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CHAPTER 1

Introduction

The analysis of fluids and related systems is an area of great historical significance in
mathematics, physics and engineering. Despite their long history (the Euler equations of
fluid dynamics were introduced in 1755 and are sometimes referred to as the “second
partial differential equation ever written” [BČCK, chapter 4]), many fundamental
questions of existence, uniqueness and stability of the equations of fluid dynamics are
still open problems [NRŠ96, KŠ14, JŠ14]. These famously include the Millennium
problem of the wellposedness of the Navier-Stokes equations

∂tv + v · ∇v +∇p = ν∆v,
div(v) = 0,
(t, x) ∈ R+ × Ω,

and the rigorous mathematical understanding of turbulence. In this context also questions
of non-uniqueness using methods of convex integration [Gro73, Spr10, MŠ03] have
been a very active field of research, culminating in the resolution of Onsager’s conjecture
in a series of works by Isett, Székelyhidi, De Lellis, Vicol and Buckmaster [BDLSJV19,
Ise17, BDLSJ16].

This thesis concerns itself with the stability and long-time behavior of fluid flows.
That is, we ask whether given a particular solution and a small perturbation at an
initial time, does the perturbation remain small for all times or can small perturbations
lead to large changes? More precisely, we consider kinetic equations such as the Euler,
Navier-Stokes, Boussinesq or Vlasov-Poisson equations and study the long-time behavior
of solutions which are initially close to stationary solutions. As we discuss in the following,
here one observes a dichotomy: on the one hand very strong stability results hold for the
linearized equations. On the other hand, nonlinear stability results require very strong
assumptions (regularity between C∞ and analyticity). This sharp contrast in stability is
due to chains of resonances in the equations, where high and low frequency perturbations
repeatedly interact (by echoes, see Chapter 2), causing large growth of the nonlinear
dynamics as compared to the linear dynamics.

This habilitation thesis is a cumulative work based on the following articles:

(1) Christian Zillinger, On Echo Chains in Landau Damping: Traveling Wave-like
Solutions and Gevrey 3 as a Linear Stability Threshold, Annals of PDE 7, 1
(2021), 2021. [Zil21a]

(2) Yu Deng, Christian Zillinger, Echo chains as a linear mechanism: Norm infla-
tion, modified exponents and asymptotics, Archive for Rational Mechanics and
Analysis (2021), 2021. [DZ21]
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6 1. INTRODUCTION

(3) Christian Zillinger, On the Boussinesq equations with non-monotone temperature
profiles, Journal of Nonlinear Science, volume 31, Article number: 64 (2021),
2021. [Zil21d]

(4) Christian Zillinger, On Enhanced Dissipation for the Boussinesq Equations,
Journal of Differential Equations, Volume 282, Pages 407-445, 2021. [Zil21c]

(5) Christian Zillinger, On stability estimates for the inviscid Boussinesq equations.
arXiv preprint arXiv:2209.01950 (2022). [Zil22]

(6) Christian Zillinger, On echo chains in the linearized Boussinesq equations around
traveling waves. arXiv preprint arXiv:2103.15441 (2021). To appear in SIAM
Journal on Mathematical Analysis. [Zil21b]

(7) Xian Liao and Christian Zillinger, On variable viscosity and enhanced dissipation.
arXiv preprint arXiv:2110.10976 (2021). [LZ21]

(8) Christian Zillinger, On geometric and analytic mixing scales: comparability and
convergence rates for transport problems, Pure and Applied Analysis 1.4 (2019):
543-570, 2019. [Zil19]

Let us comment on some of the thesis’ main achievements:
• Traveling waves, sharp stability estimates and norm inflation. As a novel
perspective in investigating the above outlined dichotomy between the low
and high regularity stability results for the linear and nonlinear dynamics, we
introduce the notion of traveling wave solutions. These provide a major tool
to systematically understand instabilities in fluid systems. In particular, we
show that resonances or “echoes”, which are commonly considered a purely
nonlinear effect [MV11, BM15a, DM23, Bed20], are already a feature of
the linearized problem around waves. Using these waves, we further obtain a
sharp characterization of stability, norm inflation and even infinite time blow-up
in optimal spaces.
• A hierarchy of stability notions. We show that there is a hierarchy of different
notions of asymptotic stability (see Section 2.2) and construct solutions, which
exhibit stability with respect to the “physical” notion of stability, but infinite time
blow-up with respect to the “scattering” notion [Zil21a, DZ21]. Furthermore,
we identify new resonance mechanisms in the Boussinesq equations with partial
dissipation [Zil21b] and establish qualitatively improved stability estimates for
the inviscid Boussinesq equations [Zil22].
• Comparing geometric and analytic notions of mixing. Complementing the
investigation of mixing as a mechanism for nonlinear resonances, in [Zil19] we
provide a new perspective on notions of mixing commonly used in the literature.
In particular, we show that two notions which had previously been considered
distinct are actually comparable after natural adjustments (see Chapter 3).
• Mixing enhanced dissipation for fluid systems. Last but not least, we investigate
how mixing in combination with (full) dissipation can have major stabilizing
effects, which are robust enough to persist in coupled systems and stratified
regimes [Zil21b, LZ21].

Each article’s main results are discussed and summarized in the respective sections
of this thesis and a copy of each article is included in Chapter 6. The article [Zil21b]
has been accepted for publication, but as of the time of writing has not yet appeared
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in print. An author’s copy of the accepted version is thus attached. The recent articles
[Zil22, LZ21] have been submitted, but as of the date of this thesis have not yet been
accepted.

The remainder of this thesis is structured as follows:
• In Section 1.1 we provide a short review of classical linear and nonlinear stability
results for the Euler equations. We also discuss the contrast between strong
linear stability but apparent nonlinear instability of the Couette flow, which is
known as the Sommerfeld paradox.
• Section 1.2 discusses (phase-)mixing as a stabilizing mechanism but also source
of norm inflation.
• In Chapter 2, we introduce traveling waves as a key tool to understand instability
in fluid systems. Here we summarize and connect the main results of a series
of articles for the Boussinesq equation [Zil22, Zil21b], the Euler equations
[DZ21] and Vlasov-Poisson equations [Zil21a].
• In Chapter 3 we discuss different notions of “mixing” used in various mathe-
matical communities. In particular, as a main result of [Zil19] we show that
“geometric” and “analytic” notions are comparable when adjusting for precision
and low frequency oscillation.
• In Chapter 4 we discuss enhanced dissipation in systems [Zil21d, Zil21c, LZ21],
where mixing and dissipation constructively interact to result in dissipation on
improved time scales.
• Finally, in Chapter 5 we discuss some of the main results and provide an outlook
on future research topics.

1.1. Classical stability theory and the Sommerfeld paradox

In this thesis, we investigate the long time behavior of fluid systems and, in particular,
the effects of mixing and instability. As an important, prototypical fluid system, in this
section we provide a short review of classical stability results for the Euler equations of
fluid dynamics:

∂tv + v · ∇v +∇p = 0,
div(v) = 0,

(t, (x, y)) ∈ R× Ω.

Here Ω is a two (or three) dimensional domain, v denotes the velocity of the fluid inside
this domain and p is the pressure. The condition div(v) = 0 models the incompressibility
of the fluid. In case of a bounded domain Ω ⊂ Rd these equations have to be augmented
with boundary conditions, where a common choice is given by non-penetration conditions.
That is, there should be no flow in the normal direction n:

v|∂Ω · n = 0.

A natural starting point for the investigation of the long-time behavior of solutions is to
first identify stationary solutions and then investigate the behavior of perturbations to
these stationary solutions.
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Here a distinguished class is given by “one-dimensional” solutions, i.e. solutions
depending only on one spatial variable, which leads to so-called shear flows:

v(t, x, y) = (U(y), 0), p = 0.
Different vertical layers of the fluid move with different constant speed and if these speeds
are different, then these layers are sheared apart. A distinguished shear flow is given by
the case when U(y) is affine, that is, after normalization,

U(y) = y,

which is also a stationary solution to the Navier-Stokes equations for all values of the
viscosity. We remark that for the inviscid problem, in contrast any profile U(y) yields a
stationary solution.

Heuristically, while any profile U(y) is a stationary solution, in view of applications
and experiments it seems reasonable that a particular focus should be on solutions which
are “stable”. In particular, in physical applications we expect to mainly observe such
solutions which are stable under small perturbations. However, it is a priori not clear
which notion of stability or smallness of perturbations should be used and different
notions may be appropriate depending on the underlying (de)stabilizing effect. As three
prototypical examples we may here consider:

• Poiseuille flow U(y) = y2 as a strictly convex shear flow.
• Kolmogorov flow U(y) = cos(y), which satisfies a nonlinear convexity-like condi-
tion.
• Couette flow U(y) = y, which is strictly monotone, but not convex.

Stronger results may be obtained for flows which exhibit multiple of these properties
such as U(y) = ey being monotone and convex.

Since shear flows are independent of time and of the horizontal spatial variable x, they
are particularly amenable to linear stability theory (however, nonlinear stability turns
out to remain a very challenging problem). Hence, classical stability results consider the
stability of the linearized problem

∂tv + U(y)∂xv + v2U
′′ +∇p = 0.(1)

More specifically, one makes the ansatz of “wave-like” perturbations [SH00]

v(t, x, y) = ṽ(y)ei(kx−kct),(2)
where k ∈ R denotes the spatial frequency and c ∈ C is the complex phase speed (and
the physical perturbation is given by <(v)). Here, we for simplicity of notation consider
the two-dimensional case. In three dimensions one may add an additional factor eiσz
with σ ∈ R.

Classical stability results consider stability in terms of exponentially growing pertur-
bations in this specific class (2).

Definition 1.1 (cf. [SH00], Section 2.2). We say that a shear flow U(y) is linearly
or spectrally stable if there are no non-trivial solutions to (1) of the form (2) with
=(kc) > 0.

We remark that, while this convention is standard, such solutions should be understood
as “not unstable in a specific sense” rather than being stable. Indeed, we will see in
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later results that such linearly stable shear flows may still exhibit growth of (linearized)
perturbations at algebraic rates, which also underlies nonlinear norm inflation and
instability results.

The two most famous classical stability theorems with respect to the notion of spectral
stability are due to Rayleigh [Ray79] (in 1879) and a slightly improved version by Fjørtoft
[Dra02] (1950) and argue by contradiction. The following theorem summarizes both
results for the case of a finite channel Ω = R× [−1, 1]:

Theorem 1.2. Let U ∈ C2([−1, 1]) be a given shear flow. Then the following
conditions are necessary conditions for U to be spectrally unstable:

• Rayleigh’s criterion: there exists a point ys with U ′′(ys) = 0.
• Fjørtoft’s criterion: there exists a point ỹ such that

U ′′(ỹ)(U(ỹ)− U(ys)) < 0.

The first criterion, in particular, implies that any strictly convex (or concave) shear
flow is spectrally stable, which for instance includes the Poiseuille flow

U(y) = y2.

The criterion due to Fjørtoft further allows to deduce the stability of certain flows, which
are not strictly convex such as

U(y) = y2j

with j ∈ N, j ≥ 2. That is, Fjørtoft’s criterion requires that critical points cannot be
minima (but could be maxima or saddle points).

The following proof is adapted from Section 2.2 of [SH00].

Proof of Theorem 1.2. For simplicity of presentation in the following we discuss
the two-dimensional case in a finite channel R× [−1, 1] with non-penetration boundary
conditions. The case of infinite, periodic or three-dimensional channels can be treated
analogously.

The linearized equations around the shear flow are given by

∂tv + U(y)∂xv + (v2U
′, 0) +∇p = 0.

Computing the divergence of this equation and using that div(v) = 0, the pressure can
thus be obtained as the solution of

div(∇p) = −2U ′∂xv2.

Hence, we may rewrite (4) in self-contained form as

((∂t + U∂x)∆− U ′′∂x)v2 = 0.

Inserting the ansatz (2)

v2(t, x, y) = ṽ(y)eikx−ikct(3)

then yields the Rayleigh equation:

(U − c)(∂2
y − k2)ṽ − U ′′ṽ = 0,(4)
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where we restricted to the case k 6= 0 and the boundary conditions are given by non-
penetration conditions:

ṽ|y=−1,1 = 0.

We may thus interpret (4) as a (slightly non-standard) eigenvalue problem for a second
order ordinary differential equation and spectral stability asks whether there exists an
eigenvalue with positive imaginary part.

We remark that all coefficients in (4) are real valued. Hence if v2 as in (3) yields
a solution of (4) for c, then the complex conjugate v2 yields a solution with c. Hence
spectral stability corresponds to the case where the spectrum is purely real.

In order to prove the results of the theorem for the sake of contradiction suppose that
a non-trivial solution ṽ with =(c) > 0 exists. Then U − c is bounded away from 0 in all
of [−1, 1] and we may thus test (4) against − 1

U−c ṽ and integrate by parts to obtain∫
|∂yṽ|2 + (k2 + σ2)|ṽ|2dy = −

∫ U ′′

U − c
|ṽ|2dy.

In particular, the left-hand-side is real-valued and hence the imaginary part of the
right-hand-side has to vanish:

0 =
∫
=( U ′′

U − c
)|ṽ|2dy =

∫ |ṽ|2

|U − c|2
=(c)U ′′dy.

Since ṽ and =(c) are assumed non-trivial, this can only be the case if U ′′ changes sign
(and hence is zero somewhere by the intermediate value theorem) or if U ′′ vanishes on
the support of ṽ. This hence yields Rayleigh’s criterion.

In order to prove Fjørtoft’s criterion we instead consider the real parts:∫ U ′′(U −<(c))
|U − c|2

|ṽ|2dy = −
∫
|∂yṽ|2 + k2|ṽ|2dy.

By the above proof of Rayleigh’s criterion we may replace <(c) on the left-hand-side by
an arbitrary constant without changing the value. Using the fact that the right-hand-side
is strictly negative, it hence follows that∫ U ′′(U − U(ys))

|U − c|2
|ṽ|2dy < 0.

Thus the integrand has to be negative at a point in the domain, which concludes the
proof. �

These prototypical results highlight the stabilizing effect of convexity and related sign
conditions. We remark that the study of linear stability is a wide area of research, which
we do not attempt to survey in this document. The interested reader is referred to the
text books of Drazin, Reid [DR04, Dra02], Schmid, Hennigson [SH00] and Yaglom
[Yag12].

Instead we stress that while linear stability is certainly a useful prerequisite, it a
priori does not allow to deduce nonlinear stability results. However, in the case of shear
flows a similar result due to Arnold [Arn66] is available and also exploits convexity-like
properties.
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As a preliminary step towards this criterion we observe that in two dimensions, for
any stationary solution the vorticity ω = ∂xv2 − ∂yv1 and velocity satisfy

v · ∇ω = 0.
Thus introducing the stream function φ as the solution of

∆φ = ω,

and computing the velocity v = ∇⊥φ, the gradients of φ and ω are co-linear, and at least
locally, there exists a function F such that

ω = F (φ)
and

∇ω = F ′(ω)∇φ.
Arnold’s theorems require suitable sign or size bounds on F ′, which in the following is
used as a convexity condition on the primitive function of F . Alternatively, it can also
be interpreted as a second variation of a geometric reformulation of the Euler equations
(see [KW09, AK98]).

Before stating the theorem, we introduce the notion of (nonlinear) Lyapunov stability.

Definition 1.3 (Lyapunov stability, c.f [SH00]). We say that an evolution equation
is Lyapunov stable in the Banach spaces X, Y if for all ε > 0 sufficiently small, there
exists δ > 0 such that

‖u(0)‖X ≤ δ

implies that
‖u(t)‖Y ≤ ε.

In most cases, we are interested in situations where the spaces X and Y are the
same or at least closely related (e.g. slight loss of constants), and construct a so-called
Lyapunov functional. This functional is decreasing in time and at all times provides an
upper bound on ‖u(t)‖Y . In particular, the existence of a Lyapunov functional implies
Lyapunov stability.

Theorem 1.4 ([AK98]). Consider a stationary solution on a two-dimensional
manifold and suppose that there globally exists a function F such that φ = F (ω) and that
there exist constants 0 < c ≤ C <∞ such that

c ≤ F ′ ≤ C.(5)
Then, denoting the velocity and vorticity perturbations as v, ω for all times t ≥ 0 it holds
that ∫

|v(t)|2 + c|ω(t)|2 ≤
∫
|v(0)|2 + C|ω(0)|2.

A similar result also holds if instead
c ≤ −F ′ ≤ C,(6)

where it follows that ∫
c|ω(t)|2 − |v|2 ≤

∫
C|ω(0)|2 − |v(0)|2.
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We note that for the specific case of a shear flow, we may compute

F ′(−U ′(y)) = U(y)
U ′′(y) .

Hence, the requirement that F ′ is bounded requires that U ′′ 6= 0, unless U(y) also
vanishes at any such inflection point. The most important application of the variant (6)
of Arnold’s theorem is given by the analysis of Kolmogorov flow

U(y) = sin(ly),
where we consider flows which are periodic in both x and y, but with possibly different
periods. Then F ′ = −l2 < 0 is constant and we may view∫

l2|ω|2 − |v|2

as a bilinear form in ω (with ‖v‖2
L2 = ‖ω‖2

H−1). This form is definite when considering
a short torus TL × T2π with L < 2π (which is hence stable), semi-definite for a square
torus, L = 2π, and indefinite for a long torus, L > 2π (which is known to be unstable
[CZEW23]). This criterion is optimal for this particular example.

The following proof is adapted from [AK98, page 94].

Proof of Theorem 1.4. While F ′ is a priori only defined on the range of −U ′,
we may extend it by a constant (and F in an affine way) to obtain a function that is
defined on all of R and further define G as a primitive function of F so that

c ≤ G′′ ≤ C.

Thus G is a convex function. Denoting the stationary solution by φs, ωs, vs and the
perturbation by φ, ω, v, we then claim that

H2(φ) :=
∫
|v|2/2 +G(ωs + ω)−G(ωs)−G′(ωs)ωdxdy

is a conserved quantity of the Euler equations. Indeed, since φs and φ+ φs are solutions
of the Euler equations, the following quantities are conserved:

H1(φs) =
∫
|vs|2/2 +G(ωs),

H1(φ+ φs) =
∫
|v + vs|2/2 +G(ω + ωs).

In particular, we may compute H2(φ) as

H2(φ) = H1(φ+ φs)−H1(φ) +
∫
〈v, vs〉+G′(ωs)ω.

However, the latter integral is just the Euler equations for ωs in weak formulation tested
against v and hence this integral identically vanishes. Therefore, H2 is given by the
difference of two conserved quantities and is thus itself conserved.

It remains to use H2 to prove the theorem, which however is just an application of
the intermediate value theorem for the convex function G. That is, for any (fixed) value
of ωs and any z ∈ R it holds that

G(ωs + z)−G(ωs)−G′(ωs)z = G′′(z̃)|z|2/2
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for some intermediate value z̃. In particular the right-hand-side is bounded above and
below by

c

2 |z|
2

and
C

2 |z|
2,

which concludes the proof. �

While this short exposition for simplicity of presentation focused on the classical theory
of the Euler equations, we emphasize that the (linear) stability of other related systems
also has attracted significant research interest [TWZZ20, TW19, BLW20, HXY18].
This includes the Miles-Howard criterion [How61] for the Boussinesq equations, which
we will revisit in Section 2.4.

We, however, stress that all preceding stability results require restrictive conditions
on the shear flow and that linear stability results only rule out certain types of instability.
Indeed, we note that the Couette flow

U(y) = y

or the related Taylor-Couette flow between rotating cylinders is a prototypical flow which
is monotone rather than convex and is not covered by Arnold’s criterion. Furthermore,
while the stability criterion for Fjørtoft ensures linear stability for the inviscid problem
and also the associated linearized viscous problem is stable for all values of ν > 0,
experimentally one observes that this flow is unstable for small values of ν > 0. This
discrepancy between linear stability and observed (nonlinear) instability is known as
the Sommerfeld paradox [Yag12]. A full understanding of the nonlinear behavior of
perturbations for large times is still an open problem. However, as was shown by [LZ11]
one possible explanation is given by non-trivial unstable solutions, called Kelvin’s cat
eyes, which are close in Hs neighborhoods with s < 3

2 . Yet, as we discuss in the following
section, the nonlinear stability of the Couette flow depends on the chosen regularity in a
rather subtle way and highly regular perturbations (e.g. analytic) are not only stable,
but even converge to a nearby stationary solutions as t→∞.

1.2. Mixing as a (de)stabilizing effect

The Euler equations in vorticity formulation may be viewed as an active scalar
equation

∂tω + V · ω = 0,
V = V [ω],

(t, (x, y)) ∈ R× Ω,
where the velocity is generated by the vorticity. As an easier but instructive setting and
in order to obtain a first heuristic understanding of (phase-)mixing, in this section we
investigate a passive scalar problem where the velocity field is instead viewed as given.
More precisely, we consider the equation

∂tf + v∂xf = 0,
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(t, x, v) ∈ R× T× R,

in 1 + 1 dimensions. We stress that here v denotes the second variable and more generally
(x, v) is an element of a tangent bundle on a manifold. These equations model the
evolution of a phase-space density f(t, x, v), where the position changes according to
the velocity and the velocity due to forces (which are trivial in this simple case). We
remark that after a change of notation (f 7→ ω, v 7→ y), these equations coincide with
the linearized problem around Couette flow, but more generally also appear as a natural
model in kinetic equations.

Using the method of characteristics, the solution may be explicitly computed in terms
of the initial data f0:

f(t, x, v) = f0(x− tv, v).

In particular, we observe that all Lp norms of f remain conserved in time, which we may
interpret as a stability result around f = 0 in Lebesgue spaces. However, we also note
the following dual effects:

• If f0 is not independent of x, then f will oscillate more and more rapidly in
v and as t→∞, the solution f(t) weakly converges to the x-average 〈f0〉x(v).
Since the Lp norm of this average generally is strictly smaller than that of f0
(and by the conservation property also of f(t)), there generally is no strongly
convergent subsequence.
• If f0 is in a higher Sobolev space W s,p, s > 0, then also f(t) ∈ W s,p for all
t > 0. However, generically ‖f(t)‖W s,p will grow as ts as t→∞. Thus, the zero
solution cannot be expected to be stable in positive Sobolev regularity (however
note that there is no eigenvalue instability here).
• As an in a sense dual result we observe that negative Sobolev (semi-)norms may
improve as t→∞. For instance for f0 with vanishing x-average it holds that

‖f(t)‖H−1 ≤ C(1 + t)−1‖f0‖H1 .

The shear dynamics convert regularity of the initial data into decay of the
solution in negative norms.

In view of the time-reversible conservation law structure of the equations (conserving
all Lp norms and other integrals of f) and time invertibility this behavior is at first sight
very unexpected. The above decay mechanism underlies one of the major stabilizing
effects of plasma dynamics, known as Landau damping. In order to investigate this
stabilization and related effects in more detail, in the following we discuss this plasma
setting.

The evolution of plasmas is in many regimes well described by a mean field model in
terms of the phase-space density f(t, x, v) known as the Vlasov-Poisson equations:

∂tf + v · ∇xf + F [ρ] · ∇vf = 0,

ρ =
∫
fdv,

F [ρ] = ∇xW ∗x ρ,
(t, x, v) ∈ R× Td × Rd.
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Here f(t, x, v) models the phase-space density of (ions or electrons in) a plasma and (up
to normalization) corresponds to the probability density of finding a particle at position
x moving with velocity v. By Newton’s second law, changes of the velocity v are due to a
force field F , which is generated by f . Moreover, the force field F [ρ](t, x) is independent
of v and only depends on f in terms of the spatial density ρ. The precise choice of
F is model dependent, with the most important cases in applications being given by
gravitational interaction

F [ρ](t, x) = ∇x∆−1
x ρ(t, x),

with an attractive force, and Coulomb interaction
F [ρ](t, x) = −∇x∆−1

x ρ(t, x),
with a repulsive force.

It is then an easy observation that formally any density f = f0(v) which only depends
on v generates a trivial force field. We remark that here F [ρ] possibly needs to be
interpreted as a principal value integral in case ρ or ∇xW are not sufficiently integrable.
This is known in the physics community as the Jeans swindle (see [MV10]). In particular
such solutions are stationary solutions of the Vlasov-Poisson equations and of the free
transport equations.

If one now considers a small perturbation
g(t, x, v) = f(t, x, v)− f0(v)

of this solution which depends on x but is initially very smooth, it seems reasonable to
expect that at least up to some time scale the effect of the force field can be neglected
and that g is well-approximated by a solution to the free transport equations:

g(t, x, v) ≈ g∞(x− tv, v).
However, this in turn implies that the spatial density

ρ(t, x) ≈
∫
g∞(x− tv, v)dv

decays rapidly in time. Indeed, the method of non-stationary phase suggests that the
right-hand-side decays at least like t−N if g∞ ∈ W 1,N+1. Furthermore, this in turn implies
that the force field decays in time

F [ρ](t)→ 0
as t → ∞ and even decays very quickly, if g∞ is smooth. This very rapid decay for
smooth perturbations was discovered by Lev Landau in 1946 [Lan46] and has been a
highly influential result in plasma dynamics with an impact in research for the following
decades. It is hence known as Landau damping. We remark that the above mechanism
can be described as converting regularity into decay. That is, when viewed in coordinates
not moving with the flow, bounds on higher Sobolev norms of g∞(x− tv, v) deteriorate
in time, while the decay of ρ(t) is tied to quantitative control of the regularity of g∞(x, v)
(which in the nonlinear case also depends on t).

While the above sketch formally approximated the evolution of the perturbation by
free transport, the work of Landau established the result for the linearized Vlasov-Poisson
equations around densities f(v) and also provided sufficient (and close to necessary)
conditions on f(v) for this stability to hold. However, as was pointed out already a short
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time later in what is known as Backus’s objection [Bac60], there are some large obstacles
to nonlinear stability results. Indeed, supposing for the moment that solutions of the
nonlinear equations were well-approximated by the free transport equations, the second
factor in the nonlinearity

F [ρ] · ∇f

grows in time. Hence, a priori one may only expect that the linear dynamics accurately
predict the nonlinear dynamics on time scales O(ε−1), where ε > 0 is the size of the
initial perturbation. In particular, results on the linearized equations for times tending
to ∞ thus a priori have very limited predictive power for the nonlinear problem.

A second, more serious obstacle are (non-linear) resonances, which were experimentally
observed [MWGO68] in 1968. We provide a short heuristic sketch of the experiment
in the setting of a periodic infinite channel T × R (which is analogous to working in
cylindrical coordinates):

• Beginning with a plasma at rest, at the initial time one introduces a small
perturbation εeilxψ(v), where l ∈ Z \ {0} and ψ ∈ S(R) is frequency-localized
near 0.
• According to the linearized dynamics, this perturbation approximately evolves
by free transport:

εeilx−itlvψ(v).

In particular, for large times this solution becomes more and more oscillatory
and the corresponding force field perturbation is damped to zero.
• At a later time τ > 0 one introduces a second perturbation εeikxψ(v) with k 6= l.
Neglecting nonlinear interactions, this perturbation is then also expected to
evolve by free transport:

εeikx−i(t−τ)kvψ(v),

and thus exhibit Landau damping. We remark that this solution agrees with
the one starting as εeikx+iξvψ(v) with ξ = kτ at time 0.
• At a predictable later time depending on τ, k, l one observes a large perturbation
of the force field at the frequency k + l. The interaction of both perturbations
resulted in a plasma echo.

Since this echo is not predicted by the linearized problem around the stationary solution,
this effect is commonly viewed as a non-linear phenomenon. A rough calculation for
a toy model (see for instance [MV10]) suggests that, denoting ξ = kτ , the size of this
echo is comparable to

ε2
ξ

(k + l)3

Choosing l = −1 and k large, it further seems possible that this correction at frequency
k− 1 in turn results in an echo at frequency k− 2 at a later time and so on. In particular,
we may thus expect that a chain of echoes (or cascade of resonances)

k 7→ k − 1 7→ k − 2 7→ · · · 7→ 1
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may result in growth compared to the size ε of the initial perturbation by
k−1∏
j=1

ε
ξ

j3 .

Choosing k to maximize this product, Stirling’s approximation yields an estimate of the
possible norm inflation by

exp(C 3
√
|ξ|)

Therefore one may a priori only expect stability in spaces requiring suitable bounds,
which are given by Gevrey spaces.

Definition 1.5. Let f ∈ L2(T× R) and 1 ≤ s <∞, then f is in the Gevrey class
Gs if there exists a constant C > 0 such that the Fourier transform of f satisfies∑

k

∫
exp(C|ξ|1/s)|Ff(k, ξ)|2dξ <∞.

Alternatively, one may require that f ∈ Hn for all n ∈ N and that there exists a constant
D > 0 such that

‖f‖L2
xH

n
v
≤ Dn(n!)s.

Both definitions are equivalent up to losses in the constants C and D and quantify
regularity between C∞ and analyticity (any function in G1 is analytic). We remark that
there exist non-trivial functions with compact support, which are Gevrey regular with
s > 1.

As seen from the above sketched resonance mechanism any norm inflation due to
echoes can be expected to be absorbed into a loss of the constant C (as t increases)
provided s ≤ 3. In a seminal result Mouhot and Villani [MV11] proved that this is
indeed the case and that the Vlasov-Poisson equations are stable in (sub-critical) Gevrey
regularity. However, we stress that nonlinear results available in the literature do not
quite reach the critical regularity class of the above echo model, but rather consider
Gevrey regular initial data with 1 ≤ s < 3 [GNR21, BMM16]. This stronger regularity
allows to treat many contributions as error terms at the cost of a large loss of constant.
Furthermore, while the above model seems to be a reasonable worst case estimate, it
is a priori not clear whether such growth is actually attained or whether the model
overestimates the possible norm inflation. Here Bedrossian [Bed20] could provide a
first answer in that there exists special initial data, which exhibit norm inflation, when
measured in Sobolev regularity.

Theorem 1.6 (Adapted from [Bed20]). Let f0 = 4πδ
1+v2 , R ≥ 1. Then there exists

σ0(R) > 100R such that for all σ ≥ σ0 there exist ε0, δ0 > 0 and such that if ε ≤ ε0, δ ≤ δ0
there exists a real analytic function hin with

‖
√

1 + v2hin‖Hσ ≤ ε1−p,

‖
√

1 + v2hin‖Hσ−3 ≤ ε,

and a finite time t? = t?(ε, R) with εt? →∞ as ε ↓ 0 such that for all z ≥ 0 it holds that
‖h(t?) ◦ Tt?‖Hσ−R+z & ε−z,
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|F [ρ](t?,±1)| & tR−σ? .

Hence, this result shows that no uniform bound in Sobolev regularity is possible.
However, we remark that the norm inflation is attained at finite time and subsequently the
solution remains asymptotically stable as t→∞ (by the results for analytic perturbations
of [MV11]). Thus this result still leaves open the question of whether such resonance
chains can indeed break asymptotic stability and, if so, in which sense. We remark that
a similar construction of initial data exhibiting norm inflation has also been used for the
Euler equations [DM23]. However, due the methods used, these results only provide a
solution exhibiting norm inflation up to a finite time T depending on the frequency of
the perturbation. In particular, this result makes no statement on asymptotic behavior
as t→∞.

These results motivate our works [DZ21, Zil21a] (discussed in Sections 2.1 and 2.2)
which show that the echo mechanism should not only be seen as a nonlinear mechanism.
Instead the improved stability of the linear problem is an artifact of linearizing around a
“trivial” solution, which hides the mechanism in the linear dynamics. Linearizing around
a “non-trivial” nearby nonlinear solution, the chains of echoes can be captured already in
the linearized dynamics. Moreover, exploiting the simpler linear structure, we are able to
reach critical spaces and to construct initial data (for the linear problem) which exhibit
non-trivial dynamics as t→∞.



CHAPTER 2

Traveling waves, echoes and hierarchies of instability

In many equations of interest, such as the Vlasov-Poisson equations, the Euler
equations or the Boussinesq equations, the linearized analysis of stationary states suggests
good asymptotic stability properties of the equations in Sobolev spaces. However, at the
nonlinear level this stability is not reflected and instead much higher, Gevrey regularity
is required to ensure stability. The associated instability mechanism is hence commonly
considered a purely nonlinear effect. In the following, we argue that this difference in
regularity should more accurately be seen as an artifact of linearizing around trivial
solutions (that is, with trivial x-dependence). If one instead considers the problem around
(explicit) non-trivial solutions, the resonance mechanism is accurately captured in the
linearized equations.

2.1. Plasma echoes and Landau damping

As discussed in Section 1.2, it is expected that the critical spaces for nonlinear stability
of the Vlasov-Poisson equations

∂tf + v · ∇xf + F (t, x) · ∇vf = 0,
F = ∇W ∗x ρ,

ρ =
∫
fdv,

(t, x, v) ∈ R× T× R,

(7)

are given by the Gevrey 3 class (see Definition 1.5). However, existing stability results
[MV11] do not quite reach the critical regularity. Similarly, the result by Bedrossian
[Bed20] achieves norm inflation after a finite time, but the constructed solution is
asymptotically stable as t→∞.

In [Zil21a], we thus investigated whether these very strong assumptions are optimal
and what behavior can be expected in the critical Gevrey 3 regular case as t→∞. In
particular, in [Zil21a] we point out that there is the following hierarchy of results, which
are all referred to as Landau damping, but actually correspond to successively stronger
results:

[1] The force field converges to a (simpler) asymptotic profile as time tends to
infinity. This is the physically observed phenomenon.

[2] The corresponding perturbation to the phase-space density remains uniformly
bounded in a suitable Lp space and asymptotically converges weakly as time
tends to infinity.

[3] The perturbation asymptotically behaves like a free solution of an associated
linear problem. In the language of dispersive equations one says that the solution
scatters with respect to the linear dynamics.

19
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As a main result of [Zil21a], we show that the norm inflation is not necessarily a nonlinear
mechanism, but rather a linear mechanism when linearizing around non-trivial (i.e. x-
dependent) solutions. More precisely, in any neighborhood of the spatially homogeneous
solution, there exist explicit nonlinear solutions, which we call traveling waves (in analogy
to dispersive equations). Furthermore, for the linearized problem around these waves we
are able to establish estimates in critical spaces and to construct data for which Landau
damping in the physical sense [1] holds, but for which damping in the sense [3] fails. The
main results of this article are summarized in the following theorem.

Theorem 2.1 ([Zil21a]). Traveling wave-like solutions: Consider the Vlasov-Poisson
equations (7) on Td × Rd. Let ψ ∈ S(Rd) with supp(Fvψ) ⊂ Bδ(0), 0 < δ < 0.1. Then
for any ε > 0 the function

f∗(t, x, v) = f0(v) + ε cos(e1 · (x− tv))ψ(v)
is a solution of the Vlasov-Poisson equations on Td × Rd for t ∈ (0.1,∞). We call such
a solution a traveling wave-like solution in reference to the same term used in dispersive
equations.

Linear stability, blow-up and damping: Let ε > 0, d = 1 and ψ ∈ S(R) be given and
consider the linearized Vlasov-Poisson equations with Coulomb or gravitational interaction
on T× R around f∗ with f0 ≡ 0 on (0,∞) with initial data h0:

∂th+ F [
∫
h(t, x− tw, w)dw](∇v − t∇x)(ε cos(x)ψ(v)) = 0,

F [ρ] = ±∂x(∂2
x)−1ρ, ρ(t, x) =

∫
h(t, x, v)dv

h(0) = h0.

(LVP)

Then we have the following results:
• Stability in Gevrey regularity: Suppose that the Fourier transform h̃0 := Fx,vh0
of the initial data h0 satisfies∑

k

∫
|h̃0(k, ξ)|2 exp(c 3

√
|ξ|)dξ ≤ C0 <∞,

with a sufficiently large constant c > 0. That is, h0 ∈ G3 is Gevrey regular. Then
there exists a constant C > 0 (independent of h0 or C0) such that for all times∑

k

∫
|h̃(t, k, ξ)|2 exp( 3

√
|ξ|)dξ ≤ CC0.

Thus Landau damping in the strong sense [3] holds. This in turn implies that
Landau damping in the physical sense [1] holds and that hence the force field
decays to zero as t→∞.
• Norm inflation: Suppose in addition that Fvψ ≥ 0, then there exists initial data
h0 ∈ G3, supported in frequency in {k0} × (ξ0 − 1/2, ξ0 + 1/2) such that the
solution h(t) with this initial data is stationary for t > ξ0 + 1/2 + δk0 =: T ′1
and there exist constants c1, c2 (proportional to ‖ψ(v)‖L∞ and independent of
ξ0) such that

exp( 3
√
c1|ξ0|) ≤ ‖h(T ′1)‖L2 ≤ exp( 3

√
c2|ξ0|).
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There is norm inflation due to echo chains.
• Physical damping: For every s ∈ R there exists h∞ ∈ Hs but h∞ 6∈ Hs+δ for
all δ > 0 and h0 ∈ G3 (with small constant) such that the solution h(t) with
initial datum h0 converges to h∞ in Hs as t→∞. In particular, the solution
h(t) diverges in Hs+δ for all δ > 0. However, if s ≥ 0 then F [h](t) →L2 0 as
t→∞. For this data physical linear damping in the sense [1] holds, but strong
damping to the free transport equations in the sense [3] fails.

Hence, these results show that mixing in the physical sense [1] is a robust mechanism
and can occur even if stability in the sense [3] does not hold. Moreover, we remark that
the solutions exhibiting norm inflation at time T ′1 are asymptotically stable as t→∞.
Indeed, as sketched for the experiment any individual echo chain concludes after finitely
many steps and hence after a finite time. Thus, the above result combines countably
infinitely many chains to achieve divergent behavior as t→∞.

2.2. A hierarchy of inviscid damping in the Euler equations

Similarly to the case of the Vlasov-Poisson equations discussed in Section 2.1, also in
the Euler equations nonlinear resonances have been observed experimentally [YOD05].
Here again a toy model suggests that for frequency-localized perturbations the possible
norm inflation is comparable to

exp(C
√
ε|ξ|)

and that thus the critical space is given by the Gevrey 2 class. Indeed, following the
seminal results of [BM15b] in sub-critical regularity, the nonlinear stability in Gevrey
2 with large constant has been established in [IJ20]. Furthermore, in [DM23] special
initial data has been constructed, for which the solution exhibits norm inflation on a
large finite time interval. However, since the control of the nonlinear dynamics becomes
difficult under large perturbations, no statement is made for larger times or indeed the
behavior as t→∞. In particular, as in the Vlasov-Poisson setting, it might be the case
that the dynamics are nevertheless asymptotically stable.

In a joint work with Yu Deng [DZ21], we thus investigated whether inviscid damping
can fail in the critical Gevrey class with small constant. More precisely, as in Section
2.1 we showed that the answer to this question crucially depends on the definition of
inviscid damping. Similarly to the case of plasma dynamics discussed in Section 2.1, we
showed that in the literature there actually is a hierarchy of distinct notions, which have
not previously been distinguished:

[1] The velocity field v converges (to another shear flow) as t→∞. We speak of
physical damping.

[2] The vorticity ω converges weakly in L2 as t→∞.
[3] There exists a map φ(t, y) such that ω(t, x− φ(t, y), y) converges strongly in L2

as t→∞. We speak of strong scattering.
As our first main results, we show that there exist global in time solutions of the Euler
equations, which are initially arbitrarily close to the stationary solution, but exhibit
linear stability properties matching the nonlinear equations. One such solution is of the
form

ω(t, x, y) = −1 + c cos(x− ty).



22 2. TRAVELING WAVES, ECHOES AND HIERARCHIES OF INSTABILITY

The (slightly simplified) linearized problem around this wave-like solution in vorticity
formulation and in coordinates (x− ty, y) is given by

∂tω + c sin(x)∂y∆−1
t ω = 0,
∆t = ∂2

x + (∂y − t∂x)2.
(8)

This linear problem captures the above sketched resonance mechanism and matches the
critical Gevrey 2 stability class of the nonlinear problems. Moreover, it allows us to
achieve results in critical spaces with critical constants and to construct data such that
physical damping holds, but strong scattering fails.

Theorem 2.2 ([DZ21]). Let 0 < c < 0.2, then there exists C > 0 such that for any
s ∈ R there exist solutions of (8) with ω0 ∈ GC,2 such that ω(t) converges to a limit ω∞
in Hσ, σ ≤ s, but diverges in Hσ, σ > s. In particular, in the case s ≥ 0 we note that
damping, that is asymptotic convergence of the velocity field, holds, while asymptotic
stability in Gevrey regularity fails.

Furthermore, the constant C is (almost) optimal in the sense that there exists a
(larger) constant C0 > 0 such that for any C1 > 2C0 if ω0 ∈ GC1,2 (see Definition 1.5),
then ω(t) ∈ GC1−C0,2 for all times and u(t) converges in GC1−C0,2.

Similarly as in the plasma setting of Section 2.1, we thus obtain a precise description
of instability at the critical Gevrey 2 regularity. In particular, we can construct data
which exhibits a prescribed norm blow-up as t → ∞. We remark that for the Euler
equations the Biot-Savart law is more challenging to control due to the lack of “lower
dimensional” structure (f(t, x, v) 7→ ρ(t, x)) and includes stronger coupling between
different frequencies. Indeed, as a major new result of [DZ21] we showed that at large
frequencies the norm inflation factors are qualitatively different than predicted by the
toy model.

Building on these results on the effects of mixing in the Euler equations, in the
following sections we consider stability and long-time behavior in systems. Here, the
coupling and system structure is shown to play a crucial role and gives rise to new
resonance mechanisms.

2.3. Thermal echoes in the viscous Boussinesq equations

While the Euler equations exhibit fluid echoes and norm inflation and are thus
unstable in Sobolev regularity, this effect is suppressed by viscosity in the Navier-Stokes
equations – at least for small data. Moreover, viscous dissipation and mixing may even
constructively interact to result in improved damping estimates. As we discuss in Chapter
4, this stabilization by viscosity is sufficient to establish linear stability of the Boussinesq
equations with viscosity but without thermal resistivity:

∂tv + v · ∇v +∇p = ν∆v + θe2,

∂tθ + v · ∇θ = 0,
div(v) = 0,

(t, x, y) ∈ (0,∞)× T× R.
However, nonlinear stability results [MSHZ22] require (better than) Gevrey 3 regularity.
Considering that fluid echoes are suppressed and that this class is different from the one
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in the Euler equations, a key objective of [Zil21b] has been to identify the underlying
resonance mechanism and corresponding critical spaces.

In particular, we show that the interaction of buoyancy and viscosity enforces a
balance between the velocity and temperature in terms of the good unknown

G = ν∂xω + ∆−1∂2
xθ,

which is rapidly damped by the viscous dissipation. If we for simplicity of presentation
for the moment assume that G ≡ 0, this in turn implies that perturbations of the
temperature θ can induce perturbations of the vorticity and hence velocity. These
velocity perturbations in turn can become resonant. We thus speak of thermal echoes.
Compared to the setting of the Euler equations considered in Section 2.2 this mechanism
exhibits a strongly modified version of the Biot-Savart law (now in terms of (θ,G) 7→ v)
and crucially relies on the system structure of the equations.

In a first step, we construct wave-type solutions of the form

v =
(
y
0

)
+ f(t)

1 + t2
sin(x− ty)

(
t
1

)
,

ω = ∇v = −1 + f(t) cos(x− ty),
θ = αy + g(t) sin(x− ty),

(9)

where f(t), g(t) satisfy a system of ordinary differential equations. Considering the
long-time behavior of these coefficients for simplicity of discussion one may heuristically
estimate

g(t) ≈ 2νc,

f(t) ≈ 4c
1 + t2

,

where c is a small constant. The following theorem summarizes our main results for the
linearized equations around these waves.

Theorem 2.3 ([Zil21b]). Consider the (simplified) linearized Boussinesq equations
around the above wave and suppose that g

2ν =: c satisfies c < 0.001. Further define
G = ν∂xω + ∂2

x∆−1θ.
• There exists C > 0 such that if the (Fourier transform of the) initial data satisfy∫

exp(C 3
√
|ξ|)(1 + k2)N(|Fθ0|2 + |ξ||FG0|2) <∞,

then for all times t > 0 it holds that∫
exp(C2

3
√
|ξ − kt|)(1 + k2)N(|Fθ(t)|2 + |ξ||FG(t)|2) <∞.

The evolution preserves Gevrey 3 regularity up to a loss of constant.
• For c|ξ| > ν−3/2 there exists initial data θ0 ∈ L2 localized at frequency ξ and
G0 = 0, such that for all t > 2ξ the solution satisfies

‖θ(t)‖L2 ≥ exp( 3
√
c|ξ|).

There exists frequency localized initial data which exhibits norm inflation. How-
ever, after attaining this norm inflation the solution is stable for all future
times.
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• Moreover, for every s0 ∈ R there exists 0 < C ′ < C and initial data with∫
exp(C ′ 3

√
|ξ|)(1 + k2)N(|Fθ0|2 + |Fω0|2) <∞,

such that θ(t) converges in Hs for s < s0 and diverges to infinity in Hs for
s > s0, as t → ∞. Hence, the Gevrey 3 regularity class is a critical space for
stability and damping may persist despite blow-up.

These results strongly exploit the system structure of the equations and need to
control the interaction between buoyancy effects, viscous dissipation and the coupling
of viscosity and temperature. In particular, the non-local operator connecting G, θ and
the velocity exhibits a very different frequency-dependence than for the Euler equations
or Vlasov-Poisson equations and hence estimates need to be specifically tailored to this
system.

2.4. Resonances in the inviscid Boussinesq equations

The results of the previous Section 2.3 on the partially viscous Boussinesq equations
strongly relied on the effects of viscosity to enforce a balance between the temperature
and vorticity. This resulted in (in)stability estimates worse than for the Navier-Stokes
equations (i.e. ignoring temperature) but better than for the Euler equations. Letting
ν ↓ 0, it is thus a natural question to inquire about the long-time behavior and (in)stability
of the inviscid Boussinesq equations

∂tω + v · ∇ω = ∂xθ,

∂tθ + v · ∇θ = 0,
(t, x, y) ∈ R× T× R

close to the stationary solution

ω = −1, v = (y, 0), θ = αy,(10)

where we consider the regime of stable stratification α > 1
4 (see [How61]).

Unlike the Euler equations, for this system already the linearized problem is al-
gebraically unstable in terms of ω, θ. However, if one introduces the following good
unknowns following [BBCZD21]

Z(t, x, y) :=
√
α
(
(∂−2
x ∆)−1/4ω

)
(t, x− ty, y),

Q(t, x, y) :=
(
(∂−2
x ∆)1/4∂xθ

)
(t, x− ty, y),

(11)

then the linearized problem is known to be stable:

Lemma 2.4 ([BBCZD21, BZD20, TWZZ20, Zil22]). Let α > 1
4 . Then the

linearized Boussinesq equations around the stationary solution (10) are stable in the sense
that for any initial data ω, θ with

∫
ωdx =

∫
θdx = 0 the energy

α‖((∂−2
x ∆)−1/4ω)(t, x− ty, y)‖2

L2 + ‖((∂−2
x ∆)1/4θ)(t, x− ty, y)‖2

L2

is bounded above and below for all times, uniformly in terms of its initial value, with a
constant depending only on α.
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We remark that in the (partially) viscous setting other choices of unknowns are natural
[ABSPW22, ACW10, LWX+21, TWZZ20, TW19, DWZZ18, CW13, ZZ23].

This linear stability result in terms of (Z,Q) also has implications for wave-type
solutions of the full nonlinear problem.

Lemma 2.5 ([Zil22], see also Proposition 2.1 in [Zil21b], [BZD20] and [BBCZD21]).
Let α ≥ 0 be given, then there exist non-trivial functions f(t) and g(t) such that the
triple (ω, θ, v) with

ω(t, x, y) = −1 + f(t) cos(x− ty),
θ(t, x, y) = αy + g(t) sin(x− ty),

v(t, x, y) = (y, 0) + 1
1 + t2

∇⊥ cos(x− ty),
(12)

is a solution of the nonlinear inviscid Boussinesq equations for all times. We call these
solutions traveling waves. Moreover, if α > 1

4 it holds that

E(t) := |α|√
1 + t2

|f(t)|2 +
√

1 + t2|g(t)|2

satisfies

cE(0) ≤ E(t) ≤ CE(0)

for some constants 0 < c < C <∞ depending on α.

In our construction, we further observe that f(t) grows in time and that if f(0) =
ε� 1, the vorticity only remains small on time scales

0 < t < ε−2.

For this reason the nonlinear stability result of [BBCZD21] restricts itself to this time
interval and establishes stability in (slightly stronger than) Gevrey 2 regularity – matching
the regularity class of the Euler equations (for 0 < t < ∞). Considering the rather
different linear stability results, time scales and system structure, a key objective of
[Zil22] has been to investigate whether this class actually is optimal, how the resonance
mechanism differs and how it depends on the frequency. To this end, we consider the
linearized Boussinesq equations around the traveling waves in terms of Z and Q. More
precisely, we consider the following simplified equations in coordinates moving with the
shear:

∂t

(
Z
Q

)
+ A

(
Z
Q

)
= −

(
|∂x|1/2∆−1/4

t (∇⊥|∂x|−1/2∆−3/4
t Z · ∇f(t) cos(x))

|∂x|−1/2∆1/4
t (∇⊥|∂x|−1/2∆−3/4

t Z · ∇g(t) cos(x))

)
,

∆t = ∂2
x + (∂y − t∂x)2.

(13)

Compared to the full linearized problem, we here suppress changes of the underlying
shear profile, which can be viewed as a small forcing term. As we discuss in [Zil22], this
simplification is not required in our estimates of the main damping mechanism and also
not for large times. For small times, the corresponding error can also be controlled at
the cost of (assuming high) regularity. We expect that this is only a technical issue and
that errors remain bounded in any regularity in coordinates moving with the perturbed
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shear. However, as the associated estimates are technically very involved and since our
main interest lies in the resonance mechanism, we introduced this simplified model.

Our main results are summarized in the following theorem.

Theorem 2.6 ([Zil22]). Let 0 < δ < 0.1 and 0 < ε < 0.1 be given and let f(t), g(t)
correspond to traveling waves

Zwave = f(t)
(1 + t2)1/4 cos(x),

Qwave = g(t)(1 + t2)1/4 sin(x),

with f(0) = g(0) = ε. Let further (Z,Q) denote a solution of the simplified linearized
Boussinesq equations (13) with initial data (Z0, Q0).

Then there exists C > 0 and |γ| < δ such that for any initial data (Z0, Q0) whose
Fourier transform satisfies∑

k

∫
exp

(
2C min((ε|ξ|1+γ)2/3−2γ, ε−2)

)
|F(Z0, Q0)(k, ξ)|2dξ ≤ 1

the corresponding solution remains regular up to a loss in the constant C. That is, for
all times t > 0 it holds that∑

k

∫
exp

(
C min((ε|ξ|1+γ)2/3−2γ, ε−2)

)
(1 + ε−2

|ξ|
)|F(Z,Q)(t, k, ξ)|2dξ ≤ 1.(14)

Here k ∈ Z denotes the frequency with respect to x and ξ ∈ R denotes the frequency with
respect to y.

Moreover, there exists a constant c = c(α) such that if the Fourier transform of the
initial data is supported in the region |ξ| ≥ cε−4 then the stability estimate improves to a
uniform estimate

‖(Z,Q)(t)‖L2 ≤ 2‖(Z0, Q0)(t)‖L2 .(15)

We in particular highlight the following results:
• The bound by exp

(
2C min((ε|ξ|1+γ)2/3−2γ, ε−2)

)
or by a uniform constant, re-

spectively, strongly differs from a Gevrey 2 bound by exp(C
√
|ξ|). Furthermore,

it identifies |ξ| ∼ ε−4 as a distinguished region in frequency space for which both
bounds may coincide. A key innovation here is to make use of precise growth
behavior of the waves and to link the time-restriction to a frequency cut-off.
• Away from this frequency region bounds are drastically improved, highlighting
the need for more precise spaces also for the nonlinear analysis.
• While the frequency-dependence and optimality of norm inflation bounds is
very difficult to see in the nonlinear problem, the approach by traveling waves
serves to clearly illustrate the interaction of the size of waves, the nonlinearity,
frequencies and resonant times. In particular, it allows us to clearly identify
expected critical regularity classes. We remark that the article establishes upper
bounds, but for lower bounds restricts to a slightly simplified model. We expect
that these lower bounds are also attained for the full model, but that a proof
will be technically very challenging.
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• While this threshold at first sight seems to match the one of the Euler equations,
we emphasize that this is not the case. That is, when restricting the Euler
equations to the finite time interval (0, ε−2) the expected optimal class for the
Euler equations is given by Gevrey 3 instead, as we discuss in the following
section.

2.5. Waves, resonances and critical spaces

The results summarized in the preceding sections 2.1 to 2.4 show that waves allow us
to understand nonlinear instabilities in fluid systems as repeated resonances (“echoes”)
of a high frequency perturbation with an underlying low frequency wave. In this short
section, we summarize the underlying general mechanism.

For a given fluid system, in order to obtain a first heuristic insight for the expected
critical regularity classes, we may apply the following steps:

(1) Characterize the size f(t) of waves which initially are of size ε > 0. This also
motivates the choice of good unknowns.

(2) Determine how resonances for a given high frequency perturbation depend on the
frequency, both in terms of the size R(ξ, k) of the resonance and the associated
time tξ,k and time interval.

(3) Chains of resonances yield a product formula for the possible norm inflation:∏
k∈K

f(tξ,k)R(ξ, k),

which depends on the size of the wave, the frequency of the perturbation and
the index set K ⊂ Z. In particular, when considering bounded time intervals,
K may not be chosen freely. Critical classes are determined by extremizers of
this mechanism.

In order to outline this for an explicit example, let us consider the case of the Euler
equations near Couette flow on the time interval [0, ε−2). In this special case, an explicit
wave is given by

ω(t, x, y) = −1 + ε cos(x− ty).

This wave’s size is constant in time and hence

f(t) = ε

for all t > 0.
Concerning the second step, as discussed in Section 2.2, the resonance mechanism

for these equations is governed by the Biot-Savart law and results in a first heuristic
estimate of the growth factor by

R(ξ, k) = ξ

k2 ,

for a resonance occurring at around the time tξ,k = ξ
k
. We emphasize that in the full

model this factor requires some further correction for very large values of ξ (see Section
2.2), which we here omit for simplicity of presentation.
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Equation size of waves time scale optimal Gevrey class
Vlasov-Poisson ε ∞ 3
Euler ε ∞ 2

t < ε−2 3
Viscous Boussinesq 0, ε ∞ 3
Inviscid Boussinesq εt+1/2, εt−1/2 t < ε−2 2

Table 1. Growth and decay of waves and associated optimal Gevrey classes.

We thus obtain an estimate for the total possible norm inflation by∏
k∈K

ε
ξ

k2 ,

with the set of resonances K to be chosen in the following. Here, we observe that in
order to maximize the value of the product, the set K needs to satisfy two competing
constraints:

• On the one hand, any resonance needs to yield a factor at least one, since
otherwise omitting it increases the size of the product. Hence, any k ∈ K should
satisfy the upper bound

k ≤
√
ε|ξ|.

• On the other hand, for a resonance to have occurred, the resonant time tξ,k = ξ
k

needs to have passed. Hence, when considering the time interval [0, ε−2) in our
product we may only allow such k ∈ K, which satisfy the following lower bound:

| ξ
k
| ≤ ε−2 ⇔ |ξ|ε2 ≤ |k|.

Therefore, for any given frequency ξ > 0 we choose

K := {k ∈ N : |ξ|ε2 ≤ k ≤
√
ε|ξ|}.

In particular, we note that this set is non-empty only if

|ξ|ε2 ≤
√
ε|ξ| ⇔ |ξ| ≤ ε−3,

and in this case we obtain a bound of the norm inflation by∏
k∈K

ε
ξ

k2 . exp(
√
ε|ξ|) ≤ exp(

√
|ξ|2/3) = exp(|ξ|1/3).

If instead |ξ| � ε−4, then the set K is empty and one obtains a uniform bound on
the possible norm inflation (see Section 2.4 for such a result in the case of the inviscid
Boussinesq equations). Combining both estimates, we thus deduce that the heuristically
expected critical regularity class (for estimates uniform in ε) for the Euler equations on
the time interval [0, ε−2) is given by Gevrey 3.

The Table 1 summarizes the results of the preceding sections for various systems. We
stress that in addition to identifying critical classes this wave model further allows us to
identify the most important frequency regions. For instance, in the inviscid Boussinesq
model it highlights the frequency region ξ ≈ ε−4, which is not immediately visible from the
nonlinear equations. Moreover, this model enables us to develop a precise understanding
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of the resonance mechanism and its frequency-dependent behavior. In this way we can
construct solutions to the linearized problem around waves, which are exactly at the
critical level of regularity and can exhibit precise convergence and divergence behavior
as t→∞. These results hence provide an essential step towards understanding the full
nonlinear problem at critical regularity and on long time scales.





CHAPTER 3

Ways to measure mixing and optimal decay rates

As a closely connected question to the stabilisation by (phase-)mixing, in recent
years there has been intense interest in questions of quantifying mixing in passive scalar
problems

∂tρ+ v · ∇ρ = 0,
(t, x) ∈ R× Ω,

where v is considered given and Ω ⊂ Rd is an open set [ACM19, ACM14, ACDL+08,
EZ19]. These serve as a natural first model of active scalar problems, where v = v[ρ]
may depend on the density, such as the Euler or Navier-Stokes equations in vorticity
form. Such equations are also useful in settings where v might not be known explicitly
(e.g. in turbulence). If v is sufficiently regular, we define the flow map X as the unique
solution of the transport equation

∂tX(t, α) = v(t,X(t, α)),
X(0, α) = α.

In particular, it follows that
d

dt
ρ(t,X(t, α)) = 0

and, hence, ρ(t, x) can in principle be obtained from the initial data by inverting the
map α 7→ X(t, α). For simplicity of presentation in this section we will assume that v
is smooth and divergence-free and thus X(t, ·) is volume-preserving and hence (locally)
invertible.

Then ρ(t, x) = ρ0(X−1(t, x)) is only rearranged and thus for any (Borel) regular
function f it holds that∫

f(ρ(t, x))dx =
∫
f(ρ(t,X(t, α))det(DX)dα

=
∫
f(ρ(0, α))dα =

∫
f(0, x)dx.

For instance, all Lp norms of ρ, its average or the entropy are conserved and moreover
the evolution is time reversible (consider −v(T − t, x) in place of v(t, x))

Yet, as we have seen in Section 1.2 for the special case v(x) = (x2, 0), we observe
that ρ(t, x) ⇀ 〈ρ〉x1 converges to an average as t→∞ (or t→ −∞). Thus, in general
the Lp norm might strictly decrease in the infinite time limit. An aim of the study of
“mixing” is to quantify this discrepancy between weak and strong convergence and to
introduce a scale of how mixed ρ is at a time t. Given a scale it is then natural to ask for
“best/worst case” choices of the vector field v transporting the density and how quickly

31
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ρ might be mixed given (norm) constraints on v and how this answer depends on the
definition of being “mixed”.

As discussed in the work by Doering et al. [DWZZ18], in the literature there are
multiple different notions of “mixing”, which are popular in different communities. As a
motivating example consider the case where ρ is a characteristic function and suppose
that at time t = 0 and time t = 1 the level sets are given by a union of cubes as pictured
in Figure 1. While any Lebesgue norm of both ρ(0) and ρ(1) is the same, a mixing scale

1 λ

Figure 1. Characteristic function covering half the domain. Left: Squares
of width 1. Right: Squares of width λ.

should be comparable to 1 and λ, respectively, and should behave as a length under
rescaling.

Motivated by applications to active scalar problems, such as the Biot-Savart law in
fluid dynamics or electrodynamics, analytic mixing scales are of the form

(‖ρ‖Hs/‖ρ‖L2)1/|s|,

with s < 0, where s = −1 and s = −1/2 are the most common choices. We remark that
this definition extends to the case when ρ is not necessarily a characteristic function.

In the case that ρ is sufficiently regular, this scale is naturally related to H |s| by the
interpolation inequality

‖ρ‖L2 ≤ ‖ρ‖Hs‖ρ‖H−s ,

but is well defined even if ρ is not sufficiently regular.
Another popular mixing scale is given by the geometric mixing scales. These scales are

tailored towards working with characteristic functions and quantify that when averaging
over large balls we mostly see the average (which is 1/2 in the above example), while
for small balls we see an approximation of ρ and thus values close to 0 and 1. After
subtracting the average and introducing

ρ̃ := 2(ρ−
∫
ρ),

we thus pick a precision 0 < κ < 1 and say ρ is mixed at least at scale r0 > 0 if
1
|Br|

∣∣∣∣∫
Br
ρ̃dx

∣∣∣∣ ≤ κ
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for all r ≥ r0 and all balls Br in the domain. In analogy to the above description we can
view this scale as associated to the inequality∥∥∥∥∥( 1

|Br|
1Br) ∗ ρ̃

∥∥∥∥∥
L∞
≤ ‖ρ̃‖L∞ .

This notion of mixing is popular in geometric applications, since it works well for the
description of sets (i.e. when ρ is a characteristic function). We remark that there are
further popular notions in other communities, such as Wasserstein distances.

As one of the results of [DWZZ18] it is shown that these mixing scales are generally
not equivalent by constructing two (counter)examples. However, in [Zil19] we argue that
instead they are comparable when correcting for large scale structures and choosing the
precision appropriately. More precisely, we argue that being geometrically mixed at level
r0 with precision κ only contains information on the structure of ρ at level max(r0, κ).
Thus κ and r0 should be coupled.

Definition 3.1 (Mixing scales; c.f. [Thi12, Zil19] ). Let ρ : Rn → R be a given
measurable function. Then we call ‖ρ‖H−1 the analytic mixing scale.

Furthermore, for given r > 0, we define the geometric mixing functionals

gr[ρ] := sup
BR(ξ);R≥r

1
|BR|

∣∣∣∣∣
∫
BR(ξ)

ρ

∣∣∣∣∣ .(16)

If further ρ ∈ L∞, then for each κ ∈ (0, 1) we define the geometric mixing scale as

Gκ[ρ] := inf{r > 0 : gr[ρ] ≤ κ‖ρ‖L∞}.(17)

As one of the main results of [Zil19], we show that while both notions are not
equivalent, they are comparable if one takes into account low frequency components and
connects the precision κ to the measured geometric mixing scale.

Theorem 3.2 (Comparison of mixing scales, [Zil19]). Let ρ ∈ L2(Rn) and ‖ρ‖L2 ≤ 1.
Then for all 0 < ε ≤ 1 it holds that:

(1) There exists a constant C > 0 depending only on the dimension n and α = 2
n+2

and β = 2
n+4 , such that if ‖ρ‖H−1 ≤ ε and ρ is supported in B1, then also

gε′ [ρ] ≤ Cε′ for all ε′ ≥ εα and gε̃[ρ] ≤ C for all ε̃ ≥ εβ.
In particular, supposing additionally that ‖ρ‖L∞ = 1, it follows that

GC [ρ] ≤ ε̃,

GCε′ [ρ] ≤ ε′,

(2) If gε[ρ] ≤ ε and ρ is supported in a compact set K, then also ‖ρ‖H−1 ≤ CKε.
These estimates are optimal in the powers of ε.

As an application we derive bounds on mixing rates for the free transport equations.

Theorem 3.3 ([Zil19]). In the following, let 0 < s ≤ 1, ρ0 ∈ L2(Tn;Hs(Rn)) with∫
Tn ρ0(x, y)dx = 0, and let

ρ(t, x, y) = ρ0(t, x− ty, y),
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be the solution of the free transport problem. For σ, s ∈ R let HσHs = Hσ(Tn;Hs(Rn))
denote the Hilbert space with norm

‖ρ‖2
HσHs =

∑
k∈Zn
〈k〉2σ

∫
Rn
〈ξ〉2s|ρ̃(k, ξ)|2dξ.

(1) There exists Cs > 1 such that for all t ≥ 1 and all initial data
‖ρ(t)‖L2H−1 ≤ Ct−s‖ρ0‖H−sHs .

(2) Let αj > 0 with ‖(αj)j‖l2 = 1. Then there exist c > 0, a sequence of times
tj →∞ and initial data ρ0 such that

‖ρ(tj)‖L2H−1 ≥ cαjt
−s
j ‖ρ0‖H−sHs .

(3) There exists no non-trivial initial data ρ0 ∈ L2(Tn;Hs(Rn)) such that
‖ρ(tj)‖L2H−1 ≥ ct−sj ‖ρ0‖H−sHs

along some sequence tj →∞.

We, in particular, note that there is an improvement of the decay rate over the
expected algebraic rate t−s. Moreover, by the above results, we may connect these
“analytic” estimates to “geometric” estimates.



CHAPTER 4

Enhanced dissipation and systems

Building on the mixing estimates for the inviscid problems, in two articles we in-
vestigated how mixing and dissipation interact and how this impacts the (asymptotic)
stability of solutions. As a first, explicitly solvable model problem we may consider the
Navier-Stokes equations on T× R:

∂tω + v · ∇ω = ν∆ω,
div(v) = 0,

linearized around the Couette flow v = (y, 0), ω = −1. These equations read

∂tω + y∂xω = ν∆ω.

Changing to coordinates moving with the shear, we obtain a constant coefficient, time-
dependent differential operator

∂tω = ν(∂2
x + (∂y − t∂x)2)ω,

which hence decouples after a Fourier transform. We remark that this decoupling
structure is lost upon considering any other shear flow to linearize around. We then
obtain that

ω̃(t, k, ξ) = exp(−ν
∫ t

0
k2 + (ξ − ks)2ds)ω0(k, ξ),

ṽ(t, k, ξ) = (−i(ξ − kt), ik)
k2 + (ξ − kt)2 exp(−ν

∫ t

0
k2 + (ξ − ks)2ds)ω0(k, ξ).

Computing the integral, we observe that ω not only decays with a rate exp(−νk2t) and
thus on time scales ν−1 as for heat flow, but rather with a rate exp(−νk2t3/3) and
thus already on a much shorter time scale ν−1/3. One thus speaks of mixing enhanced
dissipation, which combines the following effects:

• Mixing pushes L2 mass to higher frequencies.
• At higher frequencies dissipation is stronger.
• Both mechanisms thus constructively interact and result in enhanced damping
rates ν1/3 � ν1 (for small values of ν > 0).

While results for the linearized problem around Couette flow can be obtained by explicit
computation, obtaining results for other shear flows, other systems or the non-linear
equations requires more robust methods of proof. More specifically, in the following
sections we discuss these mechanisms for the stratified Navier-Stokes equations and the
partially viscous Boussinesq equations.
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4.1. Stratified viscosity and local mixing rates

In a joint work with Xian Liao [LZ21], we investigated the case of a shear flow
and stratified viscosity in the Navier-Stokes equations. In particular, we asked how
mixing enhanced dissipation changes if we allow the viscosity ν > 0 to vary by many
orders of magnitude. These investigations were motivated by physical settings with
density-dependent viscosity, which have numerous industrial applications. In order to
simplify the analysis, instead of the full compressible equations, we considered a stratified
model, where ρ(y) and µ(y) depend on the vertical direction only:

∂tv + v · ∇v = div(µ(y)Sv)−∇p,
div(v) = 0,

(t, x, y) ∈ (0,∞)× T× R.

Here, Sv = 1
2(∇v + (∇v)T ) denotes the symmetrized gradient. In this setting instead of

Couette flow the distinguished shear flow solutions v = (U(y), 0) are determined by the
equation

µ(y)∂yU(y) = const.(18)

Hence, if in a neighborhood of y = 0 this solution satisfies ∂yU(y) ≈ 1, i.e. the flow is
close to Couette flow, then if in another region we increase the viscosity by a factor 100,
the slope of the shear will actually decrease by a factor 1

100 . Furthermore, considering
the fact that by the calculation for the constant viscosity case we expect a “local decay
rate” of

3
√
µ(y)(∂yU(y))2,

this rate turns out to be proportional to µ−1/3. Therefore, an increase of the viscosity
leads to a decrease of the mixing rate and vice versa.

Theorem 4.1 ([LZ21]). Let µ(y), U(y) be a given solution to (18) with µ(y) > 0
and suppose ln(µ) is slowly varying in the sense that

‖∂y ln(µ)‖L∞ + ‖ 1
U ′
∂y∂y ln(µ)‖L∞ � 1.

Then the linearized Navier-Stokes equations around this solution are stable in weighted
Sobolev spaces. Moreover, they exhibit enhanced dissipation with a rate proportional
to (µ(U ′)2)1/3. More precisely, there exists time-dependent family of integro-differential
operators A(t), such that

‖A(t)ω(t)‖L2 ≈ ‖ω(t)‖L2

with constants uniform in time and

∂t‖A(t)ω(t)‖2
L2 . −

∫∫
(µ(U ′)2)1/3|ω(t)|2 + µ|∂xω(t)|2dxdy

Let us briefly comment on these results.
• For simplicity of notation, these results are stated in L2 spaces. They also extend
to weighted, higher Sobolev spaces if µ is sufficiently regular.



4.2. RAYLEIGH-BÉNARD AND ENHANCED DISSIPATION 37

• While log(µ(y)) is slowly varying, this does not imply that U(y) is close to
Couette or that ∂2

yU(y) is small. Indeed, a prototypical example is given by
an exponential profile U(y) = exp(cy) with a small constant c ∈ R. We hence
introduce strongly weighted spaces and require many localized changes of variables
and adapted Fourier methods to deal with these highly non-affine profiles. The
development of tools capable of dealing with this highly variable setting also
seems of independent interest to the community.
• Since µ(y) may change by many orders of magnitude, many estimates need to be
suitably localized. However, this is not easily achievable since the Biot-Savart law
ω 7→ v is non-local. This competition makes the analysis technically challenging
and natural leads to requirements on log(µ(y)) to be able slowly varying, so that
it is possible to glue together estimates.

4.2. Rayleigh-Bénard and enhanced dissipation

In two other works [Zil21c, Zil21d], we investigated enhanced dissipation phenomena
for the linearized Boussinesq equations with partial dissipation. As discussed in Section
2.3, the Boussinesq equations are a common model for the evolution of a heat conducting
fluid:

∂tv + v · ∇v +∇p = ν∆v + θe2,

∂tθ + v · ∇θ = κ∆θ,
div(v) = 0,

(t, x, y) ∈ (0,∞)× T× R.
Here the velocity v of the fluid and the pressure p satisfy a forced Navier-Stokes equation
and the temperature density θ is advected by v. The term θe2 causes hotter fluid to
rise above colder fluid and models buoyancy effects. The coefficients ν ≥ 0 and κ ≥ 0
take into account viscous dissipation and resistivity and, in many examples of interest,
may be anisotropic and of highly different orders of magnitude (e.g. close to purely
vertical dissipation or only viscous dissipation). In view of the dissipation, a family of
distinguished solutions is given by the Couette flow

v = (y, 0),
and thermal stratification

θ = βy.

The behavior of both solutions by themselves has been well-studied and includes the
following physical effects:

• The Navier-Stokes equations (i.e. setting θ ≡ 1) include mixing enhanced
dissipation and corresponding asymptotic stability in Sobolev regularity (for
small data) [BVW18].
• In the inviscid limit ν ↓ 0 we observe destabilization by mixing and resonances,
but assuming sufficient (Gevrey) regularity never the less observe inviscid damp-
ing of the velocity field [BM15b, DZ21].
• Considering thermal stratification of a fluid initially at rest (v = 0), it is
experimentally easily observed that a configuration with hotter fluid below colder
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fluid is unstable. For instance, heating the bottom of a container, “plumes” of
hotter liquid rise from the bottom and after sufficient time the flow becomes
highly chaotic. The instability is known as Rayleigh-Bénard convection [DR04].
• In contrast, if β > 0, that is hotter fluid is above colder fluid, there is no such
instability. Moreover, if β > 1

4 [How61] (the so-called Miles-Howard criterion)
certain algebraic instabilities are suppressed and we speak of stable stratification.

Both effects individually (shear at constant temperature or thermal stratification at rest)
are well studied. However, their interaction had been scarcely investigated and we hence
asked whether mixing enhanced dissipation can counteract Rayleigh-Bénard instability
in the setting without thermal dissipation, κ = 0. Our main results are summarized in
the following theorem.

Theorem 4.2 ([Zil21c]). Consider the two-dimensional Boussinesq equations on
T × R with viscosity ν > 0 and without thermal resistivity, κ = 0. Then any pair
v = (y, 0), θ = T (y) is a stationary solution. Moreover, under suitable assumptions,
which reduce to the requirement β & −ν−1/3 in the case of affine stratification, the
linearized Boussinesq equations are asymptotically stable and satisfy
ν1/3‖ω(t)‖2

HN + ‖∂xθ‖2
HN ≤ C(1 + ν−2/3)2(ν1/3‖ω0‖2

HN + ‖∂xθ0‖2
HN + ν−2/3‖θ0‖2

HN ).

Let us briefly comment on these results.
• For simplicity of notation this result is stated in terms of Sobolev spaces. A more
precise statement can be given using Fourier multipliers with cut-offs depending
negative powers of ν.
• We stress that here β can be allowed to be negative. Thus, mixing enhanced
dissipation can counteract Rayleigh-Bénard instability.
• In [Zil21d] we also establish stability for the full nonlinear Boussinesq equations
with full dissipation, i.e. with κ = ν > 0, in the regime of small data.
• As a related result, in [MSHZ22] the nonlinear problem with ν > 0 = κ is
shown to be stable in Gevrey 3 regularity for small data. As we discuss in Section
2.3 the resonances of the Euler equations (associated with Gevrey 2 regularity)
here are suppressed by the viscosity. However, we suggest that instead a new
resonance mechanism, which call thermal echoes, appears and hence stability
fails in Sobolev regularity (see Section 2.3). This mechanism is shown to crucially
rely on the systems structure of the Boussinesq equations.



CHAPTER 5

Outlook

As shown by the results of this thesis, mixing is a central effect in the analysis
of stability and instability of fluid flows and strongly depends on the system under
consideration (see Section 2.5). In particular, new, challenging effects appear when
studying data at critical regularity, such as infinite time blow-up or a strong discrepancy
between different notions of stability. Moreover, we stress that traveling waves allow us
to identify essential effects of the system structure of equations, which enabled us to
study the inviscid Boussinesq equations at critical regularity and to establish qualitatively
improved stability estimates for the associated linear problem [Zil22]. Building on these
insights, we expect that also for the full nonlinear inviscid Boussinesq equations improved
stability estimates can be established. Furthermore, the constructed waves are solutions
of the nonlinear equations for all times and heuristic calculations suggest that a control
of perturbations might be possible even past a time scale ε−2 (see Section 2.4).

More generally, we stress that while mathematically Gevrey classes appear as critical
spaces in the study of stability, in physical observations the associated damping results
seem to be much more robust. Here the results of [DZ21] and [Zil21a] provide an
important first explanation, by constructing data for which stability in a “scattering”
sense fails, but persists in a “physical” sense (for the linearized problem around waves; see
Sections 2.1 to 2.5 for a discussion and other systems). A natural question thus concerns
the construction of nonlinear solutions in critical spaces, which exhibit such instability
and the challenging widely open problem of characterizing the behavior of solutions
at lower regularity. Here, we stress that existing nonlinear echo chain constructions
[DM23, Bed20] are not sufficient: A single echo chain concludes after a finite time and
the evolution is subsequently stable. As a long term goal, we thus intend to construct
nonlinear solutions exhibiting multiple chains, which will serve as an important step
towards addressing non-trivial dynamics at large times.

Taking a higher level view of “mixing” in partial differential equations, in [Zil19], we
have shown an unexpected connection between different notions of mixing used in different
communities. As an application we highlighted connections between independently
developed results on “mixing costs” and established lower bounds on achievable mixing
rates. Furthermore, we introduced a discrete, dyadic model as a natural setting to study
notions of mixing. In future work, we intend to explore analogues of Bressan’s conjecture
on mixing costs [Bre03] in this model setting and to connect tools from “geometric” and
“analytic” mixing communities.
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