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Abstract—In today’s digital age, Convolutional Neural Net-
works (CNNs), a subset of Deep Learning (DL), are widely used
for various computer vision tasks such as image classification,
object detection, and image segmentation. There are numerous
types of CNNs designed to meet specific needs and requirements,
including 1D, 2D, and 3D CNNs, as well as dilated, grouped,
attention, depthwise convolutions, and NAS, among others. Each
type of CNN has its unique structure and characteristics, making
it suitable for specific tasks. It’s crucial to gain a thorough
understanding and perform a comparative analysis of these
different CNN types to understand their strengths and weak-
nesses. Furthermore, studying the performance, limitations, and
practical applications of each type of CNN can aid in the devel-
opment of new and improved architectures in the future. We also
dive into the platforms and frameworks that researchers utilize
for their research or development from various perspectives.
Additionally, we explore the main research fields of CNN like 6D
vision, generative models, and meta-learning. This survey paper
provides a comprehensive examination and comparison of various
CNN architectures, highlighting their architectural differences
and emphasizing their respective advantages, disadvantages,
applications, challenges, and future trends.

Index Terms—Deep learning, DNN, CNN, Machine learn-
ing, Vision Transformers, GAN, Attention, Computer Vision,
LLM, Large Language Model, Transformer, Dilated Convolution,
Depthwise, NAS, NAT, Object Detection, 6D Vision, Vision
Language Model

I. INTRODUCTION

N today’s world, as technology continues to evolve, deep

learning (DL) has become an integral part of our lives
[1]. From voice assistants like Siri and Alexa to personalized
recommendations on social media platforms, DL algorithms
are constantly working behind the scenes to understand our
preferences and make our lives easier [2]. With advancements
in technology, DL is also being used in various fields such
as healthcare, finance, and transportation, revolutionizing the
way we approach these industries [3[|-[5]. As research and
development in the field of DL continue to progress, even more
innovative applications that will further enhance our daily
lives can be expected. DL has ushered in a transformative era
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in artificial intelligence, empowering machines to assimilate
vast datasets and make informed predictions [[6] [8]. The
development of CNNs has received attention among deep
learning’s significant advancements. Their impact has been felt
in some areas, including generative Al, examining medical
images, identifying objects [9], and finding anomalies [10].
CNNs, constituting a feedforward neural network, integrate
convolution operations into their architecture [7]] [[11]]. These
operations enable CNNs to adeptly capture intricate spatial and
hierarchical patterns, rendering them exceptionally well-suited
for image analysis tasks [12].

However, CNNs are often burdened by their computational
complexity during training and deployment, particularly when
operating on resource-constrained devices like mobile phones
and wearables [12] [13].

Two principal avenues have emerged to reinforce the energy
efficiency of CNNs: Employing Lightweight CNN Archi-
tectures: These architectures are deliberately engineered to
achieve computational efficiency without compromising accu-
racy. For instance, the MobileNet family of CNNs has been
meticulously tailored for mobile devices and has demonstrated
state-of-the-art accuracy across various image classification
Applications [13].

Embracing Compression Techniques: These methods facili-
tate the reduction of CNN model size and consequently dimin-
ish the volume of data transfers between devices. A noteworthy
example is the TensorFlow Lite framework, which offers a
suite of compression techniques tailored for compressing CNN
models for mobile devices [14].

The fusion of lightweight CNN architectures and compres-
sion techniques yields a substantial boost in the energy effi-
ciency of CNNs. Training and deploying CNNs on resource-
constrained devices become feasible, thereby unlocking novel
opportunities for employing CNNs in diverse applications
like healthcare, agriculture, and environmental monitoring [[12]]
[16].

How different convolutional techniques cater to various
Al applications. Convolutions play a fundamental role in
contemporary DL architectures and are especially crucial when
dealing with data organized in grid-like structures, such as
images, audio signals, and sequential data [23]. The convo-
Iutional operation entails moving a small filter, also known
as a kernel, across the input data, performing element-wise
multiplications and aggregations. This process extracts essen-
tial features from the input data [24]]. The main significance



TABLE I
COMPARISON OF EXISTING SURVEYS; +* MEANS CONDITIONAL COSIDERATION

_ Ref. Year No. of included studies R rch Questions and Objective Ta y Dataset Chall Comparison of Simulators Evaluation
[117] 2023 210 4% - - +
[118] 2021 343 + + +
[119 2022 202 - +
[120] 2020 243 +* + +*
Our survey 2024 465 + + + + + +

of convolutions lies in their capability to efficiently capture
local patterns and spatial relationships within the data. This
localization property makes convolutions highly suitable for
tasks like image recognition, as objects can be identified based
on their local structures. Additionally, convolutions introduce
parameter sharing, which results in a significant reduction in
the number of trainable parameters, leading to more efficient
and scalable models [25]. Existing surveys: Previous survey
papers on CNN architectures such as [[118]] and [120] provided
good overviews of popular architectures from a certain period.
However, they lacked a clear Research question and objective,
evaluation, and challenges based on their design patterns. They
mostly discussed architectures chronologically.

Earlier surveys like [[119] and [120] focused on explaining
core CNN components and popular architectures up to a cer-
tain year. they also lacked research questions and objectives,
analysis of datasets, and special types of taxonomy that were
not considered complete overviews like large vision models,
and large language models, and lacked of multipoint view for
challenges.

Previous work discussed the challenges in some specific
concepts and applications of CNNs but did not extensively
cover the intrinsic taxonomy present in newer CNN architec-
tures. So this caused us to write a survey paper that aims to
address the gaps in previous work by proposing a taxonomy
to clearly classify CNN architectures based on their intrinsic
design patterns rather than release year.

We focus on architectural innovations from 2012 onwards
and discuss the recent developments in greater depth than
earlier surveys. Discussing the latest trends and challenges
provides an updated perspective for researchers.

This comprehensive survey of CNN'’s history, taxonomy,
applications, and challenges is needed to accelerate research
progress in this domain further.

In this paper, the key questions we seek to address include:

e How do state-of-the-art CNN models like ResNet, In-
ception, and MobileNet perform on the target hardware
compared to constrained baselines? What are the impacts
on accuracy, latency, and memory usage?

o What techniques like pruning, quantization, distillation,
and architecture design can help reduce the model size
and computational complexity the most while retaining
prediction quality?

o How do multi-stage optimization approaches that com-
bine different techniques compare to single methods? Can
we achieve better trade-offs between accuracy, latency,
and memory?

o For a target application like embedded vision, what are

the best practices for benchmarking, tuning, and de-
ploying optimized CNN models considering their unique
constraints and specifications?

e Which pruning and quantization techniques work best
for our target application and hardware? How does this
compare to baselines?

Our overview makes several key contributions to the DL
and CV communities:

o Analyzing multiple types of existing CNNs: The survey
provides a comprehensive and detailed analysis of various
DL models and algorithms used in CV Applications.

o Comparing the CNN models with various parameters
and architectures: The overview offers insights into the
performance and efficiency trade-offs.

o Identifying the strengths and weaknesses of different
CNN models: Aiding researchers in selecting the most
suitable model for their specific applications.

o The overview highlights the challenges and future
directions for further improvement in the fields of DL
and computer vision.

« Exploring the trends in neural network architecture:
This emphasizes the practical application and exciting
nature of the advancements.

« comprehensive overview of the Main research fields:
This covers the primary fields of research that are actively
pursued by researchers.

The rest of our review paper follows (See Fig. [I): Section
2 of the paper will delve into the fundamentals of convolu-
tions, elucidating their mathematical formulation, operational
mechanics, and the role they play in the architecture of neural
networks. Section 3 describes the basic parts of CNNs. In Sec-
tion 4, The exploration will cover 2D convolutions, 1D convo-
lutions for sequential data, and 3D convolutions for volumetric
data. Section 5 of the research paper will investigate advanced
convolutional techniques that have emerged in recent years.
This will encompass topics such as transposed convolutions for
upsampling, depthwise separable convolutions for efficiency,
spatial pyramid pooling, and attention mechanisms within
convolutions. Section 6 of the paper will highlight the real-
world applications of different convolution types, showcasing
their utility in image recognition, object detection, NLP, audio
processing, and medical image analysis. In section 7 we
discuss future trends and some open questions about CNNss.
Section 8 is about the performance consideration of CNNs.
In Section 9, we are going to talk about the platforms that
are mostly used by researchers and developers, and in Section
10 about research fields that are popular or trending, then we
have discussion in Section 11. By the end of this research
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Fig. 1. Represents the section-by-section structure of the paper that provides a clear and organized framework for presenting the research findings.
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Fig. 2. A text-based visual reading map that helps individuals navigate and
comprehend the paper

in Section 8, readers will gain a profound understanding of
the importance of convolutions in DL and Fig. 2] represents
a reader map to visualize the flow of information within
a text. It shows the connections between various sections,
assisting readers in comprehending the overall structure of
their preferred section following their needs.

II. FUNDAMENTALS OF CONVOLUTIONS

Convolutions form the foundation of crucial mathematical
operations used to process data structured in grids, such as
images, videos, and time series data [26]]. Originally used in
signal processing, convolutions were used for analyzing and
manipulating signals [27]. In deep learning, convolutions serve
as powerful feature extractors, enabling neural networks to
efficiently learn from raw data [26] [27]. The essence of a
convolution involves the sliding of a small filter, commonly

known as a kernel, over the input data. At each position of
this sliding operation, the kernel performs element-wise mul-
tiplication with the corresponding input values [28]]. Through
this process, local patterns and relationships within the data
are captured, enabling the model to acquire essential features
like edges, textures, and shapes.

A. Mathematical Formulation of Convolutions

Mathematically, a 2D convolution between an input matrix
(often representing an image) and a kernel can be represented
as follows:

Output(s, j) = Z Input(x, y) - Kernel(i — z,j — y)
(z,y)

(1)

Here, Output denotes the resulting feature map, and Input
represents the input matrix. The kernel, usually a small square
matrix, defines the convolutional filter’s weights. The convolu-
tion operation is performed by sliding the kernel over the input
matrix, and at each position, the element-wise multiplication
and summation are computed as described in the formula [29].
For 1D convolutions, the mathematical formulation is similar,
with the kernel sliding along a one-dimensional sequence, such
as a time series or text data [30].

B. Convolutional Operations in DL

Convolutional operations form the core of CNNs, a highly
prominent class of DL models widely utilized for various
CV applications. Within a CNN, convolutions are typically
integrated into specific layers referred to as convolutional
layers [31]. These layers are composed of multiple filters,
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Fig. 3. . A graphical representation of CNN architectures from 1998 to 2023

each responsible for detecting distinct patterns in the input
data [[139]-[146]. During the training phase, the model goes
through the process of backpropagation and gradient descent
to learn the optimal weights of the convolutional filters. This
enables the model to automatically discern meaningful patterns
within the data. Moreover, CNN architectures (See Fig. E]
and Fig. ) often incorporate pooling layers following the
convolutional layers. As a result of pooling layers, feature
maps generated by convolutions are downsampled, reducing
computational complexity. Common pooling techniques in-
clude max-pooling and average pooling, which we will discuss
about them in Section 3. B.

C. Wavelets

Wavelets are an important mathematical tool that has nu-
merous applications in fields such as signal processing and
computer graphics. At their core, wavelets rely on convolution
to analyze functions or continuous-time signals [104]. By
convolving the target function with wavelet basis functions
at different scales, wavelets are capable of representing data
with varying degrees of resolution [109].

Wavelet analysis uses small waves, called wavelets, as
basis functions instead of the sine and cosine functions used
in Fourier analysis [[105]. Wavelets have the advantage of
analyzing properties of data locally in time and frequency
instead of globally. This makes them well-suited for tasks such
as edge detection, noise removal, and texture identification.
The wavelet basis can also be adapted to the input signal or
data being analyzed [105] [[106].

CNNs naturally lend themselves to wavelet analysis due
to their intrinsic use of convolution operations [107] [108].
During training, the convolutional filters within CNNs can
learn wavelet-like basis functions tailored to meaningfully
represent the given input data distribution at multiple res-
olutions. By adopting the wavelet bases through gradient
descent and backpropagation, CNNs gain an efficient multi-
scale representation of patterns in the data [108] [[L09].

A key characteristic of wavelets is their ability to decom-
pose a signal into different frequency components, with high
frequencies corresponding to detailed information and low
frequencies corresponding to overall trends [[108]. A single-
level wavelet decomposition breaks down the original signal
into approximation and detail coefficients. The approximation
contains lower frequency information, while the detail contains
higher frequency or detailed information [[109].

CNNs can utilize this multi-resolution decomposition prop-
erty of wavelets by using convolutions to learn wavelet filters
at each level [108]-[110]. The output of each level becomes
the input to the next, with the filters extracting more de-
tailed features at higher levels after the removal of coarse
information. This convolutional learning of adapted wavelet
bases enables CNNs to hierarchically capture patterns across
different scales for improved data representation [[110].

In various image processing and computer vision tasks,
the use of convolutional wavelets within CNNs has shown
promising results. For applications like denoising, super-
resolution, and texture synthesis, CNNs equipped with learned
wavelet filters have achieved state-of-the-art performance by
effectively representing key multi-scale characteristics of vi-
sual data [110]—[113]]. Convolutional wavelets also benefit
segmentation, detection, and classification when combined
with traditional convolutional filters within CNNs [109]]. In
summary, wavelets provide a powerful tool for multi-scale
analysis that CNNs can leverage through their inherent ability
to learn localized basis functions via convolution operations.

IITI. BASIC CONVOLUTIONAL NEURAL NETWORKS

The CNN architecture typically consists of an initial input
layer, followed by several critical components, including con-
volutional layers, pooling layers, and fully connected layers.
This organized structure allows for the systematic processing
of raw data, such as images, through a series of layers, which
in turn enables the extraction of relevant features and facilitates
making predictions.

The convolutional layers hold a central position in this
architecture, as they employ learnable filters to process the
input data. This operation is instrumental in detecting diverse
patterns and features, thereby enhancing the network’s ability
to understand the underlying data. Following the convolutional
layers, the pooling layers come into play, downsampling the
output from the previous layers. This downsampling process
reduces the spatial dimensions while retaining crucial infor-
mation. By focusing on the most significant details, these
layers contribute to translational invariance, a valuable aspect
in applications like image recognition where object positions
may vary.

In Table |lI} a comprehensive overview of the core compo-
nents of basic CNNs is presented (also See Fig. [5), encom-
passing convolutional layers, pooling layers, and activation
functions. The table provides insights into their individual
purposes, functionalities, dependencies on input size, param-
eters, feature maps, translational invariance, computational
efficiency, output size, roles in the CNN architecture, and
impact on model performance. Analyzing these aspects pro-
vides profound insights into the elements that contribute to the
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effectiveness and performance of CNNs, making it a valuable
reference for researchers and practitioners in the field.

A. Background of Deep Learning

Deep learning, a prominent form of machine learning,
encompasses the use of neural networks composed of multiple
layers to acquire hierarchical representations of data [17].
Taking inspiration from the intricate workings of the human
brain, where neurons engage in processing and transmitting
information to forge elaborate depictions of the world, DL
models, also known as deep neural networks, showcase re-
markable prowess in assimilating hierarchical features from
raw data. This exceptional ability enables them to discern in-
tricate patterns and achieve remarkable precision in predictions
(18]l

The roots of DL can be traced back to the nascent endeavors
surrounding artificial neural networks in the 1940s. However,
the true resurgence and substantial remarkable materialized
in the 1980s and 1990s, paving the way for its remarkable
revival in the 21 century [19]]. Key catalysts driving this
resurgence were the strides made in computational power, the
vast availability of datasets, and the advent of efficient training
algorithms, most notably backpropagation, which played a piv-
otal role [20]. By harnessing these advancements, DL models
attained the ability to process and analyze vast repositories
of data, thus acquiring an aptitude for deciphering intricate
patterns and making precise predictions.

The convergence of powerful hardware and sophisticated
algorithms ushered in an era of remarkable accomplishments
across diverse domains. Computer Vision (CV), natural lan-
guage processing (NLP), and speech recognition (SR), among
others, have witnessed remarkable strides through the transfor-
mative power of DL [73]]. This dynamic discipline’s capacity



TABLE I

THE DIFFERENT ASPECTS OF THE BASIC CONVOLUTIONAL NEURAL NETWORKS

Aspect Convolutional Layers Pooling Layers Activation Functions Batch Normalization
Purpose Feature extraction Feature reduction Introduce non-linearity Training stabilization
Functionality Detect patterns and textures Downsample feature maps Add non-linearity Normalizing activations

Learnable scaling &

shifting parameters

Reduces computation

complexity

May or may not

match the input size

Role in CNN

architecture

Interposed between

convolutions

Enable learning

complex relationships

Improve convergence,

ease of tuning

Influence on

model performance

Significantly

impacts performance

Affects model

efficiency

Crucial for

Learning

Significantly

impacts performance

Memory usage

Normal

Normal

to overcome more difficult problems and promote innovation
across various industries is becoming more and more clear as
it develops and advances.

B. Introduction to Convolutional Neural Networks

CNNs, an influential category of DL models, have emerged
as a preeminent and extensively utilized algorithm within the
realm of DL [21]. Distinctive to CNNs is their capacity to
engage in convolution calculations and operate proficiently on
intricate structures. This characteristic has propelled CNNs
to achieve remarkable breakthroughs in image analysis and
feature extraction, bestowing upon them the ability to discern
and efficiently classify features in images. Moreover, CNNs
are renowned as shift-invariant artificial neural networks, a
nomenclature that accentuates their capability to classify input
information based on its hierarchical arrangement [22].

The hierarchical architecture of CNNs empowers them
to process and extract features from input data in a shift-
invariant manner [22]. This implies that CNNs can adeptly
recognize and classify objects within images, irrespective of
their position or orientation. The realization of this shift-
invariant attribute is accomplished through the application of
convolutional layers, which employ filters in a sliding window
fashion. These filters acquire the ability to detect specific
patterns or features at various spatial scales, thereby enabling
the network to encapsulate both local and global informa-
tion. Consequently, CNNs exhibit profound proficiency in
extracting meaningful features from images, facilitating a wide
array of applications encompassing object detection, image
recognition, and even image generation [74].

C. Convolutional Layers and Their Functionality

Each convolutional layer comprises multiple filters, also
referred to as kernels, which are small windows that slide over
the input data [32]. During the training phase, the weights
of these filters are learned, and they function as feature
extractors, identifying specific patterns, edges, and textures
present in the input [33]]. When the filters move across the
input, they create feature maps that emphasize important parts
of the data as region of interest (ROI). These maps show
where specific patterns in the input become active, helping
the CNN recognize significant features crucial for later tasks
like classification or detection [34].

For example, in a CNN trained to identify cats in images,
the filters may learn to recognize the patterns of fur, whiskers,
and ears. As the filters convolve across an image of a cat, they
generate feature maps that highlight these specific regions of
interest. These feature maps indicate the activation of these
cat-specific patterns and aid in accurately classifying the image
as containing a cat.

D. Pooling Layers and Feature Reduction

Pooling layers are incorporated following convolutional
layers to decrease the spatial dimensions of the feature maps,
thereby reducing the computational complexity of the network
[35]]. The most frequently utilized pooling techniques in CNNs
are max-pooling and average-pooling [37].

Max-pooling entails selecting the maximum value from
a small region of the feature map, while average-pooling
computes the average value. Pooling offers two primary ad-
vantages: first, it effectively reduces the number of parameters
in the network, resulting in improved computational efficiency.
Second, it introduces a level of translational invariance, sig-
nifying that minor spatial translations in the input data do



not substantially impact the pooled outputs. This property
enhances the CNN’s ability to generalize better to variations
in the input data.

For example, in image classification applications, after
several convolutional and activation layers, a pooling layer can
be used to downsample the feature map. This downsampling
reduces the spatial resolution of the features, making it more
computationally efficient to process and reducing the risk
of overfitting. Additionally, because pooling computes either
maximum or average values, it can capture the dominant
features in an image regardless of their exact location, making
the network more robust to slight variations in object position
or orientation.

E. Activation Functions in CNNs

Activation functions play a vital role in CNNs as they are
applied to the output of each neuron, introducing nonlinearity
to the network and facilitating the learning of complex rela-
tionships between input data and their corresponding features.
Within CNNs, several commonly used activation functions
include Rectified Linear Units (ReLU) [36]], which set negative
values to zero while preserving positive values unchanged.
Variants like Leaky ReLU [36] and Parametric ReLU [39]]
are also widely employed. The selection of the activation
function is of great importance as it directly impacts the
network’s capacity to learn and make accurate predictions.
By introducing nonlinearity, activation functions allow CNN
to model intricate patterns and decision boundaries, thereby
enhancing its performance across a range of tasks.

For example, in image classification applications, the ReL.U
activation function has been shown to effectively remove nega-
tive pixel values and emphasize positive pixel values, allowing
CNN to identify important features and learn discriminative
patterns. This enables the CNN to accurately classify different
objects in images, such as correctly identifying whether an
image contains a cat or a dog.

F. Batch Normalization in CNNs

Batch Normalization is a technique that helps stabilize and
accelerate the training of CNNs [[78]. It normalizes the activa-
tions of each layer by centering and scaling the values using
the mean and variance of each mini-batch during training.
This process reduces internal covariate shifts, making the
optimization process smoother and enabling the use of higher
learning rates.

By normalizing activations, Batch Normalization allows for
more aggressive learning rates, which leads to faster conver-
gence and improved model generalization. Additionally, it acts
as a regularizer, reducing the need for other regularization
techniques like dropout.

Opverall, Batch Normalization has become a standard com-
ponent in CNN architectures, contributing to faster training,
improved model performance, and increased ease of hyper-
parameter tuning. Its widespread adoption has significantly
contributed to the success of modern CNNs in various CV
and NLP applications. For example, in image classification
applications, Batch Normalization helps reduce overfitting by
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normalizing the input for each mini-batch during training. This
ensures that the network learns robust features and avoids
relying on specific pixel values or noise in the input data. As
a result, the model becomes more generalized and performs
better on unseen data.

IV. TYPES OF CONVOLUTION IN DEEP LEARNING

In this section, our goal is to comprehensively explore the
different convolution methods (See Fig. [f) commonly used in
deep learning models. Table ?? presents a condensed overview
of these convolution types, providing important information
such as input data type, dimensionality, receptive field, com-
putational cost, primary use case, memory consumption, par-
allelization capability, consideration of temporal information,
and computational efficiency.

It is important to highlight that selecting the appropriate
convolutional type relies on the particular task and dataset
under consideration. For instance, when working with diverse
data types, such as images or text, it may be necessary
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Fig. 7. The Basic structure of CNN. a) represents CNN without Padding
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Padding which the output image is the same size as the input image



to employ distinct convolutional types to effectively capture
relevant features. Moreover, considering the computational
efficiency of each convolutional type becomes important for
real-time applications or settings with limited resources.

A. 2D Convolutions

2D convolutions (See Fig. serve as the foundational
elements in CNNs, particularly for applications related to
CV. They are predominantly utilized for processing two-
dimensional data, such as images, which can be represented
as a grid of pixels. During this convolutional operation, a
2D kernel slides over the input image, enabling the capture
of local patterns and the extraction of relevant features [27].
The primary application of 2D convolutions lies in image
recognition, wherein the model learns to identify essential
patterns, including edges, textures, and object components,
thereby facilitating high-level recognition applications [40].

2D convolutions have found use in a variety of fields,
including signal processing, CV, and NLP in addition to image
recognition. CNNs have completely changed CV processes
like object detection, image segmentation, and facial recog-
nition. CNNs can more accurately and efficiently analyze
the spatial relationships and hierarchical structures present
in images by using 2D convolutions. When learned filters
slide across the input image, a CNN can learn to find and
locate different objects in images, such as in object detection
tasks. This helps the network accurately detect objects even
in complicated scenes, as it can identify important patterns of
various sizes.

Moreover, CNNs can also be learned to categorize and com-
pare faces by analyzing facial features using 2D convolutions
in facial recognition. This makes it possible to create systems
like access control and identity verification.

B. 1D Convolutions for Sequential Data

One-dimensional (1D) convolutions (See Fig. E]) are spe-
cially designed for working with sequential data like time
series, audio signals, and natural language. Unlike their two-
dimensional counterparts, 1D convolutions operate on a sin-
gle line, allowing them to detect patterns that develop over
time [41f]. In the field of natural language processing, 1D
convolutions are widely used in tasks such as classifying
text and analyzing sentiments. They help the model identify
complex patterns in sequences of words and understand how
these words are related to each other [42]]. 1D convolutions
have also been successfully applied to audio signal processing
applications such as SR and music analysis. By analyzing the
temporal patterns of audio signals, these models can extract
meaningful features that capture the underlying structure and
characteristics of the sound. This has proven to be particularly
useful in applications like speaker identification and emotion
recognition, where the sequential nature of the audio data is
sequential.

For example, in speaker identification, 1D convolution can
analyze the sequential patterns of an individual’s voice and
learn to associate certain patterns with specific speakers.
This allows the model to accurately identify and differentiate

between different speakers in an audio recording. In emotion
recognition, 1D convolutions can analyze the temporal changes
in pitch, tone, and intensity of an audio signal to classify the
emotional state of the speaker, such as happiness, sadness, or
anger. This helps in detecting and understanding the underly-
ing emotions conveyed through speech, which can be useful in
various applications like customer sentiment analysis, virtual
assistants, and mental health monitoring.

C. 3D Convolutions for Volumetric Data

Three-dimensional (3D) convolutions are specifically de-
signed to handle volumetric data, such as 3D medical images
or video data [43]]. 3D convolutions possess the capability
to simultaneously process spatial and temporal dimensions,
thereby capturing intricate patterns and distinctive features
across all three dimensions. In medical imaging, 3D convolu-
tions are vital in jobs like finding where tumors are. The model
uses 3D medical scans to figure out where the important spatial
and surrounding details are, which helps accurately locate and
describe tumors [44]] [45].

The use of 3D convolutions has gone beyond just tumors
and is used in various medical imaging tasks like picking out
different parts of the body, spotting issues, and classifying
diseases. This method lets the model see the whole volume of
a medical scan, rather than just individual parts, and consider
how different slices are related in space. This comprehensive
approach allows the model to effectively capture the overall
structure of the target organ or an anomaly, resulting in
improved diagnostic accuracy and better patient outcomes.

For instance, in tumor segmentation, 3D convolutions can
be used to analyze a series of consecutive medical scans to
identify the size and location of tumors over time, allowing
doctors to track their growth and plan targeted treatments.
This helps improve the accuracy and efficiency of tumor
identification, leading to better patient outcomes.

In addition to operating on raw medical images and videos,
3D convolutions can be applied to process point cloud data
through voxelization [[101]. As point clouds represent 3D
geometry as an unordered set of points without connectivity,
a common approach is to first discretize the continuous 3D
space into regular volumetric grids called voxels. Each voxel
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Fig. 8. An overview to simple one-dimensional (1D) Convolution Neural
Network with Two Convolution layer



TABLE III
THE COMPARISON PROVIDES AN OVERVIEW OF THE CHARACTERISTICS AND FUNCTIONALITIES OF DIFFERENT CONVOLUTION TYPES

Convolution Type 2D Convolutions 1D Convolutions

3D Convolutions

Dilated Convolutions Grouped Convolutions

Sequential Data

Input Data Type Images
. Cg.Tex)
_ _ _Dimensionality = _ 2D________ ID______
_ _ _Receptive Field Local = __ __ _ Local __ __ _

Computational Cost Medium Low

Semantic segmentation,

Image recognition,  Text classification,

Object detection Sentiment analysis

Use of Temporal Captures temporal

__ _ Information ______~_______ 1 patterns
Computational Medium High
Efficiency

3D medical imaging

Captures spatial

Volumetric Data

Images Images
leg, Videos) _ _ _ _ _ _ _ _ _______________.
__s3________ b,2b ________2 ____.
_ Yolumewic ______ _ Local ____ ____ Local
High Low High

Image Filtering, Large-scale

Image generation CNN architectures

temporal patterns

Medium

is assigned a feature vector, such as the number of points or
aggregated point properties within its volume.

Voxelizing the point cloud allows existing 3D convolutional
kernel operations to be directly applied. Early works divided
the spatial domain into coarse voxels and maxpooled point
features inside each voxel [101]]. More advanced methods
utilize sparse convolutions over fine-grained voxels or use
dilated kernels with gaps to control the receptive field size.
Multi-scale voxels have also been explored to capture both
local and global point features [[126] [127].

After 3D convolution and pooling, the extracted voxel
features can be decoded back to the original point cloud
domain for subsequent 3D fully connected or Transformer
layers [[130]. Voxel representation serves as an efficient inter-
mediary that not only maintains the spatial structure required
by CNNs but also allows points of variable density [[128]] [[129]]
[130]]. This two-stage voxel-based approach enables end-to-
end training of 3D CNNs for point clouds.

D. Dilated Convolutions and Their Advantages

Dilated convolutions (See Fig. E]), also known as atrous
convolutions, are a variant of traditional convolutions that
introduce gaps (dilation) between kernel elements. This gap
enables for an increased receptive field without increasing
the number of parameters, making dilated convolutions more
computationally efficient [46]. Dilated convolutions find appli-
cation in applications like semantic segmentation, where they
enable the model to capture broader contextual information
without compromising computational efficiency [47].

In semantic segmentation applications, dilated convolutions
are particularly useful because they enable the model to
capture broader contextual information. By introducing gaps
between kernel elements, dilated convolutions increase the
receptive field without adding more parameters. This means
that the model can understand the surrounding context of each
pixel or object in the image without sacrificing computational
efficiency. This value is important in applications like semantic
segmentation, where accurately identifying and classifying
objects within an image is essential.

E. Grouped Convolutions for Efficiency

Grouped convolutions (See Fig. involve dividing the
input and output channels of a convolutional layer into
groups. Within each group, separate convolutions are per-
formed, which are then concatenated to produce the final
output. This technique significantly reduces computational cost
and memory consumption while promoting model parallelism
[48]. Grouped convolutions are commonly used in large-scale
CNN architectures to reduce training time and enhance the
scalability of DL models [49].

In addition to reducing computational cost and memory con-
sumption, grouped convolutions also offer other advantages.
One of the main benefits is improved model parallelism, which
provides for better utilization of parallel computing resources.
This is especially important in large-scale CNN architectures
where training time can be a bottleneck. By dividing the
input and output channels into groups, the convolutions can be
performed in parallel, speeding up the entire training process.
Furthermore, the scalability of DL models is enhanced with
grouped convolutions, making it easier to deal with larger
datasets and more complex applications.

For example, in image classification applications, a large-
scale CNN architecture such as ResNet can benefit from model
parallelism using grouped convolutions. By dividing the input
and output channels into groups, different subsets of the model
can be trained in parallel on multiple GPUs or distributed
systems. This not only reduces the training time but also
allows for better resource utilization, eventually improving the
scalability of the DL model to handle larger datasets and more
complex image recognition applications.

In conclusion, DL offers a diverse range of convolutional
techniques to accommodate different data types and appli-
cations. From 2D convolutions for image recognition to 1D
convolutions for sequential data and 3D convolutions for vol-
umetric data, each convolution type has its unique advantages.
Additionally, dilated convolutions and grouped convolutions
serve as efficient alternatives, addressing specific challenges
in DL models. Understanding the characteristics and appli-



cations of these convolution types empowers researchers and
practitioners to design efficient and effective models for a wide
array of applications.

FE. Evolution of CNN Architectures

Since the early origins of CNNs, there has been a rapid
evolution in CNN architectures (See Fig. [IT) [49] over the
past decade to enhance performance and efficiency [51]. Some
key developments include:

o Inception modules (2014) - The Inception architecture
introduced convolutional blocks with multiple filter sizes
to capture features at various scales [[52]]. This improves
both accuracy and computational efficiency.

o ResNets (2015) - Residual networks allow the training
of much deeper CNNs through shortcut connections that
bypass multiple layers [53]]. They reduce degradation in
very deep models.

o DenseNets (2016) - These connect each layer to all
subsequent layers for maximum information flow and
feature reuse. This reduces the number of parameters
[54].

« MobileNets (2017) - Designed specifically for mobile
applications, they use depthwise separable convolutions
to minimize model size and latency [55].

« EfficientNets (2019) - By systematically scaling net-
work dimensions, these achieve much better efficiency-
accuracy trade-offs [|55].

The evolution of CNN architectures (See Fig. [TT)) has been cru-
cial to their widespread adoption across vision applications.

V. ADVANCED CONVOLUTIONAL TECHNIQUES

This section provides a detailed overview of advanced con-
volutional techniques (See Fig. [I2). A clear and informative
summary of these techniques is available in Table By
reviewing this table, readers can gain a better understanding of
the state-of-the-art convolutional techniques and their potential
uses.

Dilation = 1 Dilation = 3

| Handling large receptive fields without |
loss of resolution
Using for semantic segmentation and

Dilation =2

| Computationally expensive: Require more |
\\ 1'% | computation than traditional convolutions |
i

! Difficult to train: Because dilated j
|

i convolutions introduce artifacts into the i
! |
|

Fig. 9. Dilation Convolution with multiple dilation rate with 3 x 3 kernel
size [74]

A. Transposed Convolutions and Upsampling

Transposed convolutions—also referred to as deconvolu-
tions or fractionally stridden convolutions—are sophisticated
methods for upsampling feature maps [[57]. Transposed convo-
lutions, as opposed to conventional convolutions, increase the
feature map size, enabling the model to reconstruct higher-
resolution representations from lower-resolution inputs [58].
Traditional convolutions reduce spatial dimensions. In pro-
cesses like image segmentation [59]], image creation [60], and
image-to-image translation [61]], they are essential. Transposed
convolutions employ padding and stride values to regulate the
upsampling process and learnable parameters to choose the
output size.

Transposed convolution can create artifacts or checkerboard
patterns in generated feature maps, due to overlapping recep-
tive fields. To prevent this, stride, padding, and dilation are
used to control the output resolution and reduce these artifacts.
In the field of image generation, transposed convolutions are
used to upscale low-resolution images into high-resolution
ones. To ensure the generated images are free of artifacts
or checkerboard patterns, stride, padding, and dilation are
adjusted to control the output resolution and enhance the
quality of the generated images.

B. Depthwise Separable Convolutions (DSC)

Depthwise separable convolutions (See the purple box in
Fig.[13) are an efficient alternative to traditional convolutions,
particularly in resource-constrained environments [62] [63]].
They split the convolution process into two steps (See Fig.
[[3) depthwise convolutions [64] and pointwise convolutions
[65] [276]-[279]. Depthwise convolutions apply a separate
kernel to each input channel, capturing spatial patterns in-
dependently for each channel. Pointwise convolutions then
use 1x1 convolutions to combine the output channels from
the depthwise step, effectively aggregating the information
[66]. Depthwise separable convolutions significantly reduce
the number of parameters and computation while maintaining
model performance, making them popular in mobile and
embedded applications [67]].

By decoupling spatial filtering from cross-channel filtering,
depthwise convolution achieves higher computational effi-

Integrated Input

Grouped Output

Group 1

Fig. 10. Grouped convolution involves dividing the channels of a convolu-
tional layer into 3 groups



Parameters Types e |
o <1M * Transformer . : : b |
B o) Ty ' MobileNet : Co
o 1M - 10M R : ‘
i ] O TVt |
o 10M - 30M | InceptionResNet v2 | i }
il : ! : I N T T I
0| 30M-100M " DenseNets | b ( Imagen |
100M - 200M SGLeSR200N ; T
| DenseNet- | [ ViTB/16 | “pALLE2 |
200M - 400M ! 121 ] . ! [ '
. s ' MobileNet | EfficientNet
o 400M < - | SeNet  \alarge | 7 coa
[ ] Unknown ‘ y - | shuffleNet | = ShuffleNet | | MobileNet | ! EfficientNet | ConvNeXt
! GoogleNet | i ) ‘ vi } ‘ v2 ] w v3small | | Xlarge
! (Inception v1) | ResNets !| Inception | ! | NasNet | EfficientNet | EfficientNet ConvNeXt
| B i | ResNeXt | E i | i
{ 'l -101,-152 | v3 1 /| Mobile | B4toB7 | large
VGGNets . ) Inception ‘ | Xception ‘ NasNet :; EfficientNet :  EfficientNet ‘ ConvNeXt :
(11,-13, | FResNets L v2 | large | | v2B2-83 || Small, base |
s 1 ) ¢ ) 0 g ' (-18,-34, ¥ 3 ¥ q ¥ . i i 2 ¥
| B /| i | -16, -19) | (-18,-34, ! /| Inception || MobileNet | EfficientNet | || EfficientNet | ConvNeXt
i Le-Net5 | AlexNet | ZFNet | j -52) ¥ SqueezeNet ¥ va | v2 | BOtoB2 || GhostNet | \2B0-B1 | iy
””””” »
1998 2012 2013 2014 2015 2016 2017 2018 2020 2022 -
Fig. 11. The detailed overview of advanced convolutions techniques
TABLE IV

THE COMPARISON PROVIDES AN OVERVIEW OF THE CHARACTERISTICS AND FUNCTIONALITIES OF DIFFERENT CONVOLUTION TYPES - PART 1

Convolution Techniq

Tr.

P

d Convolutions

DSC

SPP

Attention Mechanism

Shift-Invariant

Purpose

Parameters
Computational Cost
Parameter Efficiency

Upsampling

Spatial Handling
Long-range
Dependencies
Translation Invariance
Rotation Invariance
Interpretability
Model Size
Versatility

Practical Applications

Image Super-Resolution,

Upsampling

Learnable
High
Low
Yes
Spatially Invariant

Low
Large
Normal

Image Segmentation,

Image Generation

Parameter Reduction

Learnable
Low
High
No
Spatially Invariant

Low
Small
High

Mobile Vision Applications,
Real-time Object Detection

Handling Varying
Input Sizes
No parameters
Low
High
No

Variable regions

Low
Small
High
Image Classification,
Object Detection,

Semantic Segmentation

Focus on Relevant
Features
Learnable
Normal
Low
No

Spatially Invariant
Yes

Yes
No
Low
Small
High

Image Captioning,

Visual Question Answering

Invariance

Learnable
High
Normal
No
Spatially Invariant

Low
Large
Normal
Image Recognition,
Object Detection,

Image Filtering

TABLE V

THE COMPARISON PROVIDES AN OVERVIEW OF THE CHARACTERISTICS AND FUNCTIONALITIES OF DIFFERENT CONVOLUTION TYPES - PART 2

Convolution Technique Steerable Convolution Capsule Networks NAS GAN VIT
Purpose Efficiency and Invariance Invariance Efficiency Synthesis Long-range dependencies
Parameters Learnable Learnable capsules Architecture search Learnable Learnable
Computational Cost Low High High High Higher
Parameter Efficiency High Normal High Low Normal
Upsampling No No No No No
Spatial Handling Spatially Invariant Spatially Invariant Spatially variant Spatially Invariant Spatially Invariant
Long-range Dependencies No No No No Yes
Translation Invariance Yes Yes Yes No Yes
Rotation Invariance Yes Yes No No Yes
Interpretability Low Low Low Low High
Model Size Normal Normal Large Large Large
Versatility Low Low Low Low High

Practical Applications

Image Filtering,
Edge Detection,

Pattern Recognition

Object Recognition,
Image Segmentation,
Medical Imaging

Customized CNN Architectures,
Resource-Constrained Devices

Image Synthesis,
Style Transfer,

Data Augmentation

Image recognition, NLP,

diverse tasks
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ciency and is well-suited for resource-constrained environ-
ments. MobileNet and Xception are popular CNN architectures
that use depthwise convolution to reduce model size and
improve inference speed without compromising performance
significantly.

C. Spatial Pyramid Pooling (SPP)

Spatial pyramid pooling (SPP) is a technique used to handle
inputs of varying sizes and aspect ratios in CNNs [[68] [280]—
[285]. It divides the input feature maps into different regions
of interest and applies max-pooling or average-pooling to each
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Fig. 13. The Box with Purple color represents the Depthwise Convolution
and the box with red color represents Pointwise Convolution (in pointwise a
1 x 1 convolution is used)

region independently. The resulting pooled features are then
concatenated to form a fixed-length representation, which is
fed into fully connected layers for further processing. SPP
enables the CNN to accept input images of different sizes and
produces consistent feature maps, making it useful in object
detection and image segmentation applications [|69].

D. Attention Mechanisms in Convolutions

Attention mechanisms in convolutions allow the model to
focus on relevant parts of the input, emphasizing specific
regions during feature extraction [70]]. These mechanisms
assign weights to different spatial locations based on their
importance. Self-attention mechanisms [70], like those used in
transformers, have been adapted for use in convolutions. They
enable the network to capture long-range dependencies and
context, improving the model’s ability to recognize complex
patterns and relationships.

E. Shift-Invariant and Steerable Convolutions

Shift-invariant convolutions are designed to be insensitive
to small translations in the input data [71]] [286]—-[288]. They
ensure that the learned features remain consistent regardless
of the object’s position within the input image. This prop-
erty is crucial for object detection applications, where the
object’s location might vary within the image [27]]. Steerable
convolutions are filters that can be rotated to different angles,
allowing the model to learn orientation-sensitive features in an
orientation-invariant manner [289]]-[291]]. These convolutions
are often used in applications like text recognition, where the
orientation of text can vary.

F. Recent Advancements and Innovations

1) Capsule Networks: Capsule Networks, introduced by
Geoffrey Hinton and his team, is a revolutionary advance-
ment in CNNs [75]. They aim to address the limitations of
traditional CNNs, particularly in handling spatial hierarchies
and viewpoint variations [292]-[298]|]. Capsule Networks use
capsules as fundamental units, which are groups of neurons
that represent various properties of an entity, such as its pose,
deformation, and parts.

Capsule Networks offer dynamic routing mechanisms to
route information between capsules, allowing them to model
complex hierarchical relationships more effectively. This en-
ables the network to recognize objects with various poses
and appearances, making Capsule Networks more robust to
transformations and occlusions.

2) Neural Architecture Search for Convolutions: Neural Ar-
chitecture Search (NAS) is an automated approach to design-
ing CNN architectures [76] [81]. Instead of relying on human-
designed architectures, NAS employs search algorithms and
neural networks to discover architectures that perform well
on specific applications [76]. This technique has led to the
development of state-of-the-art CNNs that outperform hand-
crafted models [299]-[309].

NAS for convolutions involves exploring various convolu-
tional designs, including different kernel sizes, depths, and
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connectivity patterns [82]. It evaluates each architecture on a
validation set, and through a process of evolution or optimiza-
tion, identifies the best-performing architecture.

In the scenario of self-autonomous vehicle navigation, NAS
for convolutions could be used to design an optimal convo-
lutional neural network architecture specifically tailored for
processing and analyzing various types of visual data collected
by the vehicle’s sensors. By exploring different convolutional
designs, such as varying kernel sizes, depths, and connectivity
patterns, NAS could identify the most effective architecture
for accurately detecting objects and recognizing road signs in
real-time. This would ultimately improve the vehicle’s ability
to navigate autonomously and make informed decisions based
on its visual perception.

3) Generative Adversarial Networks: Generative Adversar-
ial Networks (GANs) are a class of DL models used for
generative applications, such as image synthesis, style transfer,
and data augmentation [310]-[316]]. GANs utilize CNNs as
key components to model the generator and discriminator (See
Fig. [[77] [83] [[84]. The generator is a CNN that generates
new samples, such as realistic images, while the discriminator
is another CNN that aims to distinguish between real and fake
samples [77]]. These networks are trained adversarially, where
the generator’s goal is to produce samples that deceive the
discriminator, and the discriminator’s goal is to become better
at distinguishing real from fake [[71] [84].

GANs with convolution have revolutionized the field of
image generation and have produced impressive results in
generating high-quality images and realistic textures [266]—
[275]. They have also been extended to other domains like
NLP, audio generation, and video synthesis. This technology
has also been applied to other areas such as medical imaging,
where GANs have been used to generate high-resolution and
accurate images for diagnostic purposes. Additionally, GANs
have shown promising results in the field of data augmentation,
where they can generate synthetic data to increase the size and
diversity of training datasets, improving the performance of
machine learning models.

For example, in the field of image generation, GANs with
convolutional networks have been used to create realistic
images of non-existent landscapes. The generator network
creates visually convincing images, while the discriminator

network learns to identify any flaws or inconsistencies in
these generated images, pushing the generator to improve its
output. This adversarial training process ultimately leads to
the creation of high-quality and believable images that are
indistinguishable from real photographs.

G. Vision Transformers and Self-Attention Mechanisms

Through the use of self-attention mechanisms [85], Vision
Transformers [244]]-[265]] represent an important evolutionary
step away from traditional computer vision architectures [86],
[87] . Rather than solely relying on convolutional filters to
process visual inputs, as has predominantly been the case, they
segment images into distinct finite parts known as patches [87]].
Each patch focuses on and extracts features from a different
localized region of the photographic scene. This division of
images into discrete patches is a major conceptual divergence
from how most previous approaches operate.

In conclusion, advanced convolutional techniques have sig-
nificantly expanded the capabilities of CNNs and revolution-
ized various fields like CV, image synthesis, and NLP. From
transposed convolution for upsampling to capsule networks for
handling spatial hierarchies, these innovations have enhanced
the efficiency, robustness, and expressiveness of CNNs, mak-
ing them powerful tools for a wide range of applications.
Moreover, recent advancements, such as NAS and GANSs,
continue to drive progress in the field of DL and hold promise
for further breakthroughs in the future.

VI. APPLICATIONS OF DIFFERENT CONVOLUTION TYPES

We provide a thorough overview of the numerous applica-
tions of different convolutional types in this section (See Fig.
[I3). Table [VI] provides a brief but comprehensive overview
of these applications. Convolutions of various types are used
in a variety of contexts, demonstrating the flexibility and
strength of CNNs. Convolutional techniques enable machines
to understand and interact with complex data, facilitating
advancements in a variety of fields and enhancing our daily
lives. Examples include image recognition, object detection,
NLP, and medical image analysis.

A. Image Recognition and Classification

There are many uses for CNNs, including image recognition
and classification. Traditional 2D convolutions are especially
useful in these applications. They make it possible for deep
learning models to accurately classify images into various
groups and learn crucial features from images. The network’s
convolutional layers recognize edges, textures, and shapes. The
pooling layers reduce the size of the image while preserving
the data needed for classification. Image recognition and
classification are used for various tasks, including optical
character recognition (OCR) [203]-[211], classifying different
animal species, and recognizing handwritten numbers [88]]. In
competitions like ImageNet, CNNs have displayed impressive
results, showcasing their abilities for handling wide image
classification [89]].



TABLE VI
THE COMPACT TABLE HIGHLIGHTS THE MAIN APPLICATIONS OF EACH CONVOLUTION TYPE

Convolution Type Traditional 2D Convolutions

1D Convolutions

3D Convolutions Dilated Convolutions  Grouped Convolutions

Image Recognition Image categorization

Voice activity

detection

Medical Image Analysis Tumor segmentation

Time series analysis

Speech recognition

ECG signal processing

Action recognition Image segmentation Real-time recognition

Hierarchical

document classification

Environmental sound Robust speech Low-latency

classification recognition speech recognition

Brain Tumor Enhanced image

Faster medical analysis

Segmentation segmentation
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Fig. 15. The applications of CNN techniques which we have discussed in
Section VI

B. Object Detection and Localization

Multiple objects within an image must be located and
identified during object detection [90]. In this application, both
conventional 2D convolutions and 3D convolutions are crucial
[178]-[191]]. While 3D convolutions are used for video object
detection, 2D convolutions are used to process individual
image frames. CNNs can detect objects at different scales and
aspect ratios thanks to their region proposal mechanisms and
anchor-based methods [192]]-[202].

Accurate localization of object bounding boxes is made
possible by the use of pooling layers and convolutional sliding
windows. Robotics, surveillance technology, and autonomous
vehicles all use object detection to better understand and
interact with their surroundings [91] [92].

C. Natural Language Processing

For sequential data, such as text processing and sentiment
analysis, NLP uses 1D convolutions. 1D convolutions are
used in NLP applications to extract pertinent patterns and

relationships from sentences, enabling models to understand
semantic meaning and context [[212]-[216f. Sentiment analysis
for understanding customer opinions, named entity recognition
to extract specific information from text, and text classification
to classify news articles or product reviews are examples of
NLP applications using 1D convolutions. Applications like
machine translation and text summarization have benefited
from the successful integration of CNNs and recurrent neural
networks (RNNs).

D. Audio Processing and Speech Recognition

Audio Processing and Speech Recognition (APSR) benefit
from 1D convolutions, which analyze and process sequential
audio data such as speech signals or audio waveforms [217]-
[223]. By extracting temporal patterns and acoustic features,
CNNs can learn to recognize spoken words and transcribe
audio into text. SR systems, often built upon convolutional
and recurrent neural networks, enable voice assistants like
Siri and Google Assistant to understand and respond to user
commands.

E. Medical Image Analysis

Medical image analysis involves the examination and inter-
pretation of medical images, such as MRI scans, CT scans,
and X-rays [92] [224]-[241]. In this domain, 3D convolutions
and dilated convolutions are frequently used. 3D convolutions
process volumetric medical data, allowing CNNs to extract
spatial and contextual information for applications like tumor
segmentation, organ localization, and disease classification
[92] [93]]. Dilated convolutions enhance feature extraction and
semantic segmentation in medical images, enabling precise
identification of abnormal tissues and structures. The appli-
cations of convolution types in medical image analysis have
led to significant advancements in healthcare, assisting doctors
in diagnosis and treatment planning.

VII. FUTURE TRENDS IN CNN

CNNs continue to be a hot topic of research and have
achieved remarkable success in various CV applications.
Future trends and open research questions in the field of
CNNSs are emerging as technology develops and deep learning
techniques become increasingly complex.



The investigation of more effective architectures that can
achieve comparable performance with fewer parameters and
computational resources is one future trend in CNN research.
How to make CNNs more interpretable is another unanswered
research question, as the reasoning behind CNN decisions
is frequently difficult to comprehend due to the internal
complexity of these systems. Another crucial area for future
research is finding ways to strengthen CNNs and make them
less vulnerable to hostile attacks.

One active area of research looks at designing efficient CNN
architectures optimized for edge and mobile computing. As
CV moves from data centers to cameras, smartphones, and
IoT at the network’s edge, models need to operate within
strict constraints on latency, memory, and power. Techniques
including network pruning, compact operators, knowledge
distillation, and adaptive quantization help derive lightweight
CNN variants suitable for these low-resource scenarios [[121]].
This focus on efficiency ties into work on improving CNN
interpretability.

While today’s complex CNNs achieve top accuracy, their
decision-making remains poorly understood. Work on saliency
mapping, activation clustering, modular CNNs, and other ex-
planatory methods aims to shine light into the “black box” and
address concerns around reliability, bias, and accountability
- important considerations for safety-critical domains like
healthcare. New types of CNN modules also aim to expand
what these models can represent by incorporating flexible self-
attention and capturing non-Euclidean structures.

A particularly compelling avenue involves tackling large-
scale vision multimodal (LVM) challenges, which builds upon
this work on expanding CNN capabilities. Vast datasets merg-
ing diverse visual media with language, audio, and other inputs
present unprecedented complexity. However, they also offer
unprecedented opportunities to develop general, comprehen-
sive models of multisensory scene understanding.

A. Interpretability and Explainability of CNNs

The interpretability and explainability of CNNs is a sig-
nificant open research question. Understanding the decision-
making process of these models gets harder as CNNs get
deeper and more complex. Particularly in critical applications
like healthcare and autonomous systems, researchers are in-
vestigating ways to interpret and explain CNN predictions. To
increase trust and reliability in CNN-based systems, methods
such as attention visualization, saliency maps, and attribution
methods seek to reveal which areas of the input contribute
most to the model’s conclusion.

B. Incorporating Domain Knowledge

Incorporating domain knowledge into CNN architectures is
another important research direction. While CNNs have shown
exceptional generalization abilities, they may not fully exploit
domain-specific characteristics. Research focuses on develop-
ing architectures that can efficiently utilize domain knowledge
or constraints, such as physics-based priors in medical imaging
or geometric constraints in robotics, to improve performance
and reduce data requirements.

C. Robustness and Adversarial Defense

Enhancing the robustness of CNNs against adversarial at-
tacks remains a significant challenge. Adversarial attacks in-
volve adding carefully crafted perturbations to inputs, leading
to incorrect predictions by the CNN model. Researchers are
investigating techniques for adversarial defense, such as adver-
sarial training, robust optimization, and input transformations,
to make CNNs more resilient against these attacks.

D. Efficient Model Design

When using CNNs on devices with limited resources, such
as smartphones and edge devices, efficiency in terms of
computation, memory, and power consumption is important
[242], [243]. Creating lightweight architectures, knowledge
distillation methods, and effective model compression tech-
niques will be future trends in CNN research to decrease the
model size and increase inference speed while maintaining
accuracy.

Model compression techniques play a crucial role in de-
signing efficient deep learning models suitable for deployment
on resource-constrained edge devices. Several methods (See
Table have been proposed to reduce model size and
computations without significantly impacting predictive per-
formance. Network pruning and quantization are two widely
used compression approaches [102] [[103]].

Pruning techniques aim to sparsify neural networks by
removing redundant connections with minimal impact on func-
tionality [121]]. Early methods relied on unstructured pruning
where connections were simply set to zero based on their mag-
nitude or importance ranking. However, such arbitrary pruning
leads to non-standard sparse matrices thereby preventing hard-
ware acceleration. More recent structured pruning techniques
induce channel-wise, filter-wise, or block-wise sparsity to
yield compact models amendable to efficient implementations
[121]-{124].

Filter pruning refers to removing entire convolutional filters,
thereby achieving channel-wise sparsity [116]] [123]. It has
been shown that up to 90% of filters can be removed from
VGG16 without accuracy degradation. One method, termed
“Pruning-at-Initialization” prunes filters with the lowest sum
values at the start of training itself. Alternatively, “One-Shot”
prunes filters once based on their first-order Taylor expansion.
These filter-level pruning methods lead to uniform sparsity
across layers and reduce computation by 5x.

Another structured approach is to prune blocks of con-
nections rather than individual weights [124]. For example,
in “Block Level Pruning”, a number of convolution blocks
are removed from blocks 1, 2, and 3 of ResNet50, reducing
computations without retraining. The block structure ensures
layout sparsity, maintaining original convolution block shapes
for hardware friendliness. Network slimming is a channel-
pruning method that enforces L1-norm regularization during
training itself to gradually remove channels with low impor-
tance scores.

In unstructured variants, magnitude-based pruning removes
weights below a threshold while iterative magnitude pruning



TABLE VII
COMPARISON OF PRUNING TECHNIQUE

Techniq Sparsity Type  Pruning Granularity Hardware Friendly Accuracy Impact Compression Ratio Iterative Training Requires Retraining
Magnitude Pruning Unstructured Weight level No Medium 2-10x Yes No
Filter Pruning Channel-wise Filter level Yes Low 5-10x No Yes
Block Pruning Block-level Block level Yes Low 2-5x No Yes
Network Slimming Channel-wise Channel level Yes Low 2-5x Yes Yes
Lottery Ticket Unstructured Weight level No Low 2-10x Yes Yes
Iterative Magnitude Unstructured Weight level No Medium 2-5x Yes No
Pruning-at-Init Channel-wise Filter level Yes Low 5-10x No No
One-Shot Pruning Channel-wise Filter level Yes Low 5-10x No No
TABLE VIII

COMPARISON OF QUANTIZATION TECHNIQUE

Technique Quantization Level Bit Width Hardware Friendly = Accuracy Impact Compression Ratio  Iterative Training Requires Calibration
Weight Quantization Weight values 8-bit Yes Low Up to 8x No Yes
Activation Activations 8-bit Yes Low Up to 8x No Yes
Quantization
Tensor Quantization Tensors 4-8 bit Yes Low Up to 32x No Yes
Tensor Decomposition Tensors 4-bit Yes Medium Up to 32x No No
Huffman Coding Weights Variable No Low Up to 10x No No
Log Quantization Activations 1 bit Yes Low Up to 16x No No
BNN Quantization Weights/ 1 bit Yes High Up to 32x Yes Yes
Activations
Floating Point Weights/ 16-bit Yes Low Up to 2x No No
Quantization Activations

alternates between weight updates and pruning based on a dy-
namic threshold [121]] [[125]]. These maintain sparsity through-
out the architecture but induce non-zero filler weights. Lottery
ticket hypothesis experiments have demonstrated that dense,
randomly-initialized, sub-networks can achieve the accuracy
of their original networks if trained in isolation.

Apart from pruning, quantization is another effective tech-
nique to compress models (See Table [VIII). Weight and activa-
tion quantization methods map weights/activations to a small
set of discrete values, reducing the number of bits required
for representation [114] [[115]]. For example, 8-bit quantization
reduces model size by 4x without accuracy loss for many
architectures. Tensor decomposition-based quantization further
compresses models by decomposing weight tensors into low-
rank approximations.

Some recent works have combined multiple compression
approaches in a multi-stage pipeline. One example jointly
employs weight quantization, pruning, and Huffman coding
on ResNet50, achieving over 10x compression with a minor
accuracy drop. Another uses a two-phase pipeline consisting
of filtering-based pruning followed by quantization to design
efficient MobileNet variants. Such composite methods achieve
better accuracy-efficiency tradeoffs than individual techniques
alone.

In conclusion, network pruning and quantization offer
promising avenues to design compact models for edge and
mobile applications. While early methods relied on unstruc-
tured sparsing, recent techniques induce structure for hardware
friendliness. Looking ahead, continued research on model
compression holds the key to facilitating the adoption of deep
learning across myriad resource-constrained environments.

E. Multi-Task Learning and Transfer Learning

CNNs are well suited for multi-task learning, in which a
single model is trained to carry out several related applica-
tions concurrently [[162]-[177]]. The need for large amounts
of labeled data for each individual task is being reduced
as researchers investigate ways to take advantage of shared
representations across applications and enhance generalization
by transferring knowledge learned from one task to another
[147]-{161].

FE. Integration with Uncertainty Estimation

Understanding model uncertainty is essential for safety-
critical applications. Integrating uncertainty estimation into
CNNs would allow models to quantify their confidence in
predictions and prevent costly errors, which is an area of open
research. To improve the uncertainty measures in CNNSs, re-
searchers are investigating Bayesian neural networks (BNNs),
dropout-based uncertainty estimation, and Bayesian optimiza-
tion techniques.

G. Generalization to Small Data Regimes

A constant problem in the CNN research area is the
generalization to small data regimes, where labeled training
data are hard to come by. Essentially using data from related
applications or domains, techniques like transfer learning, few-
shot learning, and meta-learning work to increase CNNs’
capacity to learn from sparse data.

H. Evolution of Language Models and Multimodal LLMs

In recent epochs, the domain of large language models
(LLMs) for natural language processing has witnessed a



precipitous progression. Prototypes such as BERT, GPT-3, and
PalLM have demonstrated exceptional aptitude in language
apprehension and generation, courtesy of self-supervised pre-
training on voluminous text corpora [85]. As LLMs expand
in magnitude and range, incorporating additional modalities
beyond text is a burgeoning field of study. Multimodal LLMs
strive to amalgamate language, vision, and other sensory
inputs within a singular model architecture. They hold the
potential to attain a more holistic understanding of the world
by concurrently learning representations across diverse data
types [96]. A significant hurdle is the effective fusion of
the strengths of CNNs for computer vision and transformer
architectures for language modeling.

One strategy involves employing a dual-stream architecture
with distinct CNN and transformer encoders interacting via co-
attentional transformer layers [97]. The CNN extracts visual
features from images, providing contextual information that
can guide language generation and comprehension. The trans-
former architecture models the semantics and syntax of text.
Their interaction enables the generation of captions based on
image content or the retrieval of pertinent images for textual
queries. Alternative methods directly incorporate CNNs within
the transformer architecture as visual token encoders that
operate with text token encoders [98]]. The CNN projections of
image patches are appended to text token embeddings as inputs
to the transformer layers. This unified architecture allows for
end-to-end optimization of parameters for both vision and
language tasks. Self-supervised pretraining continues to be
vital for multimodal LLMs to learn effective joint represen-
tations before downstream task tuning. Contrastive learning
objectives that predict associations between modalities have
proven highly effective [99]. Models pre-trained on large
datasets of image-text pairs have demonstrated robust zero-
shot transfer performance on multimodal tasks.

As multimodal LLMs increase in scale, the efficient combi-
nation of diverse convolution types and attention mechanisms
will be crucial. Compact CNN architectures could help to
reduce the cost of computing. Sparse attention and memory
compression techniques can assist with scalability.

VIII. PERFORMANCE AND EFFICIENCY CONSIDERATION

Considerations for performance and efficiency (See Figs.
17-20) in CNNs are critical in developing high-performing
and resource-efficient models. Researchers can make informed
decisions about optimizing their CNN architectures for various
applications and deployment scenarios by analyzing compu-
tational complexity, trade-offs between accuracy and speed,
memory requirements, and benchmarking on standard datasets.

A. Computational Complexity of Different Convolutions

The computational complexity of different convolutional
techniques (See Table [IX)) is a critical aspect to consider
when designing CNNs. It refers to the amount of computation
required to perform a convolution operation on input data. The
computational complexity is influenced by various factors, in-
cluding the size of the input data, the size of the convolutional
filters, and the number of channels in the feature maps.

Speed

Accurate
A

______________________ > R
100

Accuracy

Fig. 16. The trade-off curve between accuracy and speed of a deep learning
model [75]]

Traditional convolutional layers, such as the standard con-
volution and depthwise separable convolution, generally have
higher computational complexity compared to other tech-
niques. This is because they involve a large number of convo-
lution operations, especially when dealing with high-resolution
images or complex data. On the other hand, techniques like
pointwise convolution and transposed convolution tend to have
lower computational complexity, making them more suitable
for certain resource-constrained applications.

Understanding the computational complexity of different
convolution types is crucial for optimizing the performance
of CNNs. By selecting convolution techniques that align with
the available computational resources, researchers can build
efficient models that achieve a good balance between accuracy
and speed.

As illustrated in Figs. [T7] to [I9] the Adam optimizer per-
formed well, as evidenced by key observations (I) through
©), in both accuracy and loss metrics. Overall, the use of
CNN techniques such as VGG, ResNet, and LeNet resulted
in improved accuracy and reduced loss.

Also, as depicted in Figure 20} and based on key observation
D,D), and 3), it is evident that the Adam optimizer exhibits
less CPU usage in comparison to five other optimizers -
RMSprop, Adamax, Adagrad, SGD, and Nadam. This obser-
vation holds true when using LeNet-5, VGG16, and ResNet-
50. Additionally, the memory usage of the Adam optimizer is
among the lowest (See key observation @)).

B. Trade-offs between Accuracy and Speed

One of the key challenging aspects of designing CNNs is
balancing model accuracy and inference speed (see Fig. 16).
The inference time increases as the complexity of convolu-
tional layers increases to capture more complex features. Using
simpler convolutional techniques, on the other hand, may re-
sult in lower accuracy. The depth and width of the network, the
number of parameters, the choice of convolutional techniques,
and the hardware on which the model is deployed all have



TABLE IX
COMPARISON ON LENET-5, VGG 16, AND RESNET-50 WITH 7 TYPES OF
OPTIMIZERS ON CIFAR-10 DATASET, CU: CPU UTILIZATION, MU:
MEMORY UTILIZATION

Optimizer Type CNN Model Accuracy Loss CU MU
LeNet-5 0.547 1.277 71 50.7

SGD VGG16 0.87 0.776 57 55.7
ResNet-50 0.789 1.1212 63 53.4

LeNet-5 0.629 1.153 462 444

Adam VGG16 0.805 0.821 542 514
ResNet-50 0.760 1.016 605 519

LeNet-5 0.624 1.22 583 576

NAdam VGG16 0.776 1.109  61.1 635
ResNet-50 0.789 0.89 66.4 57.8

LeNet-5 0.605 1.288 503 429

RSMProp VGG16 0.755 22286 61.2 49.7
ResNet-50 0.78 1.151  61.7 494

LeNet-5 0.603 1.132  69.8 56.7

Adamax VGG16 0.8506 0885 558 642
ResNet-50 0.8123 1.002 621 56.1

LeNet-5 0.412 1.65 67.6 444

AdaGrad VGG16 0.822 0.708 553 503
ResNet-50 0.75 0999 624 50.6

an impact on the trade-offs between accuracy and speed. For
real-time applications or resource-constrained environments,
sacrificing some accuracy to achieve faster inference may be
necessary.

Model pruning, quantization, and low-rank approximations
are commonly used by researchers to reduce model size
(See Section -, Subsection D) and improve inference
speed without significantly compromising accuracy. Further-
more, attention-based convolutions and other techniques that
prioritize important regions of the input can be used to focus
computational efforts where they are most needed, improving
the balance between accuracy and speed even further.

C. Memory and Storage Requirements

Memory and storage requirements are crucial considerations
in deep learning, especially when deploying models on edge
devices or in cloud environments with limited resources.
Convolutional models, particularly those with a large number
of layers and parameters, can demand substantial memory and
storage resources during training and inference.

Traditional convolutional layers often have higher memory
requirements due to the need to store intermediate feature
maps and gradients during backpropagation. Depthwise sep-
arable convolutions and pointwise convolutions can reduce
memory usage by reducing the number of parameters and
intermediate feature maps. Memory-efficient CNN design in-
volves strategies like using smaller batch sizes, employing
mixed-precision training, and optimizing memory usage dur-
ing inference. Additionally, model compression techniques,
such as knowledge distillation and model quantization, can
significantly reduce the size of the model without significant
loss in performance.

D. Benchmarking on Standard Datasets

Benchmarking convolutional techniques on standard
datasets is a crucial step in evaluating their performance
and efficiency. Standard datasets, such as ImageNet [95] for
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Fig. 17. Comparison of various optimizers on LeNet-5 with Cifar-10 dataset.
a) represents the accuracy of LeNet-5 architecture, b) represents loss of LeNet-
5 architecture

image recognition or COCO [94] for object detection, provide
a common ground for fair comparison of different models
and techniques. By benchmarking convolutional techniques,
researchers can objectively assess their effectiveness in
various applications and compare their performance with
state-of-the-art models. The benchmarks consider metrics
like accuracy, inference speed, memory usage, and energy
efficiency, allowing for a comprehensive evaluation of the
models.

Benchmarking helps the DL community identify the
strengths and weaknesses of different convolutional tech-
niques, paving the way for improvements and advancements.
It also aids practitioners in selecting the most suitable con-
volutional techniques for their specific use cases and desired
trade-offs between performance and efficiency.

IX. FRAMEWORKS AND LIBRARIES

This section will provide an overview of some of the
popular platforms (See Table [X)) available for developing deep
learning applications. We will compare the frameworks from
aspects like their architecture, programming models, supported
hardware, and key features. Choosing the right tool is crucial
for deep learning success. That’s why exploring framework
capabilities is key for researchers and engineers



TABLE X
COMPARISON OF EXISTING POPULAR FRAMEWORKS AND LIBRARIES
Aspect Caffe TensorFlow Keras PyTorch OpenCV Deeplearning4j MXNet Chainer
Year released 2013 2015 2015 2016 1999 2014 2015 2015
Programming C++/Python Python, C++ Python Python C++, Python, Java Java, Scala Python, C++, R, Python
language Scala, Perl, Julia
License BSD 3-Clause Apache 2.0 MIT BSD 3-Clause BSD 3-Clause Apache 2.0 Apache 2.0 MIT
Model definition Layered Graph-based Sequential & Dynamic N/A Sequential, compute Symbolic Imperative and
functional computations graphs graphs declarative
Ease of use Intermediate Intermediate High High Low Intermediate Intermediate High
Speed Fast Fast Intermediate Fast Very fast Fast Fast Fast
Support for Very good Excellent Good Excellent Excellent (library) Good Goo Good
computer vision
Focus Research Production & User-friendly Research Traditional Enterprise Distributed training  Intuitive high-level
prototyping research research prototyping algorithms production at scale APIs for research
Distributed training No Yes No No No Yes Yes No
Model No Yes Yes Yes No Yes Yes Limited
deployment
Hardware CPU,GPU  CPU,GPU,TPU CPU,GPU  CPU, GPU, TPU CPU, GPU CPU, GPU CPU, GPU, CPU. GPU
support TensorFlow
Documentation Good Excellent Good Excellent Excellent Good Good Good
quality
Community Limited Very active Very active Very active Very active Active Active Active
support
Table [X] provides a comparison of several popular frame- C. Keras

works and libraries used in deep learning. It evaluates key
aspects such as the year of release, programming languages
supported, license type, model definition approaches, ease of
use, speed, and focus or strength of each framework.

A. Caffe

Caffe was one of the earliest and most influential deep
learning frameworks developed specifically for CV tasks
[131]. Released in 2013 by the Berkeley Vision and Learning
Center (BVLC), Caffe made training convolutional neural
networks much faster and more accessible. It has an easy-
to-use C++/Python interface and was designed for speed and
modularity. Caffe adopted a layered structure that greatly
simplified model definition and training. This helped drive
wider adoption and enabled researchers to rapidly iterate on
vision models. While development has slowed in recent years,
Caffe laid important groundwork and is still used for CV
research.

B. TensorFlow

TensorFlow is an end-to-end open-source machine learning
platform developed by Google [132]]. While not strictly a CV
library, it has become one of the most popular and full-featured
frameworks for building and training complex deep learning
models. TensorFlow has excellent support for CV including
pre-trained models, image loading and preprocessing utilities,
object detection APIs, and more. Its flexibility has led to
it being used for a very wide range of applications from
image classification to semantic segmentation. TensorFlow
also works seamlessly across CPUs and GPUs and can be
easily deployed to production.

Keras is a high-level deep learning API that runs on top of
popular frameworks like TensorFlow and CNTK [|133|]. Keras
was developed with a focus on user-friendliness, modularity
and extensibility. It provides excellent abstractions and tools
for developing and evaluating deep learning models quickly.
For CV, Keras ships with the ImageDataGenertator for real-
time data augmentation as well as pre-defined models like
VGG16. It also supports popular CV tasks like image segmen-
tation, object detection, and feature extraction through conve-
nient APIs. Keras’ simplicity has made it very approachable
for developers.

D. PyTorch

PyTorch is an open-source deep learning platform developed
by Facebook’s Al Research Lab (FAIR) [134]. In recent
years it has emerged as a leading alternative to TensorFlow
especially for CV and NLP applications. PyTorch has a strong
focus on dynamic neural networks and shares similarities to
MATLAB and Numpy. This makes for an intuitive, Pythonic
interface that is well-suited to CV prototyping and experimen-
tation. PyTorch also supports GPU/TPU training along with
production deployment. It has a growing ecosystem of 3rd
party libraries and community support. Like Keras, PyTorch
integrates tightly with common CV tasks and datasets.

E. OpenCV

OpenCV (Open Source Computer Vision Library) is a
popular CV and machine learning software library [135].
While not specifically designed for deep learning, OpenCV
contains many traditional CV algorithms and an extensive
collection of image processing functions. These include capa-
bilities like image filtering, morphological operations, feature
detection and extraction, object segmentation, and face and
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gesture recognition among others. OpenCV integrates with
deep learning frameworks and is frequently used for simpler
CV tasks or as a pre-processing step before feeding data into
neural networks.

F. MXNet

MXNet is a flexible, efficient, and scalable deep learning
framework [[136]]. Similar to TensorFlow, it supports a wide va-
riety of programming languages and hardware environments.
MXNet excels at distributed training and supports training
models containing billions of parameters across hundreds of
GPUs. It also includes algorithms for CV like image recog-
nition, object detection, and semantic segmentation. Overall,
MXNet strikes a good balance between flexibility, perfor-
mance, and ease of use making it suitable for large-scale CV
problems.

G. Chainer

Chainer is an open-source deep learning framework created
by preferred networks in Japan [137]. It provides straightfor-
ward neural network abstraction similar to Keras with impera-
tive and declarative model definitions. Chainer focuses on in-
tuitive high-level APIs combined with low-level performance.
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It includes CV functionality like image loading, augmentation,
pre-trained models, and model export. Chainer supports GPU
and multi-GPU training and deployment. Overall it provides a
performant and productive environment for CV development.

H. Deeplearning4j

Deeplearning4j (DI14j) was launched in 2014 as an open-
source deep learning library for Java and Scala on the JVM
[138]. It enables large-scale distributed training on GPUs and
CPUs. For CV tasks, Deeplearning4j offers tools like image
loading, pre-trained models, model import from Keras and
ONNX, and the samediff for dynamic model construction.
Deeplearning4j focuses on production-ready deployment with
capabilities like model serving, online prediction, and on-
device inference via Android or iOS apps.

Overall, these libraries and frameworks represent the fore-
front of open-source tools transforming CV through deep
learning. Each offers different strengths and tradeoffs between
flexibility, performance, ease of use, and supported features.
As CV tasks continue advancing, we can expect these projects
to further incorporate state-of-the-art research while also low-
ering the barrier to development through improved tools and
abstractions. CV is sure to remain a major application domain
for deep learning innovation in both research and industry.
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X. MAIN RESEARCH FIELDS
A. Image Classification

Image classification was one of the earliest successes of
CNNs. The seminal AlexNet achieved record-breaking results
on the ImageNet challenge in 2012 by drastically improv-
ing upon prior techniques. Today, state-of-the-art CNNs for
image classification routinely achieve human-level or better
accuracy on standardized datasets. Architectures like ResNet,
Inception, Xception, and EfficientNets optimize parameters,
layer connectivity, and computation to classify thousands of
object categories at superhuman performance levels [52], [53],
[56], [276]. Beyond static images, video classification CNNs
also extract spatial-temporal features to recognize complex
activities and events.

B. Object Detection

Object detection is another major CV application that relies
heavily on convolutional modeling. Two-stage detectors like
Faster R-CNN and one-stage detectors like YOLO leverage
region proposal networks and anchor boxes trained via priors
to simultaneously localize and classify objects within im-
ages [317]-[331]]. Recent works further optimize speed and
accuracy, enabling real-time object detection on billions of
parameter models. Techniques like mobile object detection
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address embedded constraints by designing lightweight CNN
backbones and feature extractors optimized for on-device
inference [332].

C. Image Segmentation

Semantic segmentation tasks require dense pixel-level la-
beling of image content. FCN and U-Net CNNs employ
skip connections and encoder-decoder mirrors to preserve
spatial information across resolutions [333[|-[348]. PSPNet
and DeepLab introduce pyramid spatial pooling modules to
capture multi-scale contextual cues [349]. GANs and condi-
tional random fields further refine coarse segmentations from
CNNs. Advances in medical imaging also apply segmentation
CNN s to understand organ structures, localize pathologies, and
aid diagnosis.

D. Vision transformers

Vision transformers have also emerged as a compelling
alternative to traditional CNNs for CV tasks. Inspired by the
success of language models, vision transformers divide images
into discrete patches which are embedded and processed
with self-attention. This allows them to capture long-range
dependencies and multi-scale contextual information more
effectively than CNNs. Models like ViT, DeiT, and Visual
BERT demonstrate state-of-the-art results in tasks like image
classification when pre-trained on large datasets [350]-[357].
Research now focuses on optimizing transformer efficiency for
real-time CV applications.

E. One-shot/few-shot/Zero-shot learning

One-shot and few-shot learning aim to address challenges
posed by limited labeled training examples. Through metric
learning and prototypical networks that learn robust repre-
sentations from extensive base classes, models can effectively
recognize new concepts from just one or a handful of examples
without catastrophic forgetting [358]]-[372]]. This opens up CV
to new long-tailed and incremental learning paradigms. Match-
ing networks and prototypical networks efficiently compare
test samples to prototype representations of base classes to
generalize from limited exposures.

Zero-shot learning emerges as a promising area where
CNNs imagine possibilities beyond the limitations of labeled
data [373]-[377]]. Descriptors like attributes or semantic rela-
tionships introduce inductive biases facilitating generalization
without example. SAE, DeViSE, and contemporary models
transfer knowledge by aligning embeddings between seen
and unseen categories connected through auxiliary descriptors.
Knowledge graphs also provide structural inductive biases
through entity and relation modeling.

F. Weakly-supervised learning

Weakly supervised learning techniques also help allevi-
ate dependence on labor-intensive annotations [378]]-[383]].
Models can be trained end-to-end from weaker input signals
like image-level tags or bounding box object locations in-
stead of explicit pixel-level segmentation maps. Multi-instance



learning approaches cluster image regions corresponding to
each label to iteratively refine local predictions. Expectation-
maximization (EM) and multiple instance learning jointly infer
labels and recognize discriminative regions, enabling training
from cheaper forms of weak supervision.

G. Self-supervised/unsupervised learning

Self-supervised learning has also gained vast attention in
CV by enabling pre-training from sheer ubiquity of unlabeled
visual data [384]-[393]. Pretext tasks like predicting image
rotations, solving jigsaw puzzles, or counting pixel colors
allow models to learn rich visual representations applicable to
downstream tasks. Recent contrastive self-supervised models
like SimCLR, SwAV, and MoCo demonstrate that unlabeled
pre-training rivals or exceeds supervised pre-training in various
vision benchmarks, enabling more data-efficient fine-tuning or
transfer to new problems.

H. Lifelong/Continual learning

Lifelong and continual learning aim to simulate open-world
scenarios where models learn lifelong with non-stationary data
distributions [51]. Models must avoid catastrophic forgetting
when presented with new classes or shifts in existing class
definitions without revisiting historical data [394]]-[403]]. Elas-
tic weight consolidation and incremental moment matching
regularization preserve knowledge while accommodating new
tasks. Research now explores task-aware architectures, dual-
memory systems, and replay buffers that emulate memory
reconsolidation to model lifelong visual learning.

1. Vision language model

Vision-language models (VLMs) have also emerged at the
intersection of NLP and CV by grounding language in visual
contexts. Models fuse multimodal inputs through attention
and generate captions conditioned on images, or localize and
describe visual entities based on linguistic context. Large pre-
trained models such as CLIP, ALIGN, and Oscar demonstrate
exciting capabilities like zero-shot classification, question-
answering (QA), and visual dialog with potential applications
in education, assistive technologies, and more.

J. Medical image analysis

Medical imaging epitomizes the necessity of collabora-
tion between deep learning and domain experts. Segment-
ing organs in volumetric scans, localizing anomalies across
imaging modalities, and tracking patients longitudinally all
leverage 3D/2D CNNs [404]-[418]]. Advanced models exploit
anatomical priors by enforcing smoothness, and preservation
of edges and surfaces in predictions. Self-supervision further
enables pre-training from non-private data before fine-tuning
target tasks. Model interpretation especially matters here to
ensure trust among clinicians [410]-[413]]. Beyond diagnosis,
CNNs can also simulate novel views to aid surgical planning.
Efficiency additionally matters for on-device deployment and
assisting underserved populations lacking infrastructure.
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K. Video understanding

Beyond images, video understanding presents unique chal-
lenges in modeling spatial-temporal relationships across con-
secutive frames. C3D and I3D CNNs introduce 3D con-
volutions directly learning from video volumes. Advanced
techniques in video captioning and action recognition fuse
language models and attention to jointly reason about visual
content and linguistic semantics over time. Self-supervised
learning from large unlabeled video repositories also emerges
as a promising pretraining paradigm before fine-tuning down-
stream tasks.

L. Multi-task learning

Multi-task learning aims to improve generalization by
jointly training CNNs on multiple related tasks using shared
representations. This has proven successful across numerous
applications by leveraging commonalities while mitigating
overfitting individual tasks’ limited data [419]-[422]. For ex-
ample, YOLO trains object detection alongside other auxiliary
predictions like segmentation and counting.

Multi-task CNNs outperform independent models in low-
data regimes (See Section -;, Sub-section G.) by borrowing
statistical strength across related problems. Dense caption-
ing localizes objects and describes scenes simultaneously.
A single network predicts keypoints, normals, and semantic
part segmentation. Deeper tasks benefit substantially from
representations learned for more general shallow tasks.

Progressively growing into new problem spaces via related
auxiliary objectives also prevents catastrophic forgetting. Self-
supervised pre-training establishes features broadly useful
across downstream tasks, including those without annotations.
Measuring and maximizing modularity in multi-task architec-
tures additionally reduces interference between domains.

Techniques like multi-granularity, multi-level, and hetero-
geneous multi-task learning further craft diverse objectives
to progressively refine semantics captured at differing levels
of granularity [423]-[426]. Task relations range from inde-
pendent, and cooperative where tasks improve each other, to
completely shared exploiting identical representations. Prop-
erly designed, multi-task CNNs deliver state-of-the-art perfor-
mance while improving generalizability, efficiency, and real-
world applicability.

Multi-task models combine CNNs with other modalities
like language. For captioning, CNN-RNN fusion grounds
generated text within visual contexts. For retrieval, ranking
loss trains CNN-LSTM encoders to map semantically aligned
vision-text pairs to nearby embeddings. Multi-modal pre-
training on enormous unlabeled multimedia collections has
proven highly beneficial via self-supervised alignment of do-
mains.

M. 6D vision

6D vision aims to recover the full 6D pose (3D position,
3D orientation) of objects directly from monocular RGB
images. This is a challenging problem due to the loss of
depth information when projecting 3D scenes onto 2D images



[427]-[432]. Early works relied on CAD models and rendered
synthetic data which lacked photorealism, while more recent
approaches leverage large amounts of real training data.

CNN-based regression networks are commonly used which
take images as input and directly predict the 6D pose values.
PoseCNN showed this can achieve competitive accuracy to
model-based regression if trained end-to-end on real data. Due
to the complex, multi-modal nature of the target distribution,
losses that ensure consistent predictions under different poses
like reprojection or angular are beneficial.

Iterative refinement approaches first detect the object, then
iteratively update the pose estimate based on 2D-3D corre-
spondences. DeepIM predicts shape coefficients and refines
using PnP. DPOD leverages deep features combined with ge-
ometric constraints in a RANSAC framework. Dense represen-
tations also help by reasoning about object parts independently.

Multi-view and RGB-D sensors provide additional cues
to leverage. MVD helps constrain the problem by training
separate networks for each view and fusing results. Using
both RGB and depth as input allows Depth-PoseNet to lift 2D
predictions to 3D space. Multitask models predicting bounding
boxes, keypoints, and poses jointly demonstrate accuracies
approaching marker-based motion capture.

N. Neural Architecture Search

Neural architecture search (NAS) aims to automate the
design of neural networks leveraging the power of evolution
and reinforcement learning. Rather than relying on human ex-
perts to laboriously craft CNN architectures, NAS approaches
evolve architectures directly on target datasets and tasks. This
has led to state-of-the-art vision models developed without
human design choices [433[]-[440].

Early NAS works explored various search spaces defined by
units, operations, and connections between them. Combining
concepts like pruning, sharing weights across child models
during evolution helped scaling search to larger spaces [295]],
[299]. Performance predictors further reduced costs by guiding
search towards promising regions. Novel methods evolved
filters, activation functions, and batch normalization layers for
particular domains.

Recent efforts evolve entire sections or blocks, expanding
applicable search spaces. Single-path one-shot approaches
drastically sped up search without compromising quality.
ProxylessNAS found efficient mobile architectures directly
on target devices. NAS approaches also discover non-CNN
models suiting problems beyond CV.

Once identified, the best architectures can be trained from
scratch to further improve upon proxy accuracies predicted
during the search. Late phase evolution also enhances architec-
tures initially identified, while architecture parameters them-
selves may evolve. Overall, NAS technologies continuously
push forward state-of-the-art for vision tasks given diverse
data, constraints, or objectives.

O. Neural Architecture Transformer

Neural architecture transformers (NAT) replace CNNs’ fixed
topology with self-attention, replacing convolutional filtering
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with axial self-attention [436]], [441]]. This increased flexibility
allows modeling long-range pixel dependencies crucial for
vision tasks like segmentation. Vil-BERT introduced a multi-
stage training procedure enabling pre-trained models to learn
visual representations as well as natural language tasks.

Early works divided input images into uniform patches
processed independently by attention layers. More sophisti-
cated designs aim to capture visual locality through hierar-
chical patch divisions better. Rotary positional embeddings
and attention patterns help encode translation equivariance.
Architectures like CoAtNet cascade blocks with increased
resolution, improving accuracy and interpretability.

Multi-scale vision transformers (MViT) incorporate prior
convolutional inductive biases in hybrid models jointly bene-
fiting from attention and translation equivariance. Combining
vision transformers with convolutional networks particularly
benefits medical image segmentation leveraging anatomical
priors. Swin Transformers introduces a shifted window mech-
anism to focus computation locally across higher-resolution
feature maps.

Though still an emerging direction, neural architecture
transformers open new pathways for CV by bringing the full
generality of self-attention to bear on visual problems. Their
continued development will surely impact future CV research
by unlocking novel representational abilities. Alongside NAS,
they hold promise for pushing boundaries through data-driven
discovery operating directly within much broader algorithmic
search spaces.

P. Generative Models

Generative models have made large strides in the area of CV
through techniques like GANs and diffusion models [442]-
[444]. GANs pair a generator network against a discriminator
network in an adversarial training procedure. This drives the
generator to synthesize increasingly realistic fake images that
can fool the discriminator.

GANSs have produced impressive results generating photos
that are near-indistinguishable from real images. Applications
include image-to-image translation, super-resolution, and ma-
nipulating image attributes like style [444]-[447]. However,
GAN training remains tricky to stabilize. Issues like mode col-
lapse require careful architecture and hyperparameter choices.

Diffusion models provide an alternative generative frame-
work gaining popularity. They utilize denoising diffusion
probabilistic models (DDPMs) which gradually corrupt data
with Gaussian noise before reversing the process [442]|-[444],
[447]-[449]. During generation, the model adds noise to
a blank canvas and then predicts the noise-reduced output
iteratively. This diffusion process proves more stable than
adversarial training.

Sampling from DDPMs follows an ancestral sampling ap-
proach regressing the noise at each step conditioned on the
previous denoised output. Advanced techniques like score-
based sampling further improve sample quality by maximizing
the model’s density rather than following ancestral noise. Gen-
erative diffusion models (GDMs) also maximize a denoising
score objective specifically for a generation [449].



Diffusion models have proven highly effective at synthesiz-
ing crisp, detailed images across varied datasets. Large-scale
vision diffusion models (LVMs) like DALL-E 2 and DALL-E
3 demonstrate unparalleled capabilities of generating images
from text prompts, and can even fuse language and vision to
answer trivia questions about synthetic images.

By generating synthetic training data, generative models
also benefit downstream classification, detection, and seg-
mentation tasks through data augmentation. As generative
diffusion models continue advancing, they will surely establish
new frontiers in CV domains ranging from image editing to
scientific discovery through computational experimentation.

Q. Meta Learning

Meta-learning, also known as learning to learn, aims to
develop models that can rapidly adapt to new tasks and
environments using only a few training examples. This is
achieved by learning inductive biases about learning itself on
a variety of related tasks during a meta-training phase. These
biases are then leveraged during meta-test time on novel tasks
[450], [451]].

In CV, meta-learning enables CNNs to generalize beyond
the restrictions of limited labeled examples through fast adap-
tation. Model-agnostic meta-learning (MAML) trains initial
model parameters such that a few gradient steps fine-tune into
new tasks. This learns efficient parameter initialization rather
than solutions for any specific task [450]—[457].

Metric-based approaches represent classes using prototypes
that summarize inter/intra-class relationships independent of
tasks [450]—[452]]. Matching networks compare new examples
to prototypes, providing fast adaptation through learned metric
space similarities. Meta-Dataset consolidates many few-shot
image classification datasets, advancing state-of-the-art and
evaluation protocols in this challenging zero/few-shot regime
[450]-[452], [457].

Self-supervised auxiliary tasks like prediction, rotation, and
context modeling further enhance generalization when used
alongside supervised meta-learning objectives. Temporal en-
semble models aggregate diverse predictions over time from a
generator network, improving robustness to noise and outliers.
Reinforcement meta-learning successfully trains visuomotor
policies for robotic control from only a handful of demon-
strations.

R. Federated Learning

Federated learning (FL) enables distributed training across
decentralized edge devices without exchanging private user
data like images, videos or medical scans []. It aims to
collaboratively learn a shared global model tailored to non-
IID user distributions through coordinated local updates. This
paradigm attracts increased interest due to growing concerns
around data privacy and security.

FL trains a centralized CNN model through an iterative
process where devices download the latest parameters, con-
tribute updates computed over shards of local data, and then
push weights back. A parameter server aggregates updates
to globally improve the model. A key challenge arises from
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heterogeneity in non-IID data distributions, devices, and un-
reliable network connectivity. FedVision applies FL to object
detection directly over fragmented client videos.

Techniques like personalized, multi-task, and meta-learning
help address statistical heterogeneity in FL. Continual learn-
ing aspects prevent catastrophic forgetting when populations
change over disseminated rounds. Differentially private algo-
rithms and secure aggregation schemes ensure strong privacy
in collaborative updates, advancing FL under stringent privacy
constraints beyond vision to sensitive domains like healthcare.

XI. DISCUSSION

We have methodically explored the various CNN varia-
tions that have become more and more popular in recent
years across a wide range of application sectors through
this thorough survey. Our goal in this discussion part is to
summarize the most significant findings from our evaluation
of the literature and offer an analytical viewpoint on significant
problems regarding the development and prospects of this area
of study.

Convolutional layers are well-suited for grid-like data types,
like images because they have proven highly capable of captur-
ing spatial relationships and extracting hierarchical patterns. At
the core of CNNs, commonly used for computer vision tasks
such as object identification and image classification, remain
traditional 2D convolutions. However, as the field has evolved,
additional specialized convolution approaches have emerged to
handle different data modalities more effectively. One notable
application of 1D convolutions is in sequential data domains
including time series analysis and natural language processing.
Their ability to capture temporal dependencies has enabled
state-of-the-art accuracy on various language and audio pro-
cessing problems. Likewise, 3D convolutions allow CNNs to
effectively model volumetric medical images and video inputs
by accounting for both spatial and temporal dimensions.

While basic convolution varieties such as 2D and 3D con-
tinue powering many top models, more efficient variants have
also been developed. Dilated convolutions utilize dilations to
widen receptive fields without loss of resolution, aiding high-
level semantic tasks such as segmentation. Grouped convo-
lutions offer a means of factorizing convolutions to dramati-
cally reduce computation and memory usage, enabling large,
deep architectures. However, their representational abilities
may remain limited compared to standard convolutions for
advanced analysis. Depthwise separable convolutions, as used
in MobileNets, have achieved tremendous success in deploying
efficient CNNs on embedded and mobile devices via their
channel-wise decomposition.

In addition to novel convolution designs, the field is wit-
nessing increasingly innovative integration of concepts from
parallel research areas. For example, vision transformer mod-
els incorporate attention mechanisms to replace convolutional
building blocks entirely, achieving strong results, especially
on large datasets. Techniques like capsule networks aim to
overcome CNN limitations through dynamic routing between
feature vectors. Generative models such as Pix2Pix employ
convolutional decoders to generate high-fidelity images from



semantic maps or sketches. Advances in self-supervised learn-
ing provide alternative pretraining paradigms bypassing the
need for vast annotated datasets.

Further combining of deep learning techniques seems poised
to yield fruitful synergies. For instance, incorporating atten-
tion into convolutional pipelines could endow them with the
benefits of both approaches. Moreover, self-supervised mech-
anisms may help the unsupervised discovery of interpretable
convolutional filters well-suited to specific domains. Despite
remarkable achievements, open challenges remain regarding
robustness, sparse data scenarios, model interpretability, and
trustworthiness. Future progress relies on close collaboration
between academia and industry to define real-world needs and
expand deep learning’s positive societal impact.

Some convolution types have proven more enduring than
others based on their flexibility and ability to adaptively fit di-
verse applications. While LeNet certainly played an instrumen-
tal pioneering role, more recent architectures better capture
inherent data properties through principled network designs
and optimizations. Meanwhile, innovation continues on all
fronts, suggesting no single solution has emerged as definitive.
Success hinges on judiciously combining innovations tailored
to particular contexts rather than wholesale replacement of
existing paradigms.

A promising outlook envisions continued refinement of
core CNN building blocks and their harmonious integration
with new algorithmic concepts from self-supervised learning,
attention mechanisms, and generative models. In conclusion,
this survey highlights both the remarkable advances of con-
volutional neural networks to date and their vast unrealized
potential through the future intersection of ideas across deep
learning’s constantly evolving landscape.

XII. CONCLUSION

In this comprehensive study of different convolution types
in deep learning, we have gained valuable insights into these
techniques’ diverse applications and strengths. CNNs have
proven to be highly effective in various domains, ranging
from image recognition to natural language processing. We
compared various types of CNNS in various aspects, allowing
us to understand their unique characteristics and advantages for
specific tasks. Overall, this study emphasizes the importance
of convolution in deep learning and its potential for future
advances and improvements in artificial intelligence. Further-
more, the findings suggest that CNNs’ versatility makes them
suitable for various applications beyond traditional computer
vision tasks. Furthermore, the study emphasizes the impor-
tance of additional research and development to optimize and
refine these techniques for specific domains and tasks.
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