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Abstract: Radar detection is a technology frequently used to detect objects and measure the range,
angle, or velocity of those objects. Several studies have been performed to improve the accuracy
and performance of detection methods, but they encountered a strong challenge, which was the
minimization of false alarms and the distinguishing of real targets from false alarms, especially in
nonhomogeneous environments. We propose a new detection method that uses time-frequency anal-
ysis tools to improve detection performance and maintain a low constant false alarm rate. Different
from existing works, this paper combines the clutter map constant false alarm rate technique with the
Gabor transform for accurate target detection in cluttered environments. We suggest the combination
of a CFAR detector with a time-frequency method that enables us to tackle challenging scenarios
involving near targets. The proposed method allows for locating the exact position of the target by
reducing the impact of clutter and maintaining a low rate of false alarms, while the Gabor transform
facilitates the extraction of pertinent target characteristics and improves differentiation from clutter.
Through experiments and simulations in different scenarios and clutter models, we demonstrate that
the method is efficient in measurements and performs well in cluttered environments. This research
has a major impact on signal processing and significantly improves target detection in cluttered
environments, allowing this method to be deeply developed and implemented.

Keywords: cluttered environments; detection probability; false alarm rate; signal processing; time-
frequency analysis tools

1. Introduction

Target detection is a crucial direction for radar research. Traditional target detection
methods are usually based on constant false alarm rate (CFAR) detectors [1]. Nowadays, tar-
get detection methods have been developed using various advanced techniques, including
signal processing techniques, optimization techniques, and machine learning techniques [2].
In modern radar systems, constant false alarm rate (CFAR) detection plays a crucial role in
automatic detection [3]. However, nonstationary and nonuniform complex clutter can have
an impact on the performance of the CFAR algorithms [4]. The ability to accurately identify
targets in cluttered environments is crucial for effective decision making and situational
awareness. However, clutter, which can be unwanted signals generated by stationary
and nontarget objects, constitutes a significant challenge to target detection algorithms.
Traditional detection methods often suffer from high false alarm rates or limited target dis-
crimination capabilities, leading to degraded performance. Based on the power estimation
method, CFAR detection can be split into two groups: those that use spatial processing and
those that use temporal processing [5,6].

The clutter map constant false alarm rate (CMAP-CFAR) is a signal processing tech-
nique used to detect targets in cluttered environments. It is a type of CFAR algorithm that
adjusts the threshold for detecting targets based on the level of clutter in the surrounding
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environment. Specifically, the detector output of each range-resolution cell is averaged over
multiple scans to estimate the background level. Nitzberg [7] developed the CMAP-CFAR
processor using digital filtering to update the background power estimate corresponding
to each map cell in every scan [8]. There have been studies on CMAP-CFAR detection
systems that explore various background distributions [9–12]. The main advantage of using
a CMAP-CFAR algorithm is that it can help reduce the number of false alarms generated
with the radar system. This is especially important in scenarios where the radar is oper-
ating in a cluttered environment, such as in a city or near a body of water. To enhance
the efficiency of the CMAP-CFAR device, it could be combined with another technique to
increase reliability and interest.

The Gabor transform is a useful technique for analyzing signals with both time-varying
and frequency-varying characteristics. In radar signal processing, the Gabor transform can
be used for detecting targets in cluttered environments. The clutter in radar signals can
arise from various sources, such as the ground, sea, and buildings. These clutter signals
can interfere with the detection of targets, making it difficult to detect them. The main
aims of this study are to look into the pros and cons of current methods for finding targets
in crowded areas, come up with a new method that combines the Gabor transform and
the CMAP-CFAR algorithm, and then compare the existing method’s effectiveness with
that of the proposed method to see how well it works and what changes could be made to
make it better. All of these efforts aim to distinguish and differentiate target signals from
clutter signals.

Several studies have been conducted on CFAR detection techniques to identify the
most efficient technique. The authors of [3] proposed a study on a novel clutter map
constant false alarm rate detector based on the power transform that utilizes the power
transform for enhanced efficiency compared to traditional methods. After that, ref. [13]
suggested a method, FPGA implementation of the efficient CFAR algorithm for radar
systems, that focuses on hardware implementation and optimizing the algorithm’s speed
and performance. Later, ref. [4] suggested a CFAR detection algorithm for cognitive radar
that is based on clutter knowledge and includes cognitive elements that make it more
flexible in cluttered environments. Another method was developed in [14], which is an
improved constant false alarm rate detector based on multiframe integration for fluctuating
target detection in heavy-tailed clutter. This method improves the robustness of fluctuating
target detection in heavy-tailed clutter. In [15], they suggested the use of a multibeam
seafloor constant false alarm detection method based on weighted element averaging,
which is specifically tailored for seafloor applications, improving accuracy in underwater
scenarios. Despite these efforts to propose new techniques, achieving satisfactory detection
performance has proven to be challenging and complex to implement.

2. Mathematical Modeling and Analysis of the Proposed Detector Algorithm
2.1. Clutter Map CFAR Detector
2.1.1. Description of the CMAP-CFAR Process

The CMAP-CFAR detector is a system using a first-order recursive filter to update
the clutter power estimate. This detector uses a sliding window estimator that takes the
average over m scans. Each resolution cell’s exponential smoothing updates the clutter
power estimate at each scan of the radar space (see Figure 1).

In this technique, we use only the latest estimate instead of data from m previous
scans. At each output of the kth cell of the Nth scan, the factor α is equal to q(k), where
α is the filter’s coefficient gain used to ensure system stability (0 < α < 1) and is added
to the previous estimate of clutter power y(n) weighted by the factor (1 − α) to obtain
the new estimate.
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Figure 2 represents the block diagram of our proposed detector where the threshold
Th is calculated in a way to ensure a constant false alarm probability. By comparing the
test cell q(k) with the weighted threshold, it is ultimately determined whether the target is
present [16]. The background estimate is formed from the previous scans and for mth scan;
the output of the recursive filter is given by the following equation:

ym(k) = (1 − α)× ym−1(k) + α× qm(k) (1)

where qt is the output of the tth resolution cell and α is the filter’s coefficient gain. We can
generalize Equation (1) recursively and obtain a more compact form, as shown below:

ym(k) = ∑m
i=0 α(1 − α)iqm−i(k) (2)
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2.1.2. Probability of Detection

Reference [17] provides the conditional density functions for determining whether
the target is present (alternative hypothesis H1: presence of useful signal and clutter) or
not (null hypothesis H0: presence of clutter only). The probability densities corresponding
to the presence and absence of the target at the detector output are given, respectively,
by the following:
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Pr(q | H0) =

 Pr(q | H0) =
qP−1

(p−1)! exp(−q)

Pr(q | H1) =
qp−1

(p−1)!(1+SNR)p exp(− q
1+SNR )

(3)

where Pr(q|H0) is the probability of false alarm (Pfa) and Pr(q|H1) is the probability of
detection (Pd).

Therefore, the probability of detection, given a fixed false alarm rate, is obtained by
the following formula [14]:

PD =
∫ ∞

0
Pr(y)

∫ ∞

Th
Pr(q/H1)dqdy (4)

Substituting (3) (case of hypothesis 1) into (4), we obtain the expression for the detec-
tion probability:

PD = ∑n−1
k=0 ∏m

n=0 (
n + k − 1

k
)(Th

α× (1 − α)n

1 + SNR
)

k

(1 + Th × α× (1 − α)n

1 + SNR
)
−(n+k)

(5)

2.1.3. Probability of a False Alarm

The false alarm probability is given by the following equation [14]:

Pfa = Pr(y)
∫ ∞

Th
Pr(q/H0)dqdy (6)

The results are obtained when the SNR = 0. The following is a result [14]:

Pfa =

(
1

1 + α× (1 − α)n × Th

)
(7)

2.1.4. Analysis of the CMAP-CFAR

In this section, we analyze the performance of the CMAP-CFAR detector for a single
pulse. We will plot the detection probability performance curves as a function of the SNR
for different values of Pfa and α. We assume that the target is the Swerling I type, embedded
in Weibull clutter. A Monte Carlo simulation is performed for different values of Pfa and α.
The threshold Th is calculated from Equation (7). Given the weighting coefficient α, we
vary the probability of a false alarm. Table 1 below shows the values of Th for different
values of Pfa and α.

Table 1. Threshold values Th as a function of Pfa for different α values.

α Pfa Th

0.01

10−2 4.6

10−4 9.4

10−6 143

0.5

10−2 9

10−4 31.4

10−6 76.6

0.9

10−2 25.6

10−4 190

10−6 854
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The following figures (Figures 3–5) show the simulation results of the probability of
detection as a function of the signal-to-noise ratio (SNR) and the coefficient α for different
false alarm probabilities.
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We examined the effect of the α filter gain settings on the probability of detection and
the false alarm probability. We observe that for a small α, the probability of detection is
better than that for a large α, which is normal since α is very small (α tends to 0), and
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the system tends to have a fixed threshold. On the other hand, when α is large (α tends
toward 1), the previous samples are omitted to arrive at an estimate of the threshold,
hence decreasing the probability of detection. The CMAP-CFAR detector exploits the local
intrinsic homogeneity of the radar environment, in which the radar space is divided into
clutter map cells (see Figure 1) [18]. It is best used for small radar-equivalent areas or
targets flying tangentially to the circle formed by the target–radar core [19].

2.2. Clutter Map Cfar Mixed with the Gabor Transform Algorithm
2.2.1. Analysis Tools and Investigation Techniques

Let us consider a metric radar with a pulse width equal to 6 microseconds. The CMAP-
CFAR method was first used to detect and determine if there were targets in the scanned
cell. After the CMAP-CFAR tool decides on the presence of a target, we use the Gabor
transform to verify whether there are several targets inside that cell. The OS-CFAR detector
provides the final decision about the number of targets detected. This process can be seen
in the following Figure 6, that represent the block diagram of the The joint use of a CFAR
detector and a time-frequency technique allows us to address difficult cases (near targets).
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2.2.2. Detection with the Gabor Transform

The Gabor transform, which is a linear time-frequency analysis technique, has long
been recognized as a very useful tool in signal stationarity over time. It uses a Gaussian
window to create a time sample from which the spectrum of local signal values is cal-
culated [19]. Any finite sequence X(k) that is periodized can be decomposed based on a
shifted Gaussian distribution and amplitude modulation. The following equation defines
its discrete Gabor expansion [18]:

X(k) = ∑N−1
n=0 Cmnh(k − mN)e2jπ kn

N (8)

where Cmn (m, n ∈ Z ) are the Gabor coefficients, m (m = 1 . . . M) and n (n = 1 . . . N) are the
time and frequency samples, respectively, and k (k = 0 . . . NM−1) represents the samples of
the finite sequence X(k). The coefficients of the Gaussian window chosen with the Gabor
transform are calculated from the following equation:

h(n) = e−
1
2 (α

2n
Nh

)
2

(9)

Hence, Nh is the width of window h, and α is proportional to the inverse of the standard
deviation. The analysis window h, which is both well localized in time (if h is short) and in
frequency (if h is long), must also be at finite energy, as shown in the following equation:

∑L−1
k=0 |h(n)|2⟨∞ (10)
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The Heisenberg inequality applied to a Gabor transform [20] constitutes a determining
property when we want to treat the resolution in time and frequency jointly:

∆T × ∆F ≥ 1
4π

(11)

The coefficients {Cmn} are given by the following equation [19]:

Cmn = ∑L−1
k=0 X(k)γ(k − mN)e−2jπ kn

N (12)

where L = MN and j is the imaginary unit. M and N are the numbers of Gabor sampling
points in time and frequency domains.

The synthesis window γ(k) is a time window associated with the analysis window
h(k) so that the orthogonality condition is verified [18]:

∑L−1
k=0 h−m,−n(k)γ(k) = δmδn (13)

where δk is the discrete version of the delta function.
In order to choose the best parameters (Nh and α) for the proposed detector, we show

the analysis window h and its corresponding synthesis window γ with different values of
Nh and α in the following figures (see Figures 7–9):
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Once the Gabor coefficients are calculated, again consider the squared modulus of
the Gabor coefficients from Equation (12), and by projection on the time axis, as shown in
Figure 10, we calculate the maximum instantaneous frequency of the frequency sample (n)
for each temporal sample (m). Finally, we preserve these instantaneous powers (m) in an
energy vector Y as follows:

Y(m) = MAX(|Cmn|2) (14)

To better clarify the vector Y(m), Figure 10 presents the envelope detector based on
the Gabor transform.
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Finally, we obtain a spectrogram based on the Gabor transform, which represents an
estimate of the signal’s power and its instantaneous frequency content [21].

2.3. Clutter Models

In order to show the performance of the proposed detector, three clutter models were
considered for the simulation scenarios. For each scenario, a Monte Carlo simulation was
carried out.

2.3.1. Model 1: Targets Drowned in a Cluttered Weibull Distribution

In this model, we introduce noise in the real parameters of our targets with a Weibull
clutter distribution. The probability of the density function being a function of the pa-
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rameters of scale a, shape b, and normalized amplitude ν > 0 is given by the following
equation [14]:

p(ν) =
(ν

b

)a−1
e−( ν

b )
a

(15)

2.3.2. Model 2: Targets Embedded in Rayleigh Distribution Clutter

This model considers the same parameters as model 1, except that the shape parameter
is equal to 1. The Rayleigh distribution with b and amplitude parameters normalized to
ν > 0 is given by the following equation [22]:

p(v) =
1
b

e−( v
b ) (16)

2.3.3. Model 3: Targets Drowned in Usual Clutter Distribution

In this case, a normal distribution with random variables of mean µ and standard
deviation σ models the clutter distribution. The probability density function is given by
the following equation [14]:

p(ν) =
1
σ

e
−(ν−µ)2

2σ2 (17)

2.4. Radar Signal Simulation

The radar equation (Equation (18)) calculates the echo amplitude, including the radar
parameters shown in Table 2 and the target properties of each scenarios.

Rmax = 4

√
PsG2λ2Acτ

kBT0FN(4π)
3Ls

(18)

where Pr reflected power (in Watt), Ps: power emitted (in Watt), Rmax: target–radar distance
(in m), G: antenna gain, τ: Pulse width, kB: Boltzmann constant (in J/K), T0: absolute
temperature (in ◦K), FN: background noise from the receiver, Ls: radar system losses
in transmission and reception, β: The bandwidth of the receiver, with β = 1

τ , and Ac:
Apparent reflection surface of the radar antenna, with Ac =

Gλ2

4π .

Table 2. Radar parameters.

Radar Parameters Symbols Values

RF frequency f 900 MHz

IF frequency If 30 MHz

Pulse repetition frequency PRF 1 kHz

Peak transmit power Pt 280 kWatts

Pulse width τ 6 µs

Main beam gain Gt 28.5 dB

−3 dB HPBW HPBW 3.3◦

Up spot angle elevation El_up 12◦

Scan rate Fs 72◦/s

Scan sector (min to max) Scan_sec 25◦

Receiver bandwidth Bn 1 MHz

Doppler filter bank Nf 32

Figure noise Fn 2.5

IF amplitude gain Aif 10 dB

Total radar loss Loss 20 dB



Appl. Sci. 2024, 14, 2967 10 of 27

The radar receiver is modeled as shown in Figure 11 and is implemented using the set
of real parameters of a search radar.
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The radar echo X(m) is composed of a useful signal s(m) and an unwanted noise b(m).
All the noises here are considered additive noises:

X(m) = s(m) + b(m) (19)

The following figure (Figure 12) illustrates the probability density function of the
signal X(m) and shows that the radar echo at the output of the proposed detector follows
an exponential distribution [23].
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We clearly see that the histogram of the radar echo X(m) (see Figure 12) is exponential
in shape independently of the clutter model at the input of the proposed detector.

3. Simulation Results and Interpretation

Several simulations were conducted to analyze the impact of multiple targets on the
range and azimuth resolution of radar echoes. During these simulations, each time we
change the type of clutter as well as the parameters of each clutter for the two scenarios. In
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the first scenario, we simulated two radar targets in a resolution cell (dR, dθ) with only a
variation in distance. The remaining target parameters were kept constant to demonstrate
the range resolution of the proposed detector. In the second scenario, we examined how
multiple targets affect radar resolution. In all the scenarios, we compared the performance
of our proposed method with that of the normal order statistic constant false alarm rate
(OS-CFAR) method. The OS-CFAR method, a reliable technique that Rohling [24] proposed,
is appropriate for nonhomogeneous environments and is based on order statistics. This
process involves ordering the cells of the reference window and selecting the content of
the kth cell as an estimate of clutter power. To demonstrate the performance of the studied
detector, we conducted several Monte Carlo simulations [25] for the different types of
clutter in each scenario.

3.1. Scenario 1: The Effect of Distance

The choice of the parameters indicated in the following table is based on the studies of
several researchers to bring our simulation closer to reality. In this scenario, we consider
two targets with the parameters presented in Table 3 below.

Table 3. Target properties in scenario 1.

Parameters Symbols Target 1 Target 2

Distance R 88 km 80.5 km

Azimuth angle θAZ 10◦ 10◦

Speed
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333.3 m/s 333.3 m/s

Altitude Alt 2200 m 2200 m

Hidden corner η 200◦ 200◦

Radar cross-section SER 1 m2 1 m2

First, we simulated the two targets very close in distance (they are in the same res-
olution cell) and in the absence of clutter such that the OS-CFAR detector alone cannot
distinguish them. In the second case, each target is simulated in a separate resolution cell.
As shown in Figure 13, the target spot in red is shown on the panoramic display of our
radar system (Plan Position Indicator PPI).
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The number of reference cells (Nos) of the OS-CFAR detector is greater than 24, and
the variable k is more significant than 3/4 of the number of Nos. These chosen parameters
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prove to result in better performance in terms of the probability of detection and guarantee
a minimum number of false alarms. The OS-CFAR detector configuration parameters are
grouped into Table 4.

Table 4. Conventional OS-CFAR parameters.

Parameters Values

Nos 24

k 24

NG 2

In Figure 14, we have the OS-CFAR detector and the target amplitude where it can
be observed that there is one target amplitude that goes above the limit of the detector at
around 84km, allowing the target to be detected. It goes along with the position of the target
displayed by the PPI (Figure 13), showing the target at approximately the same position.
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The detector based on the Gabor transform (proposed detector) is characterized by
64 samples on the time axis and 8 samples on the frequency axis. The analysis window
h(n) is 32 cells in width, and the degree of oversampling q equals 1. The configuration
parameters of the Gabor-based detector are grouped in Table 5.

Table 5. Configuration parameters of the Gabor-based detector.

Parameters Values

h(t) Gaussian

Nh 32

M 64

N 8

q 1

Figure 15 shows the targets detected with the OS-CFAR method and those obtained
using the proposed detector without clutter.

We observe in Figure 15b that the proposed detection method easily finds the position
of the targets at M = 36 for the first target and at M = 43 for the second target. Compared to
the conventional OS-CFAR detector, which detects a single target in the 84 km range (see
Figure 15a) and the second target is missed. The proposed detector has been able to detect
the two targets simulated here, while the OS-CFAR method detected a single target.
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3.1.1. Simulation with Clutter Model 1

Figure 16 presents the simulation of two targets with clutter model 1 (targets drowned
in a cluttered Weibull distribution). The clutter according to the first model is of the Weibull
type; the shape parameter a and scale parameter b are chosen arbitrarily such that a = 25
and b = 0.9.
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In Figure 16, we have the results obtained from the simulation using the OS-CFAR
detection method (Figure 16a) and the proposed detection method (Figure 16b). We observe
that in Figure 16b, the proposed detector finds the position of the two targets at M = 36 for
the first one and at M = 43 for the second one. Compared to the conventional OS-CFAR
detector, which detects a single target in the 84 km range (Figure 16a) and the second target
is missed. The proposed detector has been able to detect the two targets simulated here,
while the OS-CFAR method detected a single target.

We conducted another simulation, increasing the shape parameter a to 200 while
keeping the scale parameter b at 0.9.

In Figure 17 we can observe in that (a) the target amplitude and false alarm rate
are very high when it comes to the OSCFAR detector, while in (b) the proposed detector
efficiently work on reducing the false alarm rate and is able to distinguish the target from
the false alarm, the proposed detector is able to distinguish the target positions at M = 38
for the first target and at M = 43 for the second target (see Figure 17b). On the other hand,
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the conventional OS-CFAR detector detects multiple targets (Figure 17a), one of which is
located at a range of 84 km, while the remaining targets are false alarms.
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To further evaluate the efficiency of the proposed detector, we varied the shape
parameter a within the range of 0 < a ≤ 200 and the scale parameter b below 0.5 (b < 0.5).

In Figure 18, we observe that the target amplitudes are lesser than in the previous
simulation, but the proposed detector (Figure 18b) easily distinguish one target at M = 38
then hardly distinguish the second one at M = 39, while the OS-CFAR detector consider
the actual targets and several false alarm as targets as displayed in Figure 18a. When the
scale parameter is less than 0.5 and the shape parameter exceeds 200, the conventional
OS-CFAR detector (see Figure 18a) fails to locate the targets and the proposed detector (see
Figure 18b) hardly distinguishes the two targets. This test allows us to identify the limit
in shape and scale when using our detector in the case of targets that are drowned in a
cluttered Weibull distribution.
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3.1.2. Simulation with Clutter Model 2

We present the simulation of two targets using clutter model 2 (targets embedded
in Rayleigh distribution clutter). The shape parameter b of the Rayleigh distribution is
confined to the interval [0,300] (Figures 19–21).
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We gradually increased the shape parameter b (b = 100, b = 200, and b = 300). In
Figures 19b, 20b and 21b, we observe the ability of the proposed detector to successfully
reduce the false alarms and clearly distinguish the two target positions, with the first target
at M = 36 and the second target at M = 43. On the other hand, in Figures 19a, 20a and
21a, the conventional OS-CFAR detector detects multiple targets, one of which is located
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at a range of 84 km, while the remaining targets are false alarms. We clearly observe the
differences between target amplitudes in the case of the conventional OS-CFAR detector
and the target amplitudes in the case of our detector, which allow us to show the efficiency
of the proposed method.

To assess the limits of the proposed detector in this case of clutter model 2, we increase
the shape parameter b > 300. We set the shape parameter b at 600 (b = 600) and ran the
simulation three times.

After the simulations, we observe that, in Figure 22b, the proposed detector shows the
presence of two targets at M = 40 and M = 44, while the conventional OS-CFAR detector
shows only one target, and the rest are false alarms. When we repeat the simulation with
the same configuration (Figures 23 and 24), the proposed detector once again detects the
two targets but at different positions M = 36 and M = 45 for Figure 23b, then M = 39
and M = 43 for Figure 24b. The conventional OS-CFAR detector still distinguishes several
targets where one is at M = 83 while the others are false alarms.

Appl. Sci. 2024, 14, 2967 39 of 27 
 

We gradually increased the shape parameter b (b = 100, b = 200, and b = 300). In Fig-
ures 19b, 20b, and 21b, we observe the ability of the proposed detector to successfully 
reduce the false alarms and clearly distinguish the two target positions, with the first tar-
get at M = 36 and the second target at M = 43. On the other hand, in Figures 19a, 20a, and 
21a, the conventional OS-CFAR detector detects multiple targets, one of which is located 
at a range of 84 km, while the remaining targets are false alarms. We clearly observe the 
differences between target amplitudes in the case of the conventional OS-CFAR detector 
and the target amplitudes in the case of our detector, which allow us to show the efficiency 
of the proposed method. 

To assess the limits of the proposed detector in this case of clutter model 2, we in-
crease the shape parameter b > 300. We set the shape parameter b at 600 (b = 600) and ran 
the simulation three times. 

After the simulations, we observe that, in Figure 22b, the proposed detector shows 
the presence of two targets at M = 40 and M = 44, while the conventional OS-CFAR detector 
shows only one target, and the rest are false alarms. When we repeat the simulation with 
the same configuration (Figures 23 and 24), the proposed detector once again detects the 
two targets but at different positions M = 36 and M = 45 for Figure 23b, then M = 39 and 
M = 43 for Figure 24b. The conventional OS-CFAR detector still distinguishes several tar-
gets where one is at M = 83 while the others are false alarms. 

 
Figure 22. Targets simulated with clutter model 2 (b = 600) using (a) conventional OS-CFAR and (b) 
proposed detector. 

 
Figure 23. Targets simulated with clutter model 2 (b = 600) using (a) conventional OS-CFAR and (b) 
proposed detector. 

Figure 22. Targets simulated with clutter model 2 (b = 600) using (a) conventional OS-CFAR and
(b) proposed detector.

Appl. Sci. 2024, 14, 2967 39 of 27 
 

We gradually increased the shape parameter b (b = 100, b = 200, and b = 300). In Fig-
ures 19b, 20b, and 21b, we observe the ability of the proposed detector to successfully 
reduce the false alarms and clearly distinguish the two target positions, with the first tar-
get at M = 36 and the second target at M = 43. On the other hand, in Figures 19a, 20a, and 
21a, the conventional OS-CFAR detector detects multiple targets, one of which is located 
at a range of 84 km, while the remaining targets are false alarms. We clearly observe the 
differences between target amplitudes in the case of the conventional OS-CFAR detector 
and the target amplitudes in the case of our detector, which allow us to show the efficiency 
of the proposed method. 

To assess the limits of the proposed detector in this case of clutter model 2, we in-
crease the shape parameter b > 300. We set the shape parameter b at 600 (b = 600) and ran 
the simulation three times. 

After the simulations, we observe that, in Figure 22b, the proposed detector shows 
the presence of two targets at M = 40 and M = 44, while the conventional OS-CFAR detector 
shows only one target, and the rest are false alarms. When we repeat the simulation with 
the same configuration (Figures 23 and 24), the proposed detector once again detects the 
two targets but at different positions M = 36 and M = 45 for Figure 23b, then M = 39 and 
M = 43 for Figure 24b. The conventional OS-CFAR detector still distinguishes several tar-
gets where one is at M = 83 while the others are false alarms. 

 
Figure 22. Targets simulated with clutter model 2 (b = 600) using (a) conventional OS-CFAR and (b) 
proposed detector. 

 
Figure 23. Targets simulated with clutter model 2 (b = 600) using (a) conventional OS-CFAR and (b) 
proposed detector. 
Figure 23. Targets simulated with clutter model 2 (b = 600) using (a) conventional OS-CFAR and
(b) proposed detector.



Appl. Sci. 2024, 14, 2967 17 of 27
Appl. Sci. 2024, 14, 2967 40 of 27 
 

 
Figure 24. Targets simulated with clutter model 2 (b = 600) using (a) conventional OS-CFAR and (b) 
proposed detector. 

3.1.3. Simulation with Clutter Model 3  
We performed a simulation of the two targets using clutter model 3 (targets drowned 

in cluttered normal distribution). The clutter follows a normal distribution with a stand-
ard deviation σ and a mean µ. 

During the simulation using the clutter of model 3 with µ = 1 and σ = 1000, we ob-
served the same limitations on detection performance in both models 1 and 2 (cases where 
the parameters have been increased) for the conventional detector, and our proposed de-
tector has been able to distinguish the targets at M = 33 and M = 40. This situation can be 
seen in Figure 25. 

 
Figure 25. Targets simulated with clutter model 3 (µ = 1 and σ = 1000) using (a) the conventional OS-
CFAR and (b) the proposed detector. 

We have summarized the key parameters of our simulations in the following Table 6 
in order to show the effect of the clutter on the distance resolution of radar targets. The 
results obtained are encouraging us to use our proposed method. 

  

Figure 24. Targets simulated with clutter model 2 (b = 600) using (a) conventional OS-CFAR and
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3.1.3. Simulation with Clutter Model 3

We performed a simulation of the two targets using clutter model 3 (targets drowned
in cluttered normal distribution). The clutter follows a normal distribution with a standard
deviation σ and a mean µ.

During the simulation using the clutter of model 3 with µ = 1 and σ = 1000, we
observed the same limitations on detection performance in both models 1 and 2 (cases
where the parameters have been increased) for the conventional detector, and our proposed
detector has been able to distinguish the targets at M = 33 and M = 40. This situation can be
seen in Figure 25.
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We have summarized the key parameters of our simulations in the following Table 6
in order to show the effect of the clutter on the distance resolution of radar targets. The
results obtained are encouraging us to use our proposed method.

In this scenario, we have presented several Monte Carlo simulations for three different
types of clutter models to demonstrate the performance of the proposed detector. In general,
we observed that the proposed detector was able to reduce the false alarms and find the
two targets used for the simulations, while the conventional detector (OS-CFAR) failed to
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distinguish the existing targets from the false alarms, serving as a benchmark for evaluating
the efficiency of the proposed detectors.

Table 6. Summary of the simulation of scenario No. 1.

Clutter
Model

Clutter Parameters Target Detected by
OS-CFAR Alone

The Target Detected by the
Proposed Detector

The Exact Position
of the Targets

a b σ µ Range (km)
Number of
False
Alarms

Target 1 Target 2
Number
of False
Alarms

Target
Range1

Target
Range2

Clutter-free 84 0 M = 36 M = 43 0
R = 80
km and
M = 36

R = 80.5
km and
M = 43

Weibull
distribution

25 0.9 84 2 M = 36 M = 43 0

200 0.9 84 7 M = 38 M = 43 0

200 0.3 100 7 M = 38 M = 39 0

Rayleigh
distribution

100 84 0 M = 36 M = 43 0

R = 80
km and
M = 36

R = 80.5
km and
M = 43

200 84 5 M = 36 M = 43 0

300 84 5 M = 36 M = 43 0

600 84 5 M = 40 M = 44 ?

600 84 0 M = 36 M = 45 0

600 84 7 M = 39 M = 43 0 R = 80
km and
M = 36

R = 80.5
km and
M = 43

Normal
distribution 1000 1 ? ? M = 33 M = 40 ?

“? means the number is undefined”.

3.2. Scenario 2: Effect on the Number of Targets

The second scenario consists of three targets that have the same parameters (Table 7)
except for the range and azimuth.

Table 7. Properties of the targets in scenario 2.

Scenario of Targets Symbols Target 1 Target 2 Target 3

Distance R 80 km 80.4 km 80 km

Azimuth angle θAZ 10◦ 10◦ 16◦

Speed v 333.33 m/s 333.33 m/s 333.33 m/s

Altitude h 2200 m 2200 m 2200 m

Hidden corner η 200◦ 200◦ 200◦

Radar cross-section RCS 1 m2 1 m2 1 m2

The Doppler frequencies of the three targets (C1, C2, and C3) are shown in Figure 26
to show the separation power of the proposed detector and the conventional detector.

We maintained the same OS-CFAR settings as in the previous scenario 1 for this
simulation.

In Figure 27, we observe that the new detector visibly separates the three targets from
the false alarm at time offsets M = 39, M = 46, and M = 54, but we still produce three false
alarms close to each target. These three target positions will be considered as references for
the rest of the simulations.
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3.2.1. Simulation with Clutter Model 1

We simulated the three targets with clutter model 1 (targets drowned in a cluttered
Weibull distribution), where the targets are drowned in the Weibull distribution with shape
parameter a and scale parameter b chosen arbitrarily such that a = 25 and b = 0.9.

In Figure 28, we observe that the proposed detector successfully distinguishes the
three targets used for the simulation at different positions (M = 41, M = 51, and M = 61).
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We increased the shape parameter a to 250 (a = 250) and maintained the scale parameter b
at 0.9 (b = 0.9) to simulate the three targets. We maintain the same value of the RCS for the
simulations; the temporal and frequency values of the Gabor transform are M = 64 and N = 8
for the first simulation, then M = 64 and N = 32 for the second simulation.

After the simulations, we noticed a difference in the detected energy of the three
targets (Figure 29) at M = 43, M= 52, and M = 62 compared to the previous simulations
(Figure 28). There was a slight shift in the position of the targets in the reference positions
after increasing the shape parameter a to a value greater than 200 (a = 250). In Figure 30,
when we change the value of the frequency of the Gabor transform N from 8 to 32 we
observe that our detector is able to detect only one target at M = 45, while the OS-CFAR
detector distinguished several false alarms with high target amplitudes.
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Figure 30. Targets simulated with clutter model 1 (a = 250 and b = 0.9) using (a) conventional
OS-CFAR and (b) proposed detector (M = 64 and N = 32).

We decreased the shape parameter a to 25 (a = 25) and maintained the scale parameter b
at 0.9 (b = 0.9) to simulate the three targets. We maintained the same value of the RCS for
the simulation and decreased the temporal and frequency values of the Gabor transform to
M = 32 and N = 16.

We observe that the proposed detector fails to distinguish all targets within the same
range when we decrease the temporal and frequency values of the Gabor transform to
M = 32 and N = 16, respectively. Only two targets were distinguished with the proposed
detector at M = 23 and M = 28, as shown in Figure 31.
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3.2.2. Simulation with Clutter Model 2

We realized the simulation of the three targets with clutter model 2 (targets embedded
in Rayleigh distribution clutter) and a scale parameter b = 200, considering the temporal
and frequency values of the Gabor transform to be M = 64 and N = 16, respectively.

In Figure 32, the simulation of the targets with clutter model 2 and a scale
parameter b = 200 reveals that the proposed detector was able to detect only two tar-
gets, instead of all the three targets used for the simulation, at M = 48 and M = 58.
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Figure 32. Targets simulated with clutter model 2 (b = 200) distinguished with proposed detector
(M = 64 and N = 16).

We maintained the scale parameter b = 200 but modified the temporal and frequency
values of the Gabor transform to M = 128 and N = 8 for the first simulation then increased
the scale parameter to b = 250 for the second simulation.

We observe in Figures 33 and 34 that the proposed detector was able to distinguish
the three targets at M = 81, M = 102, and M = 120 when we increased the temporal and
frequency values of the Gabor transform to M = 128 and N = 8. The proposed detector
successfully distinguishes the position of the targets while the OS-CFAR detector was able
to just distinguish one target at M = 83 with low false alarms.
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3.2.3. Simulation with Clutter Model 3

We performed a simulation of the three targets using clutter model 3 (targets drowned
in cluttered normal distribution). The clutter follows a normal distribution with a standard
deviation σ = 400, the temporal and frequency values of the Gabor transform are M = 128
and N = 8 for the first simulation then M = 256 and N = 2 for the second simulation.

We observe in Figure 35 that we encountered a limitation with the proposed detector
when using clutter model 3 with a standard deviation σ equal to 400. In both figures, we
see that the proposed detector is not able to clearly distinguish the three targets and has
several false alarms, which is the same for the OS-CFAR detector. Despite increasing the
temporal value of the Gabor transform to M = 256 and decreasing the frequency value to
N = 2, we still face challenges, and the proposed detector is still not able to distinguish the
three targets from all the false alarms obtained (Figure 36).

The simulation results for scenario No. 2 are summarized in Table 8 below. Knowing
that Nfa represents the number of false alarms, at each detection limitation, for extreme
clutter conditions, we adjusted the time and frequency parameters of the Gabor transform
to enhance target detection. We therefore note that there is a possibility of detecting a target.
On the other hand, for the Nos number of the OS-CFAR detector, we observed that reducing
the Nos improved the ability of the proposed detector to distinguish targets.
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Target Detected by 
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tor Alone 

The Target Detected by the Proposed Detec-
tor 

a b σ μ Range 
(km) 

Nfa Nos Target1 Target2 Target3 Nfa M N q 

Without clutter     82 1  M = 39 M = 46 M = 54 0 64 8 1 

Weibull distribution 

25 0.9   81 9  M = 41 M = 51 M = 61 0 64 8 1 
250 0.9   84 9  M = 43 M = 52 M = 62 0 64 8 1 
250 0.9   ? ?  ? ? M = 45 ? 64 32 1 
25 0.9   ? ?  ? M = 23 M = 28 2 32 16 2 
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Figure 35. Targets simulated with clutter model 3 (σ = 400) using (a) conventional OS-CFAR and
(b) proposed detector (M = 128 and N =8).
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Figure 36. Simulated targets with clutter model 3 (σ = 400) using (a) conventional OS-CFAR and
(b) proposed detector (M = 256 and N =2).

We presented in each scenario several Monte Carlo simulations for the different types
of clutter in order to show the performance of the proposed detector. The conventional
detector (OS-CFAR) has not been able to clearly distinguish all the three targets used in
the simulations; it could not separate existing targets from the clutter involved in the
simulations, while the proposed detector has shown better performance by being able, in
the cases of clutter free, clutter model 1, and clutter model 2, to distinguish the three targets
used for the simulations. Additionally, we observed limitations of our detector in certain
cases related to the clutter models. These cases occurred when we increased the frequency
of the Gabor transform N from 8 to 32 for the Weibull distribution and when the time and
frequency values of the Gabor transform were, respectively, M = 64 and N = 16 for the
Rayleigh distribution, where target separation could not be improved. The same problem
occurred when we had the standard deviation σ equal to 400. As anticipated, increasing
the number of targets affects the efficiency of the proposed detection by decreasing the
probability of detection and increasing the number of false alarms. The obtained results in
the simulations helped to demonstrate the superior performance of the proposed detector
compared to the OS-CFAR detector, even when the targets were very close in distance,
azimuth, and speed.

To better illustrate the difference and progress between the proposed method of
this work and other methods that have been developed previously, a table of method
comparisons (Table 9) has been established.
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Table 8. Summary of the simulation of scenario No. 2.

Clutter Model
Clutter Parameters

Target Detected by
the OS-CFAR

Detector Alone
The Target Detected by the Proposed Detector

a b σ µ
Range
(km) Nfa Nos Target1 Target2 Target3 Nfa M N q

Without clutter 82 1 M = 39 M = 46 M = 54 0 64 8 1

Weibull distribution

25 0.9 81 9 M = 41 M = 51 M = 61 0 64 8 1

250 0.9 84 9 M = 43 M = 52 M = 62 0 64 8 1

250 0.9 ? ? ? ? M = 45 ? 64 32 1

25 0.9 ? ? ? M = 23 M = 28 2 32 16 2

Rayleigh
distribution

200 83 12 10 ? M = 48 M = 58 1 64 16 1

200 83 11 10 M = 81 M = 102 M = 120 0 128 8 1

250 81 12 10 M = 81 M = 102 M = 120 1 128 8 1

Normal distribution
400 10 ? ? 10 ? ? ? ? 128 8 1

400 10 ? ? 10 ? ? ? ? 256 2 1

“? means the number is undefined”.

Table 9. Comparison with the state-of-the-art.

No. Titles Methods Advantages Limits References

1

Clutter Map
Constant False

Alarm Rate Mixed
with the Gabor
Transform for

Target Detection
via Monte Carlo

Simulation

detection method that
uses time-frequency

analysis tools via
clutter map constant

false alarm rate mixed
with the Gabor

transform for target
detection.

• Reduce the impact of clutter
and maintains a low rate of

false alarms.
• Significantly improves the

detection probability and
reduces the false alarm rate.
• Facilitates the extraction of

pertinent target characteristics
and improves differentiation

from clutter.

• Low efficiency
when the number of

targets is increase
and when

parameters linked to
each clutter model

are significantly
increased or reduced.

Actual work

2

Multitarget CFAR
Detection Method

for HF
Over-The-Horizon

Radar Based on
Target Sparse
Constraint in

Weibull Clutter
Background

Ordered statistics
constant false alarm
detector (OS-CFAR):

background
distribution parameter

estimation and the
basic theory of

target/jamming target
identification using

sparse characteristics.

• Can effectively resist
interference from multiple
targets and maintain good

detection performance.
• Can identify strong targets
well, and the weak targets in
the strong target shelter area

can also be recognized.

• In multitarget
scenarios, our

method still has
limitations in

clutter-edge scenes.
• The performance

of the detector
decreases with the
number of targets.

[26]

3

FPGA
Implementation of

Efficient CFAR
Algorithm for
Radar Systems

New decision criterion
and applies the
optimal CFAR

algorithms such as the
modified variable
index (MVI) and

automatic censored
cell-averaging-based

ordered data
variability

(ACCA-ODV).

• Can provide superior
performance for both

homogeneous and
nonhomogeneous

environments.
• The hardware complexity is

very low and the operation
speed is very high.

• Not applicable to
various

environments.
[13]



Appl. Sci. 2024, 14, 2967 25 of 27

Table 9. Cont.

No. Titles Methods Advantages Limits References

4

Neural-Network-
Based Multitarget

Detection
within Correlated

Heavy-Tailed
Clutter

A unified NN model
to process the

time-domain radar
signal for a variety of
signal-to-clutter-plus-
noise ratios (SCNRs)

and clutter
distributions.

• Robustness in the case of
increases in the number of

targets.
• Good performance

advantage for various clutter
“spikiness” conditions in

terms of probability of
detection and detection

threshold sensitivity.

• Less efficiency in
highly cluttered
environments.

[27]

5

The Improved
Constant False

Alarm Rate
Detector Based on

Multiframe
Integration for

Fluctuating Target
Detection in

Heavy-Tailed
Clutter

Multiframe integration
in heavy-tailed clutter
for the radar with high

resolution and even
smaller grazing angle.

• Works well with the
presence of target-like outliers

in the heavy-tailed clutter.
• Capable of alleviating the
masking-effect resorting to

the additive feedback
operation when a target is

large enough to cross several
cells in a multitarget case.

• High
implementation

complexity and non
applicability in

diverse scenarios.

[14]

6

A Multibeam
Seafloor Constant

False Alarm
Detection Method
Based on Weighted
Element Averaging

Weighted element
averaged constant

false alarm detection
method (WCA-CFAR).

• Can effectively reduce the
missing detection probability

and improve the detection
probability.

• Could remove the false
alarm targets in the horizontal

and vertical directions,
achieving a good detection

performance.

• Constant false
alarm detection

problem
under different noise

distribution
conditions.

[15]

7

Deep-Learning-
Based Lightweight

Radar Target
Detection Method

A lightweight target
detection method

based on improved
YOLOv4-tiny (applies
depthwise separable

convolution (DSC) and
bottleneck architecture

(BA) to the
YOLOv4-tiny

network).

• Can quickly and accurately
detect

radar targets against
complicated backgrounds.
• Good results in terms of

detection accuracy.

• Has a larger model
and a slower

detection speed.
[1]

Table 9 shows the methods used and their advantages as well as their limits, to be
able to track the difficulties, improvements, and progress made in terms of impact in the
research on target detection methods. Our proposed detection method, compared to others
(as presented in Table 9), has limitations due to the variation of certain parameters used to
simulate the different types of clutter as well as the extreme scenarios that we have defined;
other methods also have limitations. In some cases, if the configuration of the proposed
method is changed, the separation of targets is limited. Therefore, prior knowledge of
the parameters of the search and targets is essential for the efficient performance of our
proposed method.

4. Conclusions

This research introduces a novel radar detection method to overcome the persistent
challenge of false alarms and accurate target identification in cluttered environments.
The combination of the clutter map constant false alarm rate technique with the Gabor
transform in this method is meant to reduce the number of false alarms generated by the
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radar system and to be able to distinguish the target from the false alarms in cluttered
environments. We have realized several Monte Carlo simulations in two different scenarios
focused on the distance and the number of targets where we used three different clutter
models in each scenario to put the targets in difficult conditions. Also, to test the limits of
the proposed method, some parameters have been increased in some cases and decreased
in others. The proposed method allowed us to reduce the false alarms and detect the targets
in the scenarios, compared with the order statistic constant false alarm rate technique
that showed several false alarms during the simulations, demonstrating the efficiency
and superiority of our method in mitigating clutter interference while maintaining a low
false alarm rate. We observed the successful performance of the proposed method even in
some cases where the parameters were modified, showing its adaptability. Despite certain
limitations, such as computational complexity and parameter sensitivity, our proposed
method serves as a solid foundation for further research and improvement. We suggest,
for further improvement, choosing another time-frequency technique that can be used
to increase the radar resolution. Also, the results of our work lead us to consider other
detection methods for complex environments, such as clutter intensity statistics, which
can obtain a high probability of detection, or the fluorescent nanodiamonds technique for
detection and tracking.
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