machine learning

progress. The two we examined in this thesis, extraction of structural information from
patterns caused by molecular evolution and evolution inspired scalable optimization, will
certainly cotinue to remain relevant.
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A. Appendix

A.1. Background

Figure A.1.: Protein building blocks by Bert Hubert [208]. Proteinogenic amino acids with
their respective tokens in the alphabet.
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A. Appendix

A.2. RNA Contact Prediction

Table A.1.: Extended results for RNA contact prediction

contacthead frozen

inpainting Loss 53.44 53.44 8.82 100.00 16.21 nan 3.84
inpainting PPV! 53.44 53.44 8.82 100.00 16.21 nan 3.59
inpainting
PPV!;0.5

53.44 53.44 8.82 100.00 16.21 nan 4.50

inpainting F1 47.33 47.33 9.05 97.62 16.57 3.59 3.57
inpainting MCC 36.16 36.16 10.31 59.92 17.59 5.37 4.74
jigsaw Loss 24.73 24.73 8.82 100.00 16.22 0.16 3.73
jigsaw PPV! 22.93 22.93 8.44 77.57 15.22 -2.83 3.27
jigsaw PPV!;0.5 22.93 22.93 8.44 77.57 15.22 -2.83 3.63
jigsaw F1 23.57 23.57 8.82 100.00 16.22 0.16 3.59
jigsaw MCC 23.70 23.70 8.83 99.98 16.23 0.81 3.76
contrastive Loss 53.11 53.11 8.82 100.00 16.21 nan 3.59
contrastive PPV! 53.18 53.18 8.82 100.00 16.21 nan 3.71
contrastive
PPV!;0.5

53.18 53.18 8.82 100.00 16.21 nan 3.79

contrastive F1 46.31 46.31 8.93 98.55 16.38 2.36 3.65
contrastive MCC 15.16 15.16 8.68 50.96 14.84 -0.51 3.70
bootstrap Loss 65.45 65.45 8.82 100.00 16.21 nan 3.85
bootstrap PPV! 65.38 65.38 8.82 100.00 16.21 nan 4.67
bootstrap
PPV!;0.5

65.38 65.38 8.82 100.00 16.21 nan 3.68

bootstrap F1 53.76 53.76 8.95 99.12 16.42 2.92 4.06
bootstrap MCC 26.97 26.97 10.15 42.32 16.37 3.56 4.08

contacthead �netuned

inpainting Loss 74.95 74.95 19.96 73.90 31.43 27.35 3.83
inpainting PPV! 84.33 84.33 19.23 72.02 30.36 25.78 5.49
inpainting
PPV!;0.5

84.33 84.33 19.23 72.02 30.36 25.78 4.54

inpainting F1 75.85 75.85 23.08 73.21 35.09 31.33 4.56
inpainting MCC 75.85 75.85 23.08 73.21 35.09 31.33 5.42
jigsaw Loss 61.34 61.34 16.50 75.10 27.05 22.17 4.28
jigsaw PPV! 67.31 67.31 15.50 77.33 25.83 20.88 4.04
jigsaw PPV!;0.5 67.31 67.31 15.50 77.33 25.83 20.88 4.93
jigsaw F1 60.76 60.76 19.34 66.85 30.00 24.56 4.88
jigsaw MCC 60.76 60.76 19.34 66.85 30.00 24.56 5.41
contrastive Loss 72.00 72.00 21.85 75.38 33.88 30.39 3.05
contrastive PPV! 84.01 84.01 18.84 71.18 29.79 24.97 3.80
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A.2. RNA Contact Prediction

Task + checkpoint
metric(s)

PPV!;0.5
/ %

PPV! / % PPV / % SEN / % F1 / % MCC / % Energy /
Wh

contrastive
PPV!;0.5

84.01 84.01 18.84 71.18 29.79 24.97 3.68

contrastive F1 67.50 67.50 26.35 67.90 37.96 33.52 3.65
contrastive MCC 68.85 68.85 26.15 68.82 37.90 33.59 3.80
bootstrap Loss 79.83 79.83 21.69 72.45 33.38 29.32 3.63
bootstrap PPV! 81.89 81.89 18.52 71.38 29.41 24.54 3.72
bootstrap
PPV!;0.5

81.89 81.89 18.52 71.38 29.41 24.54 3.77

bootstrap F1 69.49 69.49 30.49 61.95 40.87 35.71 3.74
bootstrap MCC 69.49 69.49 30.49 61.95 40.87 35.71 3.63

xgb frozen

inpainting
PPV!;0.5

83.72 79.90 78.71 24.08 36.88 41.04 3.90

inpainting PPV! 84.39 80.15 78.80 23.99 36.78 40.99 4.79
inpainting F1 70.46 70.46 53.77 28.62 37.35 35.18 2.59
inpainting MCC 74.06 73.80 61.25 27.98 38.42 37.88 3.47
jigsaw PPV!;0.5 87.08 43.93 87.08 4.78 9.07 19.26 3.81
jigsaw PPV! 89.69 46.11 89.69 4.43 8.44 18.86 4.58
jigsaw F1 26.01 26.01 18.35 16.90 17.60 9.99 3.63
jigsaw MCC 63.01 41.62 63.01 5.49 10.11 16.82 3.78
contrastive
PPV!;0.5

85.46 83.17 77.26 26.53 39.50 42.65 4.12

contrastive PPV! 84.58 82.02 77.69 26.83 39.88 43.04 3.74
contrastive F1 71.16 71.16 50.70 31.16 38.60 35.36 2.77
contrastive MCC 79.84 79.13 67.14 29.05 40.55 40.96 4.60
bootstrap
PPV!;0.5

87.07 81.44 79.90 23.68 36.53 41.06 3.78

bootstrap PPV! 86.29 80.92 79.65 24.11 37.01 41.37 3.34
bootstrap F1 73.43 73.09 56.12 28.54 37.84 36.14 3.17
bootstrap MCC 82.11 79.45 73.60 25.00 37.33 40.15 4.54

xgb �netuned

inpainting Loss
PPV!;0.5

81.89 81.89 57.13 47.15 51.67 47.73 3.87

inpainting Loss
PPV!

80.80 80.80 54.94 47.08 50.70 46.50 4.57

inpainting Loss F1 80.99 80.99 56.33 46.94 51.20 47.18 3.62
inpainting Loss
MCC

81.63 81.63 57.22 47.23 51.75 47.82 3.67

inpainting PPV!

PPV!;0.5

86.06 86.06 61.40 46.63 53.00 49.68 4.80
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Task + checkpoint
metric(s)

PPV!;0.5
/ %

PPV! / % PPV / % SEN / % F1 / % MCC / % Energy /
Wh

inpainting PPV!

PPV!

86.13 86.13 61.65 46.47 53.00 49.72 3.64

inpainting PPV!

F1
84.65 84.65 57.20 47.49 51.90 47.96 3.75

inpainting PPV!

MCC
85.36 85.36 59.18 46.95 52.36 48.71 3.30

inpainting
PPV!;0.5 PPV!;0.5

86.06 86.06 61.40 46.63 53.00 49.68 3.57

inpainting
PPV!;0.5 PPV!

86.13 86.13 61.65 46.47 53.00 49.72 3.64

inpainting
PPV!;0.5 F1

84.65 84.65 57.20 47.49 51.90 47.96 3.48

inpainting
PPV!;0.5 MCC

85.36 85.36 59.18 46.95 52.36 48.71 3.65

inpainting F1
PPV!;0.5

76.24 76.24 50.28 53.80 51.98 47.20 3.45

inpainting F1
PPV!

78.10 78.10 52.71 53.00 52.86 48.28 3.79

inpainting F1 F1 78.93 78.93 52.81 52.82 52.81 48.25 3.67
inpainting F1
MCC

78.93 78.93 52.81 52.82 52.81 48.25 3.74

inpainting MCC
PPV!;0.5

76.24 76.24 50.28 53.80 51.98 47.20 2.81

inpainting MCC
PPV!

78.10 78.10 52.71 53.00 52.86 48.28 3.79

inpainting MCC
F1

78.93 78.93 52.81 52.82 52.81 48.25 3.43

inpainting MCC
MCC

78.93 78.93 52.81 52.82 52.81 48.25 3.73

jigsaw Loss
PPV!;0.5

66.80 66.80 46.06 35.42 40.05 35.42 4.61

jigsaw Loss PPV! 66.41 66.41 46.07 35.41 40.04 35.42 4.94
jigsaw Loss F1 65.13 65.13 44.75 35.72 39.73 34.86 2.74
jigsaw Loss MCC 65.13 65.13 44.75 35.72 39.73 34.86 2.65
jigsaw PPV!

PPV!;0.5

68.46 68.46 46.20 41.47 43.71 38.65 4.56

jigsaw PPV!

PPV!

69.11 69.11 45.74 41.57 43.55 38.43 4.91

jigsaw PPV! F1 68.91 68.91 45.90 41.58 43.63 38.53 2.78
jigsaw PPV!

MCC
68.91 68.91 45.90 41.58 43.63 38.53 3.64
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Task + checkpoint
metric(s)

PPV!;0.5
/ %

PPV! / % PPV / % SEN / % F1 / % MCC / % Energy /
Wh

jigsaw PPV!;0.5
PPV!;0.5

68.46 68.46 46.20 41.47 43.71 38.65 5.44

jigsaw PPV!;0.5
PPV!

69.11 69.11 45.74 41.57 43.55 38.43 4.50

jigsaw PPV!;0.5 F1 68.91 68.91 45.90 41.58 43.63 38.53 2.46
jigsaw PPV!;0.5
MCC

68.91 68.91 45.90 41.58 43.63 38.53 2.75

jigsaw F1 PPV!;0.5 63.33 63.33 41.27 41.55 41.41 35.72 4.13
jigsaw F1 PPV! 62.75 62.75 40.91 41.73 41.32 35.58 4.60
jigsaw F1 F1 62.68 62.68 40.46 41.78 41.11 35.32 2.89
jigsaw F1 MCC 62.68 62.68 40.46 41.78 41.11 35.32 2.79
jigsaw MCC
PPV!;0.5

63.33 63.33 41.27 41.55 41.41 35.72 4.07

jigsaw MCC
PPV!

62.75 62.75 40.91 41.73 41.32 35.58 4.71

jigsaw MCC F1 62.68 62.68 40.46 41.78 41.11 35.32 3.62
jigsawMCCMCC 62.68 62.68 40.46 41.78 41.11 35.32 3.82
contrastive Loss
PPV!;0.5

74.18 74.18 47.47 50.58 48.97 43.89 3.77

contrastive Loss
PPV!

74.18 74.18 47.47 50.58 48.97 43.89 3.65

contrastive Loss
F1

74.25 74.25 47.55 50.72 49.09 44.01 2.86

contrastive Loss
MCC

74.25 74.25 47.55 50.72 49.09 44.01 3.73

contrastive PPV!

PPV!;0.5

84.14 84.14 58.19 44.74 50.59 46.96 2.69

contrastive PPV!

PPV!

84.71 84.71 59.83 43.91 50.65 47.32 3.62

contrastive PPV!

F1
81.95 81.95 49.32 46.61 47.93 43.07 3.43

contrastive PPV!

MCC
84.14 84.14 58.19 44.74 50.59 46.96 3.67

contrastive
PPV!;0.5 PPV!;0.5

84.14 84.14 58.19 44.74 50.59 46.96 3.63

contrastive
PPV!;0.5 PPV!

84.71 84.71 59.83 43.91 50.65 47.32 3.85

contrastive
PPV!;0.5 F1

81.95 81.95 49.32 46.61 47.93 43.07 3.68

contrastive
PPV!;0.5 MCC

84.14 84.14 58.19 44.74 50.59 46.96 3.04
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Task + checkpoint
metric(s)

PPV!;0.5
/ %

PPV! / % PPV / % SEN / % F1 / % MCC / % Energy /
Wh

contrastive F1
PPV!;0.5

72.64 72.64 47.54 51.50 49.44 44.38 2.94

contrastive F1
PPV!

72.64 72.64 48.19 51.38 49.73 44.73 3.53

contrastive F1 F1 73.15 73.15 48.05 51.38 49.66 44.64 3.75
contrastive F1
MCC

73.15 73.15 48.05 51.38 49.66 44.64 2.86

contrastive MCC
PPV!;0.5

75.59 75.59 47.49 52.51 49.88 44.83 2.97

contrastive MCC
PPV!

76.36 76.36 47.71 52.51 50.00 44.97 3.52

contrastive MCC
F1

75.72 75.72 47.45 52.49 49.85 44.79 4.54

contrastive MCC
MCC

75.72 75.72 47.45 52.49 49.85 44.79 2.61

bootstrap Loss
PPV!;0.5

80.80 80.80 52.03 51.72 51.87 47.23 3.70

bootstrap Loss
PPV!

80.35 80.35 50.85 51.95 51.39 46.64 3.13

bootstrap Loss F1 79.58 79.58 50.38 52.18 51.27 46.47 3.10
bootstrap Loss
MCC

79.58 79.58 50.38 52.18 51.27 46.47 2.85

bootstrap PPV!

PPV!;0.5

84.01 84.01 59.26 43.42 50.12 46.75 3.44

bootstrap PPV!

PPV!

84.33 84.33 61.76 42.88 50.61 47.68 3.19

bootstrap PPV! F1 83.69 83.69 58.69 43.63 50.05 46.58 2.71
bootstrap PPV!

MCC
84.01 84.01 59.26 43.42 50.12 46.75 3.85

bootstrap
PPV!;0.5 PPV!;0.5

84.01 84.01 59.26 43.42 50.12 46.75 3.71

bootstrap
PPV!;0.5 PPV!

84.33 84.33 61.76 42.88 50.61 47.68 4.64

bootstrap
PPV!;0.5 F1

83.69 83.69 58.69 43.63 50.05 46.58 2.69

bootstrap
PPV!;0.5 MCC

84.01 84.01 59.26 43.42 50.12 46.75 3.65

bootstrap F1
PPV!;0.5

74.69 74.69 49.47 48.51 48.99 44.11 3.72

bootstrap F1 PPV! 74.31 74.31 48.66 48.50 48.58 43.61 3.76
bootstrap F1 F1 74.69 74.69 49.47 48.51 48.99 44.11 3.66
bootstrap F1 MCC 74.69 74.69 49.47 48.51 48.99 44.11 2.68
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Task + checkpoint
metric(s)

PPV!;0.5
/ %

PPV! / % PPV / % SEN / % F1 / % MCC / % Energy /
Wh

bootstrap MCC
PPV!;0.5

74.69 74.69 49.47 48.51 48.99 44.11 3.73

bootstrap MCC
PPV!

74.31 74.31 48.66 48.50 48.58 43.61 2.92

bootstrap MCC F1 74.69 74.69 49.47 48.51 48.99 44.11 2.74
bootstrap MCC
MCC

74.69 74.69 49.47 48.51 48.99 44.11 3.32

A.3. Loss Scheduling

Figure A.2.: VOC images. The left-most column shows input image (top) and label (bottom).
The rest are from left to right: pretrained, CE, WCE, DL, FL, CEMP, DLNWCE,
DLAWCE. Top and bottom row show results from FCN and DeepLabV3
models, respectively.
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Figure A.3.: Cityscapes images. The left-most column shows input image (top) and label
(bottom). The rest are from left to right: CE, WCE, DL, FL, CEMP, DLNWCE,
DLAWCE. Top and bottom row show results from FCN and DeepLabV3
models, respectively. Since we did not have a larger dataset with the same
annotated classes, there is no pretrained model.

A.4. Propulate
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A.4. Propulate

Figure A.4.: Evolution of the population over wallclock time. Propulate on the left versus
Optuna on the right. Objective function values in blue use the left scale.
Distances to the global optimum in purple use the right scale. Pastel dots show
each individual candidate values. Solid (dashed) lines show the minimum
(median) value achieved so far. Maximum function value and distance are
shown in black. Both optimizers perform 38 912 evaluations.

115





List of Figures

2.1. In yellow: Structure and sequence of 1a9l [23]. Green, red, blue, and
orange: RNA residues (bases) and their corresponding tokens or letters.
Bases in the structure are shown in purple. . . . . . . . . . . . . . . . . . 6

2.2. Protein synthesis in the ribosome (green) translating an mRNA sequence
into an amino acid sequence using the translation matrix implemented by
tRNA. Adapted from wikimedia [25]. . . . . . . . . . . . . . . . . . . . . 7

2.3. MSA for RF00957[48], a microRNA family. The red column highlights a
conserved position, the blue columns highlight a co-evolving pair. . . . . 10

2.4. Feed-forward network with two layers processing a batch of eight input
vectors with an input dimension of seven. The latent and output dimension
are twelve and three, respectively, and the activation functions are a ReLU
and a sigmoid function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5. Commonly used activation functions . . . . . . . . . . . . . . . . . . . . 15
2.6. Attention mechanism: Query, key and value . . . . . . . . . . . . . . . . 18
2.7. Decision tree example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1. Distribution of number of sequences (left) and sequence length (right) per
MSA in the upstream dataset. . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2. Illustration of the upstream training including augmentations and label
generation for pre-training tasks, backbone model, and task heads. . . . 32

3.3. Illustration of the inpainting task. . . . . . . . . . . . . . . . . . . . . . . 33
3.4. Illustration of the jigsaw task. . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5. Illustration of the contrastive task. . . . . . . . . . . . . . . . . . . . . . . 34
3.6. Illustration of the bootstrapping task. . . . . . . . . . . . . . . . . . . . . 34
3.7. Downstream training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.8. Upstream loss components over the course of pre-training. . . . . . . . . 43
3.9. Downstream model performance for di�erent pre-training task combi-

nations and downstream training procedures in terms of top-! precision
(PPV!) and MCC on the test set. The red, orange, and blue lines show the
DCA baseline, the CoCoNet baseline, and our best model, respectively.
Squares mark the score averaged over the di�erent early-stopping metrics.
The error bars show the best and worst score. Circles and triangles for
the �ne-tuned XGBoost instead show the score averaged over global and
top-! style metrics, respectively. . . . . . . . . . . . . . . . . . . . . . . . 44

3.10. Macro-top-(: · !) precision. The light dotted lines show individual samples
of the test set. The thick lines show the average. DCA, CoCoNet, and
inpainting tuned XGBoost are shown in red, orange, and blue, respectively.
The band around the average shows standard deviation. . . . . . . . . . . 45

117



List of Figures

3.11. Downstream performance for the �ne-tuned inpainting XGBoost model
in terms of top-! precision and MCC. The metrics used during �netuning
are listed along the y-xis and the metrics used during XGBoost training
are listed along the x-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.12. Absolute values of regression model parameters (top) and XGBoost feature
importance scores (bottom) for a selection of downstream models with
frozen (left) and �ne-tuned (right) backbone, respectively. The regression
models are pre-trained with inpainting and bootstrapping and optimized
for �1 score. The XGBoost models are pre-trained with inpainting and
optimized for top-! precision. The �ne-tuned XGBoost model uses top-!
precision during both �netuning and actual downstream training. . . . . 47

3.13. 3D visualization of an RNA (PDB: 3ndb). Green dashed lines indicate
correctly predicted inter-residue contacts, yellow ones refer to false positives. 47

3.14. Contact map (PDB: 3ndb) – unfrozen vs. frozen. The upper left part shows
the top ! contact predictions for the best model with unfrozen backbone,
the lower right one for the best model with frozen backbone. Green pixels
refer to true positives, yellow to false positives, light blue to false negatives,
and dark blue to true negatives. . . . . . . . . . . . . . . . . . . . . . . . 48

3.15. 3D visualization of an RNA (PDB: 5di2). Green dashed lines indicate
correctly predicted inter-residue contacts, yellow ones refer to false positives. 49

3.16. Contact map (PDB: 5di2) - unfrozen vs. frozen. The upper left part shows
the top ! contact predictions for the best model with unfrozen backbone,
the lower right one for the best model with frozen backbone. Green pixels
refer to true positives, yellow to false positives, light blue to false negatives,
and dark blue to true negatives. . . . . . . . . . . . . . . . . . . . . . . . 50

4.1. Idealized schematic depictions of reliability diagrams to compare the con�-
dence of the model output to the ground-truth accuracy for each probability. 55

4.2. Idealized loss landscapes. A landscape with a broad thus easy to �nd shal-
low minimum with a narrow global minimum (left) and a noisy landscape
where the barrier between the two minima is removed, but the global
minumum has shifted slightly (right). . . . . . . . . . . . . . . . . . . . . 56

4.3. Di�erent loss scheduling schemes. Shown is the cross entropy loss contri-
bution, i.e., weightFCE, over the fraction of total optimization epochs. . 58

4.4. Relative class frequencies of evaluated datasets. The class distribution of
VOC is similar to the one of SBD . . . . . . . . . . . . . . . . . . . . . . . 59

4.5. Model performance in terms of recall over calibration score. . . . . . . . 62

5.1. Schematic illustration of the hyperparameter optimization process . . . . 66
5.2. Illustration of the evaluation progress of a naively parallelized evolutionary

optimizer with four workers along the y-axis. Time progresses along the
x-axis. The blue boxes represent the evaluation of a single candidate. The
red arrows show idle time caused by the synchronization barriers at the
dashed lines after each generation. . . . . . . . . . . . . . . . . . . . . . . 69

5.3. Asynchronous propagation . . . . . . . . . . . . . . . . . . . . . . . . . . 69

118



List of Figures

5.4. Asynchronous migration . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.5. Asynchronous pollination . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.6. Propulate communication setup. Workers on the same island share an

island communicator. All workers share a global communicator, which is
used for migration and pollination. . . . . . . . . . . . . . . . . . . . . . 73

5.7. Benchmark function optimization performance . . . . . . . . . . . . . . 81
5.8. Weak and strong scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.9. Comparison of the reference Nelder-Mead (blue) against the Propulate

adapted version with a single worker (red), two workers (orange) and four
workers (red). The bars show standard deviation over ten runs. . . . . . 84

A.1. Protein building blocks by Bert Hubert [208]. Proteinogenic amino acids
with their respective tokens in the alphabet. . . . . . . . . . . . . . . . . 107

A.2. VOC images. The left-most column shows input image (top) and label
(bottom). The rest are from left to right: pretrained, CE, WCE, DL, FL,
CEMP, DLNWCE, DLAWCE. Top and bottom row show results from FCN
and DeepLabV3 models, respectively. . . . . . . . . . . . . . . . . . . . . 113

A.3. Cityscapes images. The left-most column shows input image (top) and
label (bottom). The rest are from left to right: CE, WCE, DL, FL, CEMP,
DLNWCE, DLAWCE. Top and bottom row show results from FCN and
DeepLabV3 models, respectively. Since we did not have a larger dataset
with the same annotated classes, there is no pretrained model. . . . . . . 114

A.4. Rastrigin optimization example . . . . . . . . . . . . . . . . . . . . . . . 115

119





List of Tables

3.1. Hyperparameters of the neural networks for pre-training and �netuning. 36
3.2. XGBoost model hyperparameters. . . . . . . . . . . . . . . . . . . . . . . 37
3.3. Backbone hyperparameter search limits. . . . . . . . . . . . . . . . . . . 38
3.4. XGBoost hyperparameter search limits. . . . . . . . . . . . . . . . . . . . 38
3.5. Pre-training task performance and energy consumption . . . . . . . . . . 40
3.6. Pearson correlation coe�cients for ASA prediction. . . . . . . . . . . . . 42

4.1. Results of the empirical evaluation of the FCN and DeepLabV3 neural net-
work architectures using all loss functions on the VOC, SBD, andCityscapes
datasets. Losses pre�xed with W are class-weighted. Losses su�xed with
MP are max-pooled. Two losses separated by N or A are naïvely or alter-
natingly scheduled respectively. CE and DL denote cross entropy and dice
loss, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1. Benchmark functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2. Grid search parameters. Using 144 workers distributed over two nodes. . 79
5.3. Propulate hyperparameters for benchmark function optimization. . . . . 80
5.4. Hyperparameter search space of ResNet-50 for BigEarthNet image classi-

�cation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.1. Extended results for RNA contact prediction . . . . . . . . . . . . . . . . 108

121





List of Algorithms

1. Pseudocode for a genetic optimization algorithm . . . . . . . . . . . . . . 22
2. Pseudocode for a CMA-ES optimization algorithm . . . . . . . . . . . . . 23
3. Pseudocode for a bayesian optimization algorithm . . . . . . . . . . . . . 24

123





Acronyms

F1 F1 score. 21, 36, 63, 108–113

ACC accuracy. 20, 63

ASA accessible surface area. 41, 42, 51, 121

CAL calibration score. 60, 63

CEMP max pooled cross entropy. 57, 63, 113, 114, 119

CE cross entropy loss. 16, 34, 56–58, 63, 113, 114, 119, 121

DCA direct coupling analysis. 10, 28–31, 40, 44, 45, 117

DI direct information. 11

DL dice loss. 63, 113, 114, 119, 121

ECE expected calibration error. 60

ELU exponential linear unit. 14

FL focal loss. 37, 57, 63, 113, 114, 119

FN false negative prediction. 20, 21, 31

FP false positive prediction. 20, 21, 31

GELU gaussian error linear unit. 14

IoU intersection over union. 57

MAE mean absolute error. 20

MCC Matthews correlation coe�cient. 31, 36, 40, 44, 108–113, 117

MI mutual information. 9–11

MSA multiple sequence alignment. 9, 10, 27–34, 38–41, 51, 52, 117

MSE mean square error. 14, 20

PPV precision or positive predictive value. 21, 36, 40, 44, 108–113, 117

ReLU recti�ed linear unit. 13, 14, 59, 117

125



Acronyms

SEN recall or sensitivity. 21, 63, 109–113

SSE summed square error. 19

TN true negative prediction. 20, 31

TP true positive prediction. 20, 21, 31

WCE class weighted cross entropy. 56, 63, 113, 114, 119

WDL class weighted dice loss. 57, 63

AI arti�cial intelligence. 60

CART classi�cation and regression tree. 19

CMA-ES covariance matrix adaptation evolution strategy. 23

CNN convolutional neural network. 17, 29

CPU central processing unit. 25

DNA deoxyribonucleic acid. 5, 7

GNN geometric neural network. 17

GPU graphics processing unit. 11, 25, 34, 38, 39, 60

HPC high performance computing. 3, 25, 65, 66, 68, 85

HPO hyperparameter optimization. 4, 21, 65–67, 71

ICA independent component analysis. 90

LLM large language model. 13

LSTM long short term memory. 17, 24

MD molecular dynamics. 8, 67

ML machine learning. 11–13

MLP multilayer perceptron. 13

MPI message passing interface. 25, 67, 68, 70, 75, 85

NAS neural architecture search. 4, 21, 24, 65, 67, 77

NCCL NVidia collective communications library. 25

126



Acronyms

NMR nuclear magnetic resonance. 8

PSO particle swarm optimization. 21, 67

RCCL ROCm communication collectives library. 25

RNA ribonucleic acid. 3, 5–7, 10, 27–30, 40–42, 47, 49, 52, 117, 118

RNN recurrent neural network. 17

SGD stochastic gradient descent. 82

TPE tree structured parzen estimator. 24

TPU tensor processing units. 11

127


	Declaration
	Abstract
	Zusammenfassung
	Acknowledgements
	List of Publications
	1 Introduction
	1.1 Motivation
	1.2 Research Questions
	1.3 Contributions
	1.4 Outline

	2 Background
	2.1 Biology
	2.1.1 Evolution and Molecular Biology
	2.1.2 Molecular Sequence, Structure, and Function
	2.1.3 Structure Determination

	2.2 Machine Learning
	2.2.1 Learning Paradigms
	2.2.2 Classification and Regression
	2.2.3 Neural Networks
	2.2.4 Random Forest Models
	2.2.5 Model Evaluation

	2.3 Hyperparameter Optimization
	2.3.1 Particle Swarm Optimization
	2.3.2 Evolutionary Optimization
	2.3.3 Covariance Matrix Adaptation Evolution Strategy
	2.3.4 Bayesian Optimization
	2.3.5 Reinforcement Learning
	2.3.6 Neuro-evolution

	2.4 High Performance Computing

	3 Data Efficient RNA Contact Prediction
	3.1 Introduction
	3.2 Related Work
	3.2.1 Direct Coupling Analysis
	3.2.2 Neural-Network Based Approaches
	3.2.3 End-to-End Models

	3.3 Method
	3.3.1 Data
	3.3.2 Metrics
	3.3.3 Self-Supervised Upstream Training
	3.3.4 Finetuning and Downstream Training
	3.3.5 Hyperparameter Search
	3.3.6 Parallelization Strategy of Pre-Training
	3.3.7 Computing Environment

	3.4 Results
	3.4.1 Upstream Performance
	3.4.2 Downstream Performance

	3.5 Discussion
	3.5.1 Of Note
	3.5.2 Outlook


	4 Loss Scheduling
	4.1 Introduction
	4.2 Related Work
	4.2.1 Class Imbalance
	4.2.2 Semantic Segmentation
	4.2.3 Model Calibration
	4.2.4 Loss Landscapes
	4.2.5 Dice Loss
	4.2.6 Focal Loss
	4.2.7 Loss Max-Pooling

	4.3 Method
	4.3.1 Loss Scheduling
	4.3.2 Model Architecture
	4.3.3 Data
	4.3.4 Losses
	4.3.5 Metrics
	4.3.6 Computing Environment

	4.4 Results
	4.5 Discussion

	5 Propulate: Massively Parallel Population Based Optimization
	5.1 Introduction
	5.2 Related Work
	5.3 Method
	5.3.1 Lazy Synchronization for Parallel Search
	5.3.2 Splitting the Population
	5.3.3 Alternative Algorithms
	5.3.4 Implementation
	5.3.5 Computing Environment
	5.3.6 Performance Evaluation

	5.4 Results
	5.4.1 Propulate Parameters
	5.4.2 Optimization Benchmark Functions
	5.4.3 Neural Architecture Search for Remote Sensing Classification
	5.4.4 Scaling
	5.4.5 Nelder-Mead

	5.5 Conclusion
	5.5.1 Summary
	5.5.2 Discussion
	5.5.3 Outlook


	6 Conclusion
	6.1 Discussion
	6.2 Further Research

	Bibliography
	A Appendix
	A.1 Background
	A.2 RNA Contact Prediction
	A.3 Loss Scheduling
	A.4 Propulate

	List of Figures
	List of Tables
	Acronyms

