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Vorwort

Die Seminarreihe Mobile Computing und Ubiquitäre Systeme existiert seit dem Winter-
semester 2013/2014. Seit diesem Semester findet das Proseminar Mobile Computing am
Lehrstuhl für Pervasive Computing System statt.

Das Proseminar Mobile Computing wird seit dem Wintersemester 2013/2014 in jedem
Semester durchgeführt. Seit dem Wintersemester 2003/2004 werden die Seminararbeiten
als KIT-Berichte veröffentlicht. Ziel der Seminarreihe ist die Aufarbeitung und Diskussion
aktueller Forschungsfragen.

Dieser Seminarband fasst die Arbeiten der Seminare des Sommersemesters 2023 zusam-
men. Die Themen der hier zusammengefassten Aufsätze umfasst die Themen ”Neural Net-
work Quantization”, ”Gaussian Process Regression”, ”Active Mobile Exoskeletons”, ”Path
Planning for WSN Sensor Nodes” und ”Investigating AI Techniques to Play Games”. Wir
danken den Studierenden für ihren besonderen Einsatz, sowohl während des Seminars als
auch bei der Fertigstellung dieses Bandes.

Karlsruhe, den 27. Februar 2024 Alexander Studt
Paul Tremper

Chaofan Li
Haibin Zhao
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Investigating Artificial Intelligence techniques to
play Poker

Bastian Franze

Karslruher Institut für Technologie, Karlsruhe, Germany
bastian.franze@student.kit.edu

Abstract Poker, like many games, is being used to measure the progress
of artificial intelligence (AI). The particular problem with poker is in-
complete information. Research in this area began with a game theory
approach by Nash, who tried to find the optimal move. This was fol-
lowed by the first hard-coded programs such as Loki, which were soon
extended by neural networks to create programs such as Poki. Liberius
beats professional players in two-player games by calculating blueprint
strategies for the whole game, then solving the subgames to improve itself
later to fix potential weaknesses. The current state-of-the-art approach,
Pluribus, is capable of winning 6-player Texas Holdem unlimited against
professional players. The Pluribus strategy is computed by self-play and
improved during the game.

1 Introduction

Over the past few decades, many games such as chess, go or poker have been used
to track the progress of AI and to benchmark its performance. Poker is widely
used due to the nature of incomplete information and competitive multiplayer
character in game theory[1] [2] and computer science [3] to provide explanations
and examples on research on incomplete information scenarios. Over the past
decade, AI capabilities have increased in complexity, playing poker with fewer
constraints and winning at a high quality against professional players with sig-
nificant winnings.
In game theory, a Nash equilibrium is found for a simplified version of three-
player poker. A Nash equilibrium models a state in which no player can gain
by unilaterally changing his strategy. This approach has limitations due to the
increasing computational complexity of increasing the number of players or re-
moving restrictions.
At the end of the 20th century, expert systems like Loki were created. These
were strictly algorithmic AIs with some probabilistic modelling of opponents.
These basic algorithms were soon improved with AIs like Poki. They mainly
improved by modelling the opponents via a neural network to better adapt to
their behaviour. Such AIs were not able to beat professional human players, but
were able to get some results against average human players.
Libratus was one of the first poker AIs to defeat professional players in heads-
up, two-handed no-limit texas hold’em. To achieve this, Libratus uses a pre-
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2 B. Franze

calculated blueprint strategy, which it adapts based on the current game situa-
tion, and a self-improving algorithm to counter any weaknesses in the blueprint
strategy.
The current state-of-the-art approach, Pluribus, is capable of beating profes-
sional players in six-player no-limit texas hold’em. This has been achieved by
creating a blueprint strategy for self-play. During play, Pluribus tries to improve
its current blueprint strategy by searching for a better strategy based on the
current game situation. To achieve this, Pluribus uses a version of Monte Carlo
Counterfactual Regret Minimisation (MCCRF) to compute its strategy.

2 Early research

Papp’s master’s thesis [4] gives a good example of a basic expert system. Expert
systems are designed to react to predefined rules and are quite common. This
requires a good knowledge and modeling of the current gamestate and the spe-
cific rules of the game. Implementations of such expert systems can vary from
simple if statements based on one’s own hand, to look-up tables that calculate
the potential of one’s own hand combined with randomised actions, to a the-
oretical Nash equilibrium. Due to the static nature of such an expert system,
an experienced human player has a good chance of beating even complex im-
plementations. Such expert systems are often improved by extending them with
modern AI approaches. In game theory, ideal expert strategies are calculated
using the Nash equilibrium. This means that no player can gain an advantage
by switching strategy single-sided. Such approaches are limited to game theory
due to the high computational cost.

2.1 Nash equilibrium

An equilibrium strategy is a list of actions for each player in which no player
can improve by switching to another strategy.
An equilibrium strategy was found by Nash [1] for a simplified version of a three-
player version of poker. He made the following simplifications in his example:

1. Every hand consists of one card
2. Each card is either low or high
3. Two chips are used to ante, call, or open
4. The player play in rotation till eighter everybody had the chance to call on

an opened game or every player passed
5. The pot is divided equally among the highest hands equally
6. If no one bets the antes a retrieved

To calculate Nash equilibria, you need to model different game scenarios and cal-
culate the payoffs of different strategies. There is no general formula. This makes
using Nash equilibria to solve poker difficult. For this scenario, an equilibrium
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Investigating Artificial Intelligence techniques to play Poker 3

strategy can be calculated using the given constraints. Nash mentions that be-
cause of the card constraint (Constraint #2) and the game ending condition
(Constraint #4) it is pointless to pass with a high on the last move. Therefore
the game can be reduced further. Based on the restrictions and the reduction of
the pass, Nash created a table 2.1 showing the game with all possible moves.

First Move Second Move

Player I
Open on high
Open on low

Call III on low
Call II on low
Call II and III on low

Player II
Cal I on low
Open on high
Open on low

Call III on low
Call III and I on low

Player III
Open on low
Call I on low
Call II on low

Not a valid move

Due to the limited number of possible actions each player can take and the lim-
ited duration of the game, it is possible to further restrict the number of actions
that lead to an equilibrium[5].

2.2 Loki

A more complete approach was explained in detail in the master’s thesis of Papp
[4] and in the book ”The challenge of Poker” [6]. The expert system developed by
papp, with its good documentation and continuous development, will serve as an
example for early software expert systems. Loki gives a good example of poker
programs without the implementation of modern AI technologies. Systems like
Loki are the most common form of poker AIs. If you turn on your computer and
play against a computer, chances are high that the AI you encounter will work
in a similar way. Loki consists of three components: hand evaluation, betting
strategy and opponent modelling, as shown in Figure 1.

Hand evaluation To evaluate the hand, Loki’s performs two main steps, calcu-
lating the current hand strength, which describes the probability that the hand
is the strongest at the current state of the game, and calculating the hand’s po-
tential, which describes the probability that the hand will become the strongest
as the game progresses.

Strength is calculated based on pre-calculated win rates for each starting hand.
Then the probability of each other starting hand interacting positively with the
current cards on the board is assessed. For multiplayer, this method needs to
be extended by the number of opponents and weighted based on the opponent
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4 B. Franze

Figure 1. Overview of Lokis system provided by Papp[4]. This figure shows how the
different modules of Loki work together, how they interact and how they influence each
other.

models. To get the potential of the hand, the negative and positive potential is
calculated with up to two cards lookahead in order to assess the next rounds and
thus get a more precise view of the possibility of holding the strongest hand at
the moment. When playing with multiple opponents, models and hand strength
must be included, which increases the complexity of the calculation.

Betting strategy Loki’s betting strategy is mainly based on it’s calculated
hand strength and hand potential. The strategy is also influenced by hardcoded
factors such as the initial bet and manoeuvres such as semi-bluffing. Loki’s bet-
ting and strategy does not take into account the behaviour of his opponents
and therefore does not take advantage of their weaknesses, saving complexity in
multiplayer scenarios.

Opponent modeling Opponents are modelled by Loki using weight arrays.
The weight is adjusted based on the opponent’s actions and their frequency.
Loki’s opponent modelling does not take into account how recently the actions
were played and the covariance of each opponent. Papp[4] himself mentions that
opponent modelling is one of the biggest opportunities for improvement and a
potential weakness of Loki.

Improvements Improvements [7] have been made to the betting system by
applying randomised actions, adapting the reweighting system to use probability
triples, and using simulation to adjust the value of the bet. This more randomised

4



Investigating Artificial Intelligence techniques to play Poker 5

and statistical approach further improves the performance of Loki by making it
less predictable and increasing the number of scenarios evaluated.

2.3 Limitations

The first approaches encountered inherent limitations. Nash equilibrium is prov-
ing to be a robust tool for formulating equilibrium strategies in incomplete infor-
mation games. However, the complex interplay of computational complexity and
the scarcity of straightforward strategy elimination methods makes the compu-
tation of Nash equilibria in complex scenarios a formidable task.
When dealing with expert systems that rely on probability tables and game
state driven decisions, the challenge of modelling opponents while seamlessly in-
tegrating their behaviour and strategies into one’s own optimisation framework
becomes obvious. The lack of understanding of hidden information and the dy-
namics of static configurations creates vulnerabilities in systems such as Loki,
allowing for potential exploitation. In response, contemporary AI methodologies
have shifted towards a paradigm centred on the analysis of hidden data, a focus
that aims to strengthen strategic decision-making in a way that transcends the
limitations of its predecessors.

3 Modern AI appraoches

Poki [6] serves as a compelling case study in the transition to modern AI frame-
works. Billings [6] extended the foundation of Loki-2 [7] by integrating neural
network-based opponent modelling into the architecture that created Poki. This
development aimed to address the challenges of interpreting the hidden infor-
mation in the game by modelling opponents and their behaviour.
Liberius [8] gives the example of a modern AI system beating professional players
in two-player poker. To achieve this result, Liberius uses a blueprint strategy that
has been pre-calculated using an MCCFR. To improve its strategy, Liberius also
uses self-improvement algorithms and real-time search to improve on the current
blueprint strategy.

3.1 Poki

Poki [6] is an improvement of Loki-2 [7] by Billings. The main improvement of
Poki compared to Loki-2 is the implementation of an opponent modelling, which
is based on a combination of statistics and a neural network that estimates the
opponent’s next move. This allows Poki to take advantage of your opponent’s
mistakes in multiplayer games. For betting, Poki uses the improvements already
partially implemented in Loki-2 to add simulation-based betting strategies and
to adapt the weighting matrices and probability triples to take into account the
opponent models.
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6 B. Franze

Betting Strategie Poki’s betting strategies like Loki still rely on the calculated
hand strength and hand potential as already described in the section on Loki.
These calculations are extended weighting matrices that contain a probability
value of each possible hand being played at the current point in the game.
The weighting matrices are updated in a re-weighting process after each betting
action. To calculate the final betting strategy, the various hand strengths and
weight matrices are combined to produce a probability triplet describing the
fold, call and raise actions. Based on the thousands of probabilities, an action is
selected and executed. Poki has been further improved with a simulation based
betting strategy.

Oponent modeling Poki implements a neural network to create a more versa-
tile opponent modelling that differs from conventional statistical methods. Poki’s
neural network is trained to predict the subsequent actions of opponents based
on the current state of the game.
Bellings, a standard feed-forward neural network, is trained using a dataset col-
lected from online matches against human players. This network architecture is
designed to receive nineteen inputs, each corresponding to an aspect of the game
context. This includes vital information such as the number of active players, the
current state of the board, and other publicly available data points that inher-
ently influence the players’ decision-making process. The output layer consists
of three distinct nodes, each of which corresponds to a possible action: fold, call
and raise.

Evaluation To measure the performance of Poki, a unit called small sb/game
has been used. This unit measures how many small blinds are won on average
per game. Poki has been tested on over 20,000 hands of online poker. Poki’s
performance in online poker, mainly against amateur level players, was between
+0.1 sb/game and +0.2 mbb/game. Against more intermediate players, Poki’s
advantage drops to +0.07 sb/game and +0.1sb/game. This performance can be
considered extremely good even by modern AI standards, but a few considera-
tions must be made. First of all, measuring in sb/game results in rather large
numbers when rounded to the nearest hundred. Secondly, the skill level of Poki’s
opponents in online poker is not well known. Nevertheless, Poki beats Loki by
0.02 to 0.13 sb/game. Using the same validation technique, the AI results are
fairly comparable, so a statement can be made about the doubling of perfor-
mance by implementing an AI that models opponents.

3.2 Libratus

Brown and Sandholm developed Libratus [8], an AI that beats professional hu-
man players at two-player poker. According to the authors, the Libratus AI
consists of three main modules:

1. Pre-calculated Blueprint strategy on an abstracted version of the game.

6



Investigating Artificial Intelligence techniques to play Poker 7

2. Subgame solver that traverses the game tree during the game. Trying to
improve the blueprint strategy

3. Self-enhancement, filling in missing branches in the blueprint strategy

Unlike Poki, this AI does not rely on hard-coded strategies and opponent mod-
elling, but attempts to solve an abstracted version of the game by playing itself.

Game abstraction According to the authors of Libratus, there are 10161 design
points in an entire game. In order to keep this number calculable, a number
of abstractions have to be made. The most common abstractions are bet size
increments, which means that not every bet size is considered, only the most
common ones. Libratus also groups hands with almost no difference and treats
them as identical. This reduces the number of possibilities to a few million.
MCCFR is used to calculate a blueprint strategy. When playing itself, the AI
is more likely to choose the action with the highest regret in order to improve
its overall performance. To find the best possible strategy and converge to an
equilibrium, each self-played game is played from both perspectives. This means
that the MCCFR is first traversed with a randomly chosen player, and then the
algorithm changes the role of the player and traverses the game tree again.

Subgame solving Libratus plays according to its blueprint strategy only in
the early part of the game, when the number of possible states is small and the
abstraction is detailed. When the remaining game tree becomes too small, Libra-
tus starts to create and solve an abstraction for the remaining subgame. Brown
and Sandholm mention that solving subgames is a particularly hard problem
in imperfect information games, because the optimal strategy may depend on
unreached subgames. The subgame is solved by looking at the blueprint strat-
egy and comparing the payoff with a simulated augmented subgame. Based on
this, a new strategy is chosen. The subgame solving process is repeated for each
subsequent off-tree action, this process is called nested subgame solving.

Self-enhancement Libratus self-improvement improves the blueprint strategy
during the game. The module fills in missing branches in the blueprint strategy
and calculates strategies for each of them. This module is necessary because the
size of the game tree makes it impossible to compute the entire tree in advance.
The way in which Libratus adds new branches tries to avoid exploitation by not
exploiting the opponent. Instead, Libratus uses the bet sizes to add new branches
to the blueprint. Self-improvement computes an answer by adding the given bet
size to the game tree, but to avoid exploitation, Libratus only uses the off-tree
strategy if the opponent uses the bet size.

Evaluation The performance of modern AIs and professional players is mea-
sured in mbb/game. Milli big blinds per game is the average number of big
blinds won per 1000 games. Libratus has been tested against the best AI until

7



8 B. Franze

than, Baby Tartanian8 [9]. Using the blueprint strategy alone, Baby Tartanian8
outperformed Libratus by 8 MBB/game. Including the nested subgame solution,
Libratus outplays Baby Tartanian8 by 63 mbb/game.
Libratus played 120000 hands against top human professional players. During
these games Libratus averaged 147 mbb/game, beating many top professional
human players.

3.3 Limitations

Poki showed a significant improvement over its predecessors and achieved good
results in online poker, but its performance drops significantly against better
opponents. Libratus could beat professional humans and other high-performing
AI systems, but is limited to two-player poker.

4 State of the Art AI System

Pluribus is an artificial intelligence created by Brown and Sandholm [3] that
is capable of playing poker in real time at the highest competitive level, win-
ning against professional human players. Pluribus strategies were calculated by
playing against five copies of itself. Unlike Libratus, Pluribus mastered six-player
poker using an MCCFR. To improve the blueprint strategy and achieve superhu-
man performance, Pluribus also performs a real-time search for a better strategy
in the game tree.

4.1 Monte Carlo counterfactual regret minimization

Monte Carlo CFR [10][11][12] simulates a game by choosing a player to tra-
verse the game tree. The traversal of the tree is initially random and gradually
improves towards a good decision tree. At the end of the game, the algorithm
determines how much better the traverser could have done by choosing different
actions. The difference between the gain and the possible gain is added as regret.
This allows the algorithm to later choose actions with higher regret with a higher
probability of maximising the gain. This process is repeated for hypothetical de-
cision points in the game. Exploring the tree is possible because the AI usually
knows the strategy of all players. For two-player games, CFR is guaranteed to
converge to a Nash equilibrium. For games with more than two players, it is
guaranteed that CFR averages the performance of the best single fixed strategy
in hindsight. [3] An example of the traverse can be seen in Figure 2. You can
find an example algorithm in Algorithm 1, which is also used in Pluribus.

4.2 Pluribus

Game abstraction To reduce the number of desition points Pluribus has to
face in the game, a game abstraction is applied, as in Libratus. Pluribus uses
two different abstractions. The first one abstracts the actions in the game, by

8



Investigating Artificial Intelligence techniques to play Poker 9

Figure 2. A game tree traversed by MCCFR. In the left tree, player 1 is traversing
the game tree. The traversal simulates the game until an outcome is reached. Each
decision point of player 1 is explored with every possible action that player 1 can take.
Each of these actions is then simulated until an outcome is reached. Once the outcomes
of the possible decisions are known, the probabilities in the game tree are updated by
assigning higher probabilities to paths with higher gains (right tree).

9



10 B. Franze

Algorithm 1 MCCFR

1: function Calculate-Strategy(R(Ii), Ii) ▷ Calculates the strategy based on
regrets

2: function Traverse-MCCRF(h, Pi)
3: if h is a leaf node then
4: return The game’s payoff
5: else if Pi is not a possible/valid option then
6: return Traverse-MCCFR(h · 0, Pi) ▷ This action remains irrelevant
7: else if h is a chance node then
8: Select an possible actions a based on the probabilities of this node
9: return Traverse-MCCFR(h · a, Pi)
10: else if P (h) = Pi then
11: Get the Infoset Ii for Pi at this node
12: Calculate-Strategy(R(Ii), Ii) ▷ Determine the strategy at the Infoset

Ii (returns Probability distribution for actions)
13: Initialize expected value at zero
14: for action a in A(h) do
15: Traverse-MCCFR(h · a, Pi) ▷ Traverse each action
16: Update the expected value based on traversal and probabilities

17: for action a in A(h) do
18: Update the regrets R(Ii, a) based on the expected values

19: return the expected value v(h)
20: else
21: Get the PP (h) infoset of this node
22: Calculate-Strategy(R(IP (h)), IP (h))
23: Sample an action a from the probability distribution of the strategy
24: return Traverse-MCCFR(h · a, Pi)

10



Investigating Artificial Intelligence techniques to play Poker 11

reducing the number of bet sizes considered in the game. This is done because
increasing a bet in the dollar range doesn’t make much difference to the state
of the game and the decision-making process. Second, Pluribus also reduces the
amount of information it needs to consider by treating strategically similar hands
identically, which reduces the number of different situations for which a strategy
must be determined.

Blueprint Strategie Two-player self-play algorithms do not converge to an
equilibrium strategy, but practice has shown that they produce reasonable re-
sults. Pluribus produces a blueprint strategy for the entire game offline via self-
play. Pluribus uses an MCCFR to compute the self-play blueprint strategy, which
samples actions in the game tree instead of traversing the whole game tree in
each iteration. Pluribus plays according to this blueprint strategy only in the first
round, where the number of decision points is small enough that no information
abstraction is needed.

Realtime search Due to the limitations of the Blueprint strategy, Pluribus only
plays it during the first of four betting rounds. After the first round, Pluribus
performs a real-time search to determine a better strategy for the current state
of the game. The real-time search looks ahead until it reaches a leaf node at
the depth limit of the algorithm’s lookahead. For perfect information games,
each leaf node is then evaluated over an evaluation function, assuming that both
players continue to play an equilibrium strategy from the evaluation point. For
imperfect information games, this assumption is broken because leaf nodes do
not have fixed values. Instead, the value of a leaf node depends on the strategy
that the searcher chooses for the subgame. Pluribus solves this problem by us-
ing an approach that considers that any or all players can change their strategy
beyond the leaf node of a subgame. The premise of Pluribus in this scenario is
that the player has a choice of four different strategies.

1. The precomputed blueprint strategy
2. A blueprint strategy biased towards folding
3. A blueprint strategy biased towards calling
4. A blueprint strategy biased towards raising

This allows Pluribus to find a more balanced strategy, as otherwise it would be
punished by opponents changing their strategy.

Keeping sensitive information One of the major challenges for AI in imper-
fect information games is protecting its private information from opponents. For
example, if Pluribus has an exceptionally strong hand, it must refrain from plac-
ing an overly large bet, as this could cause other players to fold in anticipation.
To overcome this dilemma, Pluribus adopts a strategy that involves tracking
the probabilities of each potential hand reaching the current state of the game,

11
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while maintaining its current strategy. In determining the appropriate move for
its current hand, Pluribus adopts a method of evaluating its response across all
potential hands, thus achieving a balanced strategy within the existing game
scenario. This calculated approach ensures that Pluribus remains unpredictable
for its opponents.

4.3 Evaluation

Pluribus was evaluated through matches against human professionals. The eval-
uation process included two scenarios: first, one instance of Pluribus competing
against five human professionals; second, five instances of Pluribus competing
individually against a single human professional. To reduce the influence of luck
inherent in poker games, the experiments used a technique known as AIVAT to
minimise variance.

One Human, Five copies of Pluribus Over the course of the research con-
ducted by Brown and Sandholm, a total of 10,000 poker games were played by
two different human professionals. Each of these players played 5,000 hands of
poker against five iterations of Pluribus. Remarkably, Pluribus, operating with-
out any knowledge of its opponents and thus without the ability to adjust its
strategy in response, refrained from cooperating with its other copies.
The result was remarkable: Pluribus demonstrated its prowess by winning by an
average of 32 mbb/game.

Five Human, One copy of Pluribus A series of 10,000 poker hands were
meticulously played, placing Pluribus in direct confrontation with a group of
five human professionals. To mitigate the potential impact of pre-existing knowl-
edge, a concerted effort was made to keep all participants in the dark as to the
identity of their rivals. This was achieved by assigning each participant an un-
changing pseudonym, which was maintained throughout the experiment. This
strategic measure was designed to prevent any prior bias from influencing the
results. In particular, this approach allowed each player to observe and analyse
the strategies of their peers. From the pool of human experts, a group of 13
eager volunteers, five participants were selected for each day. Pluribus achieved
a remarkable average of 48 mbb/game.

The results of both segments of the evaluation have attracted considerable at-
tention due to the high win rates achieved in the area of professional six-player
No Limit Texas Hold’em poker.
Notably, Pluribus has demonstrated a remarkable ability to outplay even sea-
soned poker veterans. In particular, it defeated renowned player Chris ”Jesus”
Ferguson, an individual who boasts an impressive six World Series of Poker wins.
This achievement underscores the AI’s prowess by demonstrating its ability to
outplay even the most illustrious human competitors in a game known for its
complexity and nuance due to imperfect information.

12
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4.4 Results

Pluribus demonstrates an impressive ability to beat skilled human profession-
als at six-player No-Limit Texas Hold’em. Its proficiency is the result of being
trained through self-play, creating a basic blueprint strategy. This blueprint is
then refined in real time through a continuous search for improved strategies,
facilitated by MCCFR. The remarkable results achieved by Pluribus underline
its ability to significantly outperform even seasoned professionals.

5 Conclusion

Game theory establishes the existence of equilibrium strategies in poker. How-
ever, the practical application of this insight is hampered by the lack of an effi-
cient algorithm capable of uncovering such strategies, coupled with the colossal
computational complexity required to compute them. As a result, this theoret-
ical construct remains in the game theorie and is limited to simplified variants
of poker.
Loki is a well-researched and comprehensible example of an expert system in
action. Loki tries to solve poker by modelling its opponent based on their priv-
ileged actions and probabilities. Its decisions about which actions to take are
based on predictive facts about the game and the probability of holding the best
hand relative to its opponents.
Poki departs from the traditional approach of modelling opponents based solely
on their past actions and associated probabilities. Instead, Poki uses a neural
network to predict the opponent’s upcoming moves, improving the probabilistic
strategy and leading to more refined and effective strategic decisions. Both AIs,
Loki and Poki, are capable of achieving good results in online poker.
Liberatus achieved a remarkable milestone by outperforming professional players
and even leading AI opponents in two-player poker during its development pe-
riod. This feat was made possible by using MCCFR as the backbone of its strat-
egy calculation. This approach was augmented by a process of self-improvement
and real-time search capabilities that further enhanced its strategy.
Pluribus shares similarities with Libratus in its training methodology. Like Li-
bratus, Pluribus uses self-play as a fundamental training process, with the im-
plementation of the MCCFR algorithm to create its blueprint strategy. Pluribus
uses real-time game tree search to search for better strategies. This enables
Pluribus to achieve a level of performance beyond human capabilities, leading
to its triumph over professional players in the challenging domain of six-player
no-limit Texas Hold’em.

6 Appendix

6.1 Poker Rules

[13] At the start of each round, a player is designated to post a mandatory bet
called the ”small blind” before any cards are dealt. Next to the small blind,
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another player is designated to post a ”big blind” (usually double the small
blind), which is another mandatory bet. Following these initial bets, the cards
are dealt. Each player is dealt two cards face down.
This is followed by a decision period in which each player evaluates their cards
and considers their course of action. The options available are to match the value
of the Big Blind (a ’Call’), to increase the bet (a ’Raise’) or to fold (a ’Fold’).
Players who choose to proceed then witness the ”flop”, where three community
cards are revealed face up on the table.
This is followed by a betting round, giving players another opportunity to bet,
raise or fold. At the end of this round, another card is dealt face up to add to the
community cards on the table. This process is repeated, with additional betting
rounds and subsequent card reveals, until five cards are revealed.
At the end of the final betting round, the players still actively participating use
their two face up cards in combination with the community cards on the table.
This combination is used to determine the best hand and the winner of the
current hand.
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Abstract. Artificial intelligence (AI) has achieved significant advance-
ments in games that involve complete information. However, Bridge, a
multiplayer game with imperfect information, remains highly challeng-
ing. Bridge comprises two main components: bidding and playing. When
it comes to playing ability, expert-level teams are often on par with each
other, making bidding the crucial factor in determining victory or defeat.
This paper delves into the progress of AI in bridge bidding throughout
the existence of computers. While notable achievements have been made
in bridge bidding AI, the ultimate goal of surpassing human experts has
not yet been attained. However, a double synergy neural network shows
promise in approaching the expertise level by being capable of bidding
in diverse bidding systems.

Keywords: bridge-bidding · neural-networks · literature-review

1 Introduction

Games have long been a challenging domain for testing artificial intelligence.
Some AI research focuses on complete-information games like chess and go, while
others study incomplete-information games such as poker and bridge. Bridge,
a cooperative and competitive card game, poses challenges due to its partial-
information nature. The game of contract bridge is played in two phases. The
first one is the bidding phase and the second one is the playing phase. This
literature review focuses on the advancement of the bidding in bridge, primarily
due to bidding constituting approximately 75% of the game, with playing com-
prising only about 25%[8]. Moreover, at the expert level, players often exhibit
comparable skill levels during the playing phase. As a result, the bidding phase
plays a crucial role in determining the victor of the game. The bidding phase
in bridge poses a challenging problem for a computer, given that the objective
is not as easily discernible as in the playing phase. In the playing phase, the
main objective is to obtain as many tricks as possible. In contrast, during the
bidding phase, there is a necessity for direct player communication to exchange
information about their respective hands and to ultimately arrive at the optimal
contract for each of their hands.
Rule-based approaches, such as those by Wasserman [5] and Ginsberg [1], sought
to mimic the meaning of bids in human bridge bidding systems. A bidding sys-
tem consists of rules and constraints that are used by team partners to interpret
bids and communicate abstract features to help in deciding on the next bid.
Those features include the High Card Points, a numerical score of the highest
cards in a hand, as well as the balance and suit length of a particular suit in
a hand. Resolving bid ambiguity poses a significant challenge when simulating
human bidding systems, as the rules from such systems can overlap, resulting
in conflicting suggestions [7]. An intelligent resolution of ambiguity is crucial for
human players. They achieve this by devoting a considerable amount of time to
practising their bidding with their partners, aiming to attain a flawless mutual
understanding.
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Other approaches like the one by Yeh [7] tried to teach AI to bid without ref-
erencing human bidding systems. Inspired by the success of deep learning, they
input the raw data into the neural networks without any abstraction by the
bidding systems. The goal of these frameworks is to resolve bid ambiguity by
learning sophisticated bidding rules and achieve improved bidding performance
by leveraging all available information.
The state-of-the-art technique proposed by Zhang [8] uses the synergy of two
deep neural networks and feature extraction algorithms to determine the most
appropriate bid. The method has shown promising results against human play-
ers.

2 Algorithmic Methods

Research on Bridge Algorithms has been underway since the advent of comput-
ers. The first bridge bidding program was already developed in 1953. There are
various obstacles to overcome when designing an algorithm for bridge. The first
challenge is the decision-making process within a vast search space, particularly
in relation to the numerous possible bidding sequences. Additionally, the algo-
rithm must account for resource constraints and not indefinitely pursue results.
The other challenge arises from bridge being an incomplete information game,
which means that there is only partial information available. Another challenge
in bridge is its competitive and cooperative nature. During the bidding phase, it
is necessary to distinguish between friendly and hostile information, even with
communication generally restricted between partners. Another issue is the need
for a certain level of generality since different pairs may utilise different bidding
systems. The final major challenge is the lack of indication of good bids during
the bidding phase, with the indicator of a good bid occurring only after the
playing phase, when it is clear that the round has been won.

2.1 Rule Based Bidding System

In 1970, Anthony Wasserman [5] created an algorithm for playing bridge. This
program was the first to demonstrate a considerably strong bridge bidding per-
formance. Initially, the subproblem of Partnership Bidding was addressed fol-
lowed by the extension of the algorithm to tackle the competitive bidding prob-
lem. Partnership Bidding or non-competitive bidding is a unique instance of
bridge bidding where the process occurs without interference or competition in
a peaceful environment. That means the opposing team passes the bid every
time during the bidding phase. The general tactic was to bid in the same way
as a human player would bid, which required the program to simulate human
judgement by considering the same conditions and making the same evaluations.

Decision Tree Model The method involved constructing a decision tree that
includes all plausible bidding sequences as paths, resulting in an approximate
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total of 1010 partnership bidding possibilities and 1047 competitive bidding possi-
bilities. Due to limited resources, an algorithm is incapable of navigating through
such an extensive decision tree. Therefore, a set of rules had to be created to
reduce the number of possibilities. The rules are based on the bidding systems
used in the bridge community. Wassermann considered three systems, namely
the Standard American Bidding System, the Schenken System, and the Kaplan
Scheinwold System. Thus, Wasserman narrowed down the root node’s child to
8 opening bid classes instead of the 38 potential bids. The opening bid classes
represent the bidding sequences that start with the opening bids that are defined
in the different bidding systems. These sequences are then further categorised
into subclasses based on the subsequent bidding actions. Because the length of a
bidding sequence rarely exceeds 11, any paths longer than 11 are removed from
the decision tree. Finally, Wasserman merged certain sequences, as some bidding
sequences are practically equivalent and can, therefore, be treated as identical
subclasses. This resulted in a transition from a tree structure to a cycle-free,
directed graph.

Hand Evaluation To determine the next bid at each node of the decision tree,
the algorithm reevaluates the strength of the partnership by computing a score.
The partnership receives extra points for having longer cards in the suits their
partner has bid, and for having fewer cards in the suits they haven’t bid. Points
are taken away from their total if they lack cards in the suits their partner has
bid. Additionally, if the partnership agrees on a trump suit, there are further
adjustments made to the points.

Testing After the pruning of the decision tree, the program was able to achieve
good results against human players. In the context of non-competitive bidding,
the program demonstrated a level of skill equivalent to that of a human expert.
It was expected that the program would perform less effectively in the context of
competitive bidding, as objective evaluations suggest that non-competitive bid-
ding is a less challenging environment. When one team comprised the Wasser-
mann program and the other comprised two expert bridge players, the program
was estimated to perform slightly more skillfully than the average bridge player.

Conclusion In conclusion, the Wasserman approach was the initial program
that achieved favourable results against human players. It addressed several of
the challenges involved in creating such a program. Like the large search space,
the processing of friendly and hostile information and the generality of multiple
bidding systems.

2.2 Ginsberg’s Intelligent Bridgeplayer

The next major breakthrough was GIB [1] by Matthew Ginsberg. At the time of
its development, it was called the first bridge-playing program to approach the
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level of a human expert. GIB secured twelfth place among a carefully selected
group of thirty-four skilled professionals during an exclusive invitational event
held at the 1998 World Bridge Championships. However, the type of bridge that
was played at the event was without the bidding phase. GIB’s bidding skills are
the weakest part of the program, as they rely on an extensive set of rules stored
in a database to define the interpretation of various auctions.

Borel Simulation The bidding algorithm employed by GIB is referred to as
the Borel simulation, which utilizes a Monte Carlo-style simulation approach.
The initial stage involves creating a set of deals, denoted as D, that aligns with
the ongoing bidding. For every bid b ∈ B and each deal d ∈ D, the database Z is
utilized to anticipate the future course of the auction. Each contract is assessed
based on its double dummy result. The bid b with the highest double dummy
result is then selected and returned as the optimal choice.

Double Dummy Solver The double dummy result refers to the number of
tricks achieved by the contractor during gameplay, assuming that all information
is fully visible to all players. However, relying solely on the double dummy result
leads to suboptimal performance, as bridge is not actually played with complete
knowledge of all cards.

Limitations The algorithm neglects the strategic aspect where experts inten-
tionally choose to conceal information by refraining from making specific bids,
which is an essential factor to consider. The conservative nature of the database
presents a challenge as the player assumes their partner bids conservatively. This
leads the player to compensate by bidding aggressively, resulting in an over-
compensating partnership. However, a significantly more substantial issue arises
when the database contains omissions of data. For example, if the database sug-
gests a bad choice every time a specific bid has been made. GIB tries to abuse
this by bidding the specific bid because it thinks that this will result in a mis-
take made by the opponents. But in reality this will of course not occur. This is
generally a significant issue in heuristically modelling an adversary’s behaviour
because it is challenging to differentiate a favourable decision that succeeds be-
cause the opponent has no winning options from a poor decision that seems
successful due to the opponent’s error. There are ways to address that problem
but none of them are perfect.

Evaluation After this optimization, the bidding of GIB is a lot better than
earlier programs but still far away from an expert level. In a bridge bidding
competition, the final score achieved was +2 IMPS, which significantly outper-
formed the second-place contestant who scored -35 IMPS. Notably, in the pre-
vious year’s contest, the victorious program attained an even lower score of -37
IMPS. Overall, GIB represents a significant breakthrough in the field of bridge
bidding.
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2.3 Noteworthy Approch

In 1999, the Wojciech Jamroga [3] proposed a new unique approach to modeling
information exchange in bridge bidding. He viewed bidding as a conversation
between four players exchanging information about their cards and decisions.
Natural language processing techniques were used to interpret and model the
bidding. The conversation involved at least one producer that makes the bid
and one comprehender, with six utterance functions representing the semantic
structure [2]. The model emphasized the information-processing nature of the
game. It also introduced a prototype bidding system and a methodology for eval-
uating performance. The approach addressed the challenges posed by games with
incomplete information and provided insights into cooperative communication
and reasoning in bridge bidding.

2.4 Conclusion

The two approaches already achieved promising results in the realm of bridge
bidding. They also surpassed multiple challenges in creating a bridge bidding
Algorithm. However, they both are far away from surpassing humans in com-
petitive bridge tournaments.

3 Early AI Methods

As computing power improves, machine learning methods are becoming more
efficient and producing more accurate results. In the case of bridge bidding re-
search, modern machine learning techniques have also been employed to solve
the issue. One method involved employing a neural network to predict the open-
ing bid, while the other approach utilised a deep neural network to solve the
subproblem of non-competitive bidding.

3.1 Opening Bid Problem

In 1996, Yegnanarayana et al conducted a study[6], which aimed to explore
the possibility of automating bridge bidding using modern AI techniques. The
objective of the research was to investigate the reasoning process involved in a
player’s opening bid by analyzing the card patterns presented. The focus was
specifically on evaluating the simplicity of the opening bid scenario, as it solely
relies on the information provided by the hand cards held by the player.

Data Representation Yegnanarayana et al. used deep learning techniques
with an artificial neural network (ANN). An integral aspect of training an ANN is
the data representation phase, where there are several approaches to representing
the 13 cards in a player’s hand. These representations can be either feature
patterns or a binary coding of 52 nodes that can be activated or deactivated. A
feature pattern is, for example, the representation of the hand cards solely with

21



their high card point values. This encapsulation of relevant information offers an
enhanced level of abstraction. However, in order to maintain the performance
of the network and ensure effective generalization, Yegnanarayana et al. chose
to use the raw shape representation using the 52-node scheme. This decision
was motivated by the recognition that an imprecise abstraction could hinder the
network’s ability to generalize meaningfully.

Training Data Obtaining suitable training data is an essential part of training
the neural network. In this scenario, Yegnanarayana et al. created training data
using a program that creates a set of randomly distributed cards. To label the
cards, Yegnanarayana et al. then individually made opening bids based on the 13
cards generated by the simulation. The backpropagation algorithm was used to
train the multilayer feedforward networks. This process optimised the network’s
weights and biases by progressively adjusting them to minimise the difference
between predicted and desired outcomes.

Testing To evaluate their approach, Yegnanarayana and his colleagues carried
out three distinct experiments, each involving a different interpretation of the
results.
The first experiment utilised a total of 13 nodes to represent the output. Among
these nodes, one indicated the ’pass’ bid, five represented the various suits, and
seven identified the bid level. It should be noted that each set of cards activated
precisely two output nodes, with the exception of the ’pass’ bid scenario. When
two nodes were activated, one was assigned to the bid level and the other to
the bid suit. For this study, the authors utilised a training set consisting of 900
hands. Nevertheless, the performance of the network showed suboptimal con-
vergence, which could be attributed to the inadequate size of the training set.
Moreover, the occurrence of opening bids with levels exceeding three was infre-
quent, resulting in a low frequency of such patterns in the training data. Thus,
the network faced difficulties in learning and generalising effectively from these
rare patterns.
To address the constraints identified in the initial experiment, Yegnanarayana et
al. developed a second experiment using a network architecture that comprised
seven output nodes. This design was customised to predict level 1 bids. The
seven output nodes included five nodes committed to the various suits, one node
for the pass bid, and another node designed for situations where the bid level
exceeded 1. Activation of this additional node signalled bids beyond level 1. The
network architecture achieved optimal performance by integrating a hidden layer
containing 60 nodes. Notably, this configuration produced favourable outcomes,
with the network demonstrating commendable predictive accuracy when making
bid predictions.
Recognising the inadequacy of restricting predictions solely to level 1 bids, Yeg-
nanarayana et al. conducted a third experiment that involved an extended output
space consisting of 12 nodes. This setup included one node solely for the pass
bid, 5 nodes for first-level bids and another 5 nodes for second-level bids, as
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well as an extra node to accommodate unfamiliar bids. Once again, the most
favourable performance was observed when utilising a hidden layer consisting of
60 nodes. However, to guarantee optimal training outcomes, modifications have
been made to the training data. Specifically, the frequency of level 2 bids has
been increased within the training data. This modification was made to account
for the infrequency of level 2 opening bids in hands with a normal distribution.
Without increasing the representation of level 2 bids, a training set consisting of
only 1600 hands would lack sufficient instances of level 2 bids, making it difficult
to achieve satisfactory training results.

Conclusion In conclusion, this paper confirms the effectiveness of neural net-
works in acquiring the fundamental reasoning used for making opening bids in
Bridge. The study revealed several important findings. Initially, training larger
networks proved to be difficult. Nevertheless, networks with lower complexity
demonstrated favourable performance outcomes. Additionally, the study showed
the restricted learning capacity of a network that concentrates on 2-level bids.
This limitation is mainly due to the insufficiency of data available for these bids.
However, Yegnanarayana et al. exhibited that improved performance could be
attained by adding specific data associated with these bids. Nevertheless, con-
structing a comprehensive bidding system requires a more advanced network
structure capable of integrating raw and processed information. Several research
considerations arose, including determining the most effective representation of
raw input data in card games such as Bridge and addressing the complexities of
training networks to detect patterns that occur with different frequencies.

3.2 Non-competitive Bidding with Deep Neural Networks

In 2016, Chaih-Kuan Yeh and Hsuan-Tien Lin[7] conducted a study at the Na-
tional Taiwan University, which focused on the sub-problem of non-competitive
bidding. Previous studies had reported that using raw data as input resulted in
poor performance, but considering the success of deep learning in automatically
building useful features from raw and abstract data, they decided to provide neu-
ral networks with only raw data as input. The framework developed uses deep
reinforcement learning to automate bridge bidding. The framework enhances two
aspects of bridge bidding AI.

Data Representation The first one is the learning of data representation.
With the use of deep neural networks for feature extraction, there is no need
for human-based bidding systems or human-designed features anymore. This
allows the usage of the full power of machines because they can use all possible
information without any filters.

Bid Ambiguity The second aspect is to resolve the bid ambiguity. Bid ambi-
guity poses a significant challenge in replicating human-based bidding systems.
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Human systems have overlapping rules, resulting in conflicting suggestions based
on player cards and bids. Resolving this ambiguity requires intelligent decision-
making from human players, who also practice extensively to reduce ambiguity
through mutual understanding. AI players face challenges in reaching the same
level of mutual understanding as humans, making them inferior in the bidding
phase. Using the framework, sophisticated bidding rules can be learned auto-
matically to address bid ambiguity. This framework emulates the mutual un-
derstanding established by human players through practice, but in this case,
it achieves it autonomously by practising with itself. At the time, it was the
first known framework capable of achieving reliable mutual understanding solely
through machine-based bridge bidding. This prevented the framework from be-
ing generally inferior to humans.

Problem Setup To represent the bidding problem, a two-player setting with
Player 1 and Player 2 sitting at the North-South positions is considered. It is
assumed, that Player 1 bids in odd rounds, and Player 2 bids in even rounds.
The state s(t) is defined as a combination of the player’s cards and the bidding
history. The bidding strategy is represented by a function G(s(t)) = a(t) that
maps the state to a bid.

Training Data To learn a good bidding strategy, data is generated by simu-
lating bridge games. Each instance in the data consists of the players’ card vec-
tors and the corresponding score for each possible contract. After that double
dummy analysis is used to estimate the score for each contract without carrying
out the playing phase. The expected score is approximated by randomly dealing
the remaining cards to the opponents and performing a double dummy analysis
multiple times.

Training For training the bidding strategy the reinforcement Q-learning al-
gorithm is used. Q-learning is a form of reinforcement learning that does not
require modelling of the environment. The Q-function represents the value of
taking a particular action in a given state. The Q-function is updated iteratively
based on feedback from previous actions. The Q-function is approximated using
a deep neural network, and the loss is minimized through gradient descent.
The bridge bidding problem is modelled as a two-player partial-information co-
operative game with multiple stages. To address the challenges of bid evaluation
a penetrative Bellman’s equation is introduced, which helps in estimating the
cost of each bid accurately. Communication between partners is crucial in bridge
bidding, and therefore a contextual bandit algorithm to balance exploration and
exploitation is used. This approach enables bids that convey information effec-
tively.

Conclusion In conclusion, this method introduces a model that combines deep
reinforcement learning with enhanced exploration and update techniques to au-
tonomously learn bidding strategies from raw hand data. At that time the model
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was the first of its kind to address automatic bridge bidding solely based on raw
data, without relying on additional human expertise. The model also surpassed
both champion-winning programs and existing state-of-the-art models by a sig-
nificant margin. This remarkable performance validates the potential of deep
learning in achieving a highly competitive bidding system independently.

3.3 Conclusion

The initial attempts to apply modern AI techniques were promising but were
only applied to sub-problems of bridge, such as the opening bid problem or
non-competitive bidding. Further research is required to tackle the challenge of
competitive bidding.

4 State of the Art Method

The current state-of-the-art method is the synergy of Double Neural Networks
for Bridge bidding by Xiauyu Zhang[8]. The research is focused on bridge bidding
with competition. It is the first approach that uses two different Neural networks
and it takes multiple bidding systems into account. Zhang et al. have identified
two major challenges that they need to address. The first is understanding the
bidding systems used by the opponents, even if it is a different system to the
one the AI uses, and the second is the large game state space. The challenges
were addressed by implementing feature extraction algorithms for the bidding
systems and neural networks to get to a result quickly.

4.1 Multi-bidding System

In human bridge games, it is common for pairs to have different bidding systems.
However, the opposing teams still understand each other’s bidding system. If one
team consists of AI and the opponents use a different bidding system, the AI’s
ability to understand the bids and to make good bids for itself is greatly reduced
because it is unable to understand the bids made by the opponents. Previous
research has never considered multiple bidding systems. To solve this problem,
Zhang et al.[8] have introduced feature extraction algorithms.
The information one uses the most when bidding, consists of three parts. The
hand information, the situation information and the historical bidding sequences.
A player’s 13 cards are the hand information. The situation information consists
of the vulnerability, the player’s turn and whether the player is the opener. Of
the three parts, the bidding sequence is the most difficult to handle. Previous
work has inserted the bidding sequence directly into the neural network, as
in Yeh and Lin’s approach [7]. However, in order to function effectively, the
network requires training on a specific bidding system since the same bidding
sequence may have different interpretations in varying bidding systems. To solve
this problem, a feature extraction algorithm is implemented. The information
of a bidding sequence can be abstracted into 30 general features that apply to
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any bidding system. With the help of bridge bidding experts and the analysis
of 2.5 million bidding instances, a feature extraction algorithm F is designed
for a specific bidding system to convert a sequence L into these general features
through a fixed logic. As the rules for bidding systems can be very complex, 30
features cannot fully capture the meaning of the bidding sequences. However,
it is still more precise than providing the Neural Network with the unprocessed
bidding sequences for training. The general features IL are represented as IL =
F (L) given a bidding sequence L and an extraction Algorithm F .

4.2 Computational Complexity

A huge game state space is a difficult task. To explore the large number of
possibilities, hardware performance and algorithm design are put to the test. To
speed up the computation, deep neural networks are used to find the optimal
bid in the current bidding state. The bidding decision model consists of two core
artificial neural networks. The first one is for the bid selection and the other one
is for bid evaluation.

Bid Selection Model The task of the bid selection model is to select the
candidate bids for the current state of the game. It must respect the bidding
constraints in such a way that all the bids it proposes are legal in the current
bidding state. The input to the neural network is a 1×1284 vector. One part is for
the general features produced by the feature extraction algorithm. The general
features contain information about the other players that is extracted from the
bidding sequence. For instance, one of the 30 features is the high card points,
while another is the suit. Another feature indicates whether the bid resulted in
a slam. It contains information about the historical bidding sequence. The next
part is for the player cards hi. The cards are encoded in a 4× 13 matrix, which
is then flattened into a 1×52 vector. The last part is for the vulnerability v, the
dealer d and the player i. Each of these is encoded into a 1×4 vector. The output
of the bidding model is a 1× 38 vector. It contains the probability distribution
P over the 38 possible bids. The formal definition of the bid selection:

P = bidslector(v, d, i, hi, IL) = {b→ p|b ∈ B and p = 1} (1)

The structure of the network is shown in figure 1.

Evaluation Model The role of the evaluation model is to determine which
of the candidate bids is the best. Different from other games like chess and Go
there is no real-time reward that determines if a bid was a good choice. One only
gets a reward after the bidding and the playing phase is over. The evaluation
Network now tries to guess the IMP based on the information it gets as input.

IMP = situationevaluator(v, d, i, hi, IL) (2)

The structure of the evaluation model is almost the same as the bid selection
model. The only two differences are in the input and output of the model. The
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input of the evaluation model now contains the bid from the bid selection model.
Since the bid sequence L is now L + b, the extracted features IL contain the
new information. The difference in the output is the output vector. The output
vector from the evaluation model is a 1× 49 one-hot vector with a length of 49,
representing the IMP values from -24 to +24.

Fig. 1. The illustration visualizes the structure of the bid selection network. It shows
the different input vectors with the different input parameters and the output vector,
which is a probability distribution of all the possible bids. The structure of the evalu-
ation model is almost the same. The only difference is the output vector.[8]
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4.3 General Process

The general process, as illustrated in the pseudocode algorithm 1, for the entire
system is as follows. First, the bidding sequence L is inserted into the feature
extraction algorithm F and the general features IL are extracted. Together with
the hand cards Hi of the player, they are then encoded. The result of this is
then fed into the bid selection network bidselector. The output is the probability
distribution P of all possible bids B that can be made. All bids that have a
probability are then evaluated by the evaluation network situationevaluator. The
resulting International Match Point values of the bids are then compared and
the bid with the highest IMP value is selected as the next bid.

Pseudo-code The following pseudo-code shows the process of the system.

Algorithm 1: General Process of the Bid Selection Model

Data: player cards hi + bidding sequence L
Result: next bid
Function Main(hi, L, v, d, i):

IL ← F (L);
P ← bidselector(v, d, i, hi, IL);
IMP ← ∅;
for bid b in Bids do

if p > 0 then
IL ← F (L + b);
IMP ← situationevaluator(v, d, i, hi, IL);

end

end
next bid ← max(IMP );
return next bid;

4.4 Training

In order to train the evaluation model, the IMP score needs to be calculated
since it is not present in the training data. IMP calculation requires two scores:
the actual score after the game and the score of the best contract. The best
contract refers to the balanced point where neither the winner nor the loser can
achieve a higher or lower score, ensuring fairness. The score under the contract
is obtained through double-dummy analysis in the playing stage. The declarer’s
score function is determined based on the number of tricks won, the contract,
the vulnerability of the contracting party, and whether it is doubled or not. Both
scores are converted into IMP using the program Score2IMP.

4.5 Evaluation

The Evaluation of two Neural networks was done separately.
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Bid Selection Model Initially, Zhang et al. analysed the network structure, the
activation function, and the optimizer. They selected three metrics to investigate
the network: The total precision, the real precision, which is the precision of the
ordered bids, and the unreal precision, which is the precision of no-bids. After
testing various setups, the network with four hidden layers, each containing 2048
neurons, the ReLU activation function, and the Adam optimizer produced the
highest total precision. The network achieved an overall precision of 95% with a
bidding sequence length of 4-8 which reached the expectation.

Evaluation Model The evaluation model metric is the average IMP score of
10,000 decks of cards. A reinforcement training algorithm was used to train the
evaluation model. The results of the network improved with more iterations. The
network achieved an average IMP score exceeding 0.7 after 1 million iterations.

4.6 Conclusion

In Conclusion, the state-of-the-art method presents a bidding model that sup-
ports multi-system bidding using a double neural network. Historical bidding
sequences are converted into general feature information to reduce system con-
straints. The model includes a bid selection network and a state evaluation net-
work for making optimal bidding decisions. The model performs as expected
against different bidding systems.[8]

5 Conlusion

To summarise, this literature review presents a thorough examination of the pro-
gression of AI techniques in the realm of bridge bidding. The partial-information
nature of the game, coupled with the complexity of bidding systems and the
strategic decision-making process, has led to the development of innovative ap-
proaches.
Early attempts, such as rule-based systems and the introduction of AI players
like Wasserman’s [5], laid the foundation for bid evaluation understanding and
imitation of human judgement. Ginsberg’s Intelligent Bridgeplayer[1] marked a
significant milestone by demonstrating the potential of simulation-based bid-
ding algorithms. Yegnanarayana’s[6] work on opening bids and the use of deep
neural networks showcased the promise of machine learning techniques for data
representation and feature extraction. Zhang’s double neural network model[8],
which represents the current state-of-the-art, addresses the difficulties related
to multi-system bidding, feature extraction and bid evaluation. This method
employs neural networks to automate the decision-making process for bidding,
while achieving competitive results against different bidding systems.
These various methods cumulatively contribute to a deep understanding of the
complexities involved in bridge bidding. They pave the way for AI systems to
play a significant role in this challenging domain. As AI techniques persist to
progress, the bridge bidding sphere is likely to encounter more revelations, which
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will eventually close the distance between human proficiency and machine capa-
bilities in competitive bridge contests.
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6 Appendix: Rules of Bridge[4]

6.1 The Setup

Contract Bridge is an auction and trick-taking card game for four players. The
aim of the game is to earn points by winning as many tricks as possible. The
players are divided into two teams of two. Each player is designated a compass
direction, with partners sitting opposite each other (i.e. East-West will play
against North-South). The game is played with a single standard 52-card deck,
although having two decks available can move the game along more quickly.
Bridge is played over a series of hands. Each hand consists of two parts: the
auction, where the partnerships bid against each other based on how strong they
think their cards are; and the play, where teams try to win enough tricks to make
or defeat the contract reached in the auction. Points are awarded depending on
success or failure, and then another hand begins. Winning enough points earns
a partnership a game. Winning two games makes a rubber (except in Duplicate
Bridge, where each hand is treated independently).

The Deal One player is designated the dealer. He shuffles the deck and deals
them all out clockwise, starting with the player to his left. Each player takes
their 13 cards, looks at them and then sorts them. Cards are divided by suit
and ordered by rank, with ace being the highest and 2 the lowest. The difference
between the suits is important for the auction and scoring, but not for play.
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Once the hand is completed, the player to the dealer’s left becomes the new
dealer and a new hand begins. If you’re playing with two decks, the deck not
being used for the hand can be shuffled and placed ready for the next dealer to
make the game flow more quickly.

6.2 The play of the Hand

Bridge is a trick-taking game. If you know how to play other popular games
like Whist, Hearts or Spades then you’ll find that the cardplay of Bridge is very
similar.
Although the auction comes first, it’s easier to understand once you know the
basics of play. All you need to know for now is that the auction will determine
the contract for the hand. The contract will specify a number of tricks and a suit
for trumps (although there may be No Trumps). The team that bids the highest
is the declaring side. The other team is the defending side. The declaring side
will try to win the number of tricks bid, while the defending side will try to stop
them.
A trick is a set of four cards, one from each player. The player to the left of
the declarer leads the first card of the hand and play proceeds clockwise until
all four players have played. The first card of each trick determines the suit. If
possible, players must follow suit by playing a card of the same suit from their
hand. If no such card is available, then another card may be discarded, but it
cannot contribute to the trick unless it’s a trump. The player who contributed
the highest ranking card wins the trick for their team and gets to start the next
trick.
Once all thirteen tricks have been played, each pair counts up how many they’ve
won. If the declaring sidehas made their bid (or higher) then the contract was
successful. If not, the contract was defeated and the defending team will score
penalty points.

Trumps If the auction resulted in a suit contract, then than suit will be trumps
for the entire hand. Players must still follow suit if they can, but if they’ve run
out of the chosen suit they may play a card from the trump suit instead. This
is known as ruffing.
A trump beats cards from all other suits, so ruffing is a very powerful technique.
If two or more trumps are played in the same hand, then the highest trump wins
the trick.

Dummy The dummy separates Bridge from most other trick-taking games. Ev-
ery hand, one member of the declaring side sits out as the dummy. Their entire
hand is placed faced up on the table for all players to see. Although the order
of play doesn’t change, the declarer decides which cards to play from both his
hand and dummy’s.
Once the contract has been decided, the pairs are split into the declaring and

31



defending sides. The player on the declaring team who first mentioned the con-
tract suit during the auction is the declarer. Their partner will be the dummy.
The player to the left of the declarer leads the first card blind, just based on
what they can see in their hand. But once this card has been led, the dummy
hand is placed face-up on the table for all players to see. For convenience, the
cards are arranged in columns with alternating suit colors and the trump suit
on the right (declarer’s left).

6.3 The Auction

For many players, the auction is the heart of Bridge. This is where the contract
that governs the play of the hand will be decided.
Starting with the dealer and proceeding clockwise, players take it in turns to
make a bid. A bid will have two components: the number of tricks the partner-
ship is aiming to make, and the suit that will be trumps. The number of tricks
will be between 1 and 7. This represents the number of tricks above six that the
player thinks his team can make. (This is done because every bid also carries an
implicit intention to win most of the tricks. With 13 tricks each hand, 7 is the
lowest number that will give one team a majority.)
For example, a bid of 1C means taking at least 7 tricks with clubs as trumps. A
bid of 4H means at least 10 tricks with hearts as trumps. A bid of 7NT means
taking all thirteen tricks with no trump suit.
Like any other auction, each bid must be higher than the last. The numbers are
treated as you would expect, with bids at the 7 level being the highest and bids
at the 1 level the lowest. But within each level, the suit rankings come into play.
The suits are ranked Clubs, Diamonds, Hearts, Spades, No Trumps, from lowest
to highest. (An easy way to remember this is that the suit names are in alpha-
betical order.) So the lowest possible bid is 1C and the highest is 7NT. The suit
ranking means that if, for example, the bid currently stood at 3D, a bid of 3C
would not be allowed. If someone wanted clubs to be trumps they would have
to bid at the 4 level or higher.
If you do not want to bid you can pass. Unlike some other auction games, passing
doesn’t forfeit your right to re-enter the auction later. Once three players have
passed in a row, the last bid made is the contract for the hand. The person in
the winning team who first bid the trump suit will be declarer. Be careful here:
often this will be the person who made the final bid, but not always!
If all four players pass before making a bid, the hand has been passed out. No
play occurs, and the next dealer deals a fresh hand.
The auction is the chance for players to share information about the strength and
weakness of their hand with their partners (naturally, no other communication
about the contents of a player’s hand is permitted). Most bids will be natural,
with the suit choice indicating a preference for that suit and the number indi-
cating hand strength. However, bids can also be used to signal other kinds of
information, sometimes completely unrelated to the suit and number of the bid.
These prearranged bid signals are collectively known as a bidding system. There
are many different kinds of bidding systems with varying levels of complexity.
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Players who regularly play together in a partnership will try to employ a bidding
system that complements their play style.

Doubeling and Redoubeling Another bidding option is to double. If a player
doesn’t think their opponents can meet their bid, but doesn’t want to be in a
contract of his own, he can double. This drastically increases the penalty points
for defeating a contract, but it also doubles its value and increases the rewards for
making overtricks. A doubled contract can then be redoubled by the other team.
Bonuses and penalties for a redoubled contract are twice those for a doubled
one.
A double or redouble only stands if the other three players then pass. Any other
bid cancels the double, although there’s nothing to stop a player from doubling
this new bid.
In rubber bridge there is a score bonus for successfully making a doubled or
redoubled contract. These are known as points for the insult. The bonus is 50
for a doubled contract and 100 for a redoubled one.

6.4 Scoring

Bridge scoring can seem a little complicated at first, but you’ll soon get used to
it. Many packs of cards come with a special bridge scoring card that you can
use as a reference.
One player is in charge of the scoring. Two columns are headed ”WE” and
”THEY” to designated the scorer’s team and their opponents, respectively. A
horizontal line is drawn half-way down. Points that contribute towards a game
are written below this line, while bonuses, penalties and other points are written
above it. The difference between these two affects the course of play, but at the
end of play all of the points are added up, with none being more important than
the others.
Contracts are worth different amounts depending on the number of tricks and
the suit bid. Clubs and Diamonds are known as the minor suits, and tricks bid
and made here are worth 20 points each. Hearts and Spades are the major suits,
and are worth 30 points per trick. A No Trump contract is the most valuable and
calculating the score can be a little tricky: the first trick is worth 40, whereas
subsequent tricks are worth 30.
To match the bidding levels, only the tricks after the sixth are counted for
contract points. So a contract of 1C bid and made requires seven tricks but is
worth 20 points (1 x 20). A contract of 3H requires nine tricks and is worth 90
points (3 x 30). A contract of 5NT requires eleven tricks and is worth 160 points
(40 + 4 x 30).
Points for tricks bid and made go below the line (that horizontal line across the
two columns). Once a team has 100 points or more below the line they have won
a game. As soon as that happens, a new line is drawn beneath all the scores and
the scores below the line are reset. Winning a second game ends the rubber, and
the winning team gets a large bonus. This is worth 500 points if the team wins
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two games to one, or 700 if they win two games to nil.
Tricks which are made but not bid are known as overtricks. These score the same
number of points as bid tricks, but these points are placed above the line and
don’t count towards making game. If the contract was doubled or redoubled,
the points for overtricks are increased to 100 and 200, regardless of suit. This is
doubled again if the team making the overtricks is vulnerable.
Because the aim of Bridge is to win games and rubbers, it’s helpful to consider
the lowest bids for each suit that can win a game outright. For the minor suits
this is at the 5 level (5 x 20 = 100). For majors it’s at the 4 level (4 x 30 =
120). But the extra 10 points for the first No Trumps trick means that 3NT is
sufficient (40 + 3 x 30 = 100). It’s also important to remember that doubling
and redoubling affects the base value of the contract as well as the bonus for
overtricks. This doubled or redoubled value goes below the line, and can allow
a team to score game at a much lower level than usual!

Slams Because only a hundred points are needed for game, it may seem that
there is little point in bidding at the higher levels. But there are special incentives
for bidding and making contracts of twelve or thirteen tricks. Making twelve
tricks is known as a small slam and is worth 500 points. Bidding and winning all
thirteen tricks is known as a grand slam and gets a bonus of 1000. These bonuses
are not affected by doubling, but if the pair making the slam is vulnerable then
the bonus is increased by 50

Vulnerability Once a team has won one game they become vulnerable. A
vulnerable side faces far stiffer penalties for missing their contracts. Conversely,
the rewards for slams and overtricks are increased. Vulnerability is a key bridge
concept that affects a lot of the strategy, especially when both sides are at
different vulnerabilities. The tables below show the different points and penalties
available at different vulnerabilities.

Honor Points In rubber bridge there are a few miscellaneous bonuses for
holding certain high cards. The top five cards in a suit (T, J, Q, K, A) are
known as the honors. Having four trump honors in a single hand is worth 100
points, and having all five is worth 150. In a No Trump hand, having all four
aces scores 150 points.
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Abstract. In der Gauß Prozess Regression (GPR) ist die Auswahl eines
geeigneten Kernels von entscheidender Bedeutung für die Leistungsfähigkeit
und Genauigkeit des Modells. Die Wahl des richtigen Kernels bestimmt
maßgeblich, wie gut das GPR-Modell die zugrunde liegenden Beziehun-
gen zwischen den Datenpunkten erfasst und präzise Vorhersagen trifft. In
diesem Paper wird Gauß Prozess Regression vorgsetllt und dargeboten
wie man auf einen optimalen Kernel für das gegebene Modell kommt.

Keywords: Gauß Prozess Regression · Kernel · Hyperparameter

1 Einleitung

Das Maschinelle Lernen hat in den letzten Jahren eine rasante Entwicklung erlebt
und gilt heute als eine der spannendsten und vielversprechendsten Disziplinen
in der Informatik und Datenwissenschaft. Es befasst sich mit der Entwicklung
von Algorithmen und Techniken, die es Computern ermöglichen, aus Daten zu
lernen und auf Grundlage dieses erworbenen Wissens Vorhersagen zu treffen und
Aufgaben zu automatisieren.

Ein besonders interessanter Ansatz im Bereich des Maschinellen Lernens ist die
sogenannte ”Gauß Prozess Regression” (GPR). Sie stellt eine leistungsstarke
Methode dar, um komplexe Zusammenhänge in Daten zu erfassen und präzise
Vorhersagen zu treffen. Anders als viele traditionelle Modelle bietet GPR eine
flexible und probabilistische Herangehensweise, die nicht nur genaue Vorhersagen
liefert, sondern auch die Unsicherheit in den Vorhersagen berücksichtigt.

Ob in der medizinischen Diagnostik [1], in der Robotik [3], der Finanzanal-
yse [8] oder in der Umweltüberwachung [6] - Maschinelles Lernen und Gauß
Prozess Regression haben das Potenzial, unser Verständnis von Daten zu revo-
lutionieren und innovative Lösungen für komplexe Probleme zu liefern.

2 Gauß Prozess Regression

Gauß Prozess Regression (GPR) ist ein leistungsstarkes und vielseitiges Werk-
zeug zur Modellierung und Vorhersage von Daten. Es gehört zur Klasse der nicht-
parametrischen Methoden, was bedeutet, dass es keine festen Funktionsformen
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oder feste Anzahl von Parametern für das Modell gibt. Stattdessen basiert GPR
auf der Idee der probabilistischen Modellierung von Funktionen.

Im Gegensatz zu klassischen linearen Regressionen, die eine einzige Funktion zur
Approximation von Daten verwenden, modelliert GPR eine ganze Verteilung von
Funktionen. Genauer gesagt, wird ein Gauß Prozess (GP) als eine unendliche
Sammlung von Zufallsvariablen betrachtet, wobei jede dieser Variablen eine
Funktion repräsentiert [5]. Die Verteilung dieser Funktionen wird durch einen
Kernel definiert[9].

Der Kernel (Kovarianzfunktion) spielt eine zentrale Rolle in der GPR, da er
die Ähnlichkeit zwischen verschiedenen Eingabedatenpunkten quantifiziert [5].
Wenn zwei Datenpunkte ähnlich sind, wird ihre Kovarianz hoch sein, und wenn
sie sich stark unterscheiden, wird ihre Kovarianz niedrig sein. Dieser Ansatz
ermöglicht es GPR, flexible Modelle zu erzeugen, die komplexe nicht-lineare
Zusammenhänge zwischen den Eingangsvariablen und den Ausgaben erfassen
können.

Ein weiterer entscheidender Vorteil von GPR ist die Möglichkeit, die Vorher-
sagen mit Unsicherheiten zu quantifizieren. Da GPR eine probabilistische Meth-
ode ist, liefert sie für jede Vorhersage eine Wahrscheinlichkeitsverteilung. Dies
ermöglicht eine robuste und zuverlässige Schätzung der Vorhersagegenauigkeit
und ist besonders nützlich in Situationen, in denen Unsicherheiten eine Rolle
spielen, wie bei den Bespielen in der Einleitung genannt.

2.1 Gauß Prozess

Wie eben beschrieben ist ein GP eine Sammlung von Zufallsvariablen, von de-
nen jede eine gemeinsame Gauß Verteilung hat, wenn eine endliche Anzahl von
Zufallsvariablen betrachtet wird [5].

Ein Gauß Prozess wird vollständig durch seine Mittelwertfunktion und seinen
Kovarianzfunktion definiert [5]. Die Mittelwertfunktion m (x) und die Kovari-
anzfunktion k(x, x

′
) für einen realen Prozess f(x) sind folgendermaßen definiert:

m(x) = E[f(x)] (1)

k
(
x, x

′)
= E[(f (x)−m (x))

(
f
(
x

′)−m
(
x

′))
] (2)

Mithilfe dieser Funktionen, wobei E die Erwartung repräsentiert, können wir
eine Verteilung über die Funktionen f(x) definieren:

f(x) ∼ GP
(
m(x), k

(
x, x

′))
(3)

Die Mittelwertfunktion gibt das durchschnittliche Verhalten der vom Prozess
generierten Funktionen an. Man kann sehen, dass die Kovarianzfunktion der
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Schlüssel zur Modellierung der Abhängigkeiten zwischen den Datenpunkten ist [9].
Sie gibt an, wie ähnlich oder korreliert die Funktionswerte an verschiedenen
Stellen im Eingaberaum sind.

2.2 Vorhersagen

Um realistische Vorhersagen aus den Trainingspunkten X = {(xi, yi)|i = 1, ..., n},
mit den Funktionswerten von xi mit Rauschen yi = f(xi) + ϵ, zu erhalten be-
nutzen wir das Modell aus [5]. Unter der Annahme von additiven, unabhängigen
und identisch verteilten gaußschem Rauschen ϵ mit Varianz σ2

n wird die Kovar-
ianz der rauschbehafteten Beobachtungen zu

cov(y) = K(X,X) + σ2
nI (4)

wobei K(X,X) die Kovarianzmatrix ist, welche durch Kij(X,X) = k(xi, xj),
mit xi, xj ∈ X, definiert ist. Die gemeinsame Verteilung der beobachteten Trainigswerte
y und die Funktionswerte f∗ der Testpunkte X∗ gemäß der Kovarianz ist

[
y
f∗

]
∼ N

(
0,

[
K(X,X) + σ2

nI K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
(5)

Die wesentlichen Vorhersagenverteilungen, die wir in [5] gegeben haben, sind

f∗|X, y,X∗ ∼ N
(
f̄∗, cov (f∗)

)
,mit (6)

f̄∗ = K(X∗, X)[K(X,X) + σ2
nI]−1y, (7)

cov (f∗) = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2
nI]−1K(X,X∗). (8)

2.3 Eigenschaften vom Kernel

Eine valider Kernel ist positiv semidefinit [5]. Die meisten Kernel haben Hyper-
parameter, die eingestellt werden müssen, um ihre Leistung zu optimieren. Die
Wahl und Anpassung dieser Hyperparameter ist ein wichtiger Schritt bei der
Auswahl eines Kernel-Typs.

2.4 Typische Kernel-Typen in der GPR

Um Kernel besser verstehen zu können werden im folgenden Beispiele für diese
aufgelistet:

SE-Kernel (Squared Exponential Kernel) [4]:

kSE

(
x, x

′)
= σ2 exp


−

(
x− x

′
)2

2l2


 (9)
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Hierbei repräsentieren x und x
′

die Eingabewerte der Datenpunkte, l ist der
Längenmaßstab, der die Reichweite der Korrelation zwischen den Funktion-
swerten bestimmt. σ bestimmt die durchschnittliche Entfernung der Funktion
von ihrem Mittelwert. Jeder Kernel hat diesen Parameter vorne, es ist nur ein
Skalierungsfaktor. [4]

Der SE Kernel, wird oft für glatte, kontinuierliche Funktionen verwendet.

Fig. 1. Die SE-Kernel geplottet mit x
′
= 0 und verschiedenen Hyperparamtern.

Periodic Kernel [4]:

kPer

(
x, x

′)
= σ2 exp


−

2sin2
(
π|x− x

′ |/p
)

l2


 (10)

Modelliert Funktionen die sich genau wiederholen. Die Hyperparameter sind p,
welcher die Periode bestimmt und l, der wie beim SE der Längenmaßstab ist.
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Fig. 2. Die Periodic-Kernel geplottet mit x
′
= 0 und verschiedenen Hyperparamtern.

Matérn Kernel [5]:

kMatern

(
x, x

′)
= σ2 21−ν

Γ (ν)


√2ν

(
x− x

′
)

l




ν

Kν


√2ν

(
x− x

′
)

l


 (11)

Mit positiven Hyperparametern ν und l. Kν ist eine modifizierte Bessel Funktion.
Hierbei ist ν ein Glätteparameter und l wie auch schon oben unser Längenmaßstab.
Wie in [5] erhalten wir für ν → ∞ den SE-Kernel. Der Matérn Kernel ist
flexibler als der SE Kernel und eignet sich für Datensätze mit einer gewissen
Unregelmäßigkeit. Er kann genutzt werden, um Prozesse zu modellieren, die oft
nicht perfekt glatt sind.

Es gibt auch andere Kernel-Typen, die verschiedene Modellierungseigenschaften
aufweisen. Zudem können wir verschiedene Kernel kombinieren, zum Beispiel
kann man Kernel miteinander addieren und multiplizieren wie in [4] gezeigt. Die
Wahl des Kernels hängt von der Struktur der Daten und den gewünschten Model-
lierungseigenschaften ab. Eine sorgfältige Kernel-Auswahl kann die Leistung des
GPR-Modells erheblich verbessern und eine effektive Modellierung komplexer
Beziehungen zwischen den Datenpunkten ermöglichen. Durch die Definition des
Kernels können wir die Funktionsweise des GPR-Modells steuern und es an die
spezifischen Anforderungen unserer Daten anpassen.
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Fig. 3. Die Matern-Kernel geplottet mit x
′
= 0 und verschiedenen Hyperparamtern.

3 Datenanalyse und Verständnis

Die Datenanalyse und das Verständnis der zugrunde liegenden Daten sind von
entscheidender Bedeutung bei der Anwendung der GPR. Diese Phase bildet den
Grundstein für die erfolgreiche Modellierung und die Auswahl eines geeigneten
Kernels, um präzise Vorhersagen zu treffen.

In der Phase der Datenanalyse beginnen wir damit, die Struktur und Eigen-
schaften der Daten zu erkunden. Dazu gehört die Untersuchung der Daten-
typen, Skalierungen, Verteilungen, Korrelationen und möglichen Ausreißern. Ein
gründliches Verständnis der Daten ermöglicht es uns, potenzielle Herausforderun-
gen oder Besonderheiten zu identifizieren, die bei der späteren Modellierung
berücksichtigt werden müssen.

Dabei spielt Visualisierung der Daten eine entscheidende Rolle. Streudiagramme,
Histogramme, Boxplots und Zeitreihenplots ermöglichen es uns, Muster, Trends
und mögliche Abhängigkeiten zwischen den Variablen zu erkennen. Die Visu-
alisierung der Daten hilft uns, ein intuitives Gefühl für die zugrunde liegende
Struktur zu entwickeln und wichtige Einsichten zu gewinnen.

Die Identifizierung von Mustern und Abhängigkeiten in den Daten ist ein weit-
erer wichtiger Aspekt der Datenanalyse. Wir suchen nach linearen und nicht-
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linearen Zusammenhängen, periodischen Mustern und Autokorrelationen [5].

Das Verständnis der Datenstrukturen ist unerlässlich für die Auswahl eines
geeigneten Kernels. Unterschiedliche Kernel-Typen sind für verschiedene Daten-
typen und Muster besser geeignet. Zum Beispiel ist der SE-Kernel gut geeignet,
um kontinuierliche Muster zu erfassen, während der periodische Kernel beson-
ders gut für Daten mit periodischen Schwankungen geeignet ist.

Insgesamt spielt die Datenanalyse und das Verständnis der Daten eine zentrale
Rolle bei der Anwendung der Gauß Prozess Regression. Durch eine gründliche
Analyse und Visualisierung der Daten sowie die Identifizierung von Mustern
und Abhängigkeiten können wir spezifische Anforderungen und Eigenschaften
an unser GPR-Modell stellen.

4 Modellierungseigenschaften

Diese eben erwähnten Modellierungseigenschaften müssen, für einen geeigneten
Kernel klar definiert sein. Sie legen fest, welche Charakteristiken das GPR-
Modell haben soll, um den Anforderungen der Anwendung gerecht zu werden.
Aspekte wie Flexibilität, Berücksichtigung von Unsicherheiten und Zeit/Raum-
Abhängigkeiten sollten beachtet werden [5].

Die Flexibilität des GPR-Modells bezieht sich darauf, wie gut es sich an die
zugrunde liegenden Datenstrukturen anpassen kann. Ein guter Kernel sollte
in der Lage sein, sowohl einfache als auch komplexe Muster in den Daten zu
erfassen. Die gewählte Modellierungseigenschaft sollte sicherstellen, dass das
GPR-Modell ausreichend flexibel ist, um die Vielfalt der Daten angemessen zu
berücksichtigen, also sollte es nicht zur Unteranpassung bzw. Überanpassung
kommen [5]. Unteranpassung tritt auf, wenn ein Modell zu einfach ist, um die
zugrunde liegenden Muster in den Daten zu erfassen. Dies führt zu einer Situ-
ation, in der die Leistung des Modells sowohl auf den Trainings- als auch auf
den Testdaten schlecht ist. Das Modell fehlt an der benötigten Komplexität, um
die Beziehungen innerhalb der Daten darzustellen, was zu geringer Genauigkeit
führt (siehe Fig. 4). Überanpassung können wir beobachten, wenn ein Modell
lernt, auf den Trainingsdaten außergewöhnlich gut abzuschneiden, jedoch nicht
in der Lage ist, auf neue, ungesehene Daten zu verallgemeinern. Mit anderen
Worten, das Modell hat das Rauschen in den Trainingsdaten gelernt anstelle der
zugrunde liegenden Muster. Es kann selbst die kleinsten Schwankungen in den
Trainingsdaten erfassen, was zu einem komplexen Modell mit vielen Parametern
führt. Diese Komplexität macht das Modell anfällig für Fehler bei neuen Daten,
was zu einer schlechten Vorhersageleistung führt (siehe Fig. 4).

In vielen Anwendungen sind Unsicherheiten in den Daten vorhanden, sei es auf-
grund von Messfehlern oder begrenzter Datenverfügbarkeit. Die Definition der
Modellierungseigenschaften sollte sicherstellen, dass das GPR-Modell die Un-
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Fig. 4. Links Unteranpassung, Mitte Gute Abdeckung, Rechts Überanpassung. [2]

sicherheiten in den Vorhersagen berücksichtigt und plausible Konfidenzintervalle
liefert [5].

Je nach Anwendung kann es wichtig sein, die zeitliche oder räumliche Struktur
der Daten zu berücksichtigen. Ein passender Kernel sollte die Abhängigkeiten
zwischen den Datenpunkten entsprechend ihrer zeitlichen oder räumlichen Nähe
angemessen erfassen [5].

Die Definition der gewünschten Modellierungseigenschaften hilft uns, den Fokus
bei der Kernel-Auswahl zu setzen und im nächsten Schritt den geeigneten Kernel-
Typ sowie die entsprechenden Hyperparameter auszuwählen.

5 Kernel-Auswahl und Hyperparameter-Tuning

Nach der Bestimmung der gewünschten Modelleigenschaften beginnt das itera-
tive Verfahren für die Kernel Auswahl. Es wird als iterativ bezeichnet, da sehr
wahrscheinlich nicht der erste gewählte Kernel der optimalste für das Modell ist.

Wir wählen nun einen geeigneten Kerneln für unsere Daten. Sobald der Kernel
gewählt wurde müssen wir die optimalen Hyperparameter für das Modell finden.

Der erste Schritt beim Hyperparameter-Tuning ist die Festlegung eines geeigneten
Bereichs für jeden Hyperparameter. Je nach Art des Kernels können die Hyper-
parameter beispielsweise die Längenmaßstäbe, die Rauschintensität oder die Pa-
rameter, die die Form des Kernels steuern, umfassen. Es ist wichtig, den Bereich
so zu wählen, dass er plausible und realistische Werte abdeckt.

Eine der verbreitetsten Methoden für die Bestimmung der Hyperparameter,
ist die Maximierung der log marginal likelihood, welche in [5] folgendermaßen
definiert ist:

log p(y|X, θ) = −1

2
y⊤K−1

y y − 1

2
log |Ky| −

n

2
log 2π (12)
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Hierbei ist Ky = K +σ2
nI die Kovarianzmatrix für die mit Rauschen behafteten

Trainingspunkte. θ ist die Menge aller Hyperparameter, zum Beispiel bei der
oben gezeigten SE-Kernel wäre θ = {σ, l}.

Die log marginal likelihood kann in drei Teile aufgeteilt werden: Der data-fit-
Term −y⊤K−1

y y/2; der complexity penalty log |Ky|/2 und der normalization
constant nlog(2π)/2. Wie in [5] gezeigt nimmt der data-fit-Term monoton ab,
je größer der Längenmaßstab wird, da das Modell immer weniger flexibel wird.
Der negative complexity penalty nimmt mit wachsendem Längenmaßstab zu, da
das Modell mit zunehmendem Längenmaßstab weniger komplex wird.

Da bei großen Datensätzen die Berechnung der log marginal likelihood sehr
zeitaufwendig ist, da die Funktion darauf aufbaut die Matrix K zu invertieren,
was eine Laufzeit von O(n3), für eine n∗n-Matrix hat. In solchen Fällen können
Hyperparameter-Optimierungsalgorithmus effizienter sein.

Einige solcher Algorithmen werden von Yang und Shami in [10] vorgestellt.
Die meist genutzten werden wir nun ebenfalls kurz vorstellen.

Der verbreitetste Hyperparameter-Optimierungsalgorithmus ist Grid-Search(GS).
Hierbei wird der gesamte Wertebereich für jeden Hyperparameter in diskrete Ab-
schnitte unterteilt. Das GPR-Modell wird dann für jede Kombination von Hy-
perparameterwerten trainiert und evaluiert, basierend auf Error-Metriken wie
z.B dem Mean Squared Error (MSE). Die beste Kombination von Hyperparam-
etern, die die besten Leistungsergebnisse liefert, wird ausgewählt. Ein Vorteil
von GS ist, dass es sehr einfach zu implementieren und paralellisiert ist. Der
große Nachteil von GS ist, dass der Algorithmus ineffizient für Hyperparameter
mit mehreren Dimensionen ist wie in [10] beschrieben.

Fig. 5. Grid search über Ausfallraten und Lernraten in einer parallelen Ausführung.
[11].
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Random Search(RS) ist ein weiterer Optimierungsalgorithmus, er funktioniert
ähnlich wie Grid Search, jedoch nimmt er eine feste Anzahl an zufälligen Kom-
binationen von Hyperparameter. Mit diesen wird das GPR-Modell wie bei GS
trainiert und evaluiert. Die beste Kombination wird, dann ausgewählt. RS ist
mehr effizient als GS, wie in [10] gezeigt. Der große Nachteil den GS und RS
ist, dass sie nicht aus vorherigen Ergebnissen in der Iteration lernen, da alle
Iteration unabhängig von den davor ist. Dadurch wird viel Zeit verschwendet,
im Gegensatz zu Algorithmen die ihre nächste Evaluierung auf der vorherigen
aufbauen.

Fig. 6. Anordnungsvergleich von grid search and random search. [11]

Ein solcher Algorithmus ist die Bayesian Optimization. Die BO nutzt ein prob-
abilistisches Modell, um Vorhersagen über die Leistung des GPR-Modells für ver-
schiedene Hyperparameterkombinationen zu treffen. Basierend auf den gemachten
Vorhersagen werden neue Hyperparameterwerte ausgewählt, die voraussichtlich
die beste Leistung erzielen. Dieser Prozess wird iterativ wiederholt, um die
Hyperparameter kontinuierlich zu verbessern (siehe Fig. 7). Für eine genauere
Erklärung siehe [10]. Durch die beschriebene Funktionsweise der BO ist dieser
Algorithmus schneller als GS uns RS. Ein Nachteil der BO ist jedoch, dass er
schwierig zu parallesieren ist.

Eine kompakte Darstellung der Vor-, Nachteile und Laufzeit aller Algorithmen,
welche in [10] vorgestellt werden, ist in Fig. 8.
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Fig. 7. Illustration von Bayesian optimization über drei Iterationen. [7]

Fig. 8. Der Vergleich gängiger Hyperparameter-Optimierungsalgorithmen (n ist die
Anzahl der Hyperparameter-Werte und k ist die Anzahl der Hyperparameter). [10]
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6 Modellvalidierung und -vergleich

Nachdem wir den geeigneten Kernel ausgewählt und die Hyperparameter feinge-
tunt haben, ist es entscheidend, das erstellte GPR-Modell auf seine Leistungsfähigkeit
zu überprüfen und mit anderen Modellen zu vergleichen. Die Modellvalidierung
und der -vergleich helfen uns dabei, die Vorhersagegenauigkeit und die Stabilität
unseres Modells zu bewerten und sicherzustellen, dass es für unsere spezifische
Anwendung angemessen ist. Was wichtig ist hier anzumerken ist, dass dies nicht
gemacht werden muss, wenn ein Hyperparameter-Optimierungsalgorithmus angewen-
det wurde, da die erstellten Modelle automatisch miteinander verglichen und
validiert werden, auch mit den Methoden die in diesem Abschnitt vorgestellt
werden.

Die Kreuzvalidierung ist eine leistungsfähige Technik, um die Modellgenauigkeit
zu verbessern und die Variabilität der Ergebnisse zu reduzieren. Beim k-Fold
Cross-Validation-Verfahren wird der Trainingsdatensatz in k Teilmengen aufgeteilt,
und das Modell wird k-mal trainiert und getestet, wobei jeweils eine andere Teil-
menge als Testdatensatz verwendet wird. Die Ergebnisse werden dann gemittelt,
um eine zuverlässigere Leistungsbewertung zu erhalten [5].

Um die Genauigkeit der Vorhersagen zu bewerten, verwenden wir verschiedene
Bewertungsmetriken, welche in [5] erwähnt werden, wie den Mean Squared
Error (MSE), den Standardized Mean Squared Error (SMSE) oder den Mean
Standardized Log Loss (MSLL). Diese Metriken helfen uns dabei, die Unter-
schiede zwischen den tatsächlichen und vorhergesagten Werten zu quantifizieren
und die Leistung des Modells zu beurteilen.

Die Modellvalidierung und der -vergleich sind kritische Schritte, um sicherzustellen,
dass unser GPR-Modell zuverlässige Vorhersagen liefert und gut auf unsere
spezifische Anwendung zugeschnitten ist. Durch die sorgfältige Bewertung der
Modelleistung und den Vergleich mit anderen Modellen können wir die Stärken
und Schwächen unseres GPR-Modells besser verstehen und seine Vorhersagege-
nauigkeit optimieren. Ein gut validiertes und verglichenes Modell gibt uns das
Vertrauen, dass es präzise Vorhersagen liefert und uns wertvolle Erkenntnisse
aus unseren Daten liefert.

Nach all diesen Schritten haben wir nun einen Kernel, der der unsere gegebenen
Trainingspunkte abdeckt und trotzdem gute Vorhersagen für unsere Testpunkte
liefert.
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7 Anwendungsbeispiele

7.1 Schätzung des Alters als Maß für Gehirn Abnormalitäten

In ihrem Paper zeigen Becker et al. [1] zeigen wie die Anwendung von Gauß
Prozessen verwendet werden kann um Altersschätzungen zu liefern. Die Studie
konzentriert sich darauf, wie Vorhersagenverteilungen, wie die oben beschriebene
Eq.(8), die von Gauß’schen Prozessen bereitgestellt werden, als Indikator für Ab-
normalitäten im Gehirn dienen können. Dies passiert durch die Annahme, dass
die geschätzte Kovarianz als ein Maß der Unsicherheit für einen getesteten Punkt
dient.

Becker et al. [1] verwenden eine Summe von mehreren SE-Kerneln als ihren
schlussendluchen Kernel. Dies ist eine gute Wahl, da sie dadurch die im gesamten
stetige und glatte Steigung in der Beziehung zwischen geschätztem und wahrem
Alter darstellen können. Der lineare Kernel siehe [4] wurde hier nicht verwen-
det, obwohl er hier logisch erscheint, da er ein non-stationary Kernel ist, im
Gegensatz zu SE-Kerneln. Ein nicht-stationärer Kernel modelliert Variationen
und Veränderungen im Datenraum. Das bedeutet, dass die Beziehung zwischen
den Datenpunkten nicht überall gleich ist. Diese Eigenschaft haben wir hier nicht
gegeben, deshalb wird der Lineare Kernel nicht verwendet.

7.2 Automatisierte Überwachung der Grundwasserqualität

Das Paper [6] beschäftigt sich mit einer automatisierten Methode zur Überwachung
der Grundwasserqualität unter Verwendung einer Kombination aus GPR und
dem Bayesischen Informationskriterium (BIC). Shadrin et al. adressieren die
Herausforderung, hochauflösende Karten der Grundwasserqualität zu erstellen,
um Umweltüberwachung und -management zu unterstützen. Sie verwenden GPR,
um räumliche Muster in den Grundwasserqualitätsdaten zu modellieren und
Vorhersagen für unbekannte Orte zu generieren. Das BIC wird eingesetzt, um
die optimale Anzahl von GPR-Modellen und deren Hyperparametern zu bes-
timmen, was zur Reduzierung von Überanpassung und zur Verbesserung der
Modellgenauigkeit beiträgt.

Wenn die Methode auf die vorhanden Daten im Paper angewendet wird erhalten
Shadrin et al. einen optimalen Kernel als Summe von Summen von SE-Kerneln
und Summen von Periodic-Kerneln. Dies ist passend, da dadurch die periodis-
chen und zugleich die kontinuierlichen Eigenschaften in den Daten abgedeckt
werden.
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8 Zusammenfassung

Die Auswahl eines geeigneten Kernels ist ein entscheidender Schritt bei der
Anwendung der Gauß Prozess Regression auf ein bestimmtes Problem. Eine
sorgfältige Kernel-Auswahl ermöglicht es uns, die Struktur der Daten angemessen
zu erfassen und ein GPR-Modell zu erstellen, das genau und zuverlässig ist. Die
Kernel-Auswahl in der Gauß Prozess Regression erfordert eine Kombination aus
Datenanalyse, Bestimmung der Modelleigenscheiften, iterativer Verbesserung
des Modells und kontinuierlichen Modellvergleichen. Indem wir diese Schritte
systematisch durchlaufen, können wir ein GPR-Modell entwickeln, das die zu-
grunde liegende Struktur der Daten effektiv erfasst und zu präzisen Vorhersagen
führt.
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Abstract. This paper delves into the training phase of Gaussian Process
Regression (GPR), with a primary focus on optimizing hyper-parameters
and addressing the challenge of the indefinite covariance matrix. At
the beginning a comprehensive insight into GPR will be provided. To
tackle the problem of hyper-parameter optimization, we introduce sev-
eral widely employed methods, including grid search, random search and
Bayesian optimization. By analysing the strengths and weaknesses of
each method, optimal use cases of these methods are highlighted. In the
final section, we will introduce a common technique known as regular-
ization, which is employed to handle indefinite covariance matrices.

Keywords: Gaussian Process Regression · Hyper-parameter Optimiza-
tion · Grid Search · Random Search · Bayesian Optimization · Indefinite
Covariance Matrix · Regularization

1 Introduction

Gaussian Process Regression (GPR) is an essential interpolation method that
uses Bayesian Interference to provide predictions with a measure of uncertainty.
It is used in various fields, such as machine learning, surrogate modelling, robotics
and computer vision due to its high flexibility and adaptability.

The training phase of the GPR is crucial to make accurate predictions and as-
sociated uncertainties. However GPR depends significantly on hyper-parameters
such as kernel type, length scales, noise variance and regularization parameter
which directly impact the accuracy, flexibility, and generalization ability of the
GPR model. To combat this problem, there are a wide variety of hyper-parameter
optimization methods used throughout the training phase of the GPR. In this
paper some of popular hyper-parameter optimization methods used in GPR will
be introduced and their strengths, weaknesses and optimal use cases will be
discussed.
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Another challenge that emerges during the training phase of the GPR is the
covariance matrix becoming indefinite, which can lead to numerical instabilities
and poor model performance. At the end of the paper, appropriate techniques
that have been proposed and widely used in practice to deal with this problem
will be introduced.

2 Gaussian Process Regression

Before explaining various hyper-parameter optimization methods used in GPR,
this section will explain the fundamental concept behind the GPR and the ne-
cessity for effective optimization methods for hyper-parameters.

2.1 Overview

GPR is a powerful tool in machine learning because it enables estimation of
both predictions and associated uncertainties. GPR models the function as a
distribution over functions and not as a fixed parameterized model, which makes
it highly flexible and adaptable.

2.2 Gaussian processes regression model

The purpose of the regression tasks is to estimate a function f given a random
number of input variables, in other words a n-dimensional vector x. In this
context, it is important to acknowledge that there can be an infinite number
of functions that can fit the given data. To address this challenge, GPR places
a Gaussian prior on function values y = f(x), which means that it assumes a
Gaussian distribution over all possible functions that fit the given data:

p(y) = N (y |µ(x), k(x, x)) (1)

Here, p(y) is the probability distribution of the target variable y, which is as-
sumed to follow a Gaussian distribution N with a mean function µ(x) and a
covariance matrix K. The mean function µ(x) represents the average behavior
of the function f(x) at the input point x.

The covariance function k reflects the correlation between different input
points. In that matter similar inputs correspond to similar outputs.

In prior distribution is no data observed yet. According to Wang in [1],
when we start to have observations, instead of infinite numbers of functions,
we only keep functions that fit the observed data points. This process is based
on Bayesian inference principles and the updated distribution called the posterior
distribution. We aim to investigate the connection between the target variable
observed during training y and the target variable predicted for new test points
y∗. The joint probability can be expressed as follows:
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p

(
y
y∗

)
∼ N

([
y
y∗

] ∣∣∣∣ 0,

[
K(X,X) K(X,x∗)
K(X,x∗)T k(x∗, x∗)

])

Here, the mean vector is is assumed to be zero to establish a baseline,
K(X,X) is the covariance matrix between the observed target variables, based
on the inputs X. K(X,x∗) is the covariance between the observed target vari-
ables and the target variables at new test points and finally K(x∗, x∗) represents
the covariance between the target variables at new test points.

By conditioning on the observations, we obtain the posterior distribution on
the test output y∗:

p(y∗
∣∣x∗, x1, . . . , xM , y) = N (y∗

∣∣µ∗, σ∗)

Here, µ, the mean of the predicted target variable y∗ is typically represented
as:

µ∗(x∗, x1, . . . , xM , y) = K(x∗, X)K(X,X)−1y

and σ represents the uncertainty associated with the prediction:

σ∗(x∗, x1, . . . , xM , y) = K(x∗, X)K(X,X)−1K(X,x∗)

In the GPR, the kernel function, which is also referred to as the covari-
ance function, exhibits several differential forms. For example, the heterogeneous
square exponential covariance function is as follows:

k(x, x′) = θ exp(−λ||x− x′||2)

where, θ and λ denote the parameters of the covariance function as seen in [4].

Having described the kernel function, it is of importance to estimate the
hyper-parameters involved in the kernel from the training data. Most kernels
have hyper-parameters that determine the prior of a Gaussian process, and ac-
cording to Chen et al. in [2] the choice of prior significantly influences the per-
formance for a given amount of data. The log likelihood function is typically
maximized to optimize the hyper-parameters. If the hyper-parameters are cho-
sen wisely, GPR can achieve a performance at least as good as that of a neural
network, which is a prominent machine learning method, with fewer data. Ac-
cording to Manzhos et al. in [3] the significance lies in the fact that sparsity of
data is very common in sufficiently high-dimensional spaces due to the curse of
dimensionality, which refers to the problem where the possible data points in-
creases so fast that the available data becomes sparse. Relatedly, Manzhos et al.
[3] add that the computational cost of GPR increases rapidly with the number
of training data.
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To address this challenge, various hyper-parameter optimization methods
have been developed, which will be explained in Chapter 3. These methods
optimize the important hyper-parameters involved so that they work optimally,
leading to improved performance and precise modeling. These hyper-parameters
can be data-driven, determined based on the characteristics of the training data
or model-driven, selected based on the desired behavior and complexity of the
model (e.g. number of layers and neurons in a neural network, learning rate,
activation function, regularization).

3 Hyper-parameter Optimization Methods

Hyper-parameter optimization plays a crucial role in model performance. This
section provides an overview of various hyper-parameter optimization methods
such as grid search, random search and Bayesian optimization. Some of these
methods involve computational complexity, others are not efficient enough or
have difficulty in tuning interdependent hyper-parameters. Therefore, more effec-
tive methods were also researched to optimize hyper-parameters such as particle
swarm optimization, genetic algorithm, and differential algorithm as described
by Kang et al. in [4].

3.1 Grid Search

Grid search is a commonly used and straightforward hyper-parameter optimiza-
tion method that systematically builds and tests models for each combination
of given hyper-parameters.

After evaluating all possible hyper-parameter combinations, grid search se-
lects the combination that achieves the best performance based on the chosen
error metric (e.g. Mean Squared Error, Mean Absolute Error).

According to Yu et al. in [5], the feature that makes grid search one of the
most used methods is that it is possible to run it in parallel. That’s because every
trial runs individually without the influence of time sequence, which means that
computational resources can be allocated in a highly flexible manner (Figure 1).

However, Yu et al. [5] also point out that one of the crucial drawbacks of
the grid search is the computational cost, especially when dealing with a high
number of hyper-parameters or when hyper-parameters have a large number of
possible values. This is because the number of possible combinations of hyper-
parameters grows exponentially with the number of values. Therefore, grid search
can be considered as a viable approach when the number of hyper-parameters
and their corresponding values remains relatively small.
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Fig. 1. Grid search on dropout rate and learning rate in a parallel concurrent execution
[5]

3.2 Random Search

As the name suggests, random search tries out hyper-parameter values ran-
domly from their defined ranges. Contrary to grid search which systematically
evaluates all combinations of hyper-parameters, random search selects a random
subspace of hyper-parameter values, evaluates the performance of each for pre-
defined number of iterations or until a satisfying solution is found, and selects
the best one.

Compared to grid search, random search can be considered less expensive
since it tests randomly selected subsets of values instead of evaluating every
possible combination. However, the key advantage of random search lies in its
ability to explore a wide range of hyper-parameter values without limitations. It
samples hyper-parameter values randomly from their defined ranges, while grid
search follows a predefined pattern. This random sampling allows random search
to potentially discover optimal configurations in areas that may lie between the
grid points, which grid search might overlook (Figure 2).

Despite the fact that both grid search and random search are commonly
used optimization methods due to their simplicity of implementation, they share
an important drawback that has prompted researchers to seek more advanced
hyper-parameter optimization methods. This drawback is their memorylessness,
meaning they don’t learn from their previous observations. Therefore, useful
inter-dependencies between the hyper-parameters may be overlooked, leading to
sub-optimal results.

To address this issue researchers have explored alternative methods such
as Bayesian optimization, utilizing past observations and learning from them,
leading to a more efficient exploration of the hyper-parameters.
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6 Beyza Keskin et al.

Fig. 2. Layout comparison between grid search and random search [5]

3.3 Bayesian Optimization

Definition 1. Bayesian optimization is a sequential model-based method aimed
at finding the global optimum with the minimum number of trials, while balancing
exploration and exploitation to avoid trapping into the local optimum [5].

In the exploitation phase, the model focuses on refining the current best-
known solution. On the other hand, exploration involves delving into regions
where predictive uncertainty is high and which may potentially yield better
hyper-parameter combinations (Figure 3).

It is crucial to maintain a balance between exploitation and exploration for
efficient hyper-parameter optimization. If the model relies too heavily on explo-
ration, it may overlook optimal solutions, and ultimately resulting in sub-optimal
outcomes.

Fig. 3. Exploration-oriented (left) and exploitation-oriented Bayesian optimization
(right); the shade indicates uncertainty [5].
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Bayesian optimization has 2 key components (Figure 4). The first component
is a surrogate model, in our case the Gaussian Process (GP) model which is used
to approximate the underlying objective function, and the second component is
an acquisition function which balances the trade-off between exploration and
exploitation by deciding where to sample next.

Fig. 4. Bayesian Optimization procedure over three iterations, with the mean and
confidence intervals estimated with the surrogate model (GP) of the objective function.
The acquisition functions in the lower shaded plots are showed [6].

Snoek et al. [8] describe how greedy acquisition procedures, strive to make
significant progress in each subsequent function evaluation. These methods drive
the optimization process by selecting points that are expected to yield valuable
information, contributing to both improving the current solution and exploring
uncharted regions of the search space. Relatedly, Yu et al. [5] emphasize that
the Expected Improvement is the most prevalent selection for the acquisition
function due to its strong performance and user-friendly nature:

E[I(λ)] = E[max (0, fmin − y)] (2)

In this equation, fmin represents the current best observed function value,
and y represents the predicted function value at the parameter value λ.
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8 Beyza Keskin et al.

The improvement function is defined as I(x, v, θ) = (v− τ)I. I is larger than
zero when an improvement exists; v is a normally distributed random variable;
and τ is the target per the description in [5].

Before explaining the process in detail, the entire process is outlined in Al-
gorithm 1, as depicted in the pseudo-code by Hamoudi et al. in [7]:

Fig. 5. Pseudo-code of Bayesian Optimization

In their study, Galuzzi et al. [6] describe the optimization process as starting
with the initialization of a set of configurations X0 and their corresponding
function values: D0 = {X0, y0}. At each iteration, the GP model will be updated
using the Bayes rule, to obtain posterior distribution conditioned on the current
training set, containing the past evaluated configurations and observations.

This iterative process helps in optimizing the model’s objective function,
which represents the performance metric that we are trying to maximize or
minimize during the optimization process.

After evaluating a set of candidate points, a new data point with the highest
expected improvement, in other words the point which maximizes the acquisition
function will be selected as the next point to be evaluated.

The selected hyper-parameter configuration will be added to the prior data
set and the GP is evaluated with the updated data set.

Until a convergence criteria is satisfied or a certain number of iterations
have been completed, the procedure is continued. The final configuration of the
hyper-parameters is the one that produces the best observed performance.

Snoek et al. [8] points out a key issue in Bayesian optimization regarding how
important it is to design the initial assumptions effectively for efficient Bayesian
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optimization. Many times, we don’t have much information about the objective
function, and getting data from it is also costly. This practical situation leads to
two options: either we make strong assumptions without being completely sure
they’re accurate when we lack enough data, or we go with a less informative
initial assumption. Additionally, it’s often not clear how to find the right balance
between exploring new possibilities and sticking with what we already know in
the acquisition function.

Another critical problem of Bayesian optimization is that it progresses se-
quentially. Although there are some solutions to the parallelism problem, it can
be very resource intensive as parallelizing Bayesian optimization requires running
multiple instances of the Bayesian optimization process simultaneously, making
an already potentially expensive optimization technique even less scalable.

Now that the 3 most popular hyper-parameter optimization algorithms have
been introduced, we will now compare the grid search, random search and
Bayesian optimization algorithms in table 1.
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Table 1. Comparison of Hyper-parameter Optimization Algorithms

Algorithm Positives Negatives Optimal To Use

Grid Search

– Systematic search guaran-
tees full coverage

– Simple to implement
– Straightforward to under-

stand
– Possible to run parallel

– Computationally expensive
and impractical for high-
dimensional spaces (curse of
dimensionality)

– Memorylessness, it doesn’t
learn from it’s previous ob-
servations. Therefore, use-
ful inter-dependencies be-
tween the hyper-parameters
may be overlooked, leading
to sub-optimal results

– When the number of hyper-
parameters and their corre-
sponding values is relatively
small and the resources are
sufficient to explore all com-
binations thoroughly

– When the objective func-
tion doesn’t have useful
inter-dependencies between
hyper-parameters or when
the relationship between
hyper-parameters and the
objective function is well-
understood

Random
Search

– Ability to explore a wide
range of hyper-parameter
values without limitations

– Can handle high-
dimensional spaces

– Less computationally ex-
pensive than grid search

– Possible to run parallel

– May still require many sam-
ples to find optimal hyper-
parameters

– Less systematic than grid
search

– No guarantee that random
search will converge to opti-
mal or near-optimal hyper-
parameters.

– Memoryless

– When the hyper-parameter
search space is large and ex-
haustive search is computa-
tionally impracticable

– When computational re-
sources are limited and
you have a large hyper-
parameter space

Bayesian
Optimiza-
tion

– Efficient with expensive ob-
jective functions

– Considers previous ob-
servations and inter-
dependencies between
hyper-parameters

– Fewer evaluations required
– Better suited for high-

dimensional spaces

– Design of prior is critical to
efficiency

– In many cases, little is
known about the objective
function, and, it is expen-
sive to sample from

– Unclear trade-off between
exploration and exploita-
tion in acquisition function

– Progresses sequentially, po-
tentially slower than paral-
lel methods

– Parallelization can be
resource-intensive and may
reduce scalability

– When the objective func-
tion is expensive to evaluate

– When the objective func-
tion is a black-box and its
underlying behavior is not
well-known

– When computational re-
sources are available for
parallel execution and
the search space is high-
dimensional
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4 Dealing with the Indefinite Covariance Matrix

Another problem that emerges during the training phase of the GPR is the
covariance matrix becoming indefinite, which means that the matrix loses it’s
positive definiteness property. One possible cause of the indefinite covariance
matrix can be redundant variables in the data, as their correlations approach
zero. In that case the covariance matrix can have eigenvalues close to zero or
even negative, which makes the matrix indefinite. An indefinite matrix leads
to computational problems since it cannot be inverted, making it difficult to
calculate uncertainty and predictive mean values:

σ∗(x∗, x1, . . . , xM , y) = K(x∗, X)K(X,X)−1K(X,x∗)

µ∗(x∗, x1, . . . , xM , y) = K(x∗, X)K(X,X)−1y

To tackle this issue, numerous approaches have been proposed and widely
adopted in practical applications. In this context, we will delve into a significant
technique known as regularization, which plays a crucial role in addressing the
problem at hand.

Regularization

Regularization is a general concept to improve the performance and prevent
over-fitting. To prevent complex or extreme solutions where the training data
fits perfectly, but do not generalize well to new, unseen data, additional con-
straints or penalties are added to the model’s objective function. As two com-
mon regularisation strategies, Mohammadi et al. [9] present the pseudo-inverse
(PI) and nugget methods. In this section an introduction of these methods will
be presented based on the paper of Mohammadi et al.

A PI method is used to obtain an approximate inverse of a matrix that
has numerical stability issues. PI’s are generalizations of the matrix inverse for
matrices with non-squares or inverses that might not exist. It allows you to
compute an optimized inverse for matrices that don’t have a true inverse. Moore-
Penrose PI is the most well-known PI. Given a matrix A, the Moore-Penrose PI
A+ satisfies the following conditions as described by Barata et al. in [10]:

1. AA+A = A

2. A+AA+ = A+

3. (AA+)T = AA+

4. (A+A)T = A+A
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12 Beyza Keskin et al.

The nugget method on the other hand uses a small positive constant (σ2,
the nugget) that has been tacked onto the covariance matrix’s K diagonal. The
adjusted covariance matrix Kadjusted is given by:

Kadjusted = K + σ2I

By successfully adding some noise to the data, this can assist solving problems
caused by closely spaced or perfectly aligned data points. It prevents the model
from fitting the noise in the training data too closely. An essential step in us-
ing the nugget approach is determining the noise variance. Cross-validation or
maximum likelihood are frequently used to calculate this value.

Fig. 6. PI regularization is plotted in black. Left: the nugget value is 1 (cyan) and 0.1
(magenta). For nugget values smaller than 0.01, Pseudo-inverse and nugget regular-
izations cannot be visually distinguished. Right: the nugget estimated by maximum
likelihood is 7.07 (blue)[9].

The models produce predictions for PI regularisation that precisely span the
given data points and also follow the average trend at redundant points. It’s like
perfectly joining the dots. The approach ensures that predictions vary gradually
and are not too unpredictable. The degree of uncertainty surrounding predictions
decreases when we use PI regularisation.

Nugget regularization is a bit different. It makes predictions that don’t ex-
actly match the data points and don’t average out smoothly either. It adds more
randomness to the predictions. When using nugget regularization, there’s still
some uncertainty left around the predictions.

The method we choose relies on the issue we’re trying to solve. It is preferable
to use PI regularisation or a little nugget if our GP model fits the data pretty
well. A little nugget or PI will work if there is a minor discrepancy between
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the model and the data. However, if the difference is greater, we must choose
the approach depending on what is crucial to solving the problem. We might
favour PI if we want the predictions to easily follow the trend. We might select
the nugget if we wish to take uncertainty into account more when making our
predictions.

5 Conclusion

After examining the training phase of GPR, we have reached the conclusion
that the selection of proper hyper-parameters plays a pivotal role in achieving
accurate predictions. We have provided a comprehensive review of techniques
such as grid search, random search, and Bayesian optimization, analyzing their
mechanisms, strengths, and limitations. Our analysis has highlighted the impor-
tance of adaptive strategies that learn from past evaluations, ultimately leading
to improved hyper-parameter optimization.

In the context of addressing the challenge posed by indefinite covariance ma-
trices, we have observed the significance of regularization within GPR, which
also comes with its limitations. By employing regularization techniques, such as
the utilization of pseudo-inverse and nugget methods, we have explored effective
strategies aimed at mitigating the complexities arising during covariance matrix
inversion. This endeavor not only empowers the model but also enhances its ca-
pability to generate dependable predictions and precise estimates of uncertainty.

The methods and insights presented here pave the way for more efficient
and effective implementations of GPR, enabling its broader applicability across
various domains.
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Abstract. Gaussian Process Regression (GPR) is a versatile framework
used in regression analysis, allowing for flexible modeling and probabilis-
tic predictions. One intriguing aspect of GPR is its incorporation of dif-
ferent likelihood functions, which govern the noise properties of observed
data. This paper explores the use of different likelihoods in two specific
scenarios: noise modeling and classification, showcasing the adaptability
of GPR to various applications.

1 Introduction

Regression analysis is a statistical method used to examine the relationship be-
tween a dependent variable and one or more independent variables. It aims to
model and predict the value of the dependent variable based on the independent
variables. The process involves fitting a regression equation to the data, which
determines the slope and intercept of the line that best represents the relation-
ship. The analysis helps quantify the strength and direction of the relationship,
allowing for predictions and inference.

Unlike traditional regression methods that assume a specific functional form
for the relationship between variables, Gaussian Process Regression (GPR) is
a non-parametric approach that allows for more flexible modeling. It assumes
a Gaussian distribution over functions and provides a posterior distribution of
possible functions given the data. This distribution captures uncertainty and
allows for probabilistic predictions, providing not only point estimates but also
confidence intervals. GPR can handle noisy and sparse data, adapt to various
types of relationships, and is capable of capturing complex patterns. It is widely
used in machine learning, particularly in areas such as spatial modeling, time
series analysis, and optimization (e.g., see [15]).

Gaussian distributions assume symmetry and have a bell-shaped curve. In
real-life scenarios, many variables exhibit skewness, where the distribution is
asymmetrical. Similarly, Gaussian distributions have finite kurtosis, meaning
they have lighter tails compared to some real-life data that can have heavy tails
or outliers. Consequently, Gaussians are sensitive to outliers, meaning that a
single extreme value can significantly impact the mean and standard deviation.
Moreover, they are continuous and assume that the underlying variable can
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take any value within a range. However, many real-life phenomena are discrete,
such as the number of occurrences, counts, or categorical data, which cannot be
accurately represented by a Gaussian distribution.

Concrete examples for non-Gaussian distributions are the volume of internet
traffic and the occurrence of natural disasters. The volume of internet traffic
often exhibits a non-Gaussian distribution because it experiences bursts of high
activity and periods of low activity, resulting in a distribution that is skewed
and exhibits heavy tails [1]. The occurrence of natural disasters, such as earth-
quakes or hurricanes, tends to follow a non-Gaussian distribution, because, while
most days are relatively calm, extreme events with large magnitudes occur less
frequently but can have a significant impact [14].

2 Core principles and equations

Over the course of this chapter, we lay the groundwork for understanding the
fundamental principles and equations that underpin GPR. By exploring the core
concepts and mathematical formulations, we aim to provide a comprehensive
overview of the key components involved in GPR, including the Gaussian process
prior, the mean and covariance functions and the predictive equations.

2.1 Notations

The notations are mainly adopted from Rasmussen et al. in [15].

Symbol Meaning

∝ proportional to
∼ distributed according to
≃ asymptotically equal to
f(x) or f Gaussian process
f∗ Gaussian process (posterior) prediction

f̂∗ Gaussian process posterior mean
GP Gaussian process
X training inputs
X∗ test inputs

2.2 Gaussian Processes

Definition 1. A Gaussian process is a stochastic process, or rather a collection
of random variables, any finite number of which have a joint Gaussian distribu-
tion [15].
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As seen in the book by Rasmussen [15], we will write a Gaussian process as

f(x) ∼ GP(m(x), k(x,x′)), (1)

where the mean function m(x) and covariance function k(x,x′) of f(x) are
defined as

m(x) = E[f(x)], (2)

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))] (3)

with the expectation value E[x]. The mean function specifies the average be-
havior of the functions generated by the process, while the covariance function
captures the pairwise relationships between the function values at different input
points. The covariance function, also known as the kernel function, determines
the smoothness of the functions generated by the Gaussian process.

2.3 Prediction

We aim to predict function values from n given data points, also called training
points X = {(xi,yi)|i = 1, ..., n} with yi = f(xi) + ε being the observed output
value at xi. Therefore, ε allows us to compensate for noisy observations.

Assuming the noise to be independent and identically distributed Gaussian
with variance σ2

n, the covariance, also referred to as the prior on the noisy ob-
servation, becomes

cov(y) = K(X,X) + σ2
nI (4)

where, as seen in [15], K(X,X) is the n×n matrix of the covariances determined
at all pairs of training points in X.

The predictive distribution is a Gaussian f∗|X∗, X,y ∼ N(f̂∗(X∗),
cov(X∗)) with parameters

f̂∗(X∗) = K(X∗, X)[K(X,X) + σ2
nI]−1y and (5)

cov(X∗) = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2
nI]−1K(X,X∗). (6)

By performing an integration over the latent function values, the marginal
likelihood p(y|X) is obtained as the result of combining the prior and likelihood:

p(y|X) =

∫
p(y|f , X)p(f |X)df . (7)

It is a measure of how well the chosen hyperparameters fit the observed data
and quantifies the trade-off between model complexity and data fit by yielding a
scalar value that represents the probability of the observed data given the model
and hyperparameters.
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2.4 Latent variables

Latent variables are unobserved variables that are inferred from the observed
data to model the hidden patterns or underlying factors driving the data. They
are used on regression models with non-Gaussian noise and classification prob-
lems. The Gaussian process is therefore defined for the latent variables, which
then define a distribution for the target [13]. An application of this approach
will be presented in chapter 4.2.

2.5 Markov chain Monte Carlo methods

Definition 2. A Markov chain is a sequence of configurations, where each con-
figuration depends only on the previous configuration, and the future states are
independent of the past states given the present state [2].

Markov chain Monte Carlo (MCMC) methods encompass a family of algorithms
used to generate samples from a probability distribution by constructing a
Markov chain with a desired stationary distribution [2]. Therefore, the space
of possible samples from a target probability distribution is explored. The chain
transitions from one state to another is based on a set of transition probabilities.

Gibbs sampling Gibbs sampling is a MCMC method used to generate samples
from a joint probability distribution when the conditional distributions of the
variables are known. It iteratively updates each variable by sampling from its
conditional distribution given the current values of the other variables, effectively
exploring the entire joint distribution. This process continues for a sufficient
number of iterations until convergence is achieved and samples from the desired
distribution are obtained [9].

Algorithm 1 Gibbs sampling for two variables x, y

Ensure: (xk, yk) are already obtained
while true do

generate xk+1 following p(xk+1|yk).
generate yk+1 following p(yk+1|xk+1).

end while

The key aspect of this algorithm is that, instead of modifying xk slightly
to obtain xk+1 while keeping yk fixed, xk+1 is generated independently of xk,
without any reference to its previous value.

3 Non-Gaussian noise

In this chapter, we delve into the intriguing realm of non-Gaussian noise, where
the assumptions of traditional Gaussian noise models no longer hold. Specifically,
we explore the challenges posed by input-dependent noise and the presence of
outliers in regression problems.
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3.1 Input-dependent noise

Goldberg et al. [8] describe an approach for regression problems with noise on
the output and, different from standard approach looked at in chapter 2, the
variance of the noise being input-dependent, so that we have to predict two
functions: The noise level r(x) and the function values themselves.

Model According to the book by Goldberg et al. [8], in this scenario, it is
convenient to combine two Gaussian processes for making predictions. The first,
so called y-process

fy(x) ∼ GP(my(x), ky(x,x′)) (8)

is to predict the function values as usual. Due to the noise not being negative,
a Gaussian process prior is placed over the log noise rate z which leads to r =
(exp z1, ..., exp zn) and results in the second, so called z-process

fz(x) ∼ GP(mz(x), kz(x,x′)) (9)

to predict the noise variance.
The n training points that we have got now are X = {(xi,yi)|i = 1, ..., n}

with yi = fy(xi) + r(xi) = fy(xi) + exp fz(xi) .

Noise sampling Goldberg et al. sample from the distribution p(y, z|X) and
afterwards ignore the y-values to get p(z|X). To achieve this, Gibbs sampling
(as introduced in section 2.5) is used. The distinguishing characteristic of this
approach is alternating sampling from p(y|z, X) and p(z|y, X). This corresponds
to alternating the ”fitting” of the curve (y-process) with ”fitting” the noise level
(z-process).

Predictions As described by Goldberg et al. [8], the predictive distribution for
the output fy∗ at point x∗ is

p(fy∗|X) =

∫
p(fy∗|X, r(z))p(z|X)dz (10)

The integral seen above in equation (10) cannot be solved analytically any-
more, owing to p(z|y) not to follow a Gaussian Distribution. Therefore, Gold-
berg et al. use Monte Carlo approximation, which is a sampling technique that
involves random sampling of the input space and calculating the average of func-
tion evaluations at these sampled points, making it useful for estimating integrals
and other quantities [5].

The result of the Monte Carlo approximation, accomplished by Goldberg et
al. in [8] can be seen in equation (11).

p(fy∗|X) ≃ 1

k

∑

j

p(fy∗|X, r(zj)) (11)
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To subsequently approximate p(fy∗|X, r(zj), Goldberg et al. take 10 samples
of p(fz∗, zj), resulting in a mixture of 10 Gaussians representing the approximat-
ing distribution. Finally, to approximate p(fy∗, X), they computed the average
over the k samples (z1, ..., zk).

3.2 Student’s t-distribution for a regression problem with outliers

Neal [13] made a similar approach to the one discussed in the previous chapter.
In an experiment described in [13], a Gaussian process model with non-Gaussian
noise was applied to a regression problem with outliers.

Setup Sampled from a Gaussian distribution, the input variable, x, was asso-
ciated with corresponding target values that followed a distribution determined
by a specific mean function. The majority of cases had a Gaussian distribu-
tion around this mean with a standard deviation of 0.1. However, with a 0.05
probability, outliers were introduced with a larger standard deviation of 1.0.

Model To model this data, a Gaussian process was employed. Assuming the
noise originates from a t-distribution with ν = 4 degrees of freedom, the model
predicts the expected value of the target (see equation (12)).

f(x) =
Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

)
(

1 +
x2

ν

)− ν+1
2

(12)

The t-distribution, characterized by its degrees of freedom parameter, ex-
hibits heavier tails compared to the Gaussian distribution. This means that
extreme values are more likely to occur in the t-distribution, leading to a wider
spread of data. As can be observed in figure 1, the Gaussian distribution has
lighter tails compared to the t-distribution, implying that extreme values are
less likely to occur. By comparing these two distributions, it becomes evident
that the t-distribution provides a more flexible modeling framework, accommo-
dating data with potential outliers or deviations from normality. The Gaussian
distribution, on the other hand, represents a more standard and narrow range
of possibilities, assuming a stricter adherence to normality.

While this noise distribution, as stated in the paper by Neal [13], did not pre-
cisely match the actual noise distribution, the heavy tails of the t-distribution
allowed the model to capture the data without being overly influenced by out-
liers. To draw a comparison, Neal [13] additionally performed modeling assuming
the presence of Gaussian noise.

Noise sampling Similar to the noise sampling for the input-dependent noise,
explored in the previous section, it is done by Neal [13] by using MCMC involving
hybrid Monte Carlo updates for the hyperparameters, along with updates for the
individual noise variances.
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Fig. 1. The plot shows a comparison between a t-distribution with four degrees of
freedom and a Gaussian distribution with µ = 0, σ2 = 1.

According to Neal in [13], it can be observed that the predictions generated
by the model incorporating t-distributed noise appear to be more plausible and
closer to the true function compared to the model incorporating Gaussian noise.

4 Classification

In the following sections, we explore the application of GPR to two distinct clas-
sification scenarios: ordinal regression and three-way classification. Unlike tra-
ditional classification methods, we extend GPR by incorporating non-Gaussian
likelihood functions to capture the inherent characteristics of the data.

4.1 Ordinal regression

Ordinal regression, also known as ranking learning, is a machine learning ap-
proach that focuses on predicting the relative ordering or ranking of data in-
stances rather than their absolute values or class labels.

Chu and Ghahramani [3] use Gaussian processes for the ordinal regression
problem, which will be delved into henceforth.

Model In this setting, the data points X = {(xi,yi)|i = 1, ..., n} consist of the
xi being any real number, but the yi coming from Y = {1, 2, ..., r}, the set of r
ordered categories. Chu’s and Ghahramanis’s main idea in [3] is to postulate an
unobservable latent function l(xi) with a Gaussian prior and then deriving the
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Fig. 2. The plot shows an illustrative example of a latent function l(x) along with the
corresponding categorization into four distinct intervals, each representing a different
category. The latent function provides a continuous representation of the underlying
data, while the categorized intervals offer a discrete classification scheme with four
distinct categories.

yi-values from l(xi) by representing the categories Y as intervals along the real
number line (see fig. 2).

The likelihood function p(yi|l(xi) is further defined by Chu and Gharamani
[3] as

p(yi|l(xi) =

{
1 if byi−1 < l(xi) ≤ byi

0 otherwise
(13)

with bi being the interval boundaries, where b0 = −∞ and br = +∞.
Model adaption is subsequently achieved by integrating the hyperparameters

θ over the θ-space. This can be done using MCMC methods as described earlier,
but Chu and Ghahramani in [3] state, that this might be expensive to use in
practice. Therefore, they explore two distinct approaches: MAP Approach with
Laplace approximation similar to what Williams and Barber did in [17] and
Expectation propagation with variational methods, similar to Minkas approach
in [12].

MAP Approach with Laplace approximation The Maximum A Posteriori
(MAP) approach with Laplace approximation is a method that approximates
the posterior distribution by finding the mode using the Laplace approximation
technique, providing an estimate of the most probable parameters in Bayesian
inference [7].
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Expectation propagation with variational methods Another technique
to approximate the posterior distribution in Bayesian inference is expectation
propagation (EP) with variational methods. It’s done by iteratively updating and
refining a variational distribution to better match the true posterior distribution
[12].

4.2 A three-way classification problem

A paper published by Neal in 1997 [13] describes an example of a three-way
classification problem and the process used to model and predict the target
classes.

Model Because there are three classes, k = 3 latent values y0,i, y1,i, y2,i, one for
each case, are introduced which define the following class probabilities:

p(ti = k) =
exp (−yk,i)∑2

m=0 exp (−ym,i)
(14)

In the next step, those k latent values are then given independent Gaussian
priors, such that

cov(yi, yj) = η2 exp (−
∑

u

ρ2u(xu,i − xu,j)
2 + δijJ

2. (15)

According to Neal et al. in [13], a small amount of jitter, J , has to be added
for computational reasons.

Data generation Data points, (xi, ti), were generated by randomly choosing
values from a uniform distribution over the interval [0, 1]. The target, ti, was
determined based on certain conditions involving the Euclidean distance and
linear combination of the input values.

Neal generated a total of 1000 cases, out of which 400 were used as training
data and 600 were used for testing the predictive performance.

Sampling A form of hybrid Monte Carlo was used for sampling and latent
values were resampled between each update of the hyperparameters. Gibbs sam-
pling scans were performed to update the latent values associated with training
cases.

The convergence of the Markov chain simulation was imposed by monitoring
the values of the hyperparameters and the latent values during the course of the
simulation.
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Prediction Predictive probabilities for test cases were obtained by averaging
the probabilities from iterations after reaching equilibrium. The predictive mean
and variance were calculated using the latent values from training cases saved
for each iteration. A Monte Carlo estimate was used to generate predictive prob-
abilities for each class, and the class with the highest probability was selected
as the prediction.

Result According to the Neal et al. [13], the classification error rate on the
600 test cases was 0.13, which the paper refers to as comparable to an analo-
gous neural network model. However, a comprehensive comparison with other
classification methods was not conducted in this example.

The time required for the procedure ranges depending on the number of
training cases. With 100 training cases, the simulation time was approximately 16
minutes, and the prediction time for the 600 test cases was under a minute. Using
only those 100 training cases, a classification error rate of 0.17 was calculated
by Neal et al. [13].

5 Further applications

Throughout this chapter, we briefly look into additional domains and problem
scenarios where GPR with non-Gaussian likelihoods finds valuable applications.
Building upon the foundational knowledge, this chapter digs into novel areas
where the combination of GPR and non-Gaussian likelihoods unlocks new possi-
bilities and addresses specific challenges. We delve into diverse applications such
as residual contamination from nuclear weapons, oil flow, volatility forecasting,
count data analysis and survival analysis.

5.1 Residual contamination from nuclear weapons

Diggle et al. [4] extended GPR to address settings where the stochastic varia-
tion in the data is encountered to be non-Gaussian. Specifically, they applied
this extension to modeling geographically measured count data through a Pois-
son likelihood model with a rate that varies across space [15]. Their approach
involved a Gaussian prior over the log Poisson rate.

The application of this methodology was focused on studying residual con-
tamination from nuclear weapons. By employing the Poisson likelihood with a
spatially varying rate and utilizing the Gaussian prior, Diggle et al. aimed to an-
alyze the count data obtained from geographically diverse locations and capture
the spatial variation in contamination intensity.

5.2 Oil flow

A latent variable model is applied to multi-phase oil flow data consisting of
1000 observations belonging to three known classes by Titsias et al. in [16].
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The model with 10 latent dimensions using the ARD SE (Automatic Relevance
Determination Squared Exponential) kernel is employed. The algorithm auto-
matically switches off 7 out of 10 latent dimensions, resulting in a high-quality
two-dimensional visualization of the data. In contrast, the standard sparse model
assuming only 2 latent dimensions provides a less informative visualization. The
model achieves a nearest neighbor error of 3 out of 1000 data points, whereas the
standard model yields 26 errors, demonstrating the superiority of the approach
in improving classification accuracy.

5.3 Volatility forecasting

Heteroscedastic GPR, similar to section 3.1, is according to Lázaro-Gredilla et
al. in [11] a natural choice for modeling and predicting volatility, particularly
in financial time series. Volatility, representing the standard deviation of a re-
turn series, can be estimated using Heteroscedastic GPR by considering the
log-return series obtained from price series. By treating the return series as a
zero-mean noise-only process and assuming discrete time intervals, such as days,
Heteroscedastic GPR can estimate historical volatility and make forecasts in
datasets where the noise level (volatility) varies over time and is further de-
scribed by Lázaro-Gredilla et al. in [11].

5.4 Count data analysis

In their article, Jia et al. [10] propose a method for modeling stationary count
time series using Gaussian transformations. Their approach employs a latent
Gaussian process and distributional transformation to create stationary series
with adaptable correlation features. These features can conform to various pre-
specified marginal distributions, such as Poisson, generalized Poisson, negative
binomial, and binomial structures. Likelihood estimation is conducted using par-
ticle filtering and sequential Monte Carlo methods. This research presents inno-
vative techniques for modeling stationary count time series with flexible corre-
lation properties and diverse marginal distributions.

5.5 Survival analysis

In a study by Fernández et al. [6]., a semi-parametric Bayesian model for survival
analysis is introduced. The model incorporates a parametric baseline hazard and
utilizes a Gaussian process to capture nonparametric variations around it, as well
as the influence of covariates. Unlike many other methods, this framework avoids
imposing unnecessary constraints on the hazard rate or survival function. Addi-
tionally, the model accommodates left, right, and interval censoring mechanisms
commonly encountered in survival analysis. The authors propose an MCMC al-
gorithm for inference and a computation-efficient approximation scheme based
on random Fourier features.
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6 Strengths and Limitations

Within this chapter, we delve into the advantages and challenges associated with
using non-Gaussian likelihoods. By expanding beyond the traditional Gaussian
assumptions, non-Gaussian likelihoods allow for more flexible modeling and im-
proved representation of complex data characteristics. However, their adoption
also brings potential limitations and considerations to GPR that need to be
carefully addressed.

On the one hand, GPR provides a measure of uncertainty for its predic-
tions. This can be beneficial in classification tasks as it allows for quantifying
the confidence or uncertainty associated with each prediction. Uncertainty esti-
mates can be valuable in decision-making, risk assessment, or when dealing with
imbalanced or ambiguous datasets.

Furthermore, GPR can effectively handle classification tasks even with a
small training set. Unlike some other classification algorithms that require a
large number of labeled samples, GPR can leverage prior knowledge and make
use of a limited number of training examples.

GPR also provides insights into the decision-making process by analyzing
the learned kernel function. This interpretability can be useful in understanding
the underlying patterns or relationships in the data, which can aid in model
validation and domain knowledge integration.

On the other hand, GPR can be computationally expensive, especially when
dealing with large datasets. The training and inference time can be significant,
particularly as the number of training samples increases. This can limit its scal-
ability in certain applications where real-time or high-speed classification is re-
quired. It also relies on tuning hyperparameters such as the kernel length scale
or noise level. The performance of GPR is sensitive to these hyperparameters,
and selecting optimal values can be challenging, requiring expertise and experi-
mentation.

Overall, GPR for classification tasks offers valuable advantages such as un-
certainty estimation and flexibility in kernel choice. However, it also poses chal-
lenges related to computational complexity, hyperparameter tuning, and han-
dling imbalanced datasets. Assessing the trade-offs and considering the specific
requirements of the classification problem at hand is important when deciding
whether to use GPR as the classification method.

7 Executive Summary

In conclusion, GPR is a versatile and powerful method that finds applications
in diverse fields. We discovered its strength in the flexibility to accommodate
different likelihood functions, enabling adaptable modeling to match specific
data characteristics.

To begin the discussion of selecting an appropriate likelihood, we saw in
chapter 3 that GPR can be tailored for regression problems. Then chapter 4
demonstrates the use of GPR for classification problems. Finally, to round up
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the discussion and as outlook for potential future research, chapter 5 enumerates
various further applications of GPR with non-Gaussian likelihoods.

The choice of likelihood function should be chosen with care, with consider-
ation of the properties of the data set at hand. Each likelihood makes specific
assumptions and carries implications, and an inappropriate choice can lead to
suboptimal outcomes or inaccurate modeling.

Understanding the advantages and disadvantages of different likelihoods and
their suitability for the task at hand empowers practitioners to fully exploit
the potential of GPR. By leveraging this knowledge, meaning insights can be
extracted, accurate predictions made, and real-world problems effectively ad-
dressed. In-depth researches and experimentations with different likelihoods within
the GPR framework will further enhance its applicability and effectiveness across
diverse domains.
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The Influence Of Variance In GPR And How To
Interpret It

Lukas Yikai Xu
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Abstract. Gaussian process regression(GPR) are a generic supervised
learning method designed to solve regression and probabilistic classifica-
tion problems. It returns an estimation in form of a variance that predicts
the possible outcome for a coordinate. We analyze which aspects of the
GPR affect the resulting variance. This includes the signal variance of
the kernel function and noise inflicted input values. Another aspect we
are going to take a look at is, that even tho a variance predicts a result,
not every prediction should be trusted and under which parameters the
prediction becomes misleading.

1 Introduction

GPR is a powerful statistical technique that allows us to model the relationship
between variables and make predictions based on observed data. It can be used in
multitude of areas for regression like for example in measuring soil temperature
[8]. Variance plays a fundamental role in GPR as it measures the spread or
dispersion of the data around the regression line. It provides insights into the
uncertainty associated with our predictions and allows us to assess the reliability
and accuracy of the regression model. Understanding and estimating the variance
in GPR is essential for assessing the goodness of fit of our regression model and
quantifying the uncertainty associated with our predictions. That’s why we are
focusing on aspects that influence the variance and analyze under which cases
the prediction is sensible.

2 Kernel Function

In this paper we are solely going to use the squared exponential function as the
kernel function:

k(x, x′) = ∂2exp(− (x− x′)2

2l2
)

We focus on the squared exponential function because it is the most common
kernel function. It is very common because of its flexibility with its hyper pa-
rameters ∂2 and l which can be adjusted to fit many functions.
The parameter ∂2 is called signal variance and the parameter l is called length
scale. These two parameters have no inherent meaning but are used to config-
ure the function. The kernel function is responsible for the smoothness of the
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regression. It determines that by looking at the distance between the two points
inserted into the function. When the two points x and x′ are identical the func-
tion would return ∂2 and when the two points are very far away the function
returns 0. The upper and lower limit are therefore:

0 < ∂2exp(− (x− x′)2

2l2
) < ∂2

Another important property is that ∂2 is never negative because otherwise the
covariance matrix would not be positive definite anymore which is a important
property for the covariance matrix. The covariance matrix is explained in the
following section.

3 Gaussian Process Regression

This section we explain roughly how GPR functions. GPR is split into two parts
the prior and posterior. The explanations are based of the paper [7]. For a more
thorough explanation refer to that paper.

3.1 Prior

In the prior phase no observations are considered. Our model simply returns a
multivariate normal distribution. An multivariate normal distribution are sim-
ply multiple uni-variate normal distribution combined with each other. An uni-
variate normal distribution of random variable X is written as X ∼ N (µ, ∂2)
with mean µ and variance ∂2. A uni-variate normal distribution looks like the
left graph in the image below:

Fig. 1. Left Side: Uni-variate distribution, Right Side: Two uni-variate distributions
plotted on y-axis. Image from [7]

By plotting the normal distribution on the y-axis and connecting randomly se-
lected pair of points we get multivariate normal distributions.

79



The Influence Of Variance In GPR And How To Interpret It 3

Fig. 2. Multivariate distribution. Image from [7]

3.2 Posterior

In the posterior we will adjust the posterior with newly obtained observations.
For a given amount of input values {x1, .., xn} we have a set of yi for each xi

where xi, yi ∈ R. We write x = [x1, .., xn]⊺, y = [y1, .., yn]⊺ ∈ RN×1 for the vector
variant. The goal of is to find a function f(x) for input x that approximates y. We
usually also expect f to be influenced by some noise since most measurements in
reality are not 100% accurate :

y = f(x) + ϵy

Where ϵy ∼ N (0, η2), f(x) ∼ N (0,K). N (µ,K)µ = E(x) K is the covariance
matrix using the squared exponential kernel: Which makes the covariance matrix
the following:

K = k(X,X) =



k(x1, x1) · · · k(x1, xn)

...
. . .

...
k(xn, x1) · · · k(xn, xn)




The results of the prior gets filtered. Only the functions that fit the input values
will be kept. After that we want to find out the y coordinate for coordinates
x∗i for which we don’t know the y values yet. The group of x∗i is denoted
as X∗ = {x∗1, ..., x∗n}. By solving the joint distribution of f with X and X∗
as inputs we get the computed mean and variance of the posterior. They are
denoted as:

µ∗ = m(X∗) + k(X∗, X)(k(X,X) + η2In)−1(Y (X)−m(X))

∂2
∗ = k(X∗, X∗)− k(X∗, X)(k(X,X) + η2In)−1k(X∗, X)⊺

µ∗ is a vector where each entry corresponds to the predicted y value for the
respective x∗i.
∂2
∗ is a matrix where each diagonal entry is the variance for their respective x∗i.
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k(X∗, X∗) has the same structure as K but just with entries of K∗.
While k(X∗, X) is defined as:

K∗ = k(X∗, X) =




k(x∗1, x1) · · · k(x∗1, xn)
...

. . .
...

k(x∗m, x1) · · · k(x∗m, xn)




4 Influences on the Posterior Variance

There are multiple factors that can influence the variance of the posterior. In
this section we go into how the signal variance of the kernel function and how
noise in the input data affects the posterior variance and what consequences it
has for the evaluation of the result.

4.1 Signal Variance

To understand what part the signal variance plays in the posterior variance we
assume that X∗ has only one element and apply it to the posterior variance
formula. For the following calculation we assume η2 = 0 for simplicity. There
are n input data in X. If we use the formula we get:

∂2
∗ = k(x∗, x∗)−K∗K

−1K⊺
∗

= ∂2 − (∂2K ′
∗)(

1

∂2
K

′−1)(∂2K ′⊺
∗ )

= ∂2 − ∂2K ′
∗K

′−1K ′⊺
∗

= ∂2(1−K ′
∗K

′−1K ′⊺
∗ )

≤ ∂2

(1)

We first took out the constant of ∂2 out of all the covariance matrices. We can
do that since every entry of the matrices is of the form of the kernel function
which has a ∂2 as a factor. After that we simplify the term and exclude the ∂2.
The term in the bracket is in the range of [0,1] since K

′−1 is a positive definite
matrix. Because K is positive definite and invertible, K−1 is positive definite
as well. By excluding ∂2 the matrix stays positive definite. Therefore the term
K ′

∗K
′−1K ′⊺

∗ is always bigger than zero. If we size it down we get the upper limit
which is ∂2.
This is also the case if we add η2 to K before inverting. Since η2 is a positive
number because it’s the variance of ϵy and a variance must be a positive number.
If we add a positive number to the diagonal of K then we are not affecting its
positive definite property.

This equation equates to getting the variance for that one point in X∗. Picking
the signal variance decides the upper limit that the variance can reach in this
model.
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The lower limit is 0, and we can confirm that with:

∂2
∗ = ∂2(1−K ′

∗K
′−1K ′⊺

∗ )

> ∂2(1−
(
1 · · · 1

)
M




1
...
1


)

> ∂2(1− 1) = 0

(2)

Where M is a structure introduced in Section 5 (Eq:3). By maximizing the kernel
function terms we can get the lowest number in the right factor. Picking ∂2 does
not change the lower limit.

Graphical Evaluation :
Let’s assume we were trying to approximate the sine curve. We already got the
mean from our prior which is the red line and one of our unknown points in X∗

would be π. For that point a variance is calculated. The blue line in the graph
marks the upper/lower limit of the posterior variance for point in π. It should
not be confused with the actual variance ∂2

∗ which is smaller than ∂2 in most
cases. By adding/subtracting the variance to/from the mean at x = π we get
the range of possible y-values. The evaluation on a graph would look like this:

0
π
2 π

3
2π 2π

−1

0

1

(π,0)

∂2
∗

-∂2
∗

∂2

-∂2

x

si
n

(x
)

Since we are working with gaussian distributions, the posterior variance tells us
that there is a 68% chance that the y-value of a x∗ will be in the range of [mean
- variance, mean + variance] which in our case would be [−∂2

∗ , ∂
2
∗ ]. For a 95%

confidence interval simply use the range [mean - 2∂2
∗ , mean + 2∂2

∗ ]

If we simply repeat this process for other points in X∗ and draw a line trough
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all the calculated variance points then we would get the range of the covariance
for each point.

In Summary :
We showed that choosing the signal variance ∂2 with squared exponential func-
tion as the kernel determines the maximal achievable posterior variance and
limits the posterior variance in the range of ∂2

∗ ∈ [0,∂2]. That means, that no
matter how bad the initial sample point or parameters are, the variance will
never be worse than ∂2

4.2 Inputdata with Noise

Now we assume that the input variables in X are affected by noise ϵ. We used the
model in section 2 of the paper by McHutchon, Andrew, and Carl Rasmussen
[1] for this section. Let X = {x′

1, ..., x
′
n}. Each element x′

i in X is the original
sample point x which was affected with noise ϵxi . Thus we get:

x′
i = xi + ϵxi

With these input values the y becomes:

y = f(x′ + ϵx) + ϵyi

Where ϵy ∼ N (0, η2), ϵx ∼ N (0, Σx).
ϵy ∼ N (0, η2) means that the noise of the y value is normally distributed with
variance η2.
x′ is the vector with the entries x′

i for each row and ϵx is a vector with ϵxi
as

entry for each row. Σx is a diagonal matrix that corrupts each input dimension
independently with noise. This is just a another way to write that each ϵxi

is
normally distributed with a different variance.

To get the posterior through the equation, the term f(xi + ϵxi
) was approxi-

mated with the following term:

y = f(x) + ϵ⊺xf
′(x) + ϵy

Where f ′(x) is the derivative of the estimated function f(x) by the prior. The
derivative of f(x) is the rise per x-value and by multiplying it with ϵx we add the
rise that was not considered in f(x). Now this results in the mean and variance
of the posterior to be the following:

µ∗ = m(X∗) + k(X∗, X)(k(X,X) + η2In + diag(∂f ′Σx∂
⊺
f ′))

−1(Y (X)−m(X))

∂2
∗ = k(X∗, X∗)− k(X∗, X)(k(X,X) + η2In + diag(∂f ′Σx∂

⊺
f ′))

−1k(X∗, X)⊺

The notation diag{.} results in a diagonal matrix, the elements of which are the
diagonal elements of its matrix argument.
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To get a better understanding what noise in input data does to the posterior
variance, we assume that in the following calculations that |X| = |X∗| = 1. This
results in:

∂2
∗ = k(x∗, x∗)− k(x∗, x)(k(x, x) + η2In + diag(∂f ′Σx∂

⊺
f ′))

−1k(x∗, x)⊺

= ∂2 − k(x∗, x)(∂2 + η2 + diag(∂f ′Σx∂
⊺
f ′))

−1k(x∗, x)⊺

= ∂2 − k(x∗, x)(∂2 + η2 + z)−1k(x∗, x)⊺

= ∂2 − α2(∂2 + η2 + z)−1

We denoted diag(∂f ′Σx∂
⊺
f ′) as z ∈ R where ∂f ′ is denoted as:

∂f ′ = [
f(xi)

∂x1
i

, ...,
f(xi)

∂xn
i

]

The term (∂2 + η2 + z)−1 is always greater or equal 0. Σx is always positive
since it’s a variance and multiplying it with ∂f ′ twice doesn’t change it. Since
α ∈ [0, ∂2] we can round off the entire term in the last line to ∂2 − (∂2)2(∂2 +
η2 + z)−1 = ∂2(1− ∂2(∂2 + η2 + z)−1). By rounding up we get the upper limit
of ∂2:

∂2(1− ∂2(∂2 + η2 + z)−1) < ∂2 − α2(∂2 + η2 + z)−1 < ∂2

That means that the noise in the input variable shifts the variance at point x∗
around, but never goes outside of the range of [∂2(1− ∂2), ∂2].
If we remove the noise η2 and z then we get:

0 = ∂2 − ∂2 < ∂2 − α2(∂2)−1 < ∂2

If we think about the lower limit this way. The rounding up of α2 to ∂2 means
that x∗ and x are identical. Since in case when x∗ and x are identical a vari-
ance other than zero means that there is a chance that the y-value of x is not
the same as x∗ which obviously doesn’t make sense. So the lower limit must be
zero. Adding the noise simply shifts the lower limit up, but doesn’t influence the
upper limit.

Now if we apply that knowledge to multi dimensional case we would get a similar
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term as we have done in Section 3.1:

∂2
∗ = k(X∗, X∗)−K∗(K + η2In + diag(∂f ′Σx∂

⊺
f ′))

−1K⊺
∗

= ∂2 − (∂2K ′
∗)(∂2(K ′ +

η2

∂2
In +

1

∂2
z))−1(∂2K ′⊺

∗ )

= ∂2 − (∂2K ′
∗)(

1

∂2
(K ′ +

η2

∂2
In +

1

∂2
z)−1)(∂2K ′⊺

∗ )

= ∂2 − ∂2(K ′
∗(K ′ +

η2

∂2
In +

1

∂2
z)−1K ′⊺

∗ )

= ∂2(1− (K ′
∗(K ′ +

η2

∂2
In +

1

∂2
z)−1K ′⊺

∗ ))

≤ ∂2

With the exception that instead of K−1 we would have (K ′+η2In+diag(∂f ′Σx∂
⊺
f ′))−1.

This doesn’t change the fact that the term (K ′
∗(K ′ + η2

∂2 In + 1
∂2 z)−1K ′⊺

∗ )) is a
positive definite matrix. Therefore that term is always greater than zero and the
upper limit is still ∂2. So that means that even with noise in our input values,
the upper limit of the variance stays ∂2

In Summary :
Even if the initial sample points are afflicted with noise that will not change
the maximal achievable posterior variance but only shift the value around in
the variance range. The posterior variance is also guaranteed to not fall under
0. This can be useful when the variance for the results are already known. By
choosing ∂2 as that variance it can be guaranteed that the results will fall in
that range.

5 Trustworthiness Of The Variance

In the previous sections we talked about the range of possible variance for the
posterior in scenarios with and without noise. The variance tells us in a guassian
distribution context that there is a chance of 68% that the computed value at a
point will be in the range of that variance range but is that really the case? In
this section we are going into scenarios where the variance can be misleading.

5.1 The Objective Function

First we need a model that evaluates how good the results are. This following
presented approach is based on the section ”Understanding the objective func-
tion” of the article [3]. The objective function returns a number which represents
how fitting the chosen parameters ∂ and l are given the input values of X. The
author focuses on how the length scale l influences the posterior variance, and
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he used the logarithmic marginal likelihood function as the model to evaluate
the quality of the length scale l:

log(p(y(x)))

= log(
1

(2π)n/2det(K + η2In)n/2
exp(−1

2
(y(X)−m(X))⊺(K + η2In)−1(y(X)−m(X))))

= −1

2
log(det(K + η2In))− 1

2
(y(X)−m(X))⊺(K + η2In)−1(y(X)−m(X))− n

2
log(2π)

We denote the term − 1
2 log(det(K + η2In)) as model complexity term and the

term − 1
2 log(det(K + η2In))− 1

2 (y(X)−m(X))⊺(K + η2In)−1(y(X)−m(X)) as
data fit term. Maximizing this function will result in ideal results. To understand
how this function behaves we inspect the two terms in their most extreme cases.
The term at the end of the function will be ignored since it is a constant.

The Model Complexity Term :
The model complexity term basically consists of the determinant of K. We as-
sume in the following that η2 = 0, ∂2 = 1 and that we have two training points
(x1, y1) and (x2, y2).
If l approaches 0:

− 1

2
log(det(K + η2In))

≈ −1

2
log(det(

(
1 0
0 1

)
))

≈ −1

2
log(1)

≈ 0

If l approaches ∞:

− 1

2
log(det(K))

≈ −1

2
log(det(

(
1 1
1 1

)
))

≈ −1

2
log(0 + ϵ)

≈ ∞

The term log(0 + ϵ) represents a term which approaches −∞ and multiplied
with − 1

2 makes it positive.

The effect in these equations can also be simulated with picking input points
that are all either very far away from each other or if they are all very close to
each other.
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5.2 Data Fit Form

The data fit form doesn’t have a meaning in of itself but does well in balancing
the model complexity term. We assume that η2 = 0, ∂2 = 1 and that we have
two training points (x1, y1) and (x2, y2). y(X) simply represents a vector with
all the y values for all sample points in X.
For l approaching 0 l→ 0:

− 1

2
(y(X))⊺(K)−1(y(X))

= −1

2
(y1, y2)

(
1 0
0 1

)−1 (
y1
y2

)

= −y21 + y2n
2

For l approaching ∞:

− 1

2
(y(X))⊺(K)−1(y(X))

= −1

2
(y1, y2)

(
∂2 ∂2

∂2 ∂2

)−1 (
y1
y2

)

= −1

2
(y1, y2)− 1

(∂2)2 − (∂2)2

(
∂2 −∂2

−∂2 ∂2

)(
y1
y2

)

= −y21 + 2∂2y1y2 + y22
2((∂2)2 − (∂2)2)

= −∞

Evaluation :
Since the goal is to maximize the objective function, picking a large l would seem
logical at first because through that the complexity term approaches∞. But the
author states that the data fit term approaches −∞ faster [3]. Picking a small
length scale on the other hand results in a negative number. Therefore simply
picking a large/small length scale will not result in a good posterior variance.
The ideal length scale is somewhere in between of these two extremes when the
data term is still smaller than the complexity term which is big enough to make
the entire equation positive.

5.3 Overfitting

Overfitting happens in the scenario where our model is too uncertain about the
results. A very complex model with very small l maximizes the data fit term,
however that results in the kernel function returning 0 for all inputs that are
not identical regardless of their distance from each other. The result is that the
model is not able to make predictions for new points x∗. For the equation we
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simplify m(x) to the null function,η2 = 0 and |X∗| = 1 .
This is reflected through the variance of the posterior:

∂2
∗ = K∗∗ −K∗K

−1K⊺
∗

= ∂2 − 0



∂2 · · · 0
...

. . .
...

0 · · · ∂2




−1

0

= ∂2

Unlike in equation 1 the posterior is identical to ∂2 and ∂2 is not the upper limit.
As we can see the variance maximizes and thus the model is very uncertain about
its prediction.

5.4 Underfitting

Underfitting is the exact opposite of overfitting. In this case the model is too
certain about its results. If we have a simple model with a large l then the kernel
function will approach ∂2 regardless of the input values. We simplify m(x) to
the null function, η2 = 0 and |X∗| = 1.
To make the following calculations easier we are gonna introduce a certain struc-
ture.

M =




1 · · · 1 + ϵ
...

. . .
...

1 + ϵ · · · 1




−1

=




− ϵ+(n−1)
(n−1)ϵ2+nϵ · · · x+1

(n−1)ϵ2+nϵ

...
. . .

...
x+1

(n−1)ϵ2+nϵ · · · −
ϵ+(n−1)

(n−1)ϵ2+nϵ




(3)

(
1 · · · 1

)
M




1
...
1


 =

n

ϵ + n
(4)

M is a matrix with 1 on the diagonal and 1 + ϵ in the other entries. The ϵ is a
small negative real number.

88



12 L.Y.Xu

This results in the following prediction for the posterior variance:

∂2
∗ = K∗∗ −K∗K

−1K⊺
∗

= ∂2 − ∂2
(
1 + ϵ · · · 1 + ϵ

) 1

∂2




1 · · · 1 + ϵ
...

. . .
...

1 + ϵ · · · 1




−1

∂2




1 + ϵ
...

1 + ϵ




≈ ∂2 − ∂2
(
1 · · · 1

)
M




1
...
1




≈ ∂2 − ∂2(
n

ϵ + n
)

≈ 0

With over- and underfitting we see that choosing bad values for length scale l
or input values will result in a model that isn’t able to make good predictions.
That’s why we introduced the objective function. By maximizing it we can find
sensible parameters

In Summary :
This shows that even if our variance predicts that our value fall within a certain
range, that the predicted range might not be even close to the real values.
Keep in mind that this is only one possible method to judge the results of the
model and is only supposed to demonstrate a method on how that could be
accomplished.

6 Implications in Practice

In this small section we are going to show through an example what implications
our conclusions have in practice and highlight some properties of the squared ex-
ponential function(RBF) as kernel. The following graph(Fig.3) uses the squared
exponential function as kernel with sample points in x ∈ {−2,−1, 1, 1.5}.
The posterior variance gives us a range of possible y-values for a random variable
x′. The distance between the mean function at point x = -2 for example and the
outer black line is the variance of that point
In this paper we talked about the upper/lower limits of the posterior variance.
We have an upper limit of ∂2 which can be chosen and a lower limit of 0. The
closer a random variable is to a sample point the closer the variance is to 0. This
can be seen in the graph where the variance has a wave like structures between
to sample points and till it becomes 0 once it reaches the sampling point.
We know that the upper limit is ∂2 but in most cases a variance that big does
not occur. The variance increases the bigger the distance is between a random
variable and a sample point. This is also reflected in this graph. If we look at
the behaviour between two sample points we see that the variance is at its maxi-
mum in the middle between the two sample points. Another case where we have
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Fig. 3. The variance is the grey area drawn by the outer black line. The other colored
lines are possible functions from the prior.The line with dots is the mean function.
Image from [6]

high variance is when we inspect -100 as the random variable for example. That
would result in a variance that approaches ∂2.
The length scale influences how fast the posterior variance increases/decreases as
the distance between a random variable and a sample point grows. A small length
scale leads to wigglier graphs while a larger length scale leads to a smoother
graph which can be seen in the graph below.

Fig. 4. The red line is the mean function and the blue area is the range of the posterior
variance. Image from [7]
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7 Conclusion

After inspecting the extreme cases of the kernel function we arrived at the con-
clusion that the the upper and lower limits of the variance are restricted in a
rigid interval which is independent of the input values. This property persists
even when we expect the input values and results to be inflicted with noise.

We also looked at an approach on how to determine whether a prediction of a
model was sensible or not and how under poorly chosen conditions the prediction
was affected. On one end the model could be too certain about it’s predictions
which resulted in a variance that equals zero across all values or on the other
end where the model was too uncertain about it’s predictions which resulted in
the maximization of the variance.
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Abstract. Die Anwendung von Exoskeletten auf dem Arbeitsplatz ist
noch ein relativ neues Konzept und man sieht sie noch selten im Betrieb.
Ziel dieser Ausarbeitung ist es die pro und kontras einer Integrierung der
aktiven mobilen Exoskelette in die Industrie sich anzuschauen, und durch
dieser Beobachtung eine Schlussfolgerung zu ziehen, ob es sich für einen
Arbeitsplatz lohnt in aktiven mobilen Exoskeletten zu investieren.

Keywords: Exoskelette · Arbeitsplätze · Verletzungsprävention.

1 Einleitung

In den 1960ger Jahren wurde von der amerikanischen Firma, General Electric,
ein Prototypen eines robotischen Anzugs entwickelt, der den Trägern verstärken
bzw beim heben schwerer Objekte assisstieren sollte. Der Anzug hieß Hardiman
und er war das erste Modell eines aktiven mobilen Exoskeletts [1, 2]. Wegen
den technologischen Einschränkungen der Zeit war Hardiman leider nicht sehr
erfolgreich, seit dem versucht man jedoch die aktiven mobilen Exoskelette weit-
erzuentwickeln, sodass sie eine Norm in unserer Gesellschaft werden können [2].
Neben dem Militär und der Medizin werden auch in der Industrie nach aktiven
mobilen Exoskeletten gefragt. Sie sollen die Gesundheit der Arbeiter schonen,
Arbeitsunfälle vermeiden und durch die Verringerung der Anzahl der verlet-
zten Arbeiter auch mengenweise Geld sparren [2–4]. Es ist eine sehr effektive
Methode die Kraft einer Machine mit der Denkfähigkeit eines Menschens zu
kombinieren. Bevor man aber die Exoskelette auf den Arbeitsplätzen einführt,
müssen die Sicherheits- und Gesundheitsabteilungen, Ergonomisten und andere
Interessengruppen überzeugt werden, dass die Einfuhrung von aktiven mobilen
Exoskeletten Sinn macht [3]. Dies zu zeigen ist das Ziel dieser Ausarbeitung.

2 Recherchemethode

Da die aktiven mobilen Exoskelette in der jetzigen Zeit noch relativ junge tech-
nologien sind, bin ich davon ausgegenagen, dass sie sich im Moment noch sehr
schnell entwickeln. Es wurden deshalb Artikel aus dem letzten fünf Jahren bevorzugt,
um zu vermeiden, dass veraltete Information in die Bearbeitung mit einbezo-
gen wird. Es wurden jedoch auch ältere Artikel im Ausnahmefall akzeptiert,

⋆ Proseminar: Mobile Computing
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ins besondere in Fällen wo es sich in den Artikeln nicht direkt um die Rolle
der Exoskelette auf den Arbeitsplätzen handelte. Die Rechereche wurde auss-
chließlich auf Englisch betrieben, alle Artikel auf einer anderen Sprache wur-
den also nicht angenommen. In den ersten Phasen der Recherche wurden die
Schlüsselwörter ”mobile active exoskeletons”, ”industry” und ”workplaces” ver-
wendet. Es war wichtig zu bedenken dass es sich in dieser Ausarbeitung um
aktive mobile Exoskelette in der Industrie handeln sollte, also wurden alle Ar-
tikel, in dem es sich hauptsächlich um passive oder feststehende Exoskelette han-
delte, ausgeschlossen, und es wurden nur Artikel mit einbezogen, indem es sich
um Exoskelette handelten, die für die Arbeit gemacht wurden sind. Während der
Recherche wurde mir bewusst, dass das Wort ”work-related musculo-skeletal dis-
orders” öfters erschienen ist, also wurde dies auch zu einem wichtigen Schlüsselwort.
Sollte ein Artikel zum Thema passen und die Kriterien erfüllen, wurde der Ab-
stract, die Einleitung und die Schlussfolgerung gelesen, und wenn es zur Ausar-
beitung passend schien, wurde es durchgelesen und eventuell als Quelle für diese
Ausarbeitung mit einbezogen.

3 Motivation

3.1 Die Gesundheit der Arbeiter

Viele Berufe sind offensichtlich sehr belastend für den Körper der Arbeiter.
Solche Berufe führen nicht nur zu Arbeitsunfällen, sie sind auch langfristig
schädlich für die Gesundheit der Arbeiter. Insbesondere entstehen öfters bei
Arbeitern diverse Muskel-Skelett-Erkrankungen [2, 3]. Ein gutes Beispiel ist die
Auto Industire. Es wurde zwar in der Automanufaktur schon die Arbeit viel le-
ichter und sicherer gemacht, indem vieles des Aufbaus von Maschinen übernommen
wurde, es kann aber nicht der ganze Prozess durch Automatisierung ersetzt wer-
den [5, 6]. Viele Schritte beim Aufbau eines Autos werden noch manuell von
Menschen geleistet, und in der Manufaktur werden nicht mehr als ein paar
Minuten pro Wagen verwended, dadurch sind also Arbeiter gezwungen mit einer
hohen Frequenz, und einer unangenehme Körperaltung, Autoteile zu montieren,
was langfristig zu Störungen im Bewegunsapperat führt [3]. Solche Muskel-
Skelett Erkrakungen, die in der Arbeit entstehen, betreffen nicht nur offen-
sichtlich körperlich belastende Arbeitsplätze wie die Manufaktur, Logistik, Bauar-
beit oder die Landwirtschaft, sie können auch in Arbeitsplätzen wie im Büro oder
in der Medizin entstehen. Beispielsweise erleiden Zahnärzte in den meisten Fällen
nach einiger Zeit Schmerzen im Nacken, Schultern oder Rücken, obwohl sie auf
dem ersten Blick ihre Körper nicht so stark belasten müssen [7]. Dies liegt daran,
dass sie beim behandeln ihrer Patienten eine umständliche Haltung annehmen,
um in den Mund ihrer Patienten hineinzuschauen oder zu operieren. 39% der Ar-
beitsbedingten Verletzungen sollen Muskel-Skelett-Erkrankungen sein [8]. Dies
senkt nicht nur die Lebensqualität Arbeiter selber, doch die Finanzen der Ar-
beitspläzen werden auch massiv beeinflusst. Durch Kompensationskosten für die
Erkranketen, Verlust in Arbeiter und die Notwedigkeit neue Arbeiter zu rekru-
tieren und zu trainieren, verlieren die Arbeitsplätze auch große Mengen an Geld
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[3]. Es wurde geschätzt dass 0,5-2%, evtl bis zu 4%, vom Bruttonationaleinkom-
men der EU nur wegen Muskel-Skelett-Erkrankungen ausgegeben werden [2,
8]. Zusätzlich führen solche Verletzungen auch zu einer massiven Senkung der
Produktivität in der Wirtschaft. Arbeitsbedingte Muskel-Skelett-Erkrankungen
gehören also zu einem Problem den man möglichst früh Lösen sollte, ins Beson-
dere da die Anzahl der betroffenen Arbeiter auch zu wachsen scheint [8, 9].

3.2 Exoskelette als Lösung

Um die Anzahl der arbeitsbedingten Muskel-Skelett-Erkrankungen zu reduzieren
werden ergonomische Lösungen vorgeschlagen, wie Programme die eine gesunde
Körperbewegung fordern oder alternative Arbeitsgegenstände mit ergonomis-
chen Designs [9]. Einer der größeren ergonomischen Lösungen, die sowohl langfristige
Schäden am Bewegungsapperat als auch Arbeitsunfälle verhindern soll, ist die
Integration der Exoskelette auf Arbeitsplätzen. Diese leichte robotische Anzüge
sind nun auf dem Markt verfügbar [12, 13], und sie sollen sowohl die Produk-
tivität der Arbeiter erhöhern als auch den Arbeitsplatz zu einem sichereren
und ergonomischeren Ort transformieren. Sie sollten auch eine Firma finanziell
verstärken, indem Kompensationskosten und Krankheitstage verringert werden.

4 Arten von Exoskeletten

Es gibt viele Wege Exoskelette in Untergruppen einzuteilen [4]. Erst mal kann
man sie in deren Aufgaben unterscheiden, d.h. ob sie in der Medizin, im Militär
oder in der Industrie verwendet werden. Dann kann man sie in passive und ak-
tive bzw semi aktive Exoskelette unterteilen [3, 10]. Der Unterschied liegt in der
Energiequelle. Aktive Exoskelette sind robotisch und beinhalten Teile die eine
Stromquelle brauchen, wie Aktoren oder Motoren, Passive Exoskelette beinhal-
ten jedoch keine Teile die sich von selber bewegen und verlassen sich stattdessen
auf Federn oder Dämpfer um die Kraft des Trägers zu vergrößern [10]. Beide
Arten werden in der Industrie verwendet, passive Exoskelette sind jedoch weit-
erentwickelter als ihre robotischen Gegenstücke, da passive Exoskelette weniger
komplexere Probleme mit sich bringen [3]. Eine weitere Unterteilung, die wichtig
für dieser Ausarbeitung ist, ist die Mobilität des Exoskeletts, d.h. ob sie sich mit
dem Trägern bewegen kann oder ob sie an einem Ort festgebunden ist. Wie
schon erwähnt, wird in dieser Ausarbeitung der Fokus exklusiv auf industriellen,
aktiven und mobilen Exoskeletten gelegt. Aktive mobile Exoskelette können in
weitere Untergruppen eingeteilt werden, wie wo sie Gebaut wurden sind (von
einer Firma, von der Regierung, experimentell in einem Labor usw), welche Form
sie hat (ist es complet flexibel ist oder besteht es aus starren Teilen) oder für
welchen Körperteilen sie gedacht ist (Oberkörper, Beine, Rücken usw) [4]. Jedes
Exoskelett sollte für maximalle effizienz eigenschaften haben die genau für einen
Job passt, d.h. es sollten so viele Arten von Exoskelette geben wie es Arbeiten
gibt, indem ein Exoskelett integriert werden kann [4].

94



4 E.L. Benesch

5 Potenzielle Nachteile

5.1 Sicherheit

Auch wenn einer der Hauptmotivationen der Exoskelette es ist, den Arbeit-
ern Sicherheit zu liefern und Arbeitsunfällen zu verhindern, können Exoskelette
Quellen für weitere Gefahren sein, die es auf dem Arbeitsplatz davor nicht gab.
Ins Besondere gilt dies für aktive Exoskelette, da man beim Tragen eines aktiven
Exoskeletts weniger Kontrolle über die beweglichen Teile hat, als beim Tragen
eines passiven Exoskeletts, dessen Bewegung ausschließich vom Nutzer abhängig
ist. Das Tragen eines robotischen Anzugs kann also zu schweren maschinellen
Unfällen führen, wenn sie nicht richtig gebaut werden. Es wurde auch Bedenken
geäußert, dass gerade das Sicherheitsgefühl beim Tragen eines Exoskeletts den
Arbeitern anfälliger für Gefahren machen könnte. Das Ausrutchen oder Stolpern
ist viel gefährlicher wenn man einen Exoskelett trägt. Weiter Gefahren auf die
man achten muss ist das Risiko dass der Träger sehr nah an einer lebens-
bedrohlichen Energiequelle ist, da aktive mobile Exoskelette elektrisch betrieben
werden müssen [4]. Außredem heißt dies auch, das Teile des Exoskeletts sich
durch der Energiezufuhr erhitzen kann. Um Verbrennungen zu vermeiden müssen
diese Teile von dem Trägern fern gehalten werden [4]. Diese Probleme sind aber
leicht lösbar, man muss nur sicherstellen, dass die Technologie, die im Exoskelett
implementiert wurden ist, fortgeschritten genug ist.

5.2 Ergonomie

Neben Unfallvermeidung sollen industrielle Exoskeletten auch die Anzahl der
Muskel-Skelett-Erkrankungen unter Arbeitern verringern. Es ist also wichtig
dass die Form der robotischen Anzüge so entworfen werden, dass der Nutzer
nach längerem Tragen des Exoskeletts nicht unter Unbequemlichkeiten oder
Schmerzen leiden, sonst hat das Exoskelett bei seiner Aufgabe versagt. Eine
Herausforderung für die Designer besteht darin, dass, im Gegensatz zu einer
Maschine, ein Mensch sich in vielen verschieden Arten bewegen kann [3]. Beim
mehrmaligen durchführen einer Aufgabe kann eine Maschine die selbe Bewegung
bis zum Ende ihrer Lebenszeit wiederholen, ein Mensch wird sich jedoch jedes
Mal anders bewegen. Deshalb sollte vor dem designen eines Exoskeletts die Kine-
matik (Bewegung) des Menschens kennen, damit der Nutzer nicht davon gehin-
dert wird sich frei zu bewegen und damit seine Produktivität vermindert wird [4].
In dem Feld wurden einige Körperteile mehr erforscht als andere. Unterstützung
für die Arme und unteren Rücken wurden zum Beispiel mehr erforscht als für die
Handgelenke oder Knie [3]. Der ergonomische Aspekt eines idealen Exoskeletts
macht den Aufbau also viel komplizierter.

5.3 Kosten

...
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5.4 Fehlende Standards

6 Verfügbare Exoskelette

Nachdem wir uns angeschaut haben, was die Vorteile und Nachteile der aktiven
mobilen Exoskeletten sein könnten, macht es Sinn sich anzuschauen, was es für
Modelle in der reellen Welt gibt, und wie sie mit den potentiellen Nachteilen
umgehen.

6.1 Guardian XO (Sarcos)

Sarcos ist eine amerikanische Firma die sich auf mobilen robotischen Systemen
speziallisiert, die in diversen Arbeitsplätzen, wie auf der Baustellen, auf dem
Feld oder sogar unter Wasser, angewandt werden sollen. Im Moment haben sie
einen Modell eines Exoskeletts unter ihren Namen, nämlich den Guardian XO
[12]. Der Guardian XO ist ein aktives mobiles ganz-Körper Exoskelett der bis zu
90kg mehrmals hintereinander tragen kann, ohne dass der Träger das Gewicht
in irgendeiner Art und Weise spürt, weder vom Gegenstand was getragen wird
noch vom Anzug. Es gibt jedoch die Option den Trägern ein Teil des Gewichts
des Gegenstandes spüren zu lassen, um zu vermeiden dass der Träger zu wenig
vom Umfeld wahrnimmt. Es sollte jeweils nur eine halbe Minute dauern in den
Anzug hineinzusteigen, und ihn wieder auszuziehen. Man kann mit ihn 4.8km/h
laufen, so schnell wie ein durchschnittlicher Mensch. Die Aufgabe des Guardian
XOs ist einem Arbeitern zu helfen, schwere Gegenstänge zu tragen, ohne das
er körperlich belasted wird. Das Exoskelett kann in der Manufaktur, auf der
Baustelle, im Lager und im Vertrieb, in der Öl- und Gasindustrie, in maritimen
Bereichen, im Militär und in der Luft- und Raumfahr benutzt werden. [12]

Fig. 1. Werbefoto für Guardian XO von Sarcos [12]
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6.2 Cray X und Apogee (German Bionic)

Eine weitere Firma die Exoskelette herstellt ist die deutsche Firma, German
Bionic [13]. Diese Firma speziallisiert sich auf aktiven mobilen Exoskelette, und
stellt sowohl für die Pflege als auch für die Industrie Exoskelette her. Zwei ihrer
industriellen Exoskeletten heißen Cray X und sein Nachfolger, Apogee. Sie sind,
so wie der Guardian XO, aktive mobile Exoskelette, die den Arbeitern beim Tra-
gen schwerer Gegenstände unterstützen. Im Gegensatz zum Guardian XO sind
beide Anzüge jedoch keine ganz-Körper Anzüge, sondern sie bedecken nur den
unteren Rücken und die Oberschenkel. Diese kompaktere Form dient als Vorteil,
dafür sind aber beide Modelle nur für das Tragen von 30kg pro Hebevorgang
gedacht, ein Drittel vom Guardian XO, es gibt also einige Aufgaben die nicht
für Cray X oder Apogee gedacht sind.

Fig. 2. Werbefoto für Apogee von German Bionic [13]

7 Kann man Exoskelette auf Arbeitsplätzen integrieren?

7.1 Meinung der Arbeiter

Bevor Exoskelette richtig auf einem Arbeitsplatz integriert werden können, brauchen
die Interesengruppen Beweise dass solch eine Investition Sinn macht [3]. Einer
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der wichtigeren Aspekte bei der Einführung einer neuen Technologie im Arbeit-
splatz ist wie wohl sich die Arbeiter selber mit der neuen Technologie fühlen.
Dies ist besonders der Fall mit Exoskeletten, da deren Hauptaufgabe es ist die
ergonomische Lage der Arbeiter zu verbessern. Um zu untersuchen ob die Ar-
beiter bereit sind aktive mobile Exoskelette als Teil ihrer Arbeit zu haben, wird
gerne das UTAUT Modell verwendet [15].

Das UTAUT Modell (Unifying Theory of Acceptance and Use of Technology)
enthält vier Kernfaktoren die determinieren sollen, ob Arbeiter zufrieden mit
einer neuen Technologie sind, oder ob diese neue Technologie bei bestimmten
Aspekten verbesserungen braucht. Die vier Kernfaktoren sind:

– Leistungserwartung: Hilft die neue Technologie den Arbeitern effizienter zu
arbeiten?

– Aufwandserwartung: Ist es einfach zu lernen, wie man diese neue Technologie
verwendet?

– sozialer Einfluss: Fühlt man sich wohl unter den Kollegen, wenn man mit
der neuen Technologie arbeitet?

– erleichternde Bedingungen: Werden die Arbeiter richtig auf dieser neuen
Technologie vorbereitet? [4, 15]

Dazu werden noch die Prozentanteile für Geschlecht, Alter, Erfahrung und Frei-
willigkeit die Technologie zu verwenden dokumentiert, da diese Verhältnisse die
Ergebnisse der Umfragen beeinflussen könnten [15]. Da industrielle active mobile
Exoskelette noch in der praxis sehr neu sind, handelte es sich bei den meisten
Umfragen zum Thema Exoskelette um passive Exoskelette. Es stehen wenige
Resultate zur Zufriedenheit der aktiven industriellen Exoskelette zur verfügung.
Um klar sagen zu können ob Arbeiter bereit wären aktive mobile Exoskelette auf
der Arbeit zu verwenden, müsste man sie weiter in der Praxis sich anschauen.

7.2 Meinungen der Interessengruppen

8 Schlussfolgerung
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Sensoren in aktiven und mobilen Exoskeletten:
Eine Review

Damian Reich

Karlsruher Institut für Technologie

Abstract. In der Steuerung von Exoskeletten spielt die Sensorik eine
wichtige Rolle. Als Informationsquelle für die Steuerung des Skeletts
und des damit verbundenen Menschen ist die richtige Wahl der Sen-
soren entscheidend, um eine präzise Einschätzung der Intentionen des
Nutzers anhand von Echtzeitdaten zu erhalten. Diese Review präsentiert
einen Überblick über den Einsatz von Sensoren in aktiven und mobilen
Exoskeletten aus sowohl medizinischen als auch nicht-medizinischen An-
wendungsbereichen. Hierbei wird sowohl umfassend auf weitverbreitete
Beispiele in Forschung und Praxis der letzten Jahre eingegangen, als auch
auf den technischen Aufbau der darin verwendeten Sensorik. Da mobile
Exoskelette meistens nah am menschlichen Körper angebracht werden,
können die Beispiele verlässlich in spezifische Körperregionen unterteilt
werden. In dieser Review werden vorkommende Beispiele zur Übersicht in
drei Bereiche gegliedert: Hand, Unterkörper und Oberkörper. Zudem er-
folgt ein Einblick in Prinzipien der Gangerkennung und der Sensordaten-
fusion, welche fallabhängig eine große Rolle im Design des Exoskeletts
und dessen Sensorik spielen können.

Keywords: aktive Exoskelette · mobile Geräte · Sensor · Gangunterstützung
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1 Einleitung

Maschinelle Exoskelette sind tragbare Roboter, welche dem Träger bei einer
körperlichen Tätigkeit unterstützen sollen. Damit können die physischen Fähigkeiten
eines Menschen über dessen Maßstab angehoben werden und es eröffnen sich
neue, vielfältige Möglichkeiten. Besonders unter Anbetracht der Fortschritte in
der technischen Forschung besitzt dieses Gebiet der Robotik die Möglichkeit,
körperliche Einschränkungen zu überwinden und die Fähigkeiten eines Menschen
neu zu erfinden.

Exoskelette werden oft unter zwei Gesichtspunkten klassifiziert: Lokalisierung
am Körper und Anwendungsbereich. Unter der Lokalisierung versteht man die
Klassifizierung der Exoskelette in die entsprechende Körperregion, in welcher
das Skelett entsprechende Gliedmaßen in ihrer Bewegung unterstützt. Da mo-
bile Exoskelette meist möglichst kompakt am Körper sitzen müssen, ist diese Un-
terteilung gewöhnlich einfach vorzunehmen. Man unterscheidet zwischen Han-
dexoskelett, Unterkörperexoskelett (engl. Lower Limb Exoskeleton, LLE) und
Oberkörperexoskelett (engl. Upper Limb Exoskeleton, ULE). Die andere Möglichkeit
ist die Klassifizierung nach Anwendungsbereich. Dieser bezieht sich spezifischer
auf das zu bewältigende Problem, welches von dem Exoskelett gelöst werden
soll. Man unterscheidet dabei in zwei große Gruppierungen, die medizinischen
und die nicht-medizinischen Anwendungen.

Im medizinischen Fall werden die Exoskelette von Patienten verwendet, die
aufgrund einer körperlichen Behinderung in ihrer Bewegungsfreiheit eingeschränkt
sind. Sie sollen dabei meist die Fortschritte in der Phase der Rehabilitation
beschleunigen, indem betroffene Gliedmaßen der Patienten durch die Unterstützung
verbessert gesteuert werden können. Ein großer Teil der Forschung behandelt
dabei LLEs. Diese werden für die Hüfte und Beine des Nutzers gestaltet und
sollen der Person bei der Fortbewegung beisteuern oder diese sogar erst ermöglichen
[1, 2]. Ein anderer großer Einsatzbereich ist die Entwicklung von Handexoskelet-
ten, die einen Teil der Aktivitäten wieder möglich machen sollen, welche die
Verwendung der menschlichen Hand voraussetzen. Dies umfasst meistens das
Greifen von Sachen und ist durch die hohe Komplexität der menschlichen Hand
erschwert [3].

Nicht-medizinische Anwendungen finden sich bei Personen wieder, dessen
körperlichen Fähigkeiten funktionstüchtig sind und durch Nutzung des Roboters
verbessert werden sollen. In der Industriebranche können beispielsweise Arbeiter
mit Exoskeletten ausgestattet werden. Diese dienen zum einen der Reduzierung
der körperlichen Last und damit auch der Unfallrate [4]. Sie können jedoch auch
die vom Nutzer ausgeübte Kraft um ein Vielfaches verstärken und somit Arbeit-
sprozesse beschleunigen oder erzeugen. Ein weiterer Verwendungszweck findet
sich in militärischen Anwendungen wieder. Ähnlich zum industriellen Zweck
können Soldaten mit den Anzügen die selbst auszuübende Kraft verringern,
welche ansonsten zum Tragen der Ausrüstung benötigt werden würde [5]. Damit
kann die Ausdauer deutlich erhöht werden. Außerdem wird somit auftretenden
körperlichen Problemen durch physischer Belastung vorgebeugt.
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Bei aktiven Exoskeletten handelt es sich um Roboter, dessen mechanische
Struktur mithilfe von Aktuatoren gesteuert und manipuliert werden kann. Um
diese Elemente anzusteuern benötigt es ein System an Sensoren, welche an dem
Skelett selber oder an dem Nutzer angebracht sind. Damit können Kräfte und
Signale des Nutzers, sowie auch teilweise der Umwelt, möglichst effektiv und
zuverlässig gemessen werden. Auf Basis dieser Informationen findet eine Evalu-
ation in der Steuereinheit des Exoskeletts statt, welche die Bewegungsintention
des Nutzers approximieren soll. Infolge eines Algorithmus erzeugt die Steuerung
passende Steuersignale, welche schließlich an die Aktuatoren gesendet werden
und das Exoskelett bewegt sich.

Diese Review dient dazu, einen Überblick über die Sensoren in aktiven und
mobilen Exoskeletten zu schaffen. Dabei werden Beispiele aus Forschungsergeb-
nissen und praktischen Anwendungen in den zuvor genannten Klassifikationen
betrachtet. [6]

2 Prinzip der Sensorik

Das grundsätzliche Ziel der eingebauten Sensorik ist es, die Mensch-Maschine-
Interaktion zu quantifizieren und zu messen. Dadurch sollen Intentionen des
Nutzers in seiner Bewegung eingeschätzt und diese dementsprechend unterstützt
werden. Die Präzision sollte dabei möglichst hoch sein, wobei negative Auswirkun-
gen auf die Bewegungsfreiheit des Menschen möglichst gering sein sollen. Die
benötigte Information ist neben dem Einsatz des Exoskeletts auch abhängig von
Faktoren wie Design, Größe und Kosten. Somit kann sich das Sensorsystem in
gleichen Anwendungsfällen stark unterschieden.

Tiboni et al. [7] beschreibt mit einer grundlegenden Architektur für aktive
Exoskelette den Verlauf von Informationen im System. Dabei findet die Daten-
erhebung in den Sensoren statt, die bei mobilen Exoskeletten intern angebracht
sind. Die Daten stammen entweder aus der Interaktion des Nutzers mit dem
Sensor, Interaktionen zwischen maschinellen Bauteilen (vgl. Zoss und Kazerooni
[8]) oder Interaktionen zwischen Exoskelett und externen Einflüssen (vgl. Imtiaz
et al. [9]). Alle Werte werden an eine Kontrolleinheit weitergeleitet, welche da-
raus die Intention des Nutzers ableiten soll. Daraufhin werden die berechneten
Signale an die Aktuatoren gesendet. Diese üben dann, je nach Typ des Aktua-
tors, eine Kraft auf die mechanische Vorrichtung aus und manipulieren diese so,
dass die Bewegung möglichst sicher ausgeführt wird.

2.1 Gangerkennung

Neben einfacher Datenerhebung existiert in Lower Limb Exoskeletten für die
Rehabilitation meist ein weiteres Prinzip in der Intentionserkennung. Die Gan-
gart (engl. gait) ist eine Beschreibung der Art und Weise, wie ein Mensch geht.
Sie kann als sich wiederholender Zyklus untersucht werden. Der Zyklus wird für
die weitere Analyse in Phasen aufgeteilt (siehe Abb. 1). Das Verständnis dieser
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Abb. 1. Mögliche Aufteilung der Gangphase in auswertbare Segmente aus [6].

Phasen kann dabei helfen, das Skelett besser bei der Umsetzung des Ganges zu
steuern.

Der Gang ist jedoch abhängig von vielfältigen Faktoren, wie Anatomie, phys-
iologischer Funktionen, Bewegungskontrolle oder aber auch Schrittweite und
Geschwindigkeit [6, 10]. Somit sind zusätzlich personenbezogene Anpassungen
erforderlich.

2.2 Sensordatenfusion

Bei der Steuerung eines Exoskelett-Roboters ist es wichtig, eine möglichst gute
Einschätzung der Umgebungs- und Nutzerinformationen zu erhalten und miteinzubeziehen.
Dabei ist die Verwendung von nur einem Sensor unüblich, da die erhaltenen
Informationen meist nicht ausreichend sind, um eine hinreichend präzise Ein-
schätzung zu erlangen.

Sensordatenfusion (auch Sensor Fusion) bezeichnet das Zusammenfügen von
Informationsdaten aus mehreren Sensoren. Hierbei kann zwischen unimodalen
Systemen und multimodalen Systemen [11]. Unimodale Systeme verwenden nur
einen Typen von Sensor in der gesamten Struktur des Exoskeletts. In multi-
modalen Systemen hingegen existieren unterschiedliche Sensortypen, wodurch
Schwachstellen in einer Art von Sensor überkommen werden können. Die Schwierigkeit
hier ergibt sich durch die größeren Unterschiede der resultierenden Daten. Dadurch
werden neue Fusionsalgorithmen benötigt, welche auf das System spezialisiert
sein müssen.

Ein Beispiel hierzu ist eine Kontrollmethode von Kiguchi et al. [12], welche
Daten sowohl von Elektromyografie-Sensoren, die elektrische Muskelreize messen,
als auch von Kraftsensoren am Handgelenk fusioniert. Mithilfe eines neuronalen
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Netzwerkes, welches als Eingabe die genannten Daten erhält, können Steuersig-
nale für das Arm-Exoskelett erzeugt werden.

3 Überblick auf die Sensoren

Bei den nun vorgestellten Sensortypen handelt es sich um solche, die in Designs
und Anwendungen von Exoskeletten weit verbreitet sind. Die Einschätzung der
Verbreitung eines Sensortypen erfolgte mithilfe einer systematischen Literatur-
recherche [7].

Der Überblick über einen Sensor beginnt mit einer Erklärung der technischen
Zusammensetzung. Darauf folgt eine geordnete Sammlung aus Beispielen von
Einsätzen dieses Sensors in Exoskeletten. Die Exoskelette werden hierbei nach
der entsprechenden Körperregion kategorisiert, in welcher sie den Nutzer aktiv
in der Bewegung unterstützen sollen. Die Gruppierung erfolgt in ULEs, LLEs
und Handexoskelette.

3.1 Kraftsensoren

Kraftsensoren (engl. force sensor) werden eingesetzt, um die an der Oberfläche
des Sensors auftretende Kraft zu messen. In Exoskelett-Anwendungen wird meist
die Kraft vom Nutzer direkt ausgeübt. Sie kann jedoch auch zwischen mechanis-
chen Teilen oder außerhalb des Skeletts entnommen werden, um Einwirkungen
von externen Objekten aufzunehmen [9].

Für die Kraftsensoren in Exoskeletten werden häufig Kraftmesswiderstände
(engl. force sensing resistors, FSR) verwendet. Bei einem FSR handelt es sich
um einen dünnen leitfähigen Film, welcher unter Krafteinwirkung seinen internen
Widerstand verändert [13]. Damit kann die Krafteinwirkung quantifiziert werden
(siehe Abb. 2). FSRs werden aufgrund ihrer schmalen Breite und ihrer geringen
Kosten gegenüber anderen Sensoren oft bevorzugt (vgl. [14, 15]).

Eine weitere beliebte Methode umfasst die Verwendung von Dehnungsmessstreifen
(engl. strain gauge) [16]. Dieser ähnelt in dessen Aufbau und Funktionsweise
einem FSR. Der Unterschied bei dem Dehnungsmessstreifen liegt darin, dass
dieser die einwirkende Kraft durch Verformung eines Substrates im Streifen
misst. Ein FSR hingegen misst die Einwirkung auf das Sensorelement selbst.
Dehnungsmessstreifen können in anderen Sensoren angewendet werden. So findet
man auch Verwendungen von Ladezellen (engl. load cell) in Exoskelett-Designs
[17]. Diese bestehen aus einer Konfiguration von mehreren Dehnungsmessstreifen
und können genauere Messungen durchführen, aufgrund ihrer erweiterten Menge
an Messdaten.

Aufgrund der flexiblen Einsetzbarkeit werden in einigen Anwendungen Kraft-
sensoren für das Messen von Druck oder Drehkraft umfunktioniert [8].

Um beim Tragen unterschiedlich schwerer Objekte die vom Nutzer auszuübende
Kraft konstant zu halten, wird von Wang et al. [18] ein Sensor am Griff am
Ende des Exoskelettarms installiert. Dieser Sensor misst die Kraft, welche durch
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Abb. 2. Einsatz eines FSRs unter einer beweglichen Platte zur Messung der
Muskelspannung am Bein aus [14].

das Gewicht des getragenen Objektes entsteht. Die Aktuatoren können so ihre
Kraftübertragung auf den Arm anpassen in, Abhängigkeit zum getragenen Ob-
jekt. Das Design von Liu et al. [19] zielt auf eine alltägliche Nutzung ab und legt
Wert auf präzise Sensitivität und einen hohen Freiheitsgrad. Hierzu wurde ein 3-
Achsen Kraftsensor unter der Handfläche platziert. Dieser misst Kraftausübungen
durch Bewegung der Hand des Nutzers in alle Richtungen und ermöglicht so eine
präzise Bewegung des Exoskelett-Arms.

Kraftsensoren in Lower Limb Exoskeletten finden häufige Verwendung in
den Sohlen des Nutzers. Pappas et al. [20], Kim et al. [21] und Yang et al. [22]
beziehen sich in ihrem Entwurf auf die Platzierung von mehreren Sensoren unter
den Fußsohlen. Dabei kann die Übertragung des Gewichts verteilt gemessen und
anhand der Daten die Gangphase approximiert werden. Zusätzlich zur Kraftmes-
sung zwischen Fuß und Boden besitzt das Konzept von Chen et al. [23] für jedes
Bein zwei weitere zweidimensionale Kraftsensoren in Schienbein- und Schenkel-
region. Diese sind über Aluminiumbänder jeweils mit den Beinen verknüpft
und messen die Intention über den Bewegungsunterschied zwischen Mensch und
Skelett. Aufgrund der Vorteile, die Kraftsensoren bieten, werden sie auch als
Ersatz anderer Sensortypen verwendet. Zoss und Kazerooni [8] greifen in der
Strukturierung des Berkeley Lower Extremity Exoskeleton (BLEEX) darauf zu.
Beim Erfassen des Drehmoments im Knie verzichten sie auf einen entsprechen-
den Drehmoment-Sensor, da dieser die Breite des Gelenks zu sehr vergrößern
würde. Stattdessen setzen sie einen Kraftsensor ein, welcher über einen erweit-
erten Bezugspunkt den Winkel misst, ohne einer Biegung ausgesetzt zu sein.
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Das Bewegen einzelner Finger von Handexoskeletten kann durch Kraftsen-
soren an jeder Fingerspitze erfolgen. So setzt das Exoskelett iHandRehab [24]
zur Erfassung eines Fingers ein Bauelement aus drei Kraftsensoren und einer
Metallplatte ein. Dies soll die Messung zuverlässiger machen, da das Gewebe am
Kontaktpunkt der Hand weich ist. Zusätzlich verfügt das Design von Imtiaz et
al. [9] auf den Fingerspitzen des Skeletts selbst über Kraftsensoren. Bei Kontakt
mit einem Objekt kann damit die Bewegung des Fingers jeweils automatisch
stoppen. Das Konzept HANDEXOS [25] beschreibt für jeden Finger ein Modul,
welches für die einzelnen Fingerglieder jeweils einen Kraftsensor einsetzt. Dies
verbessert die Bewegungsfreiheit, die der Roboter bietet. Durch dazukommende
Aktuatoren nimmt jedoch ebenso die Dimension des Exoskeletts zu.

3.2 Drehmomentsensoren

Drehmomentsensoren (engl. torque sensor) finden am häufigsten Anwendung in
LLEs. Hier werden sie meistens in Verbindung mit entsprechenden Drehmomen-
taktuatoren an Gelenken des Exoskeletts verwendet [7].

Die Sensoren bestehen meist aus einem äußeren und einem inneren Ring.
Der innere Ring ist dabei so mit einem entsprechenden Bauteil verbunden, dass
das ausgeübte Drehmoment auf den Ring übertragen wird. Bei dem Bauteil
können unterschiedliche Ansätze verwendet werden. So wird hierzu oft eine
Achse verwendet, welche direkt mit dem Sensor verbunden wird [21]. Toxiri et.
al [26] verwenden in ihrem Design ein elastisches Seil, welches über mehrere
Bolzen eine Kraft übertragen kann, die sich in das Drehmoment übersetzen
lässt. Das ausgeübte Drehmoment kann anschließend zwischen den beiden Rin-
gen aufgenommen werden. In vielen Sensoren sind hierzu Dehnungsmessstreifen
eingebaut, welche die erzeugte Belastung messen. Beispiele dazu sind die TRT-
200 Sensoren in Schabowsky et al. [27] oder die Drehmomentsensoren im Design
von Kim et al. [21] (siehe Abb. 3).

Abb. 3. Implementierung eines Drehmomentsensors unter Verwendung von
Dehnungsmessstreifen aus [21]. Die Streifen messen das auf den äußeren Ring
ausgeübte Drehmoment.
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Ein von der Norm abweichender Sensor wird im Design von Gabert und Lenzi
vorgestellt [28]. Zur Messung von Krafteinwirkung und Drehmoment benutzen
sie zwei Magnete und Hall-Sensoren, welche zur Messung von Magnetfeldern
eingesetzt werden. Bei Deformation des Bauteils bewegen sich die angebrachten
Magneten, was eine Veränderung des Magnetfeldes mit sich bringt (siehe Abb.
4). Diese Veränderung wird über die Hall-Sensoren wahrgenommen und es wird
eine Spannung erzeugt, welche sich in die ausgeübte Kraft beziehungsweise das
erzeugte Drehmoment übersetzen lässt.

Abb. 4. Deformationen des Adapters resultieren durch Krafteinwirkungen aus [28].
Hall-Sensoren messen Veränderungen der Magentfelder an d1 und d2.

Drehmomentsensoren in aktiven Exoskeletten werden primär zwischen einem
entsprechenden Aktuator, wie einem Motor, und dem Verbindungsstück zum
Nutzer eingebaut. Damit kann zum einen der vom Aktuator erzeugte Output
direkt gemessen werden. Zum anderen ist es gleichzeitig weiterhin möglich, die
Intention des Nutzers am jeweiligen Gelenk zu quantifizieren und zu messen.

Das EXO-UL8 ist ein ULE, welches die Rehabilitation der Bewegung bei-
der Arme nach einem Schlaganfall unterstützt [29]. Hierzu wurden in beiden
Exoskelett-Armen jeweils drei FT-Sensoren (ATI mini 40) verwendet. Diese
befinden sich am Oberarm, Unterarm und am Handgelenk an Kontaktpunkten
zwischen Skelett und dem Nutzer. Diese nehmen unter anderem das Drehmo-
ment an dem entsprechenden Gelenk auf.

Auch in LLEs werden Drehmomentsensoren zur Messung des resultierenden
Drehmoments in unterschiedlichen Gelenken verwendet. Yu et al. [30] nehmen
im Design eines Hüft-Exoskeletts Bezug auf einen Drehmomentsensor, welcher
direkt am Flansch, dem Verbindungsstück, des Aktuators angebracht ist. Ähnlich
existieren auch Designs, in denen am Kniegelenk [21] oder am Fußgelenk [31] das
vom Nutzer verursachte und vom Aktuator angewandte Drehmoment gemessen
wird. Die Nutzerintention kann hierbei aus dem resultierenden Ergebnis durch
ermittelt werden [32].

3.3 Trägheitsmesseinheit

Die Trägheitsmesseinheit (engl. inertial measurement unit, IMU) besteht aus
zwei unterschiedlichen Sensortypen: einem Beschleunigungssensor und einem
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Gyroskop [33]. Ein Gyroskop ist ein Messgerät, welches die Winkelgeschwindigkeit
von Rotationen bestimmen kann. Es lassen sich zudem Anwendungen finden, in
denen die IMU zusätzlich über einen Magnetometer verfügt [34]. Der Beschleuni-
gungssensor misst lineare Beschleunigung und kann die durch die Erde ausgeübte
Gravitationskraft entlang einer Richtung bestimmen. Mithilfe dieser und den
Daten aus dem Gyroskop ist es demnach möglich, die Winkelposition des Sen-
sors in Referenz zur Erdanziehungskraft zu erfassen [35].

Aufgrund der Menge an messbaren Datenwerten werden IMUs fast auss-
chließlich in LLEs eingesetzt. Hier übernehmen sie nämlich die Aufgabe der
Gangphasenerkennung des Nutzers [7]. So lassen sich anhand der Daten, wie
Winkel und Beschleunigung einzelner Beinpartien, effizient die Phasen des jew-
eiligen Gangzyklus ermitteln. Hierzu kommen oft andere Sensoren wie Kraft-
sensoren hinzu, dessen Messdaten mit denen der IMUs kombiniert werden [36,
37, 38]. Damit steigt die Genauigkeit der Daten und es kann eine bessere Ein-
schätzung der Gangphase erfolgen.

So existieren Anwendungen, in denen die Gangphasenerkennung bereits durch
die Verwendung von IMUs abgedeckt ist. Susanto et al. [33] haben zwei IMUs an
den beiden Knien des Exoskeletts eingesetzt. Sie übergeben den gemessenen Stei-
gungswinkel des Knies an die Steuereinheit. Diese bestimmt unter Verwendung
eines neuronalen Netzwerkes eine einfache Einteilung der Gangphase während
des Laufens. Das durch Vakuum-Aktuatoren gesteuerte Knie-Exoskelett von
Zhang et al. [39] integriert insgesamt vier IMUs. Für beide Beine jeweils ein
Sensor über und ein Sensor unter dem Knie. Die aufgenommene Beschleunigung
und die Orientierung werden für die Ermittlung der Gangphase eingesetzt.

In vielen Anwendungen wird allerdings hierfür eine Kombination aus mehreren
Sensortypen angewendet. So kann die Bestimmung der Phase mit erhöhter Sicher-
heit oder einer größeren Anzahl an Zyklusunterteilungen erfolgen. Das LLE
Gamma prototype [40] nutzt ebenfalls vier IMUs, welche an Schienbein und
Oberschenkel integriert sind. Hier unterscheidet das System sich jedoch insofern,
dass zusätzliche Sensoren in den Schuhen die Kraftverteilung der Füße mit dem
Boden messen. Der Gangzyklus lässt sich aus den Daten beider Sensorgruppen
in sechs Phasen unterteilen. Das vorgestellte Exoskelett von Aguirre-Ollinger
und Yu [41] besitzt zwei IMUs, welche sich jeweils hinter den Oberschenkeln
befinden. Diese nehmen Daten zur Rotation der Beine auf. Der Unterschied
zwischen den Rotationen wird zusammen mit den Messwerten der Encoder an
den Kniegelenken zur Bestimmung der Phase verrechnet.

Tan et al. [42] beschäftigen sich in ihrem Exoskelett-Design mit einer Gang-
phasenerkennung, welche durch einen gestörten Rhythmus beim Gehen des Nutzers
erschwert wird. An den Schuhlaschen beziehungsweise den Schuhzungen des Ex-
oskeletts wurden für jedes Bein eine IMU (LPMS-B2, LP-RESEARCH Inc.,
Japan) verwendet. Die aufgenommenen kinematischen Daten der Füße werden
zur Bestimmung der Gangphase eingesetzt. Im Sensorsystem von Yue et al.
[36] erfolgt die Gangphasenerkennung hingegen primär durch Kraftsensoren in
den Sohlen. Beide eingebauten IMUs sind außen an den Sohlen angebracht. Sie
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können die Winkelgeschwindigkeit der jeweiligen Sohle messen und werden dazu
verwendet, die momentane Bodenbeschaffenheit aus vier definierten Kategorien
zu ermitteln. Diese Kategorisierung hilft zusätzlich bei der Gangphasenermit-
tlung.

Eine untergeordnete Rolle spielt die IMU auch im Design eines Exoskelett-
Steuersystems von Vantilt et al. [43]. Hier wird eine IMU in der Region der Hüfte
platziert, welche zusätzlich Daten zur Beschleunigung und Rotation misst. Die
Daten sollen mit den Messungen der anderen verwendeten Sensoren kombiniert
werden, sodass die momentane Orientation des Exoskeletts in Weltkoordinaten
abgeschätzt werden kann. Hier findet also keine Gangphasenerkennung statt.

3.4 Encoder

Bei Encodern handelt es sich um eine Gruppe an Sensoren, die die Bewegung
von mechanischen Teilen in ein analoges oder digitales Signal kodieren (engl.
encode). Dieses wird an eine Kontrolleinheit weitergeleitet, welche das Signal
übersetzt und weiterverarbeitet.

Encoder lassen sich ihrer Funktionsweise nach in unterschiedliche Klassen
kategorisieren. So existieren zwei Obergruppen an Encodern. Das sind zum einen
lineare Encoder, welche Änderungen entlang einer Achse messen können. Die
andere Gruppe besteht aus rotierenden Encodern. Diese messen im Gegensatz zu
den linearen Encodern Änderungen in einer Rotation. In Exoskeletten finden sich
hauptsächlich Anwendungen von rotierenden Encodern. Diese werden entweder
in die Motoren der Aktuatoren eingebaut, um diese präziser steuern zu können,
oder aber sie befinden sich an Teilen des Exoskeletts, um dort die Winkel der
Gelenke bestimmen zu können [6]. Für die hohe Präzision der Sensoren ist eine
genaue Installation dieser vorausgesetzt. Aufgrund dessen werden sie nicht an
Körperteilen des Nutzers angebracht.

Die Sensoren lassen sich allerdings noch spezifischer unterteilen. So bezeich-
net man den Typ des Encoders beispielweise abhängig von deren Ausgabedaten
als entweder absolut oder inkrementell [7]. Absolute Encoder geben in ihrem
Signal ihre aktuelle Position aus, was in einem rotierenden Encoder die Winkel-
position ist. Inkrementelle Encoder hingegen können nur Änderungen in ihrer
Position wahrnehmen und diese in einer Rotation als Winkelgeschwindigkeit
ausgeben. Zudem lassen sich die Sensoren bezüglich ihrer Vorgehensweise bei
der Datenerhebung kategorisieren. Mechanische rotierende Encoder verwenden
leitende, entlang der Achse rotierende Ringe, welche mithilfe einer Spannung
durch ihre Hohlräume einen binären Code generieren. Optische Encoder be-
nutzen mehrere Lichtquellen und entsprechende Sensoren. Das Unterbrechen
unterschiedlicher Lichtimpulse durch zirkuläre Platten bei einer Rotation der
Achse kann schließlich als Signal des Encoders codiert werden. Bei Verwendung
eines magnetischen Encoders wird ein Magnetfeld an der Achse platziert. Rota-
tionen der Achse verändern die Auswirkungen des Magnetfeldes auf den Sensor,
welcher daraus ein analoges beziehungsweise digitales Signal erzeugt.
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Hsieh et al. präsentieren ein Exoskelett für die Rehabilitation der Schultern
[44]. Hierbei wird ein linearer Encoder in den Aktuator eingesetzt. So kann die
durch den Motor resultierende Verschiebung hinter der Feder präzise entnom-
men werden. Ähnlich wird das Problem der Präzision bei elastischen Bauteilen
von Jarrett und McDaid gelöst [45]. Sie konzipieren einen Aktuator für die
Einbindung in ein ULE zur Bewegung des Ellenbogens. Dabei benutzen sie
verformbare Elastomere. Die tatsächlich resultierende Winkelposition wird hier
durch einen rotierenden Encoder gemessen. Encoder werden in unterschiedlichen
Multi-Sensor-Systemen eingesetzt. So ergänzen Elnady et al. in ihrem Design
eines BCI-getriebenen Arm-Exoskeletts [46] ihr EEG-Sensorsystem um einen
zusätzlichen Encoder zum Ermitteln der Gelenkposition.

Gelenke eines LLEs lassen ebenso mithilfe von Encodern erfassen. Das dargestellte
Exoskelett von Nomura et al. [47] setzt insgesamt vier rotierende Encoder ein,
jeweils zwei für Kniegelenk und Hüftgelenk des Roboters. Der Aktuator eines
Knie-Exoskeletts von Chen et al. [48] wird zusammen mit einem rotierenden
inkrementellen Encoder implementiert. Dieser misst die Rotationsgeschwindigkeit
im Gelenk des Skeletts. Vantilt et al. [43] präsentiert ein Aktuator-Design eines
Exoskeletts, welches sowohl magnetische als auch optische Encoder einsetzt.
Dieser Aktuator wird für Hüft-, Knie- und Knöchelgelenk verwendet und be-
sitzt jeweils einen absoluten magnetischen Encoder und einen inkrementellen
optischen Encoder.

Das Hand-Exoskelett von Ben-Tzvi et al. [49] setzt drei absolute magentische
Encoder für jeden Finger ein. Die Konstruktion erlaubt es, die Form und Position
der Finger mit einem Fehler von unter 0,8% der maximalen Bewegungsfreiheit zu
bestimmen. Aubin et al. legt das Design eines Exoskeletts zur Rehabilitation des
Daumens dar [50]. Zur direkten Bestimmung der Winkel in den unteren beiden
Gelenken des Daumen werden hier optische Encoder eingesetzt.

3.5 EMG

Die Elektromyografie (EMG) ist eine Methode, bei der elektrische Signale bei der
Aktivität ausgewählter Muskelpartien aufgezeichnet werden. Wenn die Muskelzellen
der Skelettmuskulatur erregt werden, versuchen die EMG-Sensoren das emit-
tierte elektrische Potenzial aufzunehmen [7].

Man unterscheidet bei der EMG zwischen zwei Methoden, der intramuskulären
und der Oberflächen-EMG. Die intramuskuläre EMG benutzt zur Signalmes-
sung eine Nadel, die in das Muskelgewebe eingeführt wird. Dieses Verfahren ist
nützlich darin, möglichst exakt Daten zu einzelnen Muskeln zu erfassen. Da es
sich bei der Methode aber um ein medizinisch invasives Verfahren handelt, wird
diese Methode im Zusammenhang mit Exoskeletten nicht angewendet [7].

Das Oberflächen-EMG (engl. surface EMG, sEMG) verwendet hingegen Elek-
troden, welche auf der Haut im Bereich des betroffenen Muskels platziert wer-
den. Im Vergleich zur intramuskulären Alternative birgt diese Methode jedoch
Nachteile. So müssen die Elektroden bei jedem Einsatz des Exoskeletts neu und
möglichst genau platziert werden. Das Signal ist beispielsweise auch abhängig
von äußeren Einflüssen, wie der Hautfeuchtigkeit und der Muskelgröße des Trägers
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[16]. Die größere Entfernung wirkt sich zudem negativ auf das aufgenommene
Signal aus. Dennoch ist sEMG eine intuitive und effektive Methode zur Analyse
der Intention des Nutzers.

In ULEs lassen sich einige Anwendungen von sEMG-Sensoren finden, bei de-
nen das Skelett jedoch stationär angebracht ist und somit nicht mobil verwendet
werden kann. Ein mobiles Beispiel, welches sEMG-Sensoren einbezieht, ist das
Exoskelett-Design von Copaci et al. [51]. Hier werden zwei sEMG-Elektroden am
Bizeps und eine am Schulterblatt platziert. Zusammen mit FSR-Sensoren kann
die vom Nutzer angestrebte Bewegung des Ellenbogengelenks approximiert und
unterstützt werden.

Chandrapal et al. stellen ein LLE vor, welches die Belastung am Knie des
Nutzers reduzieren soll [52]. Neben einem Encoder zum Messen des Kniewinkels
verwenden sie fünf sEMG-Sensoren, positioniert an den Muskeln des Oberschenkels,
welche am meisten zur Beugung und Streckung des Kniegelenks beitragen. Das
Design von Aguilar-Sierra et al. [53] platziert an jedem Bein acht sEMG-Sensoren.
Auf Basis dieser breiten Überdeckung an Muskelpartien soll die Intention des
Nutzers beim Gehen möglichst umfassend beschrieben werden. Die EMG-Daten
werden dafür verwendet, die Gangphase anhand von Mustern in den Messwerten
zu erkennen und darauf basierend die Aktuatoren anzusteuern. Vorgestellt wurde
bereits der Nachteil von sEMG, dass die Elektroden bei jeder Verwendung neu
platziert werden müssen und diese möglichst die gleichen Positionen über den
Muskelpartien einnehmen sollen. Um diesem Problem zu entgehen, verwendet
das Knie-Exoskelett von Moon et al. einen Gurt, welcher oberhalb des Knöchels
festgemacht wird [54]. Dieser Gurt besitzt sEMG-Sensoren an der Innenseite
und misst somit die Muskelsignale bei jeder Verwendung möglichst an gleicher
Position.

Maestro ist ein durch sEMG-Sensoren betriebenes Hand-Exoskelett für Pa-
tienten bei Rückenmarksverletzungen [55]. Dabei werden unterschiedliche Hand-
posen nach ihrem EMG-Muster in drei Gruppen unterteilt. Es werden drei
sEMG-Sensoren an Hand und Unterarm des Nutzers angebracht. Bei der Platzierung
wird auf das akkurate Messen der Beugung und Streckung der Finger und die
des Daumens abgezielt. Eine andere Methode der Rehabilitation findet sich in Li
et al. [56]. Hier wird sich auf die bisherige Forschungen in der Rehabilitation von
Schlaganfallpatienten durch Spiegeltherapie gestützt [57]. Dabei werden sechs
sEMG-Sensoren an Hand und Unterarm des gesunden Arms positioniert. Diese
nehmen die Signale bei Bewegung der Hand auf und leiten diese an das Gerüst
des Exoskeletts, welches sich an der betroffenen Hand befindet.

3.6 EEG

Die Elektroenzephalografie (EEG) beschäftigt sich, ähnlich wie die EMG, mit
dem Messen von elektrischen Signalen des menschlichen Körpers zur Intention-
serkennung. Hierbei werden die Summen der von den Neuronen weitergeleit-
eten elektrischen Potenziale außerhalb des Schädels beim Bewegen der Muskeln
aufgezeichnet und verarbeitet [16]. Ebenfalls wie bei der EMG existieren hier
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invasive und nicht-invasive Methoden der Signalerfassung. Im Bereich der Ex-
oskelette wird allerdings generell nicht-invasiv geforscht. Dabei werden Elektro-
den außerhalb der Kopfhaut angebracht, oft in Form einer Kappe, welche vom
Nutzer aufgesetzt werden kann. Bezüglich der Platzierung existieren interna-
tionale Standards, wie das 10-20-System, auf welches in den meisten Anwendun-
gen zurückgegriffen wird [58] (siehe Abb. 5). Die Zahlen beziehen sich dabei auf
die prozentuale Entfernung einzelner Elektroden auf der Kopfhaut voneinander.

Abb. 5. 10-20-System für eine effektive Aufteilung der Elektroden zur EEG-Messung
aus [58]. Üblich sind auch Elektroden hinter den Ohren, bezeichnet als A1 und A2.

Bei Nutzung von EEG-Signalen in der Steuerung von Exoskeletten wer-
den sogenannte Gehirn-Computer-Schnittstellen (engl. Brain-Computer Inter-
face, BCI) verwendet. BCIs sind Teil der Steuerung und umfassen die Aufnahme
der elektrischen Signale von den EEG-Sensoren, die Weiterverarbeitung dieser
und das Übersetzen in Steuersignale für die Aktuatoren [58].

Das Design eines Arm-Exoskeletts von Elnady et al. richtet sich an die Reha-
bilitation einfacher Armbewegungen bei Schlaganfallpatienten [46]. Sie legen dem
Nutzer dafür ein Headset um den Kopf, welches mit EEG-Sensoren ausgestattet
ist. Das eingesetzte BCI-System verwendet diese Signale, um den momentanen
Zustand einer von zwei Klassen zuzuordnen: 0 für ruhend und 1 für eine Bewe-
gungsintention. Abgeleitet von dieser Klassifizierung wird der Exoskelett-Arm
durch Aktuatoren geöffnet oder aber eine FES-Einheit (funktionale Elektros-
timulation) wird angesprochen, welche dem Patienten über Muskelstimulation
mit elektrischen Impulsen hilft.
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Choi et al. [59] befassen sich mit der Forschung einer BCI, welche mithilfe
von EEG-Sensoren drei Bewegungzustände des Nutzers unterscheiden kann: Auf-
stehen, Vorwärtsgehen und Hinsetzen. Sie verwenden hierfür eine EEG-Haube
mit 31 Elektroden, welche nach dem bereits benannten 10-20 System positioniert
werden. Ein weiteres BCI zur Steuerung eines LLEs stellen Ferrero et al. vor [60].
Auch für dieses BCI wird eine Haube für die Anbringung der 32 EEG-Sensoren
eingesetzt. Hierbei wird das 10-10 System angewendet. Dabei handelt es sich
ebenfalls um einen internationalen Standard, welcher mit einer größeren Anzahl
an näher aneinander platzierten Sensoren die Auflösung der Daten verbessern
soll. Zur Zustandsberechnung umfasst das Design zudem vier Elektroden im
Bereich der Augen, welche elektrookulographische Signale aufzeichnen, also Be-
wegungen der Augen. EMG in Exoskeletten wird zudem öfters zusammen mit
EEG kombiniert. Li et al. [61] präsentieren ein Exoskelett, welches das Trep-
pensteigen erleichtern soll. Dazu erfolgt eine Gangphasenbestimmung, welche
allein auf intrinsische Signale des Nutzers erfolgen kann und keine mechanis-
chen Sensoren verwendet. Hier werden die Messdaten aus der EEG-Haube und
zwei EMG-Sensoren an den Unterarmen bei Nutzung des Geländers der Treppe
kombiniert.

Auch für Handexoskelette eignet sich die Verwendung von Technologie der
EEG. Die komplizierten Bewegungen der einzelnen Finger und Handgesten lassen
sich mithilfe der EEG-Muster in Gruppen klassifizieren. So konnte mithilfe des
Handexoskeletts mano [62] von der computergestuerten Beugung und Streckung
der Finger in vier Aufgaben auf dabei gemessene EEG Signale zurückgeschlossen
werden.

4 Schlussfolgerung

In dieser Review wurden die Ziele der Sensorik in Exoskeletten vorgestellt. Dabei
wurde näher auf die Methode der Gangphasenerkennung eingegangen, welche bei
dem Einsatz von Sensoren in LLEs eine entscheidende Rolle spielt. Zudem wurde
die Sensordatenfusion aufgegriffen und erläutert, die bei der Nutzung mehrerer
Sensoren in einem System unumgänglich ist.

Die Arbeit stellte eine Reihe von Sensortypen vor, auf welche am häufigsten
in der Anwendung von Exoskeletten zugegriffen wird. Hierbei wurden die Sen-
sortypen in ihrer Funktionsweise dargestellt und für alle Typen wurde eine
breite Menge an Beispielen in Exoskelett-Designs vorgestellt. Bei diesen Ex-
oskeletten handelt es sich um Anwendungen aus sowohl medizinischen als auch
nicht-medizinischen Bereichen. Zudem wurden Modelle aus der Praxis wie auch
aus der Forschung verwendet. Hierbei wurden Beispiele vorgestellt, die in ihrer
Gesamtheit einen möglichst umfassenden Einblick in potenziellen Anwendungen
dieser Sensoren bieten sollen.

Die Schwierigkeiten beim Entwerfen eines Exoskeletts und des damit zusam-
menhängenden Sensorsystems sind komplex und von Fall zu Fall unterschiedlich
zu bewältigen. Eine direkte Anwendung der dargestellten Systeme in den Beispie-
len ist demnach oft nicht die effizienteste Lösung. Aus den Ergebnissen lässt sich
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allerdings ableiten, welche Methoden zuvor funktioniert haben und es lassen
sich neue Zusammensetzungen und Alternativen für Sensorsysteme bilden. Mit
der weiter fortschreitenden technologischen Entwicklung lassen sich zudem in
Zukunft neue Sensortypen entwickeln, welche bisherige Schwachstellen nichtig
machen und das Potenzial von Exoskeletten steigern werden.
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Abstract. Exoskeletons are witnessing an increase in commercialization
as their utility in rehabilitation and industrial aid expands, driving the
growth of the exoskeleton market. Creating an efficient and smoothly
operating exoskeleton, involves optimizing numerous variables, one of
the key ones being the selection of an appropriate actuator. This paper
aims to explore the current state of actuation technology, focusing on the
various motors, mechanical design, and actuation principles employed.
By establishing key criteria, the trade-offs inherent in their design will be
identified. Additionally, the significant role of biomimicry in exoskeleton
development will be discussed.

Keywords: Actuators · Exoskeletons · Biomimicry · Mechatronic De-
vices · Wearable Devices

1 Introduction

Throughout the course of history, people have been engaging in physically de-
manding tasks alongside their daily lives. However, the execution of any physical
activity can be impeded by factors such as injuries or the natural aging pro-
cess. Moreover, even the most physically fit individuals have their limitations,
as certain actions can surpass their capabilities. In response to this inherent
vulnerability and restrictions in human nature, a solution has been devised by
researchers and engineers in the form of an external wearable device known as
an exoskeleton.

In the realm of zoology, the term ”exoskeleton” pertains to any rigid external
structure present in certain organisms [1], but in the context of this paper, it
specifically pertains to exoskeletal robots. These innovative wearable devices are
meticulously designed with a mechanical framework to imitate the anatomical
structure of a limb or the particular body part that they are intended to enhance
[2]. Hence, their applications span a broad spectrum – from enhancing worker
performance and minimizing health complications to accelerating the recovery
of individuals requiring medical assistance [3].

In industrial settings, exoskeletons effectively bolster worker strength dur-
ing tasks involving long-distance walking or heavy lifting [4]. For instance, the

⋆ Supported by organization Teco.
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Berkeley Lower Extremity Exoskeleton, a pioneering human exoskeleton, demon-
strated its capabilities at U.C. Berkeley by walking at an average speed of 0.9
m/s (2 mph) while carrying a 34 kg (75 lb) payload [5]. Another common indus-
trial application involves enhancing workers’ endurance by reducing the strain
on their arms, allowing them to hold objects above their heads for extended
periods (Fig. 1)[6].

In the medical field, exoskeletons play a vital role in assisting individuals with
mobility impairments, enabling them to partially regain their functional indepen-
dence [7]. They are also utilized for rehabilitation purposes, aiding in improving
exercise effectiveness and shortening recovery durations [8]. Ekso Bionics special-
izes in developing bionic suits that provide power to both upper and lower body
for such patients. Their exoskeletons have enabled patients with lower extremity
disabilities to take over 180 million steps. They shared that their database has
recorded over 3,000 individuals benefiting from the device in less than 2 years
[9].

As of 2022, the global exoskeleton market reached a valuation of USD 334.5
million. This market is poised for significant revenue growth, projected at a
compound annual growth rate (CAGR) of 16.9 percent, as indicated by the
same report [10, 11]. This growth can be attributed to the increasing reliance on
exoskeletons by a larger population.

One of these categorization criteria is based on the anatomical areas targeted
by the exoskeletons. This encompasses upper limb exoskeletons (ULE), lower
limb exoskeletons (LLE), full-body exoskeletons, as well as devices designed for
specific anatomical regions. Classic examples for specific segment classes include
hands and the trunk, each characterized by unique attributes and distinct opti-
mization goals. For instance, precision is paramount for hand exoskeletons, while
trunk exoskeletons focus on delivering a wide range of motion. [2]

Fig. 1. The ”EXO-O1 Overhead Exoskeleton” manufactured by Hilti serves as an ex-
ample of the Passive Upper Limb Exoskeleton (ULE) and the industrial application of
exoskeletons. Here, the lack of sensors, electronics and motors is evident, as the system
solely relies on the energy stored in its elastic binders to generate an upward force on
the component connected to the elbows. Illustrations retrieved from [12].
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Exoskeletons can also be categorized as either active or passive, depending
on whether they utilize a power source. Passive exoskeletons rely solely on elastic
materials, such as springs, to store and release energy as needed [13]. In some
cases, they also incorporate dampers, which serve as shock absorbers or vibra-
tion reducers [14]. These exoskeletons can be employed to counter the effects of
gravity; for instance, supporting the weight of a worker’s arm (Fig. 1) [15, 16].

Active exoskeletons, on the other hand, are more intricate, incorporating ad-
vanced electronics, sensors, actuators, and sophisticated control strategies. The
control unit, incorporating a microprocessor for command management, receives
inputs from the sensor data, determines the power delivery for the actuators [17].
Hence, these exoskeletons are commonly known as powered exoskeletons. This
arrangement enables the detection of user intention, safe movements and higher
force output. [18, 19]

Actuators produce the essential physiological torques to maneuver the ex-
oskeleton’s joints, but they contribute a considerable amount of weight to the
wearable device. The selection of mechanical power generation technology be-
comes a pivotal choice, impacting not only weight but also factors such as energy
consumption and performance. Various advantages and considerations arise from
these choices in the design and functioning of exoskeletons. [20, 2]

2 Actuation Technology Analysis

The primary objective of this study was to comprehensively explore the current
status of actuation technologies within active exoskeletons. This inquiry, using
targeted keywords, covers a wide scope, without any specific emphasis on de-
vices dedicated to distinct purposes or confined to specific anatomical regions.
The investigation considered a variety of 66 sources, comprising research pa-
pers, journal articles, and reviews, without imposing any temporal limitations,
restricted to the English language.

2.1 Important Aspects and Key Criteria

The focus lies on optimization goals of performance, efficiency, safety, and user
comfort. Other factors like portability, durability, accessibility, adaptability to
different users, alignment and costs are not directly covered here, although they
are addressed in various articles and briefly mentioned in this study [21].

Performance The operational competence of exoskeleton systems is fundamen-
tally reliant on their performance, which is strongly determined by the capacity
of actuators to produce the requisite torques for an array of joints [22]. Per-
formance encompasses actuation kinematics, response latency, force projection,
and system compliance to user feedback, which includes agility [21].

Evaluation of a mechanical design’s performance employs several key met-
rics such as mean absolute error, standard deviation, and relative errors. These
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metrics are used to interpret and analyze the data gathered from the measure-
ment of angular displacement, velocity, and acceleration of the moving joints of
an exoskeleton during different experimental or simulation scenarios. Regarding
actuator performance, a key element is residual torque, representing the differ-
ence between reference and actual torque. It offers insights into the actuator’s
efficiency and precision in achieving intended mechanical outcomes. [22]

Efficiency Exoskeleton systems’ efficiency is tied to their ability to use energy
optimally, minimize energy wastage, and maximize power transmission. This
efficiency has a direct and substantial influence on the performance of exoskeleton
systems. Various factors, including the energy density of power sources, power
transmission, principles of thermodynamics, and the use of energy recapturing
methods, illustrate this relationship. [23]

In light of this, the use of actuators with a high power-to-weight ratio is cru-
cial to design lightweight exoskeletons capable of generating the necessary force
and speed to manipulate joints accurately. Incorporating passive or quasi-passive
elements with conventional actuators reduces their workload. Passive elements,
as previously described, consist of elastic materials. Quasi-passive elements share
the same passive nature but can be activated or deactivated as required [24]. This
mixed strategy promotes an optimization of system performance while ensuring
energy use is kept at efficient levels. [21]

Safety Safety is crucial in developing and operating exoskeletons, especially for
users with motor disabilities. Given the intimate physical connection between
the exoskeleton and the user, any minor flaw in the device’s structure or func-
tion could lead to severe injuries. Hence, ongoing device variable monitoring is
essential. Incorporating mechanical safety measures, like joint stops, is vital to
avoid surpassing desired motion limits. Elimination of sharp edges is another
design aspect that directly contributes to user safety. [21]

To further ensure safety, protocols like emergency disengagement systems,
redundancy safeguards, and fault tolerance mechanisms need to be incorporated
into the system. Additionally, the use of both passive and active damping tech-
niques is crucial to mitigate abrupt actuator movements and maintain the sys-
tem’s overall stability. Lastly, the exoskeleton system must have the capability
to respond to unexpected disturbances or external forces effectively. This abil-
ity contributes to maintaining the system’s dynamic stability, thereby further
enhancing user safety during operation. [25]

User Comfort The acceptance and continuous use of exoskeleton systems are
greatly influenced by user comfort, optimal weight distribution, and ergonomic
design [26]. Comfort is closely tied to precise individual adjustments. Users con-
sistently locate their preferred settings with reliability [27]. This emphasizes the
importance of providing users the means to find and set their optimal parameters
autonomously, contributing to overall comfort and usability.
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Beyond these, factors such as noise reduction [28], heat dissipation [29], and
vibration control directly impact user comfort. In relation to actuation tech-
nology, the choice of actuator could directly influence these factors thus affect
overall user comfort and device acceptance [30].

2.2 Structural Design and Material Selection

Exoskeletons form a unique area within robotics, where the conventional ”stiffer
is better” approach doesn’t always apply [2]. Rigid exoskeletons offer precision
and responsiveness for structured tasks, driven by the ease of controlling the
material and the inherent stability they provide. However, these qualities might
not suffice in addressing the requirements for safety and adaptability in unpre-
dictable environments. The heavier weight of rigid exoskeletons also significantly
affects comfort and endurance negatively. [31]

Furthermore, rigid exoskeletons require either careful alignment of the bio-
logical joint with the exoskeleton joint or a mechanism to overcome joint axes
misalignment problems, and they are difficult to customize for a specific user.
The introduction of soft exoskeletons aims to alleviate these complications by
enabling certain flexibility that conforms to the shape of their user (Fig. 2). [20]

Fig. 2. The image comprises two illustrations of lower limb exosekeltons: (a) depicts a
soft LLE. This exoskeleton introduces a soft system design. The Bowden cable generates
tensile force and torque for movement, while load cells measure force and the IMU
(Inertial Measurement Unit) sensor collects orientation, velocity, and acceleration data,
enhancing control and response. Retrieved from [32]. (b) showcases a rigid LLE, UGO.
This exoskeleton aids balanced walking for patients with spinal cord injuries or stroke.
It features powered hip and knee joints and a passive ankle joint. Sensors and encoders
provide data on joint angle and torque. Retrieved from [33].

Utilizing 3D scanning technology, custom-fit and lightweight exoskeletons are
being manufactured to ensure optimal user adaptation, alignment and comfort.
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High-strength, lightweight materials, such as aluminum alloys and carbon fiber
composites, are usually preferred. [34]

Another crucial consideration in mechanical design is determining the num-
ber of degrees of freedom (DoF) in the system. DoF refers to the independent
movements available in the joints, including translations and rotations. It plays
a vital role in precisely defining the position and orientation of each device seg-
ment. Increasing the number of degrees of freedom enhances both mechanical
complexity and manipulation capabilities. [35]

This challenge becomes particularly pronounced in the design of hand ex-
oskeletal devices (HED). Hands play a crucial role in activities of daily living
(ADLs) and possess the largest somatosensory mapping representation in the
brain, rendering them highly sensitive and accurate for their intended functions
[36]. The human finger, for instance, possesses four DoF. Replicating such dex-
terity and fine motor control in exoskeleton technology is a complex task [37].

2.3 Generation of Mechanical Power

Actuators can be characterized based on their method of generating mechanical
power. Pneumatic, hydraulic, and electric actuators represent the three most
commonly employed types. They drive motion to execute actions such as lifting,
blocking, or clamping. [38] Furthermore, smart materials such as Shape Memory
Alloy (SMA) are also being utilized [39].

Fig. 3. Different Actuators: (a) Electric Actuator. Retrieved from [40]. (b) Shape Mem-
ory Alloy. Retrieved from [41]. (c) Pneumatic Actuator. Retrieved from [42]. (d) Hy-
draulic Actuator. Retrieved from [43].
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Electric Actuators Electric actuators are powered by electricity and generate
movement through current, which drives a motor that creates torque, activating
the actuator. They are recognized for speed and precision, but they can be
vulnerable to sudden power shifts [44]. Electric actuators often include elements
such as lead screws and gears and typically contain the motor within the actuator
assembly itself (Fig. 3.(a)). Electric motors can be further broken down into
Alternating Current (AC), Alternating Current direct (AC direct), Brushless
Direct Current (DC), and Brushed Direct Current (DC) motors. [45]

Brushed DC motors were initially popular due to their operational mecha-
nism. These motors function by passing an electric current through coils, causing
them to experience magnetic repulsion and attraction from magnets, thus initiat-
ing rotation. However, the rise of AC motors came later, driven by advancements
in microcomputers and circuit elements. AC motors operate by periodically al-
tering the direction of electric current flow, generating a changing magnetic field
that propels motor rotation. [45, 46]

Pneumatic and Hydraulic Actuators Pneumatic actuators function through
the compression of atmospheric air into a controlled, elevated pressure level that
remains safe. A typical pneumatic actuator consists of ”a primary motor, a
compressor, a delivery hose network, an air storage tank, and the actuator com-
ponent itself” (Fig. 3.(c)) [38]. Most systems utilizing pneumatic power operate
at compression rates around 80 to 100 psi. [45]

Conversely, hydraulic actuators operate similarly but utilize fluid, typically
oil, in place of air. The oil’s property of incompressibility, along with its vis-
cosity, enables efficient energy transfer. A hydraulic actuator system comprises
”a regulated throttle, a piston or ram, and a tube network for pressure con-
trol.”(Fig. 3.(d)). [47]

Both pneumatic and hydraulic actuators excel in enabling diverse rotational
movements and handling substantial loads without overheating, yet their power
sources are heavy, posing challenges to their portability [44]. Pneumatic actu-
ators have gained popularity due to their affordability, cleanliness, and safety
aspects. The cleanliness is particularly advantageous in comparison to hydraulic
actuators, which come with a potential risk of fluid leakage. However, the force
output of pneumatic actuators tends to be limited when compared to their hy-
draulic counterparts. [45, 48]

Shape Memory Alloy Shape Memory Alloys (SMAs) are exceptional materi-
als that can regain their original shape (the memorized shape) when heated
above a specific transformation temperature (Fig. 3.(b)). They can undergo
significant reversible deformations without suffering permanent damage. ”This
presents a good force-to-weight ratio, small volume, and noiseless operation, the
SMA-based actuators being considered a good actuation solution for wearable
and soft robotics applications and in particularly for rehabilitation devices.”.
However, SMAs do have drawbacks, including the challenging control and low

127



8 Yavuz Karaca

work frequency due to the hysteresis effect, high costs, and the need for heat
dissipation mechanisms. [39]

2.4 Actuation Principle

Various actuation approaches are employed in wearable robotics, such as conven-
tional actuation, series elastic actuation (SEA), and quasi-direct drive (QDD)
actuation. Conventional actuation involves the use of high-speed, low-torque mo-
tors like Brushless DC coupled with large ratio gears to satisfy precise torque, ve-
locity, and control requirements. They encounter significant mechanical impedance,
meaning they resist natural human movements. Control algorithms partially re-
duce this impedance, yet complete elimination remains unfeasible due to inherent
inertia and friction challenges. [49]

Direct actuation, a derivative of this concept, allows a motor to directly
control a joint without an intermediary transmission system, but this causes
high inertia [49]. Another approach is to use cables for actuation transmission,
where motor torque is transmitted to joints through cables, winding wheels,
and pulleys, leading to significant reductions in exoskeleton weight and required
joint-level torque. Bowden cables are commonly used in this context (Fig. 2.(a)).
Such systems position the motor and transmission often on the wearer’s back
for enhancing weight distribution. [2]

SEAs, also known as elastic actuators, combine a main actuator with an
elastic element. They offer impact load absorption, passive mechanical energy
storage, and lower mechanical output impedance compared to rigid actuators.
[50] However, SEAs often have to trade-off performance factors such as control
bandwidth, system complexity, system weight, and size. Additionally, they are
often paired with cable transmission, where the spring element is linked with the
Bowden cable, creating a serial elastic actuator Bowden cable drive. [2]

Fig. 4. Comparing FSEA (a) with RFSEA (b). Retrieved from [51]

The Force Sensing Series Elastic Actuator (FSEA) and the Reaction Force
Sensing Series Elastic Actuator (RFSEA) are two common SEA designs. In the
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former, the compliant element is located between the gearbox output and the
load, while in the latter, the spring is situated between the motor housing and
chassis ground (Fig. 4). RFSEAs are more compact and provide greater motion
range, but offer less direct force sensing, reduced force tracking, and weaker
impact load protection compared to FSEAs. [52]

Elastic actuators introduce nonlinear compliance, characterized by a non-
linear relationship between applied force and resulting displacement [53]. Non-
linear compliance often allows for more complex and versatile system behaviors.
For example, it can enable adaptive responses where the system stiffness changes
depending on the magnitude of the applied force, the rate of change of force, or
other system states. [54, 55]

QDD actuation incorporates ”a custom high torque density motor and low
ratio gear transmission” [56]. They exhibit favorable attributes like minimal
friction, toughness, simplicity, robust force control, and particularly selectable
impedance, resulting in significant backdrivability. A noteworthy drawback is
the decreased torque density of the entire actuation system, as it’s considered to
be heavy and bulky. [57]

2.5 Biomimicry in Actuation Technologies

Striving to accurately mimic the characteristics of human muscles, tendons, and
insect exoskeletons, scientists are exploring actuation technologies that substan-
tially borrow from these biological entities. Insects, with their rigid exoskeletons,
comprised of laminated chitin fiber composites within a crossed matrix, act as
a model for research [58]. These exoskeletons not only protect but adapt to the
needs of the insect by modulating their thickness, stiffness, and fiber orientation
based on various external stimuli. [59]

Fig. 5. Diagram of EAP Actuator. Retrieved from [60]
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Inspired from biomimicry, Electroactive polymer actuators, also known as
electromechanically active polymers (EAPs), alter their shape and size when sub-
jected to electrical stimuli, resulting in significant changes in stress and strain.
They stand out due to their high mechanical flexibility, lightweight nature, sim-
ple and adaptable structure, quiet operation, and absence of heat generation.
Mimicking muscle-like behavior, dielectric elastomer actuators (DEAs) have es-
tablished themselves as some of the most studied and promising soft actuators
[61]. They function as compliant capacitors, with an elastic dielectric sandwiched
between two flexible electrodes, enabling changes akin to those seen in mam-
malian skeletal muscles when stimulated electrically (Fig. 5) [62]. While EAPs
hold great promise, their intricate manufacturing process and reliance on high
voltages in the kV range present challenges [63]. These challenges include deliv-
ering and containing such power in batteries.

Due to intricate manufacturing, there has been an emphasis on efficient pro-
duction of actuator elements powering these muscles, with advancements in com-
ponents like carbon nanotubes (CNTs) and wires driving innovation in artificial
muscle technology. CNTs are tubular structures composed of carbon atoms, with
diameters on the nanometer scale and lengths up to several millimeters. Their
primary application lies in the development of artificial muscles. CNT yarn or
sheets can be engineered to actuate in response to thermal or electrical stimuli,
providing movement and force in a similar manner to biological muscles. Their
light weight, high strength, and potential for high strain make them an excellent
material for this application. [64]

Fig. 6. Soft pneumatic exoskeleton with antagonistic actuation. Retrieved from [65]

Antagonistic actuation in exoskeletons is another approach that mirrors the
human musculoskeletal system. In this setup, two motors move their transmis-
sions in contrary directions, reflecting the functionality of muscles and tendons
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in the human body (Fig. 6). This configuration enhances flexibility, compliance,
and control but may induce high transient peak forces between the actuator
and the exoskeleton, posing a risk to components. The risk can be reduced by
incorporating compliant transmission elements between antagonistic actuators.
Moreover, the integration of nonlinear compliant elements leads to a closer re-
semblance to biological systems, due to reduced resistance under light loads and
the ability to adjust joint stiffness. [53]

3 Discussion

While hydraulic motors initially had a significantly higher power density com-
pared to electric motors, technological advancements have gradually narrowed
this gap. Presently, due to remarkable improvements in electric motor perfor-
mance, the power density difference between hydraulic and electric motors has
been reduced. The enhancement in electric motor performance is largely at-
tributed to stronger permanent magnets, resulting in higher power density. [47]
Currently, the torque generated by DC servo motors exhibits a relationship pro-
portional to the motor weight raised to the power of 4/3. On the other hand,
the torque produced by hydraulic motors directly correlates with their weight.
[66]

4 Conclusion

Exoskeleton design and material choice establish the foundation for a system
balancing strength, comfort, and durability, enhancing the user experience. A
trend is evident towards creating lighter, more flexible, and softer exoskeletons.

In actuation, the goal is an optimal power-to-weight ratio while maintain-
ing speed, precision, and safety. Pneumatic actuators prioritize speed over force
output, whereas hydraulic actuators emphasize high force output and mobility,
albeit with drawbacks of slower speed, expense, and leakage concerns. Electric
actuators are precise and have higher speed in contrast to hydraulic actuators,
yet they are hindered by their lower force output and intricate design. SMAs
and EAPs aim to mitigate these trade-offs and seek comprehensive solutions,
but their current state presents its own set of challenges.

Nature-inspired observations are instrumental in research, offering fresh ideas
and models. This approach has led to muscle-like exoskeletons, and antagonistic
actuation. The forthcoming frontier of exoskeleton actuation technology lies in
this realm but addressing challenges related to energy delivery, cost, and manu-
facturing complexity is crucial for its advancement.
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Abstract. Wireless Sensor Networks (WSNs) play a role in various ap-
plications, including environmental monitoring, surveillance and agricul-
ture. The effectiveness of WSNs can be further enhanced by incorpo-
rating mobility, especially by including a UAV as a mobile data sink.
In recent years, the Artificial Bee Colony (ABC) algorithm has received
considerable attention as a bio-inspired optimization technique for WSNs
due to its simplicity, flexibility and efficiency. This paper aims to pro-
vide a comprehensive analysis of the various applications of the ABC
algorithm in UAV-Aided WSNs. It examines how the algorithm can be
adapted and optimized to maximize objectives and minimize convergence
times. In addition, the review investigates the difficulties of adapting the
ABC algorithm to these applications. To provide a comprehensive un-
derstanding of the topic, a review of relevant research papers and studies
from reputable sources will be conducted. The results of this literature
review contribute to a deeper understanding of the potential and limita-
tions of the ABC algorithm.

Keywords: Artificial Bee Colony algorithm, Wireless Sensor Networks,
UAV, Path Planning, Localization

1 Introduction

Due to their potential applications in various fields such as environmental moni-
toring, disaster management and precision agriculture, Wireless Sensor Networks
(WSNs) have become very interesting in recent years [2]. The efficiency and ef-
fectiveness of WSNs can be enhanced by integrating Unmanned Aerial Vehicles
(UAVs) into the network infrastructure [15]. UAVs can serve as mobile base
stations, relaying data between the sensor nodes and base, thereby extending
the coverage and connectivity of the network. They can also be deployed to
perform sensing tasks, such as monitoring specific areas of interest or collecting
data from otherwise inaccessible locations. Additionally, UAVs can be used to
optimize network energy consumption by intelligently managing the movement
and communication of the sensor nodes [15]. In this context, the Artificial Bee
Colony (ABC) algorithm has emerged as a promising optimization technique for
improving the performance of UAV-aided WSNs. The ABC algorithm is a bio-
inspired optimization algorithm that mimics the swarm behavior of honeybees
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[9]. It has been successfully applied to various optimization problems [10]. In
recent years, researchers have recognized the potential of the ABC algorithm for
addressing the unique challenges of UAV-aided WSNs. By leveraging the ABC
algorithm’s optimization capabilities, researchers aim to optimize key aspects of
UAV-aided WSNs, such as energy efficiency, node deployment and data collec-
tion strategies [16]. This paper aims to provide a comprehensive analysis of the
applications of the ABC algorithm in UAV-aided WSNs. It explores how the
ABC algorithm can be applied to optimize different aspects of the network, ad-
dressing challenges such as limited energy resources, dynamic node deployment,
and efficient data collection. By surveying the existing literature on this topic,
this review paper aims to identify the key research trends, methodologies, and
findings related to the integration of the ABC algorithm in UAV-aided WSNs.
To achieve this, a review of relevant research papers and scholarly articles from
reputable sources will be conducted. The findings from this paper will contribute
to a deeper understanding of the potential and limitations of the ABC algorithm
in optimizing UAV-aided WSNs. Ultimately, the aim is to enhance the efficiency,
performance, and reliability of UAV-aided WSNs through the utilization of the
ABC algorithm and contribute to the advancement of this rapidly evolving field.

2 Background

In this section the ABC Algorithm is explained and compared to other Algo-
rithms commonly used in WSN’s.

2.1 ABC Algorithm

The ABC Algorithm is a swarm intelligence optimization algorithm inspired
by the foraging behavior of honey bees [7]. It was proposed by by Karaboga
in 2005 for optimizing numerical problems [8]. The algorithm is based on the
social behaviour of honeybees, where the colony works together to find the best
food sources in their environment. In nature, a honeybee colony strives to make
efficient use of scattered food sources. To do this, it uses forager bees that can
take on roles and communicate with each other to optimize the outcome. The
food sources are of different value based on the distance of the nest, its quantity
and quality and nearby threats [18]. The ABC Algorithm mimics this behavior
in order to find solutions in a search space. The foraging bees can be divided
into three groups:

Employed foragers are currently exploiting a food source. On their return to
the nest they communicate the state of their food source to the other bees by per-
forming a waggle dance [20]. This indicates the direction of the food source and
its distance from the nest. They also exchange information about the richness of
the food source. They will continue to exploit the food source until it is depleted.

In the algorithm, each employed bee corresponds to a solution in the search
space. The fitness of its solution is evaluated based on an objective function [8].
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Onlooker foragers wait in the hives dance area. This is where the returning
employed foragers exchange information about their current food sources. The
onlookers will watch many employed foragers and try to pick out the one who is
communicating the food source with the most value. They decide individually
whether a food source is valuable enough to be exploited further. If so, they
become employed foragers and use the shared information about the location of
the food source to exploit it [20].

In the algorithm onlooker bees select the employed bees based on a proba-
bility distribution of their fitness values as their starting points for further ex-
ploration. employed bees with higher fitness have a higher probability of being
chosen. The onlooker bees then evaluate the solutions provided by the employed
bee and generate a new solution in a short ranged scope around the previous
solution. If the solution has a higher fitness value than the previous one, it is
adopted. If a solution of a employed bee does not improve over a predefined
number of cycles it is abandond [8].

Scouting foragers are looking for new food sources. They discover new food
sources through exploration [20]. As soon as they discover a new food source,
they immediately begin to exploit it, becoming a employed forager.

In the algorithm Scout bees are responsible for discovering new areas of the
search space by randomly generating new solutions. Every time a employed bee
solution is abandond it is replaced by a scouts solution [8].

2.2 Other Optimization Algorithms

In the field of optimization algorithms, multiple approaches have been developed.
This background section will provide a brief introduction to Bayesian Optimiza-
tion, Reinforcement Learning, and Genetic Algorithm and compares them to the
Artificial Bee Colony (ABC) algorithm.

Bayesian Optimization [6] is a sequential model-based optimization tech-
nique that uses Gaussian process regression. It constructs a surrogate of the ob-
jective function and iteratively updates this model to make informed decisions
about where to sample next. Bayesian Optimization is particularly effective when
the objective function is expensive to evaluate.

Reinforcement Learning [19] is a machine learning approach that focuses on
learning optimal actions in a sequential decision-making process. Agents learn
through trial and error by interacting with an environment and receiving feed-
back in the form of rewards or penalties, maximizing the cumulative numeric
reward over time. The agent has to find a balance between exploiting rewarding
actions and exploring new actions. This balance is affected by parameters.

138



4 Tobias Kempf

Genetic Algorithm [14] is a population-based search and optimization tech-
nique inspired by the process of natural selection and evolution. It represents
candidate solutions as individuals in a population and uses genetic operators
such as selection, crossover, and mutation to mimic the evolutionary process.
The algorithm iteratively generates new generations of solutions by applying
these genetic operators, favoring individuals with higher fitness values. Genetic
algorithms are particularly useful for solving optimization problems with large
search spaces and multiple conflicting objectives.

Comparison with the ABC Algorithm
While Bayesian Optimization, Reinforcement Learning, and Genetic Algorithm
are all powerful optimization approaches, they differ from the ABC algorithm in
several key aspects. Unlike Bayesian Optimization and Reinforcement Learning
the ABC algorithm is a population-based algorithm. The ABC algorithm is
characterized by its simplicity, efficiency and robustness. It does not require
extensive parameter tuning. Bayesian Optimization, Reinforcement Learning,
and Genetic Algorithm, on the other hand, may involve more intricate modeling
and parameter tuning processes, making them potentially more complex and
computationally expensive. This allows the ABC algorithm to be used to further
improve a feasible solution of another heavier algorithm, such as the Genetic
Algorithm [13].

3 Related Work

In the field of optimization techniques, the Artificial Bee Colony (ABC) algo-
rithm has gained significant attention due to its simplicity and efficiency. Various
studies have explored the applications of the ABC algorithm in different do-
mains, highlighting its effectiveness in solving complex optimization problems.
One notable paper that provides a comprehensive survey on the applications of
the ABC algorithm is titled ”Applications of Artificial Bee Colony optimization
technique: Survey” (Kaswan, Choudhary, Sharma, 2015) [10].

That paper conducted an extensive review of the literature to investigate
the diverse applications of the ABC algorithm. The authors identified several
domains where the ABC algorithm has been successfully applied, including but
not limited to: structural optimization, face pose estimation, bioinformatics, and
MR brain image classification. The survey paper presents a systematic analysis
of the ABC algorithm’s performance in each domain, providing insights into its
strengths and limitations [10].

Due to the wide range of applications, only one of the reviewed papers [1]
deals with WSNs and focuses only on node deployment. Therefore, the opti-
mization possibilities regarding the path planning aspect of a UAV-Aided WSN
are not mentioned. The present paper is an addition to the previous works by
covering this specific area of research.
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4 Application Areas

4.1 Review Methodology

The reviewed articles are retrieved using a four-step methodology similar to [17].
In the first step, articles are retrieved using a keyword search in Google Sholar.
The keywords used are semantically identical to the keywords of this review. In
the second step, the articles are screened to reduce the number of articles. The
following restrictions are applied in the screening process:

1. The articles should be published after 2011, more than 5 years after the
introduction of Karaboga’s ABC algorithm [8], to ensure the use of his ter-
minology in the articles.

2. The articles should be written in English.

In the third step, the keywords of the articles are analyzed. Articles that do
not contain a keyword semantically similar to ’ABC algorithm’ are excluded.
Additionally, either the keyword ’WSN’ or ’UAV’ must be present.
In the fourth step, the remaining seven articles are classified into two categories.
They are either in the category of UAV Path Planning (section 4.3) or Localiza-
tion (section 4.4).

4.2 Overview

The following sections review the selected articles in detail, focusing on the mod-
ifications made to the ABC algorithm. As can be seen in table 1, there are differ-
ences in the severity of modification depending on the use case of the algorithm.
In particular, path planning leads to more modified ABC stages and the use of
different algorithms supporting the ABC algorithm. Localization problems, on
the other hand, tend to work well with an less modified ABC algorithm.

Paper Application Area Combined Algorithm ABC Stages Modified
Init Employed Onlooker Scout

[16] UAV Path Planning PRM X X X

[11] UAV Path Planning Logistics Map X X X

[13] UAV Path Planning AHP and AGA X

[3] Node Localization - X

[12] Base Station Localization -

[4] UAV Localization -

[5] Node Localization - X

Table 1. Overview of the reviewed papers
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4.3 UAV Path Planning

Hybrid Path Planning for Efficient Data Collection in Uav-Aided
Wsns for Emergency Applications

In this paper [16] a hybrid path planning algorithm for UAVs is proposed. It
combines the probabilistic roadmap (PRM) algorithm and the optimized artifi-
cial bee colony (ABC) algorithm in order to find the shortest collision-free path
for the UAV in an emergency situation. It takes both static obstacles and dy-
namic threats into account. In its WSN scenario, the positions of the collection
zones are already predefined. However, it optimizes the path for a low altitude
to increase the chance of a successful transmission. It proposes to first find a
collision-free path with the PRM algorithm, avoiding static obstacles, and then
optimize it with a modified ABC algorithm. (Fig 1)

It alters the ABC Algorithm as follows:
In the initialization phase it pre-calculates waypoints using the PRM algorithm
In the employed bee phase it employs bees to the generated positions
In the onlooker bee phase it generates new waypoints based on probability val-
ues. If the waypoint collides with a static obstacle or a threat is detected the
waypoint is ignored.
In the scout bee phase the fitness values of the onlooker waypoints are compared
to the employed waypoints. If they posses a higher fitness value, they become
the new employed waypoint.
The phases starting with the employed bee phase are repeated several times.
In the end, an optimized path is generated by connecting the waypoints of the
employed bees.

Compared to the stand-alone algorithms, it successfully improves flight time,
convergence time and energy efficiency.

(a) (b) 

Fig. 1. Example of the HPP algorithm [16]
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Path Planning for Unmanned Air Vehicles Using an Improved Artifi-
cial Bee Colony Algorithm

In this paper [11] a modified initialization strategy for the standard ABC is
proposed for use in UAV path planning. It takes into account constraints such
as threat areas, terrain, fuel and flight time. Threats are modelled as circles with
the threat in the centre. While the UAV is inside the circle, it is exposed to the
threat with a probability proportional to the distance from the threat centre.
The path planning problem is transformed into a D dimensional function opti-
mization problem by connecting the start and end points and then drawing lines
L1 ... LD perpendicular to this axis. The lines are evenly spaced. (Fig 2)

The ABC algorithm is modified in the following way:
In the initialization phase, a set of starting positions is generated. Instead of gen-
erating them randomly the paper proposes to use of the logistic map to initialize
the population to increase the population diversity. In addition, opposition-based
learning is used to increase the speed of convergence. The opposite of a point is
defined as the point generated by mirroring at the center of the space.
In the employed bee phase it employs bees to the generated positions. In each
iteration an employed bee updates its position. In contrast to the standard ap-
proach, the step size changes with the number of iterations, decreasing towards
the end.
In the scout bee phase employed sources are abandoned if they have not im-
proved over a predefined number of iterations. For each abandoned source, a
new one is randomly selected.
The phases starting at the employed bee phase are repeated for a number of
times. The employed position with the highest fitness value is chosen as the es-
timated optimal position of the waypoint of the current vertical Line L.

Compared to the standard ABC algorithm, it achieves more optimised paths
and faster convergence times.
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Fig. 2. Example of the threat modelling [11]

142



8 Tobias Kempf

Multi-Uav Optimal Mission Assignment and Path Planning for Disas-
ter Rescue Using Adaptive Genetic Algorithm and Improved Artificial
Bee Colony Method

In this paper [13] a combination of the Analytic Hierarchy Process (AHP),
an Adaptive Genetic Algorithm (AGA) and an Improved Artificial Bee Colony
(IABC) is proposed to solve the mission assignment and path planning problem.
After assigning mission points the IABC algorithm is used to plan a path be-
tween neighbouring mission points (Fig 3). It uses a balanced search strategy.

The ABC algorithm is modified in the following way:
In the initialization phase, a set of solutions is generated. Each solution reprents
a path between the to mission points.
In the employed bee phase it employs bees to the generated positions. In each
iteration an employed bee updates its position. The search radius for the new
position shrinks as the number of iterations increases.
In the onlooker bee phase it uses a roulette selection to assign onlooker bees to
the positions of the employed bees based on the fitness value of the position.
In the scout bee phase employed sources are abandoned if they have not im-
proved over a predefined number of iterations. For each abandoned source, a
new one is randomly selected.
The phases are repeated for a number of times, starting at the employed bee
phase.

Compared to the standard ABC and GA algorithms, it achieves more opti-
mised paths and faster convergence times.

(b) 

(d)

Fig. 3. Visualization results of AGA + IABC [13]
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4.4 Localization

Implementation of an Efficient Artificial Bee Colony Algorithm for
Node Localization in Unmanned Aerial Vehicle Assisted Wireless Sen-
sor Networks

This paper [3] proposes the ABC algorithm as a solution to the node local-
ization problem in wireless sensor networks. It relies on a mobile UAV to collect
data from the nodes instead of using fixed ground anchors. This improves the
distance calculation as a UAV can provide an almost clear line of sight to the
nodes. The algorithm proposed by the paper places on node at a time using the
ABC algorithm.

The ABC algorithm is modified in the following way:
In the initialization phase, it generates a set of random positions.
In the employed bee phase it employs bees to the generated positions.
In the onlooker bee phase it uses a roulette selection to assign onlooker bees to
the positions of the employed bees based on the fitness value of the position.
Then the onlookers generate a new food position in the neighbourhood of their
current position. If the fitness of onlooker source has an equal or better quality
than the employed source, the employed one is replaced by the onlooker one.
In the scout bee phase employed sources are abandoned if they have not im-
proved over a predefined number of iterations. For each abandoned source, a
new one is randomly selected.
The phases starting with the employed bee phase are repeated a number of
times. The process is repeated for all other nodes.

It achieves an improvement in localization accuracy of around (10-35)% com-
pared to classical techniques. (Fig 4)

(a) (b)

Fig. 4. Unknown node localization with 13 anchor nodes using: a DEA, b ABC
(ALE = Average localization Error) [3]
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Post-disaster Unmanned Aerial Vehicle Base Station Deployment
Method Based on Artificial Bee Colony Algorithm

This paper [12] proposes the ABC algorithm to solve the problem of UAV
base station deployment. In a post-disaster event, it aims to deploy mobile UAVs
as base stations to maximize the connectivity and throughput of user equipment
(UE). The variable flight altitude of the UAV-BS allows for improved coverage
of the UE (fig 5). The algorithm proposed in the paper places all nodes simul-
taneously using the ABC algorithm.

The ABC algorithm is modified in the following way:
In the initialization phase generates a set of solutions where each solution is a
set of coordinate-triples each triple representing a UAV position. The fitness of
a solution is determined by network overall throughput provided by the UAVs.
In the employed bee phase each employed bee generates a new solution near the
current solution randomly
In the onlooker bee phase, a roulette selection is used to assign onlooker bees
to the positions of the employed bees based on the fitness value of the position.
Then the onlookers generate a new food position in the neighborhood of their
selected position. If the fitness of the onlooker solution has an equal or better
quality than the employed solution, the employed one is replaced by the on-
loooker one.
In the scout bee phase employed solutions are abandoned if they have not im-
proved over a predefined number of iterations. For each abandoned solution, a
new one is randomly chosen.
The phases starting at the employed bee phase are repeated for a number of
times. The employed position with the highest fitness value is chosen as the es-
timated optimal solution.

Compared to standard algorithms it achieves a higher network throughput.

Fig. 5. Schematic of the UAV-BS flight altitude deployment (unified vs. variable)[12]
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Solving Uav Localization Problem With Artificial Bee Colony (ABC)
Algorithm

This paper [4] proposes the ABC algorithm as a solution to the UAV local-
ization problem. In the paper’s scenario, a user is located inside a tall building
and a UAV is located outside the building (fig 6). The UAV acts as a base sta-
tion that connects to the users in line-of-sight. It uses the ABC algorithm to
determine an efficient location for the UAV.

The ABC algorithm is modified in the following way:
In the initialization phase a set of UAV locations is generated where each loca-
tion is a coordinate triple. The fitness of a location is determined by its total
path loss. Each location is assigned an employed bee
In the employed bee phase, each employed bee randomly generates a new solu-
tion near the current solution. If this solution has a higher fitness value the old
solution is replaced. Otherwise a trial counter is incremented
In the onlooker bee phase a roulette selection is used to assign onlooker bees
to the positions of the employed bees based on the fitness value of the position.
Then the onlookers generate new locations simular to the employed bees.
In the scout bee phase, employed solutions are abandoned if the employed bee’s
trial counter exceeds a pre-defined limit. For each abandoned solution, a new
one is randomly selected.
The phases starting from the employed bee phase are repeated a number of times.

Compared to localization based on the PSO algorithm, it reduces path loss.
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Fig. 6. Schematic of UAV localization [4]
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Deployment in Wireless Sensor Networks by Parallel and Cooperative
Parallel Artificial Bee Colony Algorithms

This paper [5] proposes the ABC algorithm for solving the deployment prob-
lem of sensor networks. In the paper’s scenario, a set of sensor nodes must be
placed to cover a region. Coverage is determined by dividing the area of in-
terestinto equally sized subareas and checking covarge for the corners of those
subareas. The paper aims to maximise the coverage of the network by correctly
positioning sensor nodes. The parallel approach runs multiple colonies migrat-
ing some solutions between them. The propesed coop approach improves the
migrated solution before migrating it.

The ABC algorithm is modified in the following way:
In the initialization phase a set of solutions is generated where each solution is
a set of node positions
In the employed bee phase, each employed bee randomly generates a new solu-
tion near the current solution.
In the onlooker bee phase, onlooker bees are assignend to the positions of the
employed bees based on the fitness value of the solution.
In the scout bee phase, new solutions are randomly generated replacing employed
solutions that have not improved recently
In the migration phase the global best solution of all subcolonies is selected. For
each subcolonie the best solution is compared to it. For each node the location
in the global solution is changed if that improves its fitness value. Then for each
subcolonie the worst solution is replaced by the global best solution.
The phases starting from the employed bee phase are repeated a number of times.

Compared to serial and parallel ABC it achieves a higher covarege at a faster
convergence time (fig 7).

           sABC 
for 1,000 evaluations

           pABC 
for 1,000 evaluations

       coop-pABC 
for 1,000 evaluations

 

           sABC 
for 10,000 evaluations

           pABC 
for 10,000 evaluations

        coop-pABC 
for 10,000 evaluations

Fig. 7. covarage comparison of serial, parallel and coop [5]
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5 Conclusion

The applications of the ABC algorithm in UAV-Aided Wireless Sensor Networks
have demonstrated significant potential for optimizing network performance and
addressing the challenges of these systems. Through this literature review, we
have explored the various applications of the ABC algorithm in UAV-Aided
WSNs, covering areas such as path planning, node localization and UAV lo-
calization. The ABC algorithm has proven to be effective in optimizing key
aspects of UAV-Aided WSNs, producing high quality solutions at high conver-
gence speeds. It has also proven to be compatible with other algorithms when it
comes to path planning. However, while the ABC algorithm has demonstrated
its effectiveness in UAV-Aided WSNs, there are still areas for further research
and development. Future research could focus on optimizing the parameters of
the algorithm, adapting it to specific network configurations. A combination of
the improvements suggested by the reviewed papers, including stage-specific and
overall optimisations such as parallelisation, can also lead to significant perfor-
mance improvements.

In conclusion, the ABC algorithm shows promise as a valuable tool for op-
timizing UAV-Aided WSNs. Further research and development in this area can
lead to significant improvements in data aggregation capabilities, energy effi-
ciency and overall network performance.
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Abstract. Reinforcement learning has been very popular in path plan-
ning. To collect data more efficiently, mobile data sinks such as UAV
can be applied, which carries collected data but need path planning.
The paper first introduced the basic idea of reinforcement learning and
the standard components of the algorithm. Then the reason for choosing
reinforcement learning instead of other algorithms is stated. In total 4
papers were reviewed, and their model and algorithm were introduced.
Finally, this paper is summarized and future reseach direction is stated.
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1 introduction

Wireless Sensor Networks (WSNs) have emerged as a groundbreaking technology
that combines sensing, communication, and computation to enable the collection
and transmission of data in various applications.[6] WSNs may consist of au-
tonomous sensor nodes that are wirelessly interconnected to monitor and gather
information from the surrounding environment. These networks have found ex-
tensive use in diverse fields, such as environmental monitoring, healthcare, in-
dustrial automation, and surveillance.

One of the key challenges in WSNs is efficiently gathering data from specific
locations. This task can be accomplished by employing some mobile data sink
node such as Unmanned Aerial Vehicle to collect data in case of possibly distant
distributed sensor nodes instead of using direct wireless communication between
the node and the base station. Thus, an efficient path-finding algorithm capable
of identifying the most efficient paths that minimize energy consumption, and
ensure timely delivery of data and etc. is vital.

For the reasons stated above, this paper reviewed several papers related to the
topic “Reinforcement learning for path planning in WSN” and provide a wide
view on different approaches to model the environment or to train the RL-
network.
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2 Background

2.1 Introduction to Reinforcement Learning

Reinforcement learning is a subfield of artificial intelligence (AI) and machine
learning that focuses on the development of intelligent agents capable of making
sequential decisions.[1] It provides a framework for learning through interaction
with an environment, where an agent learns to take actions in order to maxi-
mize a cumulative reward signal. And it has been widely applied to solve the
path-planning problem due to its characteristics such as learning from inter-
action, adaptability to uncertain and dynamic environments, and Exploration-
exploitation trade-off.

In contrast to other machine learning approaches, such as supervised learning or
unsupervised learning, reinforcement learning does not rely on labeled data or
pre-existing knowledge about the environment. Instead, the agent learns through
trial and error, receiving feedback in the form of rewards or punishments based
on its actions. By exploring the environment and observing the consequences
of its actions, the agent gradually develops a policy—a strategy for selecting
actions—to optimize its performance and achieve long-term goals.

The environment in Reinforcement learning is typically stated in the form of
a Markov decision process (MDP), where the next state is only related to the
current state and the action taken in this state. The goal is to finally develop a
policy that gives the actions regarding the current state to maximize the expected
cumulative reward. The agent can be rewarded for taking actions according to
the reward function depending on the action and the current state.

We can get the expected reward of the action taken in one state by computing
the mean of that for all possible following states while the best actions according
to the action policy are performed, called the Q-function. A V-function which
indicates the expected reward of a certain state can be then computed by com-
puting the mean of all Q-functions for actions possible. Instead of taking the
maximum of the best move, the mean is used to encounter cases where some
unpredictable factors prevent the agent from going along with the best strategy.
Additionally, a trade-off between the current reward and future reward can be
achieved by multiplying the Q/V function with a factor between 0 and 1.

Above is the implementation for the discrete environment. Limitations exist
because RL algorithms share the same complexity issues as other algorithms:
memory complexity, computational complexity, and, in the case of machine-
learning algorithms, sample complexity. [1] Deep learning can help solve the
probelms.

Gradient descent is a fundamental optimization algorithm used extensively in
machine learning and deep learning. It is a powerful method that enables models
to learn and improve their performance by iteratively adjusting their parameters
based on the observed error or loss.
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By computing the gradients of the cost function with respect to each parameter,
gradient descent determines the direction in which the parameters should be
updated to reduce the error. The algorithm takes small steps in the opposite
direction of the gradient, adjusting the parameters until it reaches a point where
further changes yield diminishing returns.

There are two primary variants of gradient descent: batch gradient descent and
stochastic gradient descent (SGD). Batch gradient descent computes the gra-
dients over the entire training dataset in each iteration, which can be compu-
tationally expensive for large datasets. On the other hand, SGD updates the
parameters for each individual training example, making it more computation-
ally efficient but introducing more noise into the optimization process. Both
methods are used in the following introduced papers.

2.2 Other Path planning algorithm

There are several algorithms that are frequently deployed to optimize the tra-
jectory planning of the data sink in the WSN, such as Bayesian Optimization,
Genetic algorithm, Artificial Bee Colony and etc. They all have their own ad-
vantage.

Artificial Bee Colonies (ABC) are nature-inspired optimization algorithms that
mimic the foraging behavior of honeybees. They employ a population of artificial
bees to collectively explore and exploit the search space, exchanging information
to find near-optimal solutions for complex optimization problems.

Genetic mimic the process of natural selection to iteratively search for optimal
solutions to complex problems. By representing potential solutions as individuals
within a population and applying genetic operators such as mutation, crossover,
and selection, genetic algorithms can effectively explore the solution space and
converge towards optimal or near-optimal solutions.

Bayesian involves modeling uncertain quantities using probability distributions
and updating these distributions as new data becomes available. Bayesian learn-
ing starts with prior beliefs about the parameters of a model and then updates
those beliefs using Bayes’ theorem, which incorporates the likelihood of the data
given the model and the prior beliefs.

But RL’s Adaptability to Dynamic Environments, Capability of handling Com-
plex Action Spaces, Transferability, and Generalization make it especially out-
standing. Adaptability to Dynamic Environments is especially important in
multi-UAV systems where the agents themselves are the variance. As mentioned
before, deep neural network can be applied RL so that it may adapt to a con-
tinuous environment which could be very space-consuming and computation-
expansive when stored in a discrete state space form. Transferability means that
the algorithm developed may be used in another environment without redesign-
ing or retraining and etc. This is greatly represented in paper[2]. Generalization
is the capability to infer a general valid policy from the limited training dataset,
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which allows agents to act properly even in scenarios that are new to the algo-
rithm.

3 Review Methodology

3.1 Article Retrival

In order to find papers with related topics, a set of search engines has been used
to collect related literature from online resources, Google Scholar and IEEE
Xplore are included. The Keywords used for search papers are ”WSN”, ”RL”,
”UAV” and ”Path planning”.After dropping out not desired articles, there are
only a few fulfilling all three requirements left.

3.2 Screening

This paper set several assessment criteria to refine the search results. The follow-
ing constraints are applied to retrieved articles: 1. All articles must be written
in the English language. 2. No duplicated research articles should be retained.
Each article must focus on unique research work. For similar papers, only the
one with most citations is kept. 3. The type of each article must be a review or
a standard research article.

4 Review

4.1 Actor-Critic Deep RL:
Bayesian Optimization Enhanced Deep Reinforcement Learning
for Trajectory Planning and Network Formation in Multi-UAV
Networks[4]

Goal To avoid the energy shortage problem for data transmission regarding the
QoS requirement, this paper aims to minized the energy consumption by
employing UAV in an optimal flying manner.

The authors consider the problem of network formation and trajectory planning
jointly in a multi-UAV system where the connection between UAVs is possible
so that information transition from distant drone to the base station is possible.
They find the two problems tight related because for example when two UAVs
fly far apart, their UAV-to-UAV(U2U) channel becomes deteriorated and even
disconnected. So they proposed a two-step iterative approach to solve the joint
problem: Firstly, they devise the adaptive network formation scheme by using a
heuristic algorithm to balance the UAVs’ energy consumption and data queue
size. Then, with the fixed network formation, the UAVs’ trajectories are further
optimized by using multi-agent deep reinforcement learning without knowing
the Ground User(GU)s’ traffic demands and spatial distribution. Moreover, to
improve the learning efficiency, they proposed an action estimation mechanism
by using Bayesian optimization to estimate more rewarding actions for each
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Fig. 1. Multi-UAV-assisted data offloading to the remote BS[4]

UAV. Based on the UAVs’ past trajectories, the action estimation can avoid
ineffective action exploration and potentially improve learning performance.

Model Time is divided into slots with unit length. One slot is subdivided into
three intervals for flying, data sensing and offloading. While sensing has a
fixed length, two other intervals can be jointly optimized. There are three
types of communications: Ground-to-UAV, UAV-to-UAV and UAV-to-Base

Deep Reinforcement Learning is roughly implemented as followed:

Reward function depends on state and action. It is the sum of following parts:
energy reward, transmission reward, sensing reward, and penalty for not
keeping a safe distance.

State a joint of all UAV actions in this duration, its every element should
contain that UAV’s location, energy status, network formation, and
buffer size

Action a joint of all UAV actions in this duration

The trajectory optimization problem is then handled in an actor-critic DRL
framework using two sets of deep neural networks (DNNs) to approximate the
policy and value functions respectively. The network is updated using Q-Learning,
when the true Q-value of an action is not available, the critic network can give
an estimation of the true reward.
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The actor network is updated with gradient descent using the function for the
summed Q-Value. While the actor network can be localized, the critic network
would require global information and is therefore trained in the base station.

The Authors wanted to employ a multi-agent deep deterministic policy gra-
dient(MADDPG) as the actor network to solve complex control problems in
multi-agent systems. To do that, they faced two challenges:

– collecting all UAVs’ observations and then adapting their flying actions
jointly.

– the state and action spaces increase rapidly as the number of UAVs increases.

Therefore Bayesian Optimization is used to estimate the UAVs’ optimal flying
actions in the next time step. The multi-UAV trajectory planning problem is
decomposed into N single-UAV trajectory planning problems based on local
observations. For each problem, a function f mapping from location to collected
data is defined. The goal is to build a probability model P(f(l)|D(t)), where
D(t) represents all collected data and location before time slot t, and l represents
the current location.

Using Bayes rule, it is linear in P(D(t)|f(l))*P(f(l)). P(f(l)) is model with
multi-variant Gaussian distribution, since the UAVs are unaware of the GUs’
spatial distribution and their traffic demands. A z function is formulated to
characterize the expected improvement of the function f value by computing the
difference between current f -value and maximum of that from past samplings.

The critic network tries to minimize temporal difference error by the gradient
descent direction.

Fig. 2. The learning framework for joint network formation and trajectory optimiza-
tion.[4]
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4.2 Vanilla RL:
Energy-efficient animal tracking with multi-unmanned aerial
vehicle path planning using reinforcement learning and wireless
sensor networks[3]

Goal The goal is to monitor wildlife species with the ability to observe key
properties of animals such as the trend of animal movement and behaviors
of animals within a herd. This is especially important for the study of some
endangered animals where human intervention is almost impossible. The top
priority of trajectory planning is to timely collect the information located in
the sensor nodes, which is crucial for tracking the herd and analysing their
habitat. Energy saving is placed in the second place.

Model The model can be described as a WSN-based network topology whereby
a specific number of animals are equipped with a sensor node and a lightweight
communication module (sensor node-enabled animal [SNEA]) is employed.
The information is collected by the SENA, then sent to a local base sta-
tion(BS), then collected by UAVs, which finally ensemble at the central BS.

This paper introduced a rare application of WSN in the context of animal track-
ing.

Fig. 3. Example of grid-based unmanned aerial vehicle-wireless sensor network
model[3]

To predict more precisely, the large observation area is partitioned into small
equal-length physical grids. A static BS is placed in each grid strategically to
sense the animals in addition to collecting the data from relatively small WSN
nodes fixed on trees, which provides scalability of the proposed approach.

Some challenges and their solutions:
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Fig. 4. Flow diagram of the whole operation for sensor node-enabled animal structure
nodes[3]

limited energy resource for nodes on SENA a sleep mechanism is em-
ployed so that they only stay awake for some short and periodical time
intervals for transmitting the data

when to transmit SNEA nodes follow a decreasingϵ-greedy strategy, where
the possibility for transmission is positively correlated to its value. ϵ is
normally at max, but starts to decrease when SENA stays in one loca-
tion for too long and will be reset to max if it starts moving again. This
also helps the UAVs to collect data more efficiently.

detect appearance of animals early Value-of-Information(VoL) mecha-
nism is employed where the value of information is decreased as time pass
by.

The Algorithm:

Reward function If VoL is greater than 0, then it is equal to that value plus
a penalty for each of the other drones in this grid. Otherwise, it just gets a
constant penalty.

State the coordinate of the drone plus its velocity.

Action each drone can move to all other neighboring grids.

4.3 Double Deep Q-learning and Combined Experience Relay:
Multi-UAV Path Planning for Wireless Data Harvesting with
Deep Reinforcement Learning[2]

Goal To harvest most data from Internet-of-Things(IoT) nodes in urban with
UAVs using an algorithm that can without retraining adapt to changes in
parameters that define the task (e.g., number of deployed UAVs, number,
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position, and data amount of IoT devices). This is especially meaningful in
real-life applications where even minor changes in the scenario would require
repeating the full training process again.

Model The environment is modeled as a grid world with sets of designated
landing positions, obstacles, and to-avoid locations (e.g. no-fly zone). The
drone’s position is modeled with its horizontal coordinate and altitude which
can vary between drones but stay constant during the mission. The data
collection mission is over after certain mission time steps for all UAVs due
to energy constraints.

Allowed actions for drones are: hover, east, south, west, north, and land, and
the drones are assumed to fly with constant speed throughout the mission(i.e.
they can move only one gird per mission time step). If a drone lands, it stays
still. Starting in the start position The mission is considered complete after
all drones have landed in designated locations.

The path planning problem is translated into a decentralized partially observ-
able Markov decision process (Dec-POMDP), which is then solved with a Deep
Reinforcement Learning approach.

Algorithm:
MDP state space is the joint set of the following sets: Landing zones, No-fly
zones, Obstacles, UAV positions, Flying times, Operational status, Device posi-
tion and Device data
Additionally, a safety controller is introduced for avoiding collisions, if a pos-
sible collision is detected, the drone would stop the planned action and hover.
Reward function: Reward for data collected, Penalty for triggering safety con-
troller, Penalty for not landing on time and Penalty for move
Algorithm:
Double Deep Q-learning and Combined Experience Relay are employed. One
of the deep Q-network (DQN) is trained to minimize the expected temporal
difference (TD) error. To prevent the deadly triad of function approximation,
bootstrapping, and off-policy training from making its training unstable and
causing divergence.

An experience relay mechanism is implemented as follows:
New experiences made by the agent are stored in the replay memory D. During
training, a minibatch of size m is sampled uniformly from D and used to compute
the loss. the latest experience the agent made is always added, so it is less
sensitive to the batch size selection. The other network is for the estimation of
the next maximum Q-value.

A multi-Agent Q-Learning is employed as follows:
Decentralized deployment with centralized training i.e. each agent has an indi-
vidual but identical reward function. The experiences made by independently
acting agents can be centrally pooled throughout the training phase While be-
ing recharged in BS, the UAVs would upload their experience data to a central
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Fig. 5. Example of a single UAV collecting data from two IoT devices in an urban en-
vironment of size M × M with NFZs, a single start/landing zone, and buildings causing
shadowing. Small buildings can be flown over and tall buildings act as navigation ob-
stacles.[2]
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server with larger memory and computation resources. And the central algorithm
is trained with the latest collected information.

4.4 Pointer Network-A* Architecture:
UAV Trajectory Planning in Wireless Sensor Networks for
Energy Consumption Minimization by Deep Reinforcement
Learning[6]

Goal Due to the limited energy source carried by UAVs, the service range of
UAVs is constrained by the reality that they cannot travel very long distances
or fly for long periods of time. Other than that, the battery life of sensor
nodes in WSNs is typically limited, and in many cases, it is hard to regularly
replace their batteries. Thus the authors of the paper aimed to design an
algorithm that minimizes the total energy consumption.

Model Assume that devices on the ground have been clustered according to
some specific criterion(which is not studied in the paper). Each Cluster con-
tains a cluster head(CH), which will be selected by the proposed algorithm.

Only one rotary-wing UAV is dispatched to visit CHs to collect data from
the ground network. After the UAV flies to the hovering position(above the
CH) with a fixed speed, it hovers there and transfers a beacon frame to wake
up the corresponding CH from sleep mode to active model.

Algorithm:
Since all clusters must be visited by the UAV sequentially, the visiting decisions
problem is converted into a sequence-to-sequence prediction problem.

Then an A* Pointer Network is employed in which an A* search algorithm is used
to find the a path with minimal energy consumption. The network is constructed
with an Autoencoder model where an encoder and decoder are constructed with
recurrent neural network(RNN), in this case, Long Short-Term Memory(LSTM)
units to improve performance.

Encoder Start position or a cluster is converted into a high dimensional vector
space. Then, the embedding vectors are fed into LSTM cells. At each en-
coding step, the LSTM cell reads one embedded item and outputs a latent
memory state. Finally, the input sequence is transformed into a sequence of
latent memory states.

Decoder The output of the encoder is given to the decoder network. At each
decoding step, the LSTM cell outputs the hidden state, and the decoder
employs the attention mechanism to output the visiting decision based on
the hidden state and input.

A* Search build a search graph for all clusters according to the out sequence
of the decoder, where each layer is composed of nodes of one cluster. The
first and the last layer are both the start position.
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Fig. 6. Comparison of different UAV’s trajectories[6]

The basic idea of the A* search is to find the estimated closest node to the
destination with minimal cost to travel. Here, both the cost and the distance
to the destination would be the energy consumption which is computed as
follows:

Energy consumption computation At each hovering position, the en-
ergy consumption of the UAV includes two parts: communication-related
energy and hover-related energy.

The energy consumption in the ground network includes two compo-
nents. The first component is the communication energy consumption
between CHs and their member nodes. The second component of the
energy consumption of the ground network is the energy consumed by
each CH to complete its data transmission to the UAV.

To optimize the parameter of the proposed network, actor-critic RL is employed.
The actor here is exactly the proposed network and the critic has the same struc-
ture as the encoder of the Ptr-A* network. They use the policy gradient method
and stochastic gradient descent to optimize the parameter of the actor(Ptr-A*),
where the gradient is approximated with Monte Carlo sampling(take n samples
and use the mean as the gradient). The parameters of the critic are trained
with stochastic gradient descent on a mean squared error objective between its
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Fig. 7. Example of Ptr-A* architecture for a 3-clusters network[6]

predictions and the actual energy consumption. Finally, the Adaptive Moment
estimator is applied to iteratively update both parameters.

4.5 Summary

In the first introduced paper, the authors decided to solve the joint problem of
path optimization and path planning, which in most papers are solved separately.
The problem occurs only when multi-UAV system is employed, which means a
trade-off between complexity and efficiency. They therefore provide a new per-
spective of the problem. The Authors also employed a Bayesian optimization to
estimate the position of the drones, which enhances the central training process
that requires global information.

In the second paper, due to the requirement of monitoring the herd, there are
plenty of BS placed across the whole area. Here the main task is to arrange
the visiting order of the BS so that latest news may be delivered as soon as
possible aside from minimization of energy consumption, making it outstanding
from other papers.

Authors of the third paper claim their algorithm to be able to adapt to some de-
gree of changes in the environment without retraining, which is quite remarkable.
It shows the possibility of RL in generalization.

The fourth paper developed a transformer-alike approach by transforming the
path planning problem into an sequence-to-sequence problem. RL in this paper
serves as an unsuperivsed learning method to help the convergence. Other than
ordinary Q-learning, this paper has a novel approach.
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5 Conclusion

As can be seen above, there have been various models and implementations of
RL in different scenarios which can adapt and have much better performance.
RL is also capable of solving the generalized problem as proposed in [4].

As mentioned in [4], it is not often that the joint problem of trajectory planning
and network formation. But considering the time efficiency of multi-UAV system
could bring, the complexity added to the algorithm could be worthy. Other
than that, UAV can do more than medium of information. Like in [5], the UAV
also serves as a moving charger, which also requires a more delicated energy
consumption strategy. This technology can for example be applied in [3]. Both
of these two ideas can be future research direction.
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Abstract. The utilization of unmanned aerial vehicle (UAV) in data
gathering within wireless sensor network(WSN) is gaining momentum,
bringing significant advancements. However, considering the energy con-
sumption and obstacles in specific environments, the complex path plan-
ning problem in UAV-based data gathering poses a challenge. This paper
presents a literature review on the application of Genetic Algorithm (GA)
optimization techniques to address path or trajectory planning in WSN
with UAV-based data gathering. The review explores existing research
studies, analyzing aspects such as problem and constraints formulation,
encoding schemes, fitness functions, mutation operators. It discusses the
advantages and limitations of different implementations of GA optimiza-
tion in this context, identifies research gaps and challenges.

Keywords: Unmanned aerial vehicle(UAV) · Wireless sensor network(WSN)
· Path planning heuristic · Genetic Algorithm (GA) · Literature review

1 Introduction

WSNs are interconnected sensor nodes that communicate in wireless method
to collect data about the surrounding environment. Nodes are generally lower
power and distributed in ad hoc, decentralized fashion. WSNs are mostly used
in agriculture to monitor environmental conditions and control irrigation[1]. Re-
cently, as enablers of many important applications, UAVs equipped with wireless
communication platforms have attracted significant attentions[8]. When UAVs
are applied to collect data in large-scale WSN, there are many challenges that
affect the UAVs to manage WSN in large geographical areas in both academic
and industrial fields to better utilize the use of UAV-assisted data collection in
WSNs[2]. An illustration of the UAV-assisted data-gathering scenario is depicted
in the Fig. 1.

However, WSN nodes are generally equipped with limited power resources
that do not last long. Although the nodes are usually rechargeable, they are
difficult to recharge in bulk[13]. As for UAVs, they require special equipment for
charging, making their operations often ”one-time”, where they need to return
to a depot for recharging after a mission. Considering the obstacles present in
particularly harsh environments, path planning becomes exceedingly important.
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Fig. 1. Illustration of the scenario [13]

Given the mentioned constraints, the problem at hand naturally corresponds
to the Traveling Salesman Problem (TSP). Nonetheless, it is important to note
that the Traveling Salesman Problem (TSP) is known to be NP-hard, which
implies that finding an optimal solution is computationally challenging. There-
fore, in order to tackle this problem effectively, heuristic strategies are commonly
employed.

2 Background

2.1 Heuristic strategies

In practical research, there are several heuristic strategies available in this
context, the following four strategies are the most commonly used:

1. Genetic Algorithm (GA): GA is an evolutionary approach that uses genetic
operators such as selection, crossover, and mutation to iteratively search for an
optimal solution. It offers a balance between exploration and exploitation and is
suitable for problems with complex search spaces.

2. Bayesian methods (Bayesian): Bayesian approaches utilize probabilistic
frameworks to model uncertainty and update beliefs based on new information.
They are effective in handling uncertain environments and can incorporate prior
knowledge for improved decision-making.

3. Reinforcement Learning (RL): RL involves learning optimal policies through
agent-environment interaction. It adapts to dynamic environments and can han-
dle complex decision-making problems. RL algorithms learn from trial and error
to maximize long-term rewards.

4. Artificial Bee Colony (ABC): ABC is inspired by the foraging behavior of
honeybees. It utilizes the collective intelligence of a population of artificial bees
to search for optimal solutions. ABC algorithms are robust, simple to implement,
and suitable for continuous optimization problems.

Each of these heuristic strategies has its own advantages and limitations(Table
1). This literature review paper specifically centers around exploring and ana-
lyzing the use of Genetic Algorithm (GA) in the given context.

165



A Literature Review with Genetic Algorithm Optimization 3

Table 1. Comparative Analysis of Four Path Planning Algorithms

Algorithm Advantages Disadvantages

GA Effective for complex search spaces Convergence to suboptimal so-
lutions

Ability to handle multiple objectives Computationally expensive for
large-scale problems

Reinforcement Learning(RL)
(based on [3]) Adaptability to dynamic environments Sensitivity to hyperparameter

tuning
Learns optimal policies through interaction High computational complexity

and training time
Bayesian Methods
(based on [4]) Probabilistic framework for uncertainty modeling Computational complexity in-

creases with problem dimen-
sionality

Ability to update beliefs with new information Reliance on prior assumptions
and model selection

Artificial Bee Colony(ABC)
(based on [9]) Simple and easy to implement Limited global exploration ca-

pability
Robustness against parameter settings and noise Slow convergence for complex

problems

2.2 Introduction of Genetic Algorithm

GA is a well-known algorithm inspired by the biological process of evolution.
It mimics the concept of survival of the fittest in nature, and it was originally
proposed by J.H. Holland in 1992. The fundamental components of GA include
chromosome representation, fitness selection, and biologically-inspired operators.

The biologically-inspired operators consist of chromosome coding, selection,
mutation, and crossover. Chromosome coding pertains to the systematic transla-
tion of solution components into a digital representation, commonly using binary
or other encoding methods. In the selection process, chromosomes are chosen
based on their fitness values for further processing. The crossover operator ran-
domly selects a locus and exchanges subsequences between chromosomes to cre-
ate offspring. In mutation, certain bits of the chromosomes are randomly flipped
based on probability. The subsequent advancements of GA primarily focus on
refining these elements, including operators, representation, and fitness.

A general framework of GA could be presented as Fig. 2. Multiple operators
can be employed in each step.

3 Review methodology

This review methodology of this paper applies the strategy of [11], which can
be divided into four phases.
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Fig. 2. The flow chart of GA[12]

3.1 Article retrieval

In order to find papers with related topics, a set of search engines has been
used to collect related literature from online resources, Google Scholar and IEEE
Xplore are included. Two groups of keywords referred to as G1, G2 are formu-
lated for this purpose. G1 comprises keywords that primarily center around
general path-planning algorithms in WSNs using the meta-heuristic approach
of GA. The keywords used for this purpose include ”WSN”, ”GA” and ”Path
planning”. The keywords in G2 aim to narrow down the papers focused particu-
larly on UAV-based data collection in WSNs so that G2 includes only the string
”UAV”. Furthermore, the ”related work” part of several papers has also been
used for retrieval of this paper. The total number of research papers retrieved is
first 37.

Note: Some papers may not explicitly include the keyword ”UAV” but might
involve similar concepts or components, such as the utilization of a data mule.

3.2 Screening

This paper set several assessment criteria to refine the search results. The
following constraints are applied to retrieved articles:

– The articles should be published on or after January 1, 2013

– All articles must be written in the English language only.

– No duplicated research articles should be retained. Each article must focus
on unique research work.

– The type of each article must be a review or a standard research article. Other
literature artifacts such as book chapters, letters, editorials, comments, or
notes are excluded.

Only 20 out of the 37 articles are fitting these two constraints.
Note: 2. 3. 4. Constraints are exactly the same as the constraints in [11].
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3.3 Content analysis

This paper is mainly focused on GA implementation in the context of path
planning for UAV-based data collection in WSNs, so the articles should also
focus on GA if more than one meta-heuristic method has been used for path
planning. This rule also matches other keywords, if one of them is not found
in the abstracts part and without any other similar characters, the article is
dismissed. With these constraints, only 10 out of 20 articles still remain.

3.4 Categorization

After applying strict filtering based on all the constraints, it was found that all
the articles met the specified conditions exceptionally well. However, considering
the primary objective of this paper is to compare diverse implementations of GA
across different phases, it was observed that certain articles exhibited remarkably
similar implementations, making the comparison challenging. Hence, for the sake
of clarity and conciseness, this paper only selects one representative article of
them to exemplify such implementations in the analysis and discussion.

After the grouping process, only 7 out of the 10 articles remained for further
analysis. It is worth noting that an additional literature review article specifically
focused on GA(the paper [6]), which serves as the guiding source for this paper’s
”navigation,” has been selected.

4 Comparative analysis

To better emphasize the distinctive characteristics of each paper and their
variations in the specific implementation of GA, this study employs a progressive
comparative approach. This approach entails two parts, namely the modeling
and the diverse implementation methods adopted at each stage of GA.

4.1 Modeling

System model In the domain of path planning for UAV in WSNs, understand-
ing and effectively modeling the system at hand is crucial for devising solutions.
This comprehensive literature review explores the variations in system model-
ing strategies employed by different authors. this review aims to shed light on
the strengths and limitations that arise from the varying modeling perspectives
presented in the selected articles.

In [5] Grovind et al. have divided the sensor deployment area into same-
size 3D grids/cells (SIG and flying cells), each Sensing Information Grid (SIG)
may have a different number of sensor nodes, as depicted in Fig. 3, and the
UAV follows a specific path through grid points to collect sensing information.
A single UAV fly starts from the start node (one of the flying cells) and needs
to fly through all SIG sell to collect data and then back to the start node. Due
to the characteristic of each cell in the SIG grid having the same size, instead
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of modeling as a TSP problem, they proposed scheme uses the DFS algorithm
to find the optimal number of flying grids. This type of modeling renders the
computation of fitness within class N; however, the observed disparity between
the computed outcomes and actuality is a cause for concern.

Fig. 3. SIG[5]

Grouping the nodes into multiple clusters is a widely adopted strategy for
system modeling of such problems. Every cluster of nodes designates a suitable
cluster member node as the cluster head (CH). The CH in a cluster gathers
the packets from other cluster nodes. The CH further aggregates the collected
packets into a single datum and transmits the datum to the sink[13].

In [7], the authors introduced a novel clustering approach. Unlike conven-
tional methods that model the CH as a single node, the proposed approach
considers the entire area of the cluster and treats each corner within this area as
an individual node(see Fig. 4). This unique perspective transforms the path plan-
ning problem into a Traveling Salesman Problem with Neighborhoods (TSPN)
formulation. This approach enhances the precision of the computational out-
comes; however, it also significantly escalates the demand for computational
resources.

Fig. 4. Nodes in joint area [7]
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In [12] and [2], the authors of the study incorporated the use of multiple
UAVs in the mission, thereby formulating the path planning problem as a mul-
tiple Traveling Salesman Problem (mTSP). This methodology renders parallel
computing feasible, aligning more closely with real-world scenarios. Regrettably,
the author has omitted the utilization of heuristic algorithms specific to the Ca-
pacitated Vehicle Routing Problem (CVRP) for constructing initial solutions, a
strategy that is particularly well-suited for models of this nature.

Table 2 presents a comparison of various papers employing different system
formulation strategies.

Table 2. System Model

Dimension Node formulation #UAV TSP Type

[2] 2D Cluster multi mTSP

[10] 3D Cluster single TSPN

[5] 3D Coordinates single DFS

[12] semi-3D 1 Cluster single mTSP

[7] 3D Corner points in an area2 single TSPN

[13] 3D Cluster single MOOP-TSP

Objective function and Constraints The choice of objective functions and
constraints is also vital for problem formulation and solution. This literature
review examines how different researchers have approached and compared ob-
jective functions and constraints in their studies. By analyzing the variations in
these components, this paper aim to gain insights into the trade-offs, strengths,
and limitations of different approaches.

In [7], authors assume “for convenience’s sake, the data mule has unlimited
resources (like battery, memory) to collect all data from sensors in the whole
network.”, and all sensors deployed over a two-dimensional plane, the angle and
speed of the data mule is not a factor considered in this study. Meanwhile, the
authors also didn’t study the energy consumption of WSNs or other communi-
cation details, the focus is on a linear optimization problem without constraints,
with the sole objective of minimizing the path length. While this straightforward
objective function benefits computational efficiency, disregarding the impact of
energy consumption is deemed unacceptable.

In [2] Mesfin et al. proposed to minimize the path length with a limited
energy budget of all sensors and UAVs, they proposed a UAV power consumption
model based on the energy consumption of communication between UAVs and
sink nodes, any solution over the total budget is infeasible. Instead of an energy
budget, Ozgur set a minimum and maximum number of Control points(CP),
which can be assumed as sensors or CH [Generation of Bezier Curve-Based
Flyable Trajectories for Multi-UAV Systems with Parallel Genetic Algorithm]
for a single UAV to make sure the energy limitation. but treat the CP as an area
with an acceptable distance and angle from the CP instead of an exact point.
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In the research paper [10], Ahmed et al. introduced an approach aimed at
extending the network’s lifetime, reducing energy consumption, and minimizing
the path length. Their objective was to satisfy both the communication time con-
straint and the obstacle avoidance constraint while achieving these goals. They
also considered the increased energy consumption by different angle changes, the
increasing chance of turning angles of UAV for avoiding obstacles in the model
makes this factor cannot be disregarded.

Govind et al. proposed that ”the optimal path for UAV that need to mini-
mize energy consumption, operational time and traveled distance and maximize
information gain.” [5]. They used Sensing quality, delay, and distance to quantify
the fitness of one path.

They each offer distinct definitions of the objective function and extensively
explore the impacts of specific factors on it from different angles. Unfortunately,
within the references consulted for this paper, none have managed to integrate
these factors to provide a more comprehensive computational approach.

Table 3 presents a comparison of various papers employing different objective
functions and special constraints.

Table 3. Constraints

Purpose Special Constraints

[2] Maximize the lifetime of UAVs and WSNs

[10] Minimize the energy consumption Angle cost

[5] Maximize the sensing Quality, minimize the delay and distance Prohibited grid

[12] Minimize the energy consumption # Control points per UAV

[7] Minimize the path length Unlimited resource

[13] Minimize the energy consumption, maximize the RSSI

4.2 GA implementation

The following sections will present a comprehensive analysis of the implemen-
tation of GA from different articles, including the Chromosome representation
and initial population, selection mechanisms, and the function to quantify the
fitness of chromosomes, crossover, and mutation operators. By synthesizing and
analyzing the information from these sources, this paper aims to provide a com-
prehensive overview of the different approaches and strategies employed in GA
implementation.

Chromosome representation and initial population Each chromosome is
a solution candidate for the system, and the set of these chromosomes constructs
the population, which is also called a generation. In the evolution process, a new
population is generated from the current one by using genetic operators. In
the context of a path planning problem, a commonly adopted approach is to
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represent each gene in the chromosome as an individual node, with the order of
the genes reflecting the order of nodes in the path. An important consideration
in this phase is to establish an appropriate population size. The size of the
population is an important factor, and it determines the efficiency of the GA.
If it is too small, the genetic algorithm can converge quickly to a local optimal
solution and cannot reach a near-optimal solution. On the other hand, a too-large
population may result in not finding a feasible solution in an acceptable time[12].
Meanwhile, depending on the system model, the representation of chromosomes
can also be different.

Since multiple UAVs are applied in [2], the authors encode the chromosome as
a set of paths for each UAV as Eq. 1. and the structure is shown in Fig. 5, where
nodes divided into N groups, N is the size of UAVs, all of them start from the start
point, and each node except start point appear only once. While in [10], each
individual chromosome represents a complete UAV trajectory, which consists
of a sequence of RPs (rendezvous points) and a sequence of IPs (intermediate
traversal points),the genes encode the order in which the RPs are visited and
the supporting points (IPs) between consecutive RPs to avoid obstacles. While
in [13] chromosome consists of three genes, denoted as (Gi1, Gi2, and Gi3).
These genes represent the random 3D coordinates of a tentative UAV Hover
Point (UHP) location over the first cluster. This introduces greater flexibility
but concurrently leads to an increase in computational time.

#Gene = #UAV s + CP − 1 (1)

Fig. 5. Chromosome representation for multi UAVs [2]

In order to generate the initial population, researchers in the field have em-
ployed various methods. One such method is the Chromosome Generation Algo-
rithm (CGA) in [7]. However, Random generation is more commonly employed.
This entails randomly selecting nodes in the graph to serve as genes. In [12],
Ozgur justified the utilization of random generation by stating, ” Although,
these methodologies can result in early converging to a feasible solution, their
increased computation time is clearly seen as a disadvantage.”

Table 4 presents a comparison of various papers employing different chromo-
some representations and initial population strategies.

Parent selection Parent selection in GA is the process of selecting individuals
from the current population to be used as parents for generating the next gen-
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Table 4. Chromosome representation and initial population

Chromosome Representation Initialization strategy

[2] A Set of disjoint CHs Without specific clarification.

[10] RPs and IPs Self-implemented random function

[5] Flying cell Total random

[12] A Set of disjoint Control points Total random

[7] Corner points CGA

[13] 3D-Coordinates Self-implemented random function

eration. The purpose of parent selection is to guide the search towards better
solutions by favoring individuals with higher fitness or promising characteristics.

In the selection operation, the most significant variations lie in how the pop-
ulation is grouped and how two or more individuals are chosen as parents for the
next generation. Additionally, the consideration of applying elitism introduces
another key distinction.

The authors of the [5] utilize tournament selection without elitism to enhance
the exploration capability of the algorithm. This allows for a greater chance of
discovering new feasible solutions and avoiding getting trapped in local optima.
Conversely, the authors of the [5] paper argue that for their specific problem,
elitism is preferred. By incorporating elitism, the best solutions from the pre-
vious generation are retained and carried forward, serving as a reference for
achieving optimal solutions. The authors of the [7] on the other hand advocate
for the use of Roulette Wheel Selection as the preferred parent selection method.
They posit that Roulette Wheel Selection outperforms tournament selection in
terms of convergence. Moreover, it’s ease to implement and has the efficient time
complexity of O(N), where N represents the size of the population.

In the context of multi-objective optimization, [5] and [13] adapt the NSGA-II
algorithm to address the problem. One notable difference lies in how the popu-
lation is divided into distinct Pareto groups. Each group consists of individuals
that represent Pareto-optimal solutions for a particular objective function. By us-
ing NSGA-II, which incorporates non-dominated sorting and crowding distance,
the population can be partitioned into multiple fronts based on their dominance
relationships. Individuals within each front are considered Pareto-optimal with
respect to their objective values. This grouping of the population into different
Pareto groups allows for the identification of diverse trade-off solutions that span
the entire Pareto front, providing decision-makers with a range of optimal solu-
tions to choose from based on their preferences. The selection also only happens
within the group or the front.

Table 5 presents a comparison of various papers employing different parent
selection strategies.

Crossover After the selection of two-parent individuals in a GA, the subse-
quent operation involves modifying the genes of one or more children in the next
generation. The purpose of this operation is to create offspring that can com-

173



A Literature Review with Genetic Algorithm Optimization 11

Table 5. Selection operation

Grouping Selection strategy

[2] Ordering base on fitness value Only the individuals with the best fitness values

[10] Without specific clarification. Without specific clarification.

[5] Pareto-Fronts Tournament selection

[12] Ordering base on fitness value Tournament with Elitism

[7] Ordering base on fitness value Roulette wheel

[13] Pareto-Fronts Without specific clarification.

bine the favorable traits of both parents and potentially exhibit improved fitness
values.

The Authors in [10] choose to use the SCX strategy to implement the crossover
operation, which means each parent from its visiting order selects another RP
not appearing in the child’s chromosome currently. Then, the length of two path
segments formed with the two selected RPs is compared and the better segment
is added to the child’s chromosome. An important aspect to highlight is the
treatment of obstacles in the problem. Instead of using a simple feasibility check
for solutions, the authors introduced IPs that enable UAVs to navigate through
obstacles by adjusting their turning angles at these specific points. These IPs
are dynamically generated, which means that the fitness value of an individ-
ual solution should be evaluated after the IPs are determined. Additionally, the
authors incorporated a path-refining process, as depicted in Fig. 6, to improve
the quality of the generated paths. This refinement step involves optimizing the
paths to make them better solutions, and it should be considered in the deter-
mination of the fitness value. It is worth noting that these dynamic IPs and path
refining process contribute to the complexity and effectiveness of the proposed
approach in handling obstacles and generating high-quality solutions. The inclu-
sion of these elements necessitates careful consideration during the evaluation
of fitness values and further enhances the optimization process in solving the
problem at hand.

In the paper [7], the authors explored various crossover operations to enhance
the effectiveness of the path planning process. Specifically, they investigated the
strengths of different crossover operators, including CSEX (Cycle-Based Sequen-
tial EXchange), CX (Cycle Crossover), MSCX (Modified Sequential Constructive
Crossover), and SCX (Sequential Constructive Crossover). By considering these
different crossover operations, the authors aimed to improve the exploration
and exploitation capabilities of the genetic algorithm in generating high-quality
paths. Each crossover operator has its own characteristics and mechanisms for
combining genetic information from parent individuals to create offspring solu-
tions.

In the paper [12], [5], and [13], the authors opted to utilize k-point crossover
as the chosen crossover operation. Although the simulation results in the [7] sec-
tion demonstrated that k-point crossover generally exhibits poorer convergence
performance, it is important to note that genetic algorithms are not highly sen-
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Fig. 6. path-refine process [10]

sitive to the specific type of crossover operation employed. Despite the potential
limitations of k-point crossover, it remains a straightforward and easily imple-
mented approach.

Table 6 presents a comparison of various papers employing different crossover
strategies.

Table 6. Crossover

Crossover strategy

[2] Without specific clarification.

[10] SCX

[5] 2-point crossover

[12] 1/2-point crossover

[7] MSCX

[13] 1-point crossover

Mutation The mutation operation is also a probabilistic process in evolutionary
algorithms for triggering diversity of the population. Mutation operation can
extend the search space and avoid getting stuck in local optimum.[10]

Fig. 7. 2-opt[12]
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In the context of a TSP-like problem, the 2-OPT strategy is commonly em-
ployed as the mutation operation. Fig. 7 presented in the paper [7] illustrates
the functioning of 2-OPT, which it involves swapping two genes (nodes) within
an individual. Given the presence of multi-UAVs in the study described in [12],
the authors decided to implement a 2-way mutation. This implies that the swap
of nodes (genes) can occur either within a single UAV or across different UAVs
in a solution set.

Table 7. Mutation

Crossover strategy

[2] Without specific clarification.

[10] 2-opt

[5] 2-opt

[12] 2-opt

[7] 2-opt

[13] Random value mutation

5 Conclusion

In conclusion, this literature review provides a comprehensive analysis of
different system models and implementations of genetic algorithms for the path
planning of UAVs in WSNs. The following key insights can be drawn from the
review:

Diverse System Models: The literature encompasses a range of system mod-
els, each offering unique perspectives on the problem of path planning. These
models consider various factors and constraints, catering to different application
scenarios. Selecting an appropriate system model is crucial for effective path
planning and meeting specific requirements.

Diverse Implementations of GA: The reviewed literature showcases a wide
range of approaches and strategies for implementing genetic algorithms in UAV
path planning. These implementations differ in terms of encoding schemes, se-
lection methods, crossover and mutation operations, and fitness evaluation tech-
niques. Each implementation offers unique features and advantages, catering to
different problem characteristics and optimization goals.

Though GA has proven effective in UAV-Aided WSNs path planning, cur-
rent research still exhibits certain weaknesses. Future research can focus on op-
timizing GA parameters and adapting them to specific network configurations.
Implementing improvements like stage-specific optimizations and parallelization,
could lead to significant performance enhancements. Combining GA with other
techniques, such as reinforcement learning, may further improve UAV path plan-
ning in dynamic environments.
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Abstract. In this paper we look into the work of DoReFa-Net.
A method introduced to quantize gradient parameters of deep
Convolutional Neural Networks with parameter of arbitrary bit-width.
We ease the understanding for the proposed methods and ideas by
providing the needed basic knowledge in this field in a brief manner,
and explain the important related research which laid grounds for
the DoReFa-Net. This paper is targeted for a broad audience with
basic knowledge in computer science and aims to make the work of
Zhou Shuchang and their team more accessible for students and those
interested.

Keywords: Neural Network · Quantization · Review

1 Introduction

To introduce you to the general topic of DoReFa-Net [12] we need to provide
some basic foundations. We dedicate this section to explain, in a brief manner,
some needed basic knowledge. With the goal in mind, to not get distracted by
confusing details later on.

We will start off by detailing some definitions and explanations regarding
Neural Networks and explaining in that context the structure and generally
neurons. We will dive into Convolutional Neural Network and deep Convolutional
Neural Network, to understand the kind of Neural Networks DoReFa-Net is
applicable to.

Following those explanations we will briefly explain the general training
process and explain the terms forward- and backward-pass in this context. And in
that manner we will also explain data sets and the important data sets mentioned
in the works.

In the terms of Neural Network quantification we don’t get around the terms
size and computational complexity which we will explain in the last part of this
section.

In the next Section we will use all those basics to introduce briefly some
related and important works close to DoReFa-Net before we then detail the
works of Zhou Shuchang and their team [12].
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1.1 Neural networks

A Neural Network is a computational model inspired by the structure and
function of the human brain. It consists of interconnected nodes, called neurons,
organized in layers. Neural Networks are used for various tasks, such as pattern
recognition, classification, regression, and optimization.

Neurons, synapses and gradients

In the context of Neural Networks, a neuron is a fundamental unit, that takes
a group of weighted inputs, applies an activation function, and returns an output.
Neurons are connected to each other through synapses, which can be thought
of as roads in a Neural Network. Each connection between two neurons has a
unique synapse with a unique weight and activation attached to it. Gradients are
a fundamental concept in the training of Neural Networks. They represent the
rate of change of a function with respect to the parameter weights of the network.
Gradients are used in algorithms to update the parameters of the network.

Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a specialized type of Neural
Network designed for processing structured arrays of data, such as images. CNNs
are widely used in computer vision tasks and have become the state-of-the-art
for many visual applications, such as image classification and object detection.

Deep Convolutional Neural Networks

A Deep Convolutional Neural Network (DCNN) refers to a CNN with
multiple convolutional layers stacked on top of each other. DCNNs have been
shown to achieve better performance on complex visual tasks compared to
shallow Convolutional Neural Networks with fewer layers.

1.2 Training

Training in the context of Neural Networks refers to the process of optimizing the
model’s parameters such that it can make accurate predictions on new, unseen
data. During the training process, the model is presented with a set of labeled
training examples and learns to adjust its parameters based on the errors it
makes. The goal is to minimize the difference between the predicted outputs
and the true outputs.

During training, the model goes through multiple iterations, also known as
epochs, where it updates its parameters using an algorithm. The training process
involves two main steps: the forward pass and the backward pass.
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Forward pass

The forward pass, also known as forward propagation, is the calculation and
storage of intermediate variables and outputs for a Neural Network. It involves
processing the input data through the layers of the network, from the input
layer to the output layer, to obtain the predicted outputs. Each layer performs
a set of computations, typically involving matrix multiplications and activation
functions, to transform the input data.

In the forward pass, the input data is multiplied by the weights of the
connections between the neurons in each layer, and the resulting values are
passed through activation functions to introduce non-linearity. This process is
repeated for each layer until the final output is obtained. The intermediate
variables and outputs calculated during the forward pass are stored for later
use in the backward pass.

Backward pass

The backward pass, also known as backward propagation, is the process of
calculating the gradients of the model’s parameters with respect to the loss
function. It involves traversing the computational graph in the reverse direction,
from the output layer to the input layer, to update the parameters based on the
errors made during the forward pass. These errors are represented as an error
function or loss function.

In the backward pass, the gradients of the loss function with respect to the
outputs of each layer are calculated using calculus. These gradients are then used
to update the weights and biases of the model using an optimization algorithm
like gradient descent. The gradients are propagated backwards through the layers
of the network, hence the name ”backpropagation”.

1.3 Datasets

Datasets refer to a collection of data that is organized and structured for use in
machine learning and data analysis. Datasets can vary in size and complexity,
ranging from small datasets used for testing and experimentation to large
datasets used for training deep learning models. Datasets can contain different
types of data, including numerical, categorical, and text data. Datasets are
crucial for building and evaluating machine learning models, as they provide the
necessary information for the models to learn patterns and make predictions.

SVHN

SVHN [9] stands for Street View House Numbers. It is a real-world image
dataset that consists of images of house numbers taken from Google Street View.
The dataset is widely used for training and evaluating machine learning models
for digit recognition tasks. Each image in the SVHN dataset contains a number
from 0 to 9.
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ImageNet

ImageNet [4] is a large-scale image dataset that contains millions of labeled
images. It is widely used in the computer vision community for training and
evaluating deep learning models. The dataset covers a wide range of object
categories, including animals, vehicles, and everyday objects. The ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) is an annual competition
that benchmarks the performance of models on ImageNet.

1.4 Complexity

In the context of Neural Networks, complexity refers to the computational
resources required to train and run a Neural Network model. It involves
measuring both the time complexity and space complexity of the algorithms used
in Neural Networks. Time complexity refers to the amount of time it takes to
train and make predictions with a Neural Network, while space complexity refers
to the memory storage required during the training and inference processes. The
complexity of a Neural Network is influenced by factors such as the number of
layers, the number of neurons in each layer, and the size of the input data.
Increasing the complexity of a Neural Network can lead to more accurate
predictions but may also require more computational resources.

2 Recent efforts

We looked into the basic concepts for Neural Networks helping us to understand
the DoReFa-Net. In this section we will briefly explain selected research topics
preceding DoReFa-Net, which were crucial for the work of Zhou Shuchang and
their team [12]. Beginning with the concepts of quantification and sparsification
for reducing complexity of Neural Networks, followed by models which the
DoReFa-Net was derived from. After that we will start introducing the concept
of DoReFa-Net.

2.1 Quantification

Quantization in the context of reducing the complexity of a Neural Network
involves representing the network’s parameters and activations with reduced
precision, such as using fewer bits to represent numerical values. By quantizing
these values, according to the team of Wu [11], the memory requirements and
computational complexity of the network can be significantly reduced. This can
lead to benefits like faster inference, reduced energy consumption, and improved
deployment on devices with limited resources, while still maintaining acceptable
accuracy levels.
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2.2 Sparsification

Sparsification in the context of reducing the complexity of a Neural Network
involves inducing sparsity in the network’s parameters or activations, meaning
that a significant portion of the values become zero. By removing or ”pruning”
these zero values, the network’s size and computational requirements can be
reduced. Sparsification techniques, like in the work of Han and their team [6], aim
to retain the most important connections or activations while discarding the less
significant ones, allowing for more efficient memory usage, faster computations,
and potential acceleration through sparse matrix operations.

2.3 AlexNet

AlexNet [8] is a CNN architecture that was designed by Alex Krizhevsky, Ilya
Sutskever, and Geoffrey Hinton. It was the winning entry in the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) in 2012. AlexNet is considered
a breakthrough in the field of computer vision and deep learning, as it
demonstrated the effectiveness of DCNNs for image classification tasks.

2.4 Binary Neural Network

Binarized Neural Networks (BNNs), by the team of Courbariaux [3], are a
type of Neural Network model that use binary values (usually -1 and +1) for
both weights and activations, instead of traditional real-valued representations.
This binary representation significantly reduces memory usage and accelerates
computations by replacing costly multiplications with simple bitwise operations
like XNOR and popcount.

In BNNs, the binarization process typically involves a step called
”binarization function,” which converts the real-valued weights and activations
into binary values. This function can be deterministic, such as sign function, or
probabilistic, where the probabilities of -1 and +1 are learned during training.
During forward propagation, the binarized weights and activations are used for
computations, and the results are accumulated using bitwise operations.

2.5 XNOR-Net

XNOR-Net [10] is a Neural Network model that extends the idea of BNNs by
leveraging the XNOR operation. In XNOR-Net, both the weights and binary
activations are binarized to -1 and +1, similar to BNNs, but the convolutional
operations are replaced with XNOR and bit-count operations.

In XNOR-Net, the key innovation lies in performing convolutional operations
using XNOR and bit-count operations. The multiplication operation between
binary weights and binary inputs is effectively replaced with the simple
bitwise XNOR operation, making the computations significantly faster. The
result is then passed through a bit-count operation to accumulate the binary
convolutional outputs.
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3 DoReFa-Net

In this section we will discuss the DoReFa-Net, starting with the challenges,
which were in mind of Zhou Shuchang and their team [12]. We elaborate
on the proposed ideas in more detail leveraging the previous explanations.
Experiments done in the scope of DoReFa-Net will be discussed briefly and
we highly encourage you to look into the original work for more details in that
regard.

3.1 Introducing DoReFa-Net

DoReFa-Net is a method for training CNNs with low bitwidth weights and
activations using low bitwidth parameter gradients. This allows for significant
reductions in the memory and computational requirements of CNNs, while still
achieving comparable accuracy to 32-bit counterparts.

DoReFa-Net works by stochastically quantizing the parameter gradients to
low bitwidth numbers before they are propagated to the convolutional layers.
This is done during the backward pass of the training algorithm. As a result, the
convolutions during the forward and backward passes can now operate on low
bitwidth weights and activations/gradients respectively. This allows DoReFa-Net
to use bit convolution kernels, which are much more efficient than traditional
convolution kernels.

The main advantages of DoReFa-Net are its efficiency and accuracy.
DoReFa-Net can significantly reduce the memory and computational
requirements of CNNs, while still achieving comparable accuracy. This makes
DoReFa-Net a promising approach for deploying CNNs on resource-constrained
devices, such as mobile phones and embedded systems.

3.2 The contributions of DoReFa-Net

In this chapter we will list the contributions made by the paper of Zhou Shuchang
and their team [12], without going into too many details. Subsequently we will
start detailing the method of DoReFa-Net which includes detailed explanations
to ease the understanding and provide the context for this work.
The paper on DoReFa-Net [12] detailed their contribution as follows:

– A generalized method of BNNs [3] such that it allows creating a DoReFa-Net,
which is a CNN with customizable bitwidth for activation, weight and
gradient respectively. This allows operating with low bitwidth kernels for
accelerated backward and forward passes during training processes.

– Opening an accelerated way of training low bitwidth Neural Networks on
Hardware like CPU, FPGA, ASIC and GPU. And even reducing costs by
reducing considerably the energy consumption during training especially on
FPGA and ASIC.
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– Exploration and experiments on different bitwidth configurations of the
weights, activation and gradient parameters for DoReFa-Net. Given the 1-bit
weight, 1-bit activation and 2-bit gradient configuration which achieved 93%
accuracy on the SVHN dataset.

– A release of a pre-trained DoReFa-Net model in TensorFlow [1], derived from
AlexNet [8] trained on the SVHN [9] dataset.

Side note:
Field-Programmable Gate Arrays (FPGAs) are a programmable integrated
circuit that can be configured after manufacturing, offering flexibility and
adaptability for various applications. Application-Specific Integrated Circuits
(ASICs) are a customized integrated circuit designed and optimized for a
specific task or application, providing high performance and power efficiency.
FPGAs can be reprogrammed and are therefore suitable for prototyping, rapid
development, and applications requiring flexibility. ASICs are tailored for specific
functions during manufacturing and cannot be reconfigured, offering optimized
performance and power efficiency.

3.3 The formulation of DoReFa-Net

Now that we have introduced the idea of DoReFa-Net we will go into detail of
the formulation. In this we will explain the bit convolution kernel, which is the
base for the low bit operations of the parameters, in regards to the DoReFa-Net.
We will detail how this is leveraged and explain the Straight Though Estimator
and its use, before we go into detail of the quantization of each weight, activation
and gradient parameter.

Following this chapter we will detail the pseudo code algorithm on how a
DCNN could be trained using the DoReFa-Net method.

Bit convolution Kernels

Bit convolution kernels are convolutional filters that operate at the bit level.
These small matrices help the Neural Network understand spatial patterns in
the input. In these filters the convolution operation is performed on binary
representations of the input data rather than the traditional numerical values.

In equation 1 we specify the 1-bit dot kernel. This can also be used to
calculate the dot product in general and consequently convolution, for low
bitwidth fixed-point integers.

x · y = bitcount(and(x, y)), xi, yi ∈ {0, 1}∀i. (1)

Which we are interested in because fixed-point number arithmetic reduces
memory requirements and computational complexity compared to floating-point
arithmetic. We can use this for more efficient hardware implementation,
resulting in faster and more power-efficient inference. Additionally can we exploit
fixed-point arithmetic for quantization of network parameters.
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To show this Zhou Shuchang and their team [12] created the following
example. Assume x is a sequence of M -bit fixed-point integers s.t. x =∑M−1

m=0 cm(x)2m and y a series of K-bit fixed-point Integers s.t. y =∑K−1
k=0 ck(y)2k, where cm(x)M−1

m=0 and ck(y)K−1
k=0 are vectors containing only the

number 0 and 1.
The dot product of x and y can be computed by the bit-wise operation as:

x · y =
M−1∑

m=0

K−1∑

k=0

2m+kbitcount[and(cm(x), ck(y))] (2)

cm(x)i, ck(y)i ∈ {0, 1}∀i,m, k. (3)

The above equations have computational complexity on O(NK) and are
therefore directly proportional to the bitwidth of x and y

These equations extend the introduced 1-bit dot product kernel of equation
1 to a bit convolution Kernel for bit vectors of arbitrary length.

Straight Through Estimator

In order to represent real numbers with a set of finite numbers, we can naively
achieve this with a step function, which maps numbers in specific ranges to a set
value. Problems arise with this in the back propagation, simply because almost
all sections of a stepping function have a gradient of zero.

To circumvent this problem DoReFa adopts the Straight-Through-Estimator
method [7] [2]. This method allows DoReFa-Net to define arbitrary forward and
backward operations.

The Straight Through Estimator extensively used is quantizek, which is
defined to quantize the real number input ri ∈ [0, 1] on an k-bit number output
ro ∈ [0, 1].

The definition of the Straight-Through-Estimator is as follows:
Forward operation:

ro =
1

2k − 1
round((2k − 1)ri) (4)

Backward operation:
∂c

∂ri
=

∂c

∂ro
. (5)

The ro in the forward operation is just the closest fraction to ri in the form
of t

2k−1
for t ∈ N and t < 2k. For the backward operation c denotes the function

4 from the forward pass, which makes ∂ri
∂ro

not a differentiable function. But we
leverage the fact the ri is approximately equal to ro and use the well defined
gradient ∂c

∂ro
as an approximation for ∂c

∂ri
.

Using this construction, we can represent a real number with k-bits. Also,
with ro being a fixed point integer, we can use the defined dot product function 2
to calculate the dot product of two such k-bit real numbers, by properly tweaking
the equation.
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Low bitwidth quantization

In this section we will look into the quantization of weights, activation and
gradient parameters respectively. This will introduce the proposed method of
gradient quantization. Each chapter and equation has explanations to ease the
understanding. Each of the quantized parameters will use a Straight Through
Estimator introduced in the previous chapter.

The quantization of the weight parameters

Previous work, like the BNN [3] or XNOR-Net [10] already introduced the
binarization of the weight parameters using the Straight Through Estimator. In
the BNN the Straight Through Estimator to binarize the weights looked like
this:
Forward operation:

ro = sign(ri) (6)

Backward operation:
∂c

∂ri
=

∂c

∂ro
I|ri|≤1. (7)

Here the Icondition stands for the index function, which is defined to equal to
0 if the condition in the subscript is false and equals 1 otherwise.

The function sign(ri) from equation 6 is defined as sign(ri) = 2Iri≥0 − 1,
which only returns the values {−1, 1}.

The XNOR-Net has a slightly different binarization equation for their weight
parameters. The difference being scaling the weights after being binarized.
The Straight Through Estimator looks as follows:
Forward operation:

ro = sign(ri)×EF (|ri|) (8)

Backward operation:
∂c

∂ri
=

∂c

∂ro
. (9)

The function EF in equation 8 is the absolute mean of all the input weights
and used as the scaling factor. The reasoning for the decision to introduce a
scaling factor is that it increases the value range for the weights while still
exploiting bit convolution kernels.

This might seem like a preferable decision, in terms of DoReFa-Net however,
it is left out. Solely for the fact that we find it impossible to exploit bit
convolutions between gradient and weight in the back propagation.

We instead use constant scaling instead of channel-wise scaling. The Straight
Through Estimator used for DoRoFa-Net binary weight parameters is as follows:
Forward operation:

ro = sign(ri)×E(|ri|) (10)
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Backward operation:
∂c

∂ri
=

∂c

∂ro
. (11)

Weight parameters which are not binary and instead use the k-bit
representation for their weights, with k > 1, use the following Straight Through
Estimator fk

ω instead:
Forward operation:

ro = fk
ω = 2quantizek(

tanh(ri)

2max(|tanh(ri)|)
+

1

2
)− 1 (12)

Backward operation:
∂c

∂ri
=

∂c

∂ro
. (13)

Important to note is that the ro
ri

in 13 is well defined due to the used
function in 12 being already the earlier defined Straight Through Estimator
called quantizek

In the function 12 the tanh is used to limit the value range of the weight

to [−1, 1] before the quantization of the k-bit. The value of tanh(ri)
2max(|tanh(ri)|) + 1

2

can only be in the range of [0, 1], with the max-function taking the maximum
over all weights of the current layer. The quantizek function, from equation 4,
then turns this into an k-bit fixed point number in the [0, 1] range. Finally we
use the same transformation as the sign function used in the definition from the
equation 6 in 3.3, to transform the range to [−1, 1].

We note as alternative way of binarizing weights by setting k = 1 in equation
12. Nonetheless Zhou Shuchang and their team [12] found the difference to be
insignificant in their experiments.

The quantization of the activation parameters

In this section we will detail the approach to low bitwidth activations
parameters which are input to the convolutions. This makes them crucially
important when replacing the computational intensive floating-point operations.

In earlier research of BNNs [3] and XNOR-Net [10] the activation parameters
were binarized in the same way as the weight parameters. This approach was
found by Zhou Shuchang and their team [12] either non reproducible or bound
to loss in severe amounts of accuracy especially when training against an
ImageNet [4] models like AlexNet [8].

That’s the reason why we use a Straight Through Estimator for input
activations r of each weight layer. For this we assume the output of the previous
layers to be bounded by their respective activation function h, which ensures us
that the value of r ∈ [0, 1]. The DoReFa-Net quantization of the activations r to
k-bit is then:

fk
α = quantizek(r). (14)
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The quantization of the gradient parameters

Contrary to the deterministic approach of the activation and weights for the
quantization, we find an stochastic approach to quantize the gradient parameter
as necessary. As shown in the experiments of the Gubta and their team [5]
already for 16-bit weights and gradients.

The quantization of gradients is different already in regard to the unbounded
nature, therefore making the value range significantly greater than those of the
activations.

Looking at Equation 14, we mapped activation simply onto [0, 1], by using the
earlier defined nonlinear differentiable function and passing our values through.
Such a function, does not exist for gradients. For that reason we use the following
function for the quantization of k-bit gradients:

f̄k
γ = 2max0(|dr|)(quantizek(

dr

2max0(|dr|) +
1

2
)− 1

2
). (15)

In this equation it is dr = ∂c
∂r , the back-propagated gradient of r for the

corresponding layer. The maximum is taken over all axes of the gradient tensor
dr, with exception for the mini-batch axis, so each mini-batch and it’s axis will
get its own scaling factor when applying this function.

The function above maps the gradient into the range [0, 1], quantizes those
values using the quantizek function and scales the function back to its original
range.

This quantization can introduce strong biasing of the values and to
compensate for that we introduce an additional noise function N(k) = σ

2k−1
where σ ∼ Uniform(−0.5, 0.5) which is the uniform distribution. It is noted
that in this definition the endpoints of the uniform distribution are not clipped,
due to the fact that those are almost never being attained.

This noise function has the same magnitude as the possible quantization
error. In the experiments of Zhou Shuchang and their team [12], they found it
to be critical to add this noise to achieving good performance. Adding this noise
into the equation 15 we get the following:

fk
γ = 2max0(|dr|)(quantizek(

dr

2max0(|dr|) +
1

2
+ N(k))− 1

2
). (16)

Due to the Gradient only being quantized on the backward pass. We use the
following Straight Through Estimator on the output of each convolutional layer:
Forward operation:

ro = ri (17)

Backward operation:
∂c

∂ri
= fk

γ (
∂c

∂ro
). (18)
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3.4 The algorithm for DoReFa-Net

In this section we will see an example algorithm to train a DCNN with arbitrary
bitwidth using the quantification methods introduced previously. Following that
we will explain the workings of that algorithm a little more in detail, before we
end this chapter with some exceptions in this method and a note on how to
reduce run-time memory usage by fusing nonlinear functions with rounding.

Starting off with the algorithm taken from the original work from
DoReFa-Net [12]:

Algorithm 1 Training a L-Layer DoReFa-Net with W -bit weights and
A-bit activations using G-bit gradients. Weights, activations and gradients are
quantized according to equation 12, 14 and 16, respectively

Require: a minibatch of input and targets (a0, a
∗), previous Weights W , learning rate

η
Ensure: updated weights W t+1

{1. Computing the parameter gradients:}
{1.1 Forward propagation:}

1: for k = 1 to L do
2: W b

k ← fW
ω (Wk)

3: ãk ← forward(ab
k−1,W

b
k )

4: ak ← h(ãk)
5: if k < L then
6: ab

k ← fA
α (ak)

7: end if
8: Optionally apply pooling
9: end for
{1.2 Backward Propagation:}
Compute gaL = ∂C

∂aL
knowing aL and a∗.

10: for k = L to 1 do
11: Back-propagate gaK through activation function h
12: gbak

← fG
γ (gak )

13: gak−1 ← backward input(gbak
,W b

k )

14: gW b
k
← backward weight(gbak

, ab
k−1)

15: Back-propagate gradients through pooling layer if there is one
16: end for
{2. Accumulate the parameters gradients:}

17: for k = 1 to L do
18: gWk = gW b

k

∂W b
k

∂Wk

19: W t+1
k ← Update(Wk, gWk , η)

20: end for

To ease the understanding we will recap the algorithm in more details here.
This is purely to ease understanding this simple, but dense algorithm.

To begin in the forward propagation, we assign values to the parameter
weights vector of this minibatch using the quantization function from equation
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12 (line2). We calculate the new activations using an arbitrary forward

function(line3), which now can operate on low bitwidth and fixed-point integers.
Followed by assigning the new activation value after passing through the
activation function h (line4) and finally the quantization of the activations
of the layer using the function from equation 14 (line6). Important to note is
that the layer 0 and L will never be quantized here, but we will come back to
this in the next chapter.

The backward propagation starts with calculating the first gradient of the
layer. Using the resulting gradient we start the loop with back propagating it
through the activation function h (line11). We quantize the result using the
quantization function from equation 16 and assign it to the gradient for this
minibatch(line12). Then we use arbitrary backwardinput and backwardweight

to firstly get the gradient for the next iteration (line13) and get the gradient
which we need to update the weights parameters(line14).

In the last loop we collect the gradients (line18) from the minibatches and
apply the arbitrary Update() function to get our updated weights parameters.

Computational intense are the arbitrary functions forward, backwardinput
and backwardweight, which all possibly are mapped on low bitwidth numbers
and fixed-point integers with affine transformations. Which means those
expensive operations are now accelerateable significantly by the fixed-point
integer dot product kernel 2.

The First and last layers

As the previous explanation suggested, in a DCNN, the first and last layers
appear to be different from the rest. As they are the layers interfacing the input
and output. For the first layer it is often an image which might contain non
redundant features in 8-bit or higher than the bitwidth of the features. As for
the outputs from the last layer, they produce one hot vector. Which are 1×N
vectors with a singular 1 and 0’s on every other position, those are used for
mapping to a vocabulary from a table. By this definition they are close to bit
vectors and converting those layers to low bitwidth counter parts is left open in
the work of DoRoFa-Net.

Arguments for not reducing the computational complexity in those layers
are mainly based on observed degradation of accuracy, while looking into the
sparsification of the convolutions in a Neural Network by Han and their team
[6]. This observation and the fact that for a DCNN the first and last layer alone
are a small fraction of the computational complexity, the quantization is left
open in the experiments done by Zhou Shuchang and their team [12].

However even though the input of the first layer and the output of the last
layer are fully connected. The parameters used by the preceding and following
layers are again quantized by definition of the algorithm.

190



14 F. Ferber

Reducing Run-time memory usage

Reducing Memory during run-time is one of the motivations for creating a
low bitwidth Neural Network and is, as shown earlier, possible. Nevertheless
we have to point out that a naive implementation of Algorithm 1 would store
activations from the activation function h(ak) in full-precision and therefore use a
lot of memory during run-time. Especially when using floating-point arithmetic,
which also would introduce a lot of computational complexity back into the
algorithm, due to it’s non-bitwise nature.

To avoid this we can fuse line3, line4 and line6 with the goal in
mind not storing the intermediate floating-point results in full precision, which
would inevitably lead to non-bitwise arithmetic. For that we have to point
out the fact, that if the function h is monotonic, the function fα · h is
also monotonic. Which again implies that the few values for abk, which in of
themselves are non-overlapping, correspond to also non-overlapping ranges of
ak. Keeping this in mind, we can implement abk = fα(h(ak)) with computational
simple fixed-point number comparisons, resulting in the desired avoidance of
intermediate floating-point results.

Similarly can we fuse line11, line12 and from the preceding iteration
line13 to again avoid the intermediate result of gak

, even though more complex
when there are intermediate pooling layers, we can do the fusion nevertheless.
As the function quantizek commutes with the max function, such that

quantizek(max(a, b)) = max(quantizek(a), quantizek(b)) (19)

implies that gbak
can be generated from gak

only using fixed-point number
comparisons.

3.5 Experiments

In this chapter, we provide a brief overview of the experiments conducted by
Zhou Shuchang and their team [12] and summarize some notable results. We
strongly recommend referring to their work for more comprehensive details and
data related to these experiments.

The experiments involved multiple sets of data with varying configuration
spaces for the models, where each configuration represented different bitwidths
of weight, activation, and gradient parameters. The first set of configurations
focused on accuracy, storage size ranking, and complexity ranking for different
types of configurations. Each configuration was trained on four models with
varying channel counts.

For this set of configurations, the SVHN [9] dataset was utilized. We observed
that the accuracy degradation was not significant for model A, which had full
connectivity in all seven layers, when the gradient’s bitwidth (G) was greater
than or equal to 4. However, there were exceptions to this trend, as seen in the
configuration data. For instance, the (1, 1, 2) configuration achieved accuracies
of approximately 93.4%, 92.4%, 91%, and 80.3% for models A, B, C, and D,
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respectively. Conversely, the (1, 4, 2) configuration, which would suggest higher
accuracy with a higher bitwidth for one parameter, achieved accuracies of 81.5%,
89.8%, 91.1%, and 86.8% for the same models.

In general, we observed a trend where models with greater connectivity
between layers tended to have higher accuracy. Additionally, increasing the
gradient bitwidth led to improved accuracy, but the improvement became
insignificant after 8 bits.

The second set of configurations utilized the ILSVRC12 [4] image
classification dataset, which contains around 1.2 million natural images from
approximately 1,000 object categories. Here, the focus was on different gradient
bitwidths for 1-bit weights and activation with bitwidths of A ≤ 4. We observed
a clear improvement in accuracy with higher bitwidths and even similarity in
accuracy between configurations with 32-bit and 6-bit gradients.

We recommend referring to the work of Zhou Shuchang and their team [12]
for more detailed explanations and extensive data on these experiments.

4 Conclusion

In conclusion, the paper by Zhou Shuchang and their team [12] presents a highly
impactful work that introduces a well-formulated and easily understandable idea.
The paper effectively contextualizes the provided information and delivers a clear
message. With over 2,000 citations to date, this work is widely recognized and
highly influential in the field. We strongly recommend reading the original paper
if you find the topic intriguing.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S.,
Davis, A., Dean, J., Devin, M., et al.: Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)
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Abstract. One major problem of neural networks that often hinders
them impractical outside of an experimental and scientific context are
their resource requirements both during training and when applying the
model after Training. There are many papers about techniques that aim
to lessen some of the resource requirements of neural networks, many
do so by quantising them thereby reducing the precision or limiting the
range of input data and weights to the neural network when running the
model.
One such quatisation technique is called ”Wide Reduced Precision
Networks”[1]. This paper compares WRPN to other similar techniques
[7][3][8] in terms of their effectiveness in achieving their respective goals
of reducing resource consumption. And explains key concepts and terms
required to understand these techniques.

1 Introduction

Motivation In recent years there has been a trend of drastically increasing the
size of the input layer of neural networks as well as their depth - especially with
convolutional neural networks used in tasks like computer vision. This causes a
massive increase in memory requirements and computational requirements to
run and train such neural networks as well as storage requirements to store such
a neural network. This causes the issues of such neural networks being difficult
to deploy in the real world[10] as well as them being expensive to train.

One proposed solution to this problem is network quantisation: it aims to
reduce those requirements while having a limited impact on the accuracy of
neural networks. In recent years a lot of different quantisation techniques, each
with their own set of advantages and disadvantages have been introduced.
One such technique are Wide Reduced Precision Networks [1] which tries to
overcome the main issues of previous quantisation techniques: Mainly them
either having a major reduction in resource requirements or minimal loss in
accuracy but not both.

In this paper we will explain terminology and concepts required to understand
WRPN and quantisation in general, the quantisation technique used in WRPN
and the quantisations schemes used in other similar techniques. We will also
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compare WRPN to other previously used quantisation techniques on which
WRPN are based.

2 Basic Terminology and Concepts

2.1 Neural networks

A neural network is a mathematical model that maps input(s) to a set of
output values. It consists of 3 types of layers: An input layer containing the
input value(s) to the neural network, an output layer containing the output
values and at least one hidden layer, each consisting of nodes (values), and
connections between nodes of the current layer and the nodes of the next layer,
each connection having an associated weight. Those weights are also referred to
as model parameters.

The neural network calculates the values of one layer based on the values
of the previous layer and the weights of their connections. Most of the time this
is done by simple multiplication and accumulation or in other words matrix
multiplication, however other types of functions such as convolution can be
applied as well. This is done for each layer until the output layer is reached, the
values that are calculated as values of the output layer are the outputs of the
entire network.[4]

2.2 Convolutional Neural Networks

Convolutional Neural Networks or CNN’s are a type of neural network in which
some layers calculations are not performed by the usual matrix multiplication
used in general neural networks, but instead by performing convolution. This
proved beneficial in a lot of classification tasks - especially in image recognition
and natural language processing.[9]

2.3 Convolution

The discrete convolution of two complex-valued functions is defined as [2]:

(f ∗ g)[n] =
∞∑

m=−∞
f [m]g[n−m]

For our intents and purposes the two functions f and g map complex
coordinates to one component of the inputs of the first function and to the
weights of the layer for the second function.
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2.4 Backpropagation

Backpropagation is the process used to improve the neural network during
”training”. It aims to adapt the weights of a layer to reduce the mean error of
the network. This reduction of the mean error of the network is usually achieved
using gradient descent.

2.5 Quantisation/Quantized Neural Networks

Quantisation is the process of mapping a larger input set to a smaller output
set. The output often has a finite number of elements. In the context of neural
networks quantisation can be applied to either input values, output values,
network weights or any combination of these for any of the layers of the neural
network.

”While it is possible to train a quantized [neural network] from scratch, the
majority of research has shown that starting with a pre-trained model to be more
effective at minimising accuracy loss when quantizing a [neural network]”[10].
This means that quantisation is almost always applied to pre-trained models
(Meaning that the Network already has been trained using training data).
Quantisation is usually either applied as so called quantisation-aware training
or as post-training quantisation. While post-training quantisation involves just
the quantisation of the network itself, quantisation-aware training also involves
additional training after the quantisation ”so that [the neural network can]
adjust [..] to the newly quantized values.”[10]

The goal of quantisation is to reduce the storage and computational requirements
of neural networks at the cost of a loss in precision of the output layer. [10]
Good quantisation techniques have a very limited precision loss impact on the
output, while achieving a major reduction in either storage requirements or
computational requirements or both.

A neural network with quantisation is also referred to as a quantized
neural network. Quantisation can be achieved using a variety of techniques,
each with their own output set and specific advantages and disadvantages.

2.6 The Clipping Function

One very important and often used function for the quantisation of a neural
network is the clip-function [7]:

clip(x, u, l) = max(l,min(u, x)) (1)

The clip function limits the set of a value of x to a range between an upper
bound u and a lower bound l by ”clipping” values above u to u and values below
l to l or in other words: Replacing values larger than u with u and values smaller
than l with l.
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2.7 Reduced-Precision Networks

Reduced-precision networks are a special kind of quantized neural network,
where the output set of the quantisation is finite and set up in a way causing
the individual output values to be less precise than the input values. This is for
example the case when mapping floating point values to fixed point values or
integers. Or when limiting the range of possible integers, e.g. when applying the
clipping function. [10]

2.8 Filter Maps

Filter maps are convolutional layers of a neural network that act as filters.
They are often applied multiple times in succession and often there are multiple
different filters applied after each other. They differ from general convolutional
layers because they are not fully connected meaning not every input influences
every output and some outputs may not even be connected at all. Filter maps
enable the input data to conventional layers in convolutional neural networks
to be more usable since after applying a good filter the parts of the input data
relevant to the classification will be more highlighted, while those data parts less
important will be less dominant in the overall result.

2.9 Straight-Through Estimator

If the weights of a neural network are quantized in a way that limits the amount
of possible values to a set of finite values, we got a problem when trying to train
the network e.g when applying quantisation-aware training [10]:
There is no meaningful gradient function that we can apply during
backpropagation to ”train” the network. The straight-through estimator as
explained in [11] is a solution to this problem. It is an estimated continuous
gradient function which can be used to apply gradient descent and train the
network.

2.10 AlexNet

AlexNet is a specific eight layers deep convolutional neural network originally
trained for the ImageNet competition on image recognition which it subsequently
won. It has since them been trained on different datasets and used in research
papers as one example the demonstrate the effect of techniques introduced in
the papers.[6]

2.11 ResNet

A ResNet or a Residual Neural Network is a specific kind of neural network
which has some skip connections that ”bypass” some of the layers of the neural
networks, this means the for some values the original value is added to the
output of one or more subsequent layers before passing the result of the addition
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as an input to the next layer. They were introduced after the winner of the
next ImageNet competition after AlexNet won by including more layers - which
causes issues because errors in one layer can compound with each following layer.
ResNet’s won the following ImageNet competition.[5]

3 Wide Reduced-Precision Networks

3.1 Explanation

Wide reduced-precision networks or WRPN are one proposed solution to the
major resource requirements of modern neural networks, and more specific
convolutional neural networks, during execution as well as to storing the model.
The main issue is that modern neural networks use a large input layer and
high precision values in all layers, causing the storage requirements to store the
model parameters to be very large.

WPRN’s aim is to reduce these requirements like other reduced-precision
networks by limiting the range and precision of weights of the neural network.
Additionally different from other reduced-precision networks, WRPN also
quantize the activations which aims to further reduce the computational
requirements of the network. Since this causes a lot of precision loss in the
output layer compared to a conventional network WRPN include additional
filter maps to compensate for this loss.

”Although the number of raw compute operations increases as [...] the
number of filter maps in a layer [is increased], the compute bits required
per operation is now a fraction of what is required when using full-precision
operations”[1] This enables the use of cheaper and more scalable hardware,
which means that WRPN can still be less computationally expensive then
conventional full precision networks. WRPN requires some training for the
additional filter maps, this can be done before quantizing or by applying
quantisation aware training.

WRPN main contribution is the fact that it enables the usage of neural
network quantisation with all its benefits while being able to mitigate most
of, or in some cases even all the downsides that usually arise when applying
quantisation like a large loss in accuracy. This replaces the optimization for
minimal loss in accuracy after applying ’traditional’ quantisation techniques
with the optimisation of the reduction of the computational cost of the neural
network. Also it introduces the downsides of having to optimise for each
data set individually when applying the procedure, and the possibility of
higher computational costs than the non-quantized Network when improperly
optimising for the data-set.
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3.2 Quantisation Scheme

WRPN quantisation scheme works differently for weights and activations. It’s
quantisation scheme for weights it is given by:

wq =
1

2k−1 − 1
round((2k−1 − 1) ∗ clip(w, 1,−1))

Where wq is the quantized weight, w the original weight, round is rounding half
down and clip is the clipping function (1).

The quantisation scheme applied to input (activation) values is:

aq =
1

2k − 1
round((2k − 1) ∗ clip(a, 1, 0))

Where aq is the quantized input value, a the original input value, round is
rounding half down and clip is the clipping function (1).

Because this quantisation scheme is very general which might result in a
compounding error due to the increased number of filter maps, which results in
worse accuracy of the network than just applying quantisation. [1] circumvents
this issue by trying several different combinations of the 3 variables increase in
filter maps, bit-length of weights and bit-length of activations.

The upper bounds for these values are indirectly set by the computational cost
of the original network (if you include too many filters while not decreasing
the bit-lengths enough the performance of the WRPN can be worse than the
original network - in which case the whole process was useless). And the lower
bounds are directly set by the original amount of filter maps and 1 bit weights
and 1 bit activations. This is the lower bound because with less filter maps
then the original network the accuracy of the network would suffer even more
due to the quantisation then just quantizing the network and when using 1 bit
weights/activations we effectively perform binary connect and we can’t reduce
the precision of weights anymore then binary connect does.

This means that the optimal bit-lengths and scaling factor for filter maps
might differ greatly between different data sets which results in a lot of
experiments being necessary to apply the WRPN technique effectively.

4 Other Quantisation techniques

The idea of reducing precision of a neural network by quantizing it is not unique
to WRPN. This section will try to give an overview of some of the techniques on
which WRPN are based. These techniques are similar to WRPN since they limit
the precision of network weights by quantizing them, however WRPN uniquely
also quantize the input layer, and include extra layers to compensate for that.
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4.1 Binary connect

Similar to WRPN, neural networks using BinaryConnect(BC)[7] also reduce
the precision of the calculations. However BC’s main focus is decreasing
computational cost and storage requirements for the model when running it -
not during training. BC abuses the fact that the main computationally costly
operations during both backward and forward propagation of neural networks
are convolutions and matrix multiplications, both of which require a lot of
multiply-accumulate operations[7].

BC achieves a significant reduction of these costs by limiting the space of
possible weight values of the DNN to {-1,1}. Which makes it possible to replace
a lot of multiplications with simple additions and subtractions and weights can
now be stored in just a single bit per weight. This enables the use of simpler and
easier to scale hardware to compute the neural network. The paper[7] mentions
the use of fixed-point adders instead of multiply-accumulators as an example
for this.

The major benefit of the simpler hardware required to compute the neural
networks using BC is the fact that it is cheaper to run in a deployment. Or
a larger model can be run at the same cost as a neural network not running
BC. However these benefits come at a significant loss of precision of the neural
network.

Quantisation Method: The binary weights for BC are computed from the original
weights of a neural network by applying:

wb =

{
+1 with probability p = σ(w)
−1 with probability 1− p

with σ being defined as:

σ(x) = clip(
x + 1

2
, 0, 1)

and clip being the clipping function (1)

4.2 Ternary-weight networks

Ternary-weight Networks (TWN)[3] are based on neural networks using BC,
and share its goal of decreasing computational cost and storage requirements
of running the model. Similar to Networks using BC this is also achieved by
limiting the space of available values that are used as weights in the neural
network.

TWN’s try to reduce the significant precision loss that occurs in neural
networks using BC by also including 0 as an available value for weights. The
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main idea here is that this enables Networks to be(have) more similar to
conventional neural networks while retaining a similar factor of reduction in
computational costs and storage consumption as BC based Networks. TWN’s
inherit the capability of being computed on easier to scale and cheaper hardware
from BC based Networks - since the extra zero states only eliminates some of
the values that are added up in a node. And therefore does not significantly
affect the computational costs of running the neural network compared to BC.

Since the main goal of TWN’s is to more accurately depict the original
weights off a DNN then BC, Weights should be chosen by quantising as optimal
as possible. Therefore the Ternary Function used to quantize the weights is
more complicated then the one used by BC. The paper on TWN’s explains how
they ”solved” this optimisation Problem by modelling it in way that makes
it possible to transform to the Problem of optimising a single threshold value
which is then used to calculate the ternary weights by applying the following
formula:

wt =





+1 if w > ∆
−1 if w < −∆
0 else

Where w is the original weight, wt the ternary weight and ∆ is the threshold
value. The threshold value is the solution to the optimisation problem:

∆ = arg min
∆>0

1

I∆
(
∑

i∈I∆

|wi|)2 (2)

Where I∆ := {i||wi| > ∆,wi ∈ W} and W is the ordered set of all original
weights. The paper mentions that even though there is no straightforward
solution to this problem, under the assumption that weights are normal or
uniformly distributed the following is a very good approximation [3]:

∆ ≈ 0.75

|W | ∗
∑

w∈W

|w| (3)

4.3 Neural Networks with fixed point weights

Another approach to reduce the resource requirements of neural networks is
quantizing their weights by storing them as fixed point numbers with limited
precision. This works because ”high-precision computation in the context of
[machine] Learning is rather unnecessary”[8] since neural networks possess a
certain ”algorithm-level noise-tolerance”[8]. So we can save a lot of resources
when not performing computations at an unnecessary high floating point
precision over traditional non-quantized neural networks.

Because using fixed point numbers limits the precision over floating point
numbers we need to round to perform the conversion. [8] results show that
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choosing the right rounding function has a large influence on how accurate
and similar to the non-quantized neural network the quantized neural network
performs. They experimentally determined that stochastic rounding significantly
outperforms the naive approach of rounding to the nearest number, unless
a large amount of fractional bits is used for the fixed point representation.
This means if we want to achieve a significant reduction in computational and
storage requirements we want to use stochastic rounding. Which results in the
following quantisation scheme:

Given a chosen fixed point representation ⟨I, F ⟩ with I being the number
of integer bits and F being the number of fractional bits they define:

Round(x, ⟨I, F ⟩) =

{
⌊x⌋ with probability 1− x−⌊x⌋

ϵ

⌊x⌋+ ϵ with probability x−⌊x⌋
ϵ

where ϵ = 2−F is the smallest difference between two values in the chosen fixed
point representation.

They then use Round for the quantisation:

w⟨I,F ⟩ = Round(clip(w, 2I−1 − 2−F ,−2I−1), ⟨I, F ⟩)

Where w⟨I,F ⟩ is the quantized weight, w the original weight and clip the clipping
function (1).
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5 Comparison with other techniques

When trying to compare the different quantisation techniques we need to
compare their effectiveness both in reducing computation costs and memory
requirements as well as maintaining an accuracy as close as possible to the
original non-quantized neural network. For this we first look at the results of
prior research ([7],[3],[8]) and then compare it to the results that were found
in [1] Results with wide reduced precision Networks. Luckily for us [10] already
compares these 3:

Table 2 from [10]: ”A qualitative comparison of binary, ternary, integer/fixed
point, and mixed precision quantisation schemes”

Quantisation
Scheme

Accuracy Loss Advantages Disadvantages

Binary High Low cost. All
arithmetic done
via binary operations.
32× size compression
rate.

High accuracy loss.
Binary networks often
incur around 10%
accuracy reductions

Ternary Low - Moderate High compression
rate. Multiplications
done via binary
operations or capped
at two multiplications
per activation if
using asymmetric
scaling factors. 16×
compression rate.

Floating point
arithmetic. For
negligible accuracy
loss, ternary networks
use asymmetric
floating point scaling
factors, so they need to
perform two floating
point multiplications
per activation

Integer/Fixed
Point

Low Integer arithmetic.
All arithmetic done
via integer arithmetic,
which is much cheaper
than floating point
arithmetic.

Uniform precision.
For minimal accuracy
loss, the networks are
limited to the bit width
of most sensitive layer,
which is often 8 bits, so
the compression rates
are at most 4×.

Mixed Precision Low Custom precision.
Quantisation scheme
for each layer or
even row of weights
is tailored to their
precision sensitivity,
reaping the benefits of
binary, ternary, and
integer quantisation.

Large search space.
The search space for
which quantisation
scheme to use for
each layer or weight
row is exponential
in the number of
layers or weight rows,
respectively
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[1] finds that WRPN with double the amount of filter maps based on AlexNet
and the ILSVRC-12 dataset ”with 4-bits weights and 2-bits activations [exhibit]
accuracy at-par with full-precision networks. Operating with 4-bits weights
and [more then] 4-bits [for] activations surpasses the baseline accuracy”[1].
The paper also finds that ”with 4b operands for weights and activations
[...] reduced-precision AlexNet is just 49% of the total compute cost of the
full-precision baseline”[1].

[1] also includes results of applying WRPN techniques to ResNet. They
found that when doubling the amount of filter maps 4bit activations and 2 bit
weights were sufficient to be on-par with the baseline non-quantized network,
while using more than 2 bit weights outperforms the baseline network and using
2 bit weights and activations only caused a 0.2% loss in accuracy compared to
baseline.

This means that when using enough filter layers the accuracy loss of WRPN
is small to negligible. So in terms of accuracy loss WRPN seem superior to
techniques that apply quantisation just to the weights of a neural network. Also
WRPN are computationally cheaper like traditional quantisation techniques
when compared to conventional neural networks. However the paper also finds
that this reduction in computational cost is only possible when balancing the
precision reduction of weights and activations with the increase in filter maps.
Failing to do so properly actually results in an increased computational cost.

6 Conclusion

As we have seen WRPN can be an effective solution to the main issue of
quantisation, the Tradeoff between accuracy and meaningful reduction in
resource requirements. Common previous techniques either achieved a high
resource reduction or a minimal loss in accuracy - not both. This advantage of
WRPN however comes at the disadvantage that WRPN now have another trade
off instead which needs to be optimised for each dataset: The optimal precision
reductions (bit-lengths of the weights and activations) and scaling factor of
filter maps. If not optimised properly in the worst case the performance of the
WRPN can be even worse then the non-quantized network while having higher
resource requirements as well. This means WRPN require a lot of experimental
data on a specific data set to be applied to it effectively.

Nevertheless in our opinion the fact that these additional experiments
can be seen as part of the ”training” or the quantisation process means that
WRPN can be a great solution to reducing resource requirements of running a
convolutional neural network after training.
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Abstract. With the recent advances in artificial intelligence, neural
networks are becoming increasingly important. However, their
widespread deployment on resource-constrained devices such as mobile
phones and embedded systems is limited by their high memory and
computational requirements. Neural network quantization allows for
reducing the size and computational complexity of neural networks at the
cost of precision and performance. This paper provides an exploration
of the different techniques used for neural network quantization, with an
emphasis on Quantization-Aware Training, a method that incorporates
quantized parameters during the training process, where the network
learns to accommodate the reduced precision and maintain performance.
We will then look at Post-Training Quantization, which quantizes
the network after the training process, therefore offering a fast and
resource-saving method with the trade-off of lower accuracy.

Keywords: neural network, quantization-aware training

1 Introduction

Neural networks have been shown to be highly effective in various tasks,
ranging from natural language processing [10] to computer vision [13]. This
effectiveness, however, comes with a trade-off in complexity. According to [17],
as neural networks increase in complexity, caused by the number of parameters,
new challenges arise when it comes to deploying them on resource-constrained
devices, such as mobile phones and embedded systems. The high memory and
computational requirements for large neural networks limit their usability in
domains, where efficiency and low power consumption are important.

A promising solution to address these challenges lies in neural network
quantization. Part of neural network quantization is reducing the precision
of weights and activations in a network from floating point values (typically
32-bit) to lower bit-width representation, such as 8-bit integer values. By the
quantization of the network’s parameters, a significant reduction in memory
usage and computational complexity can be achieved [17].
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Despite its benefits, quantization has a major downside. According to [20] and
[14], it introduces a trade-off between complexity and accuracy. This is no
surprise because the parameters are mapped to a lower bit-width representation
during quantization and therefore have a lower precision, leading to a loss in
model accuracy. This adaptation necessitates developing and using algorithms
and techniques that can reduce the negative effects of quantization while making
sure that the model retains the speed and size enhancements suggested by the
overarching quantization concept [9].

In this paper, we will shine light on some of the techniques used to mitigate
the negative effects of quantization. We will mainly emphasize the so-called
Quantization-Aware Training, which involves training neural networks with an
awareness of the quantization process, allowing the models to adapt and optimize
their performance under reduced precision representations. In Section 2, we
will give a brief overview of any prerequisite knowledge, while emphasizing
neural networks. Section 3 will provide inside on the process of quantizing and
dequantizing values to be used in the techniques discussed in Section 4, where we
take a look at Quantization-Aware Training and compare it to another method
used for neural network quantization called Post-Training Quantization. Finally,
we will provide a general summary and conclusion.

2 Prerequisite Knowledge

In this section, we will 1) give an overview of neurons, 2) see how we can connect
multiple neurons to form large neural networks and 3) explore how we use the
back-propagation algorithm to train these neural networks.

2.1 Artificial Neurons

An artificial neuron is the smallest unit of a neural network [18]. Artificial
neurons are modelled in a way that reassembles biological neurons. Multiple
inputs get weighted and summed up in a linear combination. This combination
is then passed through an activation function to calculate the final output.
Figure 1 shows a graphical representation of a single neuron, indexed by j. Each
input value xi gets multiplied by its respective weight wij . All products are then
summed up using the transfer function. Usually, we add a bias value b to the
sum. The output of this linear combination is called the net input netj . The net
input gets passed through an activation function φ and if the value surpasses a
certain threshold θj , then the neuron fires and we get an output value oj . [23]
gives a mathematical definition of the net input via:

netj =

n∑

i=1

xi · wij + b.

The output of the neuron is defined as:

oj = φ(netj).
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Fig. 1. Graphical representation of one artificial neuron. Each input x1, ..., xn is
multiplied with its corresponding weight w1j , ..., wnj. The sum over all products is then
passed through an activation function φ to calculate the final output oj. Adapted from
[6].

There are multiple possible activation functions. Common choices are the binary
step function, the sigmoid function or the Rectified Linear Unit (ReLU) function.
Further information about activation functions can be found in [19].

2.2 Artificial Neural Networks

We can combine multiple artificial neurons to create a neural network [8].
A prevalent and easy neural network approach is the Multi-Layer Perceptron
(MLP). In an MLP, neurons are grouped into multiple layers. The input layer,
possibly multiple hidden layers, and one output layer. Each neuron in one layer
is connected to every neuron in the following layer, therefore the output of a
neuron acts as the input to every neuron of the consecutive layer. That way, the
MLP forms a directed acyclic graph (see Figure 2) and falls into the category of
feed-forward neural networks. With an MLP, and neural networks in general, it
is possible to model and learn any linear or nonlinear function, therefore making
it attractive for many application domains [1].

2.3 Training a Neural Network with Back-propagation

Neural Networks have the ability to learn through training [8]. A popular
learning method is Supervised Learning (SL). In SL, many training data samples,
consisting of an input and an expected output, are used to train a neural
network. To solve SL tasks, we can use a method called backpropagation
[21]. Backpropagation consists of multiple phases: During the so-called forward
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Fig. 2. Graphical representation of a Multi-Layer Perceptron with the input x1, x2, x3

and output o. The network has one input layer, two hidden layers and one output layer.

pass, the inputs xi from these data samples are passed through the network
and the network’s actual outputs oj are calculated. Each calculated output
is then compared to the expected output yj of its data sample. A loss is
computed through the difference between the desired and actual output. We
most commonly use the mean squared error function to calculate the loss, which
is defined as:

L =
1

n

n∑

i=1

(yj − oj)
2.

Training a neural net involves minimizing the loss function by adjusting the
network’s parameters. This is commonly done in the so-called backward pass,
using a procedure known as gradient descent. In every iteration, the algorithm
calculates the gradient of the loss function L with respect to each parameter.
Each parameter is then iteratively updated in the scaled negative gradient
direction. The scaling factor µ determines the step size by which a parameter
is updated. µ is commonly called the learning rate. Choosing the right learning
rate is important when training a neural network. We will not go into any more
detail about how to choose µ, however, [12] provides further information. An
exemplary iteration of the gradient descent algorithm for each weight is given
as:

wij,t+1 = wij,t − µ
δL

δwij,t
,

where wij,t+1 depicts the new weight at iteration t+1 and wij,t is the old weight
at iteration t. The parameters will be updated until the maximum amount of
iterations is reached, or the loss function converges to a minimum.
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2.4 Summary (Prerequisite Knowledge)

Neural networks have a lot of potential in many application domains. They
consist of neurons, that are combined in multiple layers. A network has an input
and an output. They can learn by minimizing the difference between the expected
output and calculated output through the adjustment of their parameters.

3 Introduction to Quantization

In this section, we will explore basic concepts of quantization. We will 1) take a
look at how to quantize and dequantize values, 2) discuss the difference between
uniform and non-uniform quantization and 3) distinguish between symmetric
and asymmetric quantization.

3.1 Quantizing Values

To quantize values such as weights and activations used in neural networks, we
need to define a function that maps a floating point value x ∈ (α, β) to its lower
precision integer representation. A popular quantization function, described in
[20] is the following:

Q(x) = Int(
x

S
)− Z, (1)

where Q is the quantization operator, S is a floating point scaling factor and
Z is the integer value that represents 0 in the quantization scheme. The Int(·)
function maps the floating point value x to some integer through rounding. An
example of the rounding function is the round-to-nearest, but other functions
are also applicable, which can be seen in [16]. The scaling factor S is the same
for all real values x, therefore Equation 1 is an example of uniform quantization.
This means the distance between quantized values is equally spaced and thereby
uniform (see Figure 3, left). It is also possible to vary the distance between each
quantized value (see Figure 3, right). This is called non-uniform quantization,
however, in this paper, we will only explore uniform quantization.

3.2 Symmetric and Asymmetric Quantization

The scaling factor S has been introduced in Equation 1 and is an important
parameter when choosing the right quantization scheme. In [20], the scaling
factor is defined as:

S =
β − α

2b − 1
,

where b is the quantization bit width, α and β define the so-called clipping
range of the real values, with α being the lower bound and β being the upper
bound of the clipping range. A term used for determining the clipping range
in [20] is calibration. [22] states that in practice, values x can fall outside the
clipping range (α, β). In this case, the resulting quantized value would fall outside
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Fig. 3. Comparison between uniform quantization (left) and non-uniform quantization
(right). Real values in the continuous domain x are mapped into discrete, lower precision
values in the quantized domain Q, which are marked with red bullets. Note that the
distances between the quantized values are the same in uniform quantization, whereas
they can vary in non-uniform quantization. Adapted from [9].

Fig. 4. Illustration of two symmetric quantization grids (signed/unsigned) and an
asymmetric quantization grid. s is the scaling factor. The floating point grid is depicted
in black and the integer quantized grid is in blue. Adapted from [17].
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the integer grid range (αq, βq). Therefore, it is necessary to clip the quantized
values. [17] proposes that, if we use signed integers, the range is defined as
(αq, βq) = (−2b−1, 2b−1 − 1). With unsigned integers, the range is defined as
(αq, βq) = (0, 2b−1). To include the clipping function in our quantization scheme,
we modify Equation 1 into:

Q(x) = clip

(
Int(

x

S
)− Z;αq, βq

)
, (2)

where clip(·) is defined as:

clip(x; a, c) =





a, x < a,

x, a ≤ x ≤ c,

c, x > c.

According to [9], symmetric quantization implies α = −β, which can be achieved
by choosing α and β with respect to the minimum and maximum values of the
input: −α = β = max(|xmax|, |xmin|) (see Figure 4, top). By using symmetric
quantization, the zero-point Z is mapped to 0, which is computationally less
expensive at inference time, according to [20]. Using the mapping Z = 0 simplifies
the quantization function in Equation 2:

Q(x) = clip

(
Int(

x

S
);αq, βq

)
.

In neural networks, where the target weights or activations are imbalanced,
e.g., the activation after ReLU that always has non-negative values, asymmetric
quantization provides a more accurate approach. Using asymmetric quantization,
the clipping range is not symmetric with respect to the origin (see Figure 4,
bottom). By choosing the minimum and maximum of the input values as the
clipping range, i.e., α = xmin, and β = xmax, this asymmetric quantization can
be achieved, given −α ̸= β [9].

3.3 Dequantizing Values

By defining a quantization function, it is also necessary to define its inverse
function, which calculates the original real value from the quantized value.
[20] defines this dequantization function as:

x̂ = S · (Q(x) + Z). (3)

Using symmetric quantization, Equation 1 can again be simplified to:

x̂ = S ·Q(x).

As said in [17], it is essential to note that the dequantized value x̂ might not
equal the original real value x. This is due to the rounding function Int(·)
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introducing a bias and thereby some error that cannot be recovered by the
dequantization function.

We can combine Equations 2 and 3 to get a general definition for the quantization
function as:

x̂ = S ·
[
clip

(
Int(

x

S
)− Z;αq, βq

)
+ Z

]
. (4)

3.4 Summary (Introduction to Quantization)

We introduced a quantization scheme, that can quantize real values into a
smaller bit representation. We can quantize values uniformly or non-uniformly.
This refers to the distance between the quantized values. We can also choose
between symmetric or asymmetric quantization. This sets the clipping range
of the quantized values, with symmetric quantization mapping the zero-point
of the real values to 0. We can dequantize values to go from a low bit width
representation to the original value, however, this introduces some bias, due to
a rounding operation in the quantization process.

4 Quantization Methods

In this section, we will explore two main methods used for neural network
quantization. We will 1) give an overview of Quantization-Aware Training (QAT)
and 2) discuss another approach called Post-Training Quantization (PTQ). For
both methods, [20] suggests using a pre-trained model, to be more effective at
minimizing accuracy loss when quantizing a neural network. The key difference
between QAT and PTQ is, that QAT requires retraining the network, to learn
to minimize the quantization error introduced during the quantization process.
PTQ can be used without retraining the model, which is beneficial when there
is not enough training data available.

4.1 Quantization-Aware Training

QAT is a method for neural network quantization that involves retraining a
pre-trained neural network with respect to quantized parameters such as weights
and activations. QAT simulates the quantized parameters during the forward and
backward pass, by injecting quantization nodes into the computation graph, to
introduce the quantization error and learn to minimize it. Figure 5(b) shows the
computation graph with quantization nodes. These nodes are removed during
inference (see Figure 5(a)). During the backward pass, we use floating point
values to calculate the gradients but run into a problem due to the quantization
function, defined in Equation 4, being non-differentiable. The quantization
function uses a rounding function Int(·) which has a gradient that is zero almost
everywhere. This necessitates an approximation of the gradient. [4] proposes an
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Fig. 5. (a) shows a computation graph for integer-arithmetic-only inference of a
quantized neural network. The network has been trained using simulated quantization,
shown in (b). During training, quantization nodes are injected into the computation
graph following the weight and activation nodes. These quantization nodes get removed
during inference. Adapted from [11].

estimator called the Straight-Through-Estimator (STE), which approximates the
gradient of the rounding function as:

∂

∂y
Int(y) = 1, ∀y ∈ R. (5)

According to [17], Equation 5 enables calculating the gradient of the quantization
function 4. Note that we are using symmetric quantization, so Z = 0, x is the
input and (α, β), (αq, βq) determine the clipping ranges for the float and integer
values. We can now calculate the gradient of the quantization function 4 with
respect to the input x as:

∂x̂

∂x
=

∂

∂x

(
S · clip

(
Int(

x

S
);αq, βq

))

= S · ∂

∂x

(
clip

(
Int(

x

S
);αq, βq

))

=





S · ∂Int(x/S)
∂(x/S) ·

∂(x/S)
∂x if α ≤ x ≤ β,

S · ∂
∂xInt(αq/S) if x < α,

S · ∂
∂xInt(βq/S) if x > β,

=





1 if α ≤ x ≤ β,

0 otherwise.
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The STE enables us to use the quantization function during the forward pass and
then, as the name suggests, we can estimate straight through the quantization
function and are therefore able to calculate the gradient during the backward
pass (see Figure 6). [17] proposes, that we can use the STE to also calculate the
gradient with respect to the other quantization parameters, Z and S. By making
these quantization parameters learnable, we can achieve better accuracy [5], [7].
We calculate the gradient with respect to the scaling factor S as:

∂x̂

∂S
=

∂

∂S

(
S · clip

(
Int(

x

S
);αq, βq

))

=





− x
S + Int( x

S ) if α ≤ x ≤ β,

αq if x < α,

βq if x > β.

In Section 3.1, we introduced the zero-point value Z as an integer. However,
to make this parameter learnable, we first have to convert it into a real number
and then apply the integer rounding operator. That way, we again get a modified
quantization function as:

x̂ = S ·
[
clip

(
Int(

x

S
)− Int(Z);αq, βq

)
+ Int(Z)

]
.

The gradient with respect to Z can now be calculated using the STE:

∂x̂

∂Z
=

∂

∂Z

(
S ·

[
clip

(
Int(

x

S
)− Int(Z);αq, βq

)
+ Int(Z)

])

=





S ·
[
∂Int(x/S)

∂Z − ∂Z
∂Z + ∂Z

∂Z

]
if α ≤ x ≤ β,

S ·
[
∂αq

∂Z + ∂Z
∂Z

]
if x < α,

S ·
[
∂βq

∂Z + ∂Z
∂Z

]
if x > β,

=





0 if α ≤ x ≤ β,

S otherwise.

The above equations all use the STE, it is however possible to use different
estimators. [15] proposes an alternative optimization technique, termed
alpha-blending, which quantizes neural networks to low precision using
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Fig. 6. Forward and backward pass using the Straight-Through-Estimator. During the
forward pass, the input x is quantized, which involves applying the non-differentiable
quantization function. During the backward pass, the Straight-Through-Estimator is
used to approximate the gradient of the quantization function as the identity function
in the clipping range (α, β) and 0 everywhere else. Adapted from [22].

stochastic gradient descent. Alpha-blending avoids STE approximation by
replacing the quantized weight wq in the loss function with the affine
combination (1 − α)w + αwq of the quantized weight and the corresponding
full-precision weight w with non-trainable scalar coefficient α and (1 − α).
During training, α is gradually increased from 0 to 1. Weights are updated
through the affine combination’s full precision term, (1 − α)w. That way, the
model is converted from full precision to low precision progressively.

QAT offers high accuracy, however, according to [20] it comes with a trade-off.
Due to the necessity to retrain the model throughout many epochs, we get
high training times with correspondingly high computational retraining costs.
A sufficient amount of training data is also essential to prevent the net from
overfitting. In environments, where such a quantized network is deployed for
long periods of time, it has been proven, that the hardware and energy efficiency
gains make up for the trade-offs, that come with using QAT. [24] conducted a
case study to examine resource cost and processing speed when using quantized
parameters (INT8) instead of parameters in the FP32 format during training
(see Table 1). Results reveal that using quantized parameters can effectively
alleviate system overhead while not downgrading the model quality.
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Table 1. System performance using quantized INT8 parameters and FP32 parameters.
Adapted from [24].

4.2 Post-Training Quantization

A different method used for quantizing neural networks is PTQ [20]. PTQ is
often used when there is not enough training data available or the training data
is unlabeled [9]. Unlike QAT, PTQ quantizes the network without the need to
retrain it. This makes PTQ a swift method without any significant overhead.
According to [20], PTQ requires to first calibrate the quantization parameters
based on any available calibration data and then to quantize the model using
the quantization scheme explained in Section 3. However, networks quantized
using PTQ have a lower accuracy and precision than networks quantized with
QAT (see Table 2). To mitigate this accuracy loss, many approaches have been
explored. For example, [2] proposes a bias correction, due to an inherent bias
in the mean and variance of the weight values following their quantization.
Analytical Clipping for Integer Quantization is a method that analytically
approximates the optimal clipping range [3]. More approaches can be found
in [9].

Table 2. A qualitative comparison of the two main quantization procedures. Adapted
from [20].

4.3 Summary (Quantization Methods)

We explored two methods of quantization: QAT starts with a pre-trained model,
which then gets retrained by injecting quantization nodes into the training
process. This simulates quantized parameters, thereby enabling the network
to learn the quantization error and minimize it. QAT commonly uses the
Straight-Through Estimator, which is needed to perform back-propagation on
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Fig. 7. Different pipelines using QAT or PTQ for neural network quantization. The
calibration data can be either a subset of the training data or a small set of unlabeled
input data. Adapted from [9].

the quantization scheme by estimating the gradient of the non-differentiable
function. PTQ involves calibrating and quantizing a network without retraining
it. That way, we save a lot of time, however, with a trade-off of lower precision
due to the quantization error.

5 General Summary and Conclusion

In conclusion, neural network quantization, along with techniques such as
QAT and PTQ, has shown to be promising for optimizing and deploying deep
learning models in resource-constrained environments. Through the process of
quantization, which involves reducing the precision of weights and activations,
neural networks can achieve significant reductions in memory, computational
requirements, and energy consumption, while maintaining acceptable levels of
accuracy.
QAT has proven to be an effective approach for training neural networks to
mitigate the loss of precision during quantization. By simulating the quantization
process during training, the network learns to adapt to lower precision, ensuring
that the quantization error is minimized. That way, we can achieve a balance
between accuracy and resource efficiency.
PTQ, on the other hand, involves quantizing a pre-trained neural network
without retraining. This approach provides a convenient way to apply
quantization to existing models, avoiding the need for extensive retraining.
As research and development in this field continues, we can expect quantization
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to play a significant role in bringing the possibilities of neural networks to devices
with limited resources.
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Abstract. Quantization of neural networks is currently one of the most
promising and well researched approaches to neural network compression
and acceleration we have. It is a diverse research field tending in the
direction of customizing and adapting ever more and creative parameters.
The Parameterized Clipping Activation (PACT) quantization scheme
was a contribution to this trend in that it opened up the clipping and
quantized range of activations to be adapted during training.
In this paper, we give an overview over the quantization research field
and detail the PACT algorithm as an example. The goal is to present
materials in an approachable way and act as an introduction to the field
with an in-depth example constituted by the PACT algorithm.

1 Introduction

Deep Neural Networks have revolutionized the fields of image, audio and video
processing [14]. As phrased in [14], ”Deep learning [has been] making major
advances in solving problems that have resisted the best attempts of the
artificial intelligence community for many years”. However, the size of deep
neural networks has increased to the point where they can be not only hard
to train, but also hard to deploy, specifically concerning their memory footprint,
execution speed and training requirements. [28, 13] This hinders their use in
resource-constrained environments, such as ”electronic devices and services,
from smartphones, smart glasses and home appliances, to drones, robots and
self-driving cars” [19]. Extensive research is directed towards studying several
approaches to mitigate this problem [6]. Examples consist of ”channel pruning,
[which] directly reduces feature map width [...] [and] shrinks a network into
a thinner one” [12]. In Channel Pruning, redundant channels are eliminated
by using sparsity-constraints, selecting channels to remove in a way which
minimizes the error [33]. Similarily, network sparsification ”attempts to reduce
the number of operands [neurons and weights]”, e.g. making a ”heuristic search
of unimportant elements” in the network [7]. Other approaches for model
compression are ”Knowledge distillation [, which] is a popular technique for
training a small student network to emulate a larger teacher model” [25], neural
architecture search as ”the process of automating architecture engineering” [9],
or lastoly dedicated architectures such as SqueezeNet [13].
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1.1 Introduction to Neural Network Quantization

One promising and well-researched approach to network compression is
quantization of neural networks [28]. Here, the overarching idea is to replace
computations using 32-bit floating point numbers with computations using
numbers of smaller bit-width, usually in a different representation. This
reduces the memory footprint and the computational cost of the network
[28]. Conceptionally, the ”Quantization of weights is equivalent to discretizing
the hypothesis space [the mappings from the input space to the output
space [2]] of the loss function with respect to the weight variables” [6].
Therefore, the approach trades ”accuracy for lower precision to achieve smaller
models” [28], i.e. it trades computational efficiency for the effectiveness (and
applicability) of the gradient descent during backpropagation. There exist
numerous approaches to quantization largely differing in bit-widths they
require and number representations they use. Inherently, they exhibit different
capabilities in compression and inference speed increases on one hand and
inference accuracy on the other hand. Therefore, the goal for research in the
field is generally minimizing the accuracy loss that comes from quantizing and
pushing the field to make those approaches enabling the largest compression
potential and computational efficiency viable [28].

1.2 Overview of the Pact Algorithm

In works previous to [6], it was difficult incorporating the Linear Rectified
Unit (ReLU) activation function (see section 2.2) effectively in quantization.
The problem was that when ”the output of the ReLU function is unbounded,
the quantization after ReLU requires a high dynamic range” [6] and when the
output was clipped to become unbounded, approaches would ”not fully utilize
the strength of back-propagation to optimally learn the clipping level because all
the quantization parameters are determined offline and remain fixed throughout
the training process” [6][3]. Other research did not use ReLU for the activation
function in favour of leaving the threshold function unspecified but requiring its
output range in [0; 1), which enables straightforward quantization [32]. However
ReLU has proven very effective in Convolutional Neural Networks (CNN) (see
section 2.1) because it leaks the gradient in the positive range through to previous
layers during back propagation [21].

In order to preserve the effectiveness of ReLU, the PACT algorithm
introduces a similar activation function which clips the output based on a
parameter learned during training. As such, it introduces a clipping range
dynamically per layer, which is meant to prevail the benefits of ReLU, while
enabling effective quantization. More specifically, it identifies the need for varying
quantization scales in ReLU due to large variations in the activation amplitude
and consequently large variations in the optimal quantization ranges across the
network [6].

222



Neural Network Quantization and PACT 3

1.3 Objectives and Audience

This paper gives an overview over quantization ideas and approaches.
Afterwards, we first introduce concepts relevant to the PACT algorithm as
presented in [6] and subsequently explain the algorithm in a more elaborate and
approachable way than the original paper. It is intended for readers with a basic
understanding of neural networks but no previous experience with quantization.
The paper is structured as follows: Section 2 provides an overview of quantization
and branches out to techniques neighbouring those applied in [6]. Section 3
introduces the concepts relevant for understanding and motivates the PACT
algorithm. Section 4 provides a detailed explanation of the algorithm. Section 5
discusses extensions and variations of the algorithm published since its release.

2 Background of Neural Network Quantization

The following section constitutes a recollection of basic concepts and
terminology. It is intended to be a primer for readers already familiar with the
concepts. It is not intended to contain comprehensive explanations of the topics.

2.1 Overview of Convolutional Neural Networks

A neural network is typically organized in layers, with each layer containing a
set of nodes that process information from the previous layer. When executed,
the first layer (input layer) of the network assumes the values of the input of
the network while the values of the last layer (output layer) are interpreted
as the output. Neural networks are trained to minimize a loss function with
respect to the actual and the desired output of the network. During so-called
backpropagation and gradient descent, the gradient of the network’s parameters
with respect to the loss function is calculated and then used to update
the network’s parameters in the direction of minimal loss. By repeating this
algorithm, ideally, the network finds a minimum of the loss function which
corresponds to a satisfying predication performance of the network [23].

Convolutional neural networks (CNNs) are a type of neural network
successfully used in image recognition tasks [11]. A CNN contains convolutional
layers which convolve a set of learnable kernels across each channel of their
input. Ideally after training, each kernel detects specific features such as edges,
corners, or textures of the input image. By sequencing multiple convolutional
layers, CNNs can learn complex and abstract features [31].

In a fully connected layer, all n nodes of one are connected to all m nodes
of the previous layer. The output is calculated according to a weight matrix
W ∈ Rm×n and a bias vector b ∈ Rn. Both are parameters of the network. The
output is then given by Wx+ b, where x is the vector of activations of the nodes
in the previous layer. The output is then fed through an activation function
introducing non-linear properties to the networks transformations, allowing it
to learn complex data patterns [24]. For the activation functions, we will only
discuss ReLU in this article.
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2.2 Loss function and Gradient descent

The loss function in Neural networks is used as a quality measure for the
predictions a neural network makes. It takes the networks’ and the desired
predictions of a network as inputs and calculates a measure for their disparity. By
offering a quantifiable measure of how closely the network matches the desired
predictions, it presents an objective whose minimization by gradient descent
represents aligning the network’s transformations to the desired ones [27].

Backpropagation with gradient descent is the process of adjusting the models
weights to minimize the loss function. It calculates the gradient of the loss
function with respect to each parameter by recursively calculating previous
layers’ based on the gradients calculated for successive layers. Along the way,
it adjusts the parameters to decrease the loss function based on the calculated
gradient [24].

ReLU Activation Function ReLU is an activation function which is used in
neural networks. It is defined as

h(x) = max(0, x) (1)

[21] and performs particularly well because it allows the gradient to propagate
through layers of the neural network [11]. [6] use a variant of ReLU which is
bounded by a parameter α learned during training. As such, their contribution
can be boiled down to enabling ReLU activation function to be used effectively
in a quantization context.

2.3 Introduction to Quantization Techniques

The representation of numbers within computers provides the basis for
understanding quantization. Often, neural networks ”use 32-bit floating point
data types to represent their parameters as well as all of the computations
involved with inference, meaning they require expensive floating point units
to run” [28]. When applied to neural networks, quantization encompasses
the reduction of these numerical representations’ precision, shifting from
n-bit precision to smaller m-bit precision. This transition can lead to a
notable reduction in memory usage and computational requirements, a critical
consideration for implementing neural networks on resource-limited devices [28,
19].

Different numerical representations can be used during quantization:

1. Floating Point Representation: Numbers are represented using scientific
notation, e.g. according to IEEE floating point standard using 32 bits. They
provide a broad dynamic range and higher precision for values closer to 0.
However, multiplication is more complicated and costly than alternatives.
[28].
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2. Fixed Point Representation: Numbers are represented with a fixed number
of digits before and after the decimal point. Multiplying two numbers is
efficient because we can first multiply the representations as if they were
integers and then shift the bits to align the decimal point [28].

3. Dynamic Fixed Point Representation: ”Dynamic fixed point attempts to
meet floating point and fixed point in the middle. [...]. Dynamic fixed point
employs several scaling factors that are shared among a group of values, and
these scaling factors are dynamically updated as the statistics of the group
changes” [28].

4. Integer Representation: Only integer values are represented, providing
straightforward calculations but naturally only integer precision, which can
hamper accuracy [28].

5. Binary and Ternary Representation: Numbers are represented using only two
(0 and 1) or three (-1, 0, and 1) values respectively. This yields very good
compression ratio and enables hardware optimizations/simplifications [28,
16].

Additionally, the process of quantization can adopt either a uniform
or non-uniform approach and can be symmetric or asymmetric. Uniform
quantization maintains equal intervals between each quantization level, while
non-uniform quantization permits variable intervals [28, 19, 15]. In symmetric
quantization, 0 is quantized to zero. For asymmetric, also called affine
quantization, this restriction is lifted [19].

[6] use uniform and symmetric quantization. It is prefaced with a clipping
function (resembling ReLU) and quantizes from the clipping range [0, α] in turn
to the quantized range [0, α] and use fixed-point representation with constant k
bits precision.

2.4 Neural Network Quantization: Goals, Benefits and Limitations

When applying quantization to a neural network, the goal is generally to
empower running on resource-constrained environments [28]. The problem
without network compression often lies in network size, inference latency and
energy consumption [28]. Also, quantization can enable hardware optimizations
for some specific number representations which would not be possible
conventionally [32, 16].

By network size or memory footprint of a network, we refer to the amount
of data required to store the model parameters. As models can have millions
of parameters filling about 100MB [5] their deployment can be a challenge
on devices with restricted memory capabilities, e.g. on the edge. Also, a
large memory footprint can me a major hindrance in applications where the
model is transmitted across a network, e.g. image recognition models in cars
[13]. Quantization addresses this problem by reducing the size of the model
parameters thereby decreasing the overall memory footprint of the entire model.
[28]
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As quantization reduces bit-widths and ideally simplifies the number
representation, operating on them naturally becomes cheaper. Also, the
quantized representations can enable special optimizations, e.g. for binary
quantization, dot product operations can be implemented using only bitshifts
[32] or for ”ternary weights[,] one can get rid of the multipliers and use adders
instead” [16]. For the same reason, inference on the quantized networks save
energy [28]. For instance, an adder component on a circuit board for 32-bit
floating point numbers consumes 30 times more energy than an 8-bit adder
component [5].

2.5 Limitations and Challenges in Conventional Quantization
Techniques

Quantization techniques, while beneficial in minimizing the memory footprint
and computational costs of neural networks, also present their own set of
challenges. The most prominent among these are accuracy loss and a discrete
search space which needs to be worked around and generally results in slower
converges during training.

At the time of writing this, quantizing a network can still lead to 20% to
30% decrease in accuracy even for the best choices in the quantization scheme
[28]. Usually, using fewer bits sacrifices accuracy. This trade-off between model
accuracy and computational efficiency is a fundamental challenge in neural
network quantization [28].

When quantizing a neural network, the parameters are mapped to a discrete
set of values. As a result, the gradient becomes trivial almost everywhere and
the traditional gradient descent would not progress. To combat this, alternative
techniques to the analytical gradient descent are introduced, often leading to
more complex optimization landscapes (e.g. the search space grows exponentially
with the number of layers when using mixed precision quantization [8]). This
makes the process of finding a good local minimum more challenging and
ultimately results in slower convergence and lies at the root of the accuracy
degradation [28].

2.6 Overview of existing Neural Network Quantization Techniques

Neural network quantization methodologies primarily categorize into two types:
Quantization Aware Training (QAT) and Post-Training Quantization (PTQ).
QAT integrates quantization into the training phase, thereby enabling the
network to adapt to the quantization errors during training. On the contrary,
PTQ applies quantization after the training process has been completed.
This method is more effective during training since the search space remains
continuous, albeit the sudden introduction of quantization can lead to significant
performance loss, as the model has not been equipped to adjust to the
quantization errors during the training phase [28].

Both QAT and PTQ employ a range of quantization strategies that largely
match the general quantization techniques discussed in section 2.3. Uniform
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quantization refers to evenly spaced quantization levels, while non-uniform
quantization adjusts the levels based on the distribution of weights, potentially
providing higher precision only where it is needed. However, this non-uniformity
makes operations more complex as it generally carries along an additional
normalization step before numbers can be operated together [15]. Another
promising approach is mixed precision quantization [28]. It varies and determines
custom bit-widths where needed: With mixed precision quantization, ”each
layer has a tailored bit width and precision because mixed precision recognizes
that some layers may benefit from more bits whereas others can afford to use
fewer bits” [28]. [8] demonstrate one example for employing mixed precision
quantization effectively.

As the search space becomes discrete when using quantization, the standard
gradient descent cannot be employed meaningfully. Two solutions for this
problem are introducing a proxy value for the analytical derivation. These are
the popular [29] Straight-Through-Estimator (STE) or the backpropagation
approach in Monte-Carlo-Quantization (MCQ). The former approximates the
discrete quantization function with a similar differentiable function and delegates
the gradient of the former to the gradient of the latter [1, 29]. In contrast, Monte
Carlo Quantization (MCQ) introduces a stochastic component to the gradient
estimation process, approximating the gradient using the Monte Carlo method
[17].

3 Overview over the PACT Algorithm

3.1 Summary

The PACT algorithm consists of an activation function PACT (·) based on
ReLU and the subsequent quantization operator. This operator is similar to
quantizek proposed by [32] but scales the quantization range by a parameter α.
This parameter distinguishes the approach from other quantization schemes [32,
16] since it allows dynamically adapting the quantization scale to the problem
domain and the locale in the neural network [6]. α is a parameter of the search
space and is optimized during training.

In this section, we will first introduce prerequisite knowledge which is not
original in [6]. Afterwards, we will present the algorithm in detail and discuss
nuances and empirical recommendations presented by the authors.

3.2 Technical Concepts used in the Pact Algorithm

Regularization Regularization is a technique used to prevent overfitting [30].
Overfitting, in turn, is a ”fundamental issue in supervised machine learning
which prevents us from perfectly generalizing the models to well fit observed
data on training data [sic], as well as unseen data on testing sets”. The problem
entails that ”the model performs perfectly on [the] training set, while fitting
poorly on testing sets” [30]. Generally, this phenomenon is caused either by the
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model learning noise in the training data or by the model’s parameter set being
complex enough to fit the training data so accurately that it does not generalize
meaningfully to data not in the training set [30].

Generally, the goal of regularization is to ”minimize the weights of the
features which have little influence on the final classification” [30]. In practice,
this is accomplished by augmenting the loss function by an additional term which
penalizes large weights. For L1 and L2 regularization respectively, the regularized
loss function c̃(ω,X, y) becomes

L1: c̃(ω,X, y) = c(ω,X, y) + λ
n∑

i=1

|ωi| (2)

L2: c̃(ω,X, y) = c(ω,X, y) + λ
n∑

i=1

ω2
i

︸ ︷︷ ︸
regularization term

(3)

where ω =




ω1

ω2

...
ωn


 are the parameters of the network, X is the training set, y

is the labelled data and λ is the regularization coefficient dictating the strength
of the regularization effect. Since the parameter updates during backpropagation
always follow the gradient of the loss function in the decreasing direction,
the regularization term ”provides incentive” for the parameters not to grow
extremely large. This can prevent features from being overrepresented in the
model due to the parameters of the feature contributing excessively to the output
of the model [30].

Backpropagation on discrete functions: Straight Through Estimator
As mentioned in section 2 the gradient of a discrete function is everywhere either
zero or undefined [29, 19]. This is a problem in neural network quantization [1]
because the functions used to quantize the weights, activations or gradients is
discrete by definition.

However, the gradient is necessary to update the parameters (e.g. the weights)
of the neural network during training. In particular, if the incoming gradient for
a neuron or a convolution kernel is zero, the parameters would not change no
matter the learning rate. Ideally, you would want the parameters to move closer
in the direction whose next quantization level decreases the loss function. PACT
uses the Straight Through Estimator (STE) to approximate this judgement [6],
which, for uniform quantization, generally approximates the derivative of the
quantization with the derivative of the identity function [1, 29, 19].

The Quantize Operator [32] present an operator which implements a
quantization function for the forward pass and an STE for the backward pass.
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This operator is similar to the following operator, which [6] append to their
custom activation function. Adhering to their notation, [32] define the quantizek
operator as follows:

FORWARD: xq =
1

2k − 1
round

(
x ·

(
2k − 1

))
(4)

BACKWARD:
∂c

∂x
=

∂c

∂xq
(5)

where x is the input to the quantization function, xq is the quantized output,
k is the number of bits used to represent the quantized value and c(·) is the loss
function.

We first observe that, during the forward pass, this operator implements a
symmetric uniform quantization operation over the clipped and also quantized
range x, xq ∈ [0, 1]. Second, we observe the application of an STE for the
backward pass. By rewriting the equation to

∂c

∂xq

∂xq

∂x
=

∂c

∂x
=

∂c

∂xq
(6)

and deriving:

∂xq

∂x
= 1 (7)

we see the resemblance of the STE in its canonical form for uniform quantization
[29].

Having defined the behavior of quantizek for the backward pass, we can
use it in training a model. However, the quantization range is fixed to [0, 1] and
the quantization step size is fixed to 1

2k−1
. Consequently, it assumes a bounded

activation function h(·) which ensures activations fall in this range [32]. This
is a problem because the quantization range and step size are not adapted to
the problem domain. For example, if the input to the quantization function is
always in the range [−0.5, 0.5], the quantization range [−1, 1] is unnecessarily
large. This results in an unnecessary loss of precision. When ReLU is used, the
range of activation is [0, inf] [6]. Attempting to use this as the quantization
range for a uniform quantization yields an infinitely large step size, making
the operation impossible in practice. This problem will be solved by the PACT
activation function, which uses a threshold function akin to ReLU but bounded
by a parameter α which is learned during training.

3.3 Principles and Motivation of the Pact Algorithm

Those are the techniques and topics relevant to the PACT algorithm. In the
following section, they will be used to construct a quantization scheme which
enables the use of an activation function akin to ReLU and enables a model
during training to adjust the quantization scale used in quantizing the activations
according to a specific model’s and problem domain’s requirements.
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4 Algorithm Details

4.1 The PACT Activation Function

As stressed in the previous section, the PACT algorithm is based on the idea of
encorparating ReLU into a framework which quantizes activations. [6] propose
the PACT activation function to serve this purpose. They define PACT : R →
[0, α] as

PACT(x) =





0 if x ∈ (− inf, 0)

x if x ∈ [0, α)

α if x ∈ [α, inf)

(8)

where α ∈ (0, inf) is a learnable parameter. Note that the PACT function is
equal to ReLU appended to another clipping function whose clipping range is
[0, α].

As previously stated, the idea is to leverage the training capabilities of the
model to adjust α in such a way that the clipping range is the value range which
carries the most ”meaning” and does not disturb the inference capabilities of
the network [6].

4.2 The PACT Function in the Backward Pass

Before covering the quantization-aspect of the PACT algorithm, we first look at
the PACT function itself in more detail.

While its use in the forward pass is expressed by its definition, we need to
derive its gradient in order to use it in the backward pass. Without quantization,
using the PACT function in the backward pass is trivial. Note that we need the
gradient of the loss function with respect to x but that we can calculate this

gradient ∂c
∂x = ∂c

∂PACT (x) ·
∂PACT (x)

∂x by using the chain rule and the derivative

of PACT (x) with respect to x.
Whilst not being differentiable in x = 0 and x = α, we can calculate the

derivative of PACT based on its piecewise derivatives.

∂PACT(x)

∂x
=





0 if x ∈ (− inf, 0)

1 if x ∈ [0, α)

0 if x ∈ [α, inf)

(9)

As such, the derivative of PACT behaves akin to the derivative of ReLU for
x ∈ (− inf, α], only for x ≥ α the derivative is zero instead of one. Note that
ReLU’s supposed property of being able to pass the gradient through to previous
layers is conserved for x ∈ (− inf, α). Note further that conceptually, this range
(− inf, α) is meant to be the ”relevant” value range for values passed into the
function so ideally, the deviation from ReLU in the range x ≥ α does not hamper
the models training and inference capabilities significantly.
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4.3 Training the parameter α

The parameter α is trained in the same way the other network parameters are
learned by minimizing the loss function and by using gradient descent. This
implies that we need to be able to calculate the derivative ∂c

∂α of the loss function
with respect to α. Recap that after obtaining this derivative, we can adjust α
in the opposite direction to decrease the loss function further. Also recap that
the derivative of the PACT function with respect to α is enough to infer the
derivative of the loss function according to the chain rule. Without quantization,
this derivative is calculated similarly to the gradient with respect to the input
vector x above [22]:

∂PCACT

∂α
(x) =





0 if x ∈ (−∞, 0)

1 if x ∈ [0, α)

0 if x ∈ [α,∞)

(10)

When writing the PACT and the ReLU function as

FORWARD: ReLU(x) = max(0, x) (11)

BACKWARD:
∂ReLU

∂x
(x) =

{
0 if x < 0

1 if x ≥ 0
(12)

FORWARD: PACT(x) = max(0,min(α, x)) (13)

BACKWARD:
∂PACT

∂x
(x) =





0 if x < 0

1 if x ≥ 0 and x ≤ α

0 if x > α

(14)

their resemblance becomes apparent.
As we can see, the approach and calculations for incorporating the PACT

function into a model without quantization is trivial. Following, we will look at
how [6] encorparates this quantization into their algorithm.

4.4 Quantizing after PACT

[6] contribution is an improved approach to quantizing activations in CNNs.
In the last section, we looked at the general activation function PACT. In this
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section, we will look at the quantization mechanism they combine with this
activation function.

PACT assumes a constant bit-width k which is used for the fixed-point
number representation in their model [6].

Let y be the activation after applying the PACT function. Let yq be the
output after quantization, then yq is calculated using

yq = round(y · 2k − 1

α
) · α

2k − 1
(15)

Therefore, the activation y is quantized to the nearest value in the range [0, α]
which is representable using k bits. The quantization is done by first scaling the
input y to the range [0, 2k − 1] and then rounding it to the nearest integer.
The result is then scaled back to the range [0, α]. As discussed previously, this
represents a uniform and symmetric quantization akin to the quantizek operator
in [32]. The difference is that quantizek quantizes values x ∈ [0, 1] while the
above operation quantizes values in the range x ∈ [0, α] [6, 32]. As this range
depends on the trained parameter α, the same bit vector b almost always encodes
different real numbers in different training epochs because α changes.

4.5 Analyzing the quantization

Briefly, we want to demonstrate how to interpret the quantized values. Ideally,
we could assign each quantization level to one possible configuration of our k-bit
number. E.g, if (b1, . . . , bk) ∈ {0, 1}k is an arbitrary bit-vector, we would match

the quantized value yq = α
2k−1

·∑k
i=1

(
2i−1 · bi

)
∈ {0, α

2k−1
, 2α
2k−1

, 3α
2k−1

· · · , α} to
it. Note the scaling factor α

2k−1
to the integer value.

[6] mention they use fixed-point multiply-accumulate (MAC) [19] for their
experiments. However, fixed-point numbers require the scaling factor to be a
power of 2 [28]. However, the scaling factor α

2k−1
can be arbitrary. It remains

unclear to us how the authors implemented their calculations exactly.
They do, however, recommend to share the value of α per layer. Amongst

yielding good accuracy [6] and working well, ”this choice also reduces hardware
complexity because α needs to be multiplied only once after all MAC operations
in reduced-precision in a layer are completed” [6]. Also, they recommend to
initialize α larger than expected as reducing α in combination with a regularizing
it worked better than the other way around as per the observations by the
authors. [6].

4.6 Using the PACT Function in Backward Pass

So far, we have discussed the application of the PACT function in the forward
pass, specifically in combination with quantization. We have also discussed its
behavior in the backward pass when values are not quantized. Lastly, we look
at their combination in the context of the backward pass and backpropagation.
Our objective is to compute the derivative of the loss function. Using the chain
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rule, the derivative of the PACT function itself with respect to α suffices for
that.

[6] use an STE for that. Similar to its application for the quantizek operator
in [32], the STE approximates the PACT function as the uniform distribution
and approximates the derivative to be equal to the derivative of the identity
function. As such, we start with the transformation

∂yq

∂α =
∂yq

∂y
∂y
∂α using the

chain rule, we approximate
∂yq

∂y ≈ 1 according to the STE and we plug in our
result from equation 10 to obtain

∂yq
∂α
≈ ∂y

∂α
=

{
0 if x < 0

1 if x ≥ 0
(16)

which gives the α component of the gradient and can be used in backpropagation.

4.7 Regularization

[6] also propose a regularization term for α to be added to the loss function.
They use L2 regularization. Consequently, the term added per parameter (when
using one value for α per layer, this means one additional regularization term
per layer) equates to

c̃(ω,X, y) = c(ω,X, y) + λα · α2 (17)

or for the whole model

c̃(Ω,X, y) = c(Ω,X, y) +
n∑

i=1

(
λαi
· α2

i

)
(18)

The authors’ idea behind this regularizer is to depress large values of α which
equate to large clipping ranges and therefore low precision in these ranges [6].

5 Applications and Future Directions

The neural network quantization field is being actively researched [28]. As
the PACT algorithm was published in 2018, novel ideas have come up since
surpassing PACT in terms of accuracy [8, 4, 26], hardware utilization [4],
or proposing novel complementary [10] and enabling promising results with
alternative approaches such as PTQ [18, 20]. In this section, we will discuss
two of these algorithms to give examples of developments since PACT.

5.1 Extensions and Variations of the Pact Algorithm

Two examples for developments succeeding the PACT algorithm will be
highlighted, both employing alternative quantization mechanisms. The former
will be using mixed-precision quantization, intelligently varying the bit-width
used for each layer. The latter is employing non-uniform quantization.
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HAWQ The Hessian Aware Quantization (HAWQ) algorithm uses
mixed-precision quantization, seeking to pinpoint those layers volatile to
perturbation and quantization noise. They employ higher bit-widths and
precision for those layers they deem to be more volatile based on the
second-order derivative of the loss function. Those layers where this measure
is highest are estimated to be more volatile than others [8, 28]. They use
”the Hessian matrix[,] (a matrix of the second derivatives), to determine how
sensitive the weights and activations are. [...] The key observation is that layers
with higher Hessian spectrum (larger eigenvalues) have a more volatile loss.
These layers are prone to more fluctuations in the loss when even a small
amount of quantization noise is introduced (e.g., by rounding errors). [...] The
idea is that a flat loss magnifies noise, e.g., quantization noise, significantly
less than a region with sharper curvature in their loss. Based on this Hessian
information, they manually select the bit widths for each layer. Another key
insight from HAWQ is that the order in which layers are quantized is important
and affects accuracy loss. [...] They argue that [...] [t]he less sensitive layers
adjust well to the introduction of quantization noise, so it is better to “lock in”
the quantized values of the more sensitive layers first, allowing the less sensitive
layers to recalibrate during this time.” [28]

Non-Uniformity Generally, non-uniform quantization of neural networks is apt
”to better fit underlying distributions and mitigate quantization errors [...] by
adjusting the quantization resolution according to the density of real-valued
distribution.” However, as new projection steps are needed to operate on
non-uniformly quantized numbers, the performance overhead becomes large
enough that it is usually worth maintaining look-up-tables for the operations,
which still incurs significantly worse performance than the fixed-point or integer
multiplication variants. [15]

[28] propose a method ”maintaining the [same] hardware projection
simplicity as uniform quantization”. In the process, they propose a variation on
the STE which they call Generalized Straight Through Estimator (GSTE). It
looks at each quantization level separately and fits a differentiable slope through
the interval in a way such that ”the influence of the threshold parameter α1 to
the network is decently encoded in the backward approximation function”. α1

refers to the length of the segment, and therefore dictates the end of the clipping
range.

As for the quantization itself, they introduce the
”nonuniform-to-uniform-quantizer (N2UQ) with its forward pass formulated as:

xq =





0, xr ≤ T1

1, T1 ≤ xr < T2

. . . . . .

2n − 1 xr ≥ T2n−1

(19)

[15] where n is the number of bits, T represents learnable thresholds,
and xr and xq are the real and quantized values, respectively.” Using this
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power-of-two quantizer [19] yielding fixed quantization levels in their design,
they can achieve learnable non-uniformity through the adaptable segmentation,
”while output[ting] uniformly quantized weights and activations to accommodate
fast bitwise operations without the post-processing step between quantization
and matrix multiplication.” [15]
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