KIT | KIT-Bibliothek | Impressum | Datenschutz

Autoencoders for real-time SUEP detection

Chhibra, Simranjit Singh; Chernyavskaya, Nadezda; Maier, Benedikt 1; Pierini, Maurzio; Hasan, Syed
1 Institut für Experimentelle Teilchenphysik (ETP), Karlsruher Institut für Technologie (KIT)

Abstract:

Confining dark sectors with pseudo-conformal dynamics can produce Soft Unclustered Energy Patterns (SUEP), at the Large Hadron Collider: the production of dark quarks in proton–proton collisions leading to a dark shower and the high-multiplicity production of dark hadrons. The final experimental signature is spherically symmetric energy deposits by an anomalously large number of soft Standard Model particles with a transverse energy of O(100) MeV. Assuming Yukawa-like couplings of the scalar portal state, the dominant production mode is gluon fusion, and the dominant background comes from multi-jet QCD events. We have developed a deep learning-based Anomaly Detection technique to reject QCD jets and identify any anomalous signature, including SUEP, in real-time in the High-Level Trigger system of experiments like the Compact Muon Solenoid at the Large Hadron Collider. A deep convolutional neural autoencoder network has been trained using QCD events by taking transverse energy deposits in the inner tracker, electromagnetic calorimeter, and hadron calorimeter sub-detectors as 3-channel image data. Due to the sparse nature of the data, only ∼0.5% of the total ∼ 300 k image pixels have nonzero values. ... mehr


Volltext §
DOI: 10.5445/IR/1000170102
Veröffentlicht am 18.04.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Experimentelle Teilchenphysik (ETP)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2023
Sprache Englisch
Identifikator KITopen-ID: 1000170102
Umfang 9 S.
Vorab online veröffentlicht am 23.06.2023
Nachgewiesen in Dimensions
arXiv
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page