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Abstract

Across the globe, environmental water has been allocated with the purpose of pre-

serving the health and vitality of floodplain vegetation. However, the influences of

environmental water volume and environmental water delivery strategies have not

been studied widely because of shortage of on-ground monitoring data. Remotely

sensed data can bridge this gap by providing long-term and continuous information;

Landsat imagery from 1988 to 2020 was used in this research. We used the normal-

ized difference vegetation index (NDVI) as an indicator of physiological condition of

lake-fringing trees on the Hattah Lakes floodplain, south-east Australia. We

employed the random forest (RF) regression method to model the relationship

between NDVI and various climate and hydrological factors, such as the volume of

water delivered to the connected lakes system as environmental water allocations or

natural floods. The RF models performed well overall, with a mean R2 value of 0.73.

The analysis identified the monthly total of environmental water delivered 3 months

prior to the Landsat image date as a more crucial factor than natural floods over the

same period for driving vegetation condition. Environmental water from 3 months

previously exerts a positive influence on NDVI until the volume reaches a specific

threshold. We have observed significant improvements in floodplain vegetation

through the current environmental water strategy, particularly since the construction

of pumping infrastructure in 2013. We suggest that managers aim to inundate the

lake fringing area every 3 years, specifically from August to September, by delivering

environmental water up to the modelled threshold volume. Finally, the use of infra-

structure has proven to be an effective and efficient method for irrigating floodplain

lakes, leading to improvements in vegetation condition while conserving water

resources.
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1 | INTRODUCTION

Known as Earth's kidneys, wetlands are one of the world's most signif-

icant ecosystems. They provide ecosystem services in the form of

flood control, water purification, and habitat (Wu et al., 2022; Wu &

Chen, 2020; Xi et al., 2020). However, they have suffered extensive

damage over recent decades because of climate change and human

activities (Steinfeld & Kingsford, 2013).

Floodplain lakes are one type of wetland. In the context of disrup-

tion by dams and river regulation, there is growing recognition of the

importance of conserving floodplains and river–floodplain connec-

tions (Steinfeld & Kingsford, 2013). Rivers across the globe have

undergone regulation for diverse purposes such as public water sup-

ply, irrigation, electricity generation, and flood mitigation (Kuiper

et al., 2014). More than 60% of river systems worldwide have experi-

enced changes in stream flows (Kuiper et al., 2014). River regulation

influences various hydro-geomorphic processes, resulting in a signifi-

cant reduction in the occurrences of small and moderate floods

(Netsvetov et al., 2019; Peake et al., 2011; Souter et al., 2014). As a

result, river regulation has detrimental effects on the growth of flood-

plain trees, the density of forest stands, and the overall structure of

floodplain ecosystems (Netsvetov et al., 2019). Deaths of floodplain

forests and woodlands are occurring globally (Zhang et al., 2021).

Therefore, appropriate measures and policies to address conflicting

water demands for human and environmental uses are urgently

needed to maintain floodplain ecosystems (Doody et al., 2015;

Steinfeld & Kingsford, 2013). In response, many countries have imple-

mented environmental water delivery programmes to provide water

to floodplain ecosystems (Doody et al., 2015; Stewardson &

Guarino, 2018; Wu et al., 2022).

Restoring and maintaining floodplain vegetation is often a primary

objective when supplying environmental water into floodplain sys-

tems. Floodplain vegetation in regulated rivers often undergoes

changes as a direct consequence of altered timing and reduced magni-

tude and duration of floods (Reid & Brooks, 2000). This has occurred

in many regulated rivers around the world (Catelotti et al., 2015).

Floodplain vegetation is also vulnerable to climate change, especially

in semi-arid and arid regions (Nilsson et al., 2005; Tockner &

Stanford, 2002). The effects of river regulation and climate change are

pronounced in dominant perennial species of floodplain vegetation of

south-east Australia, particularly black box (Eucalyptus largiflorens) and

river red gum (Eucalyptus camaldulensis) (Jensen & Walker, 2017).

Many studies have been conducted to determine floodplain vege-

tation water requirements and environmental water effects on

vegetation (Merritt et al., 2010; Morrison & Stone, 2015; Moxham

et al., 2019; Whitaker et al., 2015). In Australia, river red gum trees

have often been monitored using field-based methods during environ-

mental water delivery. After summer watering, tree physiological con-

dition has been observed to increase (Jensen & Walker, 2017).

However, field-based monitoring data are spatially sparse and can only

ever cover a fraction of a floodplain's area. Meanwhile, they demand

significant manpower and material resources and are time-consuming.

To compensate for the shortcoming of field-based methods, remote

sensing imagery has been used to study long-term vegetation condi-

tion since the 1990s (Broich et al., 2018). As a convenient method,

remote sensing techniques have gained recognition for acquisition of

continuous data across various spatial resolutions (Norman

et al., 2014). These data have been increasingly employed in the study

of fluvial environments and demonstrate excellent results (Pace

et al., 2021; Sims & Colloff, 2012; Wu et al., 2022; Xue et al., 2022).

Different vegetation types have varying responses to environ-

mental water in terms of lag time. This is especially the case in the

fringing areas of lakes surrounded by stands of river red gum and

black box (Wu et al., 2022). However, studies related to the influence

of environmental water volume and timing in floodplain vegetation

remain scarce, mainly because of limited monitoring data and compu-

tational difficulties (Canham et al., 2021; Jensen et al., 2007; Wu

et al., 2022).

To improve vegetation outcomes and achieve the objective of

maintaining vegetation health through environmental water allocation,

it is essential to assist water managers in comprehending the collec-

tive effects of environmental water and other factors on riparian veg-

etation condition (Capon et al., 2017). An environmental water

strategy evaluation model is needed to examine efficiency of past and

ongoing environmental watering strategies. In this study, random for-

est regression models and machine learning explanation methods have

been applied to a 30-year Landsat dataset to model response of vege-

tation condition (NDVI) to environmental water volume and climate

factors in a connected floodplain lakes system.

2 | METHODS

2.1 | Study area

Lying in north-western Victoria, south-eastern Australia, on the banks

of the River Murray, the Hattah Lakes floodplain system comprises

more than 20 permanent and semipermanent freshwater lakes with

associated floodplains and waterways (Figure 1). As a semi-arid envi-

ronment with hot dry summers and cooler winters, the floodplain has

greater rainfall in the winter (Butcher & Hale, 2011). However, rainfall

occurs all year with an average annual rainfall of about 250 mm (Wu

et al., 2022).

The Hattah Lakes floodplain provides high biodiversity and habi-

tat values, including vegetation communities such as black box and

river red gum woodlands. These vegetation communities provide hab-

itat for more than 47 waterbird species and other fauna

(MDBA, 2012). As a national park, the Hattah Lakes floodplain is

important for social and cultural activities. Therefore, based on its

many values, the Hattah Lakes floodplain was designated as an ‘icon
site’ in The Living Murray programme—Australia's first major river res-

toration programme (Wood et al., 2016). Fringing trees are targeted

for preservation by the environmental water programme

(MDBA, 2012). Therefore, the study area of this research is focussed

on the fringing vegetation areas (green shaded areas in Figure 1)

around nine selected Ramsar-listed lakes (Table 1).
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Because the River Murray and its floodplains are highly regu-

lated, the Hattah Lakes ecosystem has been damaged by the loss of

natural connectivity to the river over many decades (Cunningham

et al., 2009). Floodplain vegetation requires periodic flooding to

maintain ecological condition. To partly restore the floodplain lakes

system, the flooding regime of the Hattah Lakes has been managed

with environmental water since 2005 (MDBA, 2012). Environmental

water is pumped through Chalka Creek and fills the lakes one by

one (Figure 2). Lake Lockie is the first to be filled when environmen-

tal water is delivered, and then, water flows towards Lake Hattah

and on to a sequence of lakes in the south (starting with Little Lake

Hattah and ending with Lake Nip Nip). Meanwhile, water moves

from Lake Lockie to Lake Yerang and feeds the northern lakes. The

use of pumping allows lakes to be filled with environmental water at

flows that are feasible to deliver along the River Murray. Elevating

River Murray flows to thresholds for natural filling (Table 1) using

environmental water is not possible because of (i) limits on the total

amount of environmental water available, (ii) limited release capabili-

ties from upstream dams, and (iii) operational constraints on the

river designed to avoid flood impacts on riparian landholders and

infrastructure.

2.2 | Dataset and preprocessing

In this study, multiple types of data have been used, including Landsat

imageries with 16-day intervals and 30-m resolution, historical climate

data, and hydrological records.

F IGURE 1 Location and lake distribution of study area: the Hattah Lakes.

TABLE 1 Description of nine lakes selected.

Lake name Lake area (ha) Lake depth (m)
Permanent/
semipermanent

Flows at Euston for lake to
fill naturally (ML/day)

Area of fringing
area (ha)

Lake Lockie 123 1.0 Permanent 40,000 140

Lake Hattah 52 3.1 Semipermanent 40,000 33

Lake Bulla 32 2.5 Permanent 55,000 24

Lake Mournpall 181 3.2 Semipermanent 40,000 92

Lake Yerang 43 1.5 Permanent 40,000 66

Lake Arawak 37 2.4 Semipermanent 55,000 29

Lake Yelwell 55 1.3 Permanent 55,000 103

Lake Konardin 57 1.7 Permanent 70,000 105

Lake Bitterang 109 2.4 Permanent 70,000 190
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2.2.1 | Remote sensing imageries

Landsat 5, 7, and 8 collection 1 datasets (USGS Landsat 5/7/8 Level

2, Collection 2, Tier 1, surface reflectance products) from 1988 to

2020 were used in this study, with the data being processed in

Google Earth Engine (GEE). Clouds and cloud shadows were

removed and filled using the mean of the values of images

1.5 months before and after the image with missing values. Poor-

quality images were identified by counting the gap pixels and

removed from the dataset. Landsat 7 Scan Line Corrector (SLC)-off

gap was repaired by applying the morphological mean filter in GEE.

To deal with the differences between the spectral characteristics of

Landsat OLI and TM/ETM+ (Roy et al., 2016), the Landsat

TM/ETM+ to OLI Harmonization function developed by GEE was

applied to the imagery (https://developers.google.com/earth-engine/

guides).

We used the normalized difference vegetation index (NDVI) as a

measure of tree physiological condition in the lake fringing areas

(Anyamba & Tucker, 2005; Zhang et al., 2013). In these areas, there is

little to no understorey vegetation (J.A. Webb, personal observation),

and so, NDVI captures the ‘greenness’ of the fringing river red gum

and black box trees. NDVI varies in Hattah Lakes among and within

years (Wu et al., 2022) and thus can be used as an indicator of tree

condition or ‘health’. Hereafter, we use the word ‘condition’ to

describe physiological condition or greenness as measured by NDVI.

NDVI is calculated by the following formula:

NDVI¼ ρNIR�ρRED
ρNIRþρRED

, ð1Þ

where ρNIR is the reflectance value of the near infrared band and

ρRED is the reflectance value of red band. Greater values of NDVI are

indicative of better vegetation condition.

2.2.2 | Climate data

Climate data, including daily precipitation, maximum temperature, and

vapour pressure, were extracted from the Australian Water Availabil-

ity Project (AWAP), which is a high-quality dataset of historical and

ongoing climate analyses for Australia with a spatial resolution of

5 km (Jones et al., 2009). To match the Landsat data acquisition date,

we calculated monthly accumulated precipitation, mean maximum

temperature, and mean vapour pressure with different lag periods

(see below).

2.2.3 | Hydrological data

Between 2005 and 2010, environmental water was delivered to the

Hattah Lakes from the River Murray through transportable pumps

(Wood et al., 2018). In October 2013, a permanent pumping station—

the Chalka Creek regulator—was built on the Hattah Lakes floodplain

F IGURE 2 Environmental water flow path diagram and filling pattern of the Hattah Lakes system redrawn from Wijesuriya (2022).
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(Butcher & Hale, 2011), and environmental water has been delivered

by that regulator since then.

Natural floods occur and flow through Chalka Creek into Hattah

Lakes when discharges at Euston Weir (�70-km upstream of Hattah

Lakes) exceed the commence-to-flow (CTF) threshold (36,700 ML/

day prior to October 2013 and 25,000 ML/day thereafter). To quanti-

tatively calculate natural flood volume flowing into Hattah Lakes, we

constructed a linear function between discharge at the Chalka Creek

regulator and discharge at Euston Weir in excess of the CTF threshold

during the natural flooding period between August 2016 and

December 2016 (Figure 3). The relationship and linear function were

applied to long-term discharge records at Euston Weir.

2.3 | Random forest regression

2.3.1 | Explanatory variables

Explanatory variables for our models of vegetation condition are listed

in Table 2. Our previous work found that a positive influence on

floodplain vegetation in Hattah Lakes can be detected 1 to 3 months

after inundation with environmental water (Wu et al., 2022). With this

in mind, we selected accumulated environmental water volume with

1-, 2-, and 3-month lags as independent variables. We also tested

whether precipitation within 3 months and natural floods within

3 months affect fringing vegetation condition.

F IGURE 3 Relationship between
discharge at the Chalka creek regulator
and difference between the discharge at
Euston weir and CTF threshold
(25,000 ML/day).

TABLE 2 Description of features (explanatory variables).

Abbreviation Feature Unit Rationale

tempmax_1m Monthly mean max temperature deg. Celsius Temperature and precipitation are prerequisite climatic

factor for vegetation growth (Ren et al., 2022).

Atmospheric water demand for plants is strongly

influenced by vapour pressure deficit (VPD) (Yuan

et al., 2019).

vapourpre_1m Monthly mean vapour pressure hPa

prec_1m Accumulated precipitation 1 month prior mm

prec_2m Accumulated precipitation 2 months prior mm

prec_3m Accumulated precipitation 3 months prior mm

envwater_1m Accumulated environmental water 1 month prior ML Vegetation exhibits favourable responses to

environmental water typically within a period of 1 to

3 months following inundation (Wu et al., 2022).
envwater_2m Accumulated environmental water 2 months prior ML

envwater_3m Accumulated environmental water 3 months prior ML

natflood_1m Accumulated natural floods 1 month prior ML The dynamics of floodplain vegetation are impacted by

flooding, which serves as a crucial driving factor

(Broich et al., 2018).
natflood_2m Accumulated environmental water 2 months prior ML

natflood_3m Accumulated environmental water 3 months prior ML

season Season of current date NA We assume that coupled with season variable,

influence of variables above shows different

patterns.
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2.3.2 | Model description

Random forests (RF) modelling is a machine-learning approach for

identifying complex and non-linear relationships between a depen-

dent variable and potential explanatory variables (Breiman, 2001). This

nonparametric machine learning method is composed of an ensemble

of decision trees that predict the outcome measure. In the random

forest (RF) algorithm, a decision tree is constructed using a boot-

strapped dataset and this process is repeated multiple times to create

a forest of trees. The final prediction is calculated by taking the aver-

age of the predictions made by all the trees in the forest. RF is a

regression and classification method (Singh et al., 2017), but this study

used RF regression.

We had previously compared RFs with support vector machine

and long-short-term memory network models and found that RFs

have the best predictive performance for data in the Hattah Lakes

system (C. Wu, unpublished data).

The model was implemented using sklearn's random forest regres-

sor function (Pedregosa et al., 2011) in Python. The dataset was

divided into training (90%) and test (10%) sets. The training set

was used in model fitting and the model was tuned by grid search

with fivefold cross-validation to find the optimal set of hyperpara-

meters. The bootstrap sample function was used when building the

trees to randomly split the dataset into homogeneous subsets. The

training set was shuffled during cross validation, which makes each

split comparable with our dataset. The model was evaluated by the

coefficient of determination (R2).

2.4 | Model explanation methods

As a ‘Black Box’ model, the RF regression model cannot be under-

stood by looking at its parameters (Molnar, 2019). In this study, we

use model explanation methods to extract relationships between

NDVI and the explanatory variables.

Feature importance, as the name suggests, compares the impor-

tance of different explanatory variables for explaining the dependent

variable (Breiman, 2001). They are normalized values and represent

relative importance across all features. It calculates a score for each

feature of each tree in the random forest and then takes an average

across trees to assess the feature's contribution to the prediction.

Feature importance is implemented in Python using the scikit-learn

random forest regression function.

Individual conditional expectation (ICE) plots illustrate the predic-

tion changes for each dependent variable by displaying a distinct line

for every instance, showcasing the impact of feature variations on the

predictions (one line per instance) (Molnar, 2019). This study employs

centred ICE plots, which centre the curves at a specific point in the

feature and visualize the variation in predictions relative to this point.

The partial dependence plot (PDP) displays only the average relation-

ship between the feature and the prediction, shown as a single line

across all instances. The PDP shows the marginal effect of one or two

independent variables in the RF model on the predicted outcome of

the fitted model (Jiang et al., 2022). In this study, we used the two-

dimensional (2D) PDP to see the interaction between pairs of

features.

To avoid the issues with extrapolation when features are highly

correlated, we used the accumulated local effect (ALE) plot to

describe how different variables affect the prediction (Apley &

Zhu, 2020). The features are initially divided into intervals, and the

prediction difference is computed by replacing the feature with

the upper and lower limits of each interval. These differences are sub-

sequently aggregated and centred, ultimately yielding the ALE curve

(Molnar, 2019). For this study, ALE plots of 1D and 2D were imple-

mented using Python package PyALE.

In this study, the PDPs give an overall idea of the impact of

each feature, while the ALE plots were used to examine if the slopes

seen in the PDPs could be an artefact caused by extrapolation

problems.

3 | RESULTS

3.1 | Model performance

The RF regression model shows good overall performance for

modelling NDVI. The model showed different performance among

the nine lakes (Figure 4). The R2 of test for Lake Kondardin is the high-

est with a value of 0.82, while the mean R2 of test for nine lakes is

0.73.

The model performances for lakes in the northern area are better

than those of lakes in the southern area (Figure 4). The bar plot illus-

trates the percentage of boundary pixels in the fringing area for each

lake, where boundary pixels are defined as pixels with mixed land use

types. They reveal that lakes with greater percentages of boundary

pixels have lower R2 values than others (Figure 4). This indicates that

the presence of mixed land use influences the precision of the model

predictions.

3.2 | Feature importance

The most important features for predicting NDVI are very similar

among lakes (Figure 5). Monthly mean max temperature (Temp-

max_1m) is the most important feature for NDVI modelling for all

lakes, followed by accumulated precipitation 3 month prior

(prec_3m) for most of the lakes and then accumulated environmen-

tal water for the 3 months prior (envwater_3m) for the four southern

lakes.

There are some order differences in variable importance among

lakes. Focussing on accumulated environmental water 3 month prior

(envwater_3m), it is more important for vegetation around Lake Lockie,

Lake Hattah, Lake Bulla, and Lake Arawak than the other five lakes

(Figure 5). Conversely, temperature accounts for almost 50% of the

variation for the five lakes in northern area, while environmental

water has a lower value of importance.
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3.3 | Influence of environmental water on NDVI
and environmental water delivery strategies
evaluation

Accumulated environmental water 3 month prior (envwater_3m) is

more important to NDVI response than accumulated environmental

water 1 month prior (envwater_1m) and 2 months prior (envwater_2m)

(Figure 5). Lake Lockie, Lake Hattah, Lake Bulla, and Lake Arawak

show similar influence curves, with partial dependence of NDVI

increasing by almost 0.1 when environmental water volume reaches

7000 ML before levelling off (Figure 6a–d). For the other five lakes,

the effect of environmental water is small but also levels off when

F IGURE 5 Stacked bar plot of feature importance for each lake.

F IGURE 4 Random forest model
performance (the bar plot shows
percentage of boundary pixels for each
lake pixels. Boundary pixels refer to pixel
with mixed land use type). Variability in
performance for the training and
validation sets is summarized by error bar
of one SD.
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environmental water 3 months prior reaches a high volume. Environ-

mental water also has a greater effect than natural floods (Table 3).

This is especially the case at the 3-month lag time, where the environ-

mental water effect (envwater_3m) is approximately an order of mag-

nitude greater than the equivalent effect for natural floods

(natflood_3m).

To evaluate the current environmental watering strategy, differ-

ences between modelled NDVI calculated both with and without

environmental water delivery were calculated (Figure 7) for the fring-

ing areas of Lake Lockie and Lake Bitterang. These two lakes were

chosen as examples of the different groups of results for the southern

and northern lakes, respectively. For both lakes, modelled NDVI with

environmental water is greater than modelled NDVI without environ-

mental water delivery (especially for environmental water delivery

after 2010).

3.4 | Interacting influences of environmental water
and precipitation on vegetation

The 2D PDP plot shows the dependence of NDVI on the joint value

of accumulated environmental water 3 month prior and accumulated

F IGURE 6 Centred ICE plot of the effect of environmental water 3 months prior among nine lakes: (a) Lake Lockie (the first connected lake);
(b) Lake Hattah; (c) Lake Bulla; (d) Lake Arawak; (e) Lake Yerang; (f) Lake Mournpall; (g) Lake Konardin; (h) Lake Yelwell; and (i) Lake Bitterang. The
orange dotted line represents the average PDP line, while the blue lines depict the individual ICE lines for each instance. The partial dependence
refers to the change in the predicted NDVI.

TABLE 3 Feature importance of features related to environmental water and natural floods.

natflood_1m natflood_2m natflood_3m envwater_1m envwater_2m envwater_3m

1. Lake Lockie 0.011 0.007 0.009 0.022 0.012 0.119

2. Lake Hattah 0.017 0.009 0.012 0.045 0.014 0.097

3. Lake Bulla 0.017 0.008 0.011 0.025 0.017 0.112

4. Lake Arawak 0.024 0.011 0.014 0.025 0.015 0.138

5. Lake Yerang 0.009 0.005 0.011 0.012 0.006 0.056

6. Lake Mournpall 0.012 0.005 0.007 0.010 0.008 0.024

7. Lake Konardin 0.005 0.003 0.013 0.010 0.010 0.025

8. Lake Yelwell 0.010 0.006 0.010 0.008 0.006 0.073

9. Lake Bitterang 0.008 0.008 0.018 0.010 0.008 0.044
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precipitation 1 month prior (Figure 8). For Lake Lockie, environmental

water has a strong impact on NDVI when environmental water

3 months prior volume is less than 10,000 ML (for Lake Hattah, Lake

Bulla, and Lake Arawak, this number is about 7000 ML). For

Lake Mournpall, Lake Konardin, and Lake Bitterang, both precipitation

and environmental water have an impact on NDVI when precipitation

F IGURE 7 Modelled NDVI difference
in situation of with and without

environmental water for (a) Lake Lockie
and (b) Lake Bitterang. (c) The amount of
environmental water delivered over time.

F IGURE 8 2D PDP plot of envwater_3m and prec_1m: (a) Lake Lockie (the first connected lake); (b) Lake Hattah; (c) Lake Bulla; (d) Lake
Arawak; (e) Lake Yerang; (f) Lake Mournpall; (g) Lake Konardin; (h) Lake Yelwell; and (i) Lake Bitterang; the values along the contour lines
represent the partial dependence of joint influence, while the colour gradient from purple to yellow indicates the corresponding dependence
values, ranging from low to high; (a) to (d) represent the outcomes for southern lakes, while (e) to (i) are the results for northern lakes.
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is less than 80 mm (Figure 8). When precipitation is less than 20 mm,

environmental water improves NDVI of fringing area of these three

lakes.

3.5 | Influence of climate factors on vegetation

Accumulated precipitation 3 month prior has a nonlinear relationship

with NDVI (Figure 9). When prec_3m is less than 50 mm, the

mean dependence of NDVI slightly decreases for Lake Lockie,

Lake Hattah, Lake Bulla, and Lake Arawak, while it slightly

increases for the other five lakes. For all lakes, the dependence of

NDVI increases suddenly when prec_3m increases from 50 to

80 mm.

Monthly mean max temperature has a negative influence on NDVI.

From the ICE plot (Figure S1), the partial dependence of NDVI

decreases when max temperature increases from 18�C to 25�C. The

influence of temperature on fringing vegetation is similar for all

the lakes.

Monthly mean vapour pressure has a positive relationship with

NDVI according to the ICE plot (Figure S2). NDVI remains stable when

vapour pressure is less than 8 hPa but improves with increasing

vapour pressure when vapour pressure is greater than 8 hPa.

4 | DISCUSSION

Our results indicate that environmental water is more important for

fringing vegetation condition than natural floods, especially with a lag

time of 3 months. This is a major finding and speaks to the value of

managed inundation events delivered to regulated floodplains. Addi-

tionally, these results suggest that the current environmental water

strategy is beneficial for enhancing fringing vegetation. Together,

these results emphasize the significance of environmental water as a

critical factor in floodplain lake management to support vegetation

health. The findings can provide valuable insights for decision-makers

regarding the effective utilization of environmental water to enhance

the fringing areas of lakes.

F IGURE 9 Centred ICE plot of precipitation 3 months prior: (a) Lake Lockie (the first connected lake); (b) Lake Hattah; (c) Lake Bulla; (d) Lake
Arawak; (e) Lake Yerang; (f) Lake Mournpall; (g) Lake Konardin; (h) Lake Yelwell; and (i) Lake Bitterang. The orange dotted line represents the
average PDP line, while the blue lines depict the individual ICE lines for each instance.
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4.1 | NDVI response to environmental water
volume and its spatial pattern

Our finding of the importance of environmental water 3 months prior

aligns with previous findings, suggesting its greater significance com-

pared with water from 1 or 2 months prior to data collection (Wu

et al., 2022). Also, as noted above, environmental water has a greater

impact on vegetation health than natural floods, a finding of major

significance.

The PDP plots showed increases in NDVI with environmental

water volume 3 months prior, but this relation has an upper limit

above which NDVI remains stable. This breakpoint can serve as a

useful guideline for floodplain managers when determining the

appropriate volume of environmental water, thereby enhancing

water use efficiency. However, the partial dependence estimates are

less reliable at these greater volumes because of the smaller number

of data points (Molnar, 2019). Further monitoring that takes in

periods with larger volumes of environmental water would provide

more data points and increase the reliability of the model at these

higher levels.

The variable results among lakes demonstrate spatial heterogene-

ity in terms of model performance, feature importance, and partial

dependence degree. We discovered that lakes with higher percent-

ages of boundary pixels exhibit poorer model performance. The

boundary pixels commonly include mixed land uses, thereby causing

the NDVI to not solely represent the condition of trees. Therefore, in

future study, selection of pixels for fringing area by clustering

methods (Wang et al., 2022) to classify the mixed-vegetation pixels,

or to simply exclude boundary pixels, could be used to improve the

model performance.

The feature importance and partial dependences plots highlight

substantial differences between the four southern lakes and the

five northern lakes. In the southern lake, the feature environmental

water 3 months prior is more important and partial dependence

degree of that feature is greater. One of the key factors explaining

these findings is the variation in hydrological conditions. Lake

Lockie, being the first lake in the filling sequence in the southern

area (Figure 2), receives environmental water earlier (McCarthy

et al., 2009). Moreover, Lake Hattah and Lake Arawak experienced

inundation by environmental water prior to 2010 for longer periods

compared with northern lakes (Palmer et al., 2021). These condi-

tions make environmental water more impactful on the fringing

trees of the southern lakes. The size of the lake may also be an

explanation for these discrepancies. For instance, Lake Mournpall,

located in the northern region, is six times larger than lakes Bulla

and Arawak in the south (Table 1). This means that it requires

much more water to be delivered through Chalka Creek to reach

the fringing trees. Conversely, Lake Bulla in southern area is the

smallest among the lakes, and therefore, with same volume of envi-

ronmental water flowing through Chalka Creek, the fringing trees

can benefit more because of the lake's proximity to the adjacent

lakes.

4.2 | Environmental water strategies and
management implications

Bearing in mind the spatial distribution of the results, we suggest that

floodplain managers could consider different strategies for the

improvement of different regions in Hattah Lakes. It should be remem-

bered that both temperature and rainfall have greater effects on NDVI

than environmental water. However, these are not under the control

of managers, who must work with the ‘levers’ available to them.

The health of vegetation in the fringing areas of lakes can be

enhanced by maintaining current environmental water strategies and

utilizing existing or newly constructed infrastructure. The modelled

results show that the current environmental water strategy helps to

improve tree health in the fringing areas of Hattah Lakes, especially

after 2013 when the Chalka Creek pumping station (MDBA, 2018)

was built to increase the capacity to deliver larger amounts of envi-

ronmental water into the Hattah Lakes system. This is consistent with

in situ monitoring of Hattah Lakes, which showed tree canopy cover

of river red gum increasing after watering from 2014 to 2020

(Moxham et al., 2020). In other systems, using existing irrigation sup-

ply infrastructure has proven to be an effective and water-saving

option for watering floodplain to help improve vegetation condition,

requiring considerably less water than what is needed to induce an

overbank flood (Stewardson & Guarino, 2018).

This research has the potential to inform decision-making for envi-

ronmental water use to enhance the fringing trees of floodplain lakes.

Findings that NDVI increases with environmental water volume, but

not beyond a threshold of total delivery volume, can inform improved

environmental water management across diverse environmental water

scenarios. In years with abundant water, fringing trees will not exhibit

increased greenness beyond this threshold volume. Conversely, during

periods of reduced water availability, we recommend that managers

deliver as much water as possible to the floodplain lakes to maintain

the condition of fringing trees. Future studies on the optimal frequency

of environmental watering are still needed to support the design of

efficient and effective environmental water management strategies. It

is crucial to prioritize the maintenance of flow variability rather than

stable flows for regulated ecosystems, as the rivers and adjacent flood-

plains rely on annual and interannual fluctuations (Naiman et al., 2008).

Previous investigations have determined that a flooding frequency of

every 3 years optimally supports the life cycles of river red gums, which

comprise most of the fringing trees (Catelotti et al., 2015). Increasing

flows in early August to ensure water availability for the trees in late

September will take advantage of the amplified evaporative demand

(through increasing temperatures) and solar radiation characteristic of

the spring season (Doody et al., 2014). Therefore, based on current

knowledge, we suggest that environmental water management should

aim to inundate lake fringing areas every 3 years from August to

September by allocating environmental water at the modelled volume

threshold identified in this research to maintain fringing tree health.

More studies on environmental water frequency would be useful to

help improve outcomes through adaptive management.
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4.3 | Recommendations for future research

The long-term Landsat dataset provides continuous monitoring of

floodplain vegetation condition, overcoming the limitation of the

irregular and point-based field data. This enables us to model long-

term vegetation condition using daily hydrological and climate

records, which is not achievable using field-based monitoring. In the

future, remote sensing datasets can be updated to higher resolution

satellite imagery, such as Sentinel-2 imagery with a 10-m resolution,

to capture more detailed vegetation conditions. By employing per-

pixel modelling (training models for each pixel), we can explore poten-

tial spatial differences in the floodplain, gaining deeper insights into

the distribution and variation of vegetation responses across the area.

In this work, random forest regression, in combination with ‘Black
Box’ explanation methods, has been demonstrated to effectively

extract the quantitative relationship between NDVI and hydrological

and climate factors. This type of relationship has proved difficult to

describe using classical statistical regression methods, such as general-

ized additive mixed modelling (GAMM) (Wu et al., 2022).

We found that climate factors play an important role in vegeta-

tion growth. Hotter and drier climates in the future will have a nega-

tive impact on floodplain vegetation. Modelling vegetation condition

under various climate predictions and environmental water scenarios

would be a good approach to developing management plans for effec-

tive vegetation protection under climate change. However, it is impor-

tant to acknowledge that random forest regression has its limitations;

for instance, it is not suitable for data extrapolation (Breiman, 2001).

Thus, it becomes necessary to consider alternative modelling

methods, such as neural networks (Wang et al., 2022), to achieve

accurate modelling results for future NDVI predictions.
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