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ABSTRACT: Surface modification is an attractive strategy to
adjust the properties of polymer membranes. Unfortunately,
predictive structure−processing−property relationships between
the modification strategies and membrane performance are often
unknown. One possibility to tackle this challenge is the application
of data-driven methods such as machine learning. In this study, we
applied machine learning methods to data sets containing the
performance parameters of modified membranes. The resulting
machine learning models were used to predict performance
parameters, such as the pure water permeability and the zeta
potential of membranes modified with new substances. The
predictions had low prediction errors, which allowed us to generalize them to similar membrane modifications and processing
conditions. Additionally, machine learning methods were able to identify the impact of substance properties and process parameters
on the resulting membrane properties. Our results demonstrate that small data sets, as they are common in materials science, can be
used as training data for predictive machine learning models. Therefore, machine learning shows great potential as a tool to expedite
the development of high-performance membranes while reducing the time and costs associated with the development process at the
same time.
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■ INTRODUCTION
Industrial, agricultural, and pharmaceutical production for
human needs have created an enormous water demand and
stressed water reserves. Therefore, the development of
alternative water sources and improved water recycling
methods is an urgent task for humanity,1,2 to achieve the
sustainable development goals of the United Nations and to
provide clean water for everyone.3 Membrane processes are
regarded as a promising technique for the purification of water
streams because they often have reasonable recovery rates and
low energy demand.4,5 Since polymeric membranes were
introduced in water treatment applications in the 1950s, their
utilization can be observed for effectively eliminating bacteria,
viruses, macromolecules, organic compounds, and salts from
contaminated feed streams.6 Therefore, membrane technology
is promising in several applications, not only in waste and
process water treatment but also in the purification of solvents
and gas separation.1,7 However, the membrane surface
properties often limit their performance. Therefore, surface
modification is an attractive strategy to customize the
properties of the polymer membranes. Reducing unwanted
effects such as fouling8 or improving the general membrane
performance9 are common reasons to modify membranes.
The primary focus of this study was to examine the

modification of polymer membranes through the introduction
of positively charged amine groups. Amine-modified mem-

branes showed great potential to adsorb and remove toxic
metals10−12 and textile dyes13,14 from water. These water
contaminants can cause significant harm and serious illness if
consumed long term.15 Therefore, the complete elimination of
these pollutants from water is necessary. Functionalization of
membranes for those specific applications usually improves the
purification performance but also influences other material and
device properties. Therefore, the design of amine-modified
polymer membranes is highly complex as it involves balancing
multiple factors, such as the type and concentration of the
amine substance, the pristine membrane, and the process
parameters. Unfortunately, predictive structure−processing−
property relations are barely known, making it hard to estimate
these properties before experimental preparation and charac-
terization of the membranes. Therefore, the optimization of
modified membranes or the modification of membranes using
new substances and strategies is often a time- and cost-
intensive process.
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One possibility to tackle the complexity of similar issues is
the application of machine learning.16,17 Machine learning is a
type of artificial intelligence that enables computers to learn
patterns from data and subsequently make decisions based on
these patterns.18 To do this, machine learning approaches
usually use large data sets. However, in chemistry and material
science, data sets are often limited to a few dozen or hundreds
of data points, which leads to the fear of inaccurate
predictions.19 Nevertheless, machine learning showed excellent
predictive capability in this field as well.20

One membrane application for which the machine-learning
models were used in the past is the preparation of organic
solvent nanofiltration (OSN) and reverse osmosis (OSRO)
membranes. For example, Ignacz et al.21 used graph neural
networks to identify the most critical solvent parameters
affecting the rejection of solutes by polyimide OSN
membranes. Other works focused on the optimization of
operation conditions,22 performance parameters such as
permeance and rejection,23−25 and solvent−membrane inter-
actions.26 When validated with experimental data, the applied
machine-learning models often showed excellent accuracy and
predictive capability.17,27

In this study, we applied machine learning methods to data
sets containing performance parameters of electron beam
modified membranes. This method can be used to graft
organic molecules on membranes to improve their perform-
ance.28−30 The aim was to prepare membranes with a positive
surface charge and a highly pure water permeance at the same
time. Herein, we used previously recorded data sets to explore
relationships among the chemical structure of the modification
substance, the parameters used in the modification process,
and the resulting properties of the modified membranes.
Additionally, we used the data-driven approach to predict the
properties of membranes modified with new modification
substances. In this study, we showed that instead of starting an
independent and time-consuming optimization process,
machine learning can be a tool to predict the properties of a
modified membrane quickly and accurately before preparation.
Thus, selecting promising membranes with high expected
performance before preparation is a promising approach to
save time and resources.

■ EXPERIMENTAL SECTION
Materials. All acrylic amine compounds (N-[3-(dimethylamino)-

propyl]-methacrylic amide (DMAPMA), methacrylic acid-2-(dime-
thylamino)-ethyl ester (DMAEMA), 2-trimethylammoniumethyl
methacrylate chloride, [2-(acryloyloxy)ethyl]trimethylammonium
chloride, (3-acrylamidopropyl)trimethylammonium chloride, 3-
(methacryloylamino) propyl-trimethylammonium chloride, 2-
(dimethylamino)ethyl acrylate, 2-aminoethylmethacrylamide hydro-
chloride, acrylamide, and methacrylamide), and dimethylformamide
(DMF) were purchased from Sigma-Aldrich (St. Louis, MO, USA). γ-
Butyrolactone (GBL) was obtained from Merck KGaA (Darmstadt,
Germany). Polyacrylonitrile (PAN) powder (>99% acrylonitrile,
homopolymer, Mw = 200 000 g/mol) was obtained from DOLAN
(Kelheim, Germany). All chemicals were used without further
purification.
Membrane Preparation. Two different PAN membranes were

prepared from a procedure previously described by Scharnagl et al.31

In brief, PAN powder (8 or 10 wt %, respectively) was dissolved in
dimethylformamide (DMF) and γ-butyrolactone (GBL). Afterward,
the solution was coated onto a nonwoven support using a doctor
blade with a gap height of 200 μm. The membranes were drop-casted
in tap water at room temperature, washed with water, and dried.

The membranes were named “M1” (prepared from 8 wt % PAN
solution) and “M2” (prepared from 10 wt % PAN solution). The
pristine membranes were characterized thoroughly as described in the
Supporting Information. Retention analysis and SEM images are
shown in Figures S1, and S2 (Supporting Information page 3). A brief
overview of the characteristics of the pristine membranes is shown in
Table 1.

Membrane Modification. The membranes�M1 and M2�were
coated with amine-containing polymers using electron-beam mod-
ification. The modification substances used were either acrylates or
acrylamides containing an amino group. Thereby, solutions (250 mL
each) containing 0.5, 1.0, 2.5, 5.0, 10.0, 15.0, or 20.0% (w/v) of the
respective modification substances were prepared. The 15 × 20 cm2

membrane pieces were immersed in the respective solution for 15
min. Afterward, the membranes were transferred to a roll-to-roll
electron beam irradiation system.32 The wet, immersed membranes
were exposed to electron beam irradiation using either a dose of 150
or 200 kGy (160 keV acceleration voltage, 2 m/min conveyor speed).
No significant increase in the temperature was detected during the
irradiation process. After irradiation, the membranes were washed in
deionized water twice for 30 min each and dried at room temperature.
A complete list of the prepared membranes is displayed in Table S1

(Supporting Information pages 4−7).
Membrane Characterization. The modified membranes were

characterized by measuring the pure water permeance (PWP) and
zeta potential of the membranes.
The PWP was measured in dead-end mode using an inbuilt device.

It was measured using a circular membrane piece with a diameter of
2.0 cm corresponding to an active area (A) of 1.68 cm2. Ultrapure
water was used. The permeance (P) was calculated using the
following equation:

=P V
p tA (1)

where ΔV is the difference in volume, Δp is the transmembrane
pressure (here usually, 2 bar), Δt represents the time interval (1 min),
and A is the membrane area. The permeance is given in LMH/bar
(L/(m2 h bar)). From the resulting time-dependent permeance curve,
the permeance value after 5 min of measurement was used in this
study.
The zeta potential was measured using a SurPASS Eco 3

instrument from Anton Paar (Graz, Austria). The streaming potential
method was used. The electrolyte solution used was a 0.01 M NaCl
solution. The pH was adjusted by using 0.05 M NaOH and 0.05 M
HCl. All solutions were prepared by using ultrapure water. The
membranes were rinsed with the electrolyte solution, until the
membrane was completely swollen. The measurements were
performed in the pH range from 3 to pH 9. At each pH, the zeta
potential was measured four times.
Data Preparation and Feature Selection. The concentration of

the modification solution (continuous values between 0.5 and 20.0),
the used membrane (binary value, i.e., M1 was assigned 1 and M2 was
assigned 0), and the dose of the electron beam irradiation (categorical
value, 150 or 200) were used as features to describe the preparation
process. Additionally, the modification substance was described using
the pKa value of the amine group (continuous values between 3.8 and

Table 1. Characterization of Pristine Membranes M1 and
M2

M1 M2

water contact angle(deg) 52.6 ± 1.8 45.1 ± 1.7
surface pore size(nm) 11.0 ± 6.6 9.5 ± 4.5
surface porosity(%) 9.5 ± 0.6 4.7 ± 0.4
pure water permeance (LMH/bar) 2008 ± 142 1182 ± 39
molecular weight cutoff(kDa) 600 504
surface roughnessRa (nm) 9.29 ± 2.81 5.89 ± 0.76
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14.0). For the calculation of the pKa values, the software MolGpKa
was used.33 Quaternary amine groups were assigned a pKa value of 14.
Additionally, the modification substances’ acrylic functional groups
were described by two features. The first feature (binary) described
whether the substance is an acrylate (hence, an acrylamide). The
second feature (also binary) described whether the acrylic group was
methylated (1) or not (0). A complete list of the substances with the
assigned features is given in Table S2 (Supporting Information page
8).
The zeta potential and pure water permeance (PWP) values of the

modified membranes were used as labels for the machine-learning-
based material design approach. As common in experimentally
collected data sets, the number of samples per characterization
method varied. 52 membranes were used for the PWP predictions and
42 for the zeta potential predictions. In the case of the PWP, each
membrane corresponded to one data point containing 6 features
(concentration, pKa, dose, acryl group, methyl group and membrane)
and one output value (PWP after 5 min). Since the zeta potential is
pH dependent, the pH value was used as an additional feature in this
case. This feature was necessary to enable the prediction of the full
zeta potential curves. Each zeta potential curve of a membrane
contained about 60 measurements. Therefore, the data set of the zeta
potential contained 2144 data points but only 42 independent
membrane samples. Seven features were used in each data point
(concentration, pKa, dose, acryl group, methyl group, membrane, and
pH) and one output value (zeta potential).
Application of Regression Models. As a baseline, regression

models from the Scikit-learn library were trained by using the
gathered data. The first step was to import the respective data sets.
The data sets are available in Glass et al.34 Afterward, the input
features and labels (zeta potential or permeance, respectively) were
split into a training and a test subset. 15% of the data were randomly
placed in the test data set, and 85% were randomly placed in the
training data set. The data were scaled using the sklearn Stand-
ardScaler. Five regressors (random forest, gradient boosting, Ada
boost, extra tree, and linear regression) from Scikit-learn were used to
fit the data. After training on the training set, the features of the test
data set were used to predict the output values (PWP or zeta
potential, respectively) using the fitted regressors. The feature
importance was calculated for all regressors except for the linear
regression to plot the effect of each feature on the output values. The
mean absolute errors and coefficients of determination (R2) of the
predicted output values compared with the output test data) were
calculated. Additionally, the standard deviation of the labels of the
output test subset was calculated.
The gradient boost regressor showed the highest determination

coefficient for both data sets. Therefore, this regressor was used for
further validation. A leave-one-out cross-validation approach was
used. In this validation method, one sample of the data set was used as
the validation set and was predicted using all of the other values as
training data for the regression. This was repeated for all samples, and
the predicted values were compared with the measured ones.

Application of a Neural Network. In the second step, the data
were used to train a neural network using Keras library.35 The data
sets were imported, and the features and labels were scaled using the
Scikit-learn StandardScaler. The data were used to train a neural
network containing two hidden layers. The first layer contained 64
neurons; the second layer contained 16 neurons. Both layers were
fully connected layers. The model was fitted, and the SHAP values for
all features were calculated.36

To evaluate the neural network, two new data sets were created,
excluding 3 representative samples of each original data set.34 The
excluded samples were:

− 1% acrylamide on M1 prepared at 200 kGy
− 5% methacrylamide on M1 prepared at 200 kGy
− 2.5% ammoniumethyl acrylate on M2 prepared at 200 kGy
The model was trained using the entire new training data set. 100

independent models with different weight initializations were trained.
With each model, the zeta potential (depending on pH) or the PWP,
respectively, of all three excluded samples were predicted. The
averages and standard deviations of the 100 predictions were
calculated and plotted against the experimentally measured values.
The training curves (of each training loop) for the training and

validation data are plotted in Figure S4 (Supporting Information page
9).
Prediction of New Modified Membranes Using the Neural

Network. Finally, the averages of the trained neural networks were
used to predict the PWP and zeta potentials of membranes modified
with new modification substances. Thus, two new substances with
properties similar to those of the previously used modification
substances were used. The substances were N-[3-(dimethylamino)-
propyl]-methacrylic amide (DMAPMA) and methacrylic acid-2-
(dimethylamino)-ethyl ester (DMAEMA). The zeta potentials and
the PWPs of both membranes modified with the two substances were
predicted depending on the irradiation dose and the concentration.
Zeta potential values and PWPs of all 120 membranes using either
DMAEMA on membrane M1 or DMAPMA on M2 were predicted
for modifications at different irradiation doses and with different
concentrations. The same range of dose and concentration values as
those in the training data was used.
The predictions were experimentally validated by preparing a total

of eight new membranes. Four membranes were prepared by
modifying M1 with DMAEMA, and the other four membranes were
prepared by modifying M2 with DMAPMA. The membranes were
chosen using application-relevant criteria. The first criterion was that
the membranes should have a high PWP (≥550 LMH/bar). The
second criterion was that the membranes should have a high zeta
potential (at a neutral pH). We have chosen membranes with a) the
highest zeta potential predicted by the neural network, b) a positive
zeta potential using the lowest concentration, and c) the highest zeta
potential using a dose of 200 kGy. Additionally, one membrane at a
random concentration and dose value within the predicted range was
prepared. After preparation, the membranes were analyzed, and the
predicted and measured values were compared.

Figure 1. Importance of the chosen features on the regression of the (a) PWP and (b) zeta potentials shown for four different regressors.
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■ RESULTS AND DISCUSSION
Regression Model. In general, structure−processing−

property relationships are essential for the development of
modification strategies. In the first part of this study, we used
different regression models to analyze the relationships
between the properties of modified membranes with the
structure of the modification substances and the parameters
used in the modification process, such as the electron beam
irradiation dose (“Dose”) or applied concentration (“c”). In
Figure 1, the feature importance of the respective features for
four regression models is displayed. It was used to identify the
features with the most influence on both properties�PWP
and zeta potential. The importance of each feature was affected
by the model used. However, the feature importance showed a
trend similar to that for all four used models.
The PWP (Figure 1a) was mainly affected by the

concentration of the modification substance (“c”) and the
pristine membrane (“Membrane”). These two features’
importance was highest and above 0.20 for all four regressors.
This means they had the highest impact on the PWP of the
modified membranes. Additionally, the methyl feature showed
high importance (above 0.15). Therefore, methylated com-
pounds led to membranes with a different PWP compared to
unmethylated modification substances. The electron beam
irradiation dose (“Dose”) and the acryl functionality of the
modification substance (“Acryl”) had low importance (<0.10)
and, therefore, a low impact on the PWP of the modified
membranes. The zeta potential, on the other hand (Figure 1b),
was mainly impacted by the pH value of the measurement.
While not a parameter of the membrane modification, the pH
value naturally affects the zeta potential. In general, a decrease
in the pH value leads to an increase in the zeta potential
because of the increase in the proton concentration. The
feature with the second highest importance was the pKa value
(>0.20). Therefore, the pKa value of the amine group had the
highest impact on the resulting zeta potential. Another feature
with high importance was the concentration (>0.15) of the
modification substance. All other features had either a low
impact (importance of the acryl and methyl group <0.10), or
almost no impact on the zeta potential (importance of the
membrane and dose <0.05).
These results showed that the chemical structure of the

modification substances affected the resulting properties of the
membrane. Whether the structure contained, for example, an
acrylic group or an acrylamide group was important for the
PWP of the modified membranes, in particular. However, a
features’ importance of the PWP or the zeta potential was not
necessarily linked to a chemical or physical phenomenon that
affected the properties. It represents a statistical relation
between the input and output values. Therefore, concluding
any physicochemical mechanisms from these data was not
feasible. Nevertheless, the importance of the features can help
to understand which of the chosen features and parameters
likely affected the properties of the modified membranes.
Therefore, new modification substances with specific chemical
structures and functional groups or new modification strategies
can be chosen based on these data.
To evaluate the quality of the regression models, we

calculated the coefficients of determination (R2), and the mean
absolute errors of the regressors were calculated. The
respective values are displayed in Table 2. In general, the
coefficient of determination is high if a model replicates the

outcome well. In this study, all regressors (except the linear
regressor for the zeta potential) showed high determination
coefficients of 0.7 or higher, reaching 0.96 for the gradient-
boosting regression model. The R2 values were high compared
to other studies using small data sets, where ensemble methods
often showed determination coefficients between 0.5 and
0.9.37−39 This showed that regression models were capable of
replicating the output values. The standard deviation of the
PWP test data set was 763.2 LMH/bar. The mean absolute
errors of all of the regressors were at least 50% smaller. The
gradient boosting model showed a mean absolute error of
122.0 LMH/bar, which was significantly lower than the other
values. Similar results were obtained for the zeta potential. The
standard deviation of the test set was 16.1 mV. The gradient
boosting model again showed the lowest mean absolute error
(2.1 mV) and highest R2 (0.967). The mean absolute errors of
the gradient boosting model for both�PWP and zeta
potential�were in the same range as the typical mean
absolute error of the respective measurements. As seen in
previous studies before,39 the tree-based ensemble methods
showed good prediction potential even for small data sets.
The gradient boosting regressor showed the highest

determination coefficient and the lowest mean absolute error
for both output values. Therefore, the leave-one-out cross-
validation was used to analyze the quality of the model further.
The results are displayed in Figure 2. The predicted values of
PWP and zeta potential were in good accordance with the
respective experimental values, and there were no extreme
outliers in the prediction. The training performance is shown
in Figure S3 (Supporting Information page 9).
This showed that the collected data were usable for machine

learning approaches, even though the amount of data was
relatively small. Additionally, it showed that the features were
chosen well and were suitable for describing the output values.
At the same time, it is important to note that the zeta-potential
prediction, specifically in the leave-one-out cross-validation
case, is a pure interpolation task, as there are always training
data points that are “close” to the test data points. Since the
first results using regression models were very promising, the
application of neural networks as another machine learning
tool was evaluated. Therefore, the collected data were applied
to the training of a neural network.
Neural Network. Regression models are, in general,

intuitive, interpretable, and effective for capturing nonlinear
relationships within data. Tree-based models, such as decision
trees, random forests, and gradient boosting machines, make
predictions by recursively partitioning the input space into
regions and assigning a constant value to each region.

Table 2. Coefficient of Determination (R2) and Mean
Absolute Error of the Training Data for the PWP and the
Zeta Potential Using the Five Regressors

regressor
R2

(PWP)

mean absolute
error (PWP)
(LMH/bar)

R2 (zeta
potential)

mean absolute
error (zeta

potential) (mV)

random
forest

0.820 289.3 0.943 2.8

gradient
boost

0.963 122.0 0.967 2.1

ada boost 0.863 250.1 0.784 6.5
extra tree 0.728 351.4 0.899 3.7
linear
regression

0.749 310.7 0.550 8.7
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Regression models are widely used in a variety of fields.40

While they are perfectly suitable for small- to medium-sized
data sets due to their simplicity and interpretability, neural
networks excel in handling complex, large-scale, and high-
dimensional data. Neural networks, inspired by the structure of
the human brain, consist of interconnected layers of artificial
neurons. Neural networks are capable of learning complex
hierarchical representations of data, enabling them to capture
intricate patterns and relationships. Therefore, they may be
better suited for generalization of the data and predictive
purposes.41

Similar to the regression models, the neural network was
evaluated by calculation of the coefficients of determination
(R2) and the mean absolute errors. In both cases, the neural
network was slightly superior to the regression models. The
coefficients of determination (0.968 for PWP and 0.984 for
zeta potential, respectively) were marginally higher compared
to the ones of the regression models (Table 2), and the mean
absolute errors were lower (105.9 LHM/bar for the PWP and
1.6 mV for the zeta potential).
To better understand the predictions made by the neural

networks, the Shapley values of the features were calculated
(Figure 3). Shapley values are a method to display a feature’s
contribution to the output values.
Figure 3a shows the effect of the features on the PWP by

using the neural network. The results showed a similar trend,
as displayed in Figure 1a. Again, the membrane, the methyl
feature, and the concentration had the highest impact.
However, the Shapley values allowed for a more detailed
insight. They showed whether the output values were high or
low depending on the values of the respective feature value.
As seen in Figure 3a, the PWP was high for membrane M1

(feature value of 1; shown in pink) and for the modification
substance that was methylated (methylated substances had a
value of 1; shown in pink). On the contrary, it was low for
membrane M2 (feature value = 0; shown in blue). Addition-
ally, the higher the concentration of the modification
substance, the lower was the PWP. The pKa value and the
acryl feature had a lower and less unambiguous impact on the
model’s output. The irradiation dose finally had a minor
impact. However, low dose values (150 kGy) led to slightly
higher PWP compared with high values (200 kGy).
Figure 3b displays the impact of the feature values on the

zeta potential. The concentration and the pKa value had the

highest impact. In both cases, high values led to high zeta
potential. Again, the impact of the pH value was not
considered since it was not a process parameter. The other
features had only a minor impact on the zeta potential.
However, the presence of the methyl or amide feature in the
modification substance led to slightly lower zeta potential
values.
The Shapley values helped us to interpret the predictions

made by the neural networks. Additionally, they can help in
choosing new modification substances in the future. For
example, in this study, choosing an acrylic compound instead
of an acrylamide can be beneficial since membranes modified
with substances having an acrylic functional group had a
slightly higher zeta potential as well as high PWPs. Addition-

Figure 2. Experimental values compared to the values predicted by the gradient boosting model using the leave-one-out cross-validation for (a)
PWP and (b) the zeta potential. The gray line displays a linear plot with a slope of 1, representing an ideal prediction. Mean absolute error (MAE)
is shown in the respective lower right corner.

Figure 3. Impact on the model output displayed using Shapley values
of all features for (a) PWP and (b) zeta potential. Feature values are
displayed using a color gradient and sorted from highest to smallest
impact. With pink representing the highest value, purple intermediate
values (if applicable) and blue the lowest. Features were sorted by
impact from top to bottom.
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ally, choosing a substance with a high pKa value can be of
advantage. Membranes that were modified with those
substances had a high zeta potential, while PWP was not
affected significantly.
For further validation, three representative membranes’ data

were erased from the data sets and the PWP as well as the zeta
potential were predicted using the neural network. The
predicted zeta potentials compared with the predicted values
are presented in Figure 4. The modification substances used
for the predictions were also present in the training data.
Therefore, the predicted zeta potentials were in good
accordance with the measurements for all three examples.
The standard deviations by the 100 independently initialized
neural networks were slightly underestimating model errors,
which could be improved through bootstrapping or uncertainty
calibration methods. However, the shape of the measurement
curve, the isoelectric point (IEP, pH where the zeta potential is
zero), and the magnitude of the zeta potential were all
represented well by the prediction. Additionally, in Figure 5,
the predicted PWPs were compared with the actual measured
PWPs. Again, the predicted PWPs were in good accordance
with the measured values. This showed that the neural network
was well-suitable for predictive purposes.
Prediction of New Modified Membranes Using the

Neural Network. Besides understanding structure−process-
ing−property relationships, predicting the properties of new
and unknown materials is the most interesting application for
machine learning approaches in material science. Therefore,
modification of the membranes with two new substances was
predicted using the neural network in this study. The two
substances chosen were DMAEMA and DMAPMA because
they were similar to the modification substances of the
previously recorded data sets but not part of them.
Concentration, doses and pKa values of the chosen substances
were in the same range as in the training data. This means that

no extrapolation of the feature values was performed. In total,
120 modified membranes using DMAEMA on membrane M1
and 120 modified membranes using DMAPMA on membrane
M2 were predicted. Preparing and analyzing all of these
membranes would require several months of work and
substantial amounts of material and equipment time. However,
computing the neural network for the prediction of the zeta
potential and PWP was possible in less than 1 h. This showed
the huge time-saving ability of employing machine learning
approaches.
The zeta potentials (at pH = 7) and PWPs of the newly

predicted membranes are displayed in Figure 6. The predicted
zeta potentials (Figure 6a,b) were in both cases notably higher

Figure 4. Zeta potential curves predicted by neural network compared to the experimentally measured zeta potential curves for three known
modification substances in new concentrations (a) acrylamide on M1 (1 wt %), (b) metharcylamide on M1 (5 wt %), and (c) ammoniumethyl
acrylate on M2 (2.5 wt %). All modifications were predicted and prepared at 200 kGy. Red dots display the measurement, and blue dots display the
mean predicted value. The displayed predicted values were averages of predictions by 100 independently trained neural networks. Error bars
(black) display the standard deviation of the predictions (n = 100). Mean absolute error (MAE) is shown in the respective lower left corner.

Figure 5. PWP predicted by neural network (blue) compared to
experimentally measured PWP (red) for three known modification
substances in new concentrations. The displayed predicted values
were averages of 100 predictions. Error bars (black) display the
standard deviation of all predictions (n = 100). The mean absolute
error of the predictions was 273.9 LMH/bar.
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at high concentrations and low irradiation doses. Other studies
using amine substances showed an increase in zeta potential
after electron-beam modification of the membranes as
well.42−44 Breite et al. showed an increase in zeta potential
from −43 to +34 mV modifying a polyether sulfone membrane
using tetraethylpentamine at a dose of 200 kGy. Therefore, the
trend predicted by the model was in accordance with former
studies.
In the case of DMAEMA on M1 (Figure 6a), the lowest

concentration with a positive zeta potential was 6%
modification of the substance at an irradiation dose of 150
kGy. At irradiation, doses of 190 kGy and above, no positive
zeta potential were predicated at all. The highest zeta potential
was predicted for a membrane prepared using 14%
modification substance at 150 kGy.
In the case of DMAPMA on M2, the highest zeta potential

was predicted for a membrane modified with 14% DMAPMA
at 150 kGy. 6% modification substance (at 150 kGy) was the
lowest concentration necessary to prepare a membrane with a
positive zeta potential. Again, no membrane modified with 190
kGy or more was predicted to gain positive zeta potentials.
The PWPs of the newly predicted membranes (Figure 6c,d)

decreased with increasing concentration of the modification
substance and irradiation dose in both cases. The general trend
was seen in former studies using acrylic compounds in
electron-beam treatment of membranes as well.45−47 For

example, Xu et al.47 presented a decrease in PWP from 7.7
LMH/bar to 4.7 LMH/bar when increasing the acrylate
concentration from 5 wt % to 15 wt %. However, it should be
noted that a direct comparison to former works in which
membranes were modified was not possible due to varying
performance and materials of the original membranes and
different modification regimes. Therefore, further studies need
to be conducted to analyze a greater variety of membranes and
modification methods.
The membranes using DMAPMA on M2 for the

modification had significantly lower predicted PWPs (500−
950 LMH/bar) compared with the one using DMAEMA on
M1 (1300−2200 LMH/bar). Using these predictions,
application-relevant modified membranes were identified, and
each of four membranes using both new modification
substances were prepared. The zeta potentials and the PWPs
of the newly modified membranes were measured and
compared to the predictions. The results were displayed in
Figures 7− 9.
In Figure 7 the comparison between the predicted and

measured zeta potential curves of DMAEMA on membrane
M1 are displayed. The predictions were in good agreement
with the measured values for low and intermediate
concentrations of the modification substance (Figure 7b,d).
The mean absolute error of these predictions was low (below
10 mV). The magnitude of the zeta potential and the IEP were

Figure 6. Prediction of zeta potential at pH = 7 (a and b) and PWP (c and d) for membranes modified with two new substances depending on the
applied dose and concentration. The zeta potential and PWP were predicted either for DMAEMA on membrane M1 (a and c) or for DMAPMA on
M2 (b and d). The zeta potential values are displayed using a color gradient from red (positive values) to blue (negative values). The PWPs are
displayed using a color gradient from green (high values) to blue (low values). The displayed predicted values were averages of 100 predictions.
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predicted very well. In the alkaline pH range, the prediction
was slightly lower than the measurement. Additionally, the
predicted curves were smoother compared to the actual
measurement because of the averaging of the predictions. This
did not precisely reflect the behavior of the measurements
precisely. However, the predictions were still close to the
measured values and predicted the trends of the curves.

Figure 7a shows the zeta potential curves of the modified
membrane with the highest predicted zeta potential. In this
case, the predicted curve was significantly higher than the
measured one. This can be explained by the relatively small
data set and the limited number of membranes prepared with
concentrations above 10% within the training data. A similar
behavior can be seen in Figure 7c. The membrane used in this
example was prepared using 20% of the modification

Figure 7. Measured zeta potential curves (red) of the M1 membrane modified with a) 14 wt % DMAEMA at 150 kGy, b) 6 wt % DMAEMA at
150kGy, c) 20 wt % DMAEMA at 200 kGy, and d) 9 wt % DMAEMA at 170 kGy compared to the predicted curves (blue). The displayed
predicted values were averages of 100 predictions. Error bars (black) display the standard deviation of all predictions (n = 100). Mean absolute
error (MAE) is shown in the top right corner.

Figure 8. Measured zeta potential curves (red) of the M2 membrane modified with a) 15 wt % DMAPMA at 150 kGy, b) 7 wt % DMAPMA at
150kGy, c) 18 wt % DMAPMA at 200 kGy, and d) 11 wt % DMAPMA at 170 kGy compared to the predicted curves (blue). The displayed
predicted values were averages of 100 predictions. Error bars (black) display the standard deviation of all predictions (n = 100). Mean absolute
error (MAE) is shown in the respective upper right corner.
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substance, which represented the edge of the training data.
Herein, the predicted data were slightly lower than the
measured zeta potential curves. However, considering the
small amount of data and the limited number of training data
for high concentrations, all predictions were satisfactory.
Figure 8 shows the predicted and measured zeta potential

curves for the second set of modified membranes�DMAPMA
on membrane M2. Similar trends, as in Figure 7, were
observed. The two membranes prepared at intermedium
concentrations (Figure 8b,d) were predicted excellently
(mean absolute error of around 8 mV). The two membranes
prepared at higher concentrations (Figure 8a,c) had slightly
higher or, respectively, lower concentrations than the predicted
values. To avoid those predictions differing from the actual
measurement in the future, adding the new data and recording
more underrepresented data will help to improve future
predictions.
The comparison between the measured and predicted PWPs

for all newly modified membranes is displayed in Figure 9. All

predictions were close to the measurements. The standard
deviations of the predictions were in the same order of
magnitude as the standard deviations of the measurement. The
high precision of these predictions showed the extraordinary
potential of machine learning approaches for material science
studies, in particular for membrane design and improvement.
Even with the low amount of data used in this study (only 42
or respectively, 52 data points, i.e., membrane samples), the
predictions matched consistently while the time consumption
of the predictions was very short (<1 h).

■ CONCLUSIONS
We showed that small data sets (as they are common in
materials science) can be used as training data for machine
learning models and enable the reliable prediction of
membrane properties. Performance properties, such as pure
water permeance and zeta potential of membranes modified
with new substances not contained in the training data, were
predicted accurately. The predictions were excellent, especially

for interpolated values of experimental conditions for the
electron-beam-based modification approach, e.g., irradiation
dose and concentration. Additionally, the machine learning
methods were able to identify the impact of the substance’s
chemical structures and process parameters on the resulting
membrane properties.
The newly predicted modification substances had chemical

properties comparable to those of the training data. Therefore,
the predictions were highly reliable. Discrepancies between the
predictions and the experimental values were present only at
the edges of the trained data space. To avoid this issue in the
future, the less well-predicted data generated in this work
should be added to the training data. Additionally, more data
in these under-represented regions should be added. There-
fore, more data from other membrane modifications (e.g.,
further functional groups, other membrane materials, or
additional membrane modification schemes) should be
added to improve the predictions of the membrane properties
even more systematical. Nevertheless, the predictions were
consistently accurate in this study.
In general, using regression models first is recommended

when exploring the potential of a small data set because they
are easily interpretable and require low computational time.
Additionally, using the results predicted from small data sets to
identify regions with promising values and interpolate new
values is preferred, rather than determining the highest values
or predicting values at the edges of the predicted space. The
predictions were made in a short computational time with
satisfying accuracy. In conclusion, the application of machine
learning in membrane modification is a promising tool for
accelerating the development of membranes with improved
performance and saving time and costs during the develop-
ment process.
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GBL γ-butyrolactone
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M1 membrane 1 (prepared from 8 wt % PAN

solution)
M2 membrane 2 (prepared from 10 wt % PAN

solution)
MAE mean absolute error
PAN polyacrylonitrile
PWP pure water permeance
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