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Abstract

We revisit the classic k-Dominating Set problem. Besides its importance as perhaps the most
natural W [2]-complete problem, it is among the first problems for which a tight nk−o(1) condi-
tional lower bound (for all sufficiently large k), based on the Strong Exponential Time Hypothesis
(SETH), was shown (Pătraşcu and Williams, SODA 2007). Notably, however, the underlying
reduction creates dense graphs, raising the question: how much does the sparsity of the graph
affect its fine-grained complexity?

As our first result, we settle the fine-grained complexity of k-Dominating Set in terms of
both the number of nodes n and number of edges m, up to resolving the matrix multiplication
exponent ω. Specifically, on the hardness side, we show an mnk−2−o(1) lower bound based
on SETH, for any dependence of m on n. On the algorithmic side, this is complemented by
an mnk−2+o(1)-time algorithm for all sufficiently large k. For the smallest non-trivial case
of k = 2, i.e., 2-Dominating Set, we give a randomized algorithm that employs a Bloom-filter
inspired hashing to improve the state of the art of nω+o(1) to mω/2+o(1) = O(m1.187). If ω = 2,
this yields a conditionally tight bound for all k ≥ 2.

To study whether k-Dominating Set is special in its sensitivity to sparsity, we study the
effect of sparsity on very related problems:

• The k-Dominating Set problem belongs to a type of first-order definable graph properties
that we call monochromatic basic problems. These problems are the canonical monochro-
matic variants of the basic problems that were proven complete for the class FOP of first-
order definable properties (Gao, Impagliazzo, Kolokolova, and Williams, TALG 2019). We
show that among the monochromatic basic problems, the k-Dominating Set property is
the only property whose fine-grained complexity decreases in sparse graphs. Only for the
special case of reflexive properties is there an additional basic problem that can be solved
faster than nk±o(1) on sparse graphs.

• For the natural variant of distance-r k-dominating set, we obtain a hardness of nk−o(1)

under SETH for every r ≥ 2 already on sparse graphs, which is tight for sufficiently large k.

∗This work is part of the project CONJEXITY that has received funding from the European Research Coun-
cil (ERC) under the European Union’s Horizon Europe research and innovation programme (grant agreement
No. 101078482).

†Research supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 462679611.
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1 Introduction

Consider an algorithmic graph problem whose best known algorithm runs in time Õ(nc), where n
denotes the number of vertices and c ≥ 2 is some (usually small) constant. While improving
this running time might resist intensive effort and even suffer from a conditional lower bound,
it might still be possible to obtain substantial, polynomial-factor improvements by taking into
account the sparsity of the given graph – after all, far from all interesting graphs are dense. A
typical target to shoot for is a time bound of Õ(mc/2), where m denotes the number of edges in
the graph, or (edge) sparsity. Such a running time is never worse than the known bound for dense
graphs, i.e., m = Θ(n2), but polynomially improves the running time for all sparser graphs, i.e.,
when m = O(n2−ϵ).

On the algorithmic side, obtaining such an algorithm may be technically challenging (consider,
e.g., the global min-cut problem [25, 24]) or even turn out to be conditionally impossible: E.g.,
turning the nω+o(1)-time state-of-the-art algorithm for All-Edge Triangle Detection to anmω/2+o(1)-
time algorithm would refute the 3SUM and APSP hypotheses [31, 34].

While most works on the fine-grained complexity of graph problems analyze the time complexity
either purely in n (we call this the dense case) or purely in m (we call this the sparse case), some
recent works even specifically address the full trade-off between m and n, e.g. [1, 30]: Agarwal
and Ramachandran [1] give several sparsity-preserving reductions from the shortest cycle problem,
giving evidence of optimality of natural Õ(mn)-time algorithms. Subsequently, Lincoln et al. [30]
even manage to prove that the weighted k-clique hypothesis implies optimality of the Õ(mn)-time
bound for shortest cycle, specifically for m = Θ(nγ) for infinitely many 1 ≤ γ ≤ 2. This yields
conditional optimality for several APSP-related problems, such as directed and undirected APSP,
radius, replacement paths, and more. Further related work addresses, e.g., the influence of sparsity
for (unweighted) k-cycle detection [13, 29].

In this paper we aim to advance this line of research by settling the effect of sparsity on
interesting graph properties, most notably the k-Dominating Set problem.

1.1 The Effect of Sparsity on k-Dominating Set

We revisit the central graph problem k-Dominating Set for k ≥ 2: Given an undirected graph
G = (V,E), determine whether there is a k-sized set S of vertices such that each vertex v ∈ V is
dominated by S (i.e., v ∈ S or there exists u ∈ S with {u, v} ∈ E). It is among the classic NP-
hard problems, counts as perhaps the most natural W [2]-complete problem [15] (see also [16, 12])
and suffers from strong fine-grained inapproximability results, see, e.g. [10, 26]. It gives rise to
the notion of domination number in graph theory and has inspired a plethora of related problems
(e.g., edge domination, total domination, partial domination, connected domination, capacitated
domination and many more); see, e.g., [22] for a dedicated monograph.

In the dense setting, the fine-grained complexity of k-Dominating Set is well understood (up
to resolution of fast matrix multiplication): Eisenbrand and Grandoni [19] show how to solve k-
Dominating Set in time nk+o(1) for all k ≥ 8. For 2 ≤ k ≤ 7, the (small) polynomial overhead to
the O(nk) running time depends on the complexity of fast rectangular matrix multiplication. In
particular, if ω = 2, k-Dominating Set can be solved in time nk+o(1) for all k ≥ 2.

On the lower bound side, Pătraşcu and Williams [32] show that an O(nk−ϵ) algorithm for
any k ≥ 3 would refute the Strong Exponential Time Hypothesis (SETH).1 Notably, this reduction
creates dense graphs, and in particular does not give any lower bound for the case of k = 2. We
thus ask:

1In fact, the lower bound can be based on the k-OV hypothesis, see Section 2 for a definition.
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Question 1: How does sparsity affect the time complexity of k-Dominating Set?

Perhaps surprisingly, it has been observed in [8, Footnote 5] that k-Dominating Set indeed
admits faster than nk±o(1) algorithms in sparse graphs. The idea is simple: Any dominating set
of size k must contain at least one member that dominates at least n/k vertices. Combining this
idea with the algorithm of Eisenbrand and Grandoni [19], we obtain the following baseline, which
depends on the optimal exponent ω(a, b, c) of multiplying a na × nb matrix with a nb × nc matrix
(and ω = ω(1, 1, 1)).

Proposition 1.1 (k-Dominating Set Baseline). Let k ≥ 2 and 1 ≤ γ ≤ 2. The k-Dominating Set on
graphs with n nodes and m = Θ(nγ) edges can be solved in time nω+o(1) + nω(⌈

k−1
2

⌉,1,⌊ k−1
2

⌋+γ−1)+o(1).
If ω = 2, this running time becomes n2+o(1) +mnk−2+o(1).

For k ≥ 3 (and assuming that ω = 2), this improves significantly over the running time for the
dense case by a factor of Θ(n2/m). However, under Pătraşcu and Williams’ lower bound [32], we
could hope for even better speed-ups – possibly even for an algorithm running in timemk/2+o(1). As
our first contribution, we show that the Θ(n2/m)-improvement by Proposition 1.1 is best-possible,
assuming the k-Orthogonal Vectors Hypothesis, which is well-known to be implied by the Strong
Exponential Time Hypothesis (see Section 2).

Theorem 1.2 (k-Dominating Set Lower Bound). For all k ≥ 3 and ϵ > 0, there is no algorithm
for k-Dominating Set in time O(mnk−2−ϵ), unless the k-OV Hypothesis fails.

Curiously, Theorem 1.2 leaves open an important special case, as it provides no non-trivial
lower bound for k = 2. At the same time, Proposition 1.1 also does not improve over the best
known upper bound of nω+o(1) due to Eisenbrand and Grandoni [19]. This brings us to an unclear
situation: Can we improve the nω+o(1)-time algorithm for 2-Dominating Set on sparse graphs, or
can the lower bound from Theorem 1.2 be strengthened?

Our main algorithmic result is that for 2-Dominating Set we indeed can improve upon Propo-
sition 1.1:

Theorem 1.3 (2-Dominating Set Algorithm). There is a randomized algorithm solving 2-Dominating
Set in time mω/2+o(1).

Note that if ω = 2, this yields an almost-optimal m1+o(1)-time algorithm for 2-Dominating Set.
More generally, if ω = 2, our results conditionally establish that mnk−2+o(1) is the optimal running
time for k-Dominating Set for all k ≥ 2, up to subpolynomial factors.

We remark that if ω > 2, our algorithm achieves an even better running time for very small
graph densities (m ≤ n

2+ω
4 ≤ n1.094). Specifically, our running time is never worse than Õ(m2/n)

and thus near-linear in for very sparse graphs with m = Õ(n). See Section 3 for more details.

1.2 Beyond k-Dominating Set: Monochromatic First-Order Graph Properties

The non-trivial influence of sparsity on the complexity of k-Dominating Set raises the question how
general this phenomenon is:

Question 2: For which related graph problems does sparsity influence the time complexity?

To approach this question systematically, we observe that k-Dominating Set is a first-order
definable property of the following form: Given an undirected graph G = (V,E) with |V | = n and
|E| = m, decide if

∃v1 ∈ V . . . ∃vk ∈ V : ∀w ∈ V : E(v1, w) ∨ · · · ∨ E(vk, w).

2



(In this formulation, we assume that the edge predicate is symmetric and reflexive, i.e., E(v, v) for
all v ∈ V .)

There are many interesting problems that may be formulated as such a first-order definable
graph property, such as existence of a given k-vertex pattern, existence of a k-sized set of vertices
sharing no common neighbor, the property of having a graph diameter 2, and many more. By
allowing an even more general formulation2, one arrives at the class FOP defined by Gao, Impagli-
azzo, Kolokolova and Williams [21]: For any first-order definable property ϕ, FOP contains the
corresponding problem of deciding ϕ over a given relational structure (in many interesting cases,
simply a graph).

General algorithmic results for this class have been obtained by Williams [35] for graph prop-
erties in the dense case (where we consider the universe size n as main parameter) and by [21] for
general properties in the sparse case (where we consider the total size of the relational structure
m as main parameter). Specifically, Williams showed that all (k + 1)-quantifier first-order graph
properties can be solved in time O(nk+o(1)) for k ≥ 8 (which would even hold for all k ≥ 2 if
ω = 2) and additionally gave a SETH-based lower bound of nk−o(1) for some properties. Gao et
al. [21] show that all (k+1)-quantifier properties can be solved in time O(mk), and for each k ≥ 2,
determine a list of (k+ 1)-quantifier problems, called basic problems of order k, to be complete for
this class in the following sense: An O(mk−ϵ)-time algorithm for any of these complete problems
would give a polynomial improvement over the O(mk′)-time algorithm for all problems with k′ +1
quantifiers where k′ ≥ k. We shall call a problem that is complete in this sense an FOPk-complete
problem. For any k ≥ 2, the basic problems of order k have the following form:

∃v1 ∈ V1 . . . ∃vk ∈ Vk∀w ∈W : ℓ1 ∨ · · · ∨ ℓk,
where each literal ℓi is of the form E(vi, w) or E(vi, w)

Put differently, to obtain a basic problem, one must choose, for each i ∈ [k], precisely one of E(vi, w)
and its negation E(vi, w). Note that this establishes the basic problems as fine-grained equivalent,
hardest problems in FOP. Among these basic problems, we find the k-OV problem (see also [21]
for a detailed discussion), and a problem that is usually not formulated in graph language: k-Set
Cover, see below.

Monochromatic vs. Bichromatic: k-Dominating Set vs. k-Set Cover. In the k-Set Cover
problem, the input consists of a set family S over universe U , and the question is whether there
are k sets from S that cover U , i.e.,

∃S1 ∈ S . . . ∃Sk ∈ S : ∀u ∈ U : u ∈ S1 ∨ · · · ∨ u ∈ Sk.

By introducing a set Sv := N [v] for all v ∈ V , this problem generalizes the k-Dominating Set
problem. In fact, k-Set Cover can be equivalently viewed as a bichromatic version of k-Dominating
Set (also known as Red-Blue Dominating Set): Define a 2-partite graph G = (S ∪ U,E) where for
any Si ∈ S, u ∈ U , we have {Si, u} ∈ E if and only if u ∈ Si. Then the task is to determine a set
of k vertices S1, . . . , Sk chosen from S such that S1, . . . , Sk dominate all vertices in U .

Pătraşcu and Williams observe that their nk−o(1) conditional lower bounds for k-Dominating
Set extends to k-Set Cover. In fact, it is not difficult to see (and implicit in [32]) that the reduction
for k-Dominating Set can be slightly simplified to establish hardness of k-Set Cover already for
all k ≥ 2 (rather than k ≥ 3). Moreover, the hardness reduction produces sparse instances for
which

∑n
i=1 |Si| = O(n). Thus, our results in Section 1.1 separate k-Set Cover (the bichromatic

2Specifically, allowing an arbitrary number of relations of arbitrary constant arity, not just a single edge relation.
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variant) from k-Dominating Set (the monochromatic variant), as the effect of sparsity differs for
both problems. This leads to the natural question whether monochromatic versions are always
easier to solve on sparse graphs than on general graphs.

Monochromatic Basic Problems. To address this question in some generality, we perform
a comprehensive study on the monochromatic basic problems, i.e., the canonical monochromatic
versions of the basic problems of FOP. Our monochromatic basic problems have the form:

∃ pairwise distinct v1, . . . , vk ∈ V ∀w ∈ V : ℓ1 ∨ · · · ∨ ℓk,
where each literal ℓi is of the form E(vi, w) or E(vi, w)

Note that here we introduce as additional requirement that the existentially quantified variables
v1, . . . , vk are pairwise distinct. For monochromatic properties, this requirement is indeed the usu-
ally intended meaning – otherwise, most of the basic problems become trivial.3 Our monochromatic
basic graph problems (of order k) contain several natural examples:

• k-Dominating Set: Is there a subset of k vertices dominating all vertices?

• Neighborhood Containment: Are there distinct v1, v2 ∈ V such that N(v1) ⊆ N(v2)?

• Neighborhood (k − 1)-Covering: Is there a vertex whose neighborhood can be covered by the
neighbors of k − 1 other vertices?

• k-Empty-Neighborhood-Intersection: Are there k vertices that have no common neighbor?

• (k − 1)-Common Neighborhood: Is there a vertex whose neighbors are common neighbors of
k − 1 other vertices?

Although the (multichromatic) basic problems are all fine-grained equivalent (by being FOPk-
complete), we show that among the monochromatic basic problems, k-Dominating Set is surpris-
ingly different:

Theorem 1.4 (Basic Problems Lower Bound). Let k ≥ 2 and ϵ > 0. If any of the monochromatic
basic problems except k-Dominating Set can be solved in time O(nk−ϵ) on graphs with n1+o(1) edges,
then the k-OV Hypothesis is false.

This establishes that k-Dominating Set is the only monochromatic basic problem that becomes
easier on sparse graphs, answering our driving Question 2.

Interestingly, this result also shows the fine-grained equivalence of almost all basic problems
to their monochromatic versions – proving such multichromatic-to-monochromatic reductions for
simpler first-order properties, such as detection of certain patterns of size k, would contradict
established hardness assumptions in fine-grained complexity theory. As a case in point, one can
show that the 4-chromatic version of 4-cycle detection conditionally requires nω−o(1) time under
the triangle detection hypothesis, while the monochromatic version of 4-cycle detection is solvable
in time O(n2) [36].

Special Cases: Reflexivity vs. Irreflexivity. We highlight an additional reason why Theo-
rem 1.4 appears surprising, as it does not hold for the special case of reflexive properties. Specif-
ically, our definition of monochromatic basic properties allows for the existence of self-loops, i.e.,
E(v, v) with v ∈ V , to be specified individually for each v ∈ V , as part of the input. It may be

3Specifically, whenever the basic problem contains both a positive disjunct E(vi, v) and a negative disjunct E(vj , v),
the property is trivially satisfied by choosing vi = vj .
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reasonable to either disallow self-loops (i.e., require E(v, v) for all v ∈ V ; we call this the irreflexive
case) or enforce self-loops (i.e., require E(v, v) for all v ∈ V ; we call this the reflexive case). The
reflexive special case generally expresses problems over closed neighborhoods and the irreflexive
special case expresses problems over open neighborhoods.

Our proof of Theorem 1.4 establishes the same hardness for sparse graphs in the irreflexive
case. For the reflexive case, however, it turns out that there exists an additional basic problem for
which nk±o(1) time can be broken for sparse graphs: Closed Neighborhood (k−1)-Covering. In this
problem the task is to detect distinct v1, . . . , vk vertices such that the closed neighborhood of v1 is
covered by the closed neighborhoods of v2, . . . , vk, i.e., N [v1] ⊆ N [v2] ∪ · · · ∪N [vk]. We design an

algorithm running in time m
2ω
ω+1nk−2 ≤ O(m1.41nk−2). This beats running time nk±o(1) whenever

m ≤ n1+
1
ω
−o(1) (the exponent is roughly 1.42 under the current value of ω). To our surprise, we

further establish that in the reflexive case, k-Dominating Set and Closed Neighborhood (k − 1)-
Covering are the only monochromatic basic problems that are influenced by sparsity.

Distance-r Domination. A popular generalization of k-Dominating Set is the Distance-r k-
Dominating Set problem, see, e.g., [18, 28, 14]. In this variant, a vertex v is dominated by S ⊆ V ,
if there exists some s ∈ S with distance at most r from v. In Section 5, we show that Distance-r
k-Dominating Set is affected by sparsity if and only if r = 1: For r = 1, we obtain the usual
k-Dominating Set problem with the complexity mnk−2 established in Section 1.1 if ω = 2. For any
r ≥ 2, we prove a hardness of nk−o(1) under SETH already in sparse graphs, which is tight for all
k ≥ 2 if ω = 2.

Related Work. Investigating the fine-grained complexity of classes of first-order definable prob-
lems has recently gained traction, see, e.g., [35, 21, 8, 6, 7, 5].

Establishing hardness results for monochromatic settings generally appears to be technically
challenging: For additive problems, specifically 3-Linear Degeneracy Testing, [17] exploit involved
constructions from additive combinatorics (k-sum-free sets) to establish the equivalence of monochro-
matic and multichromatic variants. Another example is the geometric setting of Closest Pair in the
Euclidean Metric, for which a fine-grained equivalence between the bichromatic and monochromatic
case could be shown [27].

1.3 Technical Overview

We give an outline of our most interesting technical ideas. Specifically, we sketch the algorithmic
improvements for k-Dominating Set for small values of k, as well as our general reduction from
multichromatic basic properties except k-Dominating Set to their monochromatic versions. All
further contributions are detailed in their respective technical sections.

Algorithmic Contributions for k-Dominating Set. To exploit sparsity for k-Dominating
Set, the first crucial observation is that in any k-dominating set {v1, . . . , vk} there must exist a
node vi of degree at least n/k − 1. Let H denote the set of such nodes; we clearly have that
|H| ≤ 2m

(n/k−1) = O(m/n). Thus, we may restrict our search for a dominating set to the search

space H × V k−1 of size O(mnk−2).
However, naively testing each set in H × V k−1 still requires an overhead of O(n) per candidate

solution. In this way we cannot beat running time nk±o(1), so we have to be more careful. It is
only natural to try to adapt the approach of Eisenbrand and Grandoni [19]. Let us consider the
case of k = 2: For any sets S, T ⊆ V , we denote by AS,T the adjacency matrix of G restricted to
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S × T (i.e., AS,T is the 0-1 matrix whose rows are indexed by S, whose columns are indexed by T ,
and whose entries are defined by AS,T [s, t] = 1 iff {s, t} ∈ E or s = t). Furthermore, let A denote
the complement of A. Then it holds that

(AH,V ·AV,V )[v1, v2] = 0 iff N [v1] ∪N [v2] = V,

i.e., v1, v2 form a 2-dominating set. This reduces 2-dominating set to the multiplication of a
rectangular O(m/n)× n matrix AH,V with a square n× n matrix AV,V .

Since already the input size for this matrix product is of size Θ(n2), this approach again can-
not directly achieve a m1+o(1)-time algorithm. To avoid this, one might hope to use techniques
for sparse matrix multiplication (see, e.g.,[3, 37]), since the adjacency matrix of a sparse graph
has O(m) nonzeroes. However, the non-adjacency matrix of a sparse graph as required here nec-
essarily has Θ(n2) nonzeroes. Fortunately, we can still formulate the problem as a sparse matrix
multiplication: Specifically, we have

(AH,V ·AV,V )[v1, v2] = deg(v1) iff N [v1] ∪N [v2] = V, (1)

where deg(v) = n−deg(v) denotes the number of nonzeroes of the row corresponding to v in AH,V .
Note that the number of nonzeroes of AH,V (as an O(m/n) × n matrix) and AV,V (as adjacency
matrix of an m-edge graph) is O(m). Using sparse matrix multiplication/triangle counting, we

can solve this problem in time O(m
ω

2ω+1 ) [3]. Still, this does not yield linear-time complexity
even if ω = 2 – in particular, current sparse matrix multiplication techniques fail to beat n2±o(1)

running time even for multiplying a
√
n×n matrix with a sparse n×n matrix containing O(n

√
n)

nonzeroes [4].
Our crucial contribution is that, perhaps surprisingly, we can compute the special case out-

lined by (1) faster than computing the full matrix product B := AH,V · AV,V . To this end, we
partition V into logarithmically many groups Vi (0 ≤ i ≤ ⌊log n⌋) consisting of all nodes with
degree in [2i, 2i+1). For each v2 ∈ Vi, we observe that it can only form a 2-dominating set with
some v1 ∈ H if deg(v1) ≤ deg(v2) < 2i+1. This simple observation allows us to employ a Bloom-
filter-like approach: Let Hi denote set of nodes v1 ∈ H with deg(v1) ≤ 2i+1. We construct hash
functions h1, . . . , hL : V → [O(2i)] with L = O(log n) to reduce the inner dimension of the matrix
multiplication AHi,V ·AV,Vi to size L ·O(2i), such that with high probability, any entry in the result
matrix corresponding to v1 ∈ H, v2 ∈ Vi is equal to the number of nonzeroes in v1’s row if and only
if v1, v2 are a 2-dominating set. That this is possible is due to the special structure of (1) (and
would fail for more general decision problems for sparse matrix products). In total, we perform
O(log n) multiplications – namely, for each 0 ≤ i ≤ ⌊log n⌋, we multiply a O(m/n) × Õ(2i) by a
Õ(2i)×min{m

2i
, n} matrix. This can be shown to take time mω/2+o(1). In particular, this algorithm

runs in almost-linear time m1+o(1) if ω = 2. We give all details in Section 3.

Hardness for Monochromatic Properties. Recall that for the class of k-Dominating Set-like
problems, the monochromatic basic problems, we prove that any problem other than k-Dominating
Set conditionally requires time nk−o(1). For the sketch of this proof, let us consider as a simple ex-
emplary property, the Neighborhood Containment problem: ∃distinct v1, v2 ∈ V : N(v1) ⊆ N(v2).
Already for this simple problem, we face many technical challenges.

As for all monochromatic basic problems, there is a known hardness reduction (from the k-
OV problem) to its multichromatic variant ∃v1 ∈ V1∃v2 ∈ V2∀w ∈ W : E(v1, w) ⇒ E(v2, w).
A natural attempt would be to add auxiliary vertices VA that enforce any solution (v1, v2) with
N(v1) ⊆ N(v2) to be chosen from V1 × V2. However, great care has to be taken for these auxiliary
vertices: any node in VA could be chosen itself as v1 or v2. Furthermore, if any node in V1 is
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connected to some auxiliary node z ∈ VA, then all nodes in V2 need to be connected to z. To keep
the whole instance sparse, this requires adding only a very small number of auxiliary nodes with
carefully chosen connections. The situation gets more intricate for more complicated properties
such as ∃ pairwise distinct x1, . . . , x4 ∈ V : N(v1)∩N(v2) ⊆ N(v3)∪N(v4), where no two auxiliary
nodes z1, z2 may have disjoint neighborhoods, since otherwise we could set v1 = z1, v2 = z2 and
get a trivial solution with any v3, v4. For proving hardness, this shows that no gadget can act fully
locally, but must take into account the full graph.

To nevertheless prove hardness for all monochromatic properties except k-Dominating Set, we
proceed via an intermediate step of bichromatic properties. For any ∃k∀-quantified first-order
property ϕ, we distinguish between its multichromatic, bichromatic and monochromatic versions
defined as follows:

• Multichromatic: ∃v1 ∈ V1 . . . ∃vk ∈ Vk ∀w ∈W ϕ(v1, . . . , vk, w).

• Bichromatic: ∃ pairwise distinct x1, . . . , xk ∈ X ∀y ∈ Y ϕ(x1, . . . , xk, y).

• Monochromatic: ∃ pairwise distinct v1, . . . , vk ∈ V ∀v ∈ V ϕ(v1, . . . , vk, v).

Step 1: From Multichromatic to Bichromatic. The first step is to reduce a multichro-
matic problem to its bichromatic version: We show how to construct, for any subset S ⊆ X, a
solution-excluding gadget YS (with corresponding edges) such that no choice of pairwise distinct
vertices x1, . . . , xk ∈ S can satisfy ∀y ∈ YS : ϕ(x1, . . . , xk, y). Let us call a variable xi a positive
variable if E(xi, y) occurs in ϕ and a negative variable if E(xi, y) occurs in ϕ. Furthermore, let ϕ(x)
be a unique identifier for x ∈ S consisting of O(log n) bits. The main idea is that for every pair of
a positive variable xs and a negative variable xj we can find a bit position i

(s)
j ∈ [O(log n)] where

their identifiers ϕ(xs) and ϕ(xj) differ. For every guess of such bit positions and the corresponding

bit values ϕ(xj)[i
(s)
j ], we introduce a corresponding node in YS and connect it in such a way to S

such that for every choice of pairwise distinct x1, . . . , xk, the node for the correct guess is adjacent
to all negative variables and non-adjacent to all positive variables. The number of nodes in YS is
at most O(logk n) = Õ(1).

Equipped with this tool, we can create a bichromatic instance as follows: We setX = V1∪· · ·∪Vk.
To obtain Y , we start withW , and include, for each subset Si = X \Vi, i ∈ [k], a solution-excluding
gadget YSi with possibly additional edges to Vi, enforcing that the only way to satisfy all nodes
in YSi is to pick xi ∈ Vi.

Step 2: From Bichromatic to Monochromatic. It remains to reduce the bichromatic to the
monochromatic version, at least for the case that Y is of size Õ(1); note that the reduction from k-
OV to the bichromatic setting as sketched above indeed maintains |Y | = Õ(1), so this is sufficient for
our purposes. Interestingly, there is a rather simple randomized reduction based on the probabilistic
method, and a technically more interesting derandomization. (This is a common phenomenon for
fine-grained reductions involving coding-theory-like gadgets.) We proceed as follows: Given a
bichromatic instance G = (X ∪ Y,E) with Y = {y1, . . . , yM}, we aim to construct an equivalent
monochromatic instance G′ = (V ′, E′). By a (partial) solution P , we understand a choice for (a
subset of) the variables v1, . . . , vk (formally, it would be a mapping {v1, . . . , vk} → V ∪ {∗}, where
∗ denotes an unspecified variable – by abuse of notation, we view it as a subset P ⊆ V , which hides
that we need to distinguish between positive and negative variables). We say that P satisfies v ∈ V
if ϕ(v1, . . . , vk, v) is satisfied by at least one of the assigned variables in P .
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The idea is to construct a graph H withMf(k) = Õ(1) nodes such that (1) each node v ∈ V (H)
receives a label λ(v) ∈ {1, . . . ,M}, and (2) for any solution P of size k and every node label
i ∈ {1, . . . ,M}, there exists a node v ∈ V (H) \ P with λ(v) = i that is not satisfied by P ∩ V (H).

Equipped with such an object, we can construct G′ by setting V ′ = X ∪ V (H) and adding
an edge (1) between x ∈ X and v ∈ V (H) iff x and yλ(v) were adjacent in G, and (2) between
v, v′ ∈ V (H) iff v and v′ were adjacent in H. Note that there are no edges within X.

We claim that any satisfying solution x1, . . . , xk in G yields a corresponding solution x1, . . . , xk
in G′: Since ϕ has at least one negative literal, we have that ϕ(x1, . . . , xk, x) is satisfied for every
x ∈ X.4 We claim that also ϕ(x1, . . . , xk, v) is satisfied for all v ∈ V (H), since ϕ(x1, . . . , xk, vλ(v))
is satisfied in G.

Conversely, we claim that if G has no satisfying solution, then also G′ has no satisfying solution.
Consider any solution P in G′. Since G has no satisfying solution, the partial solution X ∩P must
leave at least some vertex vi ∈ Y in G unsatisfied. By construction of H, there exists some node
ṽ ∈ V (H) \ P with label i such that P ∩ V (H) does not yet satisfy ṽ. However, ṽ also cannot be
satisfied by P ∩X by definition of i. Thus, ṽ is left unsatisfied by the full solution P .

Constructing the graph H via a randomized algorithm is not too difficult using the probabilistic
method. However, we are even able to give an explicit, deterministic construction: The rough
idea is to identify the nodes of H with polynomials of degree d over the finite field of size p,
for suitably chosen p, d. Any such polynomial f can be equivalently viewed by its evaluations
(f(1), f(2), . . . , f(d+1)). We will use appropriate parameters L < d < R (specifically, L = d−k and
R = d+dk+1) and identify (f(1), . . . , f(L)) with the label λ(f) and define an edge between f and g
iff there exists some L < x ≤ R such that f(x) = g(x). Now for any degree-d polynomials a1, . . . , ak
and b1, . . . , bk, and any label (ℓ1, . . . , ℓL), we can prove existence of some degree-d polynomial f
with f(i) = ℓi for all i ∈ [L], as well as {f, aj} ∈ E for all j ∈ [k] and {f, bj} /∈ E for all j ∈ [k].
To do this, one must find (d+ 1)− L additional evaluations for f such that for each j ∈ [k] there
exists some L < x ≤ R such that f(x) = aj(x) while at the same time for each j ∈ [k], we have
f(x) ̸= bj(x) for all L < x ≤ R. We give all details in Section 4.

2 Preliminaries

Let n be a positive integer. We denote by [n] the set {1, . . . , n}. If S is an n-element set and
0 ≤ k ≤ n is an integer, then

(
S
k

)
denotes the set of all k-element subsets of S. We denote by P(S)

the power set of S.
We use Õ notation, which hides the poly-logarithmic factors. In other words, f(n) ∈ Õ(g(n))

if and only if there exists a k ∈ O(1) such that f(n) ∈ O(g(n) · logk(n)).
Let ω < 2.3729 [2] denote the optimal exponent of multiplying two n×n matrices and ω(a, b, c)

denote the optimal exponent for multiplying an na × nb matrix by an nb × nc matrix.
Let G be a graph and X ⊆ V (G). Then we denote by G[X] the subgraph of G induced by X.

If G,H are isomorphic, we write G ∼= H. For any vertex v ∈ V (G), the neighbourhood of v is the
set of vertices adjacent to v, denoted N(v). The closed neighbourhood of v, denoted N [v] is defined
as N [v] := N(v) ∪ {v}. The degree of v denotes the size of its neighbourhood (deg(v) = |N(v)|).
For any two vertices u, v ∈ V (G), we denote by dG(u, v) the length of the shortest path between u
and v in G.

Hypotheses. Consider the k-Orthogonal Vectors problem (k-OV) that is stated as follows. Given
k setsA1, . . . , Ak of d-dimensional binary vectors, decide whether there exist vectors a1 ∈ A1, . . . , ak ∈

4This is the argument that crucially fails for the k-dominating set property.
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Ak such that for all t ∈ [d], it holds that
∏k

i=1 ai[t] = 0. A simple brute force approach solves the
k-OV in time O(d ·

∏
i∈[k] |Ai|).

On the other hand, it is well known that an algorithm solving k-OV with |A1| = · · · = |Ak| = n
and d = log2 n in time O(nk−ε) would refute SETH5, which follows by combining a split-and-list
reduction [32] with the sparsification lemma [23], see [33] for details. This conjecture is known as
(low-dimensional) k-OV Hypothesis. For the purpose of this paper, we consider a more general
formulation where we allow the sets to be of different sizes and hence state the k-OVH as follows.

Conjecture 2.1 (k-OVH). For no ε > 0 and for no 0 ≤ γ1, . . . , γk ≤ 1 is there an algorithm

solving k-OV with |A1| = nγ1 , . . . , |Ak| = nγk , d = log2 n in time O(n(
∑k

i=1 γi)−ε).

We refer to the setting of k-OVH with γ1 = · · · = γk = 1 as balanced k-OVH.
These two hypotheses are known to be equivalent (see [9, Lemma II.1] for a proof for k = 2).

Below we give a proof for general k.

Lemma 2.2. Balanced k-OVH and k-OVH are equivalent.

Proof. k-OVH implies balanced k-OVH trivially. Conversely, we show that refuting k-OVH refutes
the balanced k-OVH. To this end, assume that for some 0 ≤ γ1, . . . , γk ≤ 1 there exists an algorithm

A solving the k-OV with |A1| = nγ1 , . . . , |Ak| = nγk in time O(n(
∑k

i=1 γi)−ε).
Then given an instance of balanced k-OV with |A1| = · · · = |Ak| = n, we can partition each

of the sets Ai into s := ⌈n1−γi⌉ subsets A1
i , . . . , A

s
i and run the algorithm A on each combination

of subsets and return true if for at least one instance the algorithm A returns true and false
otherwise. Clearly, this yields a correct algorithm for the balanced k-OV and it runs in time

O(n1−γ1 · · ·n1−γk · n(
∑k

i=1 γi)−ε) = O(nk−ε).

3 Algorithms and Hardness of k-Dominating Set

In this section we provide our algorithms and conditional hardness results for the k-Dominating Set
problem. We start by recalling the baseline algorithm (Proposition 1.1) in Section 3.1. Then, in
Section 3.2 we develop our improved algorithm for the 2-Dominating Set problem in sparse graphs,
and in Section 3.3 we strengthen the conditional lower bounds for k-Dominating Set to match our
algorithms.

3.1 The Baseline Algorithm

For the baseline algorithm (and also for our later improvements) we rely on the following simple
observation:

Observation 3.1. Given a graph G, let S = {v1, . . . , vk} be a dominating set of G. Then, there
exists 1 ≤ i ≤ k, such that deg(vi) ≥ n

k − 1.

We call any such vertex v ∈ V (G) with deg(v) ≥ n
k − 1 a high-degree vertex. Observe that in

any graph G with n vertices and m edges, there are at most O(mn ) high-degree vertices (assuming k
is a fixed constant). For the rest of this section, let G denote a graph with n vertices and m = nγ

edges for some 1 ≤ γ ≤ 2 and let H ⊆ V denote the set of high-degree vertices.

Proposition 1.1 (k-Dominating Set Baseline). Let k ≥ 2 and 1 ≤ γ ≤ 2. The k-Dominating Set on
graphs with n nodes and m = Θ(nγ) edges can be solved in time nω+o(1) + nω(⌈

k−1
2

⌉,1,⌊ k−1
2

⌋+γ−1)+o(1).
If ω = 2, this running time becomes n2+o(1) +mnk−2+o(1).

5d = log2 n can be replaced by any d = ω(logn).
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Proof. Let S ⊆ P(V ) and denote by BS the binary matrix whose rows are indexed by S and whose
columns are indexed by V and the entry BS [S, v] = 1 if and only if S dominates v (i.e., v ∈ S or
there exists s ∈ S, such that {s, v} ∈ E). Similarly, for T ⊆ P(V ) let CT denote the matrix whose
rows are indexed by V and whose columns are indexed by T and the entry CT [v, T ] = 1 if and only
if T dominates v. Clearly, we have (BS · CT )[S, T ] = 0 if and only if S ∪ T dominate G.

Let H ⊆ V be the set of all high degree vertices and let S and T be defined as follows:

S =

(
V

⌈k−1
2 ⌉

)
, T =

{
T ∈

(
V

⌊k−1
2 ⌋+ 1

)
| T ∩H ̸= ∅

}
.

Recall that any k-dominating set S∗ contains at least one high-degree vertex (Observation 3.1). We
can therefore partition S∗ into two subsets S∗ = S∪T , where S has size ⌈k−1

2 ⌉, T has size ⌊k−1
2 ⌋+ 1

and T contains the high-degree vertex. It follows that the graph contains a k-dominating set if and
only if the matrix product BS · CT contains a zero entry.

It remains to analyze the running time of computing this matrix product. Observe that

|S| = O(n⌈
k−1
2

⌉), |T | = O
(m
n

· n⌊
k−1
2

⌋
)
= O(nγ−1+⌊ k−1

2
⌋).

Thus, BS is an O(n⌈
k−1
2

⌉) × n matrix and CT is an n × O(nγ−1+⌊ k−1
2

⌋) matrices, and computing

their product takes time O(nω+o(1) + nω(⌈
k−1
2

⌉,1,⌊ k−1
2

⌋+γ−1)+o(1)) as claimed.

3.2 A Faster Algorithm for 2-Dominating Set

In this section we design our improved algorithm for the 2-Dominating Set for sparse graphs.
Specifically, our goal is to prove the following theorem:6

Theorem 1.3 (2-Dominating Set Algorithm). There is a randomized algorithm solving 2-Dominating
Set in time mω/2+o(1).

Our strategy is to phrase our 2-Dominating Set algorithm as an algorithmic reduction to the
following intermediate problem:

Definition 3.2 (Max-Entry Matrix Product). Consider 0-1-matrices B of size O(mn ) × n and C
of size n × n, where C contains at most m nonzeros. The Max-Entry Matrix Product problem is
to decide whether there exist i, j such that

(B · C)[i, j] =
∑
k

B[i, k] · C[k, j] =
∑
k

B[i, k].

We remark that, when viewing B and C as the bi-adjacency lists of a tripartite graph, the Max-
Entry Matrix Product problem asks whether there is a pair i, j of outer vertices such that every edge
from i can be extended to a 2-path to j. Another equivalent formulation is in terms of the Subset
Query problem: Given families S, T of subsets of some universe [U ], the goal is to test whether
there exist sets S ∈ S and T ∈ T such that S ⊆ T . The Max-Entry Matrix Product problem
is exactly the special case of Subset Query where U = n, |S| = O(mn ) and

∑
T∈T |T | = O(m).

While the (unrestricted) Subset Query problem has been studied in previous works [21, 11], we
decided to stick to the matrix version from Definition 3.2 which is more in line with our view on
the k-dominating set problem as explained in the overview.

6By employing the state-of-the-art fast rectangular matrix multiplication techniques (e.g. [20]), a more fine-grained
analysis of the algorithm reveals that we can achieve even slightly better running time in very sparse graphs.
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The Max-Entry Matrix Product problem can naively be solved in time O(m · m
n ) (enumerate

an index i and a nonzero entry C[k, j]) and in time MM(mn , n, n) by fast matrix multiplication. As
we will prove later, by a more elaborate algorithm the Max-Entry Matrix Product problem can be
solved in time mω/2+o(1).

Before, the first step towards our algorithm is to reduce 2-Dominating Set on sparse graphs to
Max-Entry Matrix Product. The reduction is somewhat similar to the baseline algorithm in the
previous section.

Lemma 3.3 (2-Dominating Set to Max-Entry Matrix Product). If the Max-Entry Matrix Product
problem can be solved in time T (n,m), then the 2-Dominating Set problem can be solved in time
O(T (n,m)).

Proof. Let G = (V,E) be a given 2-Dominating Set instance. Let A be the adjacency matrix
of G, where we understand that A[i, i] = 1 for all i. Moreover, let H ⊆ V denote the subset
of high-degree vertices (with degree at least n

2 − 1), and let AH,V denote the complement of the
adjacency matrix restricted to H × V . We claim that {u, v} is a 2-dominating set of G if and only
if (AH,V ·A)[u, v] = degG(u).

Indeed, note that (AH,V ·A)[u, v] =
∑

w∈V AH,V [u,w] ·A[w, v] counts the number of vertices w
that are not dominated by u, but are dominated by v. Furthermore, u ∈ H and v ∈ V form a
2-dominating set if and only if every node w that is not dominated by u is dominated by v. Since
there are precisely degG(u) nodes that are non-dominated by u, we conclude that u and v form a
2-dominating set if and only if (AH,V ·A)[u, v] = degG(u) =

∑
w AH,V [u,w].

Picking B = AH,V (which has size O(mn )×n) and C = A (which has size n×n and is m-sparse),
we have therefore successfully reduced to an instance of Max-Entry Matrix Product. Constructing
these matrices runs in linear time and is therefore negligible.

We proceed to the core of our algorithm.

Lemma 3.4 (Max-Entry Matrix Product to Rectangular Matrix Multiplication). There is a ran-
domized algorithm solving Max-Entry Matrix Product in time

Õ
(

max
1≤d≤n

MM
(m
n
, d, min

{
n,
m

d

}))
.

Proof. For an index j, the degree
∑

k C[k, j] denotes the number of nonzero entries C[k, j]. As a first
step, we will split C column-wise into L = ⌊log n⌋many submatrices C0, . . . , CL such that all degrees
in Cℓ are in the range [2ℓ, 2ℓ+1). Each such submatrix still has size at most n× n, and contains at
most m nonzero entries. Even better: Since each column in Cℓ contains at least 2

ℓ nonzero entries,
there can be at most m

2ℓ
columns in Cℓ, and thus Cℓ has size at most n×min{n, m

2ℓ
}. For the rest

of the proof, fix any 0 ≤ ℓ ≤ L; we solve the Max-Entry Matrix Product problem on (B,Cℓ) (for
simplicity we will often omit the subscript from Cℓ).

Our goal is to reduce Max-Entry Matrix Product to a regular matrix product. Unfortunately,
while the outer dimensions are comparably small (mn and min{n, m

2ℓ
}), the inner dimension can be

as large as n. The key idea is to apply a Bloom-filter-like construction to also compress the inner
dimension. To this end, sample a uniformly random hash function h : [n] → [2ℓ+2] and consider
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the matrices B′ (of size O(mn )× 2ℓ+2) and C ′ (of size 2ℓ+2 ×min{n, m
2ℓ
}) defined by

B′[i, k′] =
∨

k∈[n]
h(k)=k′

B[i, k],

C ′[k′, j] =
∨

k∈[n]
h(k)=k′

C[k, j].

We claim that these matrices preserve solutions in the following sense:

Claim 3.5. If (B · C)[i, j] =
∑

k B[i, k], then (B′ · C ′)[i, j] =
∑

k′ B
′[i, k′].

Proof. Assume that (B ·C)[i, j] =
∑

k B[i, k]·C[k, j] =
∑

k B[i, k], and take any k′ with B′[i, k′] = 1.
By construction, there is some k ∈ [n] with h(k) = k′ and B[i, k] = 1. Our initial assumption implies
that also C[k, j] = 1. But then our construction assigns C ′[k′, j] = 1. Since k′ was arbitrary, it
follows that indeed (B′ · C ′)[i, j] =

∑
k′ B

′[i, k′] · C[k′, j] =
∑

k′ B[i, k′].

Claim 3.6. If (B ·C)[i, j] <
∑

k B[i, k], then (B′ ·C ′)[i, j] <
∑

k′ B
′[i, k′] with probability at least 1

2 .

Proof. From the assumption that (B ·C)[i, j] <
∑

k B[i, k], it follows that there is some k∗ ∈ [n] with
B[i, k∗] = 1 and C[k∗, j] = 0. We claim that with probability at least 1

2 , there is no index k ̸= k∗

such that h(k) = h(k∗) and C[k, j] = 1. Indeed, for any fixed k ̸= k∗ the event h(k) = h(k∗)
happens with probability at most 1

2ℓ+2 . Moreover, in the j-th row of C there are at most 2ℓ+1

nonzero entries C[k, j], thus by a union bound the error probability is bounded by 2ℓ+1

2ℓ+2 = 1
2 .

This suggests the following algorithm: Repeat, for R = 100 log n iterations, the construction
of B′ and C ′ (with fresh randomness). We solve the Max-Entry Matrix Product problem on (B′, C ′)
using fast matrix multiplication. If there is a pair (i, j) such that across all repetitions we have
(B′ · C ′)[i, j] =

∑
k′ B

′[i, k′], then we report “yes”. Otherwise, we report “no”. By Claim 3.5, we
will always correctly report “yes” instances. In a “no” instance, the probability that we mistakenly
report “yes” due to some false positive (i, j) is bounded by 2−R ≤ n−100 by Claim 3.6. Taking a
union bound over the at most n2 pairs, the total error probability is at most n−98.

Let us finally consider the running time. For a fixed ℓ, we compute O(log n) matrix products of
size O(mn )× 2ℓ+1 ×min{n, m

2ℓ
}. This takes time Õ(MM(mn , 2

ℓ,min{n, m
2ℓ
})). It takes linear time to

construct the matrices B′ and C ′, respectively, and this overhead is negligible in the running time.
Summing over the log n levels 0 ≤ ℓ ≤ L = ⌊log n⌋, the total time is

⌊logn⌋∑
ℓ=0

Õ
(
MM

(m
n
, 2ℓ,min

{
n,
m

2ℓ

}))
= max

1≤d≤n
Õ
(
MM

(m
n
, d,min

{
n,
m

d

}))
,

which is as claimed.

This completes the description of the Max-Entry Matrix Product algorithm; however, it remains
to carefully analyze the complicated running time expression:

Corollary 3.7 (Max-Entry Matrix Product). There is a randomized algorithm solving Max-Entry
Matrix Product in time mω/2+o(1).
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Proof. We use the algorithm from Lemma 3.4. It runs in time Õ(max1≤d≤n T (n,m, d)) where

T (n,m, d) = MM
(m
n
, d, min

{
n,
m

d

})
,

and it remains to bound T (n,m, d) ≤ m
ω
2
+o(1) for any choice of 1 ≤ d ≤ n. Throughout this proof,

we will only use that MM(N,N,N) ≤ Nω+o(1) (by fast square matrix multiplication) and that
trivially MM(N1 ·N ′

1, N2, N3) = O(N ′
1) ·MM(N1, N2, N3) (similarly for N2 and N3). We distinguish

the following three cases, each of which can be proved by a calculation:

• Case 1: n ≤ m
d :

T (n,m, d) ≤ MM(mn ,
m
n , n) (d ≤ m

n )

≤ O(n
2

m ) ·MM(mn ,
m
n ,

m
n ) (n2 ≥ m)

≤ O(n
2

m ) · (mn )
ω+o(1)

≤ mω−1+o(1)

nω−2

≤ mω/2+o(1). (n2 ≥ m)

• Case 2: n ≥ m
d and d ≤ m

d :

T (n,m, d) ≤ MM(d, d, md ) (n ≥ m
d )

≤ O(m
d2
) ·MM(d, d, d) (d ≤ m

d )

≤ O(m
d2
) · dω+o(1)

≤ m · dω−2+o(1)

≤ m ·
√
m

ω−2+o(1)
(d ≤ m

d )

≤ mω/2+o(1).

• Case 3: n ≥ m
d and d ≥ m

d :

T (n,m, d) ≤ MM(md , d,
m
d ) (d ≤ n, n ≥ m

d )

≤ O(d
2

m ) ·MM(md ,
m
d ,

m
d ) (d ≥ m

d )

≤ O(d
2

m ) · (md )
ω+o(1)

≤ mω−1+o(1)

dω−2

≤ mω−1+o(1)
√
m

ω−2 (d ≥ m
d )

≤ mω/2+o(1).

In all three cases, we have successfully bounded the running time by mω/2+o(1). This completes the
proof.

We have assembled all parts of the proof of Theorem 1.3: We combine the reduction from
Lemma 3.3 with the efficient Max-Entry Matrix Product algorithm from Corollary 3.7. It follows
that the 2-Dominating Set problem is in time mω/2+o(1).

Recall that the baseline algorithm (Proposition 1.1) in combination with our 2-Dominating Set
algorithm (Theorem 1.3) prove that for ω = 2, the k-Dominating Set problem can be solved in
time mnk−2+o(1) for all k ≥ 2. In the next section, we complement this upper bound by a matching
conditional lower bound.
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Figure 1: Schematic representation of the graph G as constructed in proof of Theorem 1.2. Bold
edges represent bicliques between the corresponding sets.

3.3 A Matching Conditional Lower Bound

In this section our goal is to prove the following theorem:

Theorem 1.2 (k-Dominating Set Lower Bound). For all k ≥ 3 and ϵ > 0, there is no algorithm
for k-Dominating Set in time O(mnk−2−ϵ), unless the k-OV Hypothesis fails.

The idea is to adapt the reduction by Pătraşcu and Williams [32] to create a sparse instance.
In particular, we reduce from the unbalanced variant of k-OV problem obtained by setting |A1| =
· · · = |Ak−1| = n and |Ak| = nγ−1 for the suitable 1 ≤ γ ≤ 2, and then we use the vertices
corresponding to vectors in Ak to dominate the remaining sets.

Proof. To prove this lower bound, we reduce from k-Orthogonal Vectors problem.
Let A1, . . . , Ak−1 denote sets of d-dimensional (assume d = O(log2 n)) binary vectors of size n

and Ak be a set of d-dimensional binary vectors of size nγ−1 for 1 ≤ γ ≤ 2. We construct a graph
G with Õ(n) vertices and Õ(nγ) edges that has dominating set of size k if and only if we can find
vectors a1 ∈ A1, . . . , ak ∈ Ak such that

∏k
i=1 ai[j] = 0 for every j = 1, . . . , d.

Consider the following construction illustrated in Figure 1. Let V (G) consist of the k vertices
corresponding to sets A1, . . . , Ak, the O(n) vertices corresponding to the vectors, labeled aij ∈ Ai,
and the vertices labeled D1, . . . , Dd, corresponding to the d dimensions. For each 1 ≤ i ≤ k
add all edges between Ai and aij for all j. For all 1 ≤ i ≤ k − 1 add an edge between every

vertex corresponding to a vector contained in Ai (namely all the vertices aij) and all the vertices

corresponding to vectors in Ak Add an edge between the vertices aij and Dt if and only if aij [t] = 0
for all i, j, t.

The graph G clearly has O(n + d) = O(n) vertices and observe that there are O(nγ−1 + d) =
O(nγ−1) vertices with degree at most O(n) (in particular the vertices corresponding to vectors in
aki for all i ∈ [nγ−1], vertices D1, . . . , Dd and the vertices Ai for all i ∈ [k]). All other vertices have
degree at most nγ−1, hence the total number of edges is at most O(n · nγ−1 + dn) = Õ(nγ) and
consequently, the graph G can be constructed in time O(nγd) = Õ(nγ).
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It is now sufficient to argue that G has a dominating set of size k if and only if there exist
vectors a1 ∈ A1, . . . , ak ∈ Ak such that a1[i] · . . . · ak[i] = 0 for every i ∈ [d]. To this end, suppose
first that such vectors exist. Then we show that the vertices corresponding to a1, . . . , ak form a
dominating set.

First observe that the vertex corresponding to ai is adjacent to the vertex Ai, and hence the
vertices A1, . . . , Ak are dominated. Furthermore, since all vertices aij (for 1 ≤ i < k) are adjacent
to all the vertices corresponding to vectors in Ak, clearly all such vertices are dominated by ak and
symmetrically all vertices akj are dominated by e.g. a1.

It is only left to verify that the vertices D1, . . . , Dd are dominated. Consider arbitrary Di. Now,
since a1[i] · · · · · ak[i] = 0, there exists some 1 ≤ j ≤ k, such that aj [i] = 0 and consequently, by
construction of G, aj is adjacent to Di.

Conversely, suppose that G assumes a dominating set S = {s1, . . . , sk} of size k. Consider first
the vertices A1, . . . , Ak. Clearly, their closed neighbourhoods are disjoint, hence each vertex si from
S is contained in N [Ai] (without loss of generality). Furthermore, since {D1, . . . , Dd} ∩S = ∅, and
the vertices Dt are non-adjacent to the vertices A1, . . . , Ak, there exists at least one i ∈ [k], such
that si = aij for some j.

We construct the solution of k orthogonal vectors as follows. For each si such that si = Ai, let
ai be an arbitrary vector from Ai. For the remaining vertices let ai be the vector corresponding
to si. We claim that a1 ∈ A1, . . . , ak ∈ Ak satisfy a1[i] · . . . · ak[i] = 0 for all i ∈ [k]. To see this,
consider an arbitrary i. Observe that Di is dominated by some sj , and in particular sj ̸= Aj . Hence
aj [i] = 0 and the claim follows.

4 Hardness of Monochromatic Basic Problems

In this section, we will prove hardness of all monochromatic basic problems except k-Dominating
Set in sparse graphs. We proceed in three steps: (1) First, we recall hardness established in [21] for
all multichromatic basic problems, which already holds in sparse graphs. (2) We then reduce each
multichromatic basic problem to its bichromatic version (where one of the parts maintains a size
of Õ(1)). (3) Finally, we reduce each such bichromatic problem except bichromatic k-Dominating
Set (i.e., k-Set Cover) to its monochromatic version.

For completeness, we begin with a proof that all Multichromatic Basic Problems are k-OV hard
even in sparse graphs.

Proposition 4.1 (Implicit in [21]). Let Φ be a basic property of order k. Given an instance
A1, . . . , Ak ⊆ {0, 1}d of k-OV, we can construct in time Õ(n) an equivalent instance G = (V1, . . . , Vk,W,E)
of the Multichromatic Basic Problem for Φ with at most Õ(n) edges and |W | = Õ(1).

Proof. Without loss of generality, assume that Φ = E(v1, w) ∨ · · · ∨ E(vℓ, w) ∨ E(vℓ+1, w) ∨ · · · ∨
E(vk, w). We call a vertex vi positive (resp. negative) if Φ contains the literal E(vi, w) (resp.
E(vi, w)). For each dimension i, add a vertex wi to W and let Vi = Ai for all i ∈ [k]. Now for
every vertex v ∈ V1, . . . , Vℓ, add an edge between v and wi if and only if the vector corresponding
to v has i-th entry equal to zero. Similarly, for every vertex v ∈ Vℓ+1, . . . , Vk, add an edge between
v and wi if and only if the vector corresponding to v has i-th entry equal to one.

If A1, . . . , Ak is a yes-instance of k-OV, then we can find vectors a1 ∈ A1, . . . , ak ∈ Ak such
that for any dimension j, some vector ai satisfies ai[j] = 0. We proceed to show that choosing
v1 ∈ V1, . . . , vk ∈ Vk such that vi is the vertex corresponding to ai satisfies Φ. If 1 ≤ i ≤ ℓ, then
Φ contains the literal E(vi, w) and the corresponding vertex vi is by construction adjacent to wj
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satisfying Φ. Otherwise, Φ contains the literal E(vi, w) and the corresponding vertex from vi is
non-adjacent to wj , again satisfying Φ.

On the other hand, if A1, . . . , Ak is a no-instance of k-OV, then for every selection of vectors
a1 ∈ A1, . . . , ak ∈ Ak there exists a dimension j, such that ai[j] = 1. In particular, if we choose
any v1 ∈ V1, . . . , vk ∈ Vk, then considering the corresponding vectors yields a vertex wj ∈ W
that is non-adjacent to all v1, . . . , vℓ and adjacent to all vℓ+1, . . . , vk, thus leaving Φ(v1, . . . , vk, wj)
unsatisfied.

Note that |W | = d = Õ(1). Since every edge in G connects v ∈ Vi with w ∈ W , the total
number of edges is at most O((

∑k
i=1 |Vi|) · |W |) = O(nd) = Õ(n).

4.1 Multichromatic to Bichromatic

In order to prove the hardness of Monochromatic Basic Problems with at least one negative literal
in the sparse graphs, we introduce the intermediate class of Bichromatic Basic Problems defined as
follows. Let k be a fixed constant and for every i ∈ [k], let Li : X ×Y → {0, 1} be either defined as
Li(x, y) = E(x, y), or Li(x, y) = E(x, y). Now all the Bichromatic Basic Problems can be stated in
the following way. Given a bipartite graph G = (X,Y,E) decide if there is a set of pairwise distinct
vertices x1, . . . , xk ∈ X, such that for all y ∈ Y it holds that L1(x1, y) ∨ · · · ∨ Lk(xk, y)?

We proceed to prove that all the Bichromatic Basic Problems are k-OV hard already in sparse
graphs, by reducing from the corresponding Multichromatic Basic Problems. To this end, for
any subset S ⊆ X, we first show how to construct an identifier gadget JS , such that if we add
corresponding edges between S and JS then for every x1, . . . , xk ∈ S there exists y ∈ JS such that
ϕ(x1, . . . , xk, y) is not satisfied. In order to do this, we first need to introduce some tools.

Given a set S with n elements, let ϕ : S → {0, 1}log(n) be an injective function called the
identifier of S. Let x be a binary vector with d dimensions and define

f(x) =
{(
i
(1)
1 , . . . , i

(1)
k , . . . , i

(k)
1 , . . . i

(k)
k

)
,
(
b
(1)
1 , . . . , b

(1)
k , . . . , b

(k)
1 , . . . , b

(k)
k

)
|

k∧
s=1

( k∨
t=1

x[i
(s)
t ] = b

(s)
t

)}
Let S be a set of n elements and let

T =
{(
x, I,B

)
| x ∈ S, (I,B) ∈ f(ϕ(x))

}
For the rest of this section, let S, T, f, ϕ be as above. The following lemma shows that for any
subset S′ consisting of at most 2k elements from S, by labeling at most k distinct elements in
S′ positive and at most k distinct elements in S′ negative (such that no element is labeled both
positive and negative), we can always find the the tuple of corresponding indices I and bits B, such
that (x, I,B) is in T for each positive element x and (y, I, B) is not in T for any negative element
y. This will be a key observation allowing us to build the gadget that has the desired properties.

Lemma 4.2. For every subset {x1, . . . , xk, y1, . . . , yk} ⊆ S, there exist indices I, and bits B such
that (xi, I, B) ∈ T and (yi, I, B) ̸∈ T for all i.

Proof. Intuitively, for any fixed ys, we want to find indices i
(s)
1 , . . . , i

(s)
k and bits b

(s)
1 , . . . , b

(s)
k that

leave the clause
∨k

t=1 ϕ(ys)[i
(s)
t ] = b

(s)
t unsatisfied, and observe that this is sufficient to show that

for arbitrary selection of the remaining indices and bits, (ys, I, B) is not in T . Simultaneously, we

want to make sure that for every xt the clause
∨k

t=1 ϕ(xt)[i
(s)
t ] = b

(s)
t is satisfied, by assuring that

ϕ(xt)[i
(s)
t ] = b

(s)
t for every t. To this end, we exploit the injectiveness of ϕ. In particular, since ϕ is
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injective, we can find an index i
(1)
1 , such that ϕ(x1)[i

(1)
1 ] ̸= ϕ(y1)[i

(1)
1 ]. Similarly, for all 2 ≤ j ≤ k,

find indices i
(1)
2 , . . . , i

(1)
k , such that ϕ(xj)[i

(1)
j ] ̸= ϕ(y1)[i

(1)
j ].

Let b
(1)
t = ϕ(xt)[i

(1)
t ] for all 1 ≤ t ≤ k and observe that for all t ∈ [k], ϕ(y1)[i

(1)
t ] ̸= b

(1)
t , and hence

the formula
∨k

t=1 ϕ(y1)[i
(1)
t ] = b

(1)
t is not satisfied. On the other hand, clearly for any j, the formula∨k

t=1 ϕ(xj)[i
(1)
t ] = b

(1)
t is satisfied since ϕ(xj)[i

(1)
j ] = b

(1)
j . Similarly, for all 2 ≤ s ≤ k, one can find

indices i
(s)
1 , . . . , i

(s)
k , such that ϕ(xj)[i

(s)
j ] ̸= ϕ(ys)[i

(s)
j ] and symmetrically setting b

(s)
t = ϕ(xt)[i

(s)
t ]

leaves the formula
∨k

t=1 ϕ(ys)[i
(s)
t ] = b

(s)
t unsatisfied, while satisfying

∨k
t=1 ϕ(xj)[i

(s)
t ] = b

(s)
t .

Finally, we observe that consequently the formula
∧k

s=1

(∨k
t=1 ϕ(xj)[i

(s)
t ] = b

(s)
t

)
is satisfied for

every j and
∧k

s=1

(∨k
t=1 ϕ(yj)[i

(s)
t ] = b

(s)
t

)
is not satisfied for any j. The desired result follows.

We proceed to use the result from the previous lemma to construct our gadget. In particular,
the vertices in our gadget will correspond to the indices and the bits as above and we will add
an edge between a vertex x from the set S ⊆ X and the vertex (I,B) in the gadget if and only
if (x, I,B) is in T . By the previous lemma, for any selection of at most k positive and at most k
negative vertices, we can find a vertex in the gadget that is adjacent to all negative vertices and
non-adjacent to all positive vertices, thus appending the gadget vertices to the set Y implies that
no complete solution is contained inside S.

Lemma 4.3 (Identifier gadget). Let G = (X,Y,E) be a bipartite graph and k a fixed constant. If
S ⊆ X, then one can add Õ(1) vertices to Y and connect those vertices to S so that for any k
vertices x1, . . . , xk ∈ S and for any k vertices x′1, . . . , x

′
k ∈ X there exists a vertex y ∈ Y such that

y ∈ N(x1) ∩N(x2) ∩ · · · ∩N(xk) and y ̸∈ N(x′1) ∪ · · · ∪N(x′k).

Proof. Let I = [⌈log(|S|)⌉]k2 and let B = {0, 1}k2 . Now define JS := I × B. Observe that

|JS | = O(2k
2
logk

2
n) = Õ(1).

Let Y ′ = Y ∪JS and add edge between x ∈ X and (I,B) ∈ JS if and only if (x, I,B) ∈ T . Now
fix any tuple of vertices x1, . . . , xk ∈ S. By the previous lemma, for any x′1, . . . , x

′
k ∈ S, we can

find a vertex y ∈ JS corresponding to some tuple of indices I and bits B such that y ∈ N(xi) and
y ̸∈ N(x′i) for all i. Observe that since y is adjacent only to the vertices in S, by choosing a vertex
x′i ∈ X \ S, this property remains preserved.

Given a bipartite graph G = (X,Y,E) and a subset S, the set of Õ(1) vertices as described in the
last lemma is called identifier gadget and is denoted by JS . Constructing a graphG

′ = (X,Y ∪JS , E)
from G by adding the edges as described above will be referred to as attaching the identifier gadget
to S. If the identifier JS is attached to S, we schematically represent this by adding a directed
edge from S to JS .

We proceed to give the reduction from any Multichromatic Basic Problem to the corresponding
Bichromatic Basic Problem and then using the result from the beginning of the section, we conclude
that all the Bichromatic Basic Problems are hard under SETH.

Proposition 4.4. Let Φ be any basic property. Given an instance G = (V1, . . . , Vk,W ) of the
Multichromatic Basic Problem corresponding to Φ with O(n) vertices with |W | = Õ(1), we can
construct in time Õ(n) an equivalent instance G′ = (X,Y,E) of the corresponding Bichromatic
Basic Problem with |Y | = Õ(|W |).

Proof. Without loss of generality, assume that Φ = E(v1, w) ∨ · · · ∨ E(vℓ, w) ∨ E(vℓ+1, w) ∨ · · · ∨
E(vk, w) and let ℓ′ := k − ℓ denote the number of negative literals in Φ. Consider the following
construction of the graph G′ = (X,Y,E). For all S′ ⊆ {V1, . . . , Vk} of size k − 1, let S =

⋃
s∈S′ s
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and attach an identifier gadget JS to S. If for some 1 ≤ i ≤ ℓ, Vi ̸∈ S′, add all edges between Vi
and JS . Let X = V1 ∪ · · · ∪Vk and let Y consist of W and all the gadgets JS as constructed above.
This reduction is depicted schematically on Figure 2.

Claim 4.5. If there are vertices x1, . . . , xk ∈ X such that N(xℓ+1) ∩ · · · ∩N(xk) ⊆ N(x1) ∪ · · · ∪
N(xℓ), then each of the sets V1, . . . , Vk contains exactly one of the vertices x1, . . . , xk.

Proof. Assume that for some ℓ+ 1 ≤ i ≤ k the set Vi contains none of the vertices x1, . . . , xk. Ob-
serve that the identifier gadget JX\Vi

is attached to the whole set X except Vi, hence contradicting
Lemma 4.3.

Assume now that for some 1 ≤ i ≤ ℓ, Vi contains none of the vertices x1, . . . , xk. By Lemma
4.3, there exists a vertex v ∈ JX\Vi

adjacent to all xℓ+1, . . . , xk and to no other vertex in X \ Vi.
In particular, it is non-adjacent to xj for any j ∈ [ℓ], yielding a contradiction. Hence, each set Vi
contains at least one vertex and since we are placing k vertices in k sets, the upper bound is also
trivially satisfied.

Claim 4.6. If there are vertices x1, . . . , xk ∈ X such that N(xℓ+1) ∩ · · · ∩N(xk) ⊆ N(x1) ∪ · · · ∪
N(xℓ), then for every 1 ≤ i ≤ ℓ, there is a 1 ≤ j ≤ ℓ such that xi ∈ Vj.

Proof. Assume for contradiction that there exists some index i such that xi ∈ X \
⋃

1≤j≤ℓ Vj . Then
by the pigeonhole principle, there exists a set Vj (for 1 ≤ j ≤ ℓ) that does not contain any of the
vertices x1, . . . , xℓ and by the previous claim, Vj contains xk (without loss of generality).

Consider the identifier gadget JX\Vj
. By construction, every vertex in this gadget is adjacent to

xk. Hence, by the assumption that N(xℓ+1)∩ · · · ∩N(xk) ⊆ N(x1)∪ · · · ∪N(xℓ), it must also hold
that N(xℓ+1) ∩ · · · ∩N(xk−1) ∩ JX\Vj

⊆ N(x1) ∪ · · · ∪N(xℓ), thus contradicting Lemma 4.3.

Now assume V1, . . . , Vk,W is a yes-instance of the multichromatic basic problem. Namely,
we can find v1 ∈ V1, . . . , vk ∈ Vk, such that for every w ∈ W , the formula E(v1, w) ∨ · · · ∨
E(vℓ, w)∨E(vℓ+1, w)∨ · · ·∨E(vk, w) is satisfied. We claim that in G′, for every y ∈ Y , the formula
E(v1, y) ∨ · · · ∨ E(vℓ, y) ∨ E(vℓ+1, y) ∨ · · · ∨ E(vk, y) is satisfied. Let v ∈ Y be arbitrary. If v ∈W ,
then it is trivially satisfied. Consider now v ∈ Y \W . Clearly v ∈ JX\Vi

for some i. If 1 ≤ i ≤ ℓ,
then by construction, all edges between Vi and JX\Vi

are present and in particular v is adjacent to
the positive vertex vi. On the other hand if ℓ+ 1 ≤ i ≤ k, then there are no edges between Vi and
JX\Vi

and in particular v is nonadjacent to the negative vertex vi. In both cases, v is satisfied.
Conversely, assume that there are vertices x1, . . . , xk ∈ X such that for every y in Y the formula

E(x1, y)∨ · · · ∨E(xℓ, y)∨E(xℓ+1, y)∨ · · · ∨E(xk, y) is satisfied. By the two claims above (without
loss of generality), x1 ∈ V1, . . . , xk ∈ Vk. And now it is sufficient to observe that since W ⊆ Y
and every vertex in Y is satisfied by x1, . . . , xk, every vertex in W is also trivially satisfied by
x1, . . . , xk.

The following proposition now follows directly.

Proposition 4.7. Let Φ be a basic property with at least one negative literal. For any ε > 0,
the Bichromatic Basic Problem corresponding to Φ cannot be solved faster than O(nk−ε) even on
graphs with Õ(n) edges, unless SETH fails.

4.2 Bichromatic to Monochromatic

We now proceed to prove the hardness of Monochromatic Basic Problems in sparse graphs with at
least one negative literal in the corresponding basic property by reducing from the corresponding
Bichromatic Problem.
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Figure 2: Schematical representation of the reduction from Multichromatic Basic Problem to
Bichromatic Basic Problem. Blue sets contain positive vertices, red sets contain negative ver-
tices, bold edges represent bicliques between the corresponding sets and directed edge from set Vi
to the identifier gadget JS represents attaching the gadget to the set. The edges from Vi to W are
inherited from the multichromatic instance.

Lemma 4.8. Given any positive integer N and a constant k, there exists a graph G with at most
Õ(N) vertices satisfying the following conditions.

• Every vertex v is labelled by an integer λ(v) ∈ {1, . . . , N}.

• For all a1, . . . , ak, b1, . . . , bk ∈ V (G) and for every i ∈ 1, . . . , N , there exists a vertex x ∈
V (G) \ {a1, . . . , ak, b1, . . . , bk} such that λ(x) = i and x is adjacent to all aj and nonadjacent
to all bj for j ∈ [k].

• We can compute G in deterministic polynomial time in N .

Before proving this lemma, we first show how one can use this result to obtain a reduction from
a sparse Bichromatic Basic Problem to the corresponding Monochromatic Basic Problem.

Proposition 4.9. Let Φ be a basic property with k variables and at least one negative literal. Given
an instance G = (X,Y,E) of the Bichromatic Basic Problem corresponding to Φ with n vertices
and assume Y = Õ(1), we can construct an equivalent instance G′ = (V,E) of the corresponding
Monochromatic Basic Problem in time Õ(n) consisting of at most Õ(n) edges.

Proof. Without loss of generality, assume that Φ = E(x1, y) ∨ · · · ∨ E(xℓ, y) ∨ E(xℓ+1, y) ∨ · · · ∨ E(xk, y),
for some ℓ < k, and let k − ℓ = ℓ′ ≥ 1. Consider the graph G′ constructed as follows.

Let N = |Y | and let H be a graph satisfying the properties of Lemma 4.8. Without loss of
generality, assume that Y = {y1, . . . , yN} and label the vertex yi by i. Let V (G′) = V (H)∪X. Let
H ∼= G[V (H)], and add an edge between x ∈ X and h ∈ H if and only if λ(h) = i and there is an
edge between x and a vertex in Y labeled i in G.

First assume G is a yes-instance of the Bichromatic Basic Problem. Namely, assume that we
can find x1, . . . , xk ∈ X such that for every y ∈ Y , the formula E(x1, y)∨· · ·∨E(xℓ, y)∨E(xℓ+1, y)∨
· · · ∨ E(xk, y) is satisfied. We claim that also ∀v ∈ V (G′), it holds that E(x1, v) ∨ · · · ∨ E(xℓ, v) ∨
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E(xℓ+1, v)∨ · · · ∨E(xk, v). To see this assume first that v ∈ X. Since there are no edges inside X,
clearly each vertex is nonadjacent to e.g. xℓ+1 hence satisfying the desired formula.

Now assume that v ∈ V (H). Then λ(v) = i for some 1 ≤ i ≤ N . Consider the vertex y in
Y ⊆ V (G) that is labelled i. Since G is a yes-instance, this vertex is either adjacent to xj for some
j ∈ [ℓ], or nonadjacent to xj for some ℓ + 1 ≤ j ≤ k. Now, since v and y have the same label in

the respective graph, by construction of G′, if E(xj , y), then also E(xj , v) and similarly if E(xj , y),

then E(xj , v). Therefore the desired formula is satisfied for v as well. We have thus covered all the
vertices from V (G′).

On the other hand, assume G is a no-instance of the Bichromatic Basic Problem. In particular,
assume that for every selection of x1, . . . , xk, there exists y ∈ Y that is non-adjacent to all x1, . . . , xℓ
and adjacent to all xℓ+1, . . . , xk. Consider any collection of vertices v1, . . . , vk ∈ V (G′). Let SX be
the subset of v1, . . . , vk consisting of all vertices vj contained in X. Clearly, we can find a vertex
yi ∈ Y that is not satisfied by SX . By construction of G′ it follows that any vertex w ∈ V (H) with
λ(w) = i is not satisfied by SX .

Moreover, by Lemma 4.8, there exists a vertex w ∈ V (H) with λ(w) = i such that w is not
satisfied by any vertex vi in {v1, . . . , vk} \ SX . In particular, it follows that such w is not satisfied
by v1, . . . , vk and since the vertices v1, . . . , vk were selected arbitrarily, G′ is also a no-instance.

We now proceed to prove the Lemma 4.8. But before that, we state a few basic well known
facts about polynomials that will be useful.

Lemma 4.10. For any two polynomials f, g with coefficients in a field F of degree at most d, there
are at most d points x in F such that f(x) = g(x).

Lemma 4.11. Given d+1 distinct points x1, . . . , xd+1 ∈ F and d+1 values y1, . . . , yd+1 ∈ F, there
is a unique polynomial f ∈ F[X]≤d satisfying f(xi) = yi for all i.

Proof (of Lemma 4.8). Let p be the smallest prime number strictly larger than k2(log(N) + k+2)
and let Fp denote the finite field of order p. Let d = ⌈logp(N)⌉ + k. Let V (G) = Fp[X]≤d, that
is each vertex in G corresponds to a polynomial with coefficients in Fp of degree at most d. Let
L = ⌈logp(N)⌉ and for f ∈ V (G) let λ(f) = i if and only if ψ(f(1), . . . , f(L)) = i be the labeling of

the vertices in G for a bijective function ψ : FL
p → [pL] (if ψ(f(1), . . . , f(L)) > N , then we relabel f

to N). We add the edges to our graph as follows. Let R = L+ dk+ k+1 and for any f, g ∈ V (G),
let {f, g} ∈ E(G) if and only if there exists an x such that L < x ≤ R and f(x) = g(x). We observe
that p > R, hence the elements 1, . . . , R are all distinct in Fp.

We proceed to show that given any distinct polynomials a1, . . . , ak, b1, . . . , bk and any label i,
we can find a polynomial f with λ(f) = i such that for all j ∈ [k] there exists L + 1 ≤ x ≤ R
satisfying aj(x) = f(x), and for no j ∈ [k] is there an L + 1 ≤ x ≤ R satisfying bj(x) = f(x).
In particular, note that the vertex corresponding to such polynomial would be adjacent to all the
vertices corresponding to aj and non-adjacent to all vertices corresponding to bj and would thus
yield the desired property.

Claim 4.12. For any fixed set of polynomials {a, b1, . . . , bk} ⊆ V (G) and a k − 1 element set
A ⊆ {L+ 1, . . . , R} there exists a point x ∈ {L+ 1, . . . , R} \A such that a(x) ̸∈ {b1(x), . . . , bk(x)}

Proof. By Lemma 4.10, a agrees with bi in at most d points. Hence, in total, there are at most dk
points x such that a(x) ∈ {b1(x), . . . , bk(x)}.

Consequently, there are at least R−(L+1)−dk = k points x such that a(x) ̸∈ {b1(x), . . . , bk(x)}
thus proving the desired.
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Let a1, . . . , ak, b1, . . . , bk be arbitrary vertices. By the claim above, we can find distinct elements
x1, . . . , xk such that ai(xi) ̸∈ {b1(xi), . . . , bk(xi)} for any 1 ≤ i ≤ k. Let ℓ be an arbitrary fixed
label such that ψ−1(ℓ) = (ℓ1, . . . , ℓL). Consider the set S consisting of polynomials f satisfying
f(1) = ℓ1, . . . , f(L) = ℓL and f(xi) = ai(xi) for every 1 ≤ i ≤ k. Since d = L+ k, by Lemma 4.11,
if we fix a point t ∈ {L + 1, . . . , R} \ {x1, . . . , xk}, there is a unique polynomial f in S, such that
f(t) = bj(t) for any 1 ≤ j ≤ k. Hence, the set

T = {f ∈ S | ∃L+ 1 ≤ t ≤ R ∃1 ≤ j ≤ k such that f(t) = bj(t)}

contains at most (R− L− k − 1)k elements.
Similarly, by Lemma 4.11, there are at least p distinct polynomials in S. Notice that it is

sufficient to show that the set S \ T is non-empty, as this would prove the existence of a vertex
adjacent to all ai and non-adjacent to all bj for all i, j. To this end, we compute the value of

|S \ T | ≥ p− (R− L− k − 1)k > p−R > 0.

Construction of such a graph can be implemented in polynomial time by evaluating each of the
O(pd) polynomials in at most O(p) points and then iterating through O(p2d) pairs of vertices and
checking in time O(p) if they match in the corresponding coordinates. The total time complexity
of the construction is thus at most

O(dpd+1 + dp2d) ≤ O(p3 logp(N)) = O(N3).

Finally, we have to argue that |V (G)| ≤ Õ(N). This, however follows from the simple observa-
tion that there are at most pd+1 distinct polynomials in Fp[X]≤d and

pd+1 ≤ plogp(N)+k+2 = Npk+2 ≤ Õ(N).

Combining the results from the last two subsections, we obtain the main result of this chapter.

Theorem 4.13. Let Φ be a basic property with at least one negative literal. For any ε > 0, the
Monochromatic Basic Problem corresponding to Φ cannot be solved faster than O(nk−ε) even on
graphs with Õ(n) edges, unless SETH fails.

5 Algorithms and Hardness of Distance-r k-Dominating Set

Let r ≥ 1 be a fixed integer. We consider the Distance-r k-Dominating Set problem as a natural
generalization of k-Dominating Set problem, where a vertex u dominates a vertex v if and only
if there exists a path from u to v of length at most r. Clearly, if r = 1, we obtain the usual
k-Dominating Set problem.

Formally, Distance-r k-Dominating Set problem can be stated as follows. Given an undirected
graph G = (V,E) with |V | = n and |E| = m, decide if

∃v1 ∈ V . . . ∃vk ∈ V : ∀w ∈ V : min{dG(v1, w), · · · , dG(vk, w)} ≤ r.}

Let Br(v) = {x ∈ V (G) | d(x, v) ≤ r}.
In this section, we prove that sparsity does not affect the fine-grained complexity of Distance-r

k-Dominating Set problem. In fact, we prove that a lower bound nk±o(1) holds already for graphs
with m = Õ(n) edges, assuming the k-OV hypothesis. Furthermore, we prove that if ω = 2, or k is
sufficiently large, we can construct an algorithm that runs in Õ(nk+o(1)), thus matching the lower
bound.
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Theorem 5.1. For any ε > 0, there exists no algorithm solving Distance-r k-Dominating Set
problem in O(nk−ε) for any k ≥ 2, r ≥ 2, even in sparse graphs, unless SETH fails.

Proof. To prove this lower bound, we reduce from k-OV. Let A1, . . . , Ak be an instance of k
orthogonal vectors problem. In particular, let A1, . . . , Ak denote sets of d-dimensional (assume
d = O(log n)) binary vectors of size n. Construct the graph G as follows. Start with an empty
graph. For each set Ai, add one vertex for every vector in Ai, denoted aij and two additional

vertices Ai, A
′
i. Add an edge between Ai and aij and between A′

i and aij for every i, j. Add
an edge between Ai and A′

i and subdivide this edge r − 2 times and label the new vertices by
s1(Ai, A

′
i), . . . , sr−2(Ai, A

′
i). Add 2d vertices D1, . . . , Dd, D

′
1, . . . , D

′
d and add an edge between aij

and Dt if and only if aij [t] = 0 for all i, j, t. Add an edge between Dt and D
′
t for all t, and subdivide

this edge r − 2 times. Label the new vertices by s1(Dt, D
′
t), . . . , sr−2(Dt, D

′
t). The construction of

such a graph is schematically depicted on Figure 3.
Clearly the constructed graph G has Õ(n) vertices and Õ(n) edges. We proceed to show that

G contains k vertices v1, . . . , vk such that
⋃k

i=1Br(vi) = V (G) if and only if there are vectors

a1 ∈ A1, . . . , ak ∈ Ak such that
∏k

i=1 ai[j] = 0 holds for all 1 ≤ j ≤ d.

Suppose first that there are vectors a1 ∈ A1, . . . , ak ∈ Ak such that
∏k

i=1 ai[j] = 0 for all
1 ≤ j ≤ d. Then we claim that every vertex in G is at distance at most r from at least one ai.
Consider first the vertices A′

i and Ai. By construction Ai is adjacent to ai and A
′
i is at distance

exactly r from ai. Consequently also s1(Ai, ai), . . . , sr−1(Ai, ai) are covered. Furthermore, since
any vertex aij is adjacent to Ai, d(ai, a

i
j) ≤ 2 for all i, j and since r ≥ 2, also vertices aij are covered.

Finally, by construction, for any 1 ≤ t ≤ d there is an edge from some ai to Dt, therefore since
d(Dt, D

′
t) = r− 1, we conclude that also all the vertices along the (unique) path from Dt to D

′
t are

covered and thus a1, . . . , ak cover all the vertices in G.
Conversely assume that there are vertices v1, . . . , vk such that

⋃k
i=1Br(vi) = V (G). Consider

vertices A′
1, . . . , A

′
k. Clearly Br(A

′
i) consists only of those vertices along the paths from A′

i to a
i
j for

all j. In particular, since for all i ̸= j Br(A
′
i) and Br(A

′
j) are pairwise disjoint, the only possible

solution is vi ∈ Br(A
′
i) (w.l.o.g.). Furthermore, for any 1 ≤ t ≤ d, Br(D

′
t) consists only of the

vertices along the path from D′
t to some aij , such that aij is adjacent to Di. Considering also the

last constraint, we can conclude that for all t, there is a vertex in {v1, . . . , vk} that is adjacent to
Dt.

Hence, for every vi = aij (for some j), take ai to be the vector that corresponds aij , and for

vi that lies along the path from Ai to A′
i, take ai that corresponds to ai1, then we claim that

a1 ∈ A1, . . . , ak ∈ Ak and for every 1 ≤ t ≤ d
∏k

i=1 ai[d] = 0. By selection of the vectors ai, clearly
ai ∈ Ai and also, in G, if vi is adjacent to Dt, then vi = aij for some j and furthermore, ai[t] = 0.
But as we argued above, for every t such a vertex vi exists and so ai[t] = 0. The desired result
follows directly.

Proposition 5.2. Let G be a graph with n vertices and m edges and let k ≥ 2, r ≥ 1 be fixed
constants. For sufficiently large k, or ω = 2, we can solve Distance-r k-Dominating Set in time
O(nk+o(1)).

Proof. Without loss of generality, we may assume that r > 1, as otherwise we have an instance of
k-dominating set problem and we already know that this statement holds. Let A be the adjacency
matrix of G. Compute the matrix (A + I)r. We can compute this matrix in O(nω+o(1) log(r)) =
O(nω+o(1)) time (by repeated squaring of matrix A + I). The entry i, j in the matrix (A + I)r is
non-zero if and only if there is a walk of length at most r between i and j in G. Observe that every
path is a walk, so if there exists a path of length at most r between i and j, the entry (A+ I)r[ i, j]
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Figure 3: Schematic representation of reduction from k-OV to Distance-r k-Dominating Set prob-
lem. Bold edges represent bicliques between the corresponding sets.

will be non-zero. Furthermore, if there exists a walk of length at most r between i and j, then
there exists a path of length at most r between them as well (obtained by removing all the cycles
from the walk).

Let B be a matrix obtained by normalizing (A + I)r. In particular, B[i, j] = 1 if and only if
(A + I)r[i, j] > 0, otherwise, B[i, j] = 0. and let G′ be a graph with adjacency matrix B − In.
Note that V (G) = V (G′). We claim that G′ has dominating set at most k if and only if G has a
dominating set of size k at distance r.

In particular, assume first that G has a Distance-r k-Dominating Set, S = {v1, . . . , vk}. Fix a
vertex v ∈ V (G). We want to show that v is dominated by some vi in G

′. If v ∈ S, we are done,
so assume this is not the case. Then for some 1 ≤ i ≤ k, there exists a (non-trivial) path of length
t ≤ r between vi and v in G. Hence, the entry corresponding to vi, v in (A + I)r will be non-zero
and since vi ̸= v, this entry will be equal to 1 in B − In and therefore vi is adjacent to v in G′.
Since v was an arbitrary vertex, we may conclude that S dominates G′.

Conversely, assume that S = {v1, . . . , vk} is a k-dominating set in G′ and fix a vertex v ∈ V (G).
Then v is either contained in S, or adjacent to a vertex in S in G. If v was contained in S, then
there exists a path of length 0 < r between v and a vertex in S and v is dominated by S. Otherwise,
assume that v is adjacent to a vertex vi ∈ S. Then there exists a walk of length t ≤ r in G and in
particular, a path of length at most t. Hence, v is dominated by vi and S dominates G as desired.

Observe that we can compute B in O(nω+o(1)), and as we proved in section 3, we can check if
a graph G′ has a dominating set of size k in O(nk+o(1)), assuming k ≥ 8, or k ≥ 2 and ω = 2.
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6 Closed Neighbourhood Containment and (k − 1)-Covering

In this section we show that if we assume that the edge relation is reflexive (i.e., E(v, v) for all
v ∈ V ), then the basic problem

∃pairwise distinct v1, . . . , vk : ∀w ∈ V : E(v1, w) ∨ E(v2, w) ∨ · · · ∨ E(vk, w)

becomes easier on sparse graphs. For k = 2, we call this problem Closed Neighborhood Containment
(are there distinct v1, v2 ∈ V such that N [v1] ⊆ N [v2]?). For general k ≥ 2, we call it Closed
Neighborhood (k−1)-Covering (are there pairwise distinct v1, . . . , vk ∈ V such that N [v1] ⊆ N [v2]∪
· · · ∪N [vk]?).

Closed Neighborhood Containment. To obtain faster algorithms on sparse graphs for k = 2,
we exploit the following simple, yet crucial observation:

Observation 6.1. Given a graph G, if there exists a pair of vertices x, y, such that N [x] ⊆ N [y],
then E(x, y).

We can use this fact to reduce the problem to the problem All-Edge Triangle Counting (Given
an m-edge graph, for each edge e ∈ E, output the number of triangles containing e.), which can be

solved in time O(m
2ω

w+1 ) [3].

Lemma 6.2. Given a graph G, there exists a pair of vertices x, y, such that N [x] ⊆ N [y] if and
only if E(x, y) and the number of triangles containing the edge {x, y} is equal to deg(x)− 1.

Proof. Suppose first that N [x] ⊆ N [y]. Then by the previous lemma E(x, y). Clearly, the number
of triangles containing the edge {x, y} is at most deg(x)−1, so it is sufficient to show that the lower
bound holds as well. Assume for contradiction that this number is strictly smaller than deg(x)− 1.
Then there exists z ∈ N(x) such that z ̸∈ N(y), contradicting the assumption that N [x] ⊆ N [y].

Conversely, assume that for some pair of adjacent vertices x, y the number of triangles containing
the edge {x, y} is equal to deg(x) − 1. Then clearly every vertex z ̸= y that is adjacent to x is
contained in this triangle. In particular every z ∈ N(x) \ {y} is adjacent to y as desired.

Theorem 6.3. Closed Neighborhood Containment can be solved in O(m
2ω
ω+1 ).

Proof. By computing, for each e ∈ E, the number of triangles containing e in total time O(m
2ω
ω+1 ),

we can use the last lemma to decide any given instance in the same running time.

Closed Neighborhood (k− 1)-Covering. The above algorithm easily generalizes to k > 2 by
brute-forcing over k − 2 variables as follows:

Given a graph G with n vertices and m edges, fix distinct x1, . . . , xk−2 arbitrarily. Construct a
tripartite graph G′ as follows. Let V1 = V2 = V (G) \ {x1, . . . , xk−2} and let V3 = V (G) \

(
N [x1] ∪

· · · ∪ N [xk−2]
)
. Let V (G′) = V1 ∪ V2 ∪ V3. Finally, add edges in G′ as follows. If a pair u ̸= v is

in E(G), add the edge between the vertex corresponding to u ∈ V1 and the vertex corresponding
to v ∈ V2. Add the edges between V3 and V1, and V3 and V2 similarly. Finally, for any vertex v
in V3, add the edge between the copy of v in V3 and the copy of v in V1 and V2. For each vertex
x ∈ V1 ∪V2 store the number π(x) of neighbours of x in V3. Observe first that G′ has O(n) vertices
and O(m) edges.
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Lemma 6.4. Given a graph G, and a set of distinct vertices x1, . . . , xk−2, there exists a pair of
distinct vertices xk−1, xk, such that N [xk] ⊆

⋃k−1
i=1 N [xi] and E(xk−1, xk) if and only if in the graph

G′ as constructed above the number of triangles containing xk−1 ∈ V1 and xk ∈ V2 is equal to π(xk).

Proof. Suppose first that there exists a pair of distinct vertices xk−1, xk, such that N [xk] ⊆⋃k−1
i=1 N [xi] and E(xk−1, xk). Consider the copy of xk−1 in V1 and the copy of xk in V2.
Fix any vertex v in V3 and consider two cases.

• v corresponds to the same vertex as xk−1, or xk in G.

• v, xk−1, xk are all distinct vertices in G.

Notice that these are the only possibilities, since the endpoints of the edges going between V1 and
V2 by construction correspond to distinct vertices in G.

If v ∈ {xk−1, xk}, since xk−1 and xk are distinct vertices, adjacent in G, in G′ the vertices
{xk−1 ∈ V1, xk ∈ V2, v ∈ V3} form a triangle.

Assume now that v, xk−1, xk are all distinct vertices in G. Since in G, v is not in
⋃k−2

i=1 N [xi], it
is either in N(xk−1), or is not in N(xk). But by construction of G′ this property is preserved and
hence if v ∈ N(xk), then v ∈ N(xk−1), or in other words for any vertex v ∈ V3 that is adjacent to
xk, it holds that v, xk−1, xk form a triangle, giving us the lower bound. The upper bound is trivial
from the fact that G′ is tripartite.

Conversely, assume that for a pair of vertices xk−1 ∈ V1 and xk ∈ V2, the number of triangles
in G′ containing these two vertices is equal to π(xk). Let v be an arbitrary vertex in G. If v is not
in V3 in G′, then it is contained in

⋃k−2
i=1 N [xi] in G. On the other hand, if it is contained in V3, in

G′ it is either adjacent to xk−1 ∈ V1, or nonadjacent to xk ∈ V2. In G, this means that v is either
equal to xk or xk−1, or adjacent to xk−1, or nonadjacent to xk. In other words, if v ∈ V3 in G′,
then in G it is either contained in N [xk−1], or not contained in N [xk], as desired.

We can observe that the last lemma gives us an algorithm running in time O(nk−2m
2ω
ω+1 ),

beating the Ω(nk) running time for sufficiently sparse graphs.

Theorem 6.5. Closed Neighborhood (k − 1)-Covering can be solved in time O(nk−2m
2ω
ω+1 ).

Hardness of All Remaining Reflexive Properties. We now argue that for every monochro-
matic basic problem

∃x1 ∈ V, . . . , ∃xℓ ∈ V,∃xℓ+1 ∈ V, . . . , ∃xk ∈ V ∀v ∈ V
( ℓ∨

i=1

E(xi, v)
)
∨
( k∨

i=ℓ+1

E(xi, v)
)
,

the reduction given in Section 4 can be adapted for the reflexive case if the number of negative
literals is ℓ′ ≥ 2). Note that for ℓ′ = 0 (k-Dominating Set) and ℓ′ = 1 (Closed Neighborhood
(k − 1)-Covering), we have shown faster algorithms in sparse graphs, so ℓ′ ≥ 2 is indeed the only
case remaining.

For ℓ′ ≥ 2 we construct the reduction from a sparse Bichromatic Basic Problem to the corre-
sponding Monochromatic Basic Problem similarly as in Section 4.

Lemma 6.6. Let Φ be a basic property with k variables and at least two negative literals. Given
an instance G = (X,Y,E) of the Bichromatic Basic Problem corresponding to Φ with n vertices
and assume Y = Õ(1), we can construct an equivalent instance G′ = (V,E) of the corresponding
Monochromatic Basic Problem in reflexive setting in time Õ(n) consisting of at most Õ(n) edges.
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Proof. Consider the same construction of the graph G′ as described in Section 4. If G is a no-
instance, one can observe that the identical arguments show that G′ is also a no-instance.

On the other hand, if G is a yes-instance, then we can find x1, . . . , xk ∈ X such that for every
y ∈ Y , the formula E(x1, y)∨ · · · ∨E(xℓ, y)∨E(xℓ+1, y)∨ · · · ∨E(xk, y) is satisfied. We claim that
also ∀v ∈ V (G′), it holds that E(x1, v)∨· · ·∨E(xℓ, v)∨E(xℓ+1, v)∨· · ·∨E(xk, v). If v ∈ V (H), then
again the identical arguments as before show that v is satisfied. Thus, we may assume that v ∈ X.
For every v ∈ X \ {xℓ+1}, we observe that v is non-adjacent to xℓ+1 and hence satisfied. However,
since we are in the reflexive case, xℓ+1 is adjacent to itself, and since there are no (non-trivial)
edges inside X, xℓ+1 has to be satisfied by another negative vertex (this is a subtle, but crucial
reason why the reduction fails in the reflexive setting for ℓ′ ≤ 1). Since ℓ′ > 1, notice that xℓ+1 is
satisfied by xℓ+2.

We conclude this section by stating the consequential hardness result.

Theorem 6.7. Let Φ be a basic property with at least two negative literals. For any ε > 0, the
Monochromatic Basic Problem in the reflexive setting corresponding to Φ cannot be solved faster
than O(nk−ε), even on graphs with Õ(n) edges, unless SETH fails.
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