
Logical Clocks and Monotonicity for
Byzantine-Tolerant Replicated Data Types

Florian Jacob
florian.jacob@kit.edu

Karlsruhe Institute of Technology
Karlsruhe, Germany

Hannes Hartenstein
hannes.hartenstein@kit.edu

Karlsruhe Institute of Technology
Karlsruhe, Germany

Abstract
Replicated event logbooks are ubiquitous in decentralized
systems designed to cope with Byzantine-faulty replicas. Re-
cently, there is a growing subclass that only partially orders
its logbooks by hash-linking inscribed events to their causal
past. Thereby, these approaches forgo coordination and con-
sensus to gain scalability and availability under partition. We
investigate these approaches to explicate their underlying
construction by connecting their design to the concept of
logical monotonicity and by providing an abstraction as a
delta-state conflict-free replicated data type. In particular, we
analyze what makes a clock Byzantine-tolerant, and show
that these hash-linked causal logbooks represent Byzantine-
tolerant clocks. Based on these insight, we model real-world
group communication systems as Byzantine monotonic com-
positions, and analyze their monotonicity properties to un-
derstand the guarantees they provide to the application layer.

CCSConcepts: • Software and its engineering→Publish-
subscribe / event-based architectures; Consistency; •
Information systems→ Distributed storage; • Computer
systems organization→ Availability; Fault-tolerant net-
work topologies; Distributed architectures; • Security and
privacy→ Distributed systems security.

Keywords: Autonomous Decentralized Systems, Conflict-
Free Replicated Data Types, Byzantine Fault Tolerance, Log-
ical Clocks, Logical Monotonicity, Matrix, Wesh, IPFS

ACM Reference Format:
Florian Jacob and Hannes Hartenstein. 2024. Logical Clocks and
Monotonicity for Byzantine-Tolerant Replicated Data Types. In
Principles and Practice of Consistency for Distributed Data (PaPoC
’24), April 22, 2024, Athens, Greece.ACM,NewYork, NY, USA, 7 pages.
https://doi.org/10.1145/3642976.3653034

This work is licensed under a Creative Commons Attribution International
4.0 License.
PaPoC ’24, April 22, 2024, Athens, Greece
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0544-1/24/04
https://doi.org/10.1145/3642976.3653034

1 Introduction
Decentralized systems for group communication and data
storage that support availability under partition in open envi-
ronments are typically based on replicated data types. Exam-
ples include the Matrix protocol [31] used by the Element in-
stant messenger, the Wesh protocol [6, 30] used by the Berty
instant messenger, InterPlanetary Filesystem (IPFS)-based
conflict-free replicated data types (CRDTs) like OrbitDB [13,
27], the local-first auth library [7], or the Braid state syn-
chronization protocol [11, 32]. Matrix stands out with its
comparatively wide adoption: more than 100 000 000 users
distributed on more than 100 000 servers are found in the
public federation, and nation states like France and Germany
operate their own private federations for sovereignty rea-
sons [14]. All these examples have in common that they
use partially-ordered causal event logbooks which enable
autonomous replicas, i.e., availability under partition.
In this paper, we investigate these autonomous decen-

tralized algorithms to explicate their underlying construc-
tion: they all use recursive hash commitments to hash-link
events to their causal histories, an approach we call recur-
sive hash histories, to encode their logbooks in a Byzantine
fault-tolerant way. The use of recursive hash histories for
Byzantine fault-tolerant, coordination-free CRDTs has al-
ready been discussed in [16, 20, 27]. We now connect their
design to the concept of logical monotonicity [12] and pro-
vide an abstraction in the form of a delta-state CRDT. While
logically monotonic algorithms are well-known in crash
fault and omission fault environments, we are specifically
interested in the consequences of logical monotonicity in
Byzantine environments, and algorithms to achieve it. In Sec-
tion 3 we show the need for Byzantine monotone logical clocks
to be able to cope with equivocation, formulate the replicated
chronicle problem, and survey solutions to the problem in
the Byzantine setup. We then formalize in Section 4 the re-
cursive hash history approach as a delta-state replicated data
type, which we call a hash chronicle, and show that hash
chronicles are a class of Byzantine-monotonic logical clocks.
In Section 5, we then model various practical systems as hash
chronicle based compositions that are logically monotonic in
Byzantine environments and thereby show that the analysis
of monotonicity builds the foundation for the analysis of
application-layer guarantees.

37

https://orcid.org/0000-0002-5739-8852
https://orcid.org/0000-0003-3441-3180
https://doi.org/10.1145/3642976.3653034
https://doi.org/10.1145/3642976.3653034
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3642976.3653034&domain=pdf&date_stamp=2024-04-22

PaPoC ’24, April 22, 2024, Athens, Greece Florian Jacob and Hannes Hartenstein

2 Fundamentals and Related Work
In decentralized systems, event logbooks or ledgers are often
totally ordered via consensus, so that all replicas agree that
all replicas have the same event chain. In this paper, however,
we investigate “non-consensus based” systems and refer to
them as autonomous decentralized systems [26] (ADS). ADS
forgo coordination as a prerequisite for state progression.
In literature, the ADS class is also called coordination-free,
coordination-avoiding, or local-first. To remain available un-
der partition, operation latency must be independent of the
network latency [19]. Therefore, replicas cannot coordinate
with each other to ensure safety properties, as waiting on
other replicas would violate liveness properties. Specifically,
availability under partition rules out consensus on a total or-
der of events, as usually implemented in distributed ledgers.

Both in crash-fault and Byzantine environments, the ADS
class is characterized by its fundamental limit to confluent in-
variants [4, 21]. An invariant is confluent if when all replicas
locally ensure the invariant, it also holds globally, whereby
it can be ensured under partition. For example, the invariant
that a counter is grow-only is confluent, while the invariant
that the counter is smaller than an upper bound is not.
The CALM (Consistency As Logical Monotonicity) theo-

rem [12] provides a (sufficient) condition for confluent invari-
ance [4] that we build upon in this paper. While the notion
of ‘logical monotonicity’ comes from monotonicity of entail-
ment and the background of Datalog, we simply make use
of the order-theoretic definition of monotonicity: A function
𝑓 : 𝐼 → 𝑂 between two partially-ordered sets (posets) 𝐼 ,𝑂 is
order-preserving, or monotone, if 𝑥 ≤𝐼 𝑦 ⇒ 𝑓 (𝑥) ≤𝑂 𝑓 (𝑦).
For more than one input or output, 𝐼 and𝑂 can be composed
using the Cartesian product 𝐼 = 𝐼1 × 𝐼2. An endomorphism
𝑓 : 𝐼 → 𝐼 is an inflation if 𝑥 ≤𝐼 𝑓 (𝑥). A semilattice homo-
morphism, short morphism, is a monotone function that
preserves the semilattice structure of inputs and outputs,
𝑚 : 𝐼 → 𝑂,𝑚(𝑖1⊔𝐼 𝑖2) =𝑚(𝑖1)⊔𝑂𝑚(𝑖2). Monotone functions
and inflations on join-semilattices provide the ‘mechanics’
of logical clocks and CRDTs [28, 29].
A monotonic distributed algorithm consists of a set of

replicas that execute query, join, and mutate functions as
follows: Queries are monotonic functions that map the cur-
rent replica state to an output value. The join function is a
monotonic inflation that takes two replica states and derives
the least upper bound as joined output, and forms a join-
semilattice with the partially-ordered state space [9]. Mutate
functions take the current replica state and a user operation,
and map them to an element of the state space. To apply a
mutation, replicas join the result with their local state and
send state to remote replicas as input. On receiving remote
state, replicas join it with their local state, and inflate their
state with the output.

In crash-/omission-fault systems, vector time logical clocks
like vector clocks [24] or version vectors [1] are used heavily

as monotonicity mechanisms and for replicating partially-
ordered logs [34]. However, they are not robust against
Byzantine behavior. Systems like Matrix or IFPS are instead
based on hash-linked directed acyclic graphs (HashDAGs), a
Byzantine fault-tolerant data structure available under par-
tition [16]. HashDAGs are a recursive variation of the hash
history approach [18]. Recursive hash histories have been in-
dependently discovered multiple times, in theory [16, 21, 27]
as well as in the practical approaches from Section 1. In the
IPFS context, HashDAGs are called Merkle DAGs and re-
cursive hash histories are called Merkle clocks [27]. Merkle
Search Trees [3] allow efficient reconciliation of HashDAGs.
CRDTs typically fulfill CALM only regarding their inter-

nal state, but provide no guarantees on derived query results.
Recent papers envision to compose CRDTs from causal event
logbooks [5, 33], and to combine CRDT properties of updates
and monotonicity of queries on replicated state [8, 22]. To
follow this vision we show the usefulness of logical mono-
tonicity in analyzing and synthesizing Byzantine-tolerant
ADS and describe protocols as a Byzantine-monotonic com-
position of lattices, logical clocks, morphisms, and monotone
functions, encompassing both state and queries.

Both this and our previous paper [17] are concerned with
Byzantine-tolerant extend-only partially-ordered sets. While
we were agnostic of the partial order in the previous pa-
per, we now focus on causal event sets and analyze their
connection to logical clocks and monotonicity, as well as
demonstrate their use in modeling practical systems.

3 Analysis: Byzantine Monotonicity
3.1 Challenge
To the best of our knowledge, CALM analysis has not yet
been applied in Byzantine environments. However, as amath-
ematical property of functions, the definition of monotonic-
ity does not depend on a fault model, and the CALM theo-
rem also applies to Byzantine environments. We show that
monotonicity is a strong defense against Byzantine behavior.
However, monotonicity of a distributed algorithm might de-
pend on invariants that the sender is trusted not to violate,
as receivers cannot verify them without coordination. For
example, logical clocks are monotone functions 𝑐 on causally-
ordered events: 𝑒1 ⪯ 𝑒2 =⇒ 𝑐 (𝑒1) ≤ 𝑐 (𝑒2). When using a
classical logical clock like vector clocks or Lamport clocks,
monotonicity rests on the assumption that replicas assign
a total order on outgoing events: sequence numbers are a
semilattice and should be only modified by strict inflations.
This assumption cannot be verified without coordination: it
does not hold globally when replicas check for it locally, and
thereby, classical clocks are not Byzantine-monotonic.
We now analyze what it means to be monotonic under

Byzantine faults. Under the assumption of a connected com-
ponent of correct replicas in an asynchronous, unreliable

38

Logical Clocks and Monotonicity for Byzantine-Tolerant Replicated Data Types PaPoC ’24, April 22, 2024, Athens, Greece

network formed by authentic and integrity protected com-
munication channels, e.g., using digital signatures, Byzantine
replicas have three attack vectors: malformation, omission,
and equivocation of messages [15].

Malformationmeans a message from a Byzantine replica
violates a confluent invariant, i.e., an invariant that can be
verified by a replica on its own, like syntactical correctness or
signature validity. Malformed messages can be filtered using
a monotonic function like intersecting the set of received
messages with the set of valid messages. Thus, malformation
is not an issue.
Omission on a message means that a Byzantine replica

adds themessage to the input sets of a strict subset of all repli-
cas that should have received it. In face of non-Byzantine but
unreliable replicas connected via unreliable links, monotonic
algorithms typically use gossip/epidemic broadcast to en-
sure that replica states converge via their join semilattice. In
comparison, Byzantine omission is no additional challenge.

The attack vector that poses a specific challenge in Byzan-
tine environments is equivocation, which means that a
Byzantine replica creates two different valid inputs and adds
them to non-overlapping strict subsets of the set of replicas it
should have sent the input to. With the goal of exploiting an
order dependence in the algorithm, the inputs do not violate
invariants on their own, but may do so in conjunction. This
is the case in the introductory example of classical clocks:
The binding between logical timestamp and event ought to
be unequivocal, but a Byzantine replica can equivocate by
skipping the inflation of logical time to assign the same log-
ical timestamp to different events. Remote replicas cannot
locally verify that a given logical timestamp is unique and
bound to the presented event. Which version of an event
ends up in the output of a replica for the given timestamp
then depends on the order in which the two messages ar-
rive at a replica, and thereby is not monotonic. Thus, the
challenge of Byzantine monotonicity is to ensure local verifi-
ability of invariants which are required for the monotonicity
of functions whose outputs are shared with other replicas.

3.2 Replicated Chronicle Problem
We define the problem of replicating chronicles as a common
abstraction for approaches already present in literature and
practice. Chronicles are partially-ordered event logbooks: on
inscribing an event, they ensure that not only the event itself,
but also its predecessors and the causal relation among them
are immutable and included in the logbook. The replicated
chronicle problem is to maintain replica state so that their lo-
cal chronicle is a lower bound of the conceptual global chroni-
cle of all occurred events, and evolves monotonically towards
the global chronicle. A distributed algorithm for the prob-
lem gets as input the local chronicle state, new events that
occurred at the local replica, and replication state received
from remote replicas, to output the inflated local chronicle
and replication state for other replicas.

The replicated chronicle problem is monotonic, i.e., solv-
able by a monotonic algorithm: Conceptually, a chronicle
only requires a grow-only set of events, a grow-only par-
tial order relation among events, and replication by joining
replica states via set union. Thereby, the core of the problem
is finding a logical clock function that enables efficient and
fault tolerant replication. While the problem itself is inde-
pendent of fault models, we are specifically interested in
studying the problem under the lens of Byzantine-tolerant
monotonicity. We now state notation on events and causality
to formally define chronicles and the replicated chronicle
problem. Solutions are studied in Section 3.3.
An event 𝑒 ∈ E from the set of valid events E in a dis-

tributed system describes the execution of a discrete action
in spatial and causal context, e.g., via a replica identifier
𝑟 ∈ 𝑅 and logical timestamps 𝑡 ∈ T from a logical clock func-
tion 𝑐 : E → T. Causal precedence ⪯ is a partial order on
events [28], an event 𝑒 may only influence an event 𝑒 if and
only if 𝑒 ⪯ 𝑒 . The set of events that causally precede an event
𝑒 is its causal past (𝑒) = {𝑒 ∈ E | 𝑒 ⪯ 𝑒}, the set of events that
causally succeed 𝑒 is its causal future(𝑒) = {𝑒 ∈ E | 𝑒 ⪰ 𝑒}.
While the order in which events occur in distributed sys-
tems is observer-relative, the causal past and future of an
event is observer-invariant. The causal concurrency relation
is defined as 𝑒 ∥ ∥ 𝑒 ⇔ 𝑒 ⪯̸ 𝑒 ∥ ∧ 𝑒 ∥ ⪯̸ 𝑒 . The order of con-
current events is observer-relative, but due to being causally
concurrent, those cannot influence each other.

We call a set of events partially-ordered by their causality
relation a causal event set. A causal event set is downward-
closed if the causal past of every event is also part of the set.
We assume that the causal past of every event 𝑒 contains a
minimum event 𝑒⊥ ∈ E that is older than every other event
in its causal past. We call 𝑒⊥ their genesis event. A downward-
closed causal event set where all events share the same gen-
esis event is downward-directed at the genesis event [17],
and we call such an event set a chronicle. Chronicles are
partially-ordered, i.e., chronicle 𝐶′ is a superset of 𝐶 only if
it includes all events of 𝐶 and their immutable causal past:
𝐶 ⊆ 𝐶′ ⇔ ∀𝑒 ∈ 𝐶 : 𝑒 ∈ 𝐶′ ∧ past (𝑒 ∈ 𝐶) = past (𝑒 ∈ 𝐶′).

The chronicle 𝐶𝑟 of a correct replica 𝑟 ∈ 𝑅 contains its
current knowledge on occurred events and their causal or-
der in the system. Event ordering is defined by the replica
where an event originated: The causal past of an event is
always a lower bound on the origin replica’s knowledge. The
replicated chronicle problem is the problem of spreading and
merging knowledge on events and their order among correct
replicas so that their local chronicles converge to a global
chronicle 𝐶 =

⋃
𝑟 ∈𝑅 𝐶𝑟 . A distributed algorithm solves the

problem if given locally-occurred events and incoming repli-
cation messages as input, it outputs local replica state and
outgoing replication messages, so that any correct replica
from the set of correct replicas 𝑟 ∈ 𝑅 fulfill Chronicality and
Monotonicity as safety conditions, and Eventual Delivery as
liveness condition:

39

PaPoC ’24, April 22, 2024, Athens, Greece Florian Jacob and Hannes Hartenstein

Chronicality The local state 𝐶𝑟 is always a chronicle,
i.e., a causal event set that is downward-closed and
directed at the minimal event 𝑒⊥ of global state 𝐶 .

∀𝑟 ∈ 𝑅,∀𝑒 ∈ 𝐶𝑟 : ∀𝑒 ∈ 𝐶 : 𝑒 ⪯ 𝑒 ∨ 𝑒 ⪯ 𝑒 ∨ 𝑒 ∥ 𝑒 (1)
∀𝑒 ∈ 𝐶 : 𝑒 ⪯ 𝑒 =⇒ 𝑒 ∈ 𝐶𝑟 (2)

∃𝑒⊥ ∈ 𝐶 : ∀𝑒 ∈ 𝐶 : 𝑒⊥ ⪯ 𝑒 (3)

Monotonicity The next local chronicle𝐶′𝑟 is an inflation
of the current 𝐶𝑟 towards global 𝐶 , i.e., the sequence
of replica states is monotonic.

∀𝑟 ∈ 𝑅 : 𝐶𝑟 ⊆ 𝐶′𝑟 ⊆ 𝐶 (4)

Eventual Delivery If an event is included in one local
state, it is eventually included in all local states.

∀𝑒 ∈ E : (∃𝑟 ∈ 𝑅 : 𝑒 ∈ 𝐶𝑟 =⇒ ^∀𝑎 ∈ 𝑅 : 𝑒 ∈ 𝐶𝑎) (5)

Monotonic algorithms are sufficient to fulfill these condi-
tions and thereby to solve the replicated chronicle problem,
as the chronicle state space is a semilattice: The chronicle
state space is the set of downward-closed causal event sets
D(E), and the set of downward-closed subsetsD(𝑋) of any
partially-ordered set 𝑋 is a semilattice. Due to the semilat-
tice state space, a trivial solution of the replicated chronicle
problem is a state-based CRDT. At the core of more efficient
solutions lies a logical clock 𝑐 that encodes the causal order of
an event in way that is not only order-preserving, i.e., mono-
tone, but also order-reflecting, i.e., 𝑐 (𝑒1) ≤ 𝑐 (𝑒2) ⇒ 𝑒1 ⪯ 𝑒2,
to enable decoding the order. An order-preserving and order-
reflecting function is order-embedding, 𝑒1 ≤ 𝑒2 ⇔ 𝑐 (𝑒1) ⪯
𝑐 (𝑒2). From the perspective of monotonic algorithms, logical
clocks are just a morphism from the causal event semilattice
to a logical timestamp semilattice [28].

3.3 Byzantine Monotonic Solutions
Schwarz’ and Mattern’s 1994 seminal paper on causality
analysis [28] includes a logical clock that maps an event to
its causal past, 𝑐𝑝 (𝑒) = past (𝑒). We exemplify this clock with
a chronicle in Fig. 1. While being featured as “[. . .] only of
theoretical interest, because the size of the causal history
sets is of the order of the total number of events [. . .]”, the
clock allows a simple solution to the Byzantine replicated
chronicle problem, as this clock is Byzantine-monotonic [17]:
by defining events as equal only if their causal past is equal,
equivocation leads to separate, concurrent events whose
order, by definition, is observer-relative.
The timestamp size of logical clock 𝑐𝑝 can be improved

using a form of hash commitments: a replica sends a hash di-
gest as commitment on the hash’s preimage, and later sends
the preimage as reveal. Such hash commitments are compu-
tationally binding when used with a collision-resistant hash
function, but intentionally not hiding, so that a replica which
already knows the preimage from another source does not
need the reveal. Hash commitments for improving efficiency
of chronicle replication were first seen in [18], albeit in a

DSN Research Group
KASTEL Institute

Byzantine Monotone Logical Clocks

PaPoC 2024

𝑒⊥

𝑒𝑎 𝑒𝑏 𝑒𝑎 ≼ 𝑒𝑏 ∧ 𝑒𝑎 ∈ max(𝑝𝑎𝑠𝑡 𝑒𝑏 ∖ 𝑒𝑏)

𝑒𝑎 𝑒𝑏 𝑒𝑎 ≼ 𝑒𝑏

𝑒2𝑒1

𝑒4𝑒3

𝑐𝑝(𝑒3) = {𝑒3, 𝑒1, 𝑒⊥}

𝑐ℎ(𝑒3) = {ℎ 𝑒3 , ℎ 𝑒1 , ℎ(𝑒⊥)}

𝑐𝑟ℎ(𝑒3) = ℎ(𝑒3, 𝑐𝑟ℎ(𝑒1))

𝑝𝑎𝑠𝑡 𝑒3 max(𝑝𝑎𝑠𝑡 𝑒3 ∖ 𝑒3)

chronicle 𝐶

timestamps
𝑐(𝑒3)

Figure 1. Example chronicle 𝐶 and logical timestamps as-
signed to event 𝑒3 by causal past 𝑐𝑝 , hash history 𝑐ℎ , and re-
cursive hash history 𝑐𝑟ℎ Byzantine-monotonic logical clocks.

non-Byzantine environment. Kang et al. call this the “hash
history approach for reconciling mutual inconsistency”: they
synchronize chronicles by encoding each event with a hash
commitment on the event, and encode the causality relation
using parent-child-pairs of hashes to link events.
To further reduce timestamp size compared to hash his-

tories, downward-closed sets can be represented compactly
by their maximal elements. Hence, links between an event
and its direct predecessors are sufficient to encode chron-
icles: Given a poset 𝑋 , the function max(𝑋) = {𝑥 ∈ 𝑋 |
∀𝑦 ∈ 𝑋 : 𝑥 ≤ 𝑦 ⇒ 𝑦 ≤ 𝑥} returns the set of maximal el-
ements, and set M(𝑋) = {max(𝑆) | 𝑆 ∈ P(𝑋)} consists
of the sets of maximal elements of all subsets of 𝑋 . The set
M(𝑋) is also a semilattice, and isomorphic to the semilattice
of downward-closed subsets [5]. The isomorphism can be
utilized to compress timestamps of hash histories: Instead
of having parent-child-pairs separate from the event hash
set, an event hash is recursively constructed by hashing the
event together with the set of hashes of the maximal events
in its strict causal past. This way, every event hash is a hash
commitment on both the event itself as well as a recursive
hash commitment on its strict causal past, hence we name
this the recursive hash history approach. A chronicle can
then be compressed to the recursive history hashes of of its
maximal events, while receiving replicas can locally verify
the binding between event hash, event, and its ordering. As
in authenticated data structures [25], recursive hash com-
mitments transferably ensure authenticity and integrity of
the committed-to chronicle in Byzantine environments. In
addition to Byzantine monotonicity, the timestamp size of
(recursive) hash histories is independent of the number of
replicas, which is, compared to vector time, favorable in open
systems with a high number and churn of replicas [3]. How-
ever, in contrast to vector time, hash commitments compress
events and chronicles just for efficient synchronization, they
need to be revealed later in the protocol to reconstruct the
causal order. Without actually synchronizing and revealing
the full history, we cannot say whether one recursive hash
history logical timestamp, i.e., event hash, is in the causal
past or concurrent to another timestamp, unless they are
direct predecessors or the same.

40

Logical Clocks and Monotonicity for Byzantine-Tolerant Replicated Data Types PaPoC ’24, April 22, 2024, Athens, Greece

4 Synthesis: Delta-State Hash Chronicles
Like regular state-based CRDTs, delta-state CRDTs have a
state space lattice. But instead of gossiping their full state,
delta-state CRDTs only gossip a lattice elements that describe
state change deltas [10]. In general, delta-state CRDTs are
only crash fault tolerant. For example, causal 𝛿-CRDTs [2]
are version vector-based chronicles. We now formalize hash
chronicles as Byzantine fault-tolerant delta-state CRDT. Hash
chronicles are based on using recursive history hashing
crh (𝑒) = h(𝑒, {crh (𝑒) | 𝑒 ∈ max(past (𝑒) \ 𝑒)}) as logical
clock: The recursive history hash acts as event timestamp
that allows comparison as soon as its causal past is revealed.

As shown in Algorithm 1, we replicate a local causal event
set 𝐸 with set union as join and subset inclusion as partial
order, and map that set to its downward-closed subset, i.e.,
its embedded chronicle(). For every event 𝑒 , there is a record
of the set of recursive history hashes 𝑡 (𝑒) = {𝑐𝑟ℎ (𝑒) | 𝑒 ∈
max(past (𝑒) \ 𝑒)} of 𝑒’s direct predecessors. The chronicle
is monotonically derived by close_chronicle() based on 𝑡 (𝑒):
starting from the bottom event 𝑒⊥, we iteratively follow 𝑡 (𝑒)
by adding events whose past is included in the current chron-
icle 𝐶 , until only fragmented events whose connection to 𝑒⊥
is yet unknown are left. The monotonic queries can then be
applied on the chronicle, e.g., to query the causal relation
among events, or get the chronicle’s minimal genesis event
bot (𝐶). The set of maximal events now(𝐶) represent the
chronicle’s causal presence – applying the clock function crh
on every element returns the current logical timestamp. In 𝛿-
CRDTs, mutate functions return a 𝛿-update, i.e., an element
of the state semilattice that, when merged with local state,
cause the desired state inflation. The inscribe function is for
adding a new event 𝑒 to the chronicle: It adds the replica’s
current logical timestamp as 𝑡 (𝑒) to the event 𝑒 , and encloses
the event in a set. On inscribe operations, the 𝛿-update is
joined with the current causal event set, and gossiped. Imple-
mentations may batch multiple events together in a 𝛿-update
to increase efficiency. On receiving 𝛿-updates, replicas verify
via assert that events contain at least one recursive history
hash before joining, with the genesis event being the only ex-
ception, and otherwise interrupt the function with an error.
On potential fragmentation of the causal event set, a receiv-
ing replica cannot ensure whether the casual history of a
received event is directed at 𝑒⊥, or whether the causal past
exists at all. To combat fragmentation, replicas periodically
gossip the set of maximal events now(𝐶), whose recursive
history hashes act as chronicle compression. Replicas request
missing events needed to connect fragmented events, but oth-
erwise ignore fragmented events as long as the commitments
on their pasts are not revealed. Dangling fragmented events
decrease efficiency, but do not hurt Byzantine monotonicity
due to the transitivity of causality. Periodic gossiping of the
set now(𝐶) ensures eventual delivery in absence of updates,
and may be optimized using logical timestamps.

Algorithm 1 Delta-State Hash Chronicle (run by each
replica). Given are the universe of events E, the genesis event
𝑒⊥, and the recursive history hash function crh.

state causal event set 𝐸 ∈ P(E) ⊲ P(𝐸) is a semilattice
⊑ (𝐸1, 𝐸2 ⊆ E) : 𝐸1 ⊑ 𝐸2 :⇔ 𝐸1 ⊆ 𝐸2

⊔ (𝐸1, 𝐸2 ⊆ E) : 𝐸1 ⊔ 𝐸2 :⇔ 𝐸1 ∪ 𝐸2

initial 𝐸 ← {𝑒⊥}
query chronicle (𝐸) : 𝐶 = close_chronicle({𝑒⊥}) ∈ D(𝐸)
⊲ return largest downward-closed subset directed at 𝑒⊥

⊲ D(𝐸) denotes downward closed subsets of 𝐸.
function close_chronicle (𝐶 ⊆ 𝐸) : 𝐶′ ∈ D(𝐸)

𝐶† ← {𝑒 ∈ 𝐸 \𝐶 | 𝑡 (𝑒) ⊆ {crh (𝑒) | 𝑒 ∈ 𝐶}}
𝐶′ ← 𝐶 ∪𝐶†
if 𝐶† ≠ ∅ then

𝐶′ ← close_chronicle(𝐶′)
query past (𝑒 ∈ 𝐶) : 𝐶𝑒 ∈ D(𝐶)

𝐶𝑒 ← {𝑒 ∈ 𝐶 | crh (𝑒) ∈ 𝑡 (𝑒)}
𝐶𝑒 ← {𝑒} ∪𝐶𝑒 ∪

⋃{past (𝑒) ∈ 𝐶𝑒 }
query future (𝑒 ∈ 𝐶) : 𝐶𝑒 = (𝐶 \ past (𝑒)) ∪ {𝑒}
query ⪯ (𝑒1, 𝑒2 ∈ 𝐶) : 𝑒1 ⪯ 𝑒2 :⇔ 𝑒1 ∈ past (𝑒2)
query ∥ (𝑒1, 𝑒2 ∈ 𝐶) : 𝑒1 ∥ 𝑒2 :⇔ ¬(𝑒1 ⪯ 𝑒2) ∧ ¬(𝑒2 ⪯ 𝑒1)
query bot (𝐶 ∈ D(E)) : 𝑒⊥ = ⊥(𝐶) ∈ 𝐶
query now (𝐶 ∈ D(E)) : 𝐶max = max(𝐶) ∈ M(𝐶)
⊲M(𝐶) denotes sets of maximal elements of subsets of 𝐶

mutate 𝑖𝑛𝑠𝑐𝑟𝑖𝑏𝑒 (𝑒 ∈ E) : 𝛿 ⊆ E
𝑡 (𝑒) ← {crh (𝑒) | 𝑒 ∈ now(chronicle(𝐸))}
𝛿 ← {𝑒}

on operation(inscribe(𝑒))
𝛿 = inscribe(𝑒)
𝐸′ ← 𝐸 ⊔ 𝛿
gossip(𝛿)

on receive(𝛿 ⊆ E)
assert ∀𝑒 ∈ 𝛿 : 𝑡 (𝑒) ≠ ∅ ∨ 𝑒 = 𝑒⊥
𝐸′ ← 𝐸 ⊔ 𝛿

periodically
gossip(now(chronicle(𝐸)))
request (⋃{𝑡 (𝑒) | 𝑒 ∈ 𝐸′} \ {crh (𝑒) | 𝑒 ∈ 𝐸})

5 Case Study
To practically demonstrate our claim that Byzantine mono-
tonicity is a suitable formalism, we model a number of prac-
tical systems as a decomposition into semilattices and mono-
tonic functions, and verify their Byzantine monotonicity.
The decomposition highlights hash chronicles as common
denominator. Chronicles are used to organize group com-
munication and data storage, thus, an event is a change
to replicated communication history or other shared data,
like group name, membership, or permissions. All cases
studied have in common that a chronicle is topologically

41

PaPoC ’24, April 22, 2024, Athens, Greece Florian Jacob and Hannes Hartenstein

sorted to a causality-preserving event chain. However, in
an autonomous setting, the chain cannot grow monotoni-
cally, as that would require coordination on chain positions.
In contrast, monotonic queries return the sets of predeces-
sors and successors of any event in the chain. To define a
unique topological sorting, the chronicle is composed with
other semilattices using the lexicographical product. The
lexicographic product ⊠ composes two partial orders by giv-
ing the first component a higher priority in comparison,
and only if equal, the second component is considered [5]:
(𝑥1, 𝑦1) ⊑ (𝑥2, 𝑦2) = 𝑥1 ⊏ 𝑥2 ∨ (𝑥1 = 𝑥2 ∧ 𝑦1 ⊑ 𝑦2).
OrbitDB [13] is a peer-to-peer CRDT database library.

As a practical implementation of the concepts of Sanjuan et
al. [27], it is based on IPFS for data storage and gossiping. Or-
bitDB’s foundation is their OpLog, a hash chronicle of CRDT
operations. The OpLog acts as foundation to compose com-
plex CRDTs from the included operations. For topological
ordering, OpLogs use extended Lamport clocks [23], which
assign a natural number to an event 𝑒 which correspond
to the maximal length of a chain of events between 𝑒⊥ and
𝑒 , in addition to a replica identifier from a totally-ordered
set 𝑅≤ . The composition of causal event sets with Lamport
timestamps E⪯ ⊠ (N≤ ⊠𝑅≤) inherits the chain property from
the timestamps only if the clock function 𝑐 : E→ (N ⊠ 𝑅) is
injective. Byzantine replicas can break injectivity through
equivocation of two events with the same Lamport times-
tamp, whereby Byzantine replicas can force an order depen-
dency in the sense that which events come first in the event
chain depends on their arrival order at a specific replica. De-
pending on the application, e.g., when concurrent operations
are commutative, this inconsistency might be tolerable.

Wesh is a decentralized peer-to-peer communication pro-
tocol [6], used by the Berty instant messenger [30]. While
there are plans to independently implement hash chronicles,
Wesh is currently based on OrbitDB’s OpLog. Per commu-
nication group, Wesh uses two chronicles: one for data like
chat messages, one for metadata like permissions. The inten-
tion is to be able to employ different retention policies for the
chronicles, maximizing privacy for the data chronicle and
security for the metadata chronicle. However, administrative
events and regular events need a common, shared causality
relation [35], i.e., need to share a chronicle for secure en-
forcement. In conjunction with equivocation on the Lamport
clock, this has the potential of Byzantine non-monotonicity.
Local-first Auth [7] is a library for autonomous decen-

tralized authentication, authorization, and group manage-
ment, intended for collaborative applications. Authorizations
are stored in hash chronicles. Concurrent events are treated
by application-specific sort and filter functions. It is up to
domain specific logic to ensure Byzantine monotonicity of
topological sorting, i.e., avoid equivocation opportunities
to ensure that the set of predecessors and successors in the
chain is monotonic. Filters may introduce non-monotonicity
in form of order dependencies as well.

Matrix is a federated protocol for communication and
data storage [31]. Matrix stores administrative events and
regular events in the same hash chronicle. Matrix employs a
multi-level topological sorting algorithm, that we now de-
compose to analyze Byzantine monotonicity. The event set
E𝑟 ⊊ E consists of all administrative events that may revoke
privileges. The first sorting criterion is the permission level
of the creator at the time of creating the event, 𝑙 : E → Z.
Sorting concurrent events descending by permission level
if they are in E𝑟 , i.e., 𝑒 ∈ E𝑟 ↦→ 𝑙 (𝑒), 𝑒 ∉ E𝑟 ↦→ ⊥, leads to
composition E⪯ ⊠ Z≥ . For any event, there is an adminis-
trative event that authorized it. Concurrent non-revocation
events are ordered increasingly by the length of the chain
of authorizing administrative events up to the genesis event,
which leads to E⪯ ⊠ Z≥ ⊠ N≤ . All events are then ordered
increasingly by the wall-clock timestamp𝑤 : E→ T of the
event’s origin replica, and finally by the recursive history
hash 𝑐𝑟ℎ : E→ N, so we end up with E⪯⊠Z≥⊠N≤⊠T≤⊠N≤ .
As receiving replicas cannot verify the wall-clock times-

tamp, from a theoretical point of view, it is of no significant
difference to Lamport clocks in Byzantine environments in
the other cases (while potentially being more meaningful to
show to users in practice). However, under the assumption
that crh : E→ N is “practically” injective due to the collision
resistance of the hash function, the chain property of the
hash images is inherited to the composition. Thereby, in con-
trast to the other approaches, the consistency of the event
chain is order-independent, i.e., the set of predecessors and
successors in the chain is Byzantine-monotonic.

Summary: Under the lens of the Byzantine monotonicity
concept, not all of the analyzed systems can be considered
as sufficiently Byzantine monotone. Thus, the case study
demonstrated the suitability and value of the proposed con-
cept, and forms a basis for further analysis and system design.

6 Conclusion
Partially-ordered append-only event logbooks are a com-
mon foundation in autonomous decentralized systems. In
this paper, we formalized event logbooks as “hash chronicle”
replicated data type that achieves state and query monotonic-
ity under Byzantine faults. The foundation of this data type
is a Byzantine-tolerant logical clock. We showed that the con-
cept of monotonicity facilitates the description and analysis
of deployed Byzantine fault tolerance systems by modeling
them as composition of lattices and monotone functions.
Our analysis case study also revealed ‘subtle’ differences
that might significantly affect application layer guarantees.

Acknowledgments
This work was funded by the Helmholtz Pilot Program Core
Informatics.We like to thankMarc Shapiro for his suggestion
to study the monotonicity of hash chronicles, and Matthew
Weidner for his thoughts on chronicle-based composition.

42

Logical Clocks and Monotonicity for Byzantine-Tolerant Replicated Data Types PaPoC ’24, April 22, 2024, Athens, Greece

References
[1] Paulo Sérgio Almeida, Carlos Baquero, Ricardo Gonçalves, Nuno

Preguiça, and Victor Fonte. 2014. Scalable and Accurate Causal-
ity Tracking for Eventually Consistent Stores. In Distributed Appli-
cations and Interoperable Systems, Vol. 8460. Springer, Heidelberg.
https://doi.org/10.1007/978-3-662-43352-2_6

[2] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. 2018. Delta
State Replicated Data Types. J. Parallel and Distrib. Comput. 111 (Jan.
2018). https://doi.org/10.1016/j.jpdc.2017.08.003

[3] Alex Auvolat and François Taïani. 2019. Merkle Search Trees: Efficient
State-Based CRDTs in Open Networks. In 2019 38th Symposium on Re-
liable Distributed Systems (SRDS). https://doi.org/10.1109/SRDS47363.
2019.00032

[4] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M.
Hellerstein, and Ion Stoica. 2014. Coordination Avoidance in Database
Systems. Proceedings of the VLDB Endowment 8, 3 (Nov. 2014). https:
//doi.org/10.14778/2735508.2735509

[5] Carlos Baquero, Paulo Sérgio Almeida, Alcino Cunha, and Carla Fer-
reira. 2017. Composition in State-based Replicated Data Types. Bulletin
of the European Association for Theoretical Computer Science 123 (Oct.
2017). https://run.unl.pt/handle/10362/93093

[6] Berty Technologies. 2023. Wesh Protocol. Technical Report. https:
//berty.tech/docs/protocol

[7] Herb Caudill. 2024. LF-Auth. https://github.com/local-first-web/auth
[8] Kevin Clancy and Heather Miller. 2017. Monotonicity Types for

Distributed Dataflow. In Proceedings of the Programming Models and
Languages for Distributed Computing (PMLDC ’17). ACM, New York.
https://doi.org/10.1145/3166089.3166090

[9] Neil Conway, William R. Marczak, Peter Alvaro, Joseph M. Hellerstein,
andDavidMaier. 2012. Logic and Lattices for Distributed Programming.
In Proceedings of the Third ACM Symposium on Cloud Computing (San
Jose, California) (SoCC ’12). ACM, Article 1. https://doi.org/10.1145/
2391229.2391230

[10] Vitor Enes, Paulo Sérgio Almeida, Carlos Baquero, and João Leitão.
2019. Efficient Synchronization of State-Based CRDTs. In 2019 IEEE
35th International Conference on Data Engineering (ICDE). https://doi.
org/10.1109/ICDE.2019.00022

[11] Braid Working Group. 2024. Braid: Interoperable State Synchroniza-
tion. https://braid.org/

[12] Joseph M. Hellerstein and Peter Alvaro. 2020. Keeping CALM: When
Distributed Consistency Is Easy. Commun. ACM 63, 9 (Aug. 2020).
https://doi.org/10.1145/3369736

[13] Mark Robert Henderson, Samuli Pöyhtäri, Vesa-Ville Piiroinen, Juuso
Räsänen, Shams Methnani, and Richard Littauer. 2022. The OrbitDB
Field Manual. (Aug. 2022). https://github.com/orbitdb/field-manual/
blob/main/dist/Book.pdf

[14] Matthew Hodgson. 2023. Matrix 2.0. https://archive.fosdem.org/2023/
schedule/event/matrix20/

[15] Florian Jacob, Saskia Bayreuther, and Hannes Hartenstein. 2022. On
CRDTs in Byzantine Environments. In Sicherheit 2022 : Sicherheit,
Schutz und Zuverlässigkeit (Karlsruhe, Germany). Gesellschaft für In-
formatik, Bonn. https://doi.org/10.18420/sicherheit2022_07

[16] Florian Jacob, Luca Becker, Jan Grashöfer, and Hannes Hartenstein.
2020. Matrix Decomposition: Analysis of an Access Control Approach
on Transaction-based DAGs without Finality. In Proceedings of the 25th
ACM Symposium on Access Control Models and Technologies (SACMAT
’20). ACM, New York. https://doi.org/10.1145/3381991.3395399

[17] Florian Jacob and Hannes Hartenstein. 2023. On Extend-Only Di-
rected Posets and Derived Byzantine-Tolerant Replicated Data Types.
In Proceedings of the 10th Workshop on Principles and Practice of Con-
sistency for Distributed Data (PaPoC ’23). ACM, New York. https:
//doi.org/10.1145/3578358.3591333

[18] Brent Byunghoon Kang, R. Wilensky, and J. Kubiatowicz. 2003. The
Hash History Approach for Reconciling Mutual Inconsistency. In 23rd

International Conference on Distributed Computing Systems, 2003. Pro-
ceedings. https://doi.org/10.1109/ICDCS.2003.1203518

[19] Martin Kleppmann. 2015. A Critique of the CAP Theorem. https:
//doi.org/10.48550/arXiv.1509.05393 arXiv:1509.05393 [cs]

[20] Martin Kleppmann. 2022. Making CRDTs Byzantine Fault Tolerant. In
Proceedings of the 9thWorkshop on Principles and Practice of Consistency
for Distributed Data (Rennes, France) (PaPoC ’22). ACM, New York.
https://doi.org/10.1145/3517209.3524042

[21] Martin Kleppmann and Heidi Howard. 2020. Byzantine Eventual
Consistency and the Fundamental Limits of Peer-to-Peer Databases.
arXiv:2012.00472 [cs] (Dec. 2020). arXiv:2012.00472 [cs]

[22] Shadaj Laddad, Conor Power, Mae Milano, Alvin Cheung, Natacha
Crooks, and Joseph M. Hellerstein. 2022. Keep CALM and CRDT
On. Proceedings of the VLDB Endowment 16, 4 (Dec. 2022). https:
//doi.org/10.14778/3574245.3574268

[23] Leslie Lamport. 2019. Time, Clocks, and the Ordering of Events in a
Distributed System. ACM. https://doi.org/10.1145/3335772.3335934

[24] Friedemann Mattern. 1988. Virtual Time and Global States of Dis-
tributed Systems. In Proceedings of the International Workshop on Par-
allel and Distributed Algorithms (Chateau de Bonas, France). Elsevier
Science Publishers B. V. (North-Holland). http://vs.inf.ethz.ch/publ/
papers/VirtTimeGlobStates.pdf

[25] Andrew Miller, Michael Hicks, Jonathan Katz, and Elaine Shi. 2014.
Authenticated Data Structures, Generically. ACM SIGPLAN Notices 49,
1 (Jan. 2014). https://doi.org/10.1145/2578855.2535851

[26] K. Mori. 1993. Autonomous Decentralized Systems: Concept, Data
Field Architecture and Future Trends. In Proceedings ISAD 93: Inter-
national Symposium on Autonomous Decentralized Systems. https:
//doi.org/10.1109/ISADS.1993.262725

[27] Hector Sanjuan, Samuli Poyhtari, Pedro Teixeira, and Ioannis Psaras.
2020. Merkle-CRDTs: Merkle-DAGs Meet CRDTs. https://doi.org/10.
48550/arXiv.2004.00107 arXiv:2004.00107 [cs]

[28] Reinhard Schwarz and Friedemann Mattern. 1994. Detecting Causal
Relationships in Distributed Computations: In Search of the Holy
Grail. Distributed Computing 7, 3 (March 1994). https://doi.org/10.
1007/BF02277859

[29] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
2011. Conflict-Free Replicated Data Types. In Stabilization, Safety,
and Security of Distributed Systems, Xavier Défago, Franck Petit, and
Vincent Villain (Eds.), Vol. 6976. Springer, Heidelberg. https://doi.org/
10.1007/978-3-642-24550-3_29

[30] Berty Technologies. 2023. Wesh Network. https://wesh.network/
[31] The Matrix.org Foundation CIC. 2023. Matrix Specification v1.9. Tech-

nical Report. https://spec.matrix.org/v1.9/
[32] Michael Toomim, Greg Little, Rafie Walker, Bryn Bellomy, and Seph

Gentle. 2023. Braid-HTTP: Synchronization for HTTP. Internet Draft
draft-toomim-httpbis-braid-http-04. Internet Engineering Task Force.
https://datatracker.ietf.org/doc/draft-toomim-httpbis-braid-http

[33] Matthew Weidner, Huairui Qi, Maxime Kjaer, Ria Pradeep, Benito
Geordie, Yicheng Zhang, Gregory Schare, Xuan Tang, Sicheng Xing,
and Heather Miller. 2023. Collabs: A Flexible and Performant CRDT
Collaboration Framework. https://doi.org/10.48550/arXiv.2212.02618
arXiv:2212.02618 [cs]

[34] Gene T.J. Wuu and Arthur J. Bernstein. 1984. Efficient Solutions to the
Replicated Log and Dictionary Problems. In Proceedings of the Third
Annual ACM Symposium on Principles of Distributed Computing (PODC
’84). ACM, New York. https://doi.org/10.1145/800222.806750

[35] Elena Yanakieva, Michael Youssef, Ahmad Hussein Rezae, and Annette
Bieniusa. 2021. On the Impossibility of Confidentiality, Integrity and
Accessibility in Highly-Available File Systems. In Networked Systems
(Lecture Notes in Computer Science), Karima Echihabi and RolandMeyer
(Eds.). Springer International Publishing, Cham. https://doi.org/10.
1007/978-3-030-91014-3_1

43

https://doi.org/10.1007/978-3-662-43352-2_6
https://doi.org/10.1016/j.jpdc.2017.08.003
https://doi.org/10.1109/SRDS47363.2019.00032
https://doi.org/10.1109/SRDS47363.2019.00032
https://doi.org/10.14778/2735508.2735509
https://doi.org/10.14778/2735508.2735509
https://run.unl.pt/handle/10362/93093
https://berty.tech/docs/protocol
https://berty.tech/docs/protocol
https://github.com/local-first-web/auth
https://doi.org/10.1145/3166089.3166090
https://doi.org/10.1145/2391229.2391230
https://doi.org/10.1145/2391229.2391230
https://doi.org/10.1109/ICDE.2019.00022
https://doi.org/10.1109/ICDE.2019.00022
https://braid.org/
https://doi.org/10.1145/3369736
https://github.com/orbitdb/field-manual/blob/main/dist/Book.pdf
https://github.com/orbitdb/field-manual/blob/main/dist/Book.pdf
https://archive.fosdem.org/2023/schedule/event/matrix20/
https://archive.fosdem.org/2023/schedule/event/matrix20/
https://doi.org/10.18420/sicherheit2022_07
https://doi.org/10.1145/3381991.3395399
https://doi.org/10.1145/3578358.3591333
https://doi.org/10.1145/3578358.3591333
https://doi.org/10.1109/ICDCS.2003.1203518
https://doi.org/10.48550/arXiv.1509.05393
https://doi.org/10.48550/arXiv.1509.05393
https://arxiv.org/abs/1509.05393
https://doi.org/10.1145/3517209.3524042
https://arxiv.org/abs/2012.00472
https://doi.org/10.14778/3574245.3574268
https://doi.org/10.14778/3574245.3574268
https://doi.org/10.1145/3335772.3335934
http://vs.inf.ethz.ch/publ/papers/VirtTimeGlobStates.pdf
http://vs.inf.ethz.ch/publ/papers/VirtTimeGlobStates.pdf
https://doi.org/10.1145/2578855.2535851
https://doi.org/10.1109/ISADS.1993.262725
https://doi.org/10.1109/ISADS.1993.262725
https://doi.org/10.48550/arXiv.2004.00107
https://doi.org/10.48550/arXiv.2004.00107
https://arxiv.org/abs/2004.00107
https://doi.org/10.1007/BF02277859
https://doi.org/10.1007/BF02277859
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-642-24550-3_29
https://wesh.network/
https://spec.matrix.org/v1.9/
https://datatracker.ietf.org/doc/draft-toomim-httpbis-braid-http
https://doi.org/10.48550/arXiv.2212.02618
https://arxiv.org/abs/2212.02618
https://doi.org/10.1145/800222.806750
https://doi.org/10.1007/978-3-030-91014-3_1
https://doi.org/10.1007/978-3-030-91014-3_1

	Abstract
	1 Introduction
	2 Fundamentals and Related Work
	3 Analysis: Byzantine Monotonicity
	3.1 Challenge
	3.2 Replicated Chronicle Problem
	3.3 Byzantine Monotonic Solutions

	4 Synthesis: Delta-State Hash Chronicles
	5 Case Study
	6 Conclusion
	Acknowledgments
	References

