
Requirements Classification for
Traceability Link Recovery

Tobias Hey
Karlsruhe Institute of Technology

Karlsruhe, Germany
hey@kit.edu

Jan Keim
Karlsruhe Institute of Technology

Karlsruhe, Germany
jan.keim@kit.edu

Sophie Corallo
Karlsruhe Institute of Technology

Karlsruhe, Germany
sophie.corallo@kit.edu

Abstract—Being aware of and understanding the relations
between the requirements of a software system to its other
artifacts is crucial for their successful development, maintenance
and evolution. There are approaches to automatically recover
this traceability information, but they fail to identify the actual
relevant parts of the requirements. Recent large language model-
based requirements classification approaches have shown to be
able to identify aspects and concerns of requirements with
promising accuracy. Therefore, we investigate the potential of
those classification approaches for identifying irrelevant require-
ment parts for traceability link recovery between requirements
and code.

We train the large language model-based requirements classi-
fication approach NoRBERT on a new dataset of requirements
and their entailed aspects and concerns. We use the results of the
classification to filter irrelevant parts of the requirements before
recovering trace links with the fine-grained word embedding-
based FTLR approach.

Two empirical studies show promising results regarding the
quality of classification and the impact on traceability link recov-
ery. NoRBERT can identify functional and user-related aspects in
the requirements with an F1-score of 84%. With the classification
and requirements filtering, the performance of FTLR could be
improved significantly and FTLR performs better than state-of-
the-art unsupervised traceability link recovery approaches.

Index Terms—Requirements Classification, Traceability Link
Recovery, Requirements Engineering, Machine Learning, Infor-
mation Retrieval, Language Model

I. INTRODUCTION

Understanding the relations between the artifacts of software
systems is crucial for their efficient development, maintenance,
and management. The traceability of these relationships en-
ables, for instance, the comprehension of design decisions
or the assessment of the consequences of modifications [1].
However, generating or preserving traceability information
manually requires a high level of manual effort, entailing
potentially high costs as human expertise is required to under-
stand the relationships. This is the reason why this information
is not readily accessible in the majority of software projects.
However, if we could make traceability information readily
accessible by generating it automatically, the development,
maintenance, and management of a wide range of software
systems could become more efficient [1], [2]. Moreover, in
safety-critical systems, such as aerospace or automotive, the
elicitation of traceability information is explicitly mandated
by regulatory bodies [3]–[5]. Existing approaches to automati-

Use case name: AdvancedSearch

Description: The tourist searching for a site using the potential
offered by the Advanced Search

Participating actor: initialized by Tourist

Entry conditions: The Tourist has successfully authenticated
to the system.

Flow of events User System:
1) Enable the advanced search feature from your personal

area.
2) View the advanced search form.
3) Fill in the form of advanced search and submit.
4) Gets the position of relying on the tourist event of the use

location and process the request.

Exit conditions: The system displays a list of results.
Interruption of the connection to the server ETOUR.

Quality requirements: The system requirements into the
transaction in more than 15 seconds.

Fig. 1. Example of an use case description from the eTour dataset that follows
a template structure. Orange parts can be filtered by template labels. The red
part can only be identified by an automatic classification.

Requirement 17:
An EST server MAY provide service for multiple CAs as
indicated by an OPTIONAL additional path segment between
the registered application name and the operation path.

The EST server MUST provide services regardless of whether
the additional path segment is present.

Fig. 2. Example of a natural language requirement from the LibEST dataset.
The red part describes a quality aspect of the system.

cally recover those trace links (TLs) between requirements and
source code are not able to bridge the semantic gap between
the artifacts. They achieve too low precision at acceptable
recall levels to be used in practice [6]–[8].

An important factor determining precision is selecting rel-
evant parts of the requirements for establishing TLs. Ap-
proaches have shown improved performance when filtering
certain parts of the requirements based on use case template
labels [9]. However, even template elements that are regarded
as relevant for the mapping to source code can contain

mailto:hey@kit.edu
mailto:jan.keim@kit.edu
mailto:sophie.corallo@kit.edu


irrelevant information. For example in Figure 1, the flow of
events description of the use case includes the sentence “Fill
in the form of advanced search and submit,” which describes a
user interaction within the use case. This interaction cannot be
directly mapped to the system’s functionality, such as a method
or class, as the act of filling out a form is not a functionality of
the system. Similarly, requirements not following any template
can also contain irrelevant parts. For example, the requirement
in Figure 2 includes the statement “The EST server MUST
provide services regardless of whether the additional path
segment is present,” which states a quality aspect but does not
describe a specific system functionality. Therefore, selecting
mappable and relevant parts of requirements can be important.
If these parts are not filtered, they can lead to erroneously
identified connections between artifacts and, thereby, reduce
the precision of the traceability link recovery (TLR).

Determining the content, type, and category of requirements
is a common research topic in requirements engineering. Re-
cently, requirements classification approaches utilize machine
learning techniques for classifying requirements. This includes
tasks such as identifying requirements in requirement docu-
ments [10], [11], categorizing entire requirements into func-
tional or non-functional [12]–[14] or subcategories thereof,
as well as determining the present concerns or aspects in
parts of the requirements [15], [16]. The information generated
by such processes, thus, holds the potential to gain a more
precise understanding of the requirements. This understanding,
in turn, could be utilized to filter parts of the requirements and,
thereby, improve the precision of automated TLR approaches.

Assessing this potential is the goal of this work. For this
purpose, we manually labeled the parts of requirements in
datasets commonly used in requirements-to-code TLR to pro-
vide a gold standard. Then we measure the performance of one
of the state-of-the-art requirements classification approaches,
NoRBERT [16], on these datasets. We use the classification
results of NoRBERT to filter parts of the requirements and
assess the impact on the performance of the requirements-to-
code TLR approach FTLR [9]. Our contributions are:

1) A novel dataset for classifying (parts of) requirements
2) An empirical study on the performance of requirements

classification approaches on TLR datasets
3) An empirical study on the effect of filtering requirements

for fine-grained requirements-to-code TLR approaches
We publish the source code and further results in our supple-
mentary material [17].

II. FOUNDATIONS

This work builds upon the requirements classification ap-
proach NoRBERT and the requirements-to-code TLR ap-
proach FTLR that we further describe in this section.

A. NoRBERT

The classification model NoRBERT [16], [18] is based on
the large language model BERT [19] that is pre-trained on
the English Wikipedia and the BooksCorpus [20]. NoRBERT
can utilize either of the available pre-trained BERT models:

N
o
R
B
E
R
T

[CLS] The system shall ... [SEP] The ... [PAD]

pretrained BERTBASE/BERTLARGE

fine-tuned FFNN + softmax

95%functional 5% non-functional

Fig. 3. Visualization of applying NoRBERT to requirements classification

the BERTBASE or the BERTLARGE model. Additionally, pre-
trained tokenizers are available for these models, which are the
only preprocessing steps utilized by NoRBERT. To use one of
these models for the actual task of requirements classification,
an additional layer is added. This layer takes the aggregated
output of the last BERT layer (the output of the [CLS] token)
as input (cf. Figure 3). It consists of a single-layer feedforward
neural network (FFNN) that calculates the output from the sum
of weighted inputs (and a certain bias). NoRBERT employs
the softmax function to determine the probability distribution
of the different classes.

Fine-tuning the model is accomplished by training the entire
model on the specific classification task. The authors ap-
plied NoRBERT to the PROMISE NFR (PNFR) dataset [21].
Regarding subclassification of non-functional requirements
and detection of functional and quality aspects, NoRBERT
significantly improved F1-score performance compared to pre-
vious methods. NoRBERT also outperformed existing methods
when applied to projects that are not seen during training.
Additionally, the authors examined the requirements of the
PNFR dataset concerning the three aspects of functional
requirements: function, data, and behavior. They provided
the first dataset and results for automatic subclassification
of functional requirements, where NoRBERT achieved an
average F1-score of 77% in a setup relevant for transferability
to unseen projects. On the PNFR dataset [21], the authors
report an optimal number of epochs of 10 or 16 for binary
classification and 32 or 50 for multi-class classification.

B. FTLR

FTLR [9] utilizes information retrieval (IR)-based simi-
larity metrics on word embeddings to retrieve TLs between
requirements and source code classes. However, FTLR does
not compare the whole artifacts but uses a fine-grained ap-
proach. In FTLR, both types of artifacts are split into smaller
parts. Requirements are segmented into sentences. Use case
descriptions following a template structure are split into their
elements. Source code classes are split into their public meth-
ods which are represented by their signatures, extended by the
name of the containing class and their associated comments.
The elements of both artifact types undergo preprocessing
steps such as stop word removal, lemmatization, and word
length filtering. The resulting artifact elements are represented



by utilizing pre-trained word embedding representations from
fastText [22].

The actual TLs are generated as follows. First, the simi-
larity of the fine-grained elements is calculated based on the
Word Mover’s Distance (WMD) [23]. Then, the pairs undergo
filtering using a fixed threshold to ensure a certain similarity
between the elements. FTLR establishes TLs for a source code
class by majority vote, associating it with the most frequently
linked requirements among its methods. In this process FTLR
can be configured to utilize call dependencies (CD), method
comments (MC), and filter a fixed set of use case template
elements (UCT). In their evaluation, the authors report the best
results when using all three of these variants.

As FTLR already operates on fine-grained requirements
elements, can filter requirements based on template structures,
and has an accessible replication package, it is well suited
to investigate the potential of requirements classification on
requirements-to-code TLR.

III. RELATED WORK

The publications related to our work can be classified
into two categories: Approaches to automated requirements
classification and requirements-to-code TLR approaches.

A. Requirements Classification

The automated extraction and classification of requirements
from natural language text documents has been a focus of
research for more than a decade. The approaches by Cleland-
Huang et al. [12], [24] employ IR to identify non-functional re-
quirements. They search for indicator terms in the documents.
The approach is imprecise but can achieve high recall. The
authors also published their dataset NFR [21] as part of the
PROMISE Repository [25], which still serves as the standard
benchmark dataset for requirements classification.

Other approaches utilize classical machine learning (ML)
techniques such as decision trees [26], K-nearest neigh-
bors [10], LDA [27], SVM [13], or naive Bayes [14] to classify
the requirements of the PNFR dataset. They achieve F1-scores
of up to 95% on identifying non-functional requirements.
Another line of research employs deep learning techniques
to solve the problem. They utilize techniques such as con-
volutional neural networks (CNNs) [11], [28], [29], word
embeddings [29], or document embeddings [30].

Dalpiaz et al. [15] relabel the PNFR dataset to address re-
quirements encompassing both functional and quality aspects.
They reimplement the SVM-based approach by Kurtanović
and Maalej [13] and evaluate it on the relabeled dataset and
other projects. Additionally, they propose a more interpretable
set of features that yields lower but still comparable results.

Though promising, the aforementioned methods might not
be practical for real-world use. They are often tailored to
specific datasets, reliant on specific wording and sentence
structure, or require manual preprocessing. These approaches
either do not report their ability to generalize from project
specifics or do not generalize well enough to apply to unseen
projects as required in TLR. One reason for this might be

the lack of available training data in requirements engineering
to train more generalizable models. Furthermore, these works
primarily focus on classifying non-functional requirements and
distinguishing them from functional ones. A more detailed ex-
ploration of functional requirement aspects has been scarcely
investigated.

These reasons led to the exploration of approaches that
exploit the transfer learning capabilities of large language
models (LLMs) for the task of requirements classification. This
approach promises acceptable results and higher transferability
to unseen projects, even for tasks with limited data, such
as classifying functional aspects. Building on the promising
results of NoRBERT (cf. Section II-A), subsequent works
have employed BERT and transfer learning for requirements
classification. For instance, Li et al. [31] combine BERT with
a graph attention network (GAT) on dependency graphs of
requirements. Their DBGAT model outperforms NoRBERT
in classifying requirements into non-functional and functional
and the four most common non-functional subclasses (usabil-
ity, security, deployment, and performance). However, regard-
ing the classification of all ten non-functional requirements
subclasses in the PNFR dataset, the results of NoRBERT and
DBGAT are similar: NoRBERT even surpasses DBGAT in
classes with low occurrence in the dataset. Unfortunately, the
authors do not provide insights into DBGAT’s performance
concerning functional and quality aspects or the sub-concerns
of functional requirements.

Luo et al. [32] use prompt learning to improve the per-
formance of the BERT-based classification approaches. They
learn on a bigger dataset consisting of user reviews and
StackOverflow answers. Thereby, the approach can improve
the performance on the PNFR dataset in non-functional re-
quirements subclass classification significantly.

Dell’Anna et al. [33] evaluate the results of available clas-
sification methods for detecting functional and quality aspects
(NoRBERT [16], Kurtanović and Maalej [13], and Dalpiaz et
al. [15]) on an expanded test set with 13 additional datasets.
They trained the models on the entire PNFR dataset and tested
their performance in terms of precision, recall, and F1 on the
13 new datasets. On unseen data, NoRBERT achieves the
best performance, with an F1-score of 79% for functional
aspects and 71% for quality aspects. However, they could
demonstrate that the approach by Dalpiaz et al. [15] exhibits
the lowest performance drop between training and testing,
making it potentially less prone to overfitting. Nevertheless,
on the test set, this approach only achieves a F1-score of 75%
for functional aspects and 62% for quality aspects.

Therefore, NoRBERT remains the current state-of-the-art
method for classifying aspects of functional requirements. Due
to its promising results on unseen projects and its ease of use
without additional preprocessing or manual steps, the method
is well-suited for an application in TLR.

B. Traceability Link Recovery

The automatic generation of trace links between require-
ments and code has been a focus of research since the 1990s.



The first technological breakthrough was achieved through
the application of IR techniques. Candidates for TLs are
identified based on the textual similarity of the artifacts. Early
approaches utilized vector space models (VSMs) [34], [35],
latent semantic indexing (LSI) [36] and LDA [37].

Others combine several IR techniques to utilize their
strengths. Gethers et al. [38] combine VSMs with probabilistic
Jensen and Shannon models (JSs) and relational topic models.
Moran et al. [39] utilize a hierarchical Bayesian network
to combine multiple IR- and ML-based textual similarities
with developer feedback and transitive trace links. Their tool
COMET can derive combinations with reasonable perfor-
mance on unseen projects.

Another direction considers structural information and de-
pendencies within the source code with the rationale that
relevant artifacts for a search query can be discovered through
the interdependencies within the source code. Panichella et
al. [40] demonstrate the advantages of incorporating call and
inheritance dependencies in recovering trace links. Kuang et
al. [41] additionally utilize data dependencies and show that
they offer complimentary information to call dependencies.

TAROT by Gao et al. [42] uses so-called consensual biterms
to improve TLR between requirements and code. On the re-
quirements side, TAROT regards two grammatically connected
terms of a sentence as biterms. For source code artifacts, any
consecutive combination of two terms within an identifier is
regarded as a biterm (code comments treated analogously to
requirements). The intersection of both biterm sets represents
the consensual biterms. The original artifacts are enriched
with biterms and the consensual biterms are used to adapt
the weights of the IR models based on their frequency and
location. The models include VSM, LSI, and JS. In their
evaluation, TAROT achieves the best mean average precision
(MAP) when using VSM or LSI.

However, all of these techniques have difficulties with
linking semantically but not textually similar artifacts. They
are not able to bridge the semantic gap between the artifacts, as
they rely on textual or syntactical consistency. To address this
challenge, recent approaches make use of word embeddings
and/or ML. They combine recurrent neural networks (RNNs)
and word embeddings [43], feed-forward neural networks and
cluster-pair rank models [44], learn to rank word embedding
results [45], employ active learning [46], or self-attention [47].
However, these approaches use initial trace links of the
projects to train their models and therefore tackle a different
kind of TLR problem than this work.

So far, the potential of automatically filtering parts of the
requirements was not assessed in TLR research.

IV. RESEARCH DESIGN

To assess the potential of requirements classification as
a filter on requirements-to-code TLR, we combine the two
approaches NoRBERT [16], [18] and FTLR [9]. Therefore,
we have to assess what to classify and how to use the results.

A. Classification

There are different classification schemas for requirements
that we can consider for filtering irrelevant requirement ele-
ments, i.e., parts of requirements that are not helpful or even
harmful for automated TLR. In the following, we discuss a
sensible classification schema to be used for filtering require-
ment elements for TLR.

Simply classifying requirements into functional and non-
functional requirements can already be instrumental in de-
termining relevant elements. Although a clear-cut separation
between functional and non-functional requirements remains a
topic of debate [48]–[50], it is still a reason to filter out (parts
of) requirements for TLR to source code after recognizing that
they mainly describe non-functional properties.

Non-functional requirements, sometimes referred to as soft
goals or quality constraints [51], [52], primarily describe
quality characteristics of a system and lack a direct functional
counterpart. As such, non-functional requirements cannot be
directly traced to these non-functional requirements. Thus,
they can be filtered for automated TLR.

However, the discussion around separating functional and
non-functional requirements revolves around the idea that
non-functional requirements can still influence design deci-
sions that manifest in system functionalities. For instance, a
non-functional requirement like “The system should support
multiple languages” might indirectly lead to the implemen-
tation of language selection functionality. Consequently, sev-
eral researchers advocate for an overlapping classification of
requirements containing both functional and non-functional
aspects rather than a strict separation [15], [50], [53]. In this
classification variant, it is still possible to identify require-
ments exclusively focusing on non-functional aspects that are
considered irrelevant for TLR.

Besides this very coarse classification of requirements, there
is often a refinement of classes, particularly for non-functional
requirements. These classes are also frequently categorized
into further subclasses [12]. This kind of refinement offers
a much more precise understanding of the non-functional
aspects. However, this type of information is largely irrelevant
for TLR. Still, it might be possible to derive probabilities
for these subclasses to express the likelihood of implicit
functionality being included in these requirements, for in-
stance, Appearance, Security, and Usability might include
more functional aspects compared to Legal or Availability.
Yet, there is no reliable evidence to make such assertions and,
consequently, determining the subclasses of non-functional
requirements does not offer advantages for automated TLR.

A more refined classification of functional requirements, on
the other hand, plays a smaller role in requirements engineer-
ing. One reason for this might be that targeting aspects of
non-functional requirements was considered more important,
as functional requirements are less frequently overlooked or
gathered too late. However, a refined classification of func-
tional requirements could help preprocess automated TLR.
Glinz [48] categorizes functional requirements based on their



Split into
requirements elements


Requirements

Preprocessing

Special character,
number, ... removal

Camel case
splitting

Classification
filter

Requirements element
classification

elements

. . .

Map to word
embeddings

. . .

token
sets

FTLR

NoRBERT

Fig. 4. Integration of NoRBERT’s classification results into FTLR

described concerns into Function, Data, Stimuli, Reactions,
and Behavior. Hey et al. [16] follow Glinz’s classification and
provide a labeled dataset based on the functional requirements
in the PNFR dataset for the classes Function, Data and
Behavior. They consider Reactions and Stimuli as a type of
behavior of the system and, thus, aggregate these types. To
utilize these classes for automated TLR, one has to be able to
determine which parts of the code correspond to the respective
concerns. This requires a classification on the source code part
as well, which is currently not available. For this reason, we
only assess the performance in detecting these concerns and
leave the analysis of their impact on TLR to future work.

In addition to these concern-based subcategories of func-
tional requirements, the introductory example in Figure 1
shows another type of potentially irrelevant parts of require-
ments. Use case descriptions often contain statements that
merely describe the behavior of the user who drives the story
of the use case. This user behavior is not represented in the
source code. The statement “Fill in the form. . . ” is a user
interaction that happens outside the system and, thus, should
be filtered as well. Therefore, we additionally consider the
category of user-related requirements elements:

User-Related (UR): Descriptions of the user’s behavior or
functionalities attributable to the user within the system.

This leaves us with the following classes for the classifica-
tion of requirements elements: Elements containing functional
aspects (F), Function concerns, Data concerns, Behavior
concerns and user-related requirements elements (UR).

B. Integration of Classification in FTLR

The results of FTLR (cf. [9]) have demonstrated that a
fine-grained approach can be advantageous for TLR. Mapping
requirements elements to source code elements followed by
aggregation yields superior results to mapping the entire
artifacts at once. Additionally, utilizing use case description
templates for filtering irrelevant requirements elements im-
proves the mapping quality. These results suggest that using
information from requirements classification to filter parts of
requirements can also improve the performance of TLR.

So far, requirements classification methods classify at the
artifact level. This means they classify entire requirements (cf.
Section III-A). However, classifying whole use case descrip-
tions, for example, would be too coarse to effectively filter
information. The information on (ir-) relevant parts has to be
available at the level of requirements elements to effectively
filter them. Accordingly, we want to provide information about
relevant parts through fine-grained requirements classification,
i.e., classification of the distinct elements of the requirements
instead of requirements as a whole. The existing classification
approaches can be easily adapted to classify requirements
elements, as they are mostly trained to classify requirements
with one or a few sentences.

FTLR processes input by splitting requirements according to
their sentences and use case descriptions following a template
into their sections. The section describing the flow of events is
further split according to its sentences, as it typically contains
multiple steps. FTLR afterward preprocesses the resulting
elements to prepare them for representation by the word
embeddings (cf. Section II-B). To utilize pre-trained LLM-
based classification approaches, such as NoRBERT, which
have been trained on complete sentences, we solely apply the
initial two preprocessing steps of FTLR before classification:
removing special characters, numbers, and hyperlinks, as well
as camel case splitting.

We pass these preprocessed requirements elements to the bi-
nary NoRBERT classifiers. The classifiers determine whether
a requirements element belongs to one of the classes identified
in Section IV-A. The classification results are then returned to
FTLR and are used to exclude elements from consideration for
TLR. The classification of requirements elements and the sub-
sequent filtering, thus, can be considered a new preprocessing
step within FTLR. This process is illustrated in Figure 4.

We have three types of filters: The first type of filter is for
functional aspects (F) and removes all requirements elements
that do not contain functional aspects according to the classifi-
cation. The second type of filter, the user-related elements filter
(UR), removes requirements elements that involve user-related



behavior. The third filter, the F+UR filter, uses the other two
filters to remove all elements that either contain no functional
aspects or contain user-related descriptions.

It is important to note that an element lacking functional
aspects does not necessarily qualify as a non-functional re-
quirement according to Glinz’ definition [54]. It merely con-
tains natural language text that lacks functional aspects. Since
these kinds of elements are common in use case descriptions,
classifying whether an element contains functional aspects is
preferable over determining if it entails quality aspects or is a
non-functional requirement.

V. EMPIRICAL STUDY ON CLASSIFICATION

In this first experiment, we assess the classification perfor-
mance of NoRBERT on requirements elements from projects
commonly used as benchmarks in requirements-to-code TLR.
The experiments aim to answer the following questions:
RQ1: Can the performance of a LLM-based classification
approach on unseen projects be transferred from whole re-
quirements to requirements elements?
We regard the performance on unseen projects as particularly
relevant, as the classification should be used as a preprocessing
step on any given project and, thus, no training data for the
specific project might be available beforehand.
RQ2: Which NoRBERT configurations perform best on the
TLR datasets?
The authors of NoRBERT reported that depending on the task
and classes, a different set of hyperparameters performed best.
As a high quality of the classification results is needed, if
they are to be used as a filter in FTLR, the best performing
configuration should be used per class.

To be able to answer these questions, we manually labeled
the requirements elements of eTour, iTrust, SMOS, eAnci,
and LibEST regarding the classes functional aspects (F), user-
related (UR), Function, Data, and Behavior. The projects are
commonly used as benchmarks in requirements-to-code TLR.
The first four projects are provided by the Center of Excellence
for Software & Systems Traceability (CoEST) [55] and LibEST
was provided by Moran et al. [39]. eTour, eAnci and SMOS
comprise use case descriptions following templates that at least
determine the name, description, pre-, and post-conditions as
well as the flow of events. iTrust only includes the flow
of events of use case descriptions and LibEST has textual
requirements. However, only the requirements of eTour, iTrust
and LibEST are written in English, SMOS and eAnci have
Italian requirements. As NoRBERT can only classify English
inputs due to the available data (PNFR and the pretraining of
the BERT model), the Italian projects cannot be used as is. As
such, we automatically translate their requirements using the
Google Translate API.

To have a gold standard of labeled requirements elements
for these projects, we manually labeled them. The labeling
process was carried out independently by one of the authors
and a master’s student in computer science. This resulted in a
very high agreement for the classes of functional aspects (F),

TABLE I
DISTRIBUTION OF THE CLASSES OVER THE REQUIREMENTS ELEMENTS

(REQE) THAT ARE IN THE REQUIREMENTS (REQ) OF THE DATASETS

Dataset Req ReqE F Fun. Beh. Data UR

eTour 58 571 457 299 342 186 279
iTrust 131 336 311 179 164 169 205

SMOS 67 522 386 243 293 276 251
eAnci 139 1,290 874 570 561 328 672

LibEST 52 565 404 209 290 205 5

Total 447 3,284 2,432 1,500 1,650 1,164 1,412
+ PNFR 691 3,908 2,741 1,707 1,763 1,221 1,412

TABLE II
AVERAGE PERFORMANCE IN PRECISION, RECALL, F1 , AND ACCURACY

OF HUMAN ANNOTATORS REGARDING THE RESULTING GOLD STANDARD

Class Precision Recall F1 Accuracy

F .958 .991 .975 .962
UR .911 .987 .947 .953
Function .839 .890 .864 .871
Behavior .946 .942 .944 .944
Data .870 .851 .861 .902

Behavior, and user-related elements (UR), with inter-annotator
agreements of 0.897 (F), 0.887 (Behavior), and 0.905 (UR)
using Krippendorff’s α [56]. Similarly, the agreement for the
classes of Function and Data with α values of 0.742 and 0.785,
respectively, are clearly above the lower threshold for ac-
ceptable agreement of 0.66 [57]. Discrepancies were resolved
through discussions to determine a consistent solution. Table II
shows the performance of the human annotators regarding
the derived gold standard solution, giving insights into the
human achievable performance. The resulting gold standard is
available on zenodo [58].

The distribution of classes across the projects is illustrated
in Table I. By splitting requirements (Req) into requirements
elements (ReqE), there is a substantial increase in data points
for classification, totaling 3,284 elements. Particularly, the
139 use case descriptions in the eAnci project contain 1,290
elements, constituting over a third of all elements. However,
only 874 of eAnci’s elements actually contain functional
aspects. Hence, 416 out of these 1,290 elements are texts
that need to be filtered. The other datasets generate similar-
sized sets of elements with around 550 elements. Only the
iTrust dataset, which exclusively includes the flow of events
descriptions as requirements, yields merely 336 elements for
the original 131 requirements. However, all except for 25 of
these elements also include functional aspects. Therefore, the
filtering of requirements elements can only partially reduce
the input for the TLR in iTrust.

The two classes, Function and Behavior, show a relatively
high number of instances across all datasets, with eTour,
SMOS, and LibEST containing more behavior descriptions



than function descriptions. For the networking library LibEST,
this can be attributed to many sentences explaining the network
stack’s interaction rather than explicitly describing offered
functions. Additionally, most datasets include some elements
that describe both the function itself and its associated behav-
ior. The Data class with only 1,164 instances overall is less
frequently present compared to the other concerns, much like
in the PNFR-based dataset of Hey et al. [16]. In the datasets
with use case descriptions, around 50% of the elements are
user-related elements, whereas only 5 of 565 elements in the
non-user-centric requirements of LibEST are user-related.

A. Experimental Setup

The classification should apply to any given project without
retraining as it should be used as a preprocessing step for TLR.
Consequently, NoRBERT’s performance in a scenario without
knowledge of the project to classify should be assessed.
Therefore, in our evaluation, we use a setup that resembles a
form of leave-one-project-out (loPo) cross-validation strategy,
except that we do not measure the performance on the PNFR
projects. We alternately consider each of the projects once as
the unseen project, while NoRBERT is trained on the other
projects plus the whole PNFR dataset. This way, NoRBERT
has the maximum amount of training data for each project
without including the project itself in the test. To train the
user-related class, there is no information available from the
PNFR dataset, as Hey et al. [16] did not consider this class.
Therefore, training for UR is only conducted on the remaining
four traceability projects, respectively.

To evaluate the overall performance, we use accuracy and
F1-score as metrics on each project and also consider the aver-
age both without weighting (∅) and weighted by the respective
occurrences in the project (∅w). The weighted representation
is less sensitive to deviating results in projects with very few
instances of a class (e.g., the five UR instances in LibEST).
Conversely, the unweighted average is less influenced by
deviating (potentially very good) results in projects with a high
number of instances of a class (e.g., eAnci).

We measure both accuracy and F1-score, as together they
provide a more comprehensive overview of binary classifi-
cation results. Accuracy displays the overall performance in
both identifying the occurrences (true positives) and non-
occurrences (true negatives) of a certain class in the dataset.
However, accuracy is prone to imbalanced datasets, for ex-
ample with a dataset with only a few occurrences of a
certain class, where a high accuracy can be achieved by
only predicting no occurrence. Therefore, we also provide
precision, recall, and F1-score that focus on the occurrences
only. We choose F1-score instead of a different F-measure,
as for our following task of filtering irrelevant requirements
elements both recall and precision are equally important. When
valuing recall higher than precision, a lower precision could
result in not being able to filter any requirements elements
as too many are considered for example functional. If we
value precision higher than recall, a lower recall may result in

TABLE III
ACCURACY OF NORBERT USING THE BERT-LARGE MODEL AND 16

EPOCHS WITH AND WITHOUT OVERSAMPLING (OS).

Class OS eT
ou

r

iT
ru

st

SM
O

S

eA
nc

i

L
ib

E
ST

∅ ∅w

F é .912 .943 .738 .838 .696 .825 .826
Ë .907 .958 .753 .860 .710 .838 .840

UR é .722 .759 .784 .922 .591 .756 .833
Ë .739 .759 .768 .933 .596 .759 .839

Func. é .816 .696 .672 .705 .600 .698 .706
Ë .774 .676 .661 .715 .653 .696 .705

Beh. é .778 .720 .912 .779 .558 .749 .758
Ë .779 .720 .770 .750 .565 .717 .724

Data é .743 .777 .634 .779 .612 .709 .709
Ë .823 .774 .711 .792 .363 .693 .700

actually relevant elements being filtered as they are regarded
as, e.g., having no functional aspects.

As the classes of our classification can overlap and, thus,
the task at hand is a multi-label classification, we use a
binary classifier for each class. The authors of NoRBERT
reported that epoch numbers of 10 or 16 with and without
oversampling (OS) performed best on the PNFR dataset. We
also use these configurations in combination with either the
BERTBASE or the BERTLARGE model. Due to space limitations,
we only present the best-performing configuration consisting
of BERTLARGE with 16 epochs. Further, results can be found
in our supplementary material [17].

B. Classification Results

Table III shows the resulting accuracy and Table IV the
precision, recall, and F1-score across the projects and classes.
For the two classes selected for filtering in FTLR, F and UR,
the model with oversampling performs best with a weighted
accuracy of 84%. To identify functional aspects (F) in eTour
and iTrust, the model even achieves accuracies and F1-scores
of over 90%. For this class, the unweighted average is nearly
equal to the weighted, whereas for identifying user-related
elements (UR) the accuracy declines to 75.9%. That can be
explained by the far lower performance on the LibEST dataset
(59.6%), where only 5 of 565 requirements elements are
user-related. A closer look at the precision and recall of the
approach in Table IV shows that the classifier can identify 4
of these 5 elements (recall of 80%) but also introduces a lot
of false positives resulting in a low precision of 1.7%. As the
classifier in this setting trains only on use case descriptions
but LibEST contains regular requirements, it is not able to
generalize well enough for the user-related class. For the other
classes, this decline cannot be observed. In this special case
with high recall and few user-related requirements, a semi-
automated approach with manual vetting could easily fix this.



TABLE IV
PRECISION, RECALL, AND F1 -SCORES OF NORBERT USING THE BERT-LARGE MODEL AND 16 EPOCHS WITH AND WITHOUT OVERSAMPLING (OS).

eTour iTrust SMOS eAnci LibEST F1

Class OS P R F1 P R F1 P R F1 P R F1 P R F1 ∅ ∅w

F é .901 1.00 .948 .965 .974 .970 .743 .987 .848 .817 .981 .891 .721 .938 .815 .894 .892
Ë .899 .996 .945 .968 .987 .978 .756 .982 .855 .850 .965 .904 .759 .871 .811 .898 .898

UR é .962 .448 .611 .903 .678 .774 .825 .697 .756 .940 .909 .924 .017 .800 .033 .620 .808
Ë .933 .502 .653 .913 .668 .772 .795 .697 .743 .947 .923 .934 .017 .800 .034 .627 .818

Func. é .790 .883 .834 .785 .592 .675 .597 .914 .722 .686 .614 .648 .466 .550 .504 .677 .680
Ë .772 .806 .789 .797 .525 .633 .586 .926 .718 .721 .579 .642 .527 .608 .564 .669 .672

Beh. é .745 .956 .837 .787 .585 .671 .919 .925 .922 .694 .879 .776 .596 .428 .498 .741 .755
Ë .744 .962 .839 .750 .640 .691 .717 .976 .827 .659 .879 .753 .561 .697 .622 .746 .755

Data é .577 .785 .665 .737 .864 .796 .660 .634 .647 .591 .427 .496 .445 .278 .342 .589 .575
Ë .701 .796 .746 .751 .822 .785 .870 .533 .661 .623 .463 .531 .363 1.00 .532 .651 .633

The weighted average of both accuracy and F1-score shows
promising results. The results on both classes are even higher
than the ones reported by Hey et al. [18] for classifying
functional aspects in a loPo setting on the PNFR dataset (81%
weighted F1-score). However, for the three classes of func-
tional requirements concerns (Function, Data and Behavior)
the model without oversampling performs best in accuracy.
The results on weighted and unweighted averages do not
differ as much as they are more evenly distributed across
the projects. The results are lower than for F or UR with
70.6% for Function, 70.9% for Data, and 75.8% for Behavior.
In F1-score, however, oversampling again performs better for
the Behavior and Data class. This showcases the weaknesses
of accuracy as a metric: it can be dominated by many true
negatives. The human annotators achieved the lowest precision
(cf. Table II) for Function and Data which can also be observed
in the precision results of the classifier. On average, the results
in F1-score and accuracy are 20 percentage points (%pts) lower
than the results of the human annotators.

Comparing the results in F1-score to the results reported by
Hey et al. [18] for loPo on the PNFR dataset, only the Function
class performs worse (68% vs. 87%). For Behavior, the result
is 4%pts higher and for Data even 6%pts higher. This can be
explained by an increased number of training examples for
these classes. On the PNFR dataset, the data class had only
57 examples. Now the dataset comprises 1,221 examples of
the class and, thus, the results can support the authors’ claim.

The results show that a LLM-based classification approach
can classify requirements elements on TLR datasets with
a comparable or even better performance than on whole
requirements (RQ1). Regarding RQ2, a configuration can be
determined for each class that performs best in weighted and
unweighted average accuracy and F1-score across the projects.
For F, UR, Data, and Behavior, this is BERTLARGE with 16
epochs and oversampling. For Function, it is BERTLARGE with
16 epochs and no sampling.

C. Threats to Validity

In this section, we discuss the threats to validity of this first
experiment and the derived conclusions.

External Validity: The loPo evaluation strategy was se-
lected to showcase the generalizability of NoRBERT on re-
quirements elements. However, the projects within the datasets
might not necessarily be good representatives of possible
projects, posing a threat to the external validity of the re-
sults. Additionally, both the PNFR dataset and the traceability
datasets are biased representations of reality, either focusing
on non-functional or functional requirements. This results in
unbalanced datasets, potentially shadowing the results by fa-
voring simple majority class predictions. Moreover, all require-
ments within the PNFR dataset projects and some traceability
datasets were authored by students, not necessarily reflecting
industry standards. Therefore, the validity of claims regarding
generalizability based on these datasets cannot be guaranteed.
Still, these datasets are considered benchmark datasets for
requirements classification and for TLR and are widely used
to compare different approaches.

Internal Validity: A threat to internal validity arises from
creating the gold standard for the traceability datasets. These
were created with the approach in mind, posing a risk of
bias. Furthermore, the usage of machine translation for the
requirements of SMOS and eAnci may introduce another
bias. As automatic translation approaches can introduce errors
themselves, a classification by NoRBERT can be influenced by
those errors. To enable its verification and the reproducibility
of the results, the dataset is publicly available [58].

VI. EMPIRICAL STUDY ON THE IMPACT ON TLR

The second experiment of this work aims at assessing the
impact of automated classification of requirements elements on
TLR. Therefore, the following sections will evaluate the effect
of filtering requirements elements based on NoRBERT. We use
the best performing NoRBERT configurations according to the



TABLE V
AVERAGED RESULTS OF THE DIFFERENT FTLR VARIANTS WITH THE
DIFFERENT FILTERS. EITHER THE ORIGINAL THRESHOLDS (ORG) OR

PER PROJECT OPTIMIZED THRESHOLDS (OPT) ARE APPLIED.

T
hr

es
h. MC MC+CD

Filter P R F1 P R F1 P R F1

O
R

G

— .287 .423 .327 .291 .466 .344 .294 .459 .345
F .313 .399 .335 .311 .445 .353 .315 .436 .353

UR .373 .312 .302 .363 .334 .317 .367 .330 .318
F+UR .389 .302 .299 .365 .319 .308 .368 .315 .308

Fgold .336 .394 .349 .334 .443 .369 .339 .435 .370
URgold .371 .351 .342 .368 .389 .363 .370 .383 .360

F+URgold .379 .342 .342 .374 .385 .365 .377 .380 .363

O
PT

— .290 .532 .372 .316 .506 .378 .298 .527 .375
F .318 .509 .388 .337 .466 .388 .328 .473 .386

UR .311 .487 .371 .332 .452 .379 .329 .453 .378
F+UR .315 .472 .369 .329 .446 .375 .328 .445 .375

Fgold .359 .474 .405 .342 .515 .404 .344 .506 .402
URgold .346 .480 .394 .359 .462 .395 .364 .456 .392

F+URgold .362 .470 .396 .366 .444 .396 .358 .461 .394

results in Section V-B to generate the classification results
on the datasets eTour, iTrust, SMOS, eAnci, and LibEST.
However, FTLR’s code analysis features can only be applied
to the Java part [9] and, as such, we need to exclude the JSP
artifacts that are part of the iTrust dataset. The classification
results are generated according to the loPo strategy described
in Section V-A to provide a realistic scenario for using
NoRBERT combined with FTLR.

We again use precision, recall and F1-score as metrics
to compare the results. We choose F1-score as the deciding
measure, as for the goal to fully automate TLR both precision
and recall have to be high [6]. Additionally, F1-score is one
of the standard metrics in TLR research [7] allowing us to
compare the results to existing approaches. If one weakens the
goal to semi-automatic TLR recall should be valued higher to
prevent missing links. Therefore, we additionally provide F2-
score and mean average precision (MAP) for comparison with
state-of-the-art approaches.

The results achieved by NoRBERT on the two classes
used as filters (F and UR) are promising but not perfect.
Consequently, there is a possibility that relevant parts of the
input may be erroneously removed due to misclassifications.
To assess the upper limits of the performance, i.e., the re-
sults achievable with an optimal classification, FTLR is also
executed with the gold standard results for the classification
(marked with [F|UR]gold).

We first compare the performance of FTLR with require-
ments element filtering with FTLR without any element filter
and without the UCT option. As UCT itself represents a
filter that operates based on use case template elements,
this experimental setup shows the influence of automated

TABLE VI
AVERAGED RESULTS OF THE DIFFERENT FTLR VARIANTS WITH THE
DIFFERENT FILTERS. EITHER THE ORIGINAL THRESHOLDS (ORG) OR

PER PROJECT OPTIMIZED THRESHOLDS (OPT) ARE APPLIED.

T
hr

es
h. MC MC+CD

Filter P R F1 P R F1 P R F1

O
R

G

F .313 .399 .335 .311 .445 .353 .315 .436 .353
UCT .331 .399 .346 .330 .445 .366 .335 .436 .366
UCT+F .337 .388 .347 .337 .435 .367 .341 .426 .367

Fgold .336 .394 .349 .334 .443 .369 .339 .435 .370
UCT+Fgold .335 .389 .346 .334 .439 .367 .338 .430 .367

O
PT

F .318 .509 .388 .337 .466 .388 .328 .473 .386
UCT .349 .500 .403 .353 .491 .403 .342 .503 .401
UCT+F .351 .499 .407 .366 .458 .405 .356 .466 .403

Fgold .359 .474 .405 .342 .515 .404 .344 .506 .402
UCT+Fgold .348 .501 .407 .345 .506 .404 .346 .499 .402

requirements element filtering on unfiltered inputs. The intro-
duction of requirements element filters was intended for use
on requirements that do not follow a template. Additionally, a
requirements element filter can be employed without explicit
knowledge of the template elements and their naming even
when use case descriptions adhere to a template. To quantify
this effect and to verify whether the performance of both filter
types is comparable, we then compare the performance of the
requirements element filters with the performance of filtering
based on use case templates (UCT). Finally, we assess whether
a combination of the two filter variants achieves a performance
improvement over their individual applications. Therefore, this
chapter addresses the following research questions:
RQ3: What performance does FTLR achieve with an auto-
mated requirements element filter compared to FTLR without
any requirement filter?
RQ4: What is the upper limit of the performance that FTLR
with a requirements element filter can achieve on the bench-
mark datasets?
RQ5: Is the performance of FTLR with an automated require-
ments element filter comparable to that based on filtering of
use case template elements (UCT)?
RQ6: Can a combination of an automated element filter and
filtering based on use case template elements improve the
performance of FTLR compared to the individual variants?

Additionally, we assess the impact in comparison to other
TLR approaches by providing a comparison with several state-
of-the-art and baseline approaches:
RQ7: How does FTLR with an automated requirements ele-
ment filter fair in comparison to state-of-the-art and baseline
TLR approaches?

A. Comparison to FTLR without Filters

First, we measure FTLR’s performance regarding preci-
sion, recall and F1-score with and without an automated



TABLE VII
COMPARISON TO RELATED WORK IN REQUIREMENTS-TO-CODE TLR USING OPTIMIZED THRESHOLDS PER PROJECT

eTour iTrust w/o JSP SMOS eAnci Average

Approach Filter F1 F2 MAP F1 F2 MAP F1 F2 MAP F1 F2 MAP F1 F2 MAP

VSM .483 .448 .464 .217 .223 .242 .422 .417 .451 .248 .252 .457 .343 .335 .404
LSI .453 .453 .449 .253 .254 .265 .422 .427 .468 .217 .237 .390 .336 .343 .393
TAROTVSM .402 .503 .384 .224 .226 .240 .418 .416 .449 .258 .275 .466 .326 .355 .385
TAROTLSI .403 .510 .407 .217 .276 .252 .461 .517 .496 .226 .264 .403 .327 .392 .390
COMETMAP .437 .455 .475 .282 .249 .263 .276 .458 .294 — — — (.332) (.387) (.344)
FTLR +MC +UCT .517 .548 .486 .253 .255 .354 .419 .446 .451 .276 .290 .549 .366 .385 .460

FTLR +MC +F .442 .519 .369 .261 .252 .348 .410 .462 .424 .271 .349 .568 .346 .396 .427
FTLR +UCT +F .548 .576 .533 .238 .240 .283 .409 .500 .438 .289 .306 .533 .371 .406 .447
FTLR +MC+CD +UCT +F .517 .543 .486 .250 .273 .333 .418 .457 .450 .275 .304 .541 .362 .394 .453

requirements element filter. Table V compares the results of
FTLR averaged across the five datasets. We compare FTLR
without a filter (—), with the functional aspects filter (F),
with the user-related filter (UR) and a combination of both
filters (F+UR). As the authors of FTLR provide a fixed set of
thresholds (ORG) and the possibility to optimize the thresholds
per project (OPT) based on a gold standard, we provide
both results. The former measures FTLR’s performance when
applied in practice without initial links, the latter provides the
upper bound of performance with the approach on a specific
project. Additionally, we assess the performance when includ-
ing method comments (MC) and method comments together
with call dependencies (MC+CD).

The results show that the best averaged F1-score with
automated requirements element classification (bold typed
values) is achieved by only applying the F filter, regardless of
the threshold combination used. With ORG thresholds, FTLR
using the F filter achieves 35.3% F1-score with both FTLR
variants including method comments (MC and MC+CD). This
is 0.8%pts higher than the best FTLR variant without a filter.
With optimized thresholds, the difference increases further
from 37.8% to 38.8% (both with MC). This improvement is
statistically significant at the 0.05 level using a Wilcoxon
signed-rank test (RQ3).

On average, the UR filter performs worse than FTLR without
any filter, mainly due to a heavy decline in the recall. However,
our detailed results (cf. [17]) show that for the projects eTour
and eAnci the improvement in precision outweighs the decline
in recall, resulting in an improved F1-score. With optimized
thresholds, the results are similar, although the decline in
performance is smaller.

To provide insights for RQ4, Table V also includes the
results with requirements element classification from the gold
standard (gold). The highlighted best-performing results are
again only achieved with the F filter. For the ORG thresholds,
the averaged F1-score improves to 37% (+2.5%pts compared
to no filter). With optimized thresholds, the best averaged F1-
score is 40.5% when not using method comments (MC) and
call dependencies (CD). These results show the upper bound

of FTLR’s performance with these filters on these datasets.

B. Comparison to UCT Filter

In this part, we tackle RQ5 and check whether the results
with the automated requirements elements filter are compara-
ble to the ones of a manually provided use case template filter.
To do so, we compare FTLR’s performance with the F filter
to the one with the fixed use case template filter (UCT).

Table VI shows the averaged results across the five TLR
projects. Both with ORG and OPT thresholds, FTLR with UCT
performs slightly better than FTLR with F filter, mainly due
to its better precision. However, the difference is negligible as
it stays below 1.5%pts. It is important to note that the UCT
filter only removes the use case fields describing actors, pre-
and postcondition, and quality requirements. Thus, it is more
conservative than the F filter. Additionally, the UCT filter is
only applicable to the eTour, eAnci, and SMOS projects, as
only these comprise use case descriptions following templates.
On iTrust, the F1-score using FTLR ORG UCT (18.3%) is
2%pts lower than with F (20.3%).

The results of combining UCT with the F filter show
an improvement over applying only UCT, especially with
optimized thresholds. This indicates that the F filter can filter
further irrelevant elements and that a combination of both
filters is beneficial (RQ6). The overall best performance in
average F1-score is achieved with 40.7% by FTLR with UCT
and F filters without MC or CD. The result is even similar to
the one with gold standard filter results.

C. Comparison to Related Work

For improved interpretation of the results achieved by FTLR
with requirement filters, we compare them to state-of-the-art
and baseline approaches for requirements-to-code TLR. We
limit the comparison to approaches that do not require initial
trace links as training data and, thus, are targeting the same
task of unsupervised TLR as FTLR. We use COMET [39] and
TAROT [42] (cf. Section III-B) as competing approaches. As
the approaches only output ranked lists per source artifact and
do not define a fixed threshold, we calculate the optimized



F1-score per project as we did for FTLR and only compare to
FTLR’s OPT results. Thus, the comparison reflects the upper
boundary of the tools’ performance.

For COMET, we use the ranked lists as provided by the
authors to calculate the MAP and the per-project optimized
F1-score. We cannot provide results for eAnci because it was
not part of the original COMET evaluation. As the replication
package of TAROT provides its source code, we can apply
TAROT to our datasets. Additionally, we provide the results
of two baseline approaches using VSM and LSI as provided in
TAROT’s replication package. As comparison projects, we use
eTour, iTrust without JSP artifacts, SMOS, and eAnci because
TAROT can only be applied to Java projects. For FTLR, we
provide the results of the best-performing combinations that
use either UCT and/or F filter.

Table VII gives an overview of the results. The findings
indicate that, on average, FTLR outperforms all comparison
approaches irrespective when using F as shown by higher F1-
score, F2-score, and MAP values. In F1-score, FTLR with
UCT+F achieves the best performance with 37.1%, which is
2.8%pts higher than the runner-up approach VSM. If we weigh
recall higher (F2-score), the same FTLR variant performs best
with 40.6%. In F2-score the runner-up approach is TAROT
with LSI with 39.2%, which is 1.2%pts lower than FTLR’s.
Detailed results like precision and recall of the approaches
can be found in our supplementary material [17]. In MAP, the
difference is even higher, surpassing the others by 4.3%pts for
FTLR +UCT+F and by 5.6%pts with FTLR +UCT.

However, on iTrust, COMET yields a higher F1-score and
TAROTLSI a higher F2-score, but their MAP are still 1.1%pts
or 2%pts lower than FTLR’s. On SMOS, the VSM- and
LSI-based approaches outperform COMET and FTLR, with
TAROT using LSI performing best. As TAROTLSI performs
worse than FTLR and COMET on the other projects, this
result might be specific for the SMOS dataset. This dataset
comprises the highest number of interconnected artifacts of
all the projects with 16% of the possible interconnection
between artifacts being actual trace links. Notably, the baseline
approaches using VSM and LSI perform better than the
versions using consensual biterms, although these biterms are
the key feature of TAROT. This contradicts the results of the
authors of TAROT on other datasets.

In summary, the usage of requirements filter in FTLR has
shown to be beneficial when comparing it to state-of-the-art
approaches (RQ7). In future work, the application of these
filters to other TLR approaches needs to be examined to assess
whether this outcome can be generalized to other approaches.

D. Threats to Validity

External validity is the first and arguably the most significant
threat to the validity of the insights of this experiment. The
experiments were conducted on a limited set of projects,
predominantly originating from academic or student projects.
Therefore, there is a possibility that the obtained results are not
representative of other projects, particularly in industry, and, as
a result, the findings may not apply to other projects. This risk

is shared by all existing approaches for automatic TLR since
fully representative datasets with an established gold standard
for trace links are non-existent.

Still, the selected datasets contain projects that vary in size
and language and cover different domains. The datasets are
widely used as benchmarks in the traceability research com-
munity and are generally accepted for comparison matters.

VII. CONCLUSION

In conclusion, this work investigated the potential of re-
quirements classification for traceability link recovery (TLR)
between requirements and code. Therefore, we combine the
requirements classification approach NoRBERT with the ap-
proach FTLR for automated TLR. NoRBERT was applied
to a new dataset for classifying requirements elements in
traceability benchmark projects. The results of NoRBERT’s
classification are then used to filter irrelevant parts of the
requirements before conducting the traceability link recovery
with FTLR. We performed two empirical studies to assess the
potential of the proposed approach.

In the first study, we evaluated NoRBERT’s performance
in identifying functional and user-related aspects as well as
function, behavior, and data concerns in the requirements ele-
ments of the new dataset. Functional and user-related aspects
were identified with a promising weighted F1-score of 84%.
Further, NoRBERT achieved F1-scores of more than 70% for
each of the three functional concerns.

The second study used the classification results to assess
the impact on TLR. We were able to show that an auto-
mated requirements filter based on functional aspects can
significantly improve FTLR’s performance in our evaluation.
Additionally, the results show that the automated filter can
provide comparable results to a filter based on use case
templates with manual labels. Combining both types of filters
could improve FTLR’s performance from 37.8% to 40.7%
F1-score. In comparison to state-of-the-art TLR approaches,
FTLR with these filters performed best, both in F1 and MAP.

Our studies were able to show, that an automated classi-
fication of TLR relevant aspects in requirements is possible.
With this classification, we can filter irrelevant information.
We have shown that this filtering can be advantageous for TLR
and increase the usability for practitioners. Due to automation,
enhancing existing approaches or including the classification
as a preprocessing step when researching new approaches
is straightforward. Consequently, in future work, we plan to
integrate the classification results in further TLR approaches to
assess the generalizability of our insights to other approaches.
Additionally, we will investigate the potential of the function,
data, and behavior concerns for directing the mapping to the
most likely elements in the code.

ACKNOWLEDGEMENTS

This work was supported by funding from the pilot program
Core Informatics at KIT (KiKIT) of the Helmholtz Association
(HGF). This work was also supported by funding from the
topic Engineering Secure Systems of the HGF and supported
by KASTEL Security Research Labs, Karlsruhe.



REFERENCES

[1] J. Cleland-Huang, O. Gotel, A. Zisman et al., Software and Systems
Traceability. Springer, 2012, vol. 2. DOI: 10.1007/978-1-4471-2239-5

[2] O. Gotel, J. Cleland-Huang, J. H. Hayes, A. Zisman, A. Egyed,
P. Grünbacher, A. Dekhtyar, G. Antoniol, and J. Maletic, “The Grand
Challenge of Traceability (v1.0),” in Software and Systems Traceability,
J. Cleland-Huang, O. Gotel, and A. Zisman, Eds. London: Springer,
2012, pp. 343–409. DOI: 10.1007/978-1-4471-2239-5_16

[3] RTCA/EUROCAE, “DO-178B/ED-12B: Software considerations in air-
borne systems and equipment certification,” 2000.

[4] ECSS, “ECSS-E-40C: Principles and requirements applicable to space
software engineering,” 2009.

[5] L. Rierson, Developing Safety-Critical Software: A Practical Guide for
Aviation Software and DO-178C Compliance. CRC Press, Jan. 2013.

[6] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram, “Advancing Candidate
Link Generation for Requirements Tracing: The Study of Methods,”
IEEE Trans. Softw. Eng., vol. 32, no. 1, pp. 4–19, Jan. 2006. DOI:
10.1109/TSE.2006.3

[7] Y. Shin, J. H. Hayes, and J. Cleland-Huang, “Guidelines for Benchmark-
ing Automated Software Traceability Techniques,” in 2015 IEEE/ACM
8th International Symposium on Software and Systems Traceability, May
2015, pp. 61–67. DOI: 10.1109/SST.2015.13

[8] G. Antoniol, J. Cleland-Huang, J. H. Hayes, and M. Vierhauser, “Grand
Challenges of Traceability: The Next Ten Years,” arXiv:1710.03129
[cs], Oct. 2017. [Online]. Available: http://arxiv.org/abs/1710.03129

[9] T. Hey, F. Chen, S. Weigelt, and W. F. Tichy, “Improving Traceability
Link Recovery Using Fine-grained Requirements-to-Code Relations,”
in 2021 IEEE International Conference on Software Maintenance
and Evolution (ICSME), Sep. 2021, pp. 12–22. DOI: 10.1109/IC-
SME52107.2021.00008

[10] J. Slankas and L. Williams, “Automated extraction of non-functional
requirements in available documentation,” in 2013 1st International
Workshop on Natural Language Analysis in Software Engineering (Natu-
raLiSE), May 2013, pp. 9–16. DOI: 10.1109/NAturaLiSE.2013.6611715

[11] J. Winkler and A. Vogelsang, “Automatic Classification of Requirements
Based on Convolutional Neural Networks,” in 2016 IEEE 24th Interna-
tional Requirements Engineering Conference Workshops (REW), Sep.
2016, pp. 39–45. DOI: 10.1109/REW.2016.021

[12] J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc, “The Detection
and Classification of Non-Functional Requirements with Application to
Early Aspects,” in 14th IEEE International Requirements Engineering
Conference (RE’06), Sep. 2006, pp. 39–48. DOI: 10.1109/RE.2006.65

[13] Z. Kurtanović and W. Maalej, “Automatically Classifying Functional
and Non-functional Requirements Using Supervised Machine Learning,”
in 2017 IEEE 25th International Requirements Engineering Conference
(RE), Sep. 2017, pp. 490–495. DOI: 10.1109/RE.2017.82

[14] Z. S. H. Abad, O. Karras, P. Ghazi, M. Glinz, G. Ruhe, and K. Schneider,
“What Works Better? A Study of Classifying Requirements,” in 2017
IEEE 25th International Requirements Engineering Conference (RE),
Sep. 2017, pp. 496–501. DOI: 10.1109/RE.2017.36

[15] F. Dalpiaz, D. Dell’Anna, F. B. Aydemir, and S. Çevikol, “Requirements
Classification with Interpretable Machine Learning and Dependency
Parsing,” in 2019 IEEE 27th International Requirements Engineering
Conference (RE), Sep. 2019, pp. 142–152. DOI: 10.1109/RE.2019.00025

[16] T. Hey, J. Keim, A. Koziolek, and W. F. Tichy, “NoRBERT: Transfer
Learning for Requirements Classification,” in 2020 IEEE 28th Inter-
national Requirements Engineering Conference (RE), Aug. 2020, pp.
169–179. DOI: 10.1109/RE48521.2020.00028

[17] T. Hey, J. Keim, and S. Corallo, “Supplementary Material of "Require-
ments Classification for Traceability Link Recovery",” Zenodo, 2024.
DOI: 10.5281/zenodo.10990762

[18] T. Hey, J. Keim, A. Koziolek, and W. F. Tichy, “NoRBERT: Transfer
learning for requirements classification,” Karlsruhe Institute of Technol-
ogy (KIT), Tech. Rep., 2022. DOI: 10.5445/IR/1000150464

[19] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). Minneapolis,
Minnesota: Association for Computational Linguistics, Jun. 2019, pp.
4171–4186. DOI: 10.18653/v1/N19-1423

[20] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba,
and S. Fidler, “Aligning Books and Movies: Towards Story-Like Visual
Explanations by Watching Movies and Reading Books,” in 2015 IEEE
International Conference on Computer Vision (ICCV), Dec. 2015, pp.
19–27. DOI: 10.1109/ICCV.2015.11

[21] Jane Cleland-Huang, S. Mazrouee, H. Liguo, and D. Port, “Nfr,” Mar.
2007. DOI: 10.5281/zenodo.268542

[22] E. Grave, P. Bojanowski, P. Gupta, A. Joulin, and T. Mikolov,
“Learning Word Vectors for 157 Languages,” in Proceedings of
the Eleventh International Conference on Language Resources and
Evaluation (LREC 2018). Miyazaki, Japan: European Language
Resources Association (ELRA), May 2018. [Online]. Available:
https://aclanthology.org/L18-1550

[23] M. Kusner, Y. Sun, N. Kolkin, and K. Weinberger, “From Word
Embeddings To Document Distances,” in International Conference on
Machine Learning. PMLR, Jun. 2015, pp. 957–966.

[24] J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc, “Automated classifi-
cation of non-functional requirements,” Requir. Eng., vol. 12, no. 2, pp.
103–120, May 2007. DOI: 10.1007/s00766-007-0045-1

[25] J. Sayyad Shirabad and T. Menzies, “The PROMISE repository of
software engineering databases.” School of Information Technology and
Engineering, University of Ottawa, Canada, 2005. [Online]. Available:
http://promise.site.uottawa.ca/SERepository

[26] I. Hussain, L. Kosseim, and O. Ormandjieva, “Using Linguistic Knowl-
edge to Classify Non-functional Requirements in SRS documents,” in
Proceedings of the 13th International Conference on Natural Language
and Information Systems: Applications of Natural Language to Infor-
mation Systems, ser. NLDB ’08. London, UK: Springer-Verlag, Jun.
2008, pp. 287–298. DOI: 10.1007/978-3-540-69858-6_28

[27] M. Rahimi, M. Mirakhorli, and J. Cleland-Huang, “Automated extraction
and visualization of quality concerns from requirements specifications,”
in 2014 IEEE 22nd International Requirements Engineering Conference
(RE), Aug. 2014, pp. 253–262. DOI: 10.1109/RE.2014.6912267

[28] R. Navarro-Almanza, R. Juarez-Ramirez, and G. Licea, “Towards Sup-
porting Software Engineering Using Deep Learning: A Case of Software
Requirements Classification,” in 2017 5th International Conference in
Software Engineering Research and Innovation (CONISOFT), Oct. 2017,
pp. 116–120. DOI: 10.1109/CONISOFT.2017.00021

[29] A. Dekhtyar and V. Fong, “RE Data Challenge: Requirements Identifica-
tion with Word2Vec and TensorFlow,” in 2017 IEEE 25th International
Requirements Engineering Conference (RE), Sep. 2017, pp. 484–489.
DOI: 10.1109/RE.2017.26

[30] S. Amasaki and P. Leelaprute, “The Effects of Vectorization Methods
on Non-Functional Requirements Classification,” in 2018 44th Euromi-
cro Conference on Software Engineering and Advanced Applications
(SEAA), Aug. 2018, pp. 175–182. DOI: 10.1109/SEAA.2018.00036

[31] G. Li, C. Zheng, M. Li, and H. Wang, “Automatic Requirements Clas-
sification Based on Graph Attention Network,” IEEE Access, vol. 10,
pp. 30 080–30 090, 2022. DOI: 10.1109/ACCESS.2022.3159238

[32] X. Luo, Y. Xue, Z. Xing, and J. Sun, “PRCBERT: Prompt
Learning for Requirement Classification using BERT-based Pretrained
Language Models,” in Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE ’22. New
York, NY, USA: Association for Computing Machinery, Jan. 2023,
pp. 1–13. [Online]. Available: https://dl.acm.org/doi/10.1145/3551349.
3560417. DOI: 10.1145/3551349.3560417

[33] D. Dell’Anna, F. B. Aydemir, and F. Dalpiaz, “Evaluating classifiers in
SE research: The ECSER pipeline and two replication studies,” Empir
Software Eng, vol. 28, no. 1, Nov. 2022. DOI: 10.1007/s10664-022-
10243-1

[34] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,” IEEE
Transactions on Software Engineering, vol. 28, no. 10, pp. 970–983,
Oct. 2002. DOI: 10.1109/TSE.2002.1041053

[35] A. Mahmoud, “An information theoretic approach for extracting and
tracing non-functional requirements,” in 2015 IEEE 23rd International
Requirements Engineering Conference (RE), Aug. 2015, pp. 36–45.
DOI: 10.1109/RE.2015.7320406

[36] A. Marcus and J. I. Maletic, “Recovering Documentation-to-source-code
Traceability Links Using Latent Semantic Indexing,” in Proceedings
of the 25th International Conference on Software Engineering, ser.
ICSE ’03. Washington, DC, USA: IEEE Computer Society, 2003, pp.
125–135. [Online]. Available: http://dl.acm.org/citation.cfm?id=776816.
776832

https://doi.org/10.1007/978-1-4471-2239-5
https://doi.org/10.1007/978-1-4471-2239-5_16
https://doi.org/10.1109/TSE.2006.3
https://doi.org/10.1109/SST.2015.13
http://arxiv.org/abs/1710.03129
https://doi.org/10.1109/ICSME52107.2021.00008
https://doi.org/10.1109/ICSME52107.2021.00008
https://doi.org/10.1109/NAturaLiSE.2013.6611715
https://doi.org/10.1109/REW.2016.021
https://doi.org/10.1109/RE.2006.65
https://doi.org/10.1109/RE.2017.82
https://doi.org/10.1109/RE.2017.36
https://doi.org/10.1109/RE.2019.00025
https://doi.org/10.1109/RE48521.2020.00028
https://doi.org/10.5281/zenodo.10990762
https://doi.org/10.5445/IR/1000150464
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.5281/zenodo.268542
https://aclanthology.org/L18-1550
https://doi.org/10.1007/s00766-007-0045-1
http://promise.site.uottawa.ca/SERepository
https://doi.org/10.1007/978-3-540-69858-6_28
https://doi.org/10.1109/RE.2014.6912267
https://doi.org/10.1109/CONISOFT.2017.00021
https://doi.org/10.1109/RE.2017.26
https://doi.org/10.1109/SEAA.2018.00036
https://doi.org/10.1109/ACCESS.2022.3159238
https://dl.acm.org/doi/10.1145/3551349.3560417
https://dl.acm.org/doi/10.1145/3551349.3560417
https://doi.org/10.1145/3551349.3560417
https://doi.org/10.1007/s10664-022-10243-1
https://doi.org/10.1007/s10664-022-10243-1
https://doi.org/10.1109/TSE.2002.1041053
https://doi.org/10.1109/RE.2015.7320406
http://dl.acm.org/citation.cfm?id=776816.776832
http://dl.acm.org/citation.cfm?id=776816.776832


[37] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor, “Software trace-
ability with topic modeling,” in 2010 ACM/IEEE 32nd International
Conference on Software Engineering, vol. 1, May 2010, pp. 95–104.
DOI: 10.1145/1806799.1806817

[38] M. Gethers, R. Oliveto, D. Poshyvanyk, and A. D. Lucia, “On
integrating orthogonal information retrieval methods to improve
traceability recovery,” in 2011 27th IEEE International Conference
on Software Maintenance (ICSM), Sep. 2011, pp. 133–142. DOI:
10.1109/ICSM.2011.6080780

[39] K. Moran, D. N. Palacio, C. Bernal-Cárdenas, D. McCrystal, D. Poshy-
vanyk, C. Shenefiel, and J. Johnson, “Improving the effectiveness
of traceability link recovery using hierarchical bayesian networks,”
in Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering, ser. ICSE ’20. New York, NY, USA: As-
sociation for Computing Machinery, Jun. 2020, pp. 873–885. DOI:
10.1145/3377811.3380418

[40] A. Panichella, C. McMillan, E. Moritz, D. Palmieri, R. Oliveto,
D. Poshyvanyk, and A. D. Lucia, “When and How Using Structural
Information to Improve IR-Based Traceability Recovery,” in 2013 17th
European Conference on Software Maintenance and Reengineering,
Mar. 2013, pp. 199–208. DOI: 10.1109/CSMR.2013.29

[41] H. Kuang, P. Mäder, H. Hu, A. Ghabi, L. Huang, J. Lü, and A. Egyed,
“Can Method Data Dependencies Support the Assessment of Traceabil-
ity Between Requirements and Source Code?” J. Softw. Evol. Process,
vol. 27, no. 11, pp. 838–866, Nov. 2015. DOI: 10.1002/smr.1736

[42] H. Gao, H. Kuang, K. Sun, X. Ma, A. Egyed, P. Mäder, G. Rong,
D. Shao, and H. Zhang, “Using Consensual Biterms from Text Structures
of Requirements and Code to Improve IR-Based Traceability Recov-
ery,” in Proceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE ’22. New York,
NY, USA: Association for Computing Machinery, Jan. 2023. DOI:
10.1145/3551349.3556948

[43] J. Guo, J. Cheng, and J. Cleland-Huang, “Semantically Enhanced
Software Traceability Using Deep Learning Techniques,” in Proceedings
of the 39th International Conference on Software Engineering, ser.
ICSE ’17. Piscataway, NJ, USA: IEEE Press, 2017, pp. 3–14. DOI:
10.1109/ICSE.2017.9

[44] W. Wang, N. Niu, H. Liu, and Z. Niu, “Enhancing Automated Re-
quirements Traceability by Resolving Polysemy,” in 2018 IEEE 26th
International Requirements Engineering Conference (RE), Aug. 2018,
pp. 40–51. DOI: 10.1109/RE.2018.00-53

[45] T. Zhao, Q. Cao, and Q. Sun, “An Improved Approach to Traceability
Recovery Based on Word Embeddings,” in 2017 24th Asia-Pacific
Software Engineering Conference (APSEC), Dec. 2017, pp. 81–89. DOI:
10.1109/APSEC.2017.14

[46] C. Mills, J. Escobar-Avila, A. Bhattacharya, G. Kondyukov,
S. Chakraborty, and S. Haiduc, “Tracing with Less Data: Active
Learning for Classification-Based Traceability Link Recovery,” in 2019
IEEE International Conference on Software Maintenance and Evolution
(ICSME), Sep. 2019, pp. 103–113. DOI: 10.1109/ICSME.2019.00020

[47] M. Zhang, C. Tao, H. Guo, and Z. Huang, “Recovering Semantic
Traceability between Requirements and Source Code Using Feature Rep-
resentation Techniques,” in 2021 IEEE 21st International Conference on
Software Quality, Reliability and Security (QRS), Dec. 2021, pp. 873–
882. DOI: 10.1109/QRS54544.2021.00096

[48] M. Glinz, “On Non-Functional Requirements,” in 15th IEEE Interna-
tional Requirements Engineering Conference (RE 2007), Oct. 2007, pp.
21–26. DOI: 10.1109/RE.2007.45

[49] F.-L. Li, J. Horkoff, J. Mylopoulos, R. S. S. Guizzardi, G. Guizzardi,
A. Borgida, and L. Liu, “Non-functional requirements as qualities,
with a spice of ontology,” in 2014 IEEE 22nd International Require-
ments Engineering Conference (RE), Aug. 2014, pp. 293–302. DOI:
10.1109/RE.2014.6912271

[50] J. Eckhardt, A. Vogelsang, and D. M. Fernández, “Are "non-functional"
requirements really non-functional? an investigation of non-functional
requirements in practice,” in Proceedings of the 38th International
Conference on Software Engineering, ser. ICSE ’16. Austin, Texas:
Association for Computing Machinery, May 2016, pp. 832–842. DOI:
10.1145/2884781.2884788

[51] J. Mylopoulos, L. Chung, and B. Nixon, “Representing and using
nonfunctional requirements: A process-oriented approach,” IEEE Trans-
actions on Software Engineering, vol. 18, no. 6, pp. 483–497, Jun. 1992.
DOI: 10.1109/32.142871

[52] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-Functional
Requirements in Software Engineering. Boston, MA: Springer US,
2000. DOI: 10.1007/978-1-4615-5269-7

[53] M. Broy, “Rethinking Nonfunctional Software Requirements,” Com-
puter, vol. 48, no. 5, pp. 96–99, May 2015. DOI: 10.1109/MC.2015.139

[54] M. Glinz, “A Glossary of Requirements Engineering Terminology,” Jul.
2022.

[55] CoEST, “Center of Excellence for Software & Systems Traceability.”
[Online]. Available: http://coest.org/

[56] K. Krippendorff, Content Analysis: An Introduction to Its Methodology.
SAGE Publications, May 2018.

[57] ——, “Reliability in Content Analysis,” Human Communication Re-
search, vol. 30, no. 3, pp. 411–433, 2004. DOI: 10.1111/j.1468-
2958.2004.tb00738.x

[58] T. Hey, “Dataset for Requirements Classification in Traceability Link
Recovery Datasets,” Zenodo, Apr. 2023. DOI: 10.5281/zenodo.7867846

https://doi.org/10.1145/1806799.1806817
https://doi.org/10.1109/ICSM.2011.6080780
https://doi.org/10.1145/3377811.3380418
https://doi.org/10.1109/CSMR.2013.29
https://doi.org/10.1002/smr.1736
https://doi.org/10.1145/3551349.3556948
https://doi.org/10.1109/ICSE.2017.9
https://doi.org/10.1109/RE.2018.00-53
https://doi.org/10.1109/APSEC.2017.14
https://doi.org/10.1109/ICSME.2019.00020
https://doi.org/10.1109/QRS54544.2021.00096
https://doi.org/10.1109/RE.2007.45
https://doi.org/10.1109/RE.2014.6912271
https://doi.org/10.1145/2884781.2884788
https://doi.org/10.1109/32.142871
https://doi.org/10.1007/978-1-4615-5269-7
https://doi.org/10.1109/MC.2015.139
http://coest.org/
https://doi.org/10.1111/j.1468-2958.2004.tb00738.x
https://doi.org/10.1111/j.1468-2958.2004.tb00738.x
https://doi.org/10.5281/zenodo.7867846

	Introduction
	Foundations
	NoRBERT
	FTLR

	Related Work
	Requirements Classification
	Traceability Link Recovery

	Research Design
	Classification
	Integration of Classification in FTLR

	Empirical Study on Classification
	Experimental Setup
	Classification Results
	Threats to Validity

	Empirical Study on the Impact on TLR
	Comparison to FTLR without Filters
	Comparison to UCT Filter
	Comparison to Related Work
	Threats to Validity

	Conclusion
	References

