KIT | KIT-Bibliothek | Impressum | Datenschutz

On the mechanism of piezoresistance in nanocrystalline graphite

Kumar, Sandeep 1; Dehm, Simone 1; Krupke, Ralph 1,2
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Institut für QuantenMaterialien und Technologien (IQMT), Karlsruher Institut für Technologie (KIT)

Abstract:

Strain sensors are sensitive to mechanical deformations and enable the detection of strain also within integrated electronics. For flexible displays, the use of a seamlessly integrated strain sensor would be beneficial, and graphene is already in use as a transparent and flexible conductor. However, graphene intrinsically lacks a strong response, and only by engineering defects, such as grain boundaries, one can induce piezoresistivity. Nanocrystalline graphene (NCG), a derivative form of graphene, exhibits a high density of defects in the form of grain boundaries. It holds an advantage over graphene in easily achieving wafer-scale growth with controlled thickness. In this study, we explore the piezoresistivity in thin films of nanocrystalline graphite. Simultaneous measurements of sheet resistance and externally applied strain on NCG placed on polyethylene terephthalate (PET) substrates provide intriguing insights into the underlying mechanism. Raman measurements, in conjunction with strain applied to NCG grown on flexible glass, indicate that the strain is concentrated at the grain boundaries for smaller strain values. For larger strains, mechanisms such as grain rotation and the formation of nanocracks might contribute to the piezoresistive behavior in nanocrystalline graphene.


Verlagsausgabe §
DOI: 10.5445/IR/1000170188
Veröffentlicht am 23.04.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für QuantenMaterialien und Technologien (IQMT)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 08.04.2024
Sprache Englisch
Identifikator ISSN: 2190-4286
KITopen-ID: 1000170188
Erschienen in Beilstein Journal of Nanotechnology
Verlag Beilstein-Institut
Band 15
Seiten 376–384
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page